
AERODYNAMIC DESIGN OPTIMIZATION USING 3-DIMENSIONAL
EULER EQUATIONS AND ADJOINT METHOD

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

ALİ YILDIRIM

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

AEROSPACE ENGINEERING

JANUARY 2017

Approval of the thesis:

AERODYNAMIC DESIGN OPTIMIZATION USING
3-DIMENSIONAL EULER EQUATIONS AND ADJOINT METHOD

submitted by ALİ YILDIRIM in partial fulfillment of the requirements for the
degree of Master of Science in Aerospace Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ozan Tekinalp
Head of Department, Aerospace Engineering

Assoc. Prof. Dr. Sinan Eyi
Supervisor, Aerospace Engineering Dept., METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Tuncer
Aerospace Engineering Department, METU

Assoc. Prof. Dr. Sinan Eyi
Aerospace Engineering Department, METU

Prof. Dr. Serkan Özgen
Aerospace Engineering Department, METU

Prof. Dr. Nafiz Alemdaroğlu
School of Civil Aviation Department, ATILIM UNI.

Assist. Prof. Dr. Durmuş Sinan Körpe
Aeronautical Engineering Department, THK UNI.

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: ALİ YILDIRIM

Signature :

iv

ABSTRACT

AERODYNAMIC DESIGN OPTIMIZATION USING 3-DIMENSIONAL
EULER EQUATIONS AND ADJOINT METHOD

YILDIRIM, ALİ

M.S., Department of Aerospace Engineering

Supervisor : Assoc. Prof. Dr. Sinan Eyi

January 2017, 127 pages

The tool for the gradient-based optimization of wing-body configuration is de-

veloped using three-dimensional Euler equations and Adjoint method. Sensitiv-

ities required by design optimization are obtained by three different methods.

Finite difference, Direct and Discrete Adjoint methods are used to compute

objective sensitivities. A cell-centered, upwind based finite volume method is

implemented to discretize the Euler equations. Second-order spatial accuracy is

obtained by MUSCL interpolation. The flow solution is obtained by precondi-

tioned, reordered matrix-free Newton-GMRES algorithm. The required deriva-

tives for Adjoint and Direct methods are obtained by analytical derivation of

discrete flow equations and finite different approaches. Resulted linear systems

are solved by PARDISO solver. Direct and Adjoint sensitivities perfectly match

with finite difference gradients. In optimization, design variables are selected

as Non-Uniform Rational B-Spline (NURBS) curve and surface control points.

Radial Basis Function (RBF) interpolation is used to deform volume mesh. Ad-

v

joint gradients are used at the optimization procedure due to its superiority on

other gradient evaluation techniques. The single point optimization at cruise

condition of wing and body are presented according to different design variables

selections.

Keywords: optimization, aerodynamics, computational fluid dynamics, Adjoint

Method, iterative solvers, Newton-GMRES, preconditioner, reordering, Non-

Uniform Rational B-Splines (NURBS), Radial Basis Functions (RBF)

vi

ÖZ

3 BOYUTLU EULER DENKLEMLERİ VE ADJOİNT YÖNTEMİYLE
AERODİNAMİK TASARIM OPTİMİZASYONU

YILDIRIM, ALİ

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Sinan Eyi

Ocak 2017 , 127 sayfa

Üç boyutlu Euler çözücü ve Adjoint metodu ile kanat-gövde tasarımının opti-

mizasyonu için gradyan temelli araç geliştirilmiştir. Tasarım optimizasyonu için

gerekli olan hassaslık verileri üç farklı metod tarafından elde edilmiştir. Amaç

fonksiyonunun hassalık değişimi sonlu farklar metodu, Direct metod ve ayrık-

laştırılmış Adjoint metodu tarafından hesaplanmıştır. Hücre merkezli, upwind

temelli sonlu hacimler yöntemi Euler denklemlerinin ayrıklaştırılmasında kul-

lanılmıştır. İkinci dereceden uzaysal doğruluk MUSCL interpolasyonu ile elde

edilmiştir. Akış denklemlerinin çözülmesinde ön-koşullayıcı ve yeniden düzenle-

yici, matris gerektirmeyen Newton-GMRES algoritması kullanılmıştır. Adjoint

ve Direct metod için gerekli olan türevler analitik türev hesabı ve sonlu farklar

yöntemiyle elde edilmiştir. Lineer sistem denklemlerinin çözümünde PARDISO

kullanılmıştır. Direct ve Adjoint metodunun hassaslık değerleri sonlu farklar yön-

temiyle oldukça uyuşmuştur. Tasarım değişkenleri olarak Non-Uniform Rational

vii

B-Spline (NURBS) eğim ve yüzey kontrol noktaları seçilmiştir. Hacimsel hücre-

ler Radial Basis Function (RBF) kullanılarak deforme edilmiştir. Optimizasyon

sırasında diğer metodlara üstünlüğü nedeniyle Adjoint yöntemi izlenmiş olup,

kanat-uçak konfigürasyonu belirli bir seyir şartında farklı tasarım değişkenleri-

nin seçimiyle eniyilenmiştir.

Anahtar Kelimeler: optimizasyon, aerodinamik, hesaplamalı akışkanlar dinamiği,

Adjoint metod, tekrarlayıcı çözücüler, Newton-GMRES, ön koşullayıcı, yeniden

düzenleyici, Non-Uniform Rational B-Splines (NURBS), Radial Basis Functions

(RBF)

viii

Dedicated to my family and

... all aerospace lovers

ix

ACKNOWLEDGMENTS

I appreciate being part of the METU family as an aerospace engineer throughout

my bachelor’s and master’s degree.

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Sinan

Eyi, for giving me the chance of being his student during my Msc study. His

invaluable insights on problems, solutions and computational fluid dynamics

have always helped me. As a Graduate Research Assistant, I am glad to be a

member of this great team of Aerospace Engineering Department. I am thankful

for all who always encourage and support me to do my best. A special thanks

to Oguz Kaan Onay, Berk Gur, Muharrem Ozgun.

I would also like to thank my office mates Tugba Piskin and Emre Ozmen who

have always kept me entertained with their sense of humor, silly questions and

rambling conversations not only on CFD but also different aspects of life. No-

body apart from Tugba could have tolerated me and my first year as a MSc

student. She has always advised me of being healthy and kept the plants in

the room alive by watering them. And Emre has always influenced me with his

creative personality and would broaden my horizon on anything.

Last but not the least, I would like to thank my girlfriend Yagmur Yener who

has always been by my side supporting me in both personal and professional life

with her kindness, caring and loving support.

ALİ YILDIRIM

Middle East Technical University, Aerospace Eng.

January, 25, 2017

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Wing-Body Design and Optimization 1

1.2 Review of Aerodynamic Optimization Using CFD 3

1.2.1 Optimization Techniques 3

1.2.2 Gradient Calculation 6

1.2.3 Design Variables and Grid Motion 8

1.2.4 Flow Solver . 9

1.3 Outline of Thesis . 10

xi

2 GOVERNING EQUATIONS . 13

2.1 3-D Euler Equations in Cartesian Coordinates 13

2.2 3-D Euler Equations in Generalized Coordinates 14

2.3 Non-Dimensionalization 15

2.4 Spatial Discretization 16

2.4.1 Van Leer Flux Splitting Method 16

2.5 Monotonic Upstream-Centered Scheme Conservation Law 18

2.6 Grid Topology and Boundary Conditions 19

2.6.1 Symmetry BCs 19

2.6.2 Wall (slip) BCs 20

2.6.3 Far-field BCs 20

2.7 Analytical Jacobian Evaluation 21

3 SOLUTION STRATEGY . 25

3.1 Newton Method . 27

3.2 Generalized Minimum Residual (GMRES) 27

3.3 Newton-GMRES . 30

3.4 Preconditioning . 32

3.4.1 Left Preconditioned GMRES 33

3.4.2 Right Preconditioned GMRES 35

3.4.3 Left-Right Preconditioned GMRES 36

3.4.4 Incomplete Lower Upper (ILU) Preconditioning 38

xii

3.5 Reordering . 42

3.5.1 Graph Theory 42

3.5.2 Minimum Degree (MD) Ordering 44

3.5.3 Reverse Cuthill-Mckee (RCM) Ordering 45

3.5.4 Implementation of Reordering Algorithms . . . 47

3.6 Efficiency of flow solver 48

4 DESIGN VARIABLES . 53

4.1 Design Variables Selection 53

4.1.1 Non-Uniform Rational B-Splines (NURBS) Sur-
faces . 55

4.1.2 Design Variables on Body as NURBS Curves . 57

4.1.3 Design Variables as Wing Sweep Angles 58

4.2 Grid Perturbation Strategy 58

4.2.1 Algebraic Grid Perturbation Strategy 60

4.2.2 Radial Basis Function Strategy 60

4.2.3 Comparison of grid perturbation strategies . . 64

5 ADJOINT METHOD . 71

5.1 Evaluation of Discrete Gradients 71

5.1.1 Direct Method Sensitivities 71

5.1.2 Adjoint Method Sensitivities 72

5.1.3 Finite Difference Method Sensitivities 74

5.2 Optimization Tool . 75

xiii

6 RESULTS . 77

6.1 Test Case . 77

6.2 Gradient Accuracy . 82

6.3 Optimization Results 88

6.3.1 NURBS surface on wing 88

6.3.1.1 Lift maximization case with drag and
pitching moment constraints 88

6.3.1.2 Drag minimization case with lift and
pitching moment constraints 94

6.3.1.3 Pitching moment minimization case
with lift and drag constraints . . . 104

6.3.2 Body design variables 110

6.3.3 Sweep angle design variables 113

7 CONCLUSIONS . 117

7.1 Conclusion . 117

REFERENCES . 121

xiv

LIST OF TABLES

TABLES

Table 3.1 ilu(0) preconditioning . 50

Table 3.2 ilu(1) preconditioning . 50

Table 3.3 ilu(2) preconditioning . 50

Table 3.4 ilu(3) preconditioning . 50

Table 3.5 ilu(4) preconditioning . 50

Table 4.1 Some global & local basis functions 62

Table 4.2 Compact basis functions . 62

Table 4.3 Volume deformation strategies on grid quality metrics 68

Table 6.1 Results for CFD solution . 82

Table 6.2 Cl sensitivity comparison . 84

Table 6.3 Cd sensitivity comparison . 85

Table 6.4 Cm sensitivity comparison . 85

Table 6.5 Wall clock time for sensitivity calculations 86

Table 6.6 Results for lift maximization case 89

Table 6.7 Results for drag minimization case 95

Table 6.8 Results for lift case . 100

xv

Table 6.9 Results for pitching moment minimization case 105

Table 6.10 Results for body case . 111

Table 6.11 Results for sweep case . 113

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 Typical lift&drag breakdown of passenger aircraft [1] 2

Figure 1.2 Optimization techniques chart in aerodynamics 3

Figure 2.1 Grid topology and boundary conditions 19

Figure 3.1 Before factorization . 38

Figure 3.2 After factorization . 38

Figure 3.3 Matrix at left, corresponding graph at right 44

Figure 3.4 Linear system matrix for no reordering case 48

Figure 3.5 METIS reordering case . 49

Figure 3.6 RCM reordering case . 49

Figure 3.7 1WD reordering case . 49

Figure 3.8 MD reordering case . 49

Figure 3.9 Preconditioner effect on convergence using no ordering 51

Figure 3.10 Reordering effects on total number of non-zero 52

Figure 4.1 NURBS surface perturbation on wing 57

Figure 4.2 NURBS curve perturbation on body 57

xvii

Figure 4.3 LE sweep angle design variables perturbation on wing 58

Figure 4.4 Compact basis functions . 63

Figure 4.5 Cube grid . 65

Figure 4.6 Bottom surface plane (k=1) and half cut plane (i=25) 65

Figure 4.7 Comparison of NURBS control point degrees on surface . . . 66

Figure 4.8 Comparison of algebraic and RBF perturbation 67

Figure 5.1 Flow-chart of optimization with Adjoint method 74

Figure 6.1 Coarse grid . 78

Figure 6.2 Medium grid . 78

Figure 6.3 Fine grid . 78

Figure 6.4 CL vs. α graph . 79

Figure 6.5 Drag polar . 79

Figure 6.6 Section cuts on wing . 79

Figure 6.7 Cp graphs for spanwise locations 80

Figure 6.8 CFL3D Cp contours [2] . 81

Figure 6.9 Van-Leer Cp contours . 81

Figure 6.10 Convergence history . 82

Figure 6.11 Sensitivities on surface design variables 83

Figure 6.12 Adjoint sensitivity time table 86

Figure 6.13 Direct sensitivity time table 87

Figure 6.14 Convergence history of lift maximization case 89

Figure 6.15 Lift maximization Cp contours on upper surface 90

xviii

Figure 6.16 Lift maximization Mach contours on upper surface 90

Figure 6.17 Airfoil sections on spanwise locations 91

Figure 6.18 Cp graphs for spanwise locations 92

Figure 6.19 Cl − α off design conditions 93

Figure 6.20 Cl − Cd off design conditions 93

Figure 6.21 Convergence history of drag minimization case 94

Figure 6.22 Drag minimization Cp contours on upper surface 95

Figure 6.23 Drag minimization Mach contours on upper surface 96

Figure 6.24Wing tip vortices and Cp distribution 96

Figure 6.25 Airfoil sections on spanwise locations 97

Figure 6.26 Cp graphs for spanwise locations 99

Figure 6.27 Cl − Cd off-design . 99

Figure 6.28 Cd − M∞ off-design . 99

Figure 6.29 Spanwise lift distribution . 100

Figure 6.30 Convergence history of drag minimization case 101

Figure 6.31 Cp and Mach distribution on degree 3 and 4 optimization . . 101

Figure 6.32 Airfoil sections on spanwise locations 102

Figure 6.33 Cl − Cd off-design . 103

Figure 6.34 Convergence history of pitching moment minimization case . 104

Figure 6.35 Pitching moment minimization Cp contours on upper surface 105

Figure 6.36 Pitching moment minimization Mach contours on upper surface106

Figure 6.37 Airfoil sections on spanwise locations 106

xix

Figure 6.38 Cp graphs for spanwise locations 108

Figure 6.39 Cm − α off design conditions 108

Figure 6.40 Cm − Mach off design conditions 109

Figure 6.41 Sections for all cases . 109

Figure 6.42 Convergence history . 111

Figure 6.43 Baseline wing body . 111

Figure 6.44 Optimized wing body . 111

Figure 6.45 Symmetry plane Cp contours base 112

Figure 6.46 Symmetry plane Cp contours optimized 112

Figure 6.47 Drag polar for body optimized case 112

Figure 6.48 Convergence history . 113

Figure 6.49 Sweep angles comparison on wing 114

Figure 6.50 Cp and mach contours . 114

Figure 6.51 Cp graphs for spanwise locations 115

Figure 6.52 Sweep angles comparison on wing 116

xx

LIST OF ABBREVIATIONS

FD Finite difference

AD Automatic differentiation

Q Flow variable vector in cartesian coordinates

F,G,H Flux vectors in cartesian coordinates

ρ Density

p Pressure

u, v, w Velocities in cartesian velocities

ein,h Internal energy, enthalpy

γ Specific gas constant

J Jacobian of transformation

Q̂ Flow variable vector in generalized coordinates

F̂ , Ĝ, Ĥ Flux vectors in generalized coordinates

U, V,W Contravariant velocity components

i, j, k Node indicies

ξ, η, ζ Coordinates in computational space

ρ∞ Density in free stream

p∞ Pressure in free stream

u∞, v∞, w∞ Cartesian velocities in free stream

M∞ Free stream Mach number

T∞, P∞ Free stream static temperature and pressure

Q̂R, Q̂L Right-left state variables

Q̂i+ 1
2

Flow variable at cell face

R Residual vector

A,x,f Sparse Jacobian matrix, solution and right hand side vec-
tor

Â,x̂,f̂ Preconditioned sparse Jacobian matrix, solution and right
hand side vector

GMRES Generalized Minimum Residual

FOM Full Orthogonalization Method

xxi

v Krylov subspace vector

r0 Initial residual vector

LLS Linear Least Squares

hi,j Elements of upper Hessenberg matrix

ηk Forcing parameter for Newton-GMRES

sk Initial guess for Newton step

m GMRES iteration index

M Preconditioner matrix

ML,MR Left and right preconditioner matrix

‖.‖2 Euicledan norm

Kk Krylov subspace

ILU Incomplete lower upper factorization

ILU(p, τ) Incomplete lower upper factorization with level of fill and
treshold

ND Nested Dissection ordering

MD Minimum Degree ordering

RCM Reverse Cuthill-Mckee ordering

P1, P2 Permutation matrices

NURBS Non-Uniform Rational B-Splines

S(ξ, η) Coordinates of NURBS points

ξ, η Parametric coordinates of NURBS points

n,m Number of control points - 1 in NURBS

p, q Degree of NURBS curves

Pi,j Bi-directional control points

Ni,p, Nj,q Basis functions of p and q degree

ui NURBS knots

U, V Knot vectors

Ri,j Rational NURBS basis function

RBF Radial Basis Functions

Sj Arch-length distance

Lg Grid node lengths

φ Radial basis function

Nrbf Number of RBF points

Nv Number of volume node points

xxii

αx, αy, αz Weigths of RBF points

∆xr,∆yr,∆zr Deflection in RBF points

R0 Support radius

∆xv,∆yv,∆zv Deflection in volume mesh points

I, J,K Computational grid planes

I Objective function

Ω Objective function gradient

S Design variable vector

NF Number of flow variables

ND Number of design variables

ψ Adjoint variables

X Grid points

DOT Design Optimization Tool

MMFD Modified Method of Feasible Directions

xxiii

xxiv

CHAPTER 1

INTRODUCTION

1.1 Wing-Body Design and Optimization

Aeronautics had started with a simple question "How can a manned flight be

possible" in approximately 500 years ago. Now the entire humanity is aware of

this fact and can easily answer this question. Today, development in cutting-edge

technology and science make people want to fly more efficiently and faster to far

away. Even humanity is looking for a way to fly outside of earth ie. imitation of

an insect flying to Mars. This is not a fantasy or dream anymore. Now, we can

make transatlantic flies with transonic airplanes and the hypersonic missiles are

ready to achieve their intercontinental operations in less than one hour.

There are many comprehensive research studies being carried out which aim to

make flights more efficient to carry more passengers and freight to further loca-

tions with minimum fuel consumption for less carbon footprint and eventually

less populated clear skies. Therefore researchers and engineers have been to

design more wisely and try to obtain optimum shape that meets requirements.

Typical approach that has been found by engineers to design more wisely is to

create a design methodology and they have divided the design phases into 3 cate-

gories, conceptual, preliminary and detailed design. The developed methodology

and design phases are explained in detail in many textbooks [3][4]. A standard

approach for typical aircraft is assessing and evaluating each component indi-

vidually. First, the lifting surfaces should be designed according to standard

design parameters such as airfoil thickness, camber, maximum and design lift

1

coefficients, wing aspect ratio, sweep angle, taper ratio, twist distribution and

so on. The second step is to design for minimum parasite drag or induced drag,

better fuel efficiency, increased endurance, minimum weight to carry more pay-

load or creating shock-less wing sections. In every phase of design, wing and

body both together play a key role in final design since the aerodynamic param-

eters are strong function of them. In order to show these components’ effect on

all aircraft, the typical drag and lift breakdown of passenger aircraft at cruise

condition are illustrated as below.

Figure 1.1: Typical lift&drag breakdown of passenger aircraft [1]

As seen in Figure 1.1 most of the lift and drag are provided by wing and body.

Therefore their optimal shapes will increase the general performance of the entire

aircraft. Thus in this study, we will mainly focus on wing and body to get the

optimum shape.

Typical approach is still used widely in conceptual design. However, in later

phases of design, more sophisticated tools and approaches are required ie. com-

putational fluid dynamics (CFD). CFD can be used to experiment flow field

on designed object. Or even it can be used as specific design tool. Start-

2

ing with an potential, Euler, Navier-Stokes or even Reynolds-Averaged Navier-

Stokes (RANS) solvers today, CFD is known as the best tool for aerodynamic

design. The design optimization using CFD requires 4 main elements; optimiza-

tion technique, gradient calculation (if it is required), design variables and flow

solver. In the following sections, 4 main elements of CFD based optimization

will be mentioned by focusing on aerodynamics.

1.2 Review of Aerodynamic Optimization Using CFD

1.2.1 Optimization Techniques

Optimization techniques in aerodynamic design can be considered in two main

categories. These are inverse design and numerical optimization. Figure 1.2

shows the general classification of CFD-based aerodynamic optimization tech-

niques.

Figure 1.2: Optimization techniques chart in aerodynamics

Inverse design techniques have been commonly used for a long time. It was

discovered first by Betz [5] to find an airfoil shape for predetermined pressure

distribution. And later, it was developed for the design optimization of various

3

Jukosky airfoils by Lighthill [6] by using conformal mapping. Further develop-

ments to inverse design were succeeded by Volpe & Malnik in 1986 on transonic

airfoils using full potential equations and Giles & Drela [7] in 1987 by transonic

flow using Euler equations on 2D airfoils. Although the approach is still used

and applied to complex flow equations, there is one drawback that is crucial.

The designers are not able to always predict the target pressure distribution

which satisfies desired performance of optimal shape. Even though, the less

computational time is offered by inverse design, the designer selections may fail

the optimal shape at the end specifically where separated or turbulent flows take

place and the pressure distribution becomes noisy.

On the other hand, second method-numerical optimization-offers a well-posed,

robust optimization problem. The required knowledge and experience in inverse

design is restricted by rules of numerical optimization technique. Optimization

problem is treated a set of linear and nonlinear objective, constraint functions

that give the optimal design. The designer is supposed to set up the objective

and constraint functions which are specific function of design variables. While

objective functions can be lift, drag, pitching moment etc., constraints can be

considered as other aerodynamic parameters or geometric variables that have

a direct impact on optimal shape. Numerical optimization-in some references

mentioned as direct numerical optimization-technique is investigated in two main

categories. These are gradient-based methods and gradient-free methods.

