FORAMINIFERAL AND CALPIONELLID BIOSTRATIGRAPHY, MICROFACIES ANALYSES AND TECTONIC IMPLICATIONS OF THE UPPER JURASSIC – LOWER CRETACEOUS CARBONATE PLATFORM TO SLOPE SUCCESSIONS IN SİVRİHİSAR REGION (ESKİŞEHİR, NW TURKEY)

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERDAR GÖRKEM ATASOY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING

JANUARY 2017

Approval of the thesis:

FORAMINIFERAL AND CALPIONELLID BIOSTRATIGRAPHY, MICROFACIES ANALYSES AND TECTONIC IMPLICATIONS OF THE UPPER JURASSIC – LOWER CRETACEOUS CARBONATE PLATFORM TO SLOPE SUCCESSIONS IN SİVRİHİSAR REGION (ESKİŞEHİR, NW TURKEY)

submitted by SERDAR GÖRKEM ATASOY in partial fulfillment of the requirements for the degree of Master of Science in Geological Engineering Department, Middle East Technical University by,

Prof. Dr. Gülbin DURAL Dean, Graduate School of Natural and Applied Sciences	
Prof. Dr. Erdin BOZKURT Head of Department, Geological Engineering	
Prof. Dr. Demir ALTINER Supervisor, Geological Engineering Dept., METU	
Examining Committee Members:	
Prof. Dr. Bora ROJAY Geological Engineering Dept., METU	
Prof. Dr. Demir ALTINER Geological Engineering Dept., METU	
Assoc. Prof. Dr. İsmail Ömer YILMAZ Geological Engineering Dept., METU	
Assoc. Prof. Dr. Kaan SAYIT Geological Engineering Dept., METU	
Prof. Dr. Aral OKAY Geological Engineering Dept., İTU	

Date: 25.01.2017

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: Serdar Görkem Atasoy

Signature:

ABSTRACT

FORAMINIFERAL AND CALPIONELLID BIOSTRATIGRAPHY, MICROFACIES ANALYSES AND TECTONIC IMPLICATIONS OF THE UPPER JURASSIC – LOWER CRETACEOUS CARBONATE PLATFORM TO SLOPE SUCCESSIONS IN SİVRİHİSAR REGION (ESKİŞEHİR, NW TURKEY)

ATASOY, Serdar Görkem M.Sc., Department of Geological Engineering Supervisor: Prof. Dr. Demir ALTINER

January 2017, 256 pages

This study focuses on the biostratigraphy, microfacies analyses and the tectonic interpretation of an Upper Jurassic – Lower Cretaceous carbonate succession widely exposed in a tectonic klippe of the Sakarya Zone (Pontides), north of Sivrihisar region (Eskişehir). For this purpose two stratigraphic sections were measured (925 m thick in total) along the carbonate rocks that crop out north of the Dümrek Village.

According to the biozonation and the microfacies types, two coeval but dissimiliar depositional domains, separated by an overthrust, have been detected along the measured sections. The one on the southern part shows a slope to basin facies and is characterized by the Kimmeridgian – Berriasian Yosunlukbayırı Formation and the

overlying Valanginian Soğukçam Limestone. Within these deposits the following biozones were defined: Globuligerina oxfordiana - Mohlerina basiliensis Zone (Kimmeridgian), Crescentiella morronensis (Saccocoma subzone) Zone (Lower Tithonian), Protopeneroplis ultragranulata Zone (Upper Tithonian), Crassicollaria (massutiniana subzone) Zone (uppermost Tithonian), Calpionella (alpina, Remaniella and elliptica subzones) Zone (Lower Berriasian), Calpionellopsis (simplex and oblonga subzones) Zone (Upper Berriasian) and Calpionellites (darderi subzone) Zone (Lower Valanginian). The Jurassic - Cretaceous boundary is located at the base of the Calpionella Zone. This succession overthrusted from north to south by a thin slice of the Berriasian Yosunlukbayırı Formation and an overlying thicker slice consisting of the Kimmeridgian Günören Limestone which is a part of the Edremit - Bursa - Bilecik Carbonate Platform. Within the Günören Limestone, Labyrinthina mirabilis - Protopeneroplis striata (Kimmeridgian) Zone was recognized. A much thinner section, measured to the north of these successions, consists of the Yosunlukbayırı Formation of Early Berriasian age deposited on the slope and the basinal Soğukçam Limestone. The boundary of these two formations is probably tectonic.

If the positions of the studied sections with respect to the Edremit – Bursa – Bilecik Carbonate Platform is considered, the studied basin and slope facies should represent the southern platfrom margin and slope environmnets of this carbonate platform that faced an ocean to the south during the Jurassic – Cretaceous interval. The slope and basinal facies (the Yosunlukbayırı Formation and the Soğukçam Limestone) overthrusted by the shallow marine deposits (the Günören Limestone) in a region studied to the south of the main İzmir – Ankara – Erzincan (İAE) suture suggests an important disruption and shortening of the Edremit – Bursa – Bilecik Carbonate Platform margin and slope deposits probably related to the closure of the İAE ocean.

Keywords: Biostratigraphy, Jurassic – Cretaceous boundary, foraminifera, calpionellids, Edremit – Bursa – Bilecik Carbonate Platform, microfacies, Pontides

SİVRİHİSAR (ESKİŞEHİR, KB TÜRKİYE) BÖLGESİ ÜST JURA – ALT KRETASE KARBONAT PLATFORMU VE YAMAÇ İSTİFLERİNDE FORAMİNİFER VE KALPİONELLİD BİYOSTRATİGRAFİSİ, MİKROFASİYES ANALİZLERİ VE TEKTONİK ÇIKARIMLAR

ATASOY, Serdar Görkem Yüksek Lisans, Jeoloji Mühendisliği Bölümü Tez Yöneticisi: Prof. Dr. Demir Altıner

Ocak 2017, 256 sayfa

Bu çalışmanın amacı Sivrihisar (Eskişehir)'in kuzeyinde, Sakarya Zonu'na ait bir tektonik klipte yer alan Geç Jura – Erken Kretase yaşlı karbonat istifindeki birimlerin çökelme yaşlarının ayrıntılı şekilde belirlenmesi, mikrofasiyes evriminin ortaya konulması ve bu çökellerin Jura – Erken Kretase aralığında Sakarya Zonu üzerinde gelişen karbonat platform sistemindeki yerinin belirlenmesidir. Bu amaçla, Dümrek köyünün hemen kuzeyinde yüzeylenen karbonat istifleri boyunca toplam kalınlığı 925 m olan iki adet stratigrafik kesit ölçülmüş ve detaylı örnekleme yapılmıştır.

Elde edilen veriler doğrultusunda benzer yaş aralığında iki farklı çökelme ortamına ait kayaçların bindirme fayı dokanağı ile bir araya geldiği belirlenmiştir. Bunlardan güneyde bulunan kayaç dizilimi havza ve yamaç fasiyeslerini göstermekte olup,

Kimmericiyen - Berriyasiyen yaşlı Yosunlukbayırı Formasyonu ve üzerini örten Valanjiniyen yaşlı Soğukçam Kireçtaşı ile temsil edilmektedir. Bu çökellerde Globuligerina oxfordiana – Mohlerina basiliensis Zonu (Kimmericiyen), Crescentiella morronensis (Saccocoma alt zonu) Zonu (Alt Titoniyen), Protopeneroplis ultragranulata Zonu (Üst Titoniyen), Crassicollaria (massutiniana alt zonu) Zonu (en Üst Titoniyen), Calpionella (alpina, Remaniella ve elliptica alt zonları) Zonu (Alt Berriyasiyen), Calpionellopsis (simplex ve oblonga alt zonları) Zonu (Üst Berriyasiyen) ve *Calpionellites (darderi* alt zonu) Zonu (Alt Valanjiniyen) ayırtlanmış ve Jura - Kretase sınırı Calpionella Zonu'nun tabanı olarak belirlenmiştir. Bu istifin üstüne ise, araya Yosunlukbayırı Formasyonu'na ait yamaç fasiyesinde, Berriyasiyen yaşlı bir dilimi alarak ters fay dokanağı ile Kimmericiyen yaslı, tipik bir karbonat platform fasiyesi ile karakterize olan Günören Kirectası gelmektedir. Bu çökellerde Labyrinthina mirabilis - Protopeneroplis striata (Kimmericiyen) Zonu ayırtlanmıştır. Bu birimlerin kuzeyinde, daha kısa ek bir stratigrafik kesit boyunca örneklenen, üst yamaç fasiyesindeki, Erken Berriyasiyen yaşlı Yosunlukbayırı Formasyonu ile bu çökellerin üstünde muhtemelen bir tektonik dokanakla oturan Soğukçam Kireçtaşı bulunmaktadır.

Edremit – Bursa – Bilecik Karbonat Platfromunun, çalışma alanına göre konumu göz önüne alındığında, çalışılan havza ve yamaç çökellerinin, bu platformun güneyinde Jura – Kretase zaman aralığında bulunan bir okyanusa bakan ve bu platformdan beslenen şelf yamacı – havza ortamını temsil ettiği düşünülmektedir. Bu birimlerin üstüne bindiren sığ platform karbonatlarının varlığı, çalışma alanının İzmir – Ankara – Erzincan (İAE) kenet kuşağının güneyinde yer almış olması ile birlikte değerlendirildiğinde, Edremit – Bursa – Bilecik Karbonat Platformu kenar ve yamaç çökellerinin, muhtemelen İAE okyanusunun kapanmasına bağlı olarak önemli bir deformasyon ve kısalma gösterdiği anlaşılmaktadır.

Anahtar Kelimeler: Biyostratigrafi, Jura – Kretase sınırı, foraminifera, kalpionellidler, Edremit – Bursa – Bilecik Karbonat Platformu, mikrofasiyes, Pontid

To my family...

ACKNOWLEDGEMENTS

Foremost, I would like to express my special thanks to my supervisor Prof. Dr. Demir Altiner for his guidance, support, encouragement and patience throughout all phases of this thesis.

I would like to thank Prof. Dr. Sevinç Özkan Altıner for her valuable recommendations and her help with the literature of calpionellids.

I would like to express my special thanks to Prof. Dr. Aral Okay for his support in fieldwork and his generosity in providing some rare papers.

I would like to thank Assoc. Prof. Dr. İsmail Ömer Yılmaz for his fruitful discussions and encourangement.

I am very grateful to my dear friends Uygar Karabeyoğlu, Gamze Tanık and Ezgi Vardar, my dear friend and "team mate" Timur Ersöz and dear friend Uğur Balcı for their mental and technical support during my thesis study. It would have been impossible to finish field works without their support.

I would like to thank my friends and colleagues Okay Çimen and Alican Aktağ for their continous support and invaluable discussions on geology.

I would like to thank Mr. Orhan Karaman for the preparation of thin sections.

At last but not the least, I would like to give my sincere thanks to my parents.

TABLE OF CONTENTS

ABSTRACT	V
ÖZ	vii
ACKNOWLEDGEMENTS	х
TABLE OF CONTENTS	xi
LIST OF TABLES	xiv
LIST OF FIGURES	XV

CHAPTERS

1	. INTR	RODUCTION	1
	1.1.	Purpose and Scope	1
	1.2.	Geographical Setting	4
	1.3.	Methods of Study	5
	1.4. the Sa	Previous Works on the Upper Jurassic – Lower Cretaceous Carbonates akarya Zone	s of 5
	1.5.	Regional Geological Setting	17
2	. STRA	ATIGRAPHY	23
	2.1. L	ithostratigraphy	23
	2.2. B	iostratigraphy	38
	2.2.	1. Biozonation of the Slope to basin deposits	48
	2.2.	2. Platform, slope and basin depositional environments biozonation	60
3	. MIC	ROFACIES ANALYSES	63
	3.1. N	Icrofacies types and depositional environments	63
	3.2. S	lope to basin Facies	66
	3.2.	.1. MF 1, Peloidal, bioclastic packstone/ Bioclastic packstone	66
	3.2.	2. MF 2, Bioclastic mudstone	67

3.2.3.	MF 3, Bioclastic/ Calpionellid/ Radiolarian wackestone-packstone 71
3.2.4.	MF 4, Bioclastic, lithoclastic, peloidal / lithoclastic, peloidal packstone 72
3.2.5. grainsto	MF 5, Peloidal, intraclastic/ intraclastic, bioclastic rudstone to one/ packstone to grainstone
3.2.6.	MF 6, Bioclastic, lithoclastic floatstone/ rudstone
3.3. Platfo	orm Facies
3.3.1 grainsto	MF 7, Peloidal/ peloidal, intraclastic packstone/ poorly washed one with bioclasts
3.3.2	MF 8, Bioclastic mudstone/ wackestone80
3.3.3	MF 9, Intraclastic packstone (microbreccia)80
3.3.4	MF 10, Intraclastic rudstone (microbreccia)
4. MICROI	PALEONTOLOGY
4.1. Calpi	onellid Taxonomy90
4.2. Foran	ninifera Taxonomy114
4.3. Taxoi	nomy of Incertae sedis, annelids and crinoids140
5. DISCUS	SION AND CONCLUSION151
REFEREN	CES
APPENDIX	X A
APPENDIX	B
PLATE 1	
PLATE 2	
PLATE 3	
PLATE 4	
PLATE 5	
PLATE 6	
PLATE 7	
PLATE 8	
PLATE 9	
PLATE 1	0
PLATE 1	1
PLATE 12	2
PLATE 1	3

PLATE 14	
PLATE 15	
PLATE 16	
PLATE 17	
PLATE 18	
PLATE 19	
PLATE 20	
PLATE 21	
PLATE 22	
PLATE 23	
PLATE 24	

LIST OF TABLES

TABLES

Table 1. Upper Jurassic – Lower Cretaceous biozonations for the NW Turkey 16			
Table 2. Summary of the nomenclature modifications to Upper Jurassic – Lower			
Cretaceous chronostratigraphy			
Table 3. Comparision chart of the biostratigraphical zonations used in this study and			
the porposed scheme for the Sivrihisar region			
Table 4. Summary of the microfacies types and interprated depositional			
environments for the Sivrihisar successions. "Standard Microfacies Types" and			
"Facies Zone" columns indicate the equivalent of the "Microfacies Types" in terms			

LIST OF FIGURES

FIGURES

Figure 1. Geological map of the Bursa – Kütahya – Eskişehir region show	ving the
location of the study area (from Okay & Whitney, 2010)	2
Figure 2. Distribution of the Upper Jurassic – Lower Cretaceous Carbonate	s in the
Pontides (modified from Okay & Altıner, 2015).	3
Figure 3. Location map of the study area	4

Figure 10. Lithostratigraphy and biozones of the STG and SS measured sections...29

Figure 12. Stratigraphic range chart of the principal microfossils and the proposed biozonation scheme for the "slope to basin" and "platform" deposits. The fossil ranges for the upper levels of the "platform, slope and basin" deposits are not shown. Due to the leveling of the depositional environments (arrival of slope and basinal facies), the upper levels show similiar assamblages with the "slope to basin" successions. Thicker portions of the range lines indicate "acme" of the related taxon. For detailed documentation of the fossil content, please see the excel sheet given in the attached CD.

Figure 16. Photomicrographs of the bioclastic mudstone facies (MF 2). a, b) STG-2,f: foraminifera, bc: bioclast.68

Figure 24. Microfacies distribution of the southern platform margin and slope environments of the Edremit-Bursa-Bilecik Carbonate Platform during Kimmeridgian – Berriasian interval. There is no direct observation on the reefal parts of this platform, since the studied successions do not reveal such facies. The relationship of the studied formations are illustrated along a model with related facies photomicrographs. Additionally facies distribution of some important microfossils are shown. For microfacies types see Table 4. Note that fossil distributions in environment are time-dependent (e.g. calpionellids occur in latest Tithonian onward).

CHAPTER 1

INTRODUCTION

1.1. Purpose and Scope

The İzmir-Ankara-Erzincan (İAE) suture defines the limit between the two major tectonic units in Anatolia; namely the Pontides (to the north) and the Anatolide – Tauride Block (to the south) (Ketin, 1966; Şengör & Yılmaz, 1981; Okay & Tüysüz, 1999). An imbricated succession that includes rock assemblages belong both to the Pontides and the Anatolides - Taurides crops out north of the Sivrihisar (Eskişehir) region (Gautier, 1984; Okay, 1984; Monod et al., 1991; and Okay & Tüysüz, 1999) (Fig. 1). Within this unit, a fault-bounded sequence of the Sakarya Zone has been defined as a klippe by Okay and Tüysüz (1999), resting on the blueschists and peridotites of the Tavşanlı Zone. Although there are several studies which merely or partly focused on the geology of this area (Kulaksız, 1981; Gautier, 1984; Monod et al., 1991; Okay & Tüysüz, 1999), the Upper Jurassic – Lower Cretaceous carbonate successions of this klippe has not been studied in detail.

The purpose of this study is to make a detailed characterization of these carbonate successions of the Sivrihisar Area along two measured stratigraphic sections (1 main and 1 supporter section). This thesis includes (1) a biozonation study mainly based on foraminifera and calpionellids, (2) microfacies analyses and interpretation of the facies change through time, (3) comparision of these facies with well-known carbonate successions of the northwestern Turkey and interpretation of the place and importance of these deposits within the carbonate platform system that developed on the Sakarya Zone during the Jurassic - Early Cretaceous interval and (4) micropaleontological analyses with detailed documentation of the observed fossil groups.

Figure 1. Geological map of the Bursa - Kütahya - Eskişehir region showing the location of the study area (from Okay & Whitney, 2010).

This study also includes the delineation of the Jurassic - Cretaceous boundary by calpionellids in a slope environment that has both its own advantages (providing secondary control on the pelagic calpionelllid biostratigraphy with fossil groups synchronously derived from the platform margin) and disadvantages (distrubance of the continuous pelagic deposition by calciturbiditic intercalations) for precise determination.

The Upper Jurassic - Lower Cretaceous (Kimmeridgian – Hauterivian) carbonate outcrops of the Sakarya Zone have a rather strange facies distribution that successions very close to the İAE suture still show shallow marine characteristics, like the ones in the southern parts of the Bursa region (Fig.2; Altıner et al., 1991; Okay & Tüysüz, 1999). This gives an impression that the slope and deep marine successions are missing or eroded (Okay & Tüysüz, 1999) except the intervening trough successions (Forquin, 1975; Toker, 1976; Saner, 1980; Yılmaz et al., 1981; Önal et al., 1988; Altıner et al., 1991; Yılmaz et al., 2016) and the successions in the

southern part of the eastern Pontides (Burşuk, 1981, 1982; Rojay, 1985). Another contribution of this study is the discovery of slope deposits thrusted by coeval shallow marine platform carbonates on a tectonic klippe situated 50 km south of the main İAE suture trace, suggesting important distruption and shortening related to the closure of the İzmir – Ankara - Erzincan ocean.

1.2. Geographical Setting

The study area is located near Dümrek Village which is nearly 14 km north of Sivrihisar (Eskişehir) (Fig. 3) situated on the toporaphic map of Ankara -İ27–d4 (1/25000 scale). The study area can be reached from the Ankara – Eskişehir main road by making a turn at the Mihallıççık – Yunus Emre road separation near the Nasrettin Hoca Village (Fig.3). The studied sections are located to the north of the Dümrek Village (on the Dümrek Tepe). The bottom and top coordinates are 36N 372471/ 4384153 and 36 N 372862/ 4384570 for the STG measured section and 36 N 375033/ 4384913 and 36N 375097/ 4384966 for the SS section.

Figure 3. Location map of the study area.

1.3. Methods of Study

This study has two parts; field and laboratory works. Two stratigraphic sections (STG and SS sections) were measured; 173 samples from 748 m thick STG section and 27 samples from 177 m thick SS section were collected. During field logging, in addition to the observations made on the lithostratigraphic properties of rocks (color, lithology, bed thickness etc.), microfacies and fossil content were constantly checked with a hand-lense to detect facies changes.

200 thin sections were prepared in the thin section preparation laboratory of the Department of Geoloical Engineering, METU for micropaleontological and microfacies analyses. Fossil content and constituent composition of each sample were documented and in the light of obtained data, microfacies and depositional environments were determined. For microfacies analyses, the revised (by Embry & Klovan, 1971) version of Dunham's (1962) carbonate rock classification and the facies analyses methodology of Flügel (2004) were followed. For the biozonation, variety of fossil groups (foraminifera, calpionellids, microproblematica (*incertea sedis*), crinoids etc.) were used. The zonal boundaries were positioned between the two closest samples with different fossil content. The chronostratigraphic position of the studied successions was determined by the correlation of the established biozonations with the previously published schemes. For percentage estimations of the rock constituents and the relative abundance estimation of the fossil contents, visual comparision charts were used (Baccelle & Bosellini, 1965).

1.4. Previous Works on the Upper Jurassic – Lower Cretaceous Carbonates of the Sakarya Zone

The Upper Jurassic – Lower Cretaceous carbonate rocks of the Sakarya Zone (Fig.2) are known as the Bilecik Limestone in the Western Pontides (Granit & Tintant, 1960; Altınlı, 1973a,b; Okay et al., 1990; Altıner et al., 1991). They have been studied and named as the İnaltı Carbonates in the northern part of the Central Pontides (Ketin & Gümüş, 1963; Saner et al., 1980; Yılmaz & Tüysüz, 1984; Tüysüz et al., 1990;

Derman & Sayılı, 1995) and as the Carbonates of Amasya Group (Rojay, 1995; Rojay & Altıner, 1998) in the southern part of the Central Pontides. Their coeval carbonates in the Eastern Pontides are known as the Berdiga Carbonates (Pelin, 1977; Taslı, 1984; Rojay, 1985; Kırmacı, 1992).