The pioneers of numerical optimization technique in aerodynamics are Hicks,

Murman and Vanderplaats [8] who applied their methodology to assess the op-

timal airfoil with various constraints and cost functions. Their approach was the

gradient-based but we will mention first the other techniques which are gradient-

free. The gradient-free methods can be summarized broadly in three categories;

direct methods, surrogate methods and stochastic methods. One of the well

known direct methods is simplex method which was found by Dantzig [9] for the

optimization of linear problems. In later 1965, Nelder and Mead [10] extended

the approach for non-linear problems for which the derivatives are not known.

The algorithm was promising for notably small number of design variables where

objective function was smooth. Probably one of the main advantages was that

4

there was no need for an expensive gradient calculation. With less effort on

aerodynamic side of simplex method, one can find comprehensive research on

Duvigneau and Visonneau [11] works.

Stochastic methods are developed mainly on genetic algorithms. The application

settles on the biologically inspired fact the operators of mutation, crossover and

selection. In algorithm, candidate optimal solutions evolve to better solution by

changing their chromosomes. The main advantage of this approach is that it is

capable of finding global optimum by comparing to other methods. But it re-

quires tremendous computational cost, function evaluations or in aerodynamics

we say flow solutions. First application on aerodynamics which was applied on

transonic airfoils was done by Quagliarella and Cioppa [12].

On the other side, gradient-based methods require gradient evaluation or the

sensitivity of design variables with respect to objective functions. Naturally

they are supposed to converge local minima. They are categorized by many as-

pects such that constrained, unconstrained, linear and non-linear optimization

techniques. Further explanation can be found in the book of Nocedal and Wright

[13]. The first application of this kind of approaches was done by Hicks, Murman

and Vanderplaats [8] in 1974 on airfoil optimization. Then, the work was ex-

tended to three-dimensional wings [14]. The approach was simple, first flow code

was developed and with a little modification the gradients were calculated by

finite difference approach. They used this approach to solve optimization prob-

lem by method of feasible directions which is under the category of constrained

optimization. More or less the selection of optimization technique in gradient

based methods restricted by the techniques are given in Figure 1.2. However,

the calculation of gradients have been investigated for many years. The differ-

ent approaches have attracted the attention of researchers and they are still a

great research subject. In the following section, we will give the history of these

approaches, which is also the main focus of this thesis.

5

1.2.2 Gradient Calculation

In the calculation of gradients, fastness and correctness are crucial for gradient-

based methods, since the descent or search direction proceeds according to these

features. In early times of aerodynamic optimization, the easiest method was

considered to be finite difference (FD) approach. Its first application is refer-

enced in [8]. Later on, Eyi and Lee [15] applied this approach into high lift

optimization of airfoils using Navier-Stokes equations. Finite difference imple-

mentation is considered to be fairly straightforward as it only requires the flow

solution at perturbed design variables. However, as the number of design vari-

ables increases the repeated flow solutions can be inhibitive in terms of compu-

tational time. For instance, in central difference scheme, two times of number of

design variables flow solutions are required. In addition to this, the calculated

gradients accuracy is directly related to step-size choice. While too small steps-

sizes increase round-off errors, too large step-sizes increase truncation error. For

all these reasons, finite difference approach is not frequently used and only used

for comparison reasons with different methods. Nevertheless, the researchers

have tried to develop this approach and they have found the complex step (CS)

methods. Comparing to FD approach, complex step does not need subtraction

operation to estimate derivatives, so the cancellation or round-off errors will be

diminished. This will allow to use very small perturbation number without con-

sidering too much on round-off errors. However, the written flow code must be

converted to deal with complex variables in this approach. The detailed study

can be found in Marting et al. [16].

In 1983 Pironneau [17] asked the question, "What is the best shape for physical

system?" and he found the solution by calculus of variation. His book were

specialized on optimal shape design using elliptic PDE’s. Then in 1988 Jameson

[18] published the work on aerodynamic design and he explained its study by the

control theory approach. In this method, necessary gradients are obtained by

the reformulation of flow equations to solve Adjoint variables that were imposed

to Adjoint boundary conditions. The resulting equations can be discretized and

solved similar to flow equations. The complete gradients can be extracted from

6

one flow and adjoint equation solutions which show the superiority of method

on FD method. The method is called as continuous adjoint. Jameson’s research

group developed the continuous adjoint during time. In 1994 [19] they used the

potential flow equations on airfoils and in 1995 [20] they developed the method

for wing and wing-body configurations with Euler equations. At a later time,

the planform optimization of Boeing aircraft was succeed by Leoviriyakit [21].

Anderson and Venkatakrishnan [22] applied this method on unstructured grids.

Since then there have been many further improvements and different studies

done by many researchers on continuous adjoint. Although the method is effi-

cient, the coding time and workforce are great. As the flow equations are getting

complex, the continuous adjoint equation cannot be derived or it may even not

exist at all. In addition to continuous adjoint, there is one more approach which

is called as discrete adjoint which provides flexibility in adjoint-based optimiza-

tion. The method is defined in first-discretize-then-optimize approach. In this

approach, flow solver is discretized, then discretized equations are differentiated

analytically or by automatic differentiation (AD) [23] in line with the required

design variables and flow variables. As a result of this, the linear system of ad-

joint equation can be solved. This method has been studied by many authors in

the references, [24][25][22]. The discrete and continuous approaches have been

compared to each other by Shubin and Frank [26], and by Nadarajah and Jame-

son [27]. And they concluded that as the discretization of both approaches are

the same the discrete adjoint sensitivities perfectly match the finite difference

sensitivities in any circumstances. However, the continuous adjoint can only be

the same as the finite difference sensitivities only if the same discretization is

applied to continuous problem with the flow equations where is not applicable

in most of the time.

On the other hand, direct method or occasionally referred as flow sensitivity and

direct differentiation method are another way of dealing with discrete gradients.

Hou et. al [28] has described the methods of finite difference, direct and discrete

adjoint. In direct sensitivity method, for each design variable linear system of

flow sensitivity equation must be solved. This method can be practical when a

number of design variables are low or the system is solved by direct methods such

7

that LU factorization with different right hand sides. Nevertheless, the discrete

adjoint has proved itself as being the most robust and accurate, and that no

other methods have achieved it yet, thus the thesis will focus on the discrete

adjoint approach while the sensitivities are compared to the other methods as

well.

1.2.3 Design Variables and Grid Motion

One of the crucial elements of optimization is the selection of design variables

or namely shape parameterization due to the fact that the optimal shapes are

more or less the functions of design variables. While some methods offer less

computational time, some methods offer smooth aerodynamic shapes that gives

a better general performance even at off-design conditions.

The first approach is applied by choosing grid nodes as design variables. How-

ever, this approach is not practical for large grids especially in three-dimensional

configurations. For this reason, Hicks and Henne [29] have introduced the bump

functions which add the parameterized deflection of baseline geometry. This

approach then quite reduced the number of design variables. Then some re-

searchers have worked on the parameterization of known shapes such as wing

sections, airfoils. Sobieczky [30] introduced the PARSEC algorithm in 1999.

This approach is based on the relation of some parametric features (leading

edge radius, maximum camber etc.) of airfoils. Later many other methods

have emerged based on this approach. The other method is using the splines ie.

Bezier, B-spline, Non-uniform rational b-splines (NURBS) curves and surfaces

[31] to create any shape. Spline methods have become very popular and still

they are still being used in many aerodynamic optimization studies nowadays

[32].

The other concern is that how surface deflections can be applied to control

volume mesh in particularly CFD. Compared to unstructured grids, structured

grid deformation is relatively easy. Burgreen and Baysal [33] have introduced

the algebraic grid deformation in 2D case, then the algorithm has been extended

to 3D by them [25] using the arch length parameterization of grid lines. On

8

the other hand, iterative methods such that linear spring analogy and linear

elasticity methods have also been studied and used for long time. However, due

to high computational costs they are known as expensive methods. Radial basis

functions (RBF) method was introduced by Boer et. al [34] in 2006 to allow large

grid deformations in unstructured grids. Fortunately, algorithm was suitable for

structured grids as well and then was proposed by Poirier and Nadarajah [35]

in detail. In this study, both NURBS surfaces and curves will be used to decide

surface point deflections with the conjunction of algebraic grid perturbation and

RBF approaches.

1.2.4 Flow Solver

In gradient optimization, function evaluations namely flow solutions are used

in the line search repeatedly. Therefore a fast and robust solution strategy

should be followed. Since the flow Jacobian matrix is created for the linear

system of adjoint and direct sensitivity approaches, this matrix can be directly

used to solve flow equations with Newton method in implicit manner. The

usage of Newton method in CFD was initiated by Venkatakrishnan [36] in 1989

on both viscous and inviscid flow solution of airfoils. He linearized the flow

equations by Newton method and created the sparse flow Jacobian matrix. Then

he solved the linear systems by LU decomposition. The result was remarkable

since the machine precision in residual was managed to be obtained in less

than ten iterations. The solution had quadratic convergence even after freezing

the Jacobian. Nevertheless, the direct solution of the Jacobian matrix was not

efficient computationally. In addition, memory requirements were a limiting

issue in LU factorization.

At the same time, the researchers were working on robust and fast sparse itera-

tive solvers, Krylov solvers. The first appearance of Krylov methods indicates to

Alexei Nikolaevich Krylov in 1930’s. In 1952 Hestenes and Stiefel [37] published

the first work on solution of symmetric linear system by Krylov methods. They

called their methods as conjutage gradients. Later, Saad [38] has applied the

Krylov methods on unsymmetric matrices and found the Generalized Minimum

9

Residual (GMRES) method. Anderson and Venkatakrishnan [22] have applied

the method on viscous and inviscid flows. Michalak and Gooch [39] have cre-

ated a guide for higher-order inviscid memory efficient linear system creation

and solution by GMRES.

Although, the improvements on iterative solvers make linear system solution fast

with less memory requirements, still the creation of Jacobian matrix for every

Newton iteration is cumbersome. Then, matrix free Newton-GMRES algorithm

has appeared. In this algorithm, Jacobian matrix does not need to be created

explicitly. With the developments of different preconditioning and reordering

algorithms, preconditioned Newton-GMRES has become very popular in the

flow solution of both viscid and inviscid flows. Pueyo et. al [40] has studied the

matrix free Newton-GMRES on viscous flow using Baldwin-Lomax turbulence

model and Nemec et. al [41] has developed the Spalart Allmaras turbulent

model version of previous study. Both studies have been very successful and they

have outputted a guideline for generation and solution of system by the help of

Newton-GMRES. Although there have been many studies on preconditioning

and ordering of Newton-GMRES, the most and current one is by Gatsis [42]

and the reader is strongly encouraged to read his doctoral thesis. Because of the

powerful background and robustness of the method, in this thesis matrix-free

Newton-GMRES algorithm will be investigated with different preconditioner

choices and reordering algorithms.

1.3 Outline of Thesis

In the introduction part, the key points of CFD based optimization were men-

tioned. In later chapters these elements will be discussed in more detail. In

the second chapter, the governing equations and spatial discretization of these

equations will be mentioned including higher order discretization. The appli-

cation of boundary conditions and the guideline of creation of Jacobian matrix

will also be given. In the third chapter, the Newton Method, Newton-GMRES

methods with the implementation of preconditioner and reordering algorithms

will be discussed. In the fourth chapter, selection of design variables and grid

10

deformation techniques will be explained. In the fifth chapter, the evaluation

of gradient sensitivities, finite difference, adjoint and direct method with opti-

mization technique will be explained in detail. Finally, in the result section, all

the results according to the flow solution, sensitivity accuracy and optimization

for different design variables will be presented. The results will be concluded

and further research areas will be given in the conclusion part. The scope of

the thesis is the development of adjoint based robust optimization technique

on wing-body configuration using Euler equations by focusing on all aspects

of optimization ie. flow solution, optimization, design variables and gradient

sensitivity calculation.

11

12

CHAPTER 2

GOVERNING EQUATIONS

2.1 3-D Euler Equations in Cartesian Coordinates

Euler Equations in 3-D flow can be written in cartesian coordinates as follows.

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (2.1)

For this flow conservative flow variable vector, Q is given by

Q =



ρ

ρu

ρv

ρw

ρe


(2.2)

where ρ is density, u, v and w are velocities in cartesian coordinates (x, y, z) and

p is the pressure. Then corresponding flux vectors (F,G,H) can be written

F =



ρu

ρu2 + p

ρuv

ρuw

u(ρe+ p)


G =



ρv

ρvu

ρv2 + p

ρvw

v(ρe+ p)


H =



ρw

ρwu

ρwv

ρw2 + p

w(eρ+ p)


(2.3)

In Equation (2.3) e is total energy per unit volume. Since pressure, p is not

defined in flow variables in Equation (2.2), it is obtained by ideal gas relation

such that

p = ρein(γ − 1) (2.4)

13

where ein indicates internal energy and total energy is the sum of internal and

kinetic energies

e = ein +
1

2
(u2 + v2 + w2) (2.5)

where γ is specific heat ratio which is taken as 1.4.

Until now, Euler equations in 3-D cartesian coordinates are formulated. How-

ever, this formulation is not practical for the solution of non-regular domains.

Therefore, cartesian coordinates must be transformed to generalized curvilinear

coordinates.

2.2 3-D Euler Equations in Generalized Coordinates

Governing equations mentioned in previous section can be written in generalized

coordinates as
∂Q̂

∂τ
+
∂F̂

∂ξ
+
∂Ĝ

∂η
+
∂Ĥ

∂ζ
= 0 (2.6)

For a conservative flow variable vector, Q̂

Q̂ = J−1Q =
1

J



ρ

ρu

ρv

ρw

ρe


(2.7)

Similarly conservative fluxes, F̂ , Ĝ, Ĥ, can be written such that

F̂ = 1
J



ρU

ρuU + ξxp

ρvU + ξyp

ρwU + ξzp

(ρe+ p)U


Ĝ = 1

J



ρV

ρuV + ηxp

ρvV + ηyp

ρwV + ηzp

(ρe+ p)V


Ĥ = 1

J



ρW

ρuW + ζxp

ρvW + ζyp

ρwW + ζzp

(ρe+ p)W


(2.8)

In Equation (2.8) formulation small letters for u, v, w correspond to cartesian

velocities and capital letters U, V,W are contravariant velocity components, J

is the coordinate transformation Jacobian, ξ, η and ζ are the curvilinear coor-

dinates, and ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy, ζz are the transformation metrics. Metric

14

coefficients are given by

ξx = J(yηzζ − yζzη), ξy = J(xζzη − xηzζ), ξz = J(xηyζ − xζyη)

ηx = J(yζzξ − yξzζ), ηy = J(xξzζ − xζzξ), ηz = J(xζyξ − xξyζ) (2.9)

ζx = J(yξzη − yηzξ), ζy = J(xηzξ − xξzη), ζz = J(xξyη − xηyξ)

Jacobian of transformation is simply,

J =

∣∣∣∣∣∣∣∣
ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

∣∣∣∣∣∣∣∣ (2.10)

The contravariant velocities are defined as

U = ξxu+ ξyv + ξzw

V = ηxu+ ηyv + ηzw (2.11)

W = ζxu+ ζyv + ζzw

2.3 Non-Dimensionalization

In order to prevent existence of measurement units all governing equations start-

ing from Equation (2.1) to Equation (2.5) are non-dimensionalized. In non-

dimensionalization process, following scaling parameters are used [43].

x =
x̃

L̃R
, y =

ỹ

L̃R
, z =

z̃

L̃R
(2.12)

ρ =
ρ̃

ρ̃∞
, u =

ũ

ã∞
, v =

ũ

ã∞
, w =

ũ

ã∞
(2.13)

p =
p̃

ρ̃∞(ã∞)2
, e =

ẽ

ρ̃∞(ã∞)2
, a =

ã

ã∞
, T =

T̃

T̃∞
=
γp

ρ
= a2 (2.14)

All tilde (∼) symbols indicate the dimensional quantity, the left side of equalities

are non-dimensional. The initialization of flow domain is done through non-

dimensional free-stream values which are given below.

ρ∞ = 1, a∞ = 1, p∞ =
1

γ
, T∞ = 1, e∞ =

1

γ(γ − 1)
+

(M∞)2

2
(2.15)

u∞ = M∞cos(α), v∞ = M∞sin(α), w∞ = 0 (2.16)

15

2.4 Spatial Discretization

The differential form of the steady 3-D Euler equations given in Equation (2.6)

can be discretized for an arbitrary hexahedral control volume.

δξF̂

∆ξ
+
δηĜ

∆η
+
δζĤ

∆ζ
= 0 (2.17)

For a cell centered finite volume method Equation (2.17) can be written as

(F̂i+ 1
2
,j,k − F̂i− 1

2
,j,k) + (Ĝi,j+ 1

2
,k − Ĝi,j− 1

2
,k) + (Ĥi,j,k+ 1

2
− Ĥi,j,k− 1

2
) = 0 (2.18)

The inviscid fluxes of the Euler equations represent the convective phenomena.

The upwind flux splitting schemes are used for the spatial discretization of the

flux vectors. In this study the split fluxes, F̂+, F̂−, Ĝ+, Ĝ−, Ĥ+, Ĥ− are calcu-

lated by Steger-Warming [44], Van Leer [45] and AUSM [46] methods.

F̂i± 1
2
,j,k = F̂+(Q̂L

i± 1
2
,j,k

) + F̂−(Q̂R
i± 1

2
,j,k

)

Ĝi,j± 1
2
,k = Ĝ+(Q̂L

i,j± 1
2
,k

) + Ĝ−(Q̂R
i,j± 1

2
,k

) (2.19)

Ĥi,j,k± 1
2

= Ĥ+(Q̂L
i,j,k± 1

2
) + Ĥ−(Q̂R

i,j,k± 1
2
)

where the i ± 1/2, j ± 1/2 and k ± 1/2 denote a cell interfaces. The fluxes are

calculated at the cell interfaces by using the flow variables interpolated from

the cell center. Simple scheme with first-order accuracy in space is obtained by

assuming the values at the cell faces are equal to the values at the nearest cell

centers such that

Q̂L
i+ 1

2
,j,k

= Q̂i,j,k and Q̂R
i+ 1

2
,j,k

= Q̂i+1,j,k

Q̂L
i,j+ 1

2
,k

= Q̂i,j,k and Q̂R
i,j+ 1

2
,k

= Q̂i,j+1,k (2.20)

Q̂L
i,j,k+ 1

2
= Q̂i,j,k and Q̂R

i,j,k+ 1
2

= Q̂i,j,k+1

2.4.1 Van Leer Flux Splitting Method

For an example, Van Leer method will be presented here. In Van Leer’s method

flux are split according to its contravariant mach number for subsonic and su-

personic cases. The flux in ξ direction, F̂ depends on the sign of Mξ where

Mξ =
Ū

a
(2.21)

16

knowing

Ū =
U

|∇ξ|
(2.22)

U is contravariant velocity in ξ direction as given in Equation (2.11). Then the

splitting criteria is given

• For locally supersonic flow, |Mξ ≥ 1|;

F̂+ = F̂ F̂− = 0 if Mξ ≥ +1

F̂+ = 0 F̂− = F̂ if Mξ ≤ −1 (2.23)

• For locally subsonic flow, |Mξ < 1|;

F̂± =
|∇ξ|
J



fmass

fmass

[
ξ̂x(−Ū±2a)

γ
+ u

]
fmass

[
ξ̂y(−Ū±2a)

γ
+ v

]
fmass

[
ξ̂z(−Ū±2a)

γ
+ w

]
fmass

[
(1−γ)Ū2±2(γ−1)Ūa+2a2

(γ2−1)
+ (u2+v2+w2)

2

]



(2.24)

In Equation (2.24) normalized metrics are

ξ̂x =
ξx
|∇ξ|

ξ̂y =
ξy
|∇ξ|

ξ̂z =
ξz
|∇ξ|

(2.25)

where |∇ξ| =
√
ξ2
x + ξ2

y + ξ2
z (2.26)

with

fmass = ±ρa
4

(Mξ ± 1)2 (2.27)

In previous splitting methods such as Steger-Warming, split flux are not contin-

uously differentiable at the stagnation and sonic points. These discontinuities

may cause some oscillations. Van Leer solves this problem by imposing the extra

criteria that split fluxes, F̂± must be continuous. By the help of this condition,

fluxes are split according to their mach number and shock resolution is improved.

17

2.5 Monotonic Upstream-Centered Scheme Conservation Law

Higher order accuracy in space can be obtained by using Monotonic Upstream-

Centered Scheme Conservation Law (MUSCL) interpolation. Its formulation is

given below.

Q̂L
i+ 1

2
= Q̂i +

1

4

{
φ(r)

[
(1− κ)∇+ (1 + κ)∆

]}
i

(2.28)

Q̂R
i+ 1

2
= Q̂i+1 −

1

4

{
φ(r)

[
(1− κ)∆ + (1 + κ)∇

]}
i+1

(2.29)

Upwind-biased schemes are known to under-shoots and over-shoots in the shock

region. A limiter can be used to reduce the scheme to a one-sided in the shock re-

gions, then oscillations can be removed. The first variation of this limiter is non-

differentiable min-mod limiter. However, its better to use a differentiable limiter

such that Van Albada Limiter [47]. It is continuously differentiable and suitable

for analytical Jacobian calculation. The limiter is implemented by rewriting

Equations (2.28) and (2.29).

Q̂L
i+ 1

2
= Q̂i +

{s
4

[
(1− sκ)∇+ (1 + sκ)∆

]}
i

(2.30)

Q̂R
i+ 1

2
= Q̂i+1 −

{s
4

[
(1− sκ)∆ + (1 + sκ)∇

]}
i+1

(2.31)

where s,∆ and ∇ are

s =
2∆∇+ ε

∆2 +∇2 + ε
(2.32)

∆i = Q̂i+1 − Q̂i, ∇i = Q̂i − Q̂i−1 (2.33)

The parameter ε is introduced to avoid division by zero. For this study, it is

taken [48];

ε = 10 ∗ Ω1.25 (2.34)

where Ω is the average volume of neighbor cells. In order to complete the Van

Albada Limiter, κ = 0 can be chosen which is upwind-biased scheme. κ does not

have to be an integer, however its value must be in region, [−1, 1
3
]. Moreover,

accuracy of solutions can be increased by increasing κ being aware of divergence

pitfall.

18

2.6 Grid Topology and Boundary Conditions

In this study, ARA M100 [2] wing+body configuration is used as test case with

single block, C-H type structured grid. In Figure 2.1 boundary conditions are

shown.