Figure 4 illustrates a summary of the informally and formally named lithologic units in the NW Turkey. The nomenclature revision of the Jurassic - Lower Cretaceous successions was made by Altiner et al. (1991) (Fig.4). Regarding the Jurassic -Lower Cretaceous interval, the first study that followed lithostratigraphic nomenclature standards was carried out by Granit and Tintant (1960) who differentiated the Lower Jurassic shallow marine Bayırköy Sandstone and the overlying shallow marine Yediler Limestone and the Bilecik Limestone. Following studies (Altınlı, 1965a, b; Eroskay, 1965; Altınlı et al. 1970; Altınlı & Saner, 1971; Altınlı & Yetis, 1972) used the same lithostratigraphic units. Altıntlı (1973a, b) introduced the pelagic Lower Cretaceous Soğukçam Limestone, and the Lower Jurassic Kapıkaya Formation which is the lateral equivalent of the Bayırköy Sandstone. For the Bursa-Bilecik region, previously defined Bilecik Limestone has been raised to a group rank and two formations have been differentiated; namely, the Taşçıbayırı Formation and the Günören Limestone, by Altıner et al. (1991). This Bilecik Group was previously studied under the name of Alancık Formation in the Biga Peninsula by Bingöl et al. (1973) and was replaced by Bilecik Group (Altınlı, 1965a, b) due to priority rules. For the underlying clastic rocks, Halilar Group was introduced and the previously defined Halılar Formation of Rushensky et al. (1980) was divided into two distinct formations; namely, Bağcağız and Sakarkaya Formations in the Biga (Edremit) regions (Altiner et al., 1991). The Middle Jurassic volcano-sedimentary units in the Mudurnu - Nallıhan - Beypazarı region was previously named as the Mudurnu Formation by Saner (1980) and the overlying Upper Jurassic – Lower Cretaceous pelagic deposits were defined as the Soğukçam Limestone (Saner, 1980; Yılmaz et al., 1981). While the Mudurnu Formation name was kept by Altiner et al. (1991), three distinct units were introduced for the overlying pelagic successions. For the detrital parts including olistostromes, volcanics and carbonate turbidites the Kurcalıkdere and the Yosunlukbayırı Formations were defined and for the overlying Lower Cretaceous porcellaneous and

Figure 4. Summary of the informally and formally established lithologic units in the NW Turkey and their correlations. This chart does not follow a chronological order. Studies within the same regions are grouped together and indicated with the same colour at the bottom "location line". Their revised equivalent nomenclatures are highlighted with the same colours and given under the column "Altiner et al. (1991)". Six sections from Mudurnu, Haymana and Eskişehir regions were added and correlated to previously established successions. Vertical hatching indicates time gap (modified from Altiner et al. 1991).

Figure 5. Callovian – Aptian tectono-stratigraphic reconstruction of the southern part of the NW Turkey (simplified from Koçyiğit et al., 1991).

argillaceous successions, Soğukçam Limestone formation name has been adopted. For the Aktaş – Çerkeş region, Dedeninseti and Aktaş Formations were introduced for the pelagic carbonates intercalated with volcanics and the overlying shallow water carbonates which overlies the Mudurnu Formation, respectively (Altıner et al., 1991).

The Edremit – Balya sequence is characterized by an Upper Triassic – Lower Cretaceous continuous succession (Altıner et al., 1991). The Upper Triassic – Lower Dogger Halılar Group is characterized by clastics (Bağcağız Formation: sandstone and shale; Sakarkaya Formation: sandstone and conglomerate) and overlying Upper Dogger – Lower Cretaceous Bilecik Group is composed of carbonates. This Halılar Group was interpreted as the record of the remnant Karakaya Basin by Altıner et al.(1991) and Koçyiğit et al. (1991). On the contrary, Okay et al. (1990) defined a succession similiar to the Bilecik region for the Biga Peninsula. They differentiated three Mesozoic formations which unconformably overlie the Karakaya Complex; namely, the Bayırköy Formation, the Bilecik Limestone and the Vezirhan Formation (Fig.4). Although the age of the Bayırköy Formation in the Biga Peninsula has not been independently determined by Okay et al. (1990), they suggested a presence of an unconformity between the Bayırköy Formation and the Bilecik Limestone in the Biga Peninsula similiar to the Bursa-Bilecik succession of Altıner et al. (1991) (Fig.4).

The Bursa – Bilecik sequence which has the type locality of the Bilecik Group commences with the Liassic (Hettangian – Pliensbachian) clastics of the Bayırköy Formation (including Rosso Ammonitico condensed lenses) overlying the basement rocks of pre-Triassic metamorphics or Triassic Karakaya tectono-stratigraphic unit unconformably and represents the Liassic transgression over the Karakaya Orogen (Görür et al., 1983; Saner, 1980; Altıner et al., 1991; Koçyiğit et al., 1991, Koçyiğit and Altıner, 2002). These rocks are unconformably overlain by the Upper Dogger – Lower Cretaceous shallow marine and pelagic carbonates of the Bilecik Group and the Soğukçam Limestone (Altıner et al., 1991). The Bilecik Group has two formations; namely, the Taşçıbayırı Formation and the Günören Limestone. The Callovian – Kimmeridgian Taşçıbayırı Formation overlies the Bayırköy Formation

unconformably and is composed of cherty and nodular limestones. The uppermost levels of the Taşçıbayırı Formation contains of Tubiphytes morronensis as bioclasts transported from high-energy environments, indicating approaching shallow marine conditions (Günören Limestone) (Altıner et al., 1991). The pelagic character of the Taşçıbayırı Formation (pelltic, ooidal packestone and grainstone) comes from the pelagic bioclasts of ammonites, Globochaete and Globuligerina that form the cortex of those "oolites" and Altiner et al. (1991) interpreted these facies as the pelagic "oolites" and pellets deposited over a continental plateau (Jenkyns, 1972; Jenkyns, 1986). The conformably overlying shallow water carbonates of the Günören Limestone has (1) thick bedded to massive, white - grey, reefal carbonates (boundstones and grainstones rich in scleractinian corals, Tubiphytes, echinoids, bryozoa, *Lithocodium* and foraminifers), (2) poorly bedded, grey, inner platform or peritidal carbonates (miliolid - rich dismicritic, intraclastic, oncolitic, micritic limestone, dascylad algal wackestones, pelmicrites with birdseyes, stromatolitic bindstones) and (3) medium to thick – bedded low open shore facies (wackestones – packstones and grainstones with abundant crinoid remains and bryozoa). Depending on the position of the studied outcrops within the Bilecik carbonate platform, several or whole types of these Günören Limestone facies can be observed. The studied fossil content, mainly dominated by foraminifera suggests a Kimmeridgian – Early Hauterivian age (Altiner, 1991). Depending on the paleo-topography, the Günören Limestone, in the Bursa – Bilecik area, was diachronically overlain by porcelaneous, planktonic foraminifera- and nannoconid-bearing pelagic Soğukçam Limestone through an unconformity surface of varying hiatus, illustrating iron-oxide, neptunian dykes and travertine occurences (Altiner et al., 1991). This abrupt facies changes was interpreted as a platform drowning event (Saner, 1980; Sengör & Yılmaz, 1981; Görür et al. 1983; Altıner et al., 1991).

The Mudurnu – Nallihan sequence commences with the volcano - clastic Mudurnu Formation which is composed of tuff, lime-rich tuffaceous lithology and volcanogenic litharenites in the lower parts and highly altered spilitic basalt in the upper parts (Saner, 1980; Altiner et al., 1991). Depending on the presence of a few unidentified foraminifers found in the limy tuffaceous levels, marine environment was interpreted for this formation by Altiner et al., (1991). Regarding its basement rocks, since they are not exposed in the area, there are two hypothesis: (1) they may be similiar with the Bilecik - Bursa sequence and the transgressive Bayırköy Formation unconformably overlies the Karakaya tectono-stratigraphic unit or any other pre-Liassic basement rocks and the overlying volcanics of the Mudurnu Formation represents the rifting of the Mudurnu - Nallihan trough or (2) the transgression probably had started in pre-Liassic times and deep marine deposits were laid down during Liassic as the time-equivalent of the Bayırköy Formation. The Mudurnu Formation conformably succeded these rocks, forming a continuous succession that resembles the lower parts of the Halılar – Edremit sequence (Saner, 1980; Altiner et al., 1991). For the first possibility, the Mudurnu Formation must be younger than the Bayırköy Formation, and older than the overlying Callovian pelagic successions of the Kurcalikdere Formation. Thus roughly a Dogger age can be assigned for this formation (Altıner et al., 1991; Figs. 4 & 5). The Kurcalıkdere Formation conformably overlies the Mudurnu Formation in this region and starts with radiolaria – rich wackestones and chert nodules and continues with red jasper, green tuff, sandstone levels (with abundant belemnites), bivalve - rich pelletic mudstones, breccia levels (containing clasts of Tubiphytes-rich boundstones and grainstones, packstones with pelagic "oolite" and mudstones) and spilitic basalt levels (Altiner et al., 1991). This succession includes olistostrome levels containing abundant limestone blocks in boundstone and foraminiferal grainstone textures, probably derived from the Günören Limestone (Altıner et al., 1991). A Callovian age has been assigned to the lowermost parts of the formation based on belemnites (Doyle & Mariotti, 1991). Microfossils from the pebbles of the olistostromes indicated a Kimmeridgian age for the upper part of the unit (Altiner et al., 1991). This formation was interpreted as the transitional facies between the Mudurnu Formation and the pelagic deposits of the Yosunlukbayırı Formation and the Soğukçam Limestone (Saner, 1980; Altıner et al., 1991). The Kurcalıkdere Formation is conformably followed by thin- to medium- bedded, grey-white argillaceous limestones, calpionellid packestones and brown calpionellid packestones with intercalations of mudstones and breccioid limestones (containing coral, echinoid and limestone lithoclasts) of the Yosunlukbayırı Formation (Altiner et al., 1991). The calpionellids, foraminifera, algae and incertae sedis associations indicated a Tithonian – Valanginian age for the Yosunlukbayırı Formation (Altıner, 1991; Altıner & Özkan, 1991; Özkan, 1993a). This formation, with common calciturbiditic depositions punctuated with breccia levels and slump structures, was interpreted as the deposits laid down in an actively subsiding basin fed by material derived from the surrounding shallow marine carbonates (Bursa – Bilecik platform and Aktaş-Sekinindoruk High) (Saner, 1980; Varol & Kazancı, 1981; Altıner et al., 1991). The overlying medium-bedded cream colored limestones of the Soğukçam Limestone starts with mudstone and wackestone facies and contains echinoid fragments, radiolaria, siliceous sponge spicules, nannoconids, aptychi, calpionellids and planktonic foraminifera. It continues upwards with alternation of marls and limestones (Altıner et al., 1991). The studied microfossil associations suggest an age ranging from Late Tithonian to Aptian (Altıner, 1991; Altıner & Özkan, 1991; Özkan, 1993a). This formation represents the calm pelagic sedimentation in basinal conditions (Saner, 1980; Altıner et al., 1991).

The main difference of the Aktas - Cerkes sequence from the Bursa-Bilecik and Mudurnu-Nallihan sequences is the presence of two new rock formations, depicting a different paleogeographic domain in Northwestern Anatolia. The Dedeninseti Formation which conformably overlies the Mudurnu Formation and shows a tranisiton with the Yosunlukbayırı Formation (Fig. 4). The Dedeninseti Formation, the time-equivalent of the Tascibayiri Formation, starts with ammonite-rich nodular limestones and continues with thin- to medium-bedded, sometimes dolomitized cherty dark limestones with pyroclastic levels (Altiner et al. 1991). In addition to ammonites, aptychi and crinoids, microfossils suggest a Callovian - Early Kimmeridgian interval (Altıner, 1991). The facies of this formation again indicates a pelagic plateu type environment quite similiar with the Taşçıbayırı Formation (Altiner et al., 1991). It is conformably overlain by the shallow marine carbonates of the Aktas Formation which is characterized by middle to thick-bedded, monotonous, cream or pinkish bioclastic limestones in its lower levels. This formation continues upwards with medium to thick-bedded, cream oncolitic, bioclastic and algae-bearing limestones (Altiner et al., 1991). Fossils indicate a Kimmeridgian to Valanginian interval for the Aktas Formation (Altiner, 1991). The shallow marine platform carbonates of the Aktas Formation are comparable with the Günören Limestone of the Bursa-Bilecik sequence both of whom supplied materials to the intervening Mudurnu-Göynük trough, and fed the Yosunlukbayırı Formation.

The relationship of the mentioned formations is summarized in Figure 5 on a WSW – ESE section trough the southern part of the NW Turkey for the Callovian – Aptian interval without emphasis on the member level subdivisions within formations. The tectonostratigraphic interpretation of those deposits are summarized in the studies of Saner (1980), Şengör and Yılmaz (1981), Görür et al. (1983), Okay et al. (1990), Altıner et al. (1991), Koçyiğit et al. (1991) and Koçyiğit and Altıner (2002). Liassic transgression started with widespread shallow marine clastic deposition of the Bayırköy Formation that also has condensed Rosso Ammonitico lenses over the pre-Liassic basement rocks of Karakaya orogeny or any other crystalline basement. In contrast to Okay et al. (1990), Altiner et al. (1991) suggests a continuous succession in the Edremit area from Upper Triassic to Lias (Halılar Group) without any gap. Then a part of the platform was emerged, except may be the Edremit area a Toarcian - Bathonian gap occured in the Bursa-Bilecik region. Aalenian onward the onset of a rifting event gave rise to "platform - trough" differentiation along the platform and this was recorded as the formation of basalt and volcanoclastic layers in the Mudurnu Formation. An oceanic plateau – type pelagic sedimentation took place over the platform diachronocially (Late Bajocian onward in the westernmost parts and Callovian onward in the Bursa-Bilecik area), represented by the Taşçıbayırı and the Dedeninseti Formations, while the Mudurnu area recieved olistostromal and calciturbiditic deep marine sedimentation with volcanoclastic levels indicating trough development between two paleohighs (Biga - Bursa - Bilecik Paltfrom and Aktaş – Sekinindoruk High). These formations were regressively covered by the Günören Limestone and the Aktaş Formation which represent shallow marine carbonate deposition that provide materials to surrounding troughs, feeding the calciturbiditic Yosunlukbayırı Formation which has a transitional relation with the overlying pelagic Soğukçam Limestone (Fig. 5). The top of the carbonate platform represented by the Günören Limestone is characterized by a rapid facies change caused by a carbonate platform drowning event in the Hauterivian times (Fig. 5)

This drowning event occured as early the as mid-Berriasian time in the Haymana region (Okay & Altıner, 2015) which displays an active-platform margin character quite different than the successions of the Edremit-Bursa-Bilecik Platform (Fig. 4).

Yılmaz et al. (2016) introduced a succession from the Sarıcakaya (Eskişehir) that shows an intercalation of the Günören Limestone with the Yosunlukbayırı Formation (Fig. 4). Regarding the relatively poorly - known carbonate succession of the Sivrihisar (Eskişehir) area, Kulaksız (1981) defined a succession that starts with the "Gelinkayası" Formation which consists of Permo – Carboniferous limestone blocks, metagraywacke, quartz schist, metamorphic limestones and metadiabase and the unconformably overlying Zeyköy Formation characterized by conglomerate and sandstone at the bottom and grey to cream coloured, commonly massive, slightly recrystallized limestone which is poor in fossils. The Zeyköy Formation is quite similiar to the Bursa-Bilecik succession defined by Altiner et al. (1991) (Fig.4). Weingart (1954) assigned Late Cretaceous age for these limestones however Kulaksız (1981) interpreted the age of the Zeyköy Formation as Late Jurassic based on the microfossils including Protopeneroplis sp., P. striata, Pseudocyclammina sp., Trocholina sp., Conicospirillina sp., Labyrinthina sp., Nautiloculina sp. Gautier (1984) carried out a doctoral thesis in the Sivrihisar region to solve the relationships between the units of the Pontides and the Anatolide-Tauride in this area. He defined a 800 m thick transgressive cover rocks ("La transgression Jurassique: Le calcaire de Zey") that overlies unconformably the Kızılcaören Formation with argillaceous schists, volcanics and greywackes with Permo - Carboniferous limestone blocks. The cover rocks are composed of basal clastics and a limetone succession ("Le détrique de base" and "Le calcaire de Zey"). The Upper Dogger - Lower Malm carbonates are high energy, neritic limestones ("calcaire blanc zoogene de Zey"). The Upper Malm is represented by a red breccia interpreted as the record of the onset of platform collapse ("breche rouge de Dümrek") and the Lower Cretaceous is composed of white pelagic limestones ("facies pélagique de Dümrek") that has mudstone facies with calpionellids and radiolarians (Gautier, 1984). For the neritic limestones; packstones, pelloidal micrites and bioclastic grainstone facies with Protopeneroplis striata, Thaumatoporella sp., Lenticulina sp., Pseudocyclammina sp., Cladocoropsis sp., corals, algae, gastropods were described. Dümrek breccia succession was defined as the intercalations of white cabonates in ooidal, bioclastic grainstone and the red breccia with *Trocholina* sp., echinoids, gastropods algae and calpionellid (within a limited level) content (Gautier, 1984). The overlying pelagic mudstones has *Calpionellopsis simplex, Calpionellopsis* sp., *Cps. oblonga, Tintinopsella longa, T. carpathica, Calpionella alpina* and radiolaria fossils (Gautier, 1984). The Yeni Pınar Sandstone has a fault contact with the underlying succession and has *Globoturuncana* sp, sponge spicules and algae indicating Late Cretaceous age (Gautier, 1984). Monod et al. (1991), whose study is mainly based on the previous work of Gautier (1984), came to the same conclusion about these carbonates. Okay and Tüysüz (1999) interpreted the underlying greywackes and shales with blocks of basalt and Carboniferous, Permian and Middle Triassic limestones as the Karakaya Complex. The overlying basal clastics and limestone succession was accepted as the Bilecik Group of the western Sakarya Zone (Okay & Tüysüz, 1999).

Previous works before 1990s generally gave documentation of the fossil contents to characterize the lithologic units and to roughly determine the age span without any intention of establishing a biostratigratigraphic framework (e.g. Öztürk, 1968; Fourquin, 1975; Toker, 1976; Varol & Kazancı, 1981; Kulaksız, 1981; Gautier, 1984; Genç, 1986; Genç et al., 1986; Önal et al., 1988). Tunç (1991) defined six calpionellid zones from the Aktaş (Kızılcahamam) namely; Crassicollaria intermedia, Calpionella alpina, C. ellitica, Calpionellopsis simplex – Cs. oblonga, Calpionellites darderi, Tintinopsella carpathica. In this study, fossils were poorly figured and the biozone boundaries were tentatively placed. The most comprehensive biozonation study was carried out by Altiner (1991). This biozonation, mainly based on the benthic and planktonic foraminifera, is applicable both for the shallow marine and the basin environments due to the wide environment tolerance of the used taxa and their easily transportable nature, e.g. Tubiphytes, Protopeneroplis, Montsalevia and Meandrospira. Globuligerina oxfordiana, Montsalevia salevensis, and Meandrospira favrei zones were introduced for the first time and the last one was used as the link between the benthic zonations and the overlying planktonic zones of basinal associations (Table 1). These zones were calibrated with ammonites (Cope, 1991), belemnites (Doyle & Mariotti, 1991) and calpionellids (Altıner & Özkan,

1991) (Table 1). Altıner and Özkan (1991) carried out callpionellid biozonation study and differentiated A – E zones of the Vocontian Trough, SE France (Remane, 1974, 1985) and introduced the F Zone defined between the successive last appearances of *Calpionellites darderi* and *Tintinopsella carpathica*. This biostratigraphic distribution of *T. carpathica* was previously observed by Trejo (1980) but it was not described as a distinct zone. Fiorentino (1991) studied the nannofossil stratigraphy of the Soğukçam Limestone but as a result of the poor preservation conditions of the key taxa, it was not possible to define the biohorizones precisely. Özkan (1993) established the calcareous nannofossil framework of the NW Turkey from the Yosunlukbayırı Formation and the Soğukçam Limestone for the Kimmeridgian-Valanginian interval, then Özkan-Altıner (1996) extended the biozonation by including Valanginian – Aptian interval (Table 1).

	Altıner, 1991		Altıner & Özkan, 1991	Özkan, 1993; Özkan-Altıner,
AGE	Microfossil Zonation		Calpionellid Zonation	Calcareous Nannofossil Zonation
	Globigerin	Globigerinelloides algerianus		Rhagodiscus angustus
APTIAN	Hedbergella delrioensis - Hed. planispira - Leupoldina - Globigerinelloides			Chiastozygus litterariu
BARREMIAN	Hedbergella sigali			Micrantholithus hoschulzii
				Lithraphidites bollii
HAUTERIVIAN	Globuligerina hoterivica			
	Maandroopiya fayrai]	Calcicalathina oblongata
	Montsalevia salevensis		F	
VALANGINIAN			E	-
BERRIASIAN		Haplophragmoides joukowskyi	D 2 1 C	Nannoconus steinmanii
	Protopenero	plis trochangulata	Δ ³	-
TITHONIAN	Tubiphytes	Saccocoma	Chitinoidella	Microstaurus chiastiu
KIMMERIDGIAN	morronensis	Mesoendothyra izumiana - Alveosepta - Labyrinthina - Protopenoroplis striata		mexicana
OXFORDIAN	Globuligerina gr. oxfordiana			
CALLOVIAN				

Table 1. Upper Jurassic – Lower Cretaceous biozonations for the NW Turkey.