Figure 2.1: Grid topology and boundary conditions

In the application of boundary conditions, ghost cell approach is used due to

easiness of implementation in both flow solution and Jacobian matrix generation.

2.6.1 Symmetry BCs

On symmetry plane, all conservative scalar variables in inner cells are passed

directly to the ghost cells except the velocity normal to symmetry plane. In our

case;

w1
ghost = w1

inner

w2
ghost = w2

inner

w3
ghost = w3

inner (2.35)

w4
ghost = −w4

inner

w5
ghost = w5

inner

19

2.6.2 Wall (slip) BCs

On wall flow tangency criteria is applied due to inviscid nature of Euler flow. In

this case, all normal velocities to the wall are equated to zero. This means con-

travariant velocity vector at cell face V̄face = 0. Then, first and last conservative

variables are simply extrapolated. V̄face = 0 condition is satisfied as follows.

uface = uinner − ηxV̄inner (2.36)

vface = vinner − ηyV̄inner (2.37)

wface = winner − ηzV̄inner (2.38)

Multiplying above equations with ηx, ηy and ηz, then adding and rearranging;

uinηx + vinηy + winηz︸ ︷︷ ︸
V̄face

=

���
���

���
���:uinηx + vinηy + winηz︸ ︷︷ ︸

V̄in

−
���

���
���

���:η2
xV̄in + η2

yV̄in + η2
z V̄in︸ ︷︷ ︸

V̄in

By knowing contravariant velocity of inner cells on η constant surface, V̄in =

w2
inηx + w3

inηy + w4
inηz ghost cell interpolations can be applied by averaging the

ghost and inner scalar cell values such that w̄face =
w̄in+w̄ghost

2
, we can write

ghost cell values finally

w1
ghost = w1

in

w2
ghost = w2

in − 2V̄inηx

w3
ghost = w3

in − 2V̄inηy (2.39)

w4
ghost = w4

in − 2V̄inηz

w5
ghost = w5

in

2.6.3 Far-field BCs

On far-field, Riemann invariants are used [49]. The velocity normal to boundary

and speed of sound are obtained from incoming R− and outgoing R+ character-

istic waves. The pressure p and density ρ are calculated from the entropy s and

speed of sound a.

The Riemann invariants are given by

R+ = Uin +
2ain
γ − 1

, R− = U0 +
2a0

γ − 1
(2.40)

20

where

Uin = ~Uin · n̂, ~Uin = [uin, vin, win]T , ain =

√
γpin
ρin

(2.41)

U0 = ~U0 · n̂, ~U0 = [u0, v0, w0]T , a0 =

√
γp0

ρ0

(2.42)

In Equations (2.40) and (2.42) subscript zeros indicate free-stream values. n̂ is

normalized vector operator ie. on ξ constant surface

n̂ =

〈
ξx
|∇ξ|

,
ξy
|∇ξ|

,
ξz
|∇ξ|

〉
(2.43)

The velocity Ub and speed of sound ab at the boundary are linear combination

of invariants such that

Ub =
1

2
(R+ +R−) (2.44)

ab =
γ − 1

4
(R+ −R−) (2.45)

The cartesian velocity components and entropy at the ghost cells are calculated

according to

~Ub =


~Uin + (Ub − Uin) · n̂, if Ub > 0 (outflow)

~U0 + (Ub − U0) · n̂, if Ub ≤ 0 (inflow)
(2.46)

sb =


a2in

γργ−1
in

if Ub > 0 (outflow)

a20
γργ−1

0

if Ub ≤ 0 (inflow)
(2.47)

The density and pressure at ghost cells can be extrapolated as

ρb =

[
a2
b

γsb

] 1
γ−1

(2.48)

pb =
ρb(ab)

2

γ
(2.49)

Then finally conservative variables can easily be obtained.

2.7 Analytical Jacobian Evaluation

In this study analytical Jacobian is used as preconditioner in flow solution.

In addition, its transpose is used to create Adjoint equation. Therefore the

21

accuracy of it evaluation is very important. In this section, analytical derivation

of Jacobian will be presented for first-order upwind-biased scheme. The detailed

derivation and its comparison with numerical Jacobian evaluation can be found

in Eyi’s study [50].

If Equation (2.19) is substituted into Equation (2.18), the discretized residual

vector at cell (i, j, k) becomes

R̂(Q̂) =
[
F̂+(Q̂L

i+ 1
2
,j,k

) + F̂−(Q̂R
i+ 1

2
,j,k

)
]
−
[
F̂+(Q̂L

i− 1
2
,j,k

) + F̂−(Q̂R
i− 1

2
,j,k

)
]

+
[
Ĝ+(Q̂L

i,j+ 1
2
,k

) + Ĝ−(Q̂R
i,j+ 1

2
,k

)
]
−
[
Ĝ+(Q̂L

i,j− 1
2
,k

) + Ĝ−(Q̂R
i,j− 1

2
,k

)
]

(2.50)

+
[
Ĥ+(Q̂L

i,j,k+ 1
2
) + Ĥ−(Q̂R

i,j,k+ 1
2
)
]
−
[
Ĥ+(Q̂L

i,j,k− 1
2
) + Ĥ−(Q̂R

i,j,k− 1
2
)
]

By taking derivatives of R̂i,j,k with respect to Q̂m,l

∂R̂ir,jr,kr

∂Q̂iq,jq,kq

=Â+
ir+1/2,jr,kr

∂Q̂L
ir+1/2,jr,kr

∂Q̂iq,jq,kq

+ Â−ir+1/2,jr,kr

∂Q̂R
ir+1/2,jr,kr

∂Q̂iq,jq,kq

−Â+
ir−1/2,jr,kr

∂Q̂L
ir−1/2,jr,kr

∂Q̂iq,jq,kq

− Â−ir−1/2,jr,kr

∂Q̂R
ir−1/2,jr,kr

∂Q̂iq,jq,kq

+B̂+
ir,jr+1/2,kr

∂Q̂L
ir,jr+1/2,kr

∂Q̂iq,jq,kq

+ B̂−ir,jr+1/2,kr

∂Q̂R
ir,jr+1/2,kr

∂Q̂iq,jq,kq

−B̂+
ir,jr−1/2,kr

∂Q̂L
ir,jr−1/2,kr

∂Q̂iq,jq,kq

− B̂−ir,jr−1/2,kr

∂Q̂R
ir,jr−1/2,kr

∂Q̂iq,jq,kq

+Ĉ+
ir,jr,kr+1/2

∂Q̂L
ir,jr,kr+1/2

∂Q̂iq,jq,kq

+ Ĉ−ir,jr,kr+1/2

∂Q̂R
ir,jr,kr+1/2

∂Q̂iq,jq,kq

−Ĉ+
ir,jr,kr−1/2

∂Q̂L
ir,jr,kr−1/2

∂Q̂iq,jq,kq

− Ĉ−ir,jr,kr−1/2

∂Q̂R
ir,jr,kr−1/2

∂Q̂iq,jq,kq

(2.51)

where

Â+ =
∂F̂+

∂Q̂L
, Â− =

∂F̂−

∂Q̂R
,

B̂+ =
∂Ĝ+

∂Q̂L
, B̂− =

∂Ĝ−

∂Q̂R
,

Ĉ+ =
∂Ĥ+

∂Q̂L
, Ĉ− =

∂Ĥ−

∂Q̂R
(2.52)

In Equation (2.52) A,B and C corresponds to blocks of (5 × 5) derivatives of

split fluxes with respect to flow variables at cell faces. The derivation of split

fluxes are very straight-forward. In this study all three splitting methods are

22

derived. In addition to these blocks, interpolated residual vectors at cell faces

with respect to flow variables have to be derived. This is actually not a derivation

but simplification in Equation (2.51).

For the first order discretization scheme, remembering Equation (2.20)

Q̂L
i+ 1

2
,j,k

= Q̂i,j,k and Q̂R
i+ 1

2
,j,k

= Q̂i+1,j,k

Q̂L
i,j+ 1

2
,k

= Q̂i,j,k and Q̂R
i,j+ 1

2
,k

= Q̂i,j+1,k

Q̂L
i,j,k+ 1

2
= Q̂i,j,k and Q̂R

i,j,k+ 1
2

= Q̂i,j,k+1

Q̂L
i− 1

2
,j,k

= Q̂i−1,j,k and Q̂R
i− 1

2
,j,k

= Q̂i,j,k

Q̂L
i,j− 1

2
,k

= Q̂i,j−1,k and Q̂R
i,j+ 1

2
,k

= Q̂i,j,k

Q̂L
i,j,k− 1

2
= Q̂i,j,k−1 and Q̂R

i,j,k− 1
2

= Q̂i,j,k (2.53)

Residual vector is function of R̂i,j,k(Q̂i−1,j,k, Qi,j,k, Qi+1,j,k) in first-order dis-

cretization. Substituting Equation (2.53) into Equation (2.51), first-order Jaco-

bian is obtained for R̂i,j,k.

∂R̂i,j,k

∂Q̂i,j,k

= Â+
i+ 1

2
,j,k
− Â−

i− 1
2
,j,k

+ B̂+
i,j+ 1

2
,k
− B̂−

i,j− 1
2
/2,k

+ Ĉ+
i,j,k+ 1

2

− Ĉ−
i,j,k− 1

2

(2.54)

∂R̂i,j,k

∂Q̂i+1,j,k

= Â−
i+ 1

2
,j,k
,

∂R̂i,j,k

∂Q̂i,j+1,k

= B̂−
i,j+ 1

2
,k
,

∂R̂i,j,k

∂Q̂i,j,k+1

= Ĉ−
i,j,k+ 1

2

(2.55)

∂R̂i,j,k

∂Q̂i−1,j,k

= −̂A+
i− 1

2
,j,k
,

∂R̂i,j,k

∂Q̂i,j−1,k

= −̂B+
i,j− 1

2
,k
,

∂R̂i,j,k

∂Q̂i,j,k−1

= −̂C+
i,j,k− 1

2

(2.56)

When the issue is higher-order discretization, the situation is more complex.

MUSCL module must also be differentiated. The use of differentiable limiter

such that Van Albada or Venkatakrishnan makes the differentiation less com-

plex and more accurate. In here, higher-order evaluation will not be mentioned

anymore and one can refer to [50] for details.

23

24

CHAPTER 3

SOLUTION STRATEGY

In the solution of Euler equations, the resulting discretized governing equations

are composed of nonlinear system of ordinary differential equations. Although

the problem is highly time dependent, the great interest in aerodynamics is

finding the steady state solution and this can be succeed by neglecting time

derivatives and solving the problem. In this study, Newton Method is used

to solve steady conservative form of Euler Equations with a Krylov Subspace

methods which will be mentioned later.

Newton Method is an implicit, extremely powerful numerical strategy which

guarantees quadratic convergence as the solution converges. Moreover, it was

being used in CFD from late 80’s starting with Venkatakrishnan [36] studies.

However this method requires the explicit form of Jacobian Matrix which its

entries are the derivatives of residual vector with respect to the flow variables

vector and it is called as flow Jacobian. Dimension of Jacobian matrix can be

extremely large for even coarse grids in aerodynamics problems and its dimension

n depends on grid size and number flow variables. Since it is the matrix, total

size is squared O(n2) if it is dense. Fortunately most of the problems occurs in

computational sciences do not end up with dense matrices and they are generally

sparse and they have well structured patterns. Even though sparsity has no

formal definition it can be designated the matrix which most of its entries are

zero. Therefore, storage needed for this matrix is no more O(n2), but O(nz)

where nz is the number of nonzero entries. Sparse flow Jacobian matrix must

be created and solved as linear system in each iteration of Newton Method.

25

Linear system formed in Newton iterations can be solved by direct or iterative

methods. Direct solution of these systems is based on some factorizations (LU,

SVD, QR, LLT etc.) and its backward solutions. Today many packages and

libraries of direct sparse solvers are available for both academic and commercial

purposes such as PARDISO [51], UMFPACK [52], SuperLU [53] etc. They

generally use similar techniques and show close performances. However direct

solvers have crucial bottleneck which is increased memory requirement due to

factorization despite its robustness. Therefore, iterative solvers have been gained

popularity in that manner.

As an iterative solver Generalized Minimum Residual (GMRES) method is used

in this study. GMRES is Krylov subspace technique which is suitable for solution

of general non-symmetric sparse matrices and it was first studied by Yousef Saad

[38]. However solving the linear system which is arisen from Newton Method is

still costly even with the help of robust iterative schemes. Since in every Newton

step flow Jacobian must be calculated. This increases both computational time

and memory requirements. In order to avoid these difficulties, every Newton step

is solved approximately and the new method is called inexact Newton method.

A Newton-iterative method is named in this context, in every step approximate

solution can obtained by different iterative algorithms such as Newton-SOR,

Newton-CG or Newton-GMRES which is agreed name convention by Ortega

and Rheinboldt [54]. Beauty of Newton-GMRES is that it requires only matrix-

vector products but not Jacobian matrix so it does not need to be created

explicitly.

Until now, motivation behind the use of Newton-GMRES method was briefly

discussed. In following pages, detailed formulation of Newton-GMRES method

will be presented with some improvements on general algorithm such as precon-

ditioning, preconditioner matrix choice and reordering.

26

3.1 Newton Method

The system of non-linear discretized governing equations can be written in the

form;

R̂(Q̂) = 0 (3.1)

where Q̂ is the flow variable vector and R̂ is the residual vector and defined as

R̂(Q̂) =
∂F̂ (Q̂)

∂ξ
+
∂Ĝ(Q̂)

∂η
+
∂Ĥ(Q̂)

∂ζ
(3.2)

Using first-order Taylor series expansion at iteration n

R̂n+1(Q̂) = R̂n(Q̂) +

(
∂R̂

∂Q̂

)n

∆̂Qn (3.3)

where ∂R̂

∂Q̂
is Jacobian matrix. As solution converges, the equality R̂n+1(Q̂) = 0

is satisfied. This makes Newton Method as follows;

∂R̂

∂Q̂

n

∆Q̂n = −R̂(Q̂n) (3.4)

In Equation (3.4) solving for flow variables ∆Q̂ at every iteration and updating,

new values are obtained

∆Q̂n+1 = Q̂n + ∆Q̂n (3.5)

3.2 Generalized Minimum Residual (GMRES)

GMRES is one of the projection methods in special group namely Krylov sub-

space methods. Roughly speaking, projection techniques search an approximate

solution of the problem from a subspace. Typically solution is searched in m-

dimensional subspaceK withm constraint subspace L which is generally linearly

independent to each other, or selected in a different way.

In order to explain Krylov subspace methods, we will follow the Saad’s notation

[55]. Let us consider a matrix A ∈ Rnxn and vector f ∈ Rn, the linear system

can be written as

Ax = f (3.6)

27

Above equation is simple representation of linear system where A is the coeffi-

cient matrix, f is the right hand side vector and x is the solution vector. One

can define the residual as

r = f − Ax (3.7)

Krylov subspace solvers requirem dimensional orthogonal basis for this subspace

while m ≤ n. Orthogonalization is done through Arnoldi process for general

matrices. Krylov subspace generated by nxnmatrix A, n-vector v is the subspace

spanned by the vectors of Krylov sequence

Km = span{v, Av,A2v, ..., Am−1v} (3.8)

The projection method searches an approximate solution xm from affine subspace

x0 + Km by imposing constraint condition f − Axm ⊥ Lm where Lm is the

constraint subspace of dimension m, x0 is initial guess. For the Krylov subspace

methods GMRES and Full Orthogonalization Method (FOM) Km = Km(A, r0)

and r0 = f − Ax0. Krylov subspace can be written then

Km = span{r0, Ar0, A
2r0, ..., A

m−1r0} (3.9)

Krylov subspace methods vary in choice of Lm. For two well known method

selection of constraint subspace as follows;

Lm = Km for Full Orthogonalization Method (FOM) (3.10)

Lm = AKm for GMRES or MINRES (3.11)

In an orthogonal projection, the subspace L is same as K while in oblique

projection L is different than K. This explains where the FOM name is come

from.

To sum up GMRES is a Krylov subspace method in order to solve general

non-symmetric linear systems. Algorithm generates xk = x0 +Km(A, r0) where

solution subspace is Km = span{r0, Ar0, A
2r0, ..., A

m−1r0} and L = AK, rk ⊥ L,

rk = f − Axk then the solution becomes xm = x0 + Vmym. The algorithm for

GMRES is given below as in Saad.

28

Algorithm 1 Generalized Minimum Residual (GMRES)
1: A := system matrix; f := right hand side

2: x0 := initial guess

3: r0 = f − Ax0

4: β = ‖r0‖2, v1 = r0/β

5: for j=1,2,..,m do

6: wj = Avj

7: for i=1,2,..,j do

8: hij = wTj vi

9: wj = wj − hijvi

10: end for

11: hj+1,j =‖wj‖2

12: vj+1 = wj/hj+1,j

13: end for

14: Solve minimization problem LLS; J(ym) = ‖βe1 − H̄mym‖2

15: update xm = x0 + Vmym

In Algorithm (1) step 5-13 describes the Arnoldi Orthogonalization by Modified

Gram-Schmidt(MGS) method. Arnoldi’s method is used to create orthogonal

basis of the Krylov subspace Km. At step 9 all created wj vectors are orthog-

onal to all previous Arnoldi vector vj’s and vj’s are orthonormal to each other

which satisfies equality ∀i, j :< vi, vj >= δij. In theory, Arnoldi’s method cre-

ates perfect orthogonal basis to subspace. However in practice due to roundoff

errors this is not a case and further improvements can be applied to increase

accuracy and efficiency of this procedure such as Householder Arnoldi [56] etc.

After the Arnoldi process, overdetermined system can be solved as Linear Least

Square(LLS) problem. At step 14, ym vector which minimizes J(ym) is found by

QR factorization with the help of Givens Rotation. Then last step corresponds

to solution update in Krylov subspace.

29

3.3 Newton-GMRES

As mentioned before Newton-GMRES is under the class of Inexact Newton [57]

methods. Example of full Newton step was shown in Equation (3.4). However

the solution of this full step can be very costly even it is not necessary. Therefore,

ηk parameter is defined and Newton equation at kth iteration can be solved in

reasonable accuracy as shown below.

‖R̂′(Q̂k)∆Q̂k + R̂(Q̂k)‖2 ≤ ηk‖R̂(Q̂k)‖2 (3.12)

In Equation (3.12) ηk is scalar parameter which is ∈ [0, 1). This means the

solution is approximated until residual is dropped its ηk. We call this parameter

forcing term as in Eisenstat’s & Walker’s study [58]. Choice of ηk is very impor-

tant on Newton-GMRES since it is the only parameter that affects performance

of algorithm. If forcing term is taken zero then solving Equation (3.12) is simply

taking full Newton step as in Equation (3.4);

∂R̂

∂Q̂

k

∆Q̂k = −R̂(Q̂k) (3.13)

Therefore, too small forcing terms must be avoided to get full performance from

Inexact methods. There are some well known facts about forcing term selection.

While ηk increases the risk of divergence will be reduced, however, convergence

rate will be very slow due to oversolving the system which is defined in [59]. With

a good choice of forcing parameter superlinear or even quadratic convergence can

be obtained. It is important to choose right parameter in dynamic fashion if it is

possible. There are many studies on this starting with an Eisenstat [58] formula.

Moreover, one can find more profound discussion and two more choices of ηk in

Pernice & Walker [60] studies especially to avoid oversolving. Another way of

choosing forcing term is in constant manner as in Pueyo’s and Zingg’s studies

[61]. In our study forcing term is chosen in a constant manner by setting some

experiments.

One of the most important feature of Newton-GMRES algorithm is that it is

totally matrix free. In other words there is no need to generate Jacobian ma-

trix. By knowing GMRES algorithm requires only matrix-vector products Av

30

in Algorithm (1), Jacobian-Free version appears. The detailed derivation of

Jacobian-Free matrix-vector product can be found in Knoll and Keyes [62] work.

In this study matrix-vector products are approximated as follows by sticking the

notation given in Section 3.1.

R̂′(Q̂)v =
R(Q̂+ εv)−R(Q̂)

ε
(3.14)

where R̂′(Q̂) is simply matrix A. In Equation (3.14) ε is scalar value which is

used to perturb flow variables Q̂ for finite difference approximation. Perturba-

tion factor ε can be chosen in different manners. In Equation (3.14) 1st-order

forward differencing is used, this means the local truncation error is linearly

proportional to the step size ε. Therefore, greater accuracy in calculation of

R̂(Q̂) can be obtained by decreasing the step size. However too small values

can cause to round-off errors that can reduce accuracy also. Different choices

can be found in reference [62]. In addition, Onur and Eyi [63] have found the

optimum perturbation epsilon for Euler Equations as square root of machine

precision st. ε = 4 × 10−8. In this study stepsize is simply taken this value for

all finite difference cases. Then Newton-GMRES algorithm at kth iteration can

be reconstructed as follows.

Algorithm 2 Newton-GMRES Algorithm
1: x0

k := initial guess for solution

2: s0
k := initial guess for Newton update, choose ηk

3: r0
k = −F ′(xk)s0

k − F (xk), βk = ‖r0
k‖2, v1 = r0

k/βk

4: While ‖r0
k‖2 > ηk‖F (xk)‖2 do

5: m = m+ 1

6: Calculate Avm = F ′(xk)vm as in Equation (3.14); wm = Avm

7: Create Upper-Hessenberg matrix hi,m = (wTm, vi), ∀i = 1, 2, ...,m

8: Orthogonalization v̂m+1 = wm −
∑m

i=1 hi,mvi

9: hm+1,m = ‖v̂m+1‖2

10: vm+1 = v̂m+1/hm+1,m

11: Solve the LLS problem by Givens Rotation J(ym) = min
ym
‖βke1 − H̄mym‖2

12: where e1 = [1, ..., 0]m+1, ym = []m and H̄m = [](m+1)×m

13: Update solution xk = x0 + Vmym where Vm = [v1, v2, ..., vm]m×m

31

3.4 Preconditioning

Since the convergence behavior is strictly related to condition number of the

linear system, preconditioning is very important in iterative schemes. More-

over, in aerodynamic problems, the conditioning of system which is arisen from

discretization of governing equations are generally poor. Before starting the

preconditioning, let us clarify the definition of condition number. Conditioning

of system is related to its eigenvalue distribution. If most of the eigenvalues are

clustered around 1, it can be called as well conditioned system. The formulation

of condition number is given below.