1.5. Regional Geological Setting

The mountain belt of northern Turkey has been classified as a part of the Pontide tectonic unit since the earlier works of Naumann (1896), Argand (1924), Staub (1924, 1928), Seidlitz (1931) and Kober (1931, 1942). These studies suggest a division of the belts from north to south as "Pontides", "Zone intermediaire" and "Taurides". Pontides were considered as the eastern continuation of Alpides. Arni (1939) further introduced more tectonic subdivisions for the southeastern Anatolia and proposed a classification of the tectonic units from north to south as; the "Pontides", "Anatolides", "Taurides", "Iranides" and "Plis bordiers". Following this study, Blumenthal (1946) and Egeran (1947) incorporated more divisions to the original classification of Arni (1939). As pointed out by Ketin (1959), these previous studies based their conclusions mainly on the stratigraphic successions and magmatic characteristics of the units. Ketin (1959) considered orogenic processes as the main criteria for his classification and defined the Pontide unit (including northern Anatolia mountain belts, Marmara basin, Biga and Karaburun peninsulas) as the oldest mountain belt of Turkey displaying Caledonian and Hercynian orogenic imprints. In 1966, Ketin revised his classification and redrawn the boundaries of the tectonic units by considering the ophiolite belt distributions additionally in his maps.

The first modern tectonic approach to the geology of Turkey came from Şengör and Yılmaz (1981). They analysed and modeled the tectonic evolution of Turkey within the framework of the Tethyside tectonic history. In their model to account for the closure of the westward narrowing Tethys ocean between Gondwana and Laurasia (Şengör, 1979) southward subduction of Paleotethys beneath the northern margin of Gondwanaland was proposed. This resulted in back-arc spreading and isolation of a Cimmerian Continent during Late Triassic and disintegration of that continent behind a Paleotethyan arc during Late Triassic – Early Jurassic. Cimmerian Continent descendent continental fragments accreted to the southern margin of Laurasia diachronically through Late Jurassic (closure of Paleotethys) to Middle Miocene (closure of Northern Neotethys). Şengör and Yılmaz (1981)'s model divided Pontides into two tectonic units; namely, the Rhodope - Pontide Fragment and the Sakarya Continent and indicated Gondwanaland origin for the Sakarya Continent and

western part of the Rhodope - Pontides Fragment. Görür et al. (1983) interpreted facies differentiation of the Lias cover of Pontides as the evidence of block-faulting related to the rifting of the northern branch of Neotethys. Sengör et al. (1984) tried to explain the tectonic evolution of the Mediterranean Cimmerides that placed Turkey within the larger framework of the Cimmeride orogenic system (Sengör, 1984) and retained the Gondwana origin for the Pontides within which the Istanbul Nappe was also differentiated additional to the Sakarya Continent and the Rhodope-Pontide Fragment. Similiar interpretation also came from Robertson and Dixon (1984) who reviewed all previously proposed models and while assuming a Gondwana origin for the Sakarya Continent, they placed the Rhodope-Pontide Fragment to the southern margin of Laurasia and Paleotethys to the north of the Sakarya Continent for Permian - Triassic interval. Sengör et al. (1988), which is one of the pioneering study that incorporates paleobioprovinces of important taxa (especially foraminifera) for delimination of tectonic units, reviewed the Tethyside superorogenic complex. This paper again speculated similiar evolution for the Turkish segment of the Tethyside collage as in the original 1981 model.

Okay (1984 and 1986) introduced Sakarya Zone that grouped the Sakarya Continent of Şengör and Yılmaz (1981) and the Central and the Eastern Pontides based on the recognition of that the Karakaya Complex (Bingöl et al., 1973; Tekeli, 1981; Okay, 2000; Okay and Göncüoğlu, 2004) forms the pre-Jurassic basement of stratigraphically similiar Mesozoic and younger cover rocks. The Pontides was divided into 3 major tectonic units; namely, the Istranca Massif, Istanbul Zone and Sakarya Zone by Okay (1989). Following the definition of the Tavşanlı Zone (Okay, 1984; 1986) in the northenmost part of the Anatolides in the west, Okay and Siyako (1991) have shifted the position of the İzmir-Ankara suture about 40 km further north by introducing another unit within the Anatolides, the Bornova Flysch Zone situated north of the Tavşanlı Zone. By this revision the extent of the Sakarya Zone of the Pontides in the west has been limited.

Based on the comprehensive study that revised the Jurassic – Lower Cretaceous stratigraphy of the southern part of the northwestern Turkey (nearly within the limit of Şengör and Yılmaz (1981)'s Sakarya Continent), Altıner et al. (1991) and
Koçyiğit et al. (1991) proposed a tectonic model for the isolation of the "Sakarya Continent" during Jurassic, and indicated again a Gondwanaland origin for the Sakarya Continent. The boundary of the Istanbul and the Sakarya Zone was revised in the light of Late Cretaceous opening of the Black Sea by Okay et al. (1994). Okay et al. (1996) defined the Sakarya Zone as the "Hercynian fragment with Paleotethyan active-margin accretionary units" and proposed Laurasian affinity for this unit as previously implied for the Pontides by Biju-Duval et al. (1977).

Göncüoğlu et al. (1997) classified the tectonic units of Turkey in terms of terrane concept and divided Pontides into four terranes; the North Anatolian Ophiolite Belt, Sakarya Composite Terrane, Intrapontide Ophiolite Belt and Istranca/ Istanbul Terranes. Their Sakarya Composite Terrane nearly corresponds to the Sakarya Zone of Okay (1986; 1986). Okay & Tüysüz (1999) reviewed Tethyan sutures of Turkey and divided Pontides into three tectonic units; the Strandja, Istanbul and Sakarya Zones. They further proposed that the İzmir - Ankara - Erzincan suture represents both the Paleo- and Neo-Tethyan sutures and indicated a Laurasian affinity for the Sakarya Zone that had faced Paleotethys (Carboniferous to Triassic) and Neotethys (Triassic to Cretaceous) in the south. Paleontological evidence for that interpretation came from Altiner et al. (2000) who studied the Late Permian biofacies belts (Southern and Northern Biofacies Belts) and concluded that allochthonous limestone blocks distributed within the Karakaya Complex have northern biofacies belt characteristics and grouped the Upper Permian limestone blocks of the Karakaya Complex and the Bolkar Dağı Unit of Özgül (1976) in a single biofacies belt and rejected Gondwana origin for the Sakarya Continent (or Sakarya Zone). Yılmaz et al. (2000) correlated the Sakarya Zone with Lesser Caucasus and extended it further east. Koçyiğit and Altıner (2002) extended their previous study on the Jurassic -Lower Cretaceous successions of the northwestern Turkey (Koçyiğit et al. 1991) further east by including sections from the eastern Pontides and differentiated platforms and basins along the northern Turkey. They again interpreted these cover rocks of the Pontides as the rifting infill of the Northern Neo-Tethys (Sengör and Yılmaz, 1981), suggesting Gondwana origin for the Sakarya Zone.

More recently Okay et al. (2006), Okay et al. (2008) and Okay and Nikishin (2015) differentiated Baltica (East European Platform, EEP) and accreted terranes (Avalonia and Armorica type terranes with Rheic suture between them) within circum-Black Sea region during Paleozoic based on the type of the basement rocks. By comparing Variscan terranes of the central and western Europe (situated between Laurasia and Gondwana) with the terranes bordering the southern margin of Laurasia in the Black Sea region for Paleozoic evolution, Armorica terrane type (accreted to EEP during the Carboniferous), characterized by Carboniferous plutonism and high - temperature metamorphism and Paleozoic succession of which are metamorphosed or not present, has been interpreted for the Greater and Lesser Caucasus, the Strandja Massif and the Sakarya Zone blocks; while Avalonia type (accreted to EEP during the Early Paleozoic), characterized by a Late Neoproterozoic granitic basement overlain by a Paleozoic sedimentary sequences of Ordovician to Carboniferous age, has been reserved for the Moesia, Dobrugea, Istanbul terrane and probably a part of the Scythian Platform. Although the nature of the contact of Istanbul and Sakarya terranes have not been fully understood since present configuration includes overprint of the post-Variscan tectonics, for Pontides Laurasian affinity is widely accepted.

In summary, the Sakarya Zone of the Pontides has a crystalline basement consisting of Variscan metamorphics (Pulur, Kazdağ, Devrekani and Gümüşhane massifs), Paleozoic granitoids (with Devonian, Carboniferous or Permian crystallization ages) and lower Karakaya Complex (a low-grade metamorphic complex) (Okay & Tüysüz, 1999; Okay et al., 2006). This basement (with the Upper Karakaya Complex) is unconformably overlain by Jurassic – Lower Cretaceous sedimentary rocks made up of dominantly carbonate rocks. Among these cover rocks, the Upper Jurassic – Lower Cretaceous Bilecik Group and the overlying pelagic Soğukçam Limestone (Altıner et al., 1991) (widely known as Bilecik Limestone *sensu lato*) forms the most distinctive and laterally traceable succession in the Pontides with intervening basinal associations (Okay et al., 1990; Altıner et al., 1991; Rojay & Altıner, 1998; Koçyiğit & Altıner, 2002; Okay & Altıner, 2015; Yılmaz et al., 2016). Mid-Cretaceous onward, the differentiation in the history of different parts of the Sakarya zone was

initiated until Middle Campanian marking the onset of widespread siliciclastic turbidite – flysch deposits in the Pontides (Okay & Altıner; 2015).

Within this tectonic framework the study area is located 50 km south of the main İzmir – Ankara – Erzincan suture trace and represents a klippe of the Sakarya Zone which has been thrusted to the south over the Tavşanlı Zone of the Taurides (Okay & Tüysüz, 1999) (Figure 1 & 6). It is characterized by the Upper Karakaya Complex (strongly sheared greywackes and shales with exotic blocks of limestones and basalts) at the base that is unconformably overlain by Jurassic basal clastics passing into Jurassic to Lower Cretaceous limestones which resemble to successions in the Central Sakarya Basin north of Bilecik (Kulaksız, 1981; Gautier, 1984; Monod et al., 1991; Okay & Tüysüz, 1999). The studied successions belong to these carbonate cover rocks (Fig.6).

Figure 6. Geological map of the study area illustrating the outcrops of the studied carbonate successions (modified from Okay & Tüysüz, 1999).

CHAPTER 2

STRATIGRAPHY

2.1. Lithostratigraphy

As mentioned in the Chapter 1.4, the carbonate rocks cropping out north of the Dümrek Village were previously studied by Kulaksız (1981), Gautier (1984) and Monod et al. (1991) under different formation names. In general they defined a succession commencing with a chaotic unit that includes Permo - Carboniferous limestone blocks, metagraywacke, quartz schist, metamorphic limestones and metadiabase (Gelinkayası Formation of Kulaksız (1981); Kızılcaören Formation of Gautier (1984) and Monod et al. (1991)). This unit is unconformably overlain by basal clastics (conglomerate and sandstone) and succeded by grey to cream colored, medium- to thick-bedded and generally massive limestones (Zeyköy Formation of Kulaksız (1981); Zey Limestone of Gautier (1984) and Monod et al., (1991)). Gautier (1984) assigned Late Jurassic - Early Cretaceous age for this carbonate succession. Okay and Tüysüz (1999) recognized the underlying greywackes and shales with blocks of basalt and Carboniferous, Permian and Middle Triassic limestone as the Karakaya Complex and the overlying basal clastics and limestone succession the equivalent of the Bilecik Group. These carbonate rocks are unconformably overlain by the Eocene terrigenous to shallow marine sedimentary rocks in the north of the study area (Okay and Tüysüz, 1999) (Fig.6 & 7).

Two stratigraphic sections (STG and SS sections, 925 m long in total) were measured along the carbonate rocks to the north of the Dümrek Village (7, 8 & 10). According to the biozonation and the microfacies types, two coeval but dissimiliar depositional domains, separated by an overthrust, have been detected along the STG section (Fig.7). The one on the southern part show a "slope to basin" facies

associations, on the other hand, the rock packages overthrusting from the north show "platform, platform margin and basinal" facies. A simplified tectonostratigraphic column of those domains is given in the Figure 8.

Figure 7. Close-up view of the study area showing the measured section locations and the main thrust contact between the "Slope to basin deposits" and the "Platform, platform margin and basin deposits". The continuation of the thrust fault to the further east away from the STG section was interpreted from Google Earth - satellite images (modified from Gautier, 1984; Okay & Tüysüz, 1999).

2.1.1. STG measured section

Along the 748 m-thick STG section, 173 samples were collected. The section starts with thin- to medium- bedded, place to place thick-bedded, grey to cream coloured limestone that have some chert layers and nodules in the lower parts (from STG-1 to STG-36) (Fig. 9B, C & 10). Until the sample STG-37 (~176 m level), the succession

Figure 8. Simplified tectonostratigraphic column of the studied successions. The thin lines at the bottoms of each slice indicates the measured section through which they were recorded. Red line: STG section. Blue line: SS section.

is characterized by toe-of-slope facies dominated by packstone (STG-1, STG-3 to STG-7, STG-9 to STG-11, STG-13 to STG-30) with alternations of wackestone (STG-31 to STG-36) and mudstone (STG-2, STG-8, STG-12 and STG-31 to STG-

35) containing some pelagic and benthic fauna (Globochaete sp., Pithonella sp., Saccocoma sp., calcareous dinocysts, and an individual of Globuligerina oxfordiana and rare platform derived foraminifera including Mohlerina basiliensis and Lenticulina sp.). Overlying this interval, the colour changes into whitish grey to white and the bed thicknesses increase (generally thick to very thick and massive) (Fig.9D). These macro-scale changes are reflected as a shift in the facies type from packstone towards grainstone (STG-46, STG-50, STG-56 to STG-64 and STG-66), floatstone (STG-42, STG-43, STG-45, STG-47, STG-49, STG-53, STG-64A, STG-65, STG-66A to STG-67 and STG-69) and rudstone (STG-52, STG-55 and STG-68A). These coarse-grained deposits are punctuated by packstone intervals (STG-37 to STG-41, STG-44, STG-48, STG-51, STG-54, STG-67A to STG-68) that represent quiescence periods in terms of the amount of platform derived material. As the number of platform derived bioclasts increases (e.g. M. basiliensis, Protopeneroplis ultragranulata, Coscinoconus sp., Crescentiella morronensis, Lithocodium aggregatum, Labes antramentosa, corals, bryozoa, sponge and echinoids), the facies gains a calciturbiditic character, representing the slope facies (Fig.8 & 10). The background pelagic sedimentation continued which is represented by calpionellids (STG-66A-onward), calcareous dinocysts, Pithonella sp. and calcified radiolaria. These taxa are abundant in the packstone facies and present in the matrix of the coarse-grained deposits (see Appendix A for sample-by-sample distribution). From about 335 m level (STG-70), thin to thick bedded, mostly poorly bedded, generally massive looking (due to wheathering effect), cream to brownish cream colored limestone appears in the succession (Fig.9E). Background sedimentation starts to dominate the facies and the platform derived material decrased in amount. Calpionellid wackestones and packstones are the common facies (STG-70, STG-70A, STG-71A, STG-72, STG-74, STG-80 to STG-92A) with some intraclastic, bioclastic packstone (STG-73 STG-74A to STG-75A), grainstone (STG-71, STG-76), floatstone (STG-72A, STG-77 and STG-78) and rudstone (STG-79 and STG-93) intercalations indicating intervals of increased shallow marine derived material (Fig.10). This lower portion (between the samples STG-1 and STG-94) resembles to the Yosunlukbayırı Formation defined in the Mudurnu region (Altiner et al., 1991), with its pelagic, calciturbiditic character and chronostratigraphic position.

Figure 9. Field view of the STG section. A) General view, B) representative photo of the thin to medium bedded and C) the massive portion of the lower toe-of-slope facies, D) close-up view of the thick to very thick bedded and generally massive part of the overlying slope facies, E) overlying pelagic deposits, F) closer view of the tectonic slices, lines with triangles on them indicate thrust faults, G) close-up view of the Soğukçam Limestone, H) representative beds of the first tectonic slice and I) uppermost tectonic slice with shallow marine facies (for detail see the text).

Figure 10. Lithostratigraphy and biozones of the STG and SS measured sections.

Figure 10 cont'd

Figure 10 cont'd

3 F R	FORMATION	SYSTEM	STAGE	BIOZONES	Subzones	Thickness (m)	LITHOLOGICAL	Sample No	TEXTURES								
						176 172		-68-1 55-2									
						168		-65-3									
	ш					164 160		SS-4									
	ESTON	S				156		- 85-5									
	LIM	NCEOU		Radiolaria		152		SS-6									
		CRET/	¢.		Radiol	Radiol	Radiol	Radiol	Radiol	Radiol	Radiol	Radiol		148		65-7	
	UKÇAM					144		65-8 65-84									
	SOĞ					136		-65-9									
											132		-SS-10				
						128 124											
						120											

After the sample STG-95 (~407 m), the succession continues with porcelaneous white to begie coloured, thin- to medium-bedded limestone in radiolarian wackestone to packstone facies, representing pelagic sedimentation (Fig.9G & 10). This part shows similarities with the Soğukcam Limestone in terms of colour, lithology, stratigraphic position, microfacies and fossil content. At nearly 463 m level, a tectonic slice of about 30 m-thick (between the samples of STG-105 and STG-111) is detected with repetitve fossil assemblages (repetition of the Calpionella Zone defined in the Yosunlukbayırı Formation) and facies similiar to the underlying levels (Fig.9F, 9H & 10). This slice is overthrusted by another carbonate package that has completely different facies and fossil associations (especially the occurence of Late Jurassic foraminifera *Protopeneroplis striata*) indicating older depositional intervals (Fig. 9F, 9I & 10). This final unit (from STG-111A to STG-143) is characterized by dominantly massive, medium to thick and very thick bedded, sometimes poorly bedded, white to whitish grey shallow marine limestones in packstone and mudstone facies with shallow marine biota including Labyrinthina mirabilis, Protopeneroplis striata, Mohlerina basiliensis, Pseudocyclammina lituus, Cayeuxia sp., Crescentiella morronensis and coral fragments. The facies types and contained biota indicate the Günören Limestone of Altıner et al. (1991) which was laid down in a shallow marine carbonate platform. These observations lead us to arrive a conclusion that the slope facies of the Yosunlukbayırı Formation (studied from sample STG-1 to STG-94) and the overlying pelagic Soğukçam Limestone (interval from sample STG-95 to STG-104) were overthrusted by shallow marine platform deposits of the Günören Limestone (samples from STG-111A to STG-143) with an intervening slice of the Yosunlukbayırı Formation (characterized between samples STG-105 - STG-111) (Fig.8, 9 & 10). This conclusion is contrasting with the previous observations of Kulaksız (1981) and Gautier (1984) who generally defined a continuous succession of shallow marine deposits finally overlain by pelagic limestones.

2.1.2. SS measured section

Additional to the main STG section, the SS section was studied with the purpose of checking whether there is a record of a well documented Bilecik Carbonate Platform drowning event (Şengör & Yılmaz, 1981; Görür et al., 1983; Altıner et al., 1991; Altıner, 1991; Koçviğit et al., 1991 Okay & Altıner, 2015 and Yılmaz et al., 2016). The map of Gautier (1984) shows pelagic deposits to the north of the carbonate belt and a 177 m thick section was measured in that area (Fig.7, 10 & 11). This section crosses the uppermost parts of the northern flank carbonates characterized by whitish grey to white coloured carbonates with grainstone to floatstone texture including shallow both pelagic (calpionellids) and marine (benthic foraminifera, microencrusters and sponge) fauna suggesting upper slope facies (samples from SG-4 to SG-1A). The overlying porcelaneous white to begie coloured, thin to medium bedded pelagic limestones are characterized by radiolarian wackestone to packstone facies (samples from SG-1B to SS-1). The underlying slope facies is defined as the Yosunlukbayırı Formation, and the overlying deposits belong to the pelagic porcelaneous Soğukçam Limestone. In contrasts with the general north-dipping trend of the carbonate rocks in the study area, these pelagic carbonates dip towards south under the older units. Although Gautier (1984) defined a continuous succession and conformable contact, the arrival of the pure pelagic conditions (Soğukçam Limestone) is rather abrupt in the SS section (after the Calpionella Zone, Lower Berriasian) when compared with the STG section (after the *darderi* subzone, Lower Valanginian). If these observations and the abnormal dip directions of the Soğukçam Limestone in the SS section are considered there could be a tectonic contact between these two formations. Another possibility for the contact may well be the presence of an unconformity surface. In this case, the platform margin deposits in the Sivrihisar region would had been exposed in post - Berriasian times. Because of poor outcrop conditions in this interval (that disables observation of any unconformity surface indicators like neptunian dykes, travertine occurences etc.) and fossil assemblages of the Soğukçam Limestone that does not deliver a distinctive chronostratigraphy, the nature of this contact could not be precisely determined.

Figure 11. Field view of the SS section. A), B) General view of the SS section. C), D) Close – up view of the Soğukçam Limestone.

2.2. Biostratigraphy

The main parameter that differs geology from all other branches of sciences (except from evolutionary biology and history) is the essential and inevitable interference of time concept. But placing all the rock records in their correct chronological order is not a straightforward practice. The Upper Jurassic – Lower Cretaceous chronostratigraphy may be one of the most problematic strata that have not been standardized yet and includes the only System boundary (Jurassic-Cretaceous boundary; J-K boundary) that has no reference Global Boundary Stratotype Section and Point (GSSP) in the Phanerozoic (Birkelund et al., 1984; Remane, 1991; Cope, 2008; Wimbeldon, 2008; Michalik & Rehakova, 2011; Wimbeldon et al., 2011; Ogg & Hinnov, 2012).