κ(A) =
|λmax(A)|
|λmin(A)|

(3.15)

Equation (3.15) shows that condition number, κ(A), depends on ratio of absolute

values of maximum and minimum eigenvalues of matrix A where the system is

defined as Ax = f . If A is identity matrix then all eigenvalues of A is one, hence

condition number equals to 1. This kind of system is most favorable to solve and

all iterative schemes can solve this linear system in one iteration without any

effort. Therefore, in preconditioning one seeks the preconditioner matrix that

resultant linear system is close identity matrix. This can be handled by choosing

preconditioner matrix such that M ≈ A. Here is the simple representation of

left preconditioning.

A x = f (3.16)

(M−1 ∗ A)︸ ︷︷ ︸
Â

x = (M−1 ∗ f)︸ ︷︷ ︸
f̂

(3.17)

Âx = f̂ (3.18)

In Equation (3.17) M−1 is left preconditioner, Â is preconditioned system ma-

trix, f̂ is preconditioned right hand side. The solution of this system is same

with unpreconditioned one. However if M is chosen close to A and M is easily

invertible, the solution of Equation (3.18) is easier than Equation (3.16). In

next section we will explain the right, left and split preconditioners on GMRES

method with their use.

32

3.4.1 Left Preconditioned GMRES

Left preconditioned GMRES algorithm can be defined as in Saad [55].

M−1A︸ ︷︷ ︸
Â

x = M−1f︸ ︷︷ ︸
f̂

(3.19)

Âx = f̂ (3.20)

r̂0 = f̂ − Âx (3.21)

r̂0 = M−1(f − Ax) (3.22)

r̂0 = M−1r0 and x̂ = x (3.23)

where x ∈ x0 +Kk(M
−1A,M−1r0). As one can see the preconditioned residual is

different than the original residual. All residual vectors must be preconditioned

in order to algorithm works. In addition, some difficulties can be observed if

stopping criteria is based on actual residual. Nevertheless, the solution obtained

from this approach, x̂, gives same solution with unpreconditioned one, x, and

there is no need for extra calculations. The algorithm for left preconditioned

GMRES is given below.

33

Algorithm 3 Left Preconditioned GMRES
1: A := system matrix; f := right hand side

2: x0 := initial guess

3: Precondition; r0 = M−1(f − Ax0)

4: β = ‖r0‖2, v1 = r0/β

5: for j=1,2,..,m do

6: Precondition; wj = M−1Avj

7: for i=1,2,..,j do

8: hij = wTj vi

9: wj = wj − hijvi

10: end for

11: hj+1,j =‖wj‖2

12: vj+1 = wj/hj+1,j

13: end for

14: Solve minimization problem LLS; J(ym) = ‖βe1 − H̄mym‖2

15: update xm = x0 + Vmym

Algorithm 3 is derived for GMRES. Newton-GMRES version is very similar

to it. In same way initial residual vector must be preconditioned in Newton-

GMRES also. And the Jacobian-vector products can be approximated similar

to Equation (3.14) with preconditioner matrix as follows;

For the system; M−1A︸ ︷︷ ︸
Â

x = M−1f (3.24)

M−1Av = M−1

[
R(Q̂+ εM−1v)−R(Q̂)

ε

]
(3.25)

34

3.4.2 Right Preconditioned GMRES

Applying very similar procedure in Section 3.4.1 right preconditioned GMRES

can be derived as follows.

AM−1︸ ︷︷ ︸
Â

Mx︸︷︷︸
x̂

= f (3.26)

Âx̂ = f (3.27)

r̂0 = f − Âx̂ (3.28)

r̂0 = f − Ax (3.29)

r̂0 = r0 and x̂ = Mx (3.30)

where x ∈ x0 + Kk(AM
−1, r0). Comparing to left preconditioned one, residual

is not changed in this algorithm, but solution vector is different now. Since this

version GMRES minimizes the original residual, right preconditioning is mostly

preferred one. The algorithm is given below.

Algorithm 4 Right Preconditioned GMRES
1: A := system matrix; f := right hand side

2: x0 := initial guess

3: r0 = f − Ax0

4: β = ‖r0‖2, v1 = r0/β

5: for j=1,2,..,m do

6: Precondition; wj = AM−1vj

7: for i=1,2,..,j do

8: hij = wTj vi

9: wj = wj − hijvi

10: end for

11: hj+1,j =‖wj‖2

12: vj+1 = wj/hj+1,j

13: end for

14: Solve minimization problem LLS; J(ym) = ‖βe1 − H̄mym‖2

15: Find actual solution; zm = M−1ym

16: update xm = x0 + Vmzm

35

Algorithm 4 is derived for GMRES. Newton-GMRES version is very similar to

it. Jacobian-vector products can be approximated similar to Equation (3.14)

with preconditioner matrix as follows;

For the system; AM−1︸ ︷︷ ︸
Â

Mx = f (3.31)

AM−1v =

[
R(Q̂+ εM−1v)−R(Q̂)

ε

]
(3.32)

3.4.3 Left-Right Preconditioned GMRES

Left-Right precondition derivation is given below.

M−1
L AM−1

R︸ ︷︷ ︸
Â

MRx︸ ︷︷ ︸
x̂

= M−1
L f︸ ︷︷ ︸
f̂

(3.33)

Âx̂ = f̂ (3.34)

r̂0 = f̂ − Âx̂ (3.35)

r̂0 = M−1
L (f − Ax) (3.36)

r̂0 = M−1
L r0 and x̂ = MRx (3.37)

where x ∈ x0 + Kk(M
−1
L AM−1

R ,M−1
L r0). Comparing to previous precondition

algorithms both residual and solution is changed now. Then following algorithm

appears.

36

Algorithm 5 Left-Right Preconditioned GMRES
1: A := system matrix; f := right hand side

2: x0 := initial guess

3: Precondition; r0 = M−1
L (f − Ax0)

4: β = ‖r0‖2, v1 = r0/β

5: for j=1,2,..,m do

6: Precondition; wj = M−1
L AM−1

R vj

7: for i=1,2,..,j do

8: hij = wTj vi

9: wj = wj − hijvi

10: end for

11: hj+1,j =‖wj‖2

12: vj+1 = wj/hj+1,j

13: end for

14: Solve minimization problem LLS; J(ym) = ‖βe1 − H̄mym‖2

15: Find actual solution; zm = M−1
R ym

16: update xm = x0 + Vmzm

Similar to previous algorithms Jacobian-vector product is written such that;

For the system; M−1
L AM−1

R︸ ︷︷ ︸
Â

MRx = M−1
L f (3.38)

M−1
L AM−1

R v = M−1
L

[
R(Q̂+ εM−1

R v)−R(Q̂)

ε

]
(3.39)

Until now, three different types of preconditioing technique are discussed. The

choice depends on the iterative method, characteristics of problem etc. In gen-

eral, the trend in residual minimizing methods such as GMRES is right precon-

ditioning since the minimized residual is same with actual residual in right pre-

conditioning. Therefore, in this study right preconditioning is chosen. However,

the concept of left-right preconditioning will be useful in order to understand

reordering algorithms and permutation matrix usage. This will be discussed

later.

37

3.4.4 Incomplete Lower Upper (ILU) Preconditioning

Incomplete LU preconditioning consists of a lower-upper factorization of general

sparse matrix A with some extra constraints such that the residual matrix R =

LU−A satisfies certain criteria. For a typical sparse matrix, full LU factorization

causes denser or less sparse matrix comparing to A. This is due to fill-in in

factorization steps which is a drastic bottleneck of factorization or direct solvers

as mentioned at the beginning of this chapter. Fortunately, preconditioning

does not require strict factorizations and incomplete variations works great in

practice. Before giving too much detail on incomplete factorizations, it will be

better to explain generic factorizations. Let us consider a sparse matrix A such

that;

A = L̂Û where L̂+ Û is generally denser than A (3.40)

The density of matrix increases due to fill-ins resulting from factorization. The

general sparse matrix can be shown in Figure 3.1. After factorization process,

red circles in Figure 3.2 indicate the fill-ins which is stored in L̂+ Û .

Figure 3.1: Before factorization

A =⇒ L̂Û

Figure 3.2: After factorization

Classical mathematical representation of LU factorization can be written as;

A = L̂Û or A = (L+ I)︸ ︷︷ ︸
L̂

(U +D)︸ ︷︷ ︸
Û

(3.41)

In Equation (3.41) L is strictly lower triangular matrix, U is strictly upper

triangular matrix and D is diagonal matrix. Some of other variations are;

• Decomposition st. :

A = (L+D)D−1(U +D) (3.42)

38

• LDU factorization :

A = (L+ I)D(U + I) (3.43)

• Cholesky factorization :

A = (L+D)(L+D)Tvalid only for symmetric positive define matrix A

(3.44)

We focus on factorizations that correspond to Equation (3.41). Then the algo-

rithm for LU and ILU factorization with Gaussian-Elimination strategy appears

[64] as;

Algorithm 6 LU Factorization-IKJ
1: for i=2,...,n do

2: for k=1,...,i-1 do

3: aik := aik/akk while akk 6= 0

4: for j=k+1,...,n do

5: Compute aij := aij−aik∗akj
6: end for

7: end for

8: end for

Algorithm 7 ILU Factorization-IKJ
1: for i=2,...,n do

2: for k=1,...,i-1 and if (i, k) /∈ S do

3: aik := aik/akk while akk 6= 0

4: for j=k+1,.,n and for (i, j) /∈ S do

5: Compute aij := aij − aik ∗ akj
6: end for

7: end for

8: end for

In Algorithm 7, S is zero pattern set such that;

S ⊂ {(i, j)|i 6= j; 1 ≤ i, j ≤ n} (3.45)

General way of building an ILU factorization is derived by Gaussian elimination

and dropping(discarding) elements in predetermined off-diagonal positions which

is outside of S. This method is refered to ILU(p) where p is the level of fill-in.

When p = 0 is chosen, ILU(0) refers to simplest factorization that guarantees

sparsity pattern of L̂ + Û is same with matrix A. In that case S is chosen as

NZ(A) in Algorithm 7. One can also obtain more accurate factorizations by

increasing level of fill-in such that ILU(1), which has sparsity pattern of A2.

This can be generalized as ILU(p) preconditioner of a matrix A has the sparsity

pattern of matrix Ap+1.

39

Although the many variations exist for ILU factorization, the well known and

used in this study is IKJ variant of SPARSEKIT [64] package of Saad. The

algorithm for ILU(p) is given below, the other variations including treshold and

pivoting strategies can be found in [55].

Algorithm 8 ILU(p) Factorization [64]
1: For all nonzero elements aij define lev(aij) = 0

2: for i=2,...,n do

3: for k=1,...,i-1 do

4: while lev(aik) ≤ p do

5: Compute aik := aik/akk

6: Compute ai∗ := ai∗ − aikak∗
7: Update the levels of fill of the nonzero ai,j’s using;

8: levij = min{levij, levik + levkj + 1}
9: end while

10: end for

11: Replace any element in row i with lev(aij) > p by zero

12: end for

There is no best way of chosing right precodnitioner for a single problem. Every

problem has its own best preconditioner matrix and technique. Therefore, the

author of any reference can only guide to choose better preconditioner. Never-

theless, there is guideline to choose preconditioner in incomplete factorizations.

Generally, the first strategy is choice of ILU(0) where no fill-in is applied. This

preconditioner requires less storage and it is computationally efficient. How-

ever because of discarding all fill-ins resulting from matrix A is not much accu-

rate. This accuracy can cause slow convergence or even worse condition number.

Hence the second approach is selection of ILU(p) preconditioner which allows

some level of fill-in with a limit parameter p. However, the dropping strategy of

a fill-in entry is independent of its numerical value [65]. Because of this, the large

elements discarded in dropping can cause inaccurate factorizations. Therefore,

ILU(p, τ) is developed by Saad with the following algorithm [55];

40

Algorithm 9 ILU(p, τ) Factorization
1: for i=1,...,n do

2: w := ai∗

3: for k=1,...,i-1 and when wk 6= 0 do : do

4: wk := wk/akk

5: Apply a dropping rule to wk
6: If wk 6= 0 then w := w − wk ∗ uk∗

7: end for

8: Apply a dropping rule to row w

9: li,j := wj for j = 1, ..., i− 1

10: ui,j := wj for j = 1, ..., n; w := 0

11: end for

The dropping rule for ILU(p, τ) is given by [66];

• The first dropping is applied at line 5 according to value of element wk.

In that case wk is dropped if wk < ‖ai∗‖2 ∗ τ .

• In second dropping at line 10, same dropping rule is applied again. In

addition p largest element of L and U matrices are conserved in each row

with diagonal entries.

Until now three basic strategy in ILU factorizations were mentioned. They are

useful and easily applicable in most of the problems without going too much deep

into. However, preconditioning is state of art which has also some drawbacks es-

pecially when the problem sets on un-symmetric matrices. The issue is existence

and stability of the selected preconditioner [67]. Complete LU factorization of

a matrix A exists if and only if all principal sub-matrices of A are nonsingular,

and for this non-singular matrix A, there must be a permutation P such that

PA admits the LU factorization. Furthermore, incomplete factorizations can

fail due to occurrence of zero or small pivots regardless of singularity of matrix

A. This is called as breakdown in literature. Instabilities in preconditioner ma-

trix can be avoided by preprocessing the the coefficient matrix by reordering or

41

permuting. In next section some basic ordering techniques and their usage will

be discussed.

3.5 Reordering

Reordering is highly useful technique which can increase the stability and re-

duce the fill-ins in factorization. Or even it can increase the rate of convergence.

Nevertheless, the main concern in the use of reordering is to decrease fill-ins

and avoid zero pivots. In our problem, no zero pivots are observed during the

factorization due to discretization of governing equations. However, if bound-

ary conditions are added to system matrix, then some zeros can appear at the

diagonal, however, this is not a case in our study. Let us consider the system

Ax = b and if we apply P and Q permutations to this system we get;

Ax = b (3.46)

PAQy = Pb, x = Qy (3.47)

In Equation (3.47) it is desired that PAQ has better stability and less prone to

fill-ins. If A is structurally symmetric, it is generally better to preserve symmetry

in order to keep stability and diagonal dominance of problem. Hence Q = P T is

chosen. Then PAP T is called symmetric permutation of A and the symmetry of

system is preserved. If A is not structurally symmetric than the structure may

be symmetrized by A+ AT or A ∗ AT to find symmetric permutation P that is

applied again to the unsymmetric version of A. Typical choice is A+AT . In this

study because of the unsymmetry in the system, permutation P is found from

the structure of A + AT . Permuting rows and columns of symmetric matrix is

simply renumbering the vertices of graph.

3.5.1 Graph Theory

All reordering algorithms are related to graph theory. Before going into detail

on reordering, graph theory should be mentioned. We will follow the notation

given in [68]. We will consider a symmetric-square matrix A ∈ Rnxn. Graph is

42

simply represented by V and E such that;

G = 〈V,E〉 (3.48)

where V consists of a set of n vertices or nodes such that;

V = {v1, v2, ..., vn} (3.49)

and E specifies the set of unordered pairs of distinct elements namely edges or

links given below

E = {{vi, vj} ∈ E, ∀ i 6= j, aij 6= 0} (3.50)

In Equation (3.50), E is formed by adjacent vertices ie. {v1, v2} ∈ E then v1 and

v2 are said to be adjacent to each other and they are connected by an edge. For

this situation, the notation AdjG(vi) is used and it refers to set of vertices that

adjacent to vi or simply share edges in given graph G. The degree of vertex vi

is denoted by degreeG(v) and shows the number of "edge ends" at given vertex

[69]. Mathematically it equals to

degreeG(v) = |AdjG(v)| (3.51)

Another useful definition is numbering, f which is defined as one-to-one map,

f , from V (G) onto the set {1, 2, ..., n}. In addition, the bandwidth concept is

highly used in many ordering algorithms. The bandwidth of graph G, is the

minimum matrix bandwidth, among all possible adjacency matrices of graph G.

The bandwidth of graph G relative to numbering f is denoted βf (G);

βf (G) = max{|f(vi)− f(vj)| : {vi, vj} ∈ E} (3.52)

In terms of quantity, the minimum of βf (G) in Equation (3.52) among all num-

berings is called bandwidth of G, β(G).

In graph theory, graphs can be grouped at two distinct categories, directed

graphs (digraphs) and undirected graphs. In directed graphs edges are directed.

For a finite set of vertices V and set of ordered pairs (a, b) where (a, b) ∈ V are

called edges. For diagraph a is initial node and b is terminal node. In general un-

symmetric matrices are represented by directed graphs. In our study the matrix

is symmetric, so the corresponding graph is undirected. Figure 3.3 shows the

matrix structure at the left and corresponding undirected graph for 5 × 5 real

example matrix.

43

A =


x x x x

x x x x

x x

x x

x x x


Figure 3.3: Matrix at left, corresponding graph at right

In above example A ∈ R5x5 and it is structurally symmetric. x’s indicates the

non-zero entries. At right, the circles with numbers correspond to vertices and

the lines between them are edges. Since lines have no directions graph is undi-

rected. In general, for symmetric matrices, adjacency structure of corresponding

graph is enough to exploit permutations of reordering. Adjacency structure can

be stored in only 2 vectors st. for the system in Figure 3.3; xadj = [1, 4, 7, 8, 9, 11]

and adjncy = [2, 3, 5, 1, 4, 5, 1, 2, 1, 2]. adjncy stores the adjacency list in con-

secutive locations for each vertex with dimension "twice number of edges" and

xadj is used to specify where it begins and where it ends with a dimension of

"number of rows plus one".

In next sections, heuristics in ordering strategy will be discussed by giving the

details of Minimum Degree(MD) and Reverse Cuthill-Mckee(RCM) algorithms.

3.5.2 Minimum Degree (MD) Ordering

Probably easiest way to explain Minimum Degree ordering is by the help of

elimination graphs. At each step of Gaussian Elimination, select a node v of

smallest degree then eliminate including its incident edges. After eliminating

node v, update graph by adding edges to make the nodes adjacent to v into a

clique. Process is repeated until the end [70]. Algorithm below is taken from

[71] and it can be explained briefly by graph elimination theory.

For a given node v, Gk represents the graph G to be factorized after the first

k pivots have been chosen. Gk depends on the selection of kth pivot and Gk−1.

Algorithm starts with calculating of each vertex degree on G0 from 4 to 5 as

preprocess for remaining of algorithm. The node v is selected from V k−1 which

44

minimizes tv. Throughout the 7-14, pivot node v and its edges are eliminated

from graph, Gk and the edges cause to fill-in are added to Ek−1. Then algorithm

appears;

Algorithm 10 Minimum Degree (MD) Algorithm

1: For a given symmetric graph G =< V 0, E0 >

2: V 0 = {1, .., n}
3: E0 = {(i, j) : aij 6= 0 and i 6= j}
4: for i=1,...,n do

5: ti = |AdjG0(i)|
6: end for

7: for k=1,...,n do

8: Select the kth pivot vertex st. v ∈ V k−1 that minimizes tv
9: for each i ∈ AdjGk−1(v) do

10: AdjGk(i) = {AdjGk−1(i) ∪ AdjGk−1(v)} − {i, v}
11: ti = |AdjGk(i)|
12: end for

13: V k = V k−1 − {v}
14: end for

In general, MD ordering is used to reduce the number of fill-in which is caused

by new edges. Algorithm minimizes the fill-in caused by kth pivot by minimizing

the degree. However, there may be several nodes that have minimum degree.

So the choice of root node is arbitrary in these situations.

3.5.3 Reverse Cuthill-Mckee (RCM) Ordering

The name of Cuthill-Mckee (CM) algorithm comes from the Elizabeth Cuthill

and J. McKee that is first found for reduce the bandwidth of symmetric sparse

matrix by renumbering the nodes. It is probably the most famous profile reduc-

tion algorithm. Then Alan George version [72] CM appears which is called as

reverse Cuthill-Mckee (RCM) algorithm. It is simply found by reversing index

numbering on original approach. The resultant RCM method is much superior

45

than its ancestor with less fill-in in factorizations.

Algorithm starts with the root node selection as in MD ordering. Then, it con-

structs the adjacency structure of graph by finding all un-numbered neighbors

and exclude the vertices that is already in set. Adjacency set is sorted in ascend-

ing vertex degree. The procedure is very similar to breadth-first search. Finally,

order of elements are reversed.

In RCM root node selection and tie-breaking strategies are also important for

similar reasons in MD ordering. Starting to an algorithm with different nodes

may create totally different graphs with different profiles.

Algorithm 11 is taken from reference [73]. For a given graph G =< V,E >,

Q,R and S are data structures known as queues where R contains the nodes

in arbitrary order, Q and S are working queues. Adding element at the end of

queue is shown Q ← Q, vi, removing the first element of queue is denoted by

vi ← Top(Q).

Algorithm 11 Reverse Cuthill-Mckee (RCM) Algorithm
1: For a given matrix A, define graph G =< V,E >

2: Set i = 1

3: Q← ∅; R← V (A)

4: v1 ← Top(R)

5: S ← Adj(v1) ∩R
6: R← R− S
7: while S 6= ∅ do
8: i← i+ 1

9: vi ← Top(S)

10: Q← Q, vi

11: end while

12: If R = ∅ then stop

13: {z} ← Top(Q)

14: S ← Adj(z) ∩R
15: R← R− S; go to 7

16: Reverse the ordering of vertices.

46

3.5.4 Implementation of Reordering Algorithms

Application of reordering is very straightforward if the concept of right-left pre-

conditioning is well understood in Section 3.4.3. Since the only application

will be held by the permutation matrices obtained from reordering algorithms.

In this study, Minimum Degree, Reverse Cuthill-Mckee, One Way Dissection,

METIS [74] and Natural reordering strategies are used. For a given symmetric

graph, reordering algorithms create a permutation matrix, P which is stored

in an array. Then simply taking its inverse will crate the inverse permutation

matrix. One do not have to worry about taking inverse of matrix, since P is

orthonormal matrix (P−1 = P T). The application of PAP T or P TAP is known

as symmetric permutation of system matrix A. For this operator, both rows

and columns of A are reordered. For this study PAP T is applied to system ma-

trix A and P TMP is applied to preconditioner matrix, M . In order to prevent

confusion on superscripts, we call P = P1 and P T = P2. Then system for right

preconditioned and reordered system equation can be written as follows.

original system ⇒Ax = f (3.53)

after right precondition ⇒AM−1Mx = f (3.54)

after reordering ⇒ (P1AP2)(P2MP1)−1︸ ︷︷ ︸
Â

(P2MP1)(P−1
2 ∗ x)︸ ︷︷ ︸

x̂

= P1 ∗ f︸ ︷︷ ︸
f̂

(3.55)

Jacobian-vector product is given

Âv = (P1AP2)(P2MP1)−1v (3.56)

= P1 [A] P2(P2MP1)−1 [v] (3.57)

Âv = P1 ∗
[
R(Q̂+ εP2(P2MP1)−1v)−R(Q̂)

ε

]
(3.58)

In addition, residual vector must be reordered

r0 = P1 ∗ (f − Ax) (3.59)

And finally solution vector must be unpermuted as well

x̂ = (P2MP1) (P−1
2 ∗ x)︸ ︷︷ ︸
y

⇒ x = P2 ∗ y (3.60)

47

3.6 Efficiency of flow solver

In this section, we will investigate the efficiency of flow solver by using different

reordering and preconditioning algorithms. First of all, the results and figures

below belong to medium grid 161× 29× 49. Throughout the iterations, forcing

term ηk is kept constant. The selection of forcing parameter is important both

for the convergence and robustness. It is decided by trial and error.

For the comparison of preconditioners, ilu(0) and ilu(k), k = 1, .., 4 are chosen.

Because of the no scaling approach, threshold factorization can drop many ele-

ments that are important. In addition, it is hard to decide τ value in this case.

Therefore, ILU(p, τ) is not used in this study. As reordering algorithms METIS,

One Way Dissection (1WD), Reverse Cuthill-Mckee (RCM) and Minimum De-

gree (MD) are used. Full analytical Jacobian matrix is chosen as preconditioner

matrix. Because of the simplicity and better condition, 1st-order Jacobian is

used as preconditioner. Figure 3.4 shows non-zero pattern of the first-order

Jacobian matrix which is also solved linear system by the help of matrix free

approach. The 1st-order Jacobian has number of rows as nrow = 1075200 and

number of non-zero as nnz = 36956800.

Figure 3.4: Linear system matrix for no reordering case

Second order Jacobian has few sub diagonals according to first-order scheme

which increases the condition number of system dramatically from cond(A) ≈

48

107 to cond(A) ≈ 1015.

Different orderings for 1st-order Jacobian matrix are given.

Figure 3.5: METIS reordering case Figure 3.6: RCM reordering case

Figure 3.7: 1WD reordering case Figure 3.8: MD reordering case

Reordering algorithm choices will not affect the condition number of matrix, but

it is expected that overall performance will be different because of the reduced

number of nonzero after preconditioning with some level of fill is allowed. We

will share the performance table for preconditioners and reorderings for constant

ηk = 0.5 for no ordering, RCM, 1WD and ηk = 0.7 for METIS, MD. For dif-

ferent forcing parameter choices some of the runs are not converged or weakly

converged. Through Table 3.1 to Table 3.5 wall clock times are given in sec-

onds and convergence criteria is chosen as 10−6 relative residual in continuity

equation. Newton and total GMRES iterations are given for full comparison.

49

Table 3.1: ilu(0) preconditioning

newton itr. gmres itr. elapsed time nnz
no reorder 906 1866 2855.49 36956800

metis NA NA NA 36956800
rcm 905 1866 3575.55 36956800
1wd 838 1879 3530.64 36956800
md NA NA NA 36956800

Table 3.2: ilu(1) preconditioning

newton itr. gmres itr. elapsed time nnz
no reorder 644 1476 2491.73 67874202

metis NA NA NA 82378052
rcm 707 1561 2433.40 67874202
1wd 688 1348 2571.34 68407402
md 1617 2878 8536.21 82981202

Table 3.3: ilu(2) preconditioning

newton itr. gmres itr. elapsed time nnz
no reorder 548 1339 4076.69 118148502

metis NA NA NA 93855202
rcm 501 1119 3200.76 118462102
1wd 556 1359 3114.16 119046512
md 1652 2924 10075.56 87051862

Table 3.4: ilu(3) preconditioning

newton itr. gmres itr. elapsed time nnz
no reorder 428 1036 3484.1 216914952

metis 575 1408 3209.83 173069802
rcm NA NA NA 177678402
1wd 453 1148 4037.21 179969262
md 565 1297 2994.62 172425212

Table 3.5: ilu(4) preconditioning

newton itr. gmres itr. elapsed time nnz
no reorder 411 901 3566.25 351310602

metis NA NA NA 192610752
rcm 423 961 3675.86 255229652
1wd 430 1099 4247.54 260437752
md 567 1288 3064.33 179170012

50

In general, best elapsed times are obtained by ilu(1), Table 3.2, while least

GMRES iterations are obtained at relatively higher levels of fills such as ilu(4),

Table 3.5. After increasing some level of fill, the number of non-zero increases

in preconditioner matrix extensively and total time for matrix-vector multipli-

cations becomes more important than the accuracy of incomplete factorization.

Therefore, ilu(1) seems the most efficient one in our case. Sample convergence

of different preconditioners are given for no reordering case.

Figure 3.9: Preconditioner effect on convergence using no ordering

As shown in Figure 3.9, early iterations in ilu(0) is extremely zigzaggy. In ad-

dition fluctuations which are observed after residual level 10−3 make scheme

slower. Therefore ilu(0) preconditioner is less efficient comparing to ilu(1). Al-

though the less iterations observed in high fill-in preconditioners, total time is

greater at them because of the increased matrix-vector multiplications. There-

fore the use of ilu(1) preconditioner is found beneficial in terms of stability, less

cpu time and less total iterations. Finally we can say that ilu(2) is the most

stable one since oscillations are not quite much among the other preconditioners.

51

Looking the tables given above reordering selection has no effect on elapsed time

while its influence can be only understood while level of fill increases. Since in

higher accurate factorizations, Table 3.5, some of the algorithms such as METIS

and MD decreases the total number of non-zero to half for original matrix. So we

can say that reordering algorithms can save too much memory for higher-order

factorizations. The comparison on nnz can be seen more clearly in Figure 3.10.

Figure 3.10: Reordering effects on total number of non-zero

Because of the best wall clock time and overall efficiency, no reordering and

RCM are used in conjunction with ilu(1) preconditioning throughout the study.

52

CHAPTER 4

DESIGN VARIABLES

4.1 Design Variables Selection

The simplest approach for shape parameterization is direct use of grid nodes,

but this approach ends up with high number of design variables which is not

appropriate for many practical problems. For this reason, parameterization

techniques are more appropriate in CFD based optimization.

The most promising shape parameterization approaches are shape functions,

polynomials and splines. Shape functions are generally used to create small per-

turbations on "baseline" 2-D geometries such as airfoils. The well known shape

function is Hicks & Henne bump functions [29]. However, bump functions lead to

a specific improvement according to design conditions and outside the off-design

conditions, optimized shape typically shows poor performance. Nevertheless its

formulation is important to show how perturbations are parameterized. Its first

application was on airfoil shapes which is only deflection normal to the airfoil

is parameterized. This deflection corresponds to right side of positive sign in

Equation (4.1).

y = ybase +
i=n∑
i=1

αifi(x) (4.1)

where y original point of new airfoil surface and ybase indicates the base airfoil

shape. Name of the shape function comes from the existence of fi(x). Each func-

tion contributes to the final design point according to its participation coefficient

53

αi. In Equation (4.1) shape function can be defined as

fi(x) =

[
sin

(
πx

log 1
2

logt1

)]t2
, 0 ≤ x ≤ 1 (4.2)

where t1 and t2 are the location of maximum thickness and width of the bumps

respectively.

The other approach is polynomials. The best example for this method is PAR-

SEC which is abbreviation for parameterization scheme developed by Sobieczky

[30]. According to method, airfoil shape can be generated by the linear combi-

nations of base functions using 12 different geometric characteristics as control

variables. Probably the greatest advantage of this method is that no baseline

shape is needed. In addition, geometric constraints can easily be applied since

the constraints are used as actual design variables. However, they are gener-

ally used for known shapes such as airfoils etc.; therefore, its use on complex

geometries are limited.

The effect of shape parameterization techniques on airfoils were investigated by

Selvan [75]. He found that increasing the degree of freedom in design variable

selection increases the optimization performance. Polynomial approach is found

less efficient one comparing to shape functions and splines.

On the other hand, splines are another well known approach for parameteriza-

tion. General opinion for best splines method is Non-Uniform Rational B-Splines

(NURBS) which leads to more realistic optimized shape not only for specific de-

sign conditions but also off-design conditions on complex geometries also. In

general, NURBS solutions are smooth enough for real world problems with a

benefit of high control on shape with less design variables. NURBS surface

point representation will be explained in next section.

54

4.1.1 Non-Uniform Rational B-Splines (NURBS) Surfaces

The NURBS [31] surface point is composed of a two parametric coordinates

point such as

S(ξ, η) =

n∑
i=0

m∑
j=0

Ni,p(ξ)Nj,q(η)wi,jPi,j

n∑
i=0

m∑
j=0

Ni,p(ξ)Nj,q(η)wi,j

(4.3)

In Equation (4.3) surface points vector S keeps the cartesian coordinates, x, y

and z where ξ and η corresponds to parametric coordinates, Pi,j bi-directional

control net, wi,j weight of control net and Ni,p and Nj,q, p and q degree basis

functions. The number of control points are n+1 and m+1 in i and j directions

respectively. B-spline basis function on specific knot vector can be derived using

Cox-de Boor recurrence relation. The ith B-spline basis function of degree p

(order p+ 1) is given by

Ni,0(ξ) =

1 if ui ≤ ξ < ui+1

0 otherwise
(4.4)

Ni,p(ξ) =
(ξ − ui)
ui+p − ui

Ni,p−1(ξ) +
(ui+p+1 − ξ)
ui+p+1 − ui+1

Ni+1,p−1(ξ) (4.5)

The other basis function Nj,k(η) is similar to Ni,k(ξ) where ui’s are changed by

vi’s and degree p is changed by q. In Equation (4.5) ui and vi are called knots

which are the elements of nondecreasing sequence of real numbers, ie. ui ≤ ui+1.

Knots are stored in knot vectors U and V

U =

{
0, ..., 0︸ ︷︷ ︸
p+1

, up+1, ..., ui, ..., un, 1, ..., 1︸ ︷︷ ︸
p+1

}
n+p+2

(4.6)

V =

{
0, ..., 0︸ ︷︷ ︸
q+1

, vq+1, ..., vi, ..., vm, 1, ..., 1︸ ︷︷ ︸
q+1

}
m+q+2

(4.7)

The non-uniform knot sequence ui is given by Nemec [32] due to improved fidelity

near leading and trailing edge of wing sections.

ui =


0 1 ≤ i ≤ p+ 1

n−p+1
2

[
1− cos

(
i−p−1
n−p+1

π
)]

p+ 2 ≤ i ≤ n+ 1

n− p+ 1 n+ 2 ≤ i ≤ n+ p+ 2

(4.8)

55

Knot sequence of vi can be formulated similarly. The basis function is only

nonzero inside knot span except everywhere it is equal to zero.

NURBS surface is represented by two parametric coordinates, ξ and η. For each

ξ and η, there exists a unique NURBS point. The resolution of NURBS surface

can be increased by increasing the number of parameters. However, in general it

is restricted by the dimension of surface grid points which is to be parameterized.

Following strategy is used to create parameter vector in ξ direction.

ξ1 = 0

ξj =
(n− p+ 1)

LT

j−1∑
m=1

√
Lm, j = 2, ..., N (4.9)

where N indicates the number of parameter points. The segment lengths, Lm
are chosen as the distance between grid points and LT is total grid point distance

which is given by

LT =
N−1∑
m=1

√
Lm (4.10)

Finally introducing the piecewise rational basis function Ri,j(ξ, η)

Ri,j(ξ, η) =
Ni,p(ξ)Nj,q(η)wi,j

n∑
k=0

m∑
l=0

Nk,p(ξ)Nl,q(η)wk,l

(4.11)

surface point can be represented as

S(ξ, η) =
n∑
i=0

m∑
j=0

Ri,j(ξ, η)Pi,j (4.12)

In this study only perturbation is parameterized since it is diffucult to create all

surface domain by parameterization and so much error is included on baseline

geometry [32] even on 2D. NURBS surfaces are used to decide deformation of

wing only. Figures 4.1a and 4.1b shows the sample perturbation near wing tip.

3rd degree NURBS surfaces are created with 25x2=50 control points which are

chosen on both upper and bottom surface of wing and only y-deflection allowed in

Figure 4.1b. On later, x-y deflection will be carried out in optimization to ensure

best performance gained from control points. However, if deflection in both x-y

is allowed then number of design variables are doubled so 100 control points

become a subject. In addition, selection of NURBS degrees will be mentioned

in the following sections in detail.

56

(a) Unperturbed wing surface (b) Perturbed wing surface

Figure 4.1: NURBS surface perturbation on wing

4.1.2 Design Variables on Body as NURBS Curves

Body design variables are chosen as 2D NURBS curves on symmetry plane of

both upper and lower surface of body. Then the deflection is distributed spanwise

direction, through z-plane. Perturbation on x-z is allowed. 5×2×2 = 20 NURBS

curve control points are chosen as in Figure 4.2a.

(a) Unperturbed body surface (b) Perturbed body surface

Figure 4.2: NURBS curve perturbation on body

57

4.1.3 Design Variables as Wing Sweep Angles

Wing is composed of two main parts and divided by crank at the middle of span.

Two design variables are chosen such that leading edge sweep angles of divided

parts as in Figure 4.3a.

∆θk = tan−1

[
xk − xk−1

yk − yk−1

]
, k = 1, 2 (4.13)

where k1 is root chord station and k2 is crank station. Then, deflections are

allowed on the x direction by conserving the chord lengths constant.

(a) Unperturbed wing surface (b) Perturbed wing surface

Figure 4.3: LE sweep angle design variables perturbation on wing

4.2 Grid Perturbation Strategy

After shape deformation on surface, volume grid must be deformed to satisfy

following criteria

• Grid quality must be conserved.

• The cells with negative volumes must be avoided.

• Grid perturbation strategy can handle with large deformations effectively.

According to criteria given above, many research have been conducted on volume

mesh deformations on both structured and unstructured grids. The subject on

58

volume mesh deformations can be divided into two, the algebraic approaches and

iterative approaches. The well known algebraic approach was fist developed by

Burgreen and Baysal [33]. This method is easy to apply for structured topologies

such that C or C-H type grids on both 2D and 3D. The deflections are propagated

from surface to interior nodes according to arc-length distances of grid points.

There is no iterative procedure is applied in this method so it is very cheap

in terms of computational cost. However grid quality are not satisfied at large

deformations so this method is not preferred often.

On the other hand, iterative methods have been gained popularity over the years.

Linear spring analogy and linear elasticity methods are well known examples of

this kind. Batina [76] found the linear spring analogy and applied on unstruc-

tured triangular meshes around an airfoil. Then, he also applied the method on

complex aircraft configurations [77] to study static and dynamic deformations

of the aircraft grid. In linear spring analogy method, defined linear springs have

stiffness which are inversely proportional to the spring length between neighbor-

ing nodes. However, edge collapses and skewed cells are frequently encountered

for even little deformations and computational cost is found high. The other

method treats the mesh as an elastic solid and solves using the equations of

linear elasticity. Baker et al. [78] used this method to solve domain and mesh

deformation on store separation problem. Afterward Stein et al. [79] investi-

gated method on planar meshed fluid-structure interaction (FSI) problems on

translation, rotation and bending modes. The method is also computationally

expensive like others.

This brings us to Radial Basis Functions (RBF) method. The method was first

developed by Boer et al. [80] for unstructured robust FSI computations. The

algorithm is based on interpolation of displacements on surface mesh through

the volume mesh with the help of radial basis functions. The required grid

connectivity information in linear elasticity and spring methods are no longer

needed. Therefore, this method is easy to apply and the computational cost

is less since only the boundary or surface nodes involving equations have to

be solved. In this study volume mesh is deformed by RBF approach using

different basis functions according to parameterized surface. We will present

59

first algebraic approach and then RBF approach. Afterwards, both approaches

will be compared in detail.

4.2.1 Algebraic Grid Perturbation Strategy

As mentioned previously, algebraic grid perturbation approach works for C-H

type structured grid topology well. Algebraic perturbation definition is given

below.

ynewj = yoldj + ∆y(1− Sj), j = 1, ..., jmax − 1 (4.14)

where ∆y represents deflection in y-direction and Sj is normalized arch-length

distance which is calculated by

S1 = 0 (4.15)

Sj =
1

Lg

j∑
i,k=2

Li,k, j = 2, ..., jmax − 1 (4.16)

In Equation (4.16) Li,k corresponds to node line segments according to their

indicies and Lg is the total grid line length from surface to outer boundary

where

Lg =

jmax∑
i,k=2

Li,k (4.17)

This version of grid perturbation strategy can be improved in order to obtain

higher orthogonal quality grid near the surface as in reference [32] st.

ynewj = yoldj +
∆y

2
(1 + cos(πSj)), j = 1, ..., jmax − 1 (4.18)

4.2.2 Radial Basis Function Strategy

In this method, interpolated deflections on boundary nodes are used to find

displacements in internal nodes. The displacement d can be approximated by

sum of basis functions where RBF interpolation function appears as

d(x) =

Nrbf∑
i=1

αiφ(||x− xi||) (4.19)

60

where d is the displacement at interpolated point x = x(x, y, z), xi are the known

values of RBF points, φ is radial basis function and ||x − xi|| corresponds to

euclidean distance between interpolated point and RBF points. The αi’s are the

weights and Nrbf is the number of RBF points. Equation (4.19) corresponds to a

linear system of equation for known displacements on surface nodes. The linear

system of dimension Nrbf ×Nrbf has to be solved to decide weights. Right hand

side of linear system is known displacements at RBF points and left hand side

matrix contains the information about euclidean distances. In original method,

polynomial term p(x) is added to the interpolating function for generally FSI

applications to conserve translation motion. However in general optimization

based CFD codes, p(x) term is not applied. The corresponding system for

Equation (4.19) is in three coordinates

Mαx = ∆xr

Mαy = ∆yr (4.20)

Mαz = ∆zr

where r subscript denotes the RBF points. The linear system appears

φr1r1 φr1r2 . . . φr1rNrbf

φr2r1
. . .

...
...

φrNrbf r1 . . . φrNrbf rNrbf


×



α1

α2

...

αNrbf


x,y,z

=



∆1

∆2

...

∆Nrbf


xr,yr,zr

SinceM matrix on the left includes only euclidean distances, it is independent of

coordinates. The deflection on different spatial coordinates appears at the right

hand side. Above system can be solved by first direct factorization of coefficient

matrix M by LU or SVD then simple forward-backward substitution. Once the

factorization is applied, deflection for RBF points in three spatial direction can

be easily obtained by simple arithmetic operations. Therefore, direct approach

is followed in this study. The elements of radial basis functions can be scaled by

support radius R0 when compact basis functions are used especially.

φr1,r2 = φ(ξr1,r2) = φ

(
||x− xi||

R0

)
(4.21)

61

The evaluation of basis functions is relatively straight-forward. Three types of

basis functions exist, global, local and compact. Global functions are always

non-zero and growing through outer boundary. Similar to previous one, local

functions are always non-zero, but its trend is decaying through the outer bound-

ary. Compact basis functions conserve the decaying property of local functions,

but at some distance its effect vanishes. The distance is called as support radius

which is given in Equation (4.21). Rendall and Allen [81] have defined the basis

functions nicely. The details of global and local basis functions can be found in

[80]. Some of them are tabulated below.

Table 4.1: Some global & local basis functions

Name Definition
Gaussian (G) φ(ξ) = e−αξ typically 10−5 ≤ a ≤ 10−3

Thin plate spline (TPS) φ(ξ) = ξ2ln(ξ)

Volume spline (V) φ(ξ) = ξ

Thin plate spline (TPS) and volume splines (V) are well known examples of

global functions while Gaussian spline (G) is local function. Global support

basis functions can lead to unwanted deformation at outer boundaries since the

support radius are defined for these kind of functions. They are generally used

in neural networks, FSI problems and computer graphics applications.

The Wendland’s functions [82] are known as compact functions. In Table 4.2,

they are presented according to their degrees.

Table 4.2: Compact basis functions

Degree Name Definition that satisfies φ(ξ) = 0 ∀ ξ > 1

deg = 1 Wendland’s C0 φ(ξ) = (1− ξ)
Wendland’s C2 φ(ξ) = (1− ξ)3(3ξ + 1)

Wendland’s C4 φ(ξ) = (1− ξ)5(8ξ2 + 5ξ + 1)

deg = 3 Wendland’s C0 φ(ξ) = (1− ξ)2

Wendland’s C2 φ(ξ) = (1− ξ)4(4ξ + 1)

Wendland’s C4 φ(ξ) = (1− ξ)6(35ξ2 + 18ξ + 3)/3

Wendland’s C6 φ(ξ) = (1− ξ)8(32ξ3 + 25ξ2 + 8ξ + 1)

deg = 5 Wendland’s C0 φ(ξ) = (1− ξ)3

Wendland’s C2 φ(ξ) = (1− ξ)5(5ξ + 1)

Wendland’s C4 φ(ξ) = (1− ξ)7(16ξ2 + 7ξ + 1)

62

In this work, compact basis functions are used because of the smooth mesh

deformation and support radius availability in order to prevent far-field pertur-

bations. In addition, decaying property of compact functions allows to higher

deformations rate at near the surface while lower deformations at near of outer

boundary. This is also good for the sake of accuracy in flow solution. According

to trial and errors degree 3 Wendland’s C0 function is chosen to use in this

study.

The compact basis functions are drawn below

Figure 4.4: Compact basis functions

And finally displacements on the volume mesh can be found

∆xv = Aαx = AM−1∆xr

∆yv = Aαy = AM−1∆yr (4.22)

∆zv = Aαz = AM−1∆zr

63

where A matrix

A =



φv1r1 φv1r2 . . . φv1rNrbf

φv2r1
. . .

...
...