Since the beginning of the stratigraphical practice, fossil assemblages have formed the main tool for the relative age assignment of rock successions and construction of the Geological Time Scale. The irreversable character of evolution provides nonrepetitive, unique fossil assemblages that provides independent tool for relative age determination and correlation (unlike repetitive patterns of magnetostratigraphic and chemostratigraphic signals which are although very useful as a secondary highresolution correlation tools). Jurassic System was introduced by Alexander von Humboldt (1799) who defined the carbonate shelf deposits of the Jura region of northernmost Switzerland as "Jura Kalkstein" (Wimbeldon et al., 2011; Ogg & Hinnov, 2012). Since the first attempts by Alcide d'Orbigny (1842-1851, 1852) and Alfred Oppel (1956-1958) for interregional correlation of those strata with the ones in France, Germany and England, ammonites have been used as the main tool for Jurassic biostratigraphy (Remane, 1991; Cope, 2008; Wimbeldon, 2008; Michalik and Rehakova, 2011; Wimbeldon et al., 2011; Ogg & Hinnov, 2012). For Upper Jurassic strata in southern England, d'Orbigny (1842-1851, 1852) named four stages (Oxfordian, Corallian, Kimmeridgian and Portlandian) and he defined the base of the Cretaceous as a Purbeck Stage followed by a Neocomian Stage (Table 2, Ogg & Hinnov, 2012). Oppel (1856-1858), who is the one first applied the modern biozone concepts, extended the Kimmeridgian Stage to the base of the Purbeckian (Table 2, Ogg & Hinnov, 2012). Later, Oppel (1865) introduced a new uppermost Jurassic stage. With a romantic decision, he named it "Tithonian" (the lover of goddes of dawn Eos, the Tithon in Greek mythology in a sense that Tithonian is in the dawn of Cretaceous) without specifying a reference sections (Ogg & Hinnov, 2012). This stage included the upper part of his previous "Kimmeridgian group", the former Purbeckian Stage and extended until the base of the Neocomian Stage (Table 2, Ogg & Hinnov, 2012). This problem of shuffling Upper Jurassic stage nomenclature was further distorted by the introduction of the "Berriasian" Stage by Couquand (1871) which overlapped partly with the Oppel's Tithonian Stage (Table 2, Ogg & Hinnov, 2012).

Table 2. Summary of the nomenclature modifications to Upper Jurassic – Lower Cretaceous chronostratigraphy.

	d'Orbigny (1842-1851, 1852)	Oppel (1856-1858)	Oppel (1865)	Coquand (1871)	International Subcommission on Jurassic Stratigraphy (1980s, 1990s)			
				Negerman	ian	Hauterivian		
Cretaceous	Neocomian	Neocomian	Neocomian	Neocomian	com	Valanginian		
				Berriasian	Neo	Berriasian		
	Purbeck	Purbeck	Tithonian	Tithonian	Tithonian			
	Portlandian		nthoman	Thereare	Introman			
Jurassic	Kimmeridgian	Kimmeridgian	Kimmeridgian	Kimmeridaian	Kimmeridgian			
	Corallian		Kinnenugian	Kinnenugian	Kinnendgian			
	Oxfordian	Oxfordian	Oxfordian	Oxfordian	Oxfordian			

The problems of shuffling nomenclature and imprecise definitions have been magnified by ammonite provincialism (Remane, 1991; Hardenbol et al., 1998; Cope, 2008; Wimbeldon, 2008; Page, 2008; Michalik & Rehakova, 2011; Wimbeldon et al., 2011; Ogg & Hinnov, 2012) and hiatuses present in the original shallow marine "stratotypes" (Hardenbol et al., 1998; Michalik & Rehakova, 2011; Wimbeldon et al., 2011; Ogg & Hinnov, 2012), resulted in erection of local chronostratigaphic nomenclatures (e.g. local charts for Tethys amd Boreal realms with their own subdivisions) and still unstandardized international chronostratigpraphy. There is also an unique way of usage of the ammonite biozonations in northwestern Europe. These biozones are named as the "Standard Chronozones" in which the nomenclature is not directly associated with the range of the name-giving species (Ogg & Hinnov,

2012). For example Cardioceras cordatum appears in the higher levels of Cordatum Zone (Ogg & Hinnov, 2012). This unusal type of biozonation has also introduced additonal uncertainities, especially regarding the deliniation of the zonal basal boundaries (Ogg & Hinnov, 2012). Despite of these difficulties, ammonites have been used as the main fossil group for the Jurassic - Lower Cretaceous chronostratigraphy and all other fossil groups have been calibrated to the ammonite biozones like in the comprehensive work of Hardenbol et al. (1998). Recently, taxonomy of the base - Berriasian - index ammonite Berriasella jacobi has been revised (Frau et al., 2016), raising questions for its usage as a boundary marker. On the other hand, there is an important consensus on the rather less problematic calpionellid biozonation which has been widely applied in the Tethyside regions (Allemann et al., 1971; Remane, 1971; Remane et al., 1986; Pop, 1994a, 1997; Altıner and Özkan, 1991; Reháková & Michalik, 1997a, b; Grün & Blau, 1997; Skourtsis-Coroneou & Solakius, 1999; Housa et al., 1999; Lakova et al., 1999; Andreini et al., 2007; Michalik & Rehakova, 2011; Petrova et al., 2012; Lakova & Petrova, 2012; Lakova & Petrova, 2013). This applicability of calpionellids for the Tithonian - Valanginian interval make them an important fossil group and a prominent candidate for the Jurassic - Cretaceous boundary indicator (Wimbledon et al., 2011; Michalik & Rehakova, 2011; Wimbledon, 2014; Ogg et al., 2016).

The facies and time intervals present in an area dictates the fossil groups that are used for the construction of biostratigraphic framework. Since the measured Sivrihisar sections includes several different facies (from basin and slope to shallow marine environments) and the rock packages transgressing several intervals of geologic time (Kimmeridgian to Valanginian) variety of fossil groups were studied (e.g. foraminifera, calpionellids, microencrusters, sponges, bryozoa, corals, echinoids, radiolarians etc.). The proposed biozonation is mainly based on the foraminifera, calpionellids, pelagic crinoid *Saccocoma* and an enigmatic encruster *Crescentiella morronensis*.

Table 3 gives a comparision chart of the biozonations which were used in the construction of the biostragraphical framework and the proposed biozonation in this study. It includes biozonations both based on shallow marine fossil groups (Altiner,

1991; Rojay & Altiner, 1998; Ivanova, 1999; Arkad'ev et al., 2006; Olszewska, 2010) and pelagic calpionellids (Alleman et al., 1971; Remane, 1971; Trejo, 1980; Remane et al., 1986; Bakalova, 1977, 1986; Altiner & Özkan, 1991; Tunç, 1991, 1992; Pop, 1994a, 1997; Rehåkovå & Michalik, 1997a, b; Grün & Blau, 1997; Skouurtis-Coroneou & Solakius, 1999; Andreini et al., 2007; Lakova et al., 1997, 1999; Lakova & Petrova 2013).

Although it seems like it is mainly based on shallow marine fauna, Altiner (1991)'s biozone scheme for the Biga-Bursa-Bilecik platform has a homogenizing character that is both applicable to platform and adjacent slope environments due to the easily transportable nature of the used fossil groups (like "Tubiphytes" morronensis, Protopeneroplis "trochangulata", Montsalevia salevensis and Meandrospira favrei). This property of the used assemblages made direct calibration of them with ammonites and calpionellids of basinal associations possible (Altiner, 1991; Cope, 1991; Altıner & Özkan, 1991). Altıner (1991) introduced the "Tubiphytes" morronensis interval zone defined at its base by the first occurrence of the microencruster "Tubiphytes" morronensis and at its upper boundary by the first occurrence of Protopeneroplis "trochangulata". It has two subzones; namely, the Mesoendothyra izjumiana – Alveosepta – Labyrinthina – Protopeneroplis striata assemblage subzone, indicating the Kimmeridgian age and the Saccocoma range subzone whose base corresponds to the base of the Tithonian. Protopeneroplis "trochangulata" zone was defined between the successive first appearances of P. "trochangulata" and Montsalevia salevensis and the base of this zone is considered to be Upper Tithonian. This zone has Haplophragmoides joukowskyi subzone marked at its base by the first occurrence H. joukowskyi. The following Montsalevia salevensis and Meandrospira favrei zones were defined by the successive first occurrences of the name giving taxa, respectively. A very similiar biozone scheme was porposed by Rojay and Altiner (1998) for the Amasya region with the only difference of the *Clypeina jurassica* zone (defined at the base by the first occurrence of C. jurassica). This zone is identical with respect to its chronostratiraphic position to the "Tubiphytes" morronensis zone of Altiner (1991) (Table 3).

Ivanova (1999) established another zonal scheme from Bulgaria. While she kept the general outline of Altiner (1991)'s zonation, *Protopeneroplis striata* and *Pseudocyclammina lituus* zones were introduced for the first time (Table 3). The bases of these zones were marked by the successive first appearances of *P. striata* and *P. lituus*.

Arkad'ev et al. (2006) carried out a detailed work from Crimea and described biostratiraphic units based on ammonites, foraminifers and ostracodes. They introduced a foraminiferal scheme from Crimea which mainly utilizes assambleage zones instead of first appearances of taxa, characterized by co-occurrence of name delivering fossils (Table 3). They placed the J-K boundary at the base of their *Protopeneroplis ultragranulata – Siphoninella antiqua* assemblage zone.

Olszewska (2010) defined four assamblage biozones from Poland for the Kimmeridian – Valanginian interval, calibrated by ammonites. Her *Labyrinthina mirabilis* – *Mesoendothyra izjumiana* zone is comparable with the *M. izjumiana* – *Alveosepta* – *Labyrinthina* – *P. striata* subzone of Altiner (1991) (Table 3). The base of the *Protopeneroplis ultragranulata* – *Protomarssonella kummi* assemblage zone is correlated with the base of Berriasian.

After the first agreed standard calpionellid biozonation scheme (Alleman et al., 1971) which introduced four main zones (*Crassicollaria, Calpionella, Calpionellopsis, Calpionellites*), higher resolution have achieved with increasing information gained about the calpionellid assemblages. This gave rise to recognition of many new species and introduction of many subzones. The most famous and widely used scheme was proposed by Remane in 1971 (Table 3). His Zone A (corresponding to the base of the standard *Crassicollaria* zone) was defined by the first occurrence of calpionellids with fully hyaline loricas (calpionellid test). Three subzones, A1, A2 and A3 were introduced. The base of A1 corresponds to the base of the Zone A. The A2 subzone is marked by the first occurrence of the large variety of *Calpionella alpina (Calpionella grandalpina)*. The A3 subzone is characterized by the predominance of *Crassicollaria brevis* over *Crassicollaria intermedia*. Remane (1971) differentiated two subzones within the *Calpionella standard zone*. The B zone is defined at its base by the acme of spherical forms of *Calpionella alpina*, correspo-

(STEM TAGE	AI AI	tiner, 1991	Rojay & Altiner, 1998	Ivanova, 1999	Arkad'ev et al. 2006	, Olszewska, 2010	Standard Calpionellid Zones (in	Remane, 1971	Trejo, 1980	Remane et al., 1986	Bakalova, 1977, 1986	Altıner & Özkan, 1991	Tunç, 1991	Tunç, 1992	Pop, 1994 1997	Reháková & Michalik, 1997a, b	Grün & Blau 1997	Skourtis - Coroneou & Solakius, 1999	Andreini et al., 2007	Lakova et al., 1997, 1999; Lakova &	This Tu	Study key
S S S	Inc	Turkey	Turkey	Bulgaria	Crimea	Poland	Alleman et al., 1971)	France	Mexico	France	Bulgaria	Turkey	Turkey	Turkey	Romania	Spain	Italy	Greece	Italy	Bulgaria	Slope to basin	and basin
N	M	eandrospira favrei	Meandrospira favrei	Meandrospira favrei		Epistomina caracolla			carpathica						allasd carpathi	ca III	allasd carpathica		T :	7 1 11		
GINIA	III					Pfenderina	G 1					F	Tintinopsella carpathica		outul cadischie	na Tintinopsella	utu cadischian	ı	Tintinopseila	Tintinopsella	?	?
SALAN	M N	lontsalevia salevensis	Montsalevia salevensis	Montsalevia salevensis		neocomiensis /	Calpionellites		sella					Radiolaria	sai major	ellites major	saj major	1	ellites major	sail major	Radiolaria	Radiolaria
CEOU V	FUW							E	Tintinop darderi	Calpionellites	Calpionellites	E	Calpionellites darderi		Calpion darder	Calpion Garderi	Calpion Calpion		Calpion darderi	Calpion Calpion	/ darderi	?
TA	EN	oides i	oides i	vides	? Textularia crimica -	ſ	Calnionallonsis	D 3	dadayi oblorga	ellopsis oblonga	Calmianallangia	D 2	Calpionellopsis simpler -	Calpionellopsis simpler -	ellopsis	ui isi murgeant	i Sa dadayi murgeanui filipescui	dollar murgeanui	oblonga	ellopsis murgeanui	ellopsis	
SIAN	OLI	uragm	uragm	ragmo wskyi	Belorussiella taurica	Protomarssonella	Culpionenopsis	$\begin{array}{c c} D & \underline{2} \\ \hline 1 \end{array}$	simplex	Calpion simplex	Calpioneuopsis	$\begin{bmatrix} \mathbf{D} & \underline{2} \\ 1 \end{bmatrix}$	Calpionellopsis oblonga	Calpionellopsis oblonga	Calpion simple	i joinga calpion simplex	oblonga Simplex	Calpio Simplex	Calpion Simplex	Calpion Simplex	Calpion simplex	
ERRIA	EN	Haplop! jouk	Haplop! jouk	laploph jouk	Frondicularia cuspidiata Saracenaria inflata	Protopeneroplis	Calairan	С	cadischiana elliptica	elliptica	elliptica	C	Calpionella	Calpionella	longa elliptic	a and a construction	cadischiand elliptica	l elliptica	cadischiana elliptica	elliptica	elliptica	
B	Pro	tongraronlis	Protopeneronli	H	Protopenoroplis ultragranulata	ultragranulata	Calpionella	В	Calpiana Calpione	Calpiana alpiana	Calpiana alpiana	В	Calpionella alpina	Calpionella alpina	ferasini alpian	ferasini alpiana	Calpiana C	dipiana Remaniella	Caption Calpiana	Calpio Calpiana	Remaniella alpiana	<u> </u>
		ochangulata	ultragranulata	3	Anchispirocyclina lusitanica	Jacob Jacob	Crassicollaria	Δ 3	'llog massutiniana/	intermedia	Crassicollaria	Δ 3	Crassicollaria	Crassicollaria	intermed	ia in colomi	catalanoi	- ilioj brevis	intermedia	ilog massutiniand	💈 massutiniana P. ultragranulata	
AN				nina	- Melathrokerion	Andersenolina alpina			garvula S	remanei	Crussiconaria	A <u>2</u> 1	intermedia	intermedia	Prostintinonsa	i <mark>5 remanei</mark> Praetintinopselle	S remanei	ja intermedia	Sa remanei	Praetintinonsella	ensis	?
INOH	~ ~			clam) tus	spiralis Epistomina	Rumanoloculina				Chitinoidella	Chitinoidella	Chitinoidella			Chitinoidel	a iji <u>boneti</u> dobeni	dobeni		Critiv Overii dobeni	iti boneti dobeni	NoLION Saccocoma	
TIT	nensi	Saccocoma	.23 Saccocom	a docy litu	ventriosa	mitchurini												Saccocoma			centiella	
ASSI	morre		1 juras	Pseu															-		Cress	
GIAN	hytes	Mesoendothyra izjumiana -	Mesoendothyr izjumiana -	a	Melathrokerion eospiralis	Labyrinthina mirabilis															Globuligerina. oxfordiana	Labyrinthina
TERID	Tubij	Alveosepta - Labyrinthina -	D' Alveosepta - Labyrinthina		?	-															- Mohlerina basiliensis	mirabalis
KIMN		Protopeneroplis striata	Protopeneropl striata	is Protopeneroplis striata	1060	Mesoendothyra izjumiana															?	striata
OXF.	Gl	obuligerina. oxfordiana	Globuligerina. oxfordiana	G. oxfordiana	-	A. jacardi - P. jurassica																

Table 3. Comparision chart of the biostratigraphical zonations used in this study and the porposed scheme for the Sivrihisar region.

nding to the base of the standard *Calpionella* zone. The first appearance of the large variety of *Tintinopsella carpathica* marks the base of the C zone (Remane, 1971). Subzone D1 is defined at the base by the first occurrence of *Calpionellopsis simplex*. This also defines the base of the zone D that corresponds to the base of the standard *Calpionellopsis* zone (Alleman et al., 1971; Remane, 1971). The subzone D2 is characterized by the predominance of *Calpionellopsis oblonga* over *Calpionellopsis simplex*. The first occurrences of *Lorenziella hungarica* and *Calpionellites darderi* define the bases of the subzone D3 and zone E, respectively.

Remane et al. (1986) modified the 1971 scheme. Regarding the *Crassicollaria* zone, they defined *remanei* and *intermedia* subzones characterized by the dominance of the name giving taxa and correspond to the bases of the previously defined A1 and A2 subzones (Table 3). They also introduced a *Remaniella* subzone within the *Calpionella* zone, defined by the first occurrence of *Remaniella* genus. Remane's previous C zone is discarded and replaced by the *elliptica* subzone defined by Pop (1974). This subzone is characterized at its base by the first appearance of *Calpionella elliptica* (Remane et al., 1986). For the *Calpionellopsis* zone, two subzones were defined; namely, the *simplex* and *oblonga* subzones. Their bases are defined by the first occurrences of *Calpionellopsis simplex* and *Calpionellopsis oblonga*, respectively. The definition of the E zone was not changed and named as the *Capionellites* zone. They also introduced a *Chitinoidella* zone for the lower portion of the Upper Tithonian. This zone is characterized by the first occurrence of chitinoidellids (the ancestors of calpionellids with microgranular or double layer lorica walls).

A similiar biozonation was proposed from Bulgaria by Bakalova (1977, 1986). In this scheme, the *Crassicollaria* and *Calpionellopsis* zones were used without any subzonal divisions.

In the following years general outline of the Remane et al. (1986)'s was kept. Altiner and Özkan (1991) introduced an additional F zone to the Remane's 1971 shceme. The boundaries of this F zone were defined by the successive last occurrences of *Calpionellites darderi* and *Tintinopsella carpathica*, respectively. This occurence of *T. carpathica* after the extinction of *Cpts. darderi* had also been observed by Trejo (1980) but he did not define a formal zone with well-defined boundaries. Other calpionellid zonations from Turkey includes the works of Tunç (1991, 1992) and Burşuk (1992). In their schemes, mainly the standard zones were used. Tunç (1991, 1992) defined assamblege zones like *Calpionellopsis simplex – Calpionellopsis oblonga* zone. Both the works of Tunç (1991, 1992) and Burşuk (1992) indicated a rather strange chronostratigraphic position for the *C. elliptica* zone (Table 3). Calpionellids in the works of these authors were poorly illustrated and erroneous interpretations have led to an artificial taxonomy.

Especially after the emendations on the genus *Remaniella* (Pop, 1994a; Grün & Blau, 1996), revisions have been made to the previously published biozonation schemes with introduction of more subdivisions (Pop, 1994b, 1997; Rehåkovå & Michalik, 1997a, b; Grün & Blau, 1997; Lakova et al., 1997, 1999; Skourtsis-Coroneou & Solakius, 1999), although the main zonal boundaries have remained the same with the Remane's 1971 scheme (Table 3). Among them, Grün and Blau (1997)'s scheme proposed an unusual first occurrence for the *Remaniella catalanoi* in the *Crassicollaria* zone. They introduced a *catalanoi* subzone as the equivalent of the previously defined *colomi* subzone (Table 3). Then it was understood that the Late Tithonian *Crassicollaria* zone is missing and *elliptica* subzone (of *Calpionella* zone) is in direct contact with the *remanei* subzone (of *Crassicollaria* zone) in the Rau Stau section on which Grün and Blau (1997) based their biozonation (Rehåkovå, 1998).

Skourtis-Coroneou and Solakiu (1999) established a biozonation from Greece similiar to the scheme of Reháková and Michalik (1997a, b). They did not recognize any specimen of chitinoidellids and instead of they defined a *Saccocoma* zone similiar to Altıner (1991) whose base indicates the base of Tithonian. Their *brevis* subzone was placed rather higher than the previously established zonations (Table 3). They chose to use two- and three-fold subdivisions for the *Crassicollaria* and *Calpionella* zones, respectively.

More recently, Lakova and Petrova (2012, 2013) tried to synthesize previously published biozonation schemes and proposed a standard global calpionellid zonation. In order to achieve this aim, they discarded taxons with controversial vertical ranges and morphologies and subzones that are not recognized globally. Their biozonations

dismissed *colomi* subzone in *Crassicollaria* standard zone, *cadischiana* subzone in Calpionella zone, C zone based on the predominance of *Tintinopsella carpathica* and D3 subzone characterized by the first occurrence of Lorenziella hungarica (Table 3). They only utilized first occurrence bioevents for the determination of the zones/ subzones which are globally recognized. Only exception is the usage of the last occurrence of Calpionellites to define the base of the Tintinopsella zone since no evolutionary event among calpionellids is present for this interval. The following bioevents were used for their biozonation in ascending order; first occurrences of chitinoidellids, Chitinoidella boneti, Praetintinopsella andrusovi, hyaline-walled calpionellids (*Tintinopsella carpathica*, *T. remanei*), *Calpionella grandalpina* and *C.* alpina, explosion of Calpionella alpina (and coeval decline of the genus Crassicollaria and last occurrence of Calpionella elliptalpina), first occurrences of Remaniella (Remaniella ferasini and R. duranddelgai), Calpionella elliptica, Calpionellopsis simplex, Calpionellopsis oblonga, Praecalpionellites murgeanui, Calpionellites darderi, Calpionellites major and the last occurrence of Calpionellites (Lakova and Petrova 2012, 2013). The Jurassic – Cretaceous boundary is placed at the base of the *alpina* subzone (base of the *Calpionella* zone), characterized by the acme of Calpionella alpina (spherical forms) (Table 3). The boundary between the Lower and Upper portion of the Berriasian is defined by the base of the *simplex* subzone (base of the Calpinellopsis zone). The base of the Calpionellites zone (base of the darderi subzone) marks the base of Valanginian (Table 3).