φvNv r1 . . . φvNv rNrbf


Nv×Nrbf

where Nv is number of volume mesh points. Equalities at the right hand side

are more useful sinceM−1 is computed at the beginning of interpolation of RBF

points. If the parameterization is applied from the deformation of original grid,

M−1 is computed just once and stored in the memory as in matrix A also. Only

changed component is deflection in RBF points at repeated design cycles. Rest

of the computation is then simple matrix-vector multiplications. This approach

is followed in the thesis. However, if the number of surface grid points increase,

memory problems can occur easily.

Some RBF points reduction strategies are studied by various researchers such

as Jakobsson and Amoignon [83], Rendall and Allen [81] later. In this method,

all surface points are not selected as RBF points. Non-RBF points are accu-

mulated by secondary mesh movement ie. algebraic manner [35]. However, this

approach can create error at the surface point deflection which is decided by

design variables as stated [81]. Although the usage of full set is costly, in this

study it is preferred to use all surface points as RBF points to adopt desired

accuracy in gradients.

4.2.3 Comparison of grid perturbation strategies

In this section, both algebraic and RBF grid perturbation strategies will be

compared on 50× 50× 50 structured cube domain. Before showing the volumes

mesh deformation, it is better to demonstrate that how NURBS surface degrees

affect the surface grid deformation. In surface parameterization 5 × 5 control

points are used with degree 1, 2, 3, 4 and 5. The location of control points are not

kept constant and all weights are set to 1.0. The largest deformation on volume

64

grid is observed at half cut plane which is I = 25. Hence the deformations are

presented at that plane for volume deformations.

Figure 4.5: Cube grid

Figure 4.6: Bottom surface plane (k=1) and half cut plane (i=25)

65

(a) Original surface (b) NURBS d=1 deformed surface

(c) NURBS d=2 deformed surface (d) NURBS d=3 deformed surface

(e) NURBS d=4 deformed surface (f) NURBS d=5 deformed surface

Figure 4.7: Comparison of NURBS control point degrees on surface

66

(a) Original (b) Algebraic perturbation

(c) RBF d=3 Wendland’s C0 function (d) RBF d=3 Wendland’s C2 function

(e) RBF d=3 Wendland’s C4 function (f) RBF d=3 Wendland’s C6 function

Figure 4.8: Comparison of algebraic and RBF perturbation

67

In Figure 4.7, effect of degree choice on surface deflections are presented. As

shown, increasing control point degrees generates smoother deflections especially

on curvature regions. However, higher degrees also decreases the effect of con-

trol points. In Figure 4.7d, hollow at the middle can be easily distinguished.

However, in Figure 4.7f the hollow region can be barely seen. Higher degrees

can smooth the deflections unnecessarily which is not desired for the optimiza-

tion procedure. Therefore, the optimum degree must be chosen for the sake of

optimization. In general, degree 3 is used as rule of thumb which is also chosen

in this study on both NURBS curve and surface parameterization.

On the other hand, sample volume deformations at half cut plane is shown in

Figure 4.8. RBF approach creates more dense cells on curvature areas which

is critical for the flow resolution. Density of the cells in RBF on curvatures

are decreasing as function polynomial degree increases through Figure 4.8c to

Figure 4.8f. Also algebraic approach gives same density to cells independently

from the deformation. This situation is expected since in algebraic approach the

distribution of step-sizes in cells depends only the undeformed nodes arc-length

distances. Moreover, RBF approach helps to reduce average skewness on the

cells, Table 4.3. All grid information is imported to mesh generation software

Pointwise [84] and the average cell quality metrics are taken.

Table 4.3: Volume deformation strategies on grid quality metrics

Centroid skewness Equiangle skewness Aspect ratio
Original grid 0 0 3.429
Algebraic perturbation 0.155 0.304 4.246
RBF Wendland’s C0 0.097 0.216 4.465
RBF Wendland’s C2 0.120 0.257 4.334
RBF Wendland’s C4 0.128 0.264 4.335
RBF Wendland’s C6 0.135 0.274 4.382

RBF approach both reduces the centroid and equiangular skewness and slightly

decreases the aspect ratio also. The benefits of RBF may seen little comparing

code development or CPU time, however the actual use on real life problems

can be life saver because real life problems are more complex than the given

cube example Figure 4.5. The negative cells are often encountered situations.

Algebraic approach is barely useful to prevent negative cells. To sum up, RBF

68

seems useful for large deformations and it is chosen as volume mesh deformation

strategy. Because of the good resultant grid quality and safety for negative cell

volumes, degree 3 Wendland’s C0 basis function is selected in this study for

different shape parameterizations with a constant support radius 100 as in [80].

69

70

CHAPTER 5

ADJOINT METHOD

5.1 Evaluation of Discrete Gradients

Discrete gradients can be evaluated in three different way, direct, adjoint and

finite difference approaches. Although the scope of thesis is implementation

of Adjoint approach, finite difference and direct gradients are also given for

comparison purposes. Therefore all three methods will be mentioned below.

5.1.1 Direct Method Sensitivities

The definition of direct discrete gradient, Ω of the objective function I
[
S,Q(S)

]
is given by

Ω =
dI

dS
=
∂I

∂S
+
∂I

∂Q

dQ

dS
(5.1)

where vector of design variables, S, is dimension of ND and vector of flow vari-

ables, Q, is dimension of NF . Then Ω and ∂I
∂S

are [1 × ND] row vectors. ∂I
∂Q

is

[1 × NF] row vector. ∂Q
∂S

is [NF × ND] matrix. However, this equation requires

the assumption of Q(S) is sufficiently smooth or its derivative exists for specified

design variable. This condition is satisfied by the spatial discretization of flow

equations where the splitting and MUSCL schemes are used.

Let us first differentiate the flow equations in R(Q,S) = 0 with respect to design

variables as in Equation (5.1)

dR

dS
=
∂R

∂S
+
∂R

∂Q

dQ

dS
(5.2)

71

For any design variable R(Q) = 0 must be satisfied hence dR
dS

= 0 is also satisfied.

We can write linear system of equations for the flow sensitivities, dQ
dS
, as follows[

∂R

∂Q

]
dQ

dS
= −

[
∂R

∂S

]
(5.3)

where ∂R
∂Q

is [NF × NF] flow Jacobian matrix, dQ
dS

and ∂R
∂S

is [NF × 1] column

vectors. However, Equation (5.3) must be solved for each design variable. The

cost of solving this equation for each design variable can be tremendous according

to dimension of optimization problem. At the end obtained flow sensitivities

can be used in direct sensitives given in Equation (5.1). It is important to note

that residual vector, R, has contribution from all grid points in flow domain

including boundary conditions also. The other derivatives which are required

in direct sensitivities, ∂I/∂S and ∂I/∂Q are relatively straight-forward and will

be mentioned in following sections.

5.1.2 Adjoint Method Sensitivities

The Adjoint approach is developed to avoid repeated solution of flow sensitivity

equations. Hence Equation (5.3) is inserted into objective sensitivity function

in Equation (5.1), and discrete adjoint gradient can be written.

dI

dS
=
∂I

∂S
− ∂I

∂Q

(
∂R

∂Q

)−1

︸ ︷︷ ︸
ψT

∂R

∂S
(5.4)

The Adjoint equation is derived from the right side of Equation (5.4) by intro-

ducing the Lagrange multiplier vector ψ. The linear system of equation can be

written for Lagrange multipliers as follows[
∂R

∂Q

]T
ψ =

[
∂I

∂Q

]T
(5.5)

where ψ and ∂I
∂Q

are [NF × 1] column and row vectors. The solution of linear

system for Lagrange multipliers naturally satisfies the flow equations. At one

solution of Adjoint equation all design variable sensitivities can be obtained.

Finally gradient of objective function becomes
dI

dS
=
∂I

∂S
− ψT ∂R

∂S
(5.6)

72

In Adjoint equation, ∂I
∂Q

is needed. In this study objective functions are sim-

ply chosen as lift coefficient (CL), drag coefficient (CD) and pitching moment

coefficient (CM). For the Euler equations, the aerodynamic coefficients are di-

rect function of surface pressure psurf . Therefore, its derivative is relatively

straight-forward and only depends on the ghost cells and first inner cells on

target surface.

In gradient computation, the residual sensitivities, ∂R
∂S

, is another required deriva-

tive which is calculated in hybrid manner with the combination of analytical and

finite difference methods. Since at the ghost cells which is required in ∂R
∂S

, no

residual is computed, so it must be computed in analytical way. But for inner

cells, finite difference approach gives satisfactory results. The central divided-

difference method is given as

∂R

∂Sn
=
R(S + hen, Q)−R(S − hen, Q)

2h
n = 1, ..., ND (5.7)

where h is step-size. The calculation of residual R(S,Q) is not computationally

intense. For the boundary cells, for algebraic derivation, R(S,Q) depends on

the grid points, X such that

∂R

∂S
=
∂R

∂X

∂X

∂S
(5.8)

In Equation (5.8), ∂X
∂S

represents the grid node sensitivities which can be ap-

proximated easily by finite differences.

After creating all necessary derivatives, adjoint equation appears as sparse linear

system of equations which can be solved iteratively or directly. In this study,

solution is obtained by PARDISO [51] solver in direct manner. One can obtain

different sensitivities in that equation by changing right hand sides only. There-

fore multiple right hand side solution is required. In direct approach, factorized

A matrix can be used in solution of different right hand sides without additional

memory requirements. After solving Adjoint equation, implementation of Equa-

tion (5.6) is straight-forward which is the combination of sparse matrix-vector

products etc.

73

Figure 5.1: Flow-chart of optimization with Adjoint method

5.1.3 Finite Difference Method Sensitivities

Forward difference formula is used in this study to calculate finite difference

gradients.

∂I

∂Sn
=
I(S + hen, Q(S + hen))− I(S,Q(S))

h
n = 1, ..., ND (5.9)

where h is step-size and en is unit vector where nth element is 1. However,

this method requires ND flow solution similar to direct method. Therefore its

cost is too much and it is not applicable for large problems. Moreover, the

accuracy of finite difference gradients strictly depends on step-size, h, selection.

Since method is O(h) accurate, larger the step-size increases truncation error,

smaller stepsize increases round-off errors. Finite difference sensitivities are used

to validate direct and Adjoint sensitivities in results section.

74

5.2 Optimization Tool

The optimizer used in this study is Design Optimization Tool (DOT) [85] which

is developed by Vanderplaats at late 80’s. DOT is general purpose gradient-

based numerical optimization library that consists of Fortran codes and is used to

solve generic non-linear optimization problems. The algorithm or package used

in optimization is very critical that affects the final performance of design. In

this study, DOT with Modified Method of Feasible Directions (MMFD) Method

is chosen as optimization algorithm.

For general non-linear, constrained optimization problem, one seeks to find set

of design variables, Xi, i = 1, ..., N such that

Minimize F (X)

Subject to; (5.10)

gj(X) ≤ 0 j = 1,M

XL
i ≤ Xi ≤ XU

i i = 1, N

where F (X) is objective function, g(X) are inequality constraints and XL and

XU are lower-upper bounds of side constraints. Then MMFD can be formulated

Xq = Xq + αS (5.11)

where Xq and Xq−1 are q-th and (q − 1)-th design variable vectors. S is search

direction vector that minimizes the objective function and α is suitable step

length that comes from line search. The algorithm composed of two main parts.

1. Finding the search direction, S. In this step, algorithm seeks the search

direction to find out which constraints active or violated. DOT requires

the constraint values have to be negative for feasible design. Then, im-

mediately it can be concluded that constraints are active when its value

equals to zero. However, due to machine precision it is not quite applicable

in real life; therefore two parameters are defined, CTMIN and CT , which

75

are small positive number and small negative number respectively.

gj(X) ≤ CT Inactive

CT ≤ gj(X) ≤ CTMIN Active (5.12)

gj(X) > CTMIN Violated

(5.13)

In this study, these parameters are used to relax the constraints. Defaults

are −0.03 and 0.005 for CT and CTMIN respectively. For further details

in search algorithm one can look at [85].

2. Finding the scalar step-length α. One dimensional search algorithm is used

in DOT to find optimum scalar step size. During the process objective and

constraint functions are evaluated repeatedly.

MMFD approach of DOT can be summarized in an algorithm Algorithm 12.

Algorithm 12 Modified Method of Feasible Directions in DOT
1: Start, q = 0, X = X0

2: q = q + 1

3: Evaluate F (X) and gj(X) j = 1, ..,M

4: Identify the set of critical or near critical constraints J .

5: Calculate ∇F (X) and ∇gj(X)

6: Determine a usable-feasible search direction, Sq

7: Perform a one-dimensional search to find α∗

8: Set Xq = Xq−1 + α∗Sq

9: Check convergence to the optimum. If satisfied, exit otherwise go to step 2.

76

CHAPTER 6

RESULTS

6.1 Test Case

In this thesis, transonic test case ARA-M100 is used in order to investigate

the efficiency of different sensitivity approaches and solution strategies. ARA-

M100 model is one of the test/validation cases of NASA CFL3D solver. It

consists of wing and body on three-dimensional structured C-H grid topology

on wind tunnel with sting. The original grid has dimensions of 321× 57× 49 in

computational coordinates ξ, η and ζ. Test case solution is result of the Navier-

Stokes equations with Spalart-Allmaras turbulence model. Therefore, quite fine

mesh is used in RANS solution to meet requirements of Euler grid.

The wing has a strong normal shock on upper surface and shock-free lower

surface at free stream conditions where M∞ = 0.8027 and α = 2.873 degree.

Therefore, it is difficult to solve the problem accurately. Since there is no Euler

solution of this test case, obtained results will be compared to the RANS solu-

tions and the experiment results. As a result of this, some differences especially

on upper surface can be observed due to shock wave.

The grid independence study is applied for three different meshes; coarse grid

81× 21× 49; medium grid 161× 29× 49 and fine grid 321× 57× 49 which are

obtained from the CFL3D archive [2].

77

Figure 6.1: Coarse grid Figure 6.2: Medium grid

Figure 6.3: Fine grid

The grid consists of the boundary conditions of symmetry, wake, far-field and

wall. The fine grid is absolutely same as CFL3D grid, the medium one is

coarsened in ξ direction and surface normal direction, η. For the Euler solu-

tion medium grid is sufficient especially when optimization is the main concern.

Repetitive solutions can be cumbersome in terms of CPU time. Moreover, mem-

ory consumption might be a concerning problem when grid size is increased.

In addition to NASA, Epstein et. al [86] have investigated the ARA-M100

configuration at different angle of attacks (aoa) using higher-order essentially

non-oscillatory scheme with the help of algebraic turbulence model Baldwin-

Lomax and they have compared their results with TLNS3D code [87]. They

have both used similar grid to our fine grid.

78

Figure 6.4: CL vs. α graph Figure 6.5: Drag polar

As seen in Figure 6.4 beside the lowest aoa, our Euler solution always overshoots

the lift coefficient. Experimental and both Marconi’s and Epstein’s studies have

lower Cl values. This result is expected as in Euler equations generally shock is

more stronger and it occurs at more aft position in chord-wise direction. This will

cause higher lift, drag and pitching moment. In addition, fine and medium grids

show good agreement for all angles of attack. They agree well for relatively small

angles of attack. At higher angles of attack medium grid results slightly differ

from fine grid. However, because of the computational cost and the potential

memory issues on fine grid, the medium grid is used throughout the study. Cp
plots on different spanwise locations for medium grid are illustrated below.

Figure 6.6: Section cuts on wing

79

(a) η = 0.123 plane (b) η = 0.231 plane

(c) η = 0.325 plane (d) η = 0.455 plane

(e) η = 0.633 plane (f) η = 0.817 plane

Figure 6.7: Cp graphs for spanwise locations

Upper and lower surface pressure coefficients distribution are given above for

80

different chordwise locations from root to tip. For all sections, lower surface Cp
values match up with the experimental data. However, upper surface pressures

are different than the pressures that are found in this study due to the pres-

ence of shock wave. In Euler solution, shock is located at more aft location of

chord compared to Navier-Stokes solution. Moreover, strength of shock wave is

stronger and steeper in this case. Before starting the gradient accuracy section,

it is recommended to check the convergence and Cp contours on this study so-

lution according to CFL3D results. Relative convergence criteria is chosen as

10−9 for cell average continuity residual.

Figure 6.8: CFL3D Cp contours [2]

Figure 6.9: Van-Leer Cp contours

81

Figure 6.10 shows the convergence history of this study where rsdavg, aver-

age continuity residual, rsdmax is maximum continuity residual and Cl, Cd are

aerodynamic coefficients. Table 6.1 shows the CFL3D and our results on force

coefficients where sref = 0.1835 m2 and cref = 0.245 m for α = 2.8730 and

M∞ = 0.8027. It should be noted that body-axis coordinate system is used for

pitching moment value rather than z-axis. Moment point is selected arbitrarily

as no data is available.

Table 6.1: Results for CFD solution

CFL3D Study
Cl 0.6820 0.7361
Cd 0.0512 0.0580
Cm 0.1437 0.1765

log(res) -0.9e+01 -0.9e+01

Figure 6.10: Convergence history

Cp contours are very close to each other in Figure 6.8 and Figure 6.9. Both

RANS and Euler solutions are good to predict shock wave on upper surface of

wing. Euler solution overpredicts the aerodynamic coefficients as expected. On

the other hand, the convergence of solution is steep enough even with some oscil-

lations due to common nature of inner GMRES iterations. In Figure 6.10, green

line shows maximum residual bounces at early iterations as no globalization or

initial startup algorithm are applied. This phenomenon is expected and there

is no direct impact on general convergence behavior as long as forcing term is

chosen wisely.

6.2 Gradient Accuracy

In this section, accuracy of gradients will be investigated by three different ap-

proaches. It is important to show that objective and constraint functions gradi-

82

ents are accurate before starting the optimization procedure. Therefore, finite

difference, direct and adjoint sensitivity methods will be used and compared to

each other.

In aerodynamic optimization, generally objective functions are chosen as force

coefficients such as lift coefficient, Cl, drag coefficient, Cd, or pitching moment

coefficient, Cm, to increase performance of aircraft for different flight conditions

and operations. Occasionally, geometric objective functions such as fuel tank

volume or spar dimensions are used as objective or constraints but they are

generally related to subject of structural optimization or multi-objective opti-

mization problems. In this study, aerodynamic optimization will be focused on

wing-body, so it should be meaningful to use the aerodynamic force coefficients

as objective and constraint functions. Sensitivities given in Figure 6.11 corre-

spond to surface design variables which are defined in design variable section

previously. 25 × 2 = 50 design variables are chosen on both upper and lower

surface of wing with degree 3 NURBS surfaces given in Section 4.1.1. Deflections

are only allowed in y-direction to keep number of design variables small.

Figure 6.11: Sensitivities on surface design variables

83

In order to compare sensitivities normalized values are used such that objective

functions are chosen obj = Cl
Cl0

, obj = Cd
Cd0

and obj = Cm
Cm0

where subscript 0

denotes aerodynamic coefficients at reference geometry. They are all normalized

to 1 in order to compare difference in cost functions easily. In addition, con-

straint functions are normalized to zero ie. if drag is chosen as constraint then

the following is used cons = Cd
Cd0
− 1 ≤ 0. This type of choices make the com-

parison of aerodynamic coefficients on optimized and reference geometry easier.

Moreover, it is a must for DOT optimizer due to subjects which were mentioned

in Section 5.2, Equation (5.10).

In Figure 6.11 adjoint, direct and finite difference gradients are plot at the same

time. However, due to accuracy in gradients the difference cannot be easily

noticed. Therefore, ten different design variables are selected randomly for each

objective function and compared in tables. Also % differences correspond to

finite difference gradients are given to make comparison complete.

Table 6.2: Cl sensitivity comparison

adjoint direct finite difference ∆(AD) % ∆(DIR) %
1 -0.6098769168 -0.6098769168 -0.6097683787 0.01780 0.01780
6 -1.9184382805 -1.9184382805 -1.9184226576 0.00081 0.00081
11 -2.9827437481 -2.9827437481 -2.9826753318 0.00229 0.00229
18 2.2851706407 2.2851706407 2.285644991 -0.02075 -0.02075
23 0.5322094914 0.5322094914 0.5323821999 -0.03244 -0.03244
26 0.2025730911 0.2025730911 0.2028785659 -0.15057 -0.15057
32 1.1660273409 1.1660273409 1.1662627845 -0.02019 -0.02019
37 1.2628239603 1.2628239603 1.2628195788 0.00035 0.00035
41 0.5180330468 0.5180330468 0.518275164 -0.04672 -0.04672
45 6.3665620305 6.3665620305 6.366991368 -0.00674 -0.00674

As seen in Table 6.2 direct and Adjoint sensitivities are completely matched

until ten digit decimal. Finite difference gradients change after 3 digit decimal

which correspond to (< 0.1%) difference for most of the design variables.

Drag and pitching moment gradients are also given in tables below.

84

Table 6.3: Cd sensitivity comparison

adjoint direct finite difference ∆(AD) % ∆(DIR) %
4 3.5495734455 3.5495734954 3.5501009532 -0.01486 -0.01486
10 17.02600704 17.026007076 17.0263162955 -0.00182 -0.00182
11 10.1301277182 10.1301276829 10.1301925765 -0.00064 -0.00064
19 -3.5415569679 -3.541556952 -3.5415182021 0.00109 0.00109
25 1.0716031572 1.0716031951 1.0721046575 -0.04678 -0.04677
27 0.1053596677 0.1053596998 0.1053627955 -0.00297 -0.00294
35 20.5822687783 20.5822687376 20.5834487971 -0.00573 -0.00573
42 -1.0321008493 -1.0321008218 -1.0324572554 -0.03452 -0.03452
44 1.3048270343 1.3048270306 1.3042490362 0.04432 0.04432
50 0.8884147809 0.8884147963 0.8880559293 0.04041 0.04041

Table 6.4: Cm sensitivity comparison

adjoint direct finite difference ∆(AD) % ∆(DIR) %
2 -2.6337136711 -2.6337136501 -2.6335640503 0.00568 0.00568
6 -10.1760565762 -10.176056493 -10.1752690058 0.00774 0.00774
12 1.2741748617 1.2741746861 1.2762033343 -0.15895 -0.15896
14 27.2962541299 27.2962540726 27.2964544234 -0.00073 -0.00073
17 1.783636509 1.7836364141 1.7877238868 -0.22864 -0.22864
27 -0.5932178663 -0.5932178437 -0.5912149267 0.33878 0.33878
38 6.1696333293 6.1696333693 6.1716662841 -0.03294 -0.03294
43 4.6464533788 4.6464534075 4.6505283 -0.08762 -0.08762
44 9.7083098747 9.7083098254 9.7081320139 0.00183 0.00183
49 2.1882579693 2.1882579159 2.1916902398 -0.15660 -0.15661

It can be deduced that, adjoint and direct gradients perfectly match for three

cases. Moreover, their difference with finite difference gradients are very small

which are not greater than 0.33% and for most of the design variables they are

less than 0.01%. It is also important that finite difference sensitivities can not

be completely accurate. Their accuracy can change according to finite difference

order and step size used in perturbation. For example in this study, first-order

difference with ε = 4 × 10−8 is used. The use of central difference scheme or

smaller perturbation value may decrease the difference of FD gradients with

others. However, even for 50 design variables, 50 + 1 flow solutions are needed

to obtain FD sensitivities. This requires large computational time, and it is a

big burden for repeated sensitivity calculations in optimization procedure.