The presence of two different domains ("slope to basin" and "platform, slope and basin" deposits) in the studied area (see Chapter 2.1) gave rise to the establishment of two separate but mutually inclusive biozonation schemes since they represent different depositional environments of the same carbonate platform (Table 3). The biozonations are based on the foraminifera, calpionellids, pelagic crinoid *Saccocoma* and microencruster *Crescentiella morronensis*. For full documentation of the fossil contents and their range along the measured sections please see the provided excel sheet with a CD in the Appendix A. A simplified version of the range chart with principal microfossil content is given in the Figure 12.

2.2.1. Biozonation of the Slope to basin deposits

Globuligerina oxfordiana – Mohlerina basiliensis Zone

This zone represents the lowermost levels of the measured STG section from STG-1 to STG-16. It was hard to assign a well-defined chronostratigraphic level to this part due to the rare occurrences of index fossils. There is only an one specimen of *Globuligerina oxfordina*, considered to range Callovian – Middle Kimmeridgian (Banner & Desai, 1988; Altıner, 1991; Grigelis, 2016). The occurrence of *Mohlerina basiliensis* in this zone suggests Oxfordian-onward chronostratigrapic levels (Altıner, 1991; Cope, 1991; Schlagintweit, 2012). So, based on the co-occurence of these two fossils and the presence of the overlying Tithonian *Saccocoma* zone, a possible Kimmeridgian age is assigned to the *Globuligerina oxfordiana* – *Mohlerina basiliensis* assemblage zone. The chronostratigraphic level of the lower boundary is not exactly determined, nevertheless the base of the zone is possibly within the Kimmeridgian stage (Table 3, Fig. 12).

In addition to *G. oxfordiana* and *M. basiliensis*, this zone also includes *Spirillina* spp., *Lenticulina* sp., *Patellina* sp., *Ophthalmidium* sp., *Quinqueloculina* spp., *Meandrospiranella* sp., *Glomospira* sp., *Redmondoides*? sp., *Textularia* sp., *Pithonella* sp., *Globochaete* sp., *Mercierella* ? *dacica*, aptychi, calcareous dinocysts, nannoconids, echinoid spines, bivalve and crinoid fragments, and calcified radiolarians.

Crescentiella morronensis Zone/ Saccocoma subzone

This zone is defined as the interval between the successive first occurrences of *Saccocoma* sp. and *Protopeneroplis ultragranulata*. Altiner (1991) introduced the *"Tubiphytes" morronensis* zone above his *Globuligerina oxfordiana* zone. This boundary may seem like a facies controlled one, a pelagic fossil zone is followed by a platform margin – dwelling - taxon zone (Table 3). However, this is the result of geological evolution of the area in which his stratigraphical sections placed. This zonal succession resulted from the development of a pelagic plateau type sedimentation (Taşçıbayırı Formation of NW Turkey, see Chapter 1) into a carbonate

		Slope to basin									
	STAGE STAGE	a sp. <i>i dacica</i> <i>i dacica</i> <i>calcareous dinocysts</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a sp.</i> <i>a</i>	Kauloka ka								
ATATIO	VALANGINIAN VALANGINIAN	 Interview and the second sec									
A THINK	BERRIASIAN	 Ophthalmidium sp. Ophthalmidium sp. Ophthalmidium sp. 									
	TITHONIAN	a oxfordiana feandrospiranella sp. Pseu- 	hthalmidium sp. queloculina sp. derina basiliensis morronensis odium aggregatum culina sp. culia parvovesiculifera xila parvovesiculifera								
	KIMMERIDGIAN		Op — Glomospira sp — Crescentiella — Mod — Modect — Ammobact — Thaumatopore								

Figure 12. Stratigraphic range chart of the principal microfossils and the proposed biozonation scheme for the "slope to basin" and "platform" deposits. The fossil ranges for the upper levels of the "platform," slope and basin" deposits are not shown. Due to the leveling of the depositional environments (arrival of slope and basinal facies), the upper levels show similiar assamblages with the "slope to basin" successions. Thicker portions of the range lines indicate "acme" of the related taxon. For detailed documentation of the fossil content, please see the excel sheet given in the attached CD.

platform type (Günören Limestone of NW Turkey, see Chapter 1) (Altıner, 1991). Its calibration with Jurassic ammonites suggested a Kimmeridgian age for the base of *"Tubiphytes" morronensis* zone (Altıner, 1991; Cope, 1991). Altıner (1991) also differentiated a *Saccocoma* subzone within the upper levels of the *"Tubiphytes" morronenesis* zone (Table 3). The first occurrence of pelagic crinoid *Saccocoma* has been considered to mark the base of Tithonian (Nicosia & Parisi, 1979; Altıner, 1991; Skourtis-Coroneou & Solakius, 1999).

The coeval first occurrence of *Saccocoma* sp. and *Crescentiella morronensis* in Sivrihisar succession is rather unusual when compared with Altıner (1991)'s scheme (Table 3). This contradiction can be explained by a facies controlled distribution of the platform derived *Crescentiella morronensis* in the measured STG section. It was recorded from Tithonian – Berriasian interval in the slope deposits (Yosunlukbayırı Fm.) and from Kimmeridgian in the platform carbonates (Günören Limestone) (Fig. 12). This diachronism clearly indicates facies controlled distribution and local first occurrence of *C. morronensis* in the slope to basin deposits. There should not be any question regarding the usage of the pelagic crinoid *Saccocoma* as the Tithonian base marker here, since the facies of this zone in the STG section represents toe-of-slope pelagic environments.

Following taxa have been identified within this zone: *Ophthalmidium* sp., *Quinqueloculina* spp., *Istriloculina* sp., *Moesiloculina* sp., *Meandrospira* sp., *Glomospira* sp., *Cornuspira* sp., *Redmondoides*? sp., Verneulinidae, *Textularia* sp., *Reophax* sp., *Ammobaculites* sp., *Haghimashella* sp., *Protomarsonella* sp., *Charentia* sp., *Nautiloculina* sp., *Mohlerina basiliensis*, *Patellina* sp., *Spirillina* spp., *Lenticulina* sp., *Coscinoconus* spp., *Trogrotella incrustans*, *Pithonella* sp., *Globochaete* sp., *Mercierella* ? *dacica*, *Saccocoma* sp., *Crescentiella morronensis*, *Koskinobullina socialis*, *Lithocodium aggregatum*, *Labes antramentosa*, *Radiomura cautica*, *Perturbatacrusta leini*, *Bacinella*-type structure, *Coscinophragma cribrosum*, *Cayeuxia* sp., *Terebella lapilloides*, *Thaumatoporella parvovesivulifera*, calcareous dinocysts, aptychi, ostracods, echinoids spines, crinoid fragments, bivalve fragments, calcified radiolarians, bryozoa fragment, sponge and coral fragment.

The platform derived materials increased within this zone especially towards the upper parts (Fig.8, 10 & 12). Although it may distrupted the pelagic background sedimentation, the fauna transported by calciturbiditic fluxes provides secondary data to check the chronostratigraphic positions of the successions.

Protopeneroplis ultragranulata Zone

The base of this zone is marked by the first occurrence of *Protopeneroplis ultragranulata* (STG-51). In accordance with previously published biostratigraphical charts and data (Septfontaine, 1974; Altıner, 1991; Bucur, 1997; Altıner & Rojay, 1998; Hardenbol et al., 1998; Ivanova, 1999; Velíc, 2007) a latest Tithonian age is assigned to the lower boundary of this zone (Table 3). The upper boundary is delineated by the local first occurrence of calpionellids (represented by *Crassicollaria* sp. and *Calpionella alpina* in sample STG-66A). This upper boundary is a transitional one simply a result of a biofacies change in the studied section STG (Table 3). However, since it emerges within the *P. ultragranulata* zone and is bounded above by the base of *Calpionella* Zone there should not be any doubt regarding its chronostratigraphic position.

The following fossils were defined from this zone; *Protopeneroplis ultragranulata*, *Mohlerina basiliensis*, *Everticyclammina* sp., *Pseudocyclammina lituus*, *Redmondoides*? sp., *Siphovalvulina*? sp., Verneulinidae, *Textularia* sp., *Charentia* sp., *Nautiloculina* sp., *Ophthalmidium* sp., *Moesiloculina* sp., *Istriloculina* sp., *Lenticulina* sp., *Patellina* sp., *Coscinoconus* spp., *Neotrocholina* sp., *Crescentiella morronensis*, *Coscinophragma cribrosum*, *Trogrotella incrustans*, *Pithonella* sp., *Globochaete* sp., *Mercierella* ? *dacica*, *Saccocoma* sp., *Koskinobullina* socialis, *Lithocodium aggregatum*, *Labes antramentosa*, *Perturbatacrusta leini*, bacinella type structure, *Cayeuxia* sp., *Terebella lapilloides*, serpulids, aptychi, calcareous dinocysts, echinoid spines, crinoid fragments, bivalve fragments, bryozoa, coral, gastropods, dasycladacean algae and sponge.

Crassicollaria Zone/ massutiniana subzone

As previoulsy explained the lower boundary of this subzone is marked by the local first occurrence of *Crassicollaria* sp. and *Calpionella alpina* (STG-66A). A latest Tithonian age is assigned to the basal boundary of this zone since it is bounded by the *alpina* subzone at its top.

The fossil content includes, *Crassicollaria* sp., *Crassicollaria massutiniana*, *Crassicollaria intermedia*, *Crassicollaria parvula*, *Crassicollaria brevis*, *Calpionella alpina*, *Calpionella* grandalpina, *Calpionella* elliptalpina, *Calpionella* sp., *Tintinopsella remanei*, *Protopeneroplis ultragranulata*, *Mohlerina basiliensis*, *Spirillina* spp., *Lenticulina* sp., *Patellina* sp., lagenid foraminifera, *Redmondoides*? sp., Verneulinidae, *Textularia* sp., *Reophax* sp., *Siphovalvulina*? sp., *Charentia* sp., *Meandrospira favrei*, *Moesiloculina* sp., *Trogrotella incrustans*, *Pithonella* sp., *Globochaete* sp., *Mercierella* ? *dacica*, *Crescentiella morronensis*, *Lithocodium aggregatum*, *Koskinobullina socialis*, *Perturbatacrusta leini*, bacinella type structure, *Terebella lapilloides*, calcareous dinocysts, nannoconids, *Saccocoma* sp., aptyhci, ostracods, echinoid spines, echinoid and crinoid fragments, bivalve fragment, bryozoa, coral fragment, serpulids, gastropods and sponge.

C. elliptalpina, limited to *massutiniana* subzone, appears higher in the zone near the J-K boundary in accordance with previous observations (Remane, 1971; Trejo, 1980; Remane et al., 1986; Bakalova, 1986; Altıner & Özkan, 1991; Pop, 1994a, 1997; Rehákoá & Michalik, 1997a, b; Skourtis-Coroneou & Solakius, 1999; Andreini et al., 2007; Lakova et al., 1999; Lakova & Petrova, 2013). In this zone, it is hard to differentiate some specimens of *Crassicollaria* from the early representatives of the genus *Tintinopsella* as previoulsy mentioned by Remane (1985). This subzone is additionally characterized by the diversity of the genus *Crassicollaria* and the abundance of *C. grandalpina*.

The unexpected occurrence of *Meandrospira favrei* in this zone (samples STG-66A and STG-67A) is unusual and contradicts with the previously published data. Altiner (1991), Rojay and Altiner (1998) and Ivanova (1999) reported Late Valanginian onward occurrence of this taxon (Table 3). Although there are other studies suggesting a base-Valanginian first occurrence like Ivanova et al. (2008, from

Bulgaria), Ivanova and Kolodziej (2010, from Polish Carpathians) and Bucur et al. (2014, from southern Carpathians Romania) and latest Berriasian first appearance like Krajewski and Olszewska (2007, from Crimea Mountains) and Velić (2007, from Karst Dinarides), there is no report on the Tithonian occurrence of the form. There can be two possiblities; (1) the identification in this study could well be erroneous, the identified specimens may belong to another species of the genus that shows great convergent evolutionary morphology to the M. favrei or (2) the taxon could have been evolved in an anonymous period in the Jurassic with a modest population size and then may have been dispersed and its acme may have been recorded diachronously in the Late Valanginian (Altiner, 1991; Rojay & Altiner, 1998 and Ivanova, 1999), at the base of Valanginian (Ivanova & Kolodziej, 2010; Bucur et al., 2014) and in the latest Berriasian (Krajewski and Olszewska, 2007; Velić, 2007). For the first case, all previously proposed first occurrences could be the real first occurrences for the studied areas indicating slight diachronism in the dispersion of the taxon. In the second case, all other reported first occurences should represent local first occurrences and the acme of the taxon. In any case, the biozones defined by the first occurrence of Meandrospira favrei in the works of Altiner (1991), Rojay and Altiner (1998) and Ivanova (1999) still provide useful biohorizon at least for regional correlations, if not present a biozone with globally synchronous basal boundary.

Calpionella Zone/ alpina subzone

The *alpina* subzone (and the base of the *Calpionella* Zone) is defined at the base by the acme of *Calpionella alpina* (spherical forms) (STG-70A). The upper boundary is marked by the first occurrence of calpionellids with remaniellid lorica.

The following taxons were identified in this zone; *Calpionella alpina*, *Calpionella grandalpina*, *Calpionella minuta*, *Crassicollaria massutiniana*, *Crassicollaria parvula*, *Tintinopsella carpathica*, *Redmondoides*? sp., *Coscinoconus spp.*, *Neotrocholina sp.*, *Lenticulina sp.*, *Spirillina sp.*, *Patellina sp.*, *Glomospira sp.*, *Quinqueloculina sp.*, *Moesiloculina sp.*, *Istriloculina sp.*, Verneulinidae, *Textularia sp.*, *Protomarsonella sp.*, *Pithonella sp.*, *Coscinophragma cirbrosum*, *Globochaete*
sp., *Mercierella* ? *dacica*, *Terebella lapilloides*, *Crescentiella morronensis*, *Lithocodium aggregatum*, *Koskinobullina socialis*, *Perturbatacrusta leini*, *Bacinella*type structure, *Saccocoma* sp., ostracods, echinoid spines, crinoid and bivalve fragments, bryozoa, aptyhci, calcified radiolarians, serpulids and sponge. A specimen of *Mesoendothyra izjumiana* was also observed, which must have been reworked from the Kimmeridgian (STG-71A).

The Jurassic-Cretaceous boundary has been located at the base of this zone following the recent suggestions of Wimbledon et al. (2011), Michalik and Rehakova (2011), Lakova and Petrova (2012), Lakova and Petrova (2013), Wimbledon (2014), Ogg et al. (2016) and Frau et al. (2016). Rather than the acme of *C. alpina*, nearly synchronous last occurrences of *C. elliptalpina* and *Cr. brevis* are other important biovents among calpionellids at the J-K boundary (see Fig. 12 and Appendix A).

After the bloom of *Calpionella alpina* (STG-70A), *C. minuta* appears in the higher levels of the zone (sample STG-73). *C. grandalpina* occurs only in the lower parts of the zone that show significant decrease in abundance (sample STG-70A - 71A). *Cr. parvula* increases in abundance in the sample STG-72. This kind of acme of *Cr. parvula* was also reported by Lakova and Petrova (2013). *Tintinopsella carpathica* does not show abundant representatives in this portion of the STG section.

Calpionella Zone/ Remaniella subzone

The lower boundary of this subzone is traced at the first occurrence of calpionellids with remaniellid lorica (bipartite collars) which are represented by *Remaniella ferasini* in the sample STG-75. The upper boundary is marked by the first occurrence of *Calpionella elliptica* (STG-82). The basal boundary of this subzone represents the mid-Lower Berriasian (Fig.12).

The fossil content of this zone includes, *Calpionella alpina*, *C. minuta*, *Crassicollaria parvula*, *Crassicollaria*? sp., *Tintinopsella carpathica*, *Remaniella filipescui*, *Remaniella ferasini*, *R. durandelgai*, *R. colomi*, *Remaniella* sp., very rare *Borzaiella atava*, *Meandrospira* sp., *Ophthalmidium* sp., *Quinqueloculina* spp., *Cornuspira* sp., *Moesiloculina* sp., *Spirillina* sp., *Lenticulina* sp., *Patellina* sp., lagenid foraminifera, *Charentia* sp., *Redmondoides*? sp., *Textularia* sp., Verneulinidae, *Protopeneroplis ultragranulata*, *Mohlerina basiliensis*, *Coscinoconus* spp., *Neotrocholina* sp., *Pithonella* sp., *Globochaete* sp., *Mercierella* ? *dacica*, *Koskinobullina socialis*, *Crescentiella morronensis*, *Lithocodium aggregatum*, *Perturbatacrusta leini*, bacinellid structure, calcareous dinocysts, ostracods, echinoid spines, bivalve and echinoid fragments, calcified radiolarians, bryozoa, coral fragment, serpulids and gastropods.

Additional to the first occurrence of *Remaniella ferrasini*, in the higher levels of the subzone (sample STG-80) other species *R. durandelgai* and *R. colomi* appears for the first time (Fig.12).

Calpionella Zone/ elliptica subzone

The first occurrence of *Calpionella elliptica* (STG-82) marked the lower boundary of this subzone (upper portion of the Lower Berriasian) (Fig. 12). The upper boundary is delineated by the first occurrence of *Calpionellopsis simplex*.

The fossil content of this subzone includes, *Crassicollaria parvula*, *Calpionella alpina*, *Calpionella minuta*, *Calpionella elliptica*, *Remaniella cadischiana*, *Remaniella filipescui*, *Remaniella ferasini*, *Remaniella durandelgai*, *Remaniella catalanoi*, *Remaniella colomi*, *Remaniella* spp., *Tintinopsella carpathica*, *Borzaiella atava*, *Mohlerina basiliensis*, *Spirillina* sp., *Patellina* sp., *Redmondoides*? sp., Verneulinidae, *Reophax* sp., *Neotrocholina* sp., *Istriloculina* sp., *Crescentiella morronensis*, *Globochaete* sp., *Mercierella*? *dacica*, calcareous dinocysts, echinoid spines and calcified radiolarians.

Calpionellopsis Zone/ simplex subzone

The first occurrence of *Calpionellopsis simplex* (STG-85) markes both the lower boundary of the *Calpionellopsis* Zone (*simplex* subzone) and the Lower-Upper Berriasian boundary (Fig.12). The upper boundary of the *simplex* subzone is delineated by the first occurrence of *Calpionellopsis oblonga* (STG-87).

The fossil content of the zone is represented by *Calpionellopsis simplex*, *Calpionella alpina*, *Calpionella minuta*, *Calpionella elliptica*, *Remaniella* sp., *Remaniella cadischiana*, *Remaniella catalanoi*, *Tintinopsella carpathica*, *Crassicollaria parvula*, *Lenticulina* sp., *Patellina* sp., *Spirillina* sp., *Neotrocholina* sp., *Istriloculina* sp., *Moesiloculina* sp., *Pithonella* sp., *Globochaete* sp., *Mercierella* ? *dacica*, echinoid spines, calcareous dinocysts and radiolaria.

There is a decrease in abundance of *C. minuta* in this zone.

Calpionellopsis Zone/ oblonga subzone

The lower and upper boundaries of this subzone (Upper Berriasian) are characterized by the successive first occurrences of *Calpionellopsis oblonga* (STG-87) and *Calpionellites darderi* (STG-93), respectively (Fig.12).

Besides from *Calpionellopsis oblonga*, the following fossils were observed within this zone; *Calpionellopsis simplex, Tintinopsella carpathica, Tintinopsella longa, Remaniella cadischiana, Remaniella filipescui, Remaniella ferasini, Remaniella borzai, Praecalpionellites murgeanui, Preacalpionellites sriniaensis, Calpionella alpina, Calpionella minuta, Lorenziella hungariaca, Haplophragmoides joukowskyi, Reophax sp., Textularia sp., Siphovalvulina*? sp., *Neotrocholina sp., Patellina sp., Spirillina sp., Lenticulina sp., lagenid foraminifera, Meandrospira favrei, Meandrospira sp., Cornuspira sp., Moesiloculina sp., Istriloculina sp., Glomospira sp., Pithonella sp., Globochaete sp., Mercierella ? dacica, Crescentiella morronensis, Radiomura cautica,* calcareous dinocysts, echinoid spines and fragments, calcified radiolarians (increased abundance), an apthycus and bryozoa.

M. favrei reappers in the highest level of this zone (STG-91). The first occurrences of *H. joukowskyi* (STG-87) and *L. hungarica* (STG-89) are also recorded within this subzone.

A *murgeanui* subzone has also been defined by Pop (1994a, 1997, Romania), Rehåkovå and Michalik (1997a, b, Spain), Grün and Blau (1997, Italy), Skourtis-Coraneau and Solakius (1999, Greece), Lakova et al. (1997, 1999, Bulgaria) and Lakova and Petrova (2013, Bulgaria) in the uppermost levels of the *Calpionellopsis* Zone (Table 3). Although, the first occurrence level of *Praecalpionellites murgeanui* in this study is consistent with the literature (Table 3 and Fig.12), the very rare occurrence of this species in the NW Turkey (Altıner & Özkan, 1991) and in this study, the varying definition of the genus *Praecalpionellites* from author to author (like very different definition of this genus by Grün and Blau, 1997) and the morphological varieties that have been shown by the illustrations of the calpionellid workers (Remane et al., 1986; Grün & Blau, 1997,1999; Lakova et al., 1999; Rehåkovà, 2000; Concetta et al., 2004; Andreini et al., 2007; Fözy et al., 2010; Lakova & Petrova, 2013) have raised some doubts regarding the differentiation of the *murgeanui* subzone. So, this subzone is not used in this study.