85

In Table 6.5 wall clock times are given in sensitivity calculation procedures.

Table indicates the required time in seconds. RBF interpolation time is the

time that is passed on singular value decomposition of RBF weight matrix. Since

direct solver is used to solve linear system, reordering, factorization and back

substitution times are also given in PARDISO part. Finite difference solution

does not require linear system solution; therefore, it is not taken into calculation.

However, repetitive solution times are reflected at wall clock time. Miscellaneous

time is indicates the initialization, post process, allocation of arrays time which

are small comparing to other contributions. For comparison purposes, pie charts

of time passed in both adjoint and direct methods are also plot.

Table 6.5: Wall clock time for sensitivity calculations

Adjoint Direct Finite Difference
RBF interpolation 74.08 70.41 85.29

Flow solution 2999.1 2543.6 151435
Pardiso (reorder) 51.43 61.04 -

Pardiso (factorization) 7073.95 9593.07 -
Pardiso (back subs.) 177.57 2205.96 -

Miscellaneous 133.87 111.92 5913.71
Total 10510 14586 157434

Figure 6.12: Adjoint sensitivity time table

86

As seen in Figure 6.12 the time dominated in sensitivity calculations is due to

PARDISO solver factorization (2/3 of total time). The reordering time is very

low and generally back substitution does not require time that is greater than

120 seconds. Another important time piece is due to flow solver as expected.

However, because of the direct solver use, factorization is critical point in terms

of CPU and memory.

Figure 6.13: Direct sensitivity time table

The crucial point in Figure 6.13 is the region dominated by back substitution

which is nearly equal to flow solution time. As it was explained in Equation (5.3),

direct sensitivity computation requires the solution of number of design vari-

able (ndv) right hand side vector. This means ndv times back substitution are

required. For even larger design variables, this time may dominate the factor-

ization time. Hence, adjoint method is the most preferred and efficient way of

calculation of gradients in terms of both wall clock time and accuracy.

87

6.3 Optimization Results

For optimization 3 different design variables type are chosen. The NURBS

control points of wing surface, 2D body NURBS control points and wing lead-

ing edge sweep angle points are the design variable types that are used in this

scope. The details of design variables selection can be found in Chapter 4. De-

sign variable choices and their performances on different objective functions and

constraints will be focused. The detail of optimization cases will be investigated

in next sections centering upon optimized shape, Cp and Mach contours of ref-

erence and optimized geometry and the performance on off-design conditions.

Single point optimization is carried out only for α = 2.8730 and M∞ = 0.8027.

6.3.1 NURBS surface on wing

In this section, lift will be maximized by minimizing drag and pitching moment

coefficients separately on wing-body configuration using NURBS control points

of wing surface. 100 design variables are chosen as stated previously for this

case. Control net is composed of 5×5 control points on upper and lower surface

of wing with all weights are initialized with 1.0 and weights are kept constant

throughout the optimization iterations.

6.3.1.1 Lift maximization case with drag and pitching moment con-

straints

Problem statement can be described with subscript 0 denoting the value at first

design cycle.

Maximize
Cl
Cl0

Subject to;
Cd
Cd0
− 1 ≤ 0.001

Cm
Cm0

− 1 ≤ 0.001

− 1.5× 10−3 ≤ Xi ≤ +1.5× 10−3 i = 1, ..., 100

88

In this case, lift is tried to be increased with decreased drag and pitching moment

by the help of inequality constraints. CT = 0.001 is defined for numerical

precision issue in DOT. The side constraints are added to the problem in order

to avoid unnecessary iterations. At the end, the optimized design variables are

far from the side constraints so side constraints have no effect on optimized

shape. Convergence history for optimization iterations is given in Figure 6.14

while ndcyc corresponds to number of design cycles. The change in objective

Figure 6.14: Convergence history of lift maximization case

function and constraints can be seen in figure. The objective function is initially

equal to 1 since normalized values are used. Also, constraints are starting from

0. At the end of iterations, lift coefficient is increased beyond 6% and constraints

are not violated. Table for aerodynamic coefficients is given also.

Table 6.6: Results for lift maximization case

Initial Optimized
Obj 1.0000000 1.0640230
Cons1 0.0000000 0.0004465
Cons2 0.0000000 0.0009884
Cl 0.7361341 0.7832637
Cd 0.0580534 0.0580793
Cm 0.1765676 0.1767421

89

Pressure coefficients and Mach contours are drawn on upper surface of wing-

body where the normal shock is present.

Figure 6.15: Lift maximization Cp contours on upper surface

Figure 6.16: Lift maximization Mach contours on upper surface

90

As seen in Figures 6.15 and 6.16 density of contour lines are decreased around

mid-chord and especially wing tip. Although shock still exists on upper surface,

its strength is decreased to increase lift coefficient and to keep drag in allowable

level. Maximum local Mach number on upper surface in optimized geometry

is decreased and further increase in Mach number is prohibited. In addition to

previous benefits of optimized geometry, wing tip vortices are reduced to increase

lift coefficient by decreasing the effect of induced angle of attack. Spanwise

section cuts are taken at different spanwise locations and given below.

Figure 6.17: Airfoil sections on spanwise locations

In Figure 6.17 airfoil sections are extracted from root to tip. The outermost

airfoil section corresponds to tip airfoil while innermost indicates the root airfoil.

Red sections show the optimized geometry and black sections belong to reference

geometry. While in root airfoils cambers are located at more front, at the tip

sections they are located at back. Moreover, upper surface becomes more flat

and trailing edges become thicker compared to reference geometry. Reduced

curvature of the mid-chord provides reduction of the Mach number before shock,

Figure 6.16. The distribution of pressure coefficients will be given in next figures.

91

(a) η = 0.231 plane (b) η = 0.325 plane

(c) η = 0.455 plane (d) η = 0.633 plane

(e) η = 0.817 plane (f) η = 0.942 plane

Figure 6.18: Cp graphs for spanwise locations

92

From Figure 6.18a to Figure 6.18d shock moves towards the trailing edge and

its strength is reduced near root and tip sections. Flat surface of new wing tip

decreases the effect of wave drag by preventing acceleration of local flow. In

addition, strength of shock is highly reduced. Leading edges of lower surface are

another critical point that most of the pressure coefficient change is observed at

wing tip. The difference between Cp values are decreased through the tip. This

means wing tip vortices are also reduced. Consequently, we can generalize the

trend in lift maximization case as shock dislocation and lower surface pressure

coefficients minimization with shock damping at root and tip. The performance

at off-design conditions is also important issue. Since optimization is held for

only Mach number 0.8027 and α = 2.8730 and by knowing aircraft has different

operation conditions, it is better to look at drag polar and lift curve at off-design

conditions also.

Figure 6.19: Cl − α off design condi-
tions

Figure 6.20: Cl − Cd off design condi-
tions

As it can be seen in Figure 6.19 lift curve slope is maintained and lift curve is

translated upward for all angles of attack, so that the lift increment is satisfied

at off-design conditions. In Figure 6.20 we expect the shift in drag polar in

upward direction. For relatively large angles of attack drag is kept constant

and lift is increased. However, the little drag increment is also observed at lower

angles of attack. Unfortunately, for negative aoa optimized geometry shows poor

performance.

93

6.3.1.2 Drag minimization case with lift and pitching moment con-

straints

Similar to previous optimization case, drag minimization problem is defined as

follows.

Minimize
Cd
Cd0

Subject to; 1− Cl
Cl0
≤ 0.001

Cm
Cm0

− 1 ≤ 0.001

− 1.5× 10−3 ≤ Xi ≤ +1.5× 10−3 i = 1, ..., 100

Convergence history through optimization and final results are given in figures.

Figure 6.21: Convergence history of drag minimization case

Results show that drag is reduced by 10.5% with 0.03% lift reduction and 0.09%

pitching moment reduction.

94

Table 6.7: Results for drag minimization case

Initial Optimized
Obj 1.0000000 0.8957720
Cons1 0.0000000 0.0003247
Cons2 0.0000000 -0.0009067
Cl 0.7361341 0.7358951
Cd 0.0580534 0.0520026
Cm 0.1765676 0.1764075

Mach and Cp contours are drawn for better comparison on optimized and refer-

ence geometry. From the figures given below, one can see that shock is delayed

Figure 6.22: Drag minimization Cp contours on upper surface

to more aft location and its strength is reduced. At the leading edge acceleration

of local flow is prevented. In addition Cp values at the tip of wing is reduced to

suppress wing tip vortices. Mach contours density minimization at crank loca-

tion is visible. This will also help to decrease in shock strength at that region.

95

Figure 6.23: Drag minimization Mach contours on upper surface

(a) Baseline geometry (b) Optimized geometry

Figure 6.24: Wing tip vortices and Cp distribution

As it is seen in Figure 6.24b, shock is removed and density of wing tip vortices

are reduced for lower induced drag.

96

Figure 6.25: Airfoil sections on spanwise locations

As seen in Figure 6.25 curvature of leading upper sections are reduced for first

4 spanwise locations. The upper surface is now more flat compared to baseline

shape and camber is shifted to trailing edge at bottom surface. This configura-

tion is similar to supercritical airfoil design concept which provides higher drag

rise Mach number since flat upper surface prevents the further acceleration of

flow before the shock wave as seen in Figure 6.23. Then the strength of shock

is reduced and shock is observed at more aft location so the total drag easily

becomes less. From root to tip, flat upper surface transforms into cambered

airfoil sections. This is well-known phenomenon which shows the importance of

crest location on airfoil when flow is nearly transonic. The crest is defined as the

location where incoming flow becomes tangent. In our design point, free-stream

flow has 2.8027 angle of attack. In optimized sections, crest location moves

backward by creating the camber at further aft location. Thus, supersonic local

velocity which occurs ahead of crest does not lead to extreme drag increment

because the local flow velocity decreases after the crest which can be seen quite

easily after midspan of Figure 6.23 of optimized shape. If we look at the all

sections from root to tip, we can see the pattern of airfoil section changes. Not

97

a real twist but artificial twist can be easily distinguished as the tip sections are

twisted more downward. Hence both reduction of wing tip vortices and incre-

ment in span efficiency are succeeded. In following figures we will clearly see the

effect of this artificial twist on pressure differences of upper and lower surfaces

of wing tip. Cp distribution will be given in order to investigate shock pattern.

(a) η = 0.231 plane Cp graph (b) η = 0.325 plane Cp graph

(c) η = 0.455 plane Cp graph (d) η = 0.633 plane Cp graph

98

(e) η = 0.817 plane Cp graph (f) η = 0.942 plane Cp graph

Figure 6.26: Cp graphs for spanwise locations

Beside the Figure 6.26d, shock strength is reduced for all angles of attack by

decreasing the maximum Cp and sharpness of shock wave line, Figures 6.26a

and 6.26b. As seen in Figures 6.26e and 6.26f, induced drag which is caused by

pressure difference near tip is also reduced.

For off-design conditions, both drag polar and drag divergence graphs are drawn

for different Mach numbers.

Figure 6.27: Cl − Cd off-design Figure 6.28: Cd − M∞ off-design

Drag polar is shifted to left as expected in Figure 6.27. Lift is only decreased

at very low angles of attack. Moreover, Cd − M∞ curve is shifted downward

so drag values are reduced for operating range. The highest difference in drag

99

values are observed beyond 0.8327 Mach which shock is stronger than the Mach

0.8027. This shows also shock strength is reduced for even higher Mach num-

bers. Because of the reduction in wave drag, drag divergence Mach number is

also increased. As a consequence, the higher cruise speed is now possible with

optimized wing. Lift distribution is also given in Figure 6.29. New spanwise

distribution is more elliptic compared to baseline geometry.

Figure 6.29: Spanwise lift distribution

As lift is decreased at lower angles of attack, it is decided to use higher degree

NURBS control points to see its efficiency on off-design conditions. Then at the

off design conditions some improvements on drag and lift are observed.

Table 6.8: Results for lift case

Initial Optimized(d3) Optimized(d4)
Obj 1.0000000 0.8957720 0.8758510
Cons1 0.0000000 0.0003247 0.0001856
Cons2 0.0000000 -0.0009067 -0.0006381
Cl 0.7361341 0.7358951 0.7359974
Cd 0.0580534 0.0520026 0.0508461
Cm 0.1765676 0.1764075 0.1764549

In the higher degree case, optimization requires more time compared to lower

degree control points because of the smoothness of new control points.

100

Figure 6.30: Convergence history of drag minimization case

Cp and Mach contours show that the flow is accelerated near wing tip, also

shock is weaken due to decreased pressure coefficients. Midspan is also effected

by degree selection.

(a) Cp contours on upper surface (b) Mach contours on upper surface

Figure 6.31: Cp and Mach distribution on degree 3 and 4 optimization

Different choice of degree selection on wing sections can be found in Figure 6.32.

101

Figure 6.32: Airfoil sections on spanwise locations

Degree 4 selection results the smaller thickness and camber comparing to degree

3 choice. More smooth and aft cambered sections can be seen in after midspan

locations. This will reduce the flow separation near wing tip due to high camber.

The parameter selection is very important in NURBS for final geometry.

At the off design conditions better performance of 4th degree NURBS can be

seen.

102

Figure 6.33: Cl − Cd off-design

As illustrated in Figure 6.33 at lower angles of attack lift is conserved and

drag polar is shifted for all angle of attack range. However, difference between

optimized drag polar and baseline drag polar get smaller through the negative

angles of attacks. This shows that when shock is not present the efficiency of

optimization vanishes.

103

6.3.1.3 Pitching moment minimization case with lift and drag con-

straints

Problem statement is written in this case as follows;

Minimize
Cm
Cm0

Subject to;
Cd
Cd0
− 1 ≤ 0.001

1− Cl
Cl0
≤ 0.001

− 1.5× 10−3 ≤ Xi ≤ +1.5× 10−3 i = 1, ..., 100

In this case pitching moment coefficient will be tried to minimized while Cl and

Cd will be kept in tolerable levels.

Convergence history is given in Figure 6.34.

Figure 6.34: Convergence history of pitching moment minimization case

After fast decrease in 10 iterations at pitching moment, the constraints are

pushed up to 0.1 and -0.03 level. Releasing constraints may result in probably

less pitching moment coefficient.

104

Table 6.9: Results for pitching moment minimization case

Initial Optimized
Obj 1.0000000 0.8161653
Cons1 0.0000000 0.0009307
Cons2 0.0000000 -0.0000608
Cl 0.7361341 0.7361790
Cd 0.0580534 0.0581075
Cm 0.1765676 0.1441084

The pressure coefficient and Mach contours are drawn on wing body upper

surface where the shock region is visible.

Figure 6.35: Pitching moment minimization Cp contours on upper surface

Figure 6.35 shows the pressure coefficient reduction near the wing tip. Shock is

completely removed after midspan. Moreover, maximum Mach number is quite

reduced as seen in Figure 6.36. Section span-wise distribution is given below.

105

Figure 6.36: Pitching moment minimization Mach contours on upper surface

Figure 6.37: Airfoil sections on spanwise locations

As shown in Figure 6.37 new leading edge curvature is obtained which is also

106

found at optimized shape of reference [32]. Unlike the supercritical airfoils, which

have larger leading edge radius, pitching moment optimized geometry has lower

nose radius. Also flat upper surface and aft cambered lower surface can be easily

distinguished. Comparing to lift and drag optimized wing sections, pitching

moment optimized airfoils are more similar to supercritical airfoils. In addition

to new deformed leading edges and flat upper surface, upward bended trailing

edges which are also known as reflex airfoils are present now. Reflexed airfoil

shapes are very common in low Mach number flights which tailless aircrafts use

this concept due to their innate positive pitching moment. The deformed leading

edge is also commonly known pattern in transonic aircrafts and its curvature is

usually related to optimization point angle of attack.

Pressure coefficient distribution is given below.

(a) η = 0.231 plane Cp graph (b) η = 0.325 plane Cp graph

(c) η = 0.455 plane Cp graph (d) η = 0.633 plane Cp graph

107

(e) η = 0.817 plane Cp graph (f) η = 0.942 plane Cp graph

Figure 6.38: Cp graphs for spanwise locations

Optimized geometry has no shock wave near wing tip. Cp values make their

peak at near leading edge of suction side due to new leading edge shape. Strong

suction at front locations prevents the acceleration of flow. So the increment in

Mach number is prohibited. Like previous cases, pressure differences between

upper and lower surfaces are decreased.

Figure 6.39: Cm − α off design conditions

At the off design conditions pitching moment curve is shifted downward for all

angles of attack. Less positive pitching moment is more preferable since it causes

less nose-up moment about center of gravity. Then, elevator is trimmed at lower

degrees. Thus, the trim drag is reduced extremely. However, wing+body is

108

still statically unstable as expected. Shock waves have also strong influence on

pitching moment. At different Mach numbers pitching moment can increase

dramatically as seen in drag case. Therefore, pitching moment-Mach curve is

drawn.

Figure 6.40: Cm − Mach off design conditions

Now all Cl, Cd and Cm optimized wing sections will be given in single figure.

Figure 6.41: Sections for all cases

109

As it is seen in Figure 6.41 for all cases lower surfaces are very similar to each

other. While thickness reduces at leading edge, it increases at trailing edge. Lift

and pitching moment cases show similar trend for all the sections. Cm optimized

sections only differ from lift optimized ones at leading edge as pitching moment

optimized airfoils end up with the nose shape similar to whale nose then the

flow is rapidly sucked at upper surface and it decelerates extremely through the

trailing edge. Comparing to previous cases the higher and the more aft camber

are observed in drag minimized case. The optimization results for wing tip show

that the airfoils have trend to transform into NACA-6 digit arfoils which have

cusped and thin trailing edges. At the middle sections, supercritical airfoils are

obtained. Although the 6-digit airfoils are famous with low drag for range of

small design conditions, results show that drag is minimized in our study for the

wide range of design conditions.

6.3.2 Body design variables

In this part, focus will be on body by keeping wing is untouched. The effect of

design variables on body will be investigated. 5 × 2 design variables on upper

and lower parts of body with degree 3 control points will be used. Drag will

be tried to be minimized by applying volume and lift constraints. The problem

statement is given below.

Minimize
Cd
Cd0

Subject to; 1− Cl
Cl0
≤ 0.001

1− V

V0

≤ 0.001

Results for drag minimization on body and optimization convergence history are

given in Table 6.10 and Figure 6.42 Body change is less effective comparing to

shape optimization of wing to reduce drag since most of the drag is composed

of wave and induced drag on wing surface. As a result, approximately 6.5%

drag reduction can be achieved. It is important to put a volume constraint to

restrict body to going too thinner and skinny as volume reduction is the easiest

110

Table 6.10: Results for body case

Initial Optimized
Obj 1.0000000 0.9350334
Cons1 0.0000000 0.0008851
Cons2 0.0000000 -0.0002000
Cl 0.7361341 0.7354826
Cd 0.0580534 0.0542819
Cm 0.1765676 0.1982510

Figure 6.42: Convergence history

way to obtain less drag which is composed of body form drag. However, this

configuration may result in less payload or passenger which have to be carried.

Optimized and reference bodies are given below.

Figure 6.43: Baseline wing body Figure 6.44: Optimized wing body

As seen from Figure 6.44, body nose becomes thinner and aft part becomes more

bulky like a bullet. This configuration is probably result of optimization using

Euler equations where no viscous effects and separation take place. In RANS

solution fatter backside can create undesirable turbulence and flow separation.

Cp contours on symmetry plane is given below.

111

Figure 6.45: Symmetry plane Cp con-
tours base

Figure 6.46: Symmetry plane Cp con-
tours optimized

Stagnation point on reference geometry is removed in Figure 6.46 by making

nose thinner. Then the Cp contours density is reduced at nose. Optimized body

has little effect on wing root section, and other than this no change is observed.

Drag polar for different angles of attack is also plot to show performance on

off-design conditions.

Figure 6.47: Drag polar for body optimized case

112

6.3.3 Sweep angle design variables

In this part wing planform will be optimized by changing leading edge sweep

angles. Two design variables in terms of degrees are designated for this purpose.

The reference area and chord dimensions are kept constant during the iterations.

Optimization problem is now defined as follows.

Maximize
Cd
Cd 0

Cl
Cl0
− 1 ≤ 0.01

Drag will be tried to be decreased by keeping the lift unchanged too much.

Pitching moment constraint is not defined, as larger the sweep angle causes

destabilizing effect on entire aircraft. This result can be seen in Table 6.11 on

Cm value.

Table 6.11: Results for sweep case

Initial Optimized
Obj 1.0000000 0.9728462
Cons1 0.0000000 0.0079058
Cl 0.7361341 0.7303142
Cd 0.0580534 0.0564769
Cm 0.1765676 0.2688364

Cl/Cd 12.680289 12.931194

Figure 6.48: Convergence history

Drag coefficient is reduced by approximately 3% at the end of design iterations.

Pitching moment is increased nearly 52%. Excessive increment in pitching mo-

ment is due to the change in center of pressure location on entire aircraft. In

addition, it can be deduced that more backward sweep causes destabilizing effect

on aircraft. Sweep angle change is demonstrated on following figure.

113

Figure 6.49: Sweep angles comparison on wing

Spanwise sections have more backward sweep at the end of optimization. The

difference is visible especially around crank location. Through the wing tip,

effect of leading edge sweep vanishes.

(a) Cp contours (b) Mach contours

Figure 6.50: Cp and mach contours

It is hard to conclude from Figures 6.50a and 6.50b. Cp and Mach contours are

slightly smooth around crank. Maximum Mach number which is achieved on

crank is reduced. Also shock strength is decreased a little around the midspan

as shown in Figure 6.51.