Additionally, *Praecalpionellites siriniaensis* firstly occurred within the uppermost levels of this zone, nearly coeval with the *P. murgeanui* (Fig. 12). *Calpionellopsis simplex* seems to disappear within this zone in accordance with the previously published data (Fig. 12).

Calpionellites Zone/ darderi subzone

The base of this zone/ subzone is traced at the first occurrence of *Calpionellites darderi* (STG-93) and defines the Berriasian - Valanginian boundary (Tab. 3 & Fig.12). The upper boundary of this zones is a facies controlled one, characterized by the arrival of radiolaria-rich facies defined in the field as a typical facies recorded in the Soğukçam Limestone (see Chapter 2.1).

The following forms were observed in this subzone, *Calpionellites darderi*, *Calpionellopsis oblonga*, *Tintinopsella longa*, *Tintinopsella carpathica*, *Neotrocholina* sp., *Montsalevia salevensis*, *Textularia* sp., *Spirillina* sp., *Patellina* sp., lagenid foraminifera, *Globochaete* sp., *Mercierella* ? *dacica*, calcareous dinocysts, echinoid spines, fragments and calcified radiolarians.

Due to the rather short record of this subzone within the measured STG section made it impossible to further comment on the range of the *Praecalpionellites*, *Calpionellites* and *Tintinopsella* species in the study area. Neverthless first occurrence of the *Cpts. darderi* here is in accordance with the previous studies (Lakova et al., 1999; Lakova & Petrova, 2013).

Radiolaria "Zone"

After the *darderi* subzone a radiolaria - rich facies starts to dominate the system (STG-95 to STG-104). From this interval, besides from radiolaria (diversified), *Spirillina* sp., calcareous dinocysts and nannoconids (within the matrix) were observed. Since this facies immeadiately appears just after the first occurrence of *Calpionellites darderi*, a Valanginian age could be assigned to this "zone".

The upper boundary of this radiolarian rich zone is defined by an abrupt lithological change in the field (from thin to medium bedded, porcelanous limestone to thin to thick bedded, generally massive cream to brownish colored limestone). The fossil content of the overlying limestone (STG-105 to STG-111) reveals a repetition of a portion of the Calpionella zone with the following fossil content; Calpionella alpina, Calpionella minuta, Crassicollaria? sp., Crassicollaria parvula, Remaniella ferasini, *Protopeneroplis* Neotrocholina ultragranulata, sp., Coscinoconus spp., Quenqueloculina spp., Lenticulina sp., Redmondoides? sp., Siphovalvulina? sp., Trogrotela incrustans, Coscinophragma cribrosum, Cayeuxia sp., Perturbatacrusta leini, Lithocodium aggregatum, Crescentiella morronensis, Koskinobullina socialis, Mercierella ? dacica, calcareous dinocysts, sponge, gastropods, echinoid and crinoid fragments, bryozoa, calcified radiolarians and bivalve fragments. If the absence of C. elliptica and Calpionellopsis species and the presence of R. ferasini are considered, this slice should represent Remaniella subzone of the Calpionella Zone. This observation is explained by a thrusting of a slice from north which was derived within the same slope system (see Chapeter 2.1). This slice was also overthrusted by the platform carbonates.

2.2.2. Platform, slope and basin depositional environments biozonation

This bizonation covers the highest levels of STG section (~492m onwards) and the complete SS section.

Crescentiella morronensis (Labyritnhina mirabilis – Protopeneroplis striata) Zone

This zone is characterized by an assemblage of *Protopeneroplis striata*, *Labyrinthina mirabilis* and *Crescentiella morronensis* (STG-111A to STG-143). The co-ocurence of these fossils suggests a Kimmeridgian age in accordance with the observations on the range of these taxa (Altiner, 1991; Bucur, 1997; Rojay & Altiner, 1998; Ivanova, 1999; Olszewska, 2010; Ples et al., 2015).

Besides from the name-landing taxa, the following fossils were also observed within this interval; Mohlerina basiliensis, Pseudocyclammina lituus, Everticyclammina sp., an broken speciemen of Alveosepta sp., Textularia sp., Redmondoides? sp., Verneulinidae, Haghimashella sp., Trochammina? sp., Ammobaculites sp., Nautiloculina sp., Charentia sp., Quenqueloculina spp., Ophthalmidium sp., Glomospira sp., Moesiloculina sp., Miliolidae, Lenticulina sp., lagenid foraminifera, Trogrotella incrustans, Cayeuxia sp., a specimen of Globochaete sp., very rare Mercierella ? dacica, Lithocodium bacinellid aggregatum, structure, Thaumatoporella parvovesivulifera (ladders), echinoid spines, bivalve fragment, echinoid fragments, crinoid fragments, coral fragment and sponge.

Calpionella Zone

This subzone was defined at the lowermost levels of the SS seciton (SG-4 to SG-1A) and is very similiar with the *Calpionella* Zone of the STG section. The lower boundary is indicated with a dashed line in the Table 3 and Figure 12, since it was determined by the lower boundary of the SS section. The upper boundary is again defined by a lithological change from whitish grey to white coloured carbonates of slope facies (the Yosunlukbayırı Formation) to radiolaria - dominated, porcelaneous white to beige coloured basinal deposits (the Soğukçam Limestone) (see Chapter 2.1).

The following taxa were identified in this zone; *Calpionella alpina, Calpionella minuta, Crassicollaria parvula, Crassicollaria*? sp., *Remaniella* sp., *Protopeneroplis ultragranulata, Redmondoides*? sp., *Ammobaculites* sp., a specimen of *Pseudocyclammina lituus, Coscinoconus* spp., *Lenticulina* sp., *Globochaete* sp., *Mercierella* ? *dacica, Crescentiella morronensis, Labes antramentosa, Lithocodium aggregatum, Koskinobullina socialis, Perturbatacrusta leini,* echinoid spines, echinoid and bivalve fragments, gastropoda, serpulids, sponge and calcified radiolarians.

If the absence of *C. elliptica* and *Calpionellopsis* species and the presence of the individuals belonging to the genus *Remaniella* are considered, this slice should represent *Remaniella* subzone of the *Calpionella* Zone. If not, it is certain that this portion of the SS section represents Lower Berriasian in any case.

Radiolaria "Zone"

As previoulsy explained the lower boundary of this zone corresponds to a lithological change in the field. The nature of the contact between this zone and the underlying successions is not certain, but the dip directions of the overlying pelagic Soğukçam Limestone and rather earlier arrival of the pure pelagic facies in the SS section when compared with the STG section, suggest a tectonic contact (see Chapter 2.1).

The following specimens were identified within this zone; radiolaria (diversified), *Spirillina* sp., *Lenticulina* sp., lagenid foraminifera, *Pithonella* sp., an specimen of *Mercierella* ? *dacica*, ostracoda, echinoid spines and fragments, bivalve fragments and aptychi.

The age assignement to this zone is rather difficult when compared to the Radiolaria "Zone" of the STG section. Although both zones present identical radiolaria assamblages, the stratigraphic position of this zone in the SS section is certainly earlier than Late Berriasian, depending on the absence of *Calpionella elliptica* and *Calpionellopsis* species within the underlying *Calpionella* Zone. As a result of that

the chronostratigraphic position of this zone is not exact and the lower boundary is shown with a dotted line in the Table 3.

CHAPTER 3

MICROFACIES ANALYSES

3.1. Microfacies types and depositional environments

Microfacies analyses include both lithofacies analysis (determination of the depositional texture of rocks, composition of the grains and the back-ground material) and biofacies analysis (examination of fossil associations). Since the similiar lithofacies can occur in variety of depositional environments and the diagenetic processes can greatly modify the original texture (e.g. compaction can transform a wackestone into a packstone or background micrite can be replaced by sparite etc.), biofacies data are especially important to interpretate the depositional settings.

Since the "X-Y-Z model" of Irwin (1965), new concepts and several models has been introduced mainly based on the investigation of the analogous modern subtropical and tropical carbonates and their comparision with the ancient ones. It is obvious that each depositional time interval (determining type of the faunal and floral associations), latidunal position (warm- vs. cool-water carbonates), morphology of the shelf (ramp vs. platform with slope break), sedimentation rates (drowned platform vs. rimmed platform), siliciclastic input, paleoceanographic conditions and many other parameters affect the microfacies types and their distribution. Several models have been proposed for the ramp carbonates, rimmed platforms, non-rimmed shelves and isolated platforms (and atolls).

One of the widely known models is the Wilson's Standard Facies Model (1975) that describes 9 Standard Facies Zones (FZ) with 24 Standard Microfacies Types (SMF) for a rimmed tropical carbonate platfrom. A revision of this model was made by Flügel (2004) that includes 26 SMF Types for a rimmed carbonate platform with 10

Facies Zones. Another model for the ramp type carbonate platforms was also proposed by him with 30 Ramp Microfacies Type (RMF).

In this study, the expanded version of Dunham's (1962) classification of carbonate rocks by Embry and Klovan (1971) was used for the textural classification of each sample (Fig.13). Embry and Klovan (1971) introduced grain size parameter (2 mm as the criterion) and two new classifications; namely, the floatstone and rudstone as the equivalents of the wackestone-packstone and grainstone, respectivley (Fig. 13).

		CLASS	SIFICATION OF LI	MESTONES (DUNH	AM 1962)			
		DEPOSITIO	ON TEXTURE REC	OGNIZABLE		DE	EPOSITIONAL T	EXTURE
Original com	ponents not bo	NOT RECOGNIZABLE						
Contains mud Lacks mud (particles of clav and fine silt size) and is					were bound together during deposition as shown			
Mud-supported Grain-support			grain- by intergrown or la		lamination	CRYSTALLINE CARBONATE		
less the 10% grains	more than 10% grains		supported	contrary to gravity, sediment-floored cavities that are roofed over by organic or questionable organic matter and are too large to be interstices		(Subdivide according classification designed to bear on physical texture or diagenesis)		
MUDSTONE	WACKESTONE	PACKSTONE	GRAINSTONE	BOUNDSTONE				
		EXPA	ANDED CLASSIFIC	CATION (EMBRY ar	d KLOVAN 1971)		
	ORIG	AUTOCHTHONOUS LIMESTONE COMPONENTS ORGANICALLY BOUND DURING DEPOSITION						
Less than 10% > 2 mm components contains lime mud (< 0.03 mm)			no lime mud	Greater than compone	10% > 2 mm ents	by organisms which		
Mud supported		Grain-si	Grain-supported		> 2 mm	build	encrust	act
less than 10% grains (> 0.03 mm an	greater that 10% grains	in s		supported	component supported	a rigid framework	and bind	as bafflers
< 2 mm)	< 2 mm)			BOUNDSTONE				
MUDSTONE	WACKESTON	E PACKSTONE	GRAINSTONE	FLOATSTONE	RUDSTONE	FRAMESTONE	BINDSTONE	BAFFLESTONE

Figure 13. Origianal carbonate rock classification by Dunham (1962) and the expanded version by Embry and Klovan (1971) (from Flügel, 2010).

By the integration of the biofacies data with the textural classification of each sample, microfacies types were determined. The comparision of them with the SMF types and the distribution of the microfacies through the measured sections (to eliminate local energy changes that may hinder the original depositional environment) helped in the determination of the depositional environments in the study area. For comparision, SMF types of Flügel (2004) for a rimmed carbonate platform was used (Fig. 14). The choice of a rimmed platform model is based on the fact that the Edremit - Bursa – Bilecik Carbonate Platform includes Günören Limest-

Figure 14. The facies zones (FZ) of the rimmed carbonate platform model and the distribution of the standard microfacies types (SMF). Note that same SMF type can occur in several FZs which make the integration of biofacies data and the examination of microfacies distribution within a studied succession necessary for the determination of depositional environment (A: evaporitic, B: brackish) (Flügel, 2010).

one with reefal belts and back-reef lagoonal facies and the presence of Yosunlukbayırı Formation with shallow-water derived clasts deposited as intercalated beds between the background pelagic deposits, representing a slope environment of a rimmed platform (Altiner et al., 1991). In this study, 10 microfacies types and 4 depositional environments were identified (Table 4). For detailed documentation of each sample, please see the "Excel" file in the attached CD (Appendix A).

3.2. Slope to basin Facies

These facies are represented by the Yosunlukbayırı Formation and the overyling Soğukçam Limestone of both the STG and SS sesctions. The slope to basin facies are characterized by the continuous pelagic background sedimentation with related pelagic taxa (like calpionellids, *Saccocoma* sp., planktonic foraminifera, *Pithonella* sp., *Globochaete* sp., calcareous dinocysts, radiolaria and aptychi) punctuated by the calciturbiditic intercalations that are represented by the platform derived material (benthic foraminifera, microencrusters, fragments of coral, bivalve, bryozoa, echinoids, crinoids, sponges and worm tubes) and the resedimented clasts.

3.2.1. MF 1, Peloidal, bioclastic packstone/ Bioclastic packstone

The dominant allochems of this facies are the peloids and bioclasts (Table 4 & Fig.15). The bioclasts include *Globochaete* sp., *Mercierella*? *dacica*, *Saccocoma* sp., very rare planktonic foraminifera, small amount of smaller and larger benthic foraminifera, *Pithonella* sp., calcareous dinocysts and rare macrofossil fragments. The background material is micrite. Additionally, within this micrite, many silt size unidentified bioclast fragments occur.

According to the textural classification and the fossil content, this microfacies shows similarity with the SMF 2 of Flügel (2010) (Table 4 & Fig.14) and indicates toe-of-slope depositional environment. Similar microfacies have been identified in the Oberalm Formation (Boorová et al., 2015; biogenic wackestone/ rarely biogenic

packstone with radiolaria and calpionellid, Northern Calcareous Alps, Salzburg Area, Austria), the Plassen Formation (Gawlick & Schlagintweit, 2006; wackestones with "protoglobigerines", *Saccocoma* and resedimented shallow water debris/ fine-grained packstones with foraminifera, Northern Calcareous Alps, Austria), the Rosso Ammonitico Unit of the Trapanese Domain (Andreini et al., 2007; peloidal packstone with *Saccocoma*, radiolaria, calpionellids, *Globochaete*, *Cadosina*, *Lenticulina*, Siciliy, Italy), the Rogoźa Coquina Member (Reháková & Wierzbowski, 2005; wackestones to packstones of the *Saccocoma*/ *Globochaete* microfacies, Pieniny Klippen Belt, Carpathians, Poland) and the Slivnitsa Formation (Ivanova et al., 2008; microfacies F4-peloidal *Saccocoma* wackestone and packstones with chert nodules, F4a-peloidal wackestones with radiolaria, Moesian Carbonate Platfrom, Bulgaria) and interpreted as the lower slope-basinal deposits.

Figure 15. Photomicrographs of the peloidal, bioclastic packstone facies (MF 1). **a**) STG-26, s: *Saccocoma* sp., g: *Globochaete* sp., p: peloids. **b**) STG-30, f: foraminifera, cr: calcified radiolarians, p: peloids. Also note that there are many silt size bioclast fragments dispersed within the micrite matrix (bc).

3.2.2. MF 2, Bioclastic mudstone

This is probably the least exciting facies present in the studied sections in terms of the fossil content. This facies offers rare fossils, including *Globochaete* sp., *Mercierella*? *dacica*, calcareous dinocysts, *Saccocoma* sp., calcified radiolarions and small miliolids. The background material is micrite (Fig.16). The amount of peloid is

also negligible. This microfacies shows similarity with the SMF 3 of Flügel (2010) (Table 4 & Fig.14) and indicates toe-of-slope depositional environment. In previous studies, similiar facies from the Rogoźa Coquina Member (Reháková & Wierzbowski, 2005; mudstones of radiolarian-calpionellid facies, Pieniny Klippen Belt, Carpathians, Poland), the Rosamač Limestone (Petrova et al., 2012; MF1-microfossil-bearing mudstones with calpionellids, calcareous dinocysts, calcified sponge spicules and radiolarians, *Globochaete alpina*, ostracoda, sporadic benthic foraminifera, Stara Planina-Poreč Zone, Eastern Serbia) and the Braşov Formation (Grădinaru et al., 2016; MF-7-bioclastic wackestone-mudstone with pelagic bivalve shells, echinoid fragments and spines, benthic and planktonic foraminifera, rare radiolarians, sponge spicules, pelagic bivalve shells, echinoid fragments and spines, planktonic foraminifera, rare calpionellids and ostracods, Getic Carbonate Platform, Southern Carpathians, Romania) have been reported. For these microfacies basinal environments have been interpreted.

Figure 16. Photomicrographs of the bioclastic mudstone facies (MF 2). **a**, **b**) STG-2, f: foraminifera, bc: bioclast.

Table 4. Summary of the microfacies types and interprated depositional environments for the Sivrihisar successions. "Standard Microfacies Types" and "Facies Zone" columns indicate the equivalent of the "Microfacies Types" in terms of Flügel's methodology (2010). Empty boxes indicate no match between the determined microfacies and the SMF of Flügel. For detailed documentation please see the "Excel" sheet in the attached CD (Appendix A).

Depositional Environment	Microfacies Type	Microfacies	Standard Microfacies Type (SMF) (Flügel, 2010)	Facies Zone (FZ) (Flügel, 2010)	Main Components	Sample No.	
Toe of Slope	MF 1	Peloidal, bioclastic packstone/ Bioclastic packstone	SMF 2	FZ 3	Peloids, <i>Globochaete</i> sp., <i>Mercierella</i> ? <i>dacica</i> , <i>Pithonella</i> sp. <i>Saccocoma</i> sp., rare planktonic and smaller and rare larger benthic foraminifera, aptychi, calcareous dinocysts, nannoconids, echinoid spines, bivalve and crinoid fragments, and calcified radiolarians.	STG-1, STG-3, STG-4, STG-5, STG-6, STG-7, STG-10, STG-11, STG-14, STG-15, STG-16, STG-17, STG 18, STG-19, STG-20, STG-21, STG-22, STG-23, STG-24, STG-25, STG-26, STG-27, STG-28, STG-29, STG-30, STG-37, STG-39	
	MF 2	Bioclastic mudstone	SMF 3	FZ 3	Globochaete sp.,Mercierella ? dacica , calcareous dinocyts, echinoid spines, Saccocoma sp., calcified radiolarians, rare smaller benthic foraminifera	STG-2, STG-8, STG-12, STG-35	
	MF 3	Bioclastic/ Calpionellid/ Radiolarian wackestone- packstone	SMF 3	FZ 3	Calpionellids, radiolaria, rare smaller benthic foraminifera, incertae sedis, <i>Globochaete</i> sp., <i>Mercierella ? dacica</i> , <i>Saccocoma</i> sp., <i>Crescentiella morronensis, Pithonella</i> sp., calcareous dinocysts, aptychi, ostracods, echinoids spines, crinoid fragments, bivalve fragments	STG-31, STG-32, STG-33, STG-34, STG-36, STG-67B, STG-70A, STG-71A, STG-72, STG-74, STG-80, STG-81, STG-82, STG-83, STG-84, STG-84A, STG-85, STG-86, STG-86A, STG-87, STG-88, STG-88A, STG-89A, STG-90, STG-91, STG-91A, STG-92, STG-92A, STG-94, STG-96, STG-97, STG-98, STG-99, STG-100, STG-101, STG-102, STG-103, STG-104, SG-1B, SS-20, SS-19, SS-18, SS-17A, SS-16, SS-15, SS-14, SS-12, SS-11, SS-10, SS-9, SS-8A, SS-8, SS-7, SS-6, SS-5, SS-4, SS-3, SS-2, SS-1	
Slope	MF 4	Bioclastic, lithoclastic, peloidal/lithoclastic, peloidal packstone	SMF 4	FZ 4	Larger and smaller benthic foraminifera, microencrusters (<i>Crescentiella morronensis, Lithocodium aggreagtum, Koskinobullina socialis, Labes antramentosa, Perturbatacrusta leini, Radiomura cautica</i> , bacinellid structure), <i>Saccocoma</i> sp., calpionellids, <i>Mercierella ? dacica</i> , bivalve, crinoid and echinoid fragments, bryozoa and coral fragments, <i>Terebella lapilloides</i> and other serpulid tubes, calcareous dinocysts, <i>Pithonella</i> sp., <i>Globochaete</i> sp., aptychi, calcified radiolarians, peloids, lithoclasts	STG-38, STG-40, STG-41, STG-44, STG-48, STG-51, STG-54, STG-68, STG-73, STG-74A, STG-75, STG-75A, STG-109, STG-109A, STG-110A, SS-13	
	MF 5	Peloidal, intraclastic/ intraclastic, bioclastic rudstone to grainstone/ packstone to grainstone		FZ 4	 Peloids, intraclasts, larger and smaller benthic foraminifera, microencrusters (Crescentiella morronensis, Lithocodium aggreagtum, Koskinobullina socialis, Labes antramentosa, Perturbatacrusta leini, Radiomura cautica, bacinellid structure), calpionellids, Saccocoma sp., Mercierella ? dacica, bivalve, crinoid and echinoid fragments, bryozoa and coral fragments, Terebella lapilloides and other serpulid tubes, Cayeuxia sp., Globochaete sp., aptychi, calcified radiolarians 	STG-46, STG-50, STG-56, STG-57, STG-57A, STG-58, STG-59, STG-60, STG-61, STG-62, STG-63, STG-64, STG-66, STG-67A, STG-76, STG-106, SG-3, SG-2, SG-1	
	MF 6	Bioclastic, lithoclastic floatstone/ rudstone	SMF 5	FZ 4	Lithoclasts, larger and smaller benthic foraminifera, microencrusters (<i>Crescentiella morronensis, Lithocodium aggreagtum, Koskinobullina socialis, Labes antramentosa, Perturbatacrusta leini, Radiomura cautica,</i> bacinellid structure), calpionellids, <i>Mercierella ? dacica</i> , bivalve, crinoid and echinoid fragments, bryozoa and coral fragments, Terebella lapilloides and other serpulid tubes, <i>Cayeuxia</i> sp., <i>Globochaete</i> sp., aptychi, calcified radiolarians	STG-42, STG-43, STG-45, STG-47, STG-49, STG-52, STG-53, STG-55, STG-64A, STG-65, STG-66A, STG-66B, STG-67, STG-68A, STG-69, STG-70, STG-71, STG-72A, STG-77, STG-78, STG-79, STG-93, STG-95, STG-105, STG-106A, STG-107, STG-110, STG-111, SG-4	
Platform (Back-reef)	MF 7	Peloidal/ peloidal, intraclastic packstone/ poorly washed grainstone wtih bioclasts	SMF 16 & SMF 18	FZ 7	Peloids, intraclasts, larger and smaller benthic foraminifera, <i>Crescentiella morronensis</i> , Lithocodium aggregatum, Thaumatoporella parvovesiculifera, Cayeuxia sp., bacinellid structre, echinoid spines, echinoid fragments, rare coral fragments, very rare Mercierella ? dacica	STG-111A, STG-114, STG-115, STG-117A, STG-117B, STG-118A, STG-118B, STG-119B, STG-119C, STG-120, STG-123, STG-125, STG-127, STG-128, STG-132, STG-135, STG-136, STG-137, STG-138, STG-130, STG-139, STG-141, STG-142, SSTG-143	
	MF 8	Bioclastic mudstone/ wackestone	SMF 8	FZ 7	Larger and smaller benthic foraminifera, echinoid and bivalve fragments, peloids	STG-113, STG-117, STG-123A, STG-124, STG-129, STG-130, STG-131, STG-131A, STG-133, STG- 134	
	MF 9	Intraclastic packstone	-	FZ 7	Intraclasts, peloids rare larger benthic foraminifera, echinoid fragments, bivalve fragments	STG-112, STG-118, STG-121, STG-122, STG-126, STG-140	
	MF 10	Intraclastic rudstone (microbreccia)	-	FZ 7	Intraclasts (clasts have peloidal packstone texture with rare benthic foraminifera), peloids, very rare larger benthic foraminifera, echinoid fragments, <i>Crescentiella morronensis</i> and <i>Cayeuxia</i> sp.	STG-116, STG-119	

3.2.3. MF 3, Bioclastic/ Calpionellid/ Radiolarian wackestone-packstone

This is the most dominant facies type again representing background pelagic sedimentation of quiescence periods in terms of platform derived grativy flow deposits (Fig.17). Bioclasts include mainly pelagic groups like calpionellids, radiolaria, *Saccocoma* sp., *Globochaete* sp., *Pithonella* sp., calcareous dinocysts and aptychi. Additionally, rare smaller benthic foraminifera, *Crescentiella morronensis*, ostracods, echinoid spines, echinoderm and bivalve fragment occur.