114

(a) η = 0.231 plane Cp graph (b) η = 0.325 plane Cp graph

(c) η = 0.455 plane Cp graph (d) η = 0.633 plane Cp graph

(e) η = 0.817 plane Cp graph (f) η = 0.942 plane Cp graph

Figure 6.51: Cp graphs for spanwise locations

115

As it can be seen, effect of shock is diminished at root sections. In addition

to this fact shock dislocation is observed in wing tip airfoils. Results given

in this section shows that reference geometry is already optimized in terms of

leading edge sweep. However, quarter-chord sweep angle or taper ratio may have

larger influence on drag as design variables but this kind of planform changes

are beyond the scope of this thesis. Finally, span efficiencies of swept wing will

be given in terms of sectional lift coefficients.

Figure 6.52: Sweep angles comparison on wing

As seen, span efficiency is reduced at near root because of the slipstream down-

wash effect of body. For optimized case sectional lifts are increased through the

tip where shock moves backward. Also higher backward sweep in root sections

causes less sectional lift due to reduction in local flow velocity.

116

CHAPTER 7

CONCLUSIONS

7.1 Conclusion

This thesis has been written to produce a guideline for CFD-based optimization

of wing-body configuration in line with all aspects of optimization explained in

detail. Starting from the discretization of Euler equations, flow solution, design

variables, volumes mesh deformation, iterative solver, and gradient computation

methods have been discussed. For design variables, volume mesh deformation

and flow solution strategies different approaches have also been demonstrated.

At the end of these chapters, the methods and approaches have been compared

with examples and the parametric studies. In consideration of these results,

different optimization procedures and optimized shapes with their performances

have been given in order to make this thesis a guideline for Aerodynamic De-

signers also.

Euler solution has proved a subtle consistency with RANS solution especially

where no shock wave exists such that the lower surface of wing. However, when

shock has been present, there have been much more difference between two

results as expected. In Euler solution normal shock has been more powerful and

located at more aft position comparing to RANS solution. Consequently, both

lift and drag have been found greater. Cp contours have matched well on wing

and body also. Nevertheless, in the early phase of design Euler solution can

be used. Due to the less computational time and sparse Jacobian matrix, it is

highly preferable for the optimization also.

117

In the third chapter, we have discussed the flow solution strategy and we have

found the Newton-GMRES method is more useful than the Newton method

because Newton-GMRES requires no Jacobian matrix generation. Solving New-

ton iterations inexactly may increase the efficiency of flow solution. Among the

different preconditioners, ILU (1) has given the best efficiency in terms of com-

putational time. As the level of fill increases, the number of non-zero elements

increases tremendously in preconditioner matrix. Therefore, for high level of fills

reordering strategies have been applied to decrease number of non-zeros in sparse

preconditioner matrix. After fill-in level 2nd, all of the reordering strategies have

proved good performance and made preconditioner matrix sparser comparing to

natural ordering. Minimum Degree and METIS have been found most efficient

reordering strategies for high fill-ins. However, out of RCM all reordering have

given poor performance with ILU (1) preconditioner. Therefore, the RCM and

natural ordering have been used throughout the study.

After a literature survey on design variables selection, NURBS has been found

efficient by many researchers as it gives a reliable result on off-design conditions

also. In addition to this, it creates a logical, real life shapes comparing to other

parameterization schemes. In our results we have demonstrated these advan-

tages of NURBS by investigating the optimized shape performance on off-design

conditions where the angle of attack and mach numbers have been different.

While lower degree NURBS creates sharper representation of geometry, higher

degrees can create smoother shapes. Therefore, degree selection should be made

very carefully.

In the design variable chapter, we have also discussed the volume mesh defor-

mation strategies. We have created a simple test problem on a structured cube

mesh. We have looked at the performance of RBF and algebraic perturbation

strategies by applying very large deformations. As illustrated in the given ex-

ample case, the RBF method has created a detailed representation of flow field.

Algebraic approach has not given enough attention to curvature areas and be-

come tenuous. RBF has also helped to decrease skewness on cells comparing

to algebraic approach. Moreover, the negative cells have not been observed in

RBF approach.

118

At the results section, three gradient computation approaches have been com-

pared to each other. All of the sensitivities have proved a good consistency in

gradients accuracy. Most of the time, difference between gradients have been

less than 0.2%, which is a good accuracy level for optimization. Among the

computation approaches for gradients, finite difference was found least efficient

one. Since it requires at least number of design variable flow solution which

is not practical for larger problems. Adjoint and direct methods require only

one flow and linear system solution. Since, direct approach requires number of

design variables right hand side solution, the time passed for back-substitution

after factorization may be large. In Adjoint method, linear system with only

one right hand side is solved. Wall clock time comparisons in this chapter also

highlighted the efficiency of Adjoint method. Therefore, Adjoint method were

used in optimization to calculate sensitivities.

In optimization, firstly wing surface control points have been used for wing

optimization. Lift maximization, drag and pitching moment minimization have

succeeded with different constraints. Shock has been removed and its strength

has been reduced at the root and tip of wing for all cases. In drag minimization

case, airfoil cambers have been transferred to aft in order to decrease strength of

normal shock. For all cases, new leading edge curvature has been obtained. For

lift maximization, tip airfoil sections have been flattened to decrease effect of tip

vortices. As a result, it has been deduced that without changing planform total

shock removal is not possible. Finally, although the single point optimization

has been applied, the resultant shape has produced a good performance on off-

design conditions. Changing angle of attack and mach number have not reduced

the performance of optimized shape.

As a future plan, we are planning to work on iterative, robust solution of linear

systems of Adjoint method as after some increment in grid dimension, direct

solution of Adjoint equation requires too much memory, which is not available

in our workstations. Also the CPU time requirement goes over 10 hours. Vis-

cous terms of Navier-Stokes equations will be also added to sensitivities and

discretization. Then, more compact optimization will be held. As a doctoral

study unsteady Adjoint method will be investigated with aeroelastic effects.

119

120

REFERENCES

[1] M. Drela. Development of the d8 transport configuration. 29th AIAA
Applied Aerodynamics Conference, 2011.

[2] Cfl3d test cases. http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6_
testcases.html. Accessed: 2016-03-25.

[3] D. P. Raymer. Aircraft design: A conceptual approach. American Institute
of Aeronautics and Astronautics, Reston, VA, 1999.

[4] L. M. Nicolai, G. Carichner, and L. M. Nicolai. Fundamentals of aircraft
and airship design. American Institute of Aeronautics and Astronautics,
Reston, VA, 2010.

[5] A. Betz. Modification of wing-section shape to assure a predetermined
change in pressure distribution. NASA Technical Report Server, 11, 1935.

[6] M. J. Lighthill. A new method of two-dimensional aerodynamic design (rep.
No, 2112, 1945.

[7] M. B. Giles and M. Drela. Two-dimensional transonic aerodynamic design
method. AIAA Journal, 25(9):1199–1206, 1987.

[8] R. M. Hicks, E. M. Murman, and G. N. Vanderplaats. An assessment of
airfoil design by numerical optimization. Technical report, NASA TM X,
1974.

[9] G. B. Dantzig. Origins of the simplex method. Stanford University, Dept.
of Operations Research, Systems Optimization Laboratory, Stanford, CA,
1987.

[10] J. A. Nelder and R. Mead. A simplex method for function minimization.
The Computer Journal, 7(4):308–313, 1965.

[11] R. Duvigneau and M. Visonneau. Shape optimization of incompressible
and turbulent flows using the simplex method. 15th AIAA Computational
Fluid Dynamics Conference, 2001.

[12] D. Quagliarella and A. D. Cioppa. Genetic algorithms applied to the aero-
dynamic design of transonic airfoils. Journal of Aircraft, 32(4):889–891,
1995.

121

http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6_testcases.html
http://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6_testcases.html

[13] J. Nocedal and S. J. Wright. Numerical optimization. Springer, New York,
1999.

[14] R. M. Hicks and P. A. Henne. Wing design by numerical optimization.
Journal of Aircraft, 15(7):407–412, 1978.

[15] S. Eyi, K. D. Lee, S. E. Rogers, and D. Kwak. High-lift design optimization
using navier-stokes equations. Journal of Aircraft, 33(3):499–504, 1996.

[16] J. Martins, I. Kroo, and J. Alonso. An automated method for sensitivity
analysis using complex variables. 38th Aerospace Sciences Meeting and
Exhibit, 2000.

[17] O. Pironneau. Optimal Shape Design for Elliptic Systems. Springer Series
in Computational Physics, New York, 1983.

[18] A. Jameson. Aerodynamic design via control theory. Journal of Scientific
Computing, 3(3):233–260, 1988.

[19] J. Reuter and A. Jameson. Control theory based airfoil design for potential
flow and a finite volume discretization. 32nd Aerospace Sciences Meeting
and Exhibit, 1994.

[20] J. Reuther and A. Jameson. Aerodynamic shape optimization of wing and
wing-body configurations using control theory. 33rd Aerospace Sciences
Meeting and Exhibit, 1995.

[21] K. Leoviriyakit. Wing Planform Optimization via An Adjoint Method. PhD
thesis, 2005.

[22] W. Anderson and V. Venkatakrishnan. Aerodynamic design optimization
on unstructured grids with a continuous adjoint formulation. Computers
and Fluids, 28(4-5):443–480, 1999.

[23] R. E. Wengert. A simple automatic derivative evaluation program. Com-
munications of the ACM, 7(8):463–464, 1964.

[24] I. A. Taylor, G. W. Hou, and V. M. Korivi. Methodology for calculat-
ing aerodynamic sensitivity derivatives. AIAA Journal, 30(10):2411–2419,
1992.

[25] G. W. Burgreen and O. Baysal. Three-dimensional aerodynamic shape
optimization using discrete sensitivity analysis. AIAA Journal, 34(9):1761–
1770, 1996.

[26] G. R. Shubin and P. D. Frank. A comparison of two closely-related ap-
proaches to aerodynamic design optimization. pages 67–78. Third Interna-
tional Conference on Inverse Design Concepts and Optimization in Engi-
neering Sciences (ICIDES-3); p, 1991.

122

[27] S. Nadarajah and A. Jameson. A comparison of the continuous and discrete
adjoint approach to automatic aerodynamic optimization. 38th Aerospace
Sciences Meeting and Exhibit, 2000.

[28] G. J. Hou, A. C. Taylor, and V. M. Korivi. Discrete shape sensitivity
equations for aerodynamic problems. International Journal for Numerical
Methods in Engineering, 37(13):2251–2266, 1994.

[29] R. M. Hicks and P. A. Henne. Wing design by numerical optimization.
Journal of Aircraft, 15(7):407–412, 1978.

[30] H. Sobieczky. Parametric airfoils and wings. Notes on Numerical Fluid
Mechanics (NNFM) Recent Development of Aerodynamic Design Method-
ologies, pages 71–87, 1999.

[31] L. Piegl and W. Tiller. The NURBS book (2nd ed.). Springer, Berlin, 1997.

[32] M. Nemec. Optimal Shape Design of Aerodynamic Configurations: A
Newton-Krylov Approach. PhD thesis, 2003.

[33] G. W. Burgreen, O. Baysal, and M. E. Eleshaky. Improving the efficiency
of aerodynamic shape optimization. AIAA Journal, 32(1):69–76, 1994.

[34] A. D. Boer, M. S. Schoot, and H. Bijl. Moving mesh algorithm for un-
structured grids based on interpolation with radial basis functions. In III
European Conference on Computational Mechanics, pages 418–418, 2006.

[35] V. Poirier and S. Nadarajah. Efficient reduced-radial basis function-based
mesh deformation within an adjoint-based aerodynamic optimization frame-
work. Journal of Aircraft, pages 1–17, 2016.

[36] V. Venkatakrishnan. Newton solution of inviscid and viscous problems.
AIAA Journal, 27(7):885–891, 1989.

[37] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards,
49(6):409, 1952.

[38] Y. Saad and M. H. Schultz. Gmres: a generalized minimal residual method
for solving nonsymmetric linear systems. SIAM Journal, 7:856–869, 1986.

[39] K. Michalak and C. Ollivier-Gooch. Matrix-explicit gmres for a higher-
order accurate inviscid compressible flow solver. 18th AIAA Computational
Fluid Dynamics Conference, 2007.

[40] A. Puyero, D. Zingg, A. Puyero, and D. Zingg. An efficient newton-gmres
solver for aerodynamic computations. 13th Computational Fluid Dynamics
Conference, 1997.

123

[41] M. Nemec and D. W. Zingg. Newton-krylov algorithm for aerodynamic
design using the navier-stokes equations. AIAA Journal, 40:1146–1154,
2002.

[42] J. Gatsis. Preconditioning Techniques for a Newton-Krylov Algorithm for
the Compressible Navier-Stokes Equations. PhD thesis, 2013.

[43] Cfl3d version 5.0 manual. https://cfl3d.larc.nasa.gov/Cfl3dv6/
cfl3dv6_v5manual.html. Accessed: 2016-09-22.

[44] J. L. Steger and R. F. Warming. Flux vector splitting of the inviscid gas-
dynamic equations with application to finite-difference methods. Journal
of Computational Physics, 40:263–293, 1981.

[45] B. Van Leer. Flux vector splitting for the euler equations. ICASE Report,
pages 82–30, September 1982.

[46] M.-s. Liou. A sequel to ausm: Ausm+. Journal of Computational Physics,
129:364–382, 1996.

[47] W. Anderson, J. Thomas, and B. V. Leer. A comparison of finite vol-
ume flux vector splittings for the euler equations. 23rd Aerospace Sciences
Meeting, 1985.

[48] P. Kalita, A. K. Dass, and A. Sarma. Effects of numerical diffusion on
the computation of viscous supersonic flow over a flat plate. International
Journal of Applied and Computational Mathematics, 2015.

[49] J. R. (n.d.) Carlson. Inflow-outflow boundary conditions with application
to fun3d (pdf). Technical report, Hampton, Virginia.

[50] S. Eyi, M. Camci, M. Yumusak, and A. Ezertas. Three dimensional de-
sign optimization using analytical and numerical jacobians. 20th AIAA
Computational Fluid Dynamics Conference, 2011.

[51] Pardiso version 5.0.0. http://www.pardiso-project.org/. Accessed:
2016-11-15.

[52] Umfpack solver. http://faculty.cse.tamu.edu/davis/suitesparse.
html. Accessed: 2016-12-01.

[53] Superlu is a general purpose library for the direct solution of large, sparse,
nonsymmetric systems of linear equations on high performance machines.
http://crd-legacy.lbl.gov/. Accessed: 2016-11-07.

[54] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equa-
tions in several variables. Academic Press, New York, 1970.

124

https://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6_v5manual.html
https://cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6_v5manual.html
http://www.pardiso-project.org/
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://crd-legacy.lbl.gov/

[55] Y. Saad. Iterative methods for sparse linear systems (2nd ed.). SIAM,
Philadelphia, 2003.

[56] H. F. Walker. Implementation of the gmres method using householder
transformations. SIAM Journal on Scientific and Statistical Computing,
9(1):152–163, 1988.

[57] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact newton methods.
SIAM Journal on Numerical Analysis, 19(2):400–408, 1982.

[58] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact
newton method. SIAM Journal on Scientific Computing, 17(1):16–32, 1996.

[59] R. Idema, D. Lahaye, and C. Vuik. On the convergence of inexact Newton
methods. Delft University of Technology, Delft, 2011.

[60] M. Pernice and H. F. Walker. Nitsol: A newton iterative solver for nonlinear
systems. SIAM Journal on Scientific Computing, 19(1):302–318, 1998.

[61] A. Pueyo and D. Zingg. Efficient newton-krylov solver for aerodynamic
computations. AIAA Journal, 36:1991–1997, 1998.

[62] D. Knoll and D. Keyes. Jacobian-free Newton-Krylov methods: A survey
of approaches and applications. Journal of Computational Physics, 193(2),
357-397, 2004.

[63] O. Onur and S. Eyi. Effects of the jacobian evaluation on newton’s solution
of the euler equations. International Journal for Numerical Methods in
Fluids, 49(2):211–231, 2005.

[64] A basic tool-kit for sparse matrix computations (version 2). saad/
software/SPARSKIT/index.html. Accessed: 2016-11-03.

[65] I. Arany. The preconditioned conjugate gradient method with incomplete
factorization preconditioners. Computers & Mathematics with Applications,
31(4-5):1–5, 1996.

[66] Y. Saad. Ilut: A dual threshold incomplete lu factorization. Numerical
Linear Algebra with Applications, 1(4):387–402, 1994.

[67] M. Benzi. Preconditioning techniques for large linear systems: A survey.
Journal of Computational Physics, 182(2):418–477, 2002.

[68] L. C. Dutto. The effect of ordering on preconditioned gmres algorithm, for
solving the compressible navier-stokes equations. International Journal for
Numerical Methods in Engineering, 36(3):457–497, 1993.

[69] Graph theory tutorials. http://primes.utm.edu/graph/index.html. Ac-
cessed: 2016-11-05.

125

saad/software/SPARSKIT/index.html
saad/software/SPARSKIT/index.html
http://primes.utm.edu/graph/index.html

[70] A. George and J. W. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Review, 31(1):1–19, 1989.

[71] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum
degree ordering algorithm. SIAM Journal on Matrix Analysis and Applica-
tions, 17(4):886–905, 1996.

[72] A. George. Computer Implementation of the Finite Element Method. PhD
thesis, 1971.

[73] W. Liu and A. H. Sherman. Comparative analysis of the cuthill-mckee and
the reverse cuthill-mckee ordering algorithms for sparse matrices. SIAM
Journal on Numerical Analysis, 13(2):198–213, 1976.

[74] Serial graph partitioning and fill-reducing matrix ordering. http://
glaros.dtc.umn.edu/gkhome/views/metis. Accessed: 2016-12-10.

[75] K. M. Selvan. On the effect of shape parameterization on aerofoil shape
optimization. International Journal of Research in Engineering and Tech-
nology, 4:02, 2015.

[76] J. T. Batina. Unsteady euler airfoil solutions using unstructured dynamic
meshes. AIAA Journal, 28(8):1381–1388, 1990.

[77] J. T. Batina. Unsteady euler algorithm with unstructured dynamic mesh
for complex-aircraft aerodynamic analysis. AIAA Journal, 29(3):327–333,
1991.

[78] T. Baker and P. Cavallo. Dynamic adaptation for deforming tetrahedral
meshes. 14th Computational Fluid Dynamics Conference, 1999.

[79] K. Stein, T. Tezduyar, and R. Benney. Mesh moving techniques for fluid-
structure interactions with large displacements. Journal of Applied Me-
chanics, 70(1):58, 2003.

[80] A. D. Boer, M. V. Schoot, and H. Bijl. Mesh deformation based on radial
basis function interpolation. Computers & Structures, 85(11-14):784–795,
2007.

[81] T. Rendall and C. Allen. Efficient mesh motion using radial basis func-
tions with data reduction algorithms. Journal of Computational Physics,
228(17):6231–6249, 2009.

[82] Holger Wendland. Error estimates for interpolation by compactly sup-
ported radial basis functions of minimal degree. Journal of Approximation
Theory, 93(2):258–72, 1998.

126

http://glaros.dtc.umn.edu/gkhome/views/metis
http://glaros.dtc.umn.edu/gkhome/views/metis

[83] S. Jakobsson and O. Amoignon. Mesh deformation using radial basis func-
tions for gradient-based aerodynamic shape optimization. Computers and
Fluids, 36(6):1119–136, 2007.

[84] Software for cfd - pointwise. http://www.pointwise.com/index.shtml.
Accessed: 2016-12-10.

[85] G. N. Vanderplaats and S. R. Hansen. DOT Users Manual. Vanderplaats,
Miura & Associates, Inc, Goleta, California.

[86] B. Epstein, T. Rubin, and S. and Sé. Accurate multiblock navier-stokes
solver for complex aerodynamic configurations. AIAA Journal, 41(4):582–
594.

[87] F. Marconi, N. Siclary, G. Carpenter, and R. Chow. Comparison of tlns3d
computations with test data for a transport wing/simple body configura-
tion. AIAA paper, pages 94–2237.

127

http://www.pointwise.com/index.shtml

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Wing-Body Design and Optimization
	Review of Aerodynamic Optimization Using CFD
	Optimization Techniques
	Gradient Calculation
	Design Variables and Grid Motion
	Flow Solver

	Outline of Thesis

	Governing Equations
	3-D Euler Equations in Cartesian Coordinates
	3-D Euler Equations in Generalized Coordinates
	Non-Dimensionalization
	Spatial Discretization
	Van Leer Flux Splitting Method

	Monotonic Upstream-Centered Scheme Conservation Law
	Grid Topology and Boundary Conditions
	Symmetry BCs
	Wall (slip) BCs
	Far-field BCs

	Analytical Jacobian Evaluation

	Solution Strategy
	Newton Method
	Generalized Minimum Residual (GMRES)
	Newton-GMRES
	Preconditioning
	Left Preconditioned GMRES
	Right Preconditioned GMRES
	Left-Right Preconditioned GMRES
	Incomplete Lower Upper (ILU) Preconditioning

	Reordering
	Graph Theory
	Minimum Degree (MD) Ordering
	Reverse Cuthill-Mckee (RCM) Ordering
	Implementation of Reordering Algorithms

	Efficiency of flow solver

	Design Variables
	Design Variables Selection
	Non-Uniform Rational B-Splines (NURBS) Surfaces
	Design Variables on Body as NURBS Curves
	Design Variables as Wing Sweep Angles

	Grid Perturbation Strategy
	Algebraic Grid Perturbation Strategy
	Radial Basis Function Strategy
	Comparison of grid perturbation strategies

	Adjoint Method
	Evaluation of Discrete Gradients
	Direct Method Sensitivities
	Adjoint Method Sensitivities
	Finite Difference Method Sensitivities

	Optimization Tool

	Results
	Test Case
	Gradient Accuracy
	Optimization Results
	NURBS surface on wing
	Lift maximization case with drag and pitching moment constraints
	Drag minimization case with lift and pitching moment constraints
	Pitching moment minimization case with lift and drag constraints

	Body design variables
	Sweep angle design variables

	Conclusions
	Conclusion

	REFERENCES