This microfacies shows similarity with the SMF 3 of Flügel (2010) (Table 4 & Fig.14) and indicates toe-of-slope depositional environment. The Oberalm Formation (Boorová et al., 2015; radiolarian/ calpionellid wackestone-packstone, Northern Calcareous Alps, Salzburg Area, Austria), the Plassen Formation (Gawlick & Schlagintweit, 2006; wacke-/ packe-stones with calpionellids/ radiolaria, Northern Calcareous Alps, Austria), the Lattimusa Formation (Andreini et al., 2007; calpionellid-bearing mudstone to wackestone-packstone with radiolarians, Globochaete, Siciliy, Italy), the Rogoźa Coquina Member (Reháková & Wierzbowski, 2005; calpionellid-radiolarian wackestones, Pieniny Klippen Belt, Carpathians, Poland), the Sădulești Formation (Săsăran et al., 2001; bioclastic wackestone/ packstone with sponge spicules, frequent echinoderm plates, small belemnites, ammonites and Lenticulina sp., Cheile Turenilor, Romania), the Cetatea Neamttului Member of the Dâmbovicioara Formation, (Grădinaru et al., 2016; MF-9bioclastic wackestone with echinoid fragments and spines, benthic shark teeth, sponge spicules, ostracods, pelagic bivalve shells, benthic foraminifera, planktonic foraminifera, peloids, radiolarians and rare gastropods, bivalves, brachiopod shells and shallow-water resedimented lithoclasts; MF-11-bioclastic packstone-wackestone with pelagic bivalve shells, echinoid fragments, echinoid spines, sponge spicules, intraclasts and rare shallow-water fossils, Getic Carbonate Platform, Southern Carpathians, Romania) and the Rosomač Limestone (Petrova et al., 2012; MF-2microfossiliferous wackestone with calpionellids, calcareous dinocysts, radiolarians and Globochaete alpina, rare benthic foraminifera and aptychi; MF-4-fine bioclastfossiliferous wackestones with calpionellids, Globochaete alpina, calcified radiolarians and calcareous dinocysts, benthic foraminifera, aptychi) show similiar microfacies, representing the toe-of-slope/ basinal depositional environments.

Figure 17. Photomicrographs of the bioclastic/ calpionellid/ radiolarian wackestonepackstone facies (MF 3). a) STG-31, bioclastic packstone, a: aptychus, bc:bioclast. b) STG-70A, calpionellid wackestone, c: calpionellid, bc: bioclast. c) STG-88A, bioclastic wackestone, f: foraminifera, c: calpionellid, r: radiolaria. d) SS-4, radiolarian packstone, r: radiolaria.

3.2.4. MF 4, Bioclastic, lithoclastic, peloidal / lithoclastic, peloidal packstone

This facies represents distal parts of gravity – induced deposits that transport material from the shelf margin (in this case from the Günören Limestone). Benthic bioclastic allochems increase in amount and larger benthic foraminifera, microencrusters (like *Lithocodium aggregatum, Koskinobullina socialis, Labes antramentosa, Perturbatacrusta leini, Radiomura cautica, Crescentiella morronensis* and *Bacinella*-type structure), bivalve, crinoid, echinoid, bryozoa and coral fragments,

Terebella lapilloides and serpulid tubes dominate the bioclastic assamblages (Fig.18). The background material is again composed of micritic matrix within which individuals of calpionellids, *Saccocoma* sp., calcareous dinocysts, *Pithonealla* sp., *Globochaete* sp., aptychi and calcified radiolarians are present as the pelagic constituents. Resedimented intraclasts and peloids are common.

This microfacies show similarity with the SMF 4 of Flügel (2010) (Table 4 & Fig.14) and indicates slope depositional environment. From the Schrambach Formation (Boorová et al., 2015; intraclast-biogenic-peloidal packstone/ intraclast-biogenicpeloidal wackestone with radiolaria, spicules and calcareous dinocysts, Northern Calcareous Alps, Salzburg Area, Austria), the Rossfeld Formation (Boorová et al., 2015; intraclast-peloid-biogenic wackestone with radiolaria, sponge spicules, calpionellids and benthic foraminifera, Northern Calcareous Alps, Salzburg Area, Austria), the Plassen Formation (Gawlick & Schlagintweit, 2010; fine-grained packstones with small benthic foraminifera, microencruster Crescentiella morronensis, Plassen Carbonate Platform, Austria), the Bohinj Formation (Kukoč et al., 2012; lithoclastic packstone-breccia with radiolarian-rich and calpionellidbearing lime mudstone matrix, Bohinj Area, Internal Dinarides, NW Slovenia), the Ardeu Unit (Pleş et al., 2015; F5-bio-intraclastic packstone with fragments of microencrusters, corals, mollusk shells, Crescentiella morronensis, calpionellids and calcareous dinocysts, Metaliferi Mountains, Romania) and the Lespezi Formation (Grădinaru et al., 2016; bioclastic, lithoclastic packstone-wackestone with abundant calpionellids, lithoclasts, pelagic bivalve shells, ostracods, peloids, echinoid fragments, sponge spicules and fragments, Crescentiella morronensis, serpulids, bryozoans and benthic foraminifera, Bucegi Mountains, Southern Carpathians, Romania) similiar microfacies have been interpreted as slope deposits.

3.2.5. MF 5, Peloidal, intraclastic/ intraclastic, bioclastic rudstone to grainstone/ packstone to grainstone

This facies is similiar with the MF 4 in terms of the type of grains. The only differences are the dominance of inctraclasts and peloids over bioclasts and sparry

calcite cement suggesting higher energy environments, probably proximal parts of the gravity flow deposits.

The main components of this facies are nearly identical with the MF 4 (Table 4). This microfacies shows similarity with the SMF 5 of Flügel (2010) (Table 4 & Fig.14) and indicates the slope depositional environment. Similiar microfacies have been identified from the Buila-Vânturarița Massif (Pleș et al., 2013; F1-intraclastic, bioclastic rudstone-grainstone with fragments of corals, sponges, bryozoans, foraminifera, microencrusters, calcareous algae, gastropods, bivalves and worm tubes, Southern Carpathians, Romania), the Sădulești Formation (Săsăran et al., 2001; intraclastic, bioclastic rudstone/ grainstone with "Tubipyhtes" morronensis, Mercierella dacica, benthic foraminifera, fragments of corals, bryozoans, sponges and echinoderms, Cheile Turenilor, Romania), the Lespezi Formation (Grădinaru et al., 2016; MF-14-bioclastic, lithoclastic packstone-grainstone with Crescentiella morronensis, Terebella lapilloides, benthic foraminifera, bryozoans, serpulids, bivalve fragments and rare calpionellids, Southern Carpathians, Romania), the Ardeu Units (Pleş et al., 2015; F4-bioclastic, intraclastic grainstones/ rudstones with sponge fragments, echinoid plates, foraminifera, Crescentiella morronensis and reefal intraclasts, Metaliferi Mountains, Romania), the Mateias Limestone (Bucur et al., 2010; fine-grained grainstone-packstone with benthic foraminifera, sponge spicules and fragments of reefal limestone, South Carpathians, Romania), the Slivnitsa Formation (Ivanova et al., 2008; F5-bio-lithoclastic grainstones to rudstones with Saccocoma, foraminifera, "Tubiphytes" morronensis, peloids and intraclasts, Moesian Platform, SW Bulgaria), the Plassen Formation (Gawlick & Schlagintweit, 2006; bioclastic packstones-rudstones with reefal debris, Northern Calcareous Alps, Austria) and the Rosomač Limestone (Petrova et al., 2012; MF5-peloidal and intraclastic-bioclastic grainstones with calpionellids, Globochaete alpina, calcified radiolarians, sponge spicules and calcareous dinocysts bearing intraclasts, fragments of crinoids, corals, algae, Crescentiella morronensis, benthic foraminifera and aptychi, Stara Planina-Preč Zone, eastern Serbia) which have been interpreted as the shelf margin-slope deposits.

Representative thin section photomicrographs are illustrated in the Figure 19.

Figure 18. Photomicrographs of the bioclastic, lithoclastic, peloidal/ lithoclastic, peloidal packstone (MF 4). **a**) STG-41, lithoclastic, peloidal packstone. **b**) STG-54, bioclastic, peloidal packstone. **c**, **d**, **e**, **f**) STG-75A, intraclastic, bioclastic packstone. **g**) STG-110A, peloidal, intraclastic poorly washed grainstone to packstone. ic: intraclast, p: peloid, f: foraminifera, ec: echinoid fragment, ks: *Koskinobullina socialis*, cm: *Crescentiella morronensis*, br: bryozoa, c: calpionellid.

Figure 19. Photomicrographs of the peloidal, intraclastic/ intraclastic, bioclastic rudstone to grainstone/ packstone to grainstone (MF 5). **a**) STG-46, peloidal, intraclastic grainstone with bioclasts. **b**) STG-61, intraclastic, bioclastic grainstone. **c**) STG-62, intraclastic, bioclastic poorly washed grainstone. **d**) STG-67A, peloidal, intraclastic, bioclastic packstone to grainstone. **e**) SG-3, intraclastic, bioclastic grainstone **f**) SG-1, bioclastic, intraclastic grainstone. ic: intraclast, ic,cm: intraclast with *Crescentiella morronenesis*, ic,g: intraclast with gastropod, p: peloid, o: ooid, bc: bioclast, f: foraminifera, ec: echinoid fragment, cm: *Crescentiella morronensis*, br: bryozoa, c: calpionellid.

3.2.6. MF 6, Bioclastic, lithoclastic floatstone/ rudstone

This facies is comparable with MF4 and MF 5 in terms of the grain content. In contrast, more than 10% of the grains are larger than 2mm sand size in MF 6 (Fig.20).

This microfacies shows similarity with the SMF 5 of Flügel (2010) (Table 4 & Fig.14) and indicates slope depositional environment. Similarly, microfacies from the Plassen Formation (Gawlick & Schlagintweit, 2006; rudstones with reefal debris/ grainstones with foraminifera, reefal fragments and microencrusters, Northern Calcareous Alps, Austria), the Mateias Limestone (Bucur et al., 2010; bioclasticintraclasitc rudstone with coral fragments, intraclasts and matrix including fragments of corals, bivalves, gastropods, brachiopods, bryozoans, worm tubes, echinoderms, algae and benthic foraminifera, Crescentiella morronensis, Radiomura cautica, Koskinobullina socialis, South Carpathians, Romania), the Săndulești Formation (Săsăran et al. 2001; intraclastic, bioclastic rudstone with coarse-grained reefal detritus, benthic foraminifera, "Tubiphytes" morronensis, Lithocodium aggregatum, Thaumatoporella parvovesiculifera, Koskinobullina socialis, Radiomura cautica, Troglotella incrustans, Bacinella irregularis, Mercierella dacica, and Terebella sp., Cheile Turenilor, Romania), the Ardeu Unit (Ples et al., 2015; F5-intra-skeletal rudstone/ floatstone with microencrusters, corals, sponges, foraminifera, Crescentiella morronensis, calpionellids and calcareous dinocysts, Metaliferi Mountains, Romania), the Slivnista Formation (Ivanova et al., 2008; F7-biolithoclastic grainstones to rudstones with coral fragments, Lithocodium aggregatum, sponges, bryozoans, serpulids, foraminifera, "Tubiphytes" morronensis, algae and lithoclasts of reef debris, Moesian Carbonate Platform, SW Bulgaria) and the Rosomač Limestone (Petrova et al., 2012; MF-6-bioclastic-intraclastic floatstone wackestone intraclasts including calpionellids, calcified radiolarians, with Globochaete alpina and calcareous dinocysts and shallow-water bioclasts, MF-7bioclastic-intraclastic rudstone with similiar grain content, Stara Planina-Poreč Zone, eastern Serbia) has been interpreted as the slope breccia, representing gravityinduced carbonate deposits.

3.3. Platform Facies

This facies belong to the Günören Limestone that overthrusted the slope to basin deposits of the Yosunlukbayırı Formation and the Soğukçam Limestone (see Chapter 2). The platform facies is characterized by larger (*Labyrinthina*, *Pseudocyclammina* etc.) and smaller benthic foraminifera, microencrusters (*Crescentiella morronensis, Lithocodium aggregatum* etc.), algae (*Cayeuxia* sp.) and macrofossil fragments. The intraclasts and peloids also form important constituents of these facies. The main differences betwen the platform and slope to basin facies are the lack of pelagic organisms, the presence of complex larger foraminifera and the lack of transported, resedimented, broken clasts in the platform facies.

3.3.1 MF 7, Peloidal/ peloidal, intraclastic packstone/ poorly washed grainstone with bioclasts

The dominant allochems of this facies are the peloids and intraclasts (Table 4 & Appendix A). The bioclasts include larger and smaller benthic foraminifera, microencruster (*Crescentiella morronensis*, *Lithocodium aggregatum*, *Thaumatoporella parvovesiculifera*, *Bacinella* - type structure), algae (*Cayeuxia* sp.), very rare *Mercierella* ? *dacica*, echinoid and rare coral fragments (Fig.21).

SMF-16 and SMF-18 of Flügel (2010) are the most similiar microfacies types to our MF 7 (Table 4 & Fig.14). If the occurrence of shallow marine fauna (complex benthic foraminifera) without pelagic organisims is considered, platform depositional environments are interpreted for this facies. The co-occurrence of *Protopeneroplis striata* and *Mohlerina basiliensis* (abundant in the shelf edge, reefal areas) with the complex benthic foraminifera like *Labyrinthina mirabilis* and the presence of peloids and intraclasts suggest back-reef lagoonal areas that should not be so far away from the reefal shelf-edge. Similiar microfacies has been reported from the Ardeu Unit (Pleş et al., 2015; F1-bio-intraclastic grainstone/ packstone with *Labyrinthina mirabilis, Everticyclammina praekelleri, Ammobaculites* sp., other benthic foraminifera, algae and *Thaumatoporella parvovesiculifera*, Metaliferi Mountains, Romania) and the Yalta and Ay-Petri Massifs (Krajewski, 2010; peloidal packstones

Figure 20. Photomicrographs of the bioclastic, lithoclastic floatstone/ rudstone (MF 6). **a**) STG-43, lithoclastic floatstone (microbreccia). **b**) STG-53, bioclastic floatstone. **c**) STG-64A, bioclastic floatstone, background has peloidal grainstone to

and grainstones with benthic foraminifera, Crimea Mountains, Southern Ukraine) and shallow-marine platform depositonal environments has been interpreted.

3.3.2 MF 8, Bioclastic mudstone/ wackestone

Benthic foraminifera is the dominant allochem of this facies (Table 4 & Appendix A). Additionally, echinoid and bivalve fragments occur. Peloids are also present in the background.

The most similiar standard microfacies type of Flügel (2010) for this facies is the SMF 8 (Table 4 & Fig.14). Similiar to the MF 7, shallow marine, back-reef environment is suggested for this facies type. Krajewski (2010) defined similiar facies from the Yalta and Ay-Petri Massifs (mudstone-foraminiferal wackestone, Crimea Mountains, Southern Ukraine)

Figure 22 illustrates representative thin section photomicrograph of this facies.

3.3.3 MF 9, Intraclastic packstone

This facies is characterized by the dominance of intraclasts and peloids. Some benthic foraminifera and other bioclasts (echinoid and bivalve fragments) show rare occurrences (Table 4 & Fig.23).

There is no equivalence of this facies in the SMF of Flügel (2010). The occurrence of shallow marine benthic foraminifera without any record of pelagic organisms and the intercalation of this facies with the back-reef, lagoonal platform carbonates suggest similiar depositional environment. Ivanova et al. (2008) from the Slivnitsa Formation

Figure 20 cont'd. packstone texture. d) STG-66A, bioclastic floatstone to rudstone with peloidal, bioclastic, poorly washed grainstone to packstone matrix. e) STG-66B, bioclastic floatstone with intraclastic, bioclastic packstone background. f) STG-79, intraclastic, bioclastic rudstone to grainstone (microbreccia). g) STG-93, intraclastic rudstone, clasts have bioclastic wackestone texture. ic: intraclast, p: peloid, l,t: *Lithocodium aggregatum* with *Trogrotella incrustans*, r: *Radiomura cautica*, s: sponge, bf: bivalve fragment, pl: *Perturbatacrusta leini*, cm: *Crescentiella morronensis*, bc: bioclast.

Figure 21. Photomicrographs of the peloidal/ peloidal, intraclastic packstone/ poorly washed grainstone with bioclasts (MF 7). **a**) STG-114, peloidal, intraclastic packstone with bioclasts. **b**) STG-117A, peloidal, intraclastic packstone. **c**, **d**) STG-136, peloidal packstone to poorly washed grainstone with foraminifera. ic: intraclast, p: peloid, f: foraminifera.

Figure 22. Photomicrographs of the bioclastic mudstone/ wackestone (MF 8). **a**) STG-113, bioclastic mudstone. **b**) STG-123A, benthic foraminiferal mudstone to wackestone. f: foraminifera, p: peloid, m: micrite.

(F10-intraclastic breccia with rare foraminifera, Moesian Carbonate Platform, SW Bulgaria) and Krajewski (2010) from the Ay-Petri Massif (microbreccia with bioclasts, Crimea Mountains, Southern Ukraine) reported similiar facies, indicating shallow marine, lagoonal depositional environments.

3.3.4 MF 10, Intraclastic rudstone (microbreccia)

This facies is characterized again by the dominance of intraclasts and peloids. Some benthic foraminifera and other bioclasts (echinoid and bivalve fragments, *Crescentiella morronensis, Cayeuxia* sp.) show very rare occurrences (Table 4). This is actually a MF 9 type facies with larger clast sizes (more than 10% of the grains has size larger than 2 mm) (Fig.23).

There is no equivalence of this facies in the SMF of Flügel (2010). Similiar to the MF 9 interpratation, same depositional environment is suggested for the MF 10 (Tabel 4). Similiar microfacies has been reported from the Ay-Petri Massif (Krajewski, 2010; breccia consists of lithoclasts and cement, Crimea Mountains, Southern Ukraine) and interpret as the lagoonal deposits.

The slope to basin facies of the STG section shows transition from the toe-of-slope basinal facies (MF1 and MF2) to the slope facies (MF4, MF5 and MF6, representing the gravity flow induced, calciturbiditic deposits and MF 3, characterizing the background continous pelagic deposition on the slope). Especially, Tithonian onward, the amount of platform derived material increased (Figure 12 & Appendix A). The facies-controlled local first occurrences of shallow marine dwelling fauna (e.g. *Crescentiella morronensis, Lithocodium aggregatum, Moesiloculina* sp., *Ammobaculites* sp., *Cayeuxia* sp., bacinellid structure, *Trogrotella incrustans, Charentia* sp., *Nautiloculina* sp., *Pseudocyclammina lituus* and *Everticyclammina* sp.) in the slope facies of the Yosunlukbayırı Formation are in much higher chronostratigraphic positions when compared to their Kimmeridgian occurrences in the platform carbonates of the Günören Limestone (Figure 12). The amount of the ti-

Figure 23. Photomicrographs of the intraclastic packstone and rudstone facies (MF 9 & 10). **a**) STG-112, intraclastic packstone. **b**) STG-122, intraclastic packstone, clasts have peloidal packstone texture. **c**) STG-116, intraclastic rudstone (microbreccia), clasts have peloidal packstone texture with very rare benthic foraminifera. **d**) STG-119, intraclastic rudstone (microbreccia), clasts have peloidal, intraclastic packstone texture. ic: intraclast, p: peloid, m: micrite, sc: sparry calcite.

me lag between the local first occurrences of these taxa in the slope environments and their first occurrences in the platform carbonates must be related to their environmental distribution. The ones that occupied areas closer to the shelf edge would be more prone to resedimentation in the slope environments and they would be recorded nearly simultaneously both in the slope and platform environments. Based on the determined microfacies types and fossil assemblages, a microfacies model for the studied succession is proposed in Figure 24. If the position of the studied sections with respect to the Edremit – Bursa – Bilecik Carbonate Platform is considered, the studied basin and slope facies should represent the southern platform margin and slope environments of this carbonate platform that faced probably an ocean to the south during the Jurassic-Cretaceous interval. The Jurassic transgression over the basement rocks of the Sakarya Zone is represented by the clastics of the Bayırköy Formation in the western Turkey. This formation is unconformably overlain by the carbonates of the Taşçıbayırı Formation with the Rosso Ammonitico levels (see Chapter 1). The Tascibayiri Formation represents the condensed "start-up phase" (in the sense of Neumann & Macintyre, 1985; Sarg, 1988) deposits indicating the onset of a carbonate platform development. As the carbonate platform with a healthy, productive margin was established and the rate of carbonate production increased, the system passed into a "keep-up phase" (phase in which carbonate production can keep pace with the relative rise of sea level or accomodation space) through a "catch-up phase" (period during which the rate of accomodation creation is slightly higher than the rate of carbonate production) (Neumann & Macintyre, 1985; Sarg, 1988; Emery & Myers, 1996). This "keep-up phase" is characterized by overproduction of carbonate grains. As the rate of accomodation space decreased, overproduced carbonate sediments were redeposited from the platform margin into the interior of platform and/or they were shedded into deep water environments by gravity flow processes and by deposition from suspension. This last process is named as the highstand shedding and it is mostly encountered in great frequency during highstands (Schlager et al., 1994; Emery & Myers, 1996; Flügel, 2010) although the timing may vary depending on the relationship between the rate of accomodation space added and the rate of carbonate production. The Günören Limestone may be thought as a deposit of a platform in "keep-up phase" that was shedding large amounts of shallow marine carbonates to the surrounding basins. This shedded material constitutes the gravity flow deposits of the Yosunlukbayırı Formation which could be defined as a pelagic deposit punctuated by intervals of transported shallow marine intercalations. This formation forms the transitional facies between shallow marine platform (Günören Limestone) and pelagic facies (Soğukçam Limestone) (Fig.5 & 24).

Regarding the slope deposits of MF4, 5 and 6, although theres is no sedimentary structures indicating turbidite deposition such as erosive base, fully or partially developed Bouma Sequences and sole marks, the presence of shallow marine material intercalated with basinal sequences indicate pulses of gravity flow processes

Figure 24. Microfacies distribution of the southern platform margin and slope environments of the Edremit-Bursa-Bilecik Carbonate Platform during Kimmeridgian – Berriasian interval. There is no direct observation on the reefal parts of this platform, since the studied successions do not reveal such facies. The relationship of the studied formations are illustrated along a model with related facies photomicrographs. Additionally facies distribution of some important microfossils are shown. For microfacies types see Table 4. Note that fossil distributions in environment are time-dependent (e.g. calpionellids occur in latest Tithonian onward).

which may represent debris-flow deposits that show massive beds of packstone grainstone to microbreccia (rudstone to floatstone) types similiar to Drzewiecki and Simó (2002)' s debris-flow deposits. In fact, all these slope processes form a continuum; debris-flow may trigger and be transformed into turbidity flow distally down-slope (Drzewiecki & Simó, 2002). Upper Jurassic – Lower Cretacous carbonates of similiar microfacies have also been interpreted as the slope deposits in previous studies; the Rosomać Limestone (Petrova et al., 2012, Serbia), the Cieszyn Limestone (Matyszkiewicz & Slomka, 1994, Outer Carpathians, Poland), the Barmstein Limestone (Schlagintwiet & Gawlick, 2007, Northern Calacareous Alps), the Tressenstein Limestone (Schlagintweit & Ebli, 1999, Northern Calcareous Alps), the Rettenstein Debris Flow (Auer et al., 2009, Northern Calcareous Alps), the Mateiaş Limestone (Bucur et al., 2010, Southern Carpathians, Romania) and the Lower Cretaceous carbonate gravity-flow deposits (Kukoc et al., 2012, Internal Dinaride, Slovenia).

Since during lowstand exposures carbonate systems will not experince as much instense erosion as the siliciclastic systems (with processes like stream rejuvenation) due to chemical erosion rather than physical erosion and processes like rapid meteoric and marine lithification preventing mechanical erosion (Sarg, 1988; Emery & Myers, 1996; Flügel, 2010), the continuous intercalation of platform derived material in the studied section most probably represents highstand shedding.

CHAPTER 4

MICROPALEONTOLOGY

The main purpose of this chapter is to clarify the criteria used in the taxonomic classification of the identified fossil assemblages that form the main frame of this study on which all other interpretations based (like biostratigraphy, microfacies evolution etc.). The identifications were carried out on randomly oriented thin sections.

This chapter mainly includes brief descriptions, author's remarks on the morphology and stratigraphic ranges. This chapter is not an attempt to compile all the synonym lists or all the historical background of each taxon.

Mainly 3 groups have been studied; calpionellids, foraminifera and incertae sedis. The study of Remane (1985) is mainly used for the generic classification of the calpionellids. For the new genera introduced after this publication and for all the species, the original papers and the more recent ones were used. Loeblich and Tappan (1988), Kaminski (2004) and Pawlowski et al. (2013) are the main reference used in this study for the suprageneric and generic classification of the foraminifera. Recent papers were used for the species descriptions. For microproblematica, there is no single complier reference, several papers were used for their classifications. The related papers were listed in the synonym lists.

In the following pages information on each fossil group will be given. The related thin section plates are illustrated in the Appendix B.

4.1. Calpionellid Taxonomy

FAMILY CALPIONELLIDAE, Bonet 1956

Genus Crassicollaria Remane, 1962

Type species: Crassicollaria brevis Remane, 1962

Crassicollaria brevis Remane, 1962 Pl. 1, Figs. a-d

- 1962 Crassicollaria brevis n. sp.; Remane, 16, Figs. 19-26
- 1971 Crassicollaria brevis Remane, Remane, Pl. 3, Figs. 5-6

1991 Crassicollaria brevis Remane, Altıner & Özkan, Pl. 3, Figs. 6-8

1991 Crassicollaria brevis Remane, Tunç, Pl. 3, Fig. 1

1992 Crassicollaria brevis Remane, Tunç, Pl. 2, Fig. 3

1995 Crassicollaria brevis Remane, Olóriz et al., Pl. 1, Fig. 9

1999 Crassicollaria brevis Remane, Lakova et al., Pl. 1, Fig.6

2001 Crassicollaria brevis Remane, Ciborowski & Kołodziej, 345, Fig. 4

2004 Crassicollaria brevis Remane, Marino et al., Pl. 3, Fig. 3

2007 Crassicollaria brevis Remane, Andreini et al., Pl. 1, Figs. 19, 20

2012 Crassicollaria brevis Remane, Petrova et al., 58, Figs. 28, 29

2013 *Crassicollaria brevis* Remane, Lakova & Petrova, Pl. 2, Figs. 2,3; P. 6, Figs. 18, 19

Description & Remarks: The lorica is hyaline. The transition from the collar to the body of lorica is rather smooth in *Crassicollaria* when compared with the *Calpionella* genus. *Crassicollaria* has wider opening due to the lack of shoulders present in *Calpionella*. It has swelling below the collar and a caudal appandage in the aboral part.
Cr. brevis is characterized by the swelling below the collar, the deflection of the distal parts of its collar and short caudal appendage. It differs from the *Cr. intermedia* by its smaller size.

Its first occurrence is in the *massutiniana* subzone of the *Crassicollaria* subzone (latest Tithonian) and disppears at the J-K boundary (Lakova & Petrova, 2013) (Table 3). Specimens were recovered from the same subzone in this study (Figure 12).

Crassicollaria intermedia Durand-Delga, 1957 Pl. 1, Figs. e-h

1957 Crassicollaria intermedia n. sp., Durand-Delga, Pl. 1, Figs. 2, 4

1971 Crassicollaria intermedia Durand-Delga, Remane, Pl. 3, Figs. 7

1991 Crassicollaria intermedia Durand-Delga, Altıner & Özkan, Pl. 3, Figs. 9-12

1992 Crassicollaria intermedia Durand-Delga, Tunç, Pl. 2, Fig. 1

1992 Crassicollaria intermedia Durand-Delga, Bucur, 572, Fig. 4b

1995 Crassicollaria intermedia Durand-Delga, Olóriz et al., Pl. 1, Figs. 6, 7

1995 Crassicollaria colomi Durand-Delga, Olóriz et al., Pl. 1, Fig. 8

2004 Crassicollaria intermedia Durand-Delga, Marino et al., Pl. 3, Fig. 1

2007 Crassicollaria intermedia Durand-Delga, Andreini et al., Pl. 1, Figs. 28, 29

2012 Crassicollaria intermedia Durand-Delga, Petrova et al., 58, Figs. 22-24

2013 Crassicollaria intermedia Durand-Delga, Lakova & Petrova, Pl. 1, Figs. 32, 33;

Pl.5, Figs. 44-46

Description & Remarks: As previously mentioned, it is a scaled-up version of *Cr*. *brevis* with cylindrical lorica wall rather than general conical shape of *Cr. brevis*.

Its first occurrence is in the *remanei* subzone of the *Crassicollaria* subzone (Late Tithonian) and disppears at the J-K boundary in coherence with the *Cr. brevis* (Lakova & Petrova, 2013) (Table 3). Specimens were recovered from the

massutiniana subzone in this study due to the facies controlled arrival of calpionellid-rich facies (see Chapter 2 and 3) (Figure 12).

Crassicollaria massutiniana Colom, 1948 Pl. 1, Figs. i-o

1948 Crassicollaria massutiniana n. sp., Colom, 243, Fig. 11

1971 Crassicollaria massutiniana Colom, Remane, Pl. 3, Figs. 10

1991 Crassicollaria massutiniana Colom, Altıner & Özkan, Pl. 3, Figs. 13, 14

1992 Crassicollaria remanei n. sp., Tunç, Pl.1, Figs. 3-5

1995 Crassicollaria parvula Remane, Olóriz et al., Pl. 1, Fig. 10

2004 Crassicollaria massutiniana Colom, Marino et al., Pl. 3, Fig.4

2007 Crassicollaria massutiniana Colom, Andreini et al., Pl. 1, Fig. 24

2012 Crassicollaria massutiniana Colom, Petrova et al., Pl. 1, Figs. 24-26

2013 Crassicollaria massutiniana Colom, Lakova & Petrova, Pl.2, Fig.1; Pl.5, Figs.

47,48

2013 Crassicollaria massutiniana Colom, Krische et al., 39; Fig. E, F.

Description & Remarks: The lorica is elongated with a conical aboral pole. The collar is cylindrical. It differs from the *Cr. parvula* by its larger size and massive swelling below the collar. It is distinguished form *Cr. brevis* and *Cr. intermedia* by its cyclindrical collar, and the conical aboral pole that does not show caudal appendage.

Cr. massutiniana appears in the *remanei* subzone, shows increase in the abundance in the *massutiniana* subzone and disappears in the lowest levels o the *alpina* subzone just above the J-K boundary (Michalík & Rehakova, 2011; Lakova & Petrova, 2013). *Cr. massutiniana* specimens were recovered from the latest Tithonian (*massutiniana* subzone) – earliest Berriasian (lowest part of the *alpina* subzone) interval (Fig.12).

Crassicollaria parvula Remane, 1962 Pl. 1, Figs. p-ag

1962 Crassicollaria parvula n. sp., Remane, 19, Figs. 36-45

1971 Crassicollaria parvula Remane, Remane, Pl.3, Figs. 8-9

1991 Crassicollaria parvula Remane, Altıner & Özkan, Pl. 3, Figs. 15-20

1992 Crassicollaria parvula Remane, Tunç, Pl. 2, Fig. 2

1995 Crassicollaria massutiniana Colom, Olóriz et al., Pl. 1, Fig. 10

1999 *Crassicollaria massutiniana* Colom, Skourtsis-Coroneou & Solakius, 589, Fig.

2001 Crassicollaria parvula Remane, Olszewska & Wieczorek, 8, Fig. (6) 2

2007 Crassicollaria parvula Remane, Andreini et al., Pl. 1, Figs. 21, 22

2012 Crassicollaria parvula Remane, Petrova et al., 58, Fig. (4) 32, 33

2013 *Crassicollaria parvula* Remane, Lakova & Petrova, Pl. 2, Figs. 4, 5; Pl. 5, Fig. 49; Pl. 6, Figs. 20-29

2013 Crassicollaria colomi Doben, Lakova & Petrova, Pl. 2, Fig. 7

2015 Crassicollaria parvula Remane, Boorova et al., Fig. 6B

Description & Remarks: It differs from the *Cr. massutiniana* by its weak swelling below the cylindrical collars and generally smaller size.

It ranges from *massutiniana* subzone (latest Tithonian) to *simplex* subzone (early Late Berriasian) (Petrova et al., 2012). This species occurs from the *massutiniana* subzone to the *simplex* subzone and shows an acme within the *alpina* subzone in accordance with the observations of Lakova and Petrova (2013) (Figure 12).

Genus Calpionella Lorenz, 1902

Type species: Calpionella alpina Lorenz, 1902

Calpionella alpina Lorenz, 1902 Pl. 2, Figs. f-o, r

1902 Calpionella alpina n. sp., Lorenz, Pl. 6, Fig. 1
1971 Calpionella alpina Lorenz, Remane, Pl. 3, Figs. 1-2
1991 Calpionella alpina (spherical form) Lorenz, Altıner & Özkan, Pl. 1, Figs. 3-8
1992 Calpionella alpina Lorenz, Tunç, Pl. 2, Fig. 4
1992 Calpionella alpina Lorenz, Bucur, 572, Fig. 4e
1995 Calpionella alpina Lorenz, Olóriz et al., Pl. 1, Figs. 12, 13
1997 Calpionella alpina Lorenz, Grün & Blau, Pl. 1, Figs. 11, 12
1999 Calpionella alpina Lorenz, Lakova et al., Pl. 1, Figs. 11, 12
1999 Calpionella alpina Lorenz, Ciborowski & Kołdziej, 345, Fig. (2) 3
2004 Calpionella alpina Lorenz, Marino et al., Pl. 3, Fig. 9
2007 Calpionella alpina Lorenz, Petrova et al., 60, Figs. (5) 1-7
2015 Calpionella alpina Lorenz, López-Martinez et al., 586, Fig. 5I; 288; Fig. 7C, D
2016 Calpionella alpina Lorenz, Maalaoui & Zargouni, 50, Figs. (4) 1-3

Description & Remarks: This species is characterizd by spherical hyaline lorica with restricted oral end, well-developed shoulder, cylindrical collar and rounded aboral part. The acme of this species defines the base of the *alpina* subzone and the J-K boundary.

C. alpina ranges from the *massutiniana* subzone (latest Tithonian) to the *oblonga* subzone (Late Berriasian). Similiarly, this species were observed from the *massutiniana* subzone to the *oblonga* subzone in this study (Figure 12). The acme of this species was used as the indicator of the J-K boundary following the suggestions of Wimbledon (2011), Michalik and Rehakova (2011), Lakova and Petrova (2012), Lakova and Petrova (2013), Frau et al. (2016) (see Chapter 2).

Calpionella grandalpina Nagy, 1986 Pl. 2, Figs. a-e

1986 Calpionella grandalpina n. sp., Nagy, Pl. 1, Fig. 3, 8
1991 Calpionella alpina (large form) Lorenz, Altıner & Özkan, Pl. 1, Figs. 1, 2
1999 Calpionella grandalpina Nagy, Lakova et al., Pl. 1, Fig. 7
2012 Calpionella grandalpina Nagy, Petrova et al., 58, Figs. (4) 37-39
2013 Calpionella grandalpina Nagy, Lakova & Petrova, Pl 2, Figs. 8, 9; Pl.5, Figs. 53, 54; Pl. 6, Fig. 1
2015 Calpionella grandalpina Nagy, Lopez-Martinez et al., 586, Fig. 5g

Description & Remarks: This species is the scaled-up version of *C. alpina*, known as the "large form" in the literature. It may be confused with the *C. elliptalpina*. It appears in the upper levels of the *massutiniana* subzone and its abundance greatly decreases at the J-K boundary synchronously with the bloom of the *C. alpina* (Remane et al., 1986; Lakova et al., 1999; Petrova et al., 2012; Lakova & Petrova, 2013).

The representatives of this species were recoverd from the upper levels of the *massutiniana* subzone (latest Tithonian) and the lowest levels of the *alpina* subzone just after the J-K boundary (Fig. 12).

Calpionella minuta Houša, 1990 Pl. 2, Figs. p-v

1985 *Calpionella alpina* (small form) Lorenz, Remane, 570, Fig. (18) 3 1991 *Calpionella alpina* (small form) Lorenz, Altıner & Özkan, Pl. 1, Figs. 9, 10 1991 *Calpionella alpina* Lorenz, Tunç, Pl. 3, Fig. 3 1995, *Calpionella alpina* Lorenz, Olóriz et al., Pl. 1, Figs. 14 1999, *Calpionella minuta* Houša, Lakova et al., Pl.1, Fig.4 2001, *Calpionella alpina* (small, spherical form) Lorenz, Ciborowski & Kołodziej,
Figs. (2) 6-9
2007 *Calpionella alpina* Lorenz, Andreini et al., Pl. 1, Figs. 10, 11
2012 *Calpionella minuta* Houša, Petrova et al., Figs. (5) 8-10
2013 *Calpionella minuta* Houša, Lakova & Petrova, Pl. 2, Figs. 17-20; Pl. 3, Fig. 4;
Pl. 6, Figs. 8, 9

Description & Remarks: This species has generally been defiend as the "small form" of *Calpionella alpina*. Houša (1990) introduced *C. minuta* name and in recent studies this name has mostly been used.

This species appears in the upper levels of the *alpina* subzone and ranges into the upper parts of the *darderi* subzone (Lakova et al., 1999; Petrova et al., 2012; Lakova & Petrova, 2013). In this study, *C. minuta* ranges from the upper levels of the *alpina* subzone (earliest Berriasian) to the middle of the *oblonga* subzone (latest Berriasian) (Fig. 12).

Calpionella elliptalpina Nagy, 1986 Pl. 2, Figs. w, x

1985 Calpionella alpina Lorenz, Remane, 570, Fig (18) 1

1986 Calpionella elliptalpina n. sp., Nagy, Pl. 1, Fig. 4

1991 "Homeomorph" of *Calpionella elliptica* Cadisch, Altıner & Özkan, Pl. 1, Fig. 19

1992 Calpionella elliptica Cadisch, Tunç, Pl. 2, Fig. 9

1995 Calpionella alpina (ejampler grande con ragos proximos a las formas de

transicion a C. elliptica) Lorenz, Olóriz et al., Pl. 1, Figs. 15

1999, Calpionella elliptalpina Nagy, Lakova et al., Pl. 1, Fig. 8

2006, Calpionella alpina Lorenz, Grabowski & Pszczółkowski, 405, Figs. 7D

2012, Calpionella elliptalpina Nagy, Petrova et al., 58, Fig. (4) 40, 41

2013, *Calpionella elliptalpina* Nagy, Lakova & Petrova, Pl. 2, Figs. 10, 11; Pl. 6, Fig. 2

Description & Remarks: This species had generally been defined as the "homeomorph" of *Calpionella elliptica* (Remane, 1985; Altiner & Özkan, 1991) and recently the *C. elliptalpina* Nagy name has been used.

Its range is restricted to a limited interval at the uppermost parts of the *massutiniana* subzone just below the J-K boundary (Petrova et al. 2012; Lakova & Petrova, 2013). The individuals of this species were recoverd in the uppermost part of the *massutiniana* subzone (latest Tithonian) in this study (Fig. 12).

Calpionella elliptica Cadisch, 1932

Pl. 2, Figs. y-aa

1932 Calpionella elliptica n. sp., Cadisch, 249, Fig (3) 10, 11, 17

1971 Calpionella elliptica Cadisch, Remane, Pl. 3, Figs. 3, 4

1985 Calpionella elliptica Cadisch, Remane, 570, Fig (18) 4

1991 Calpionella elliptica Cadisch, Altıner & Özkan, Pl. 1, Fig. 11-18

1992 Calpionella elliptica Cadisch, Bucur, 572, Fig. (4) g-j

1995 Calpionella elliptica Cadisch, Olóriz et al., Pl. 1, Fig. 17

1997 Calpionella elliptica Cadisch, Grün & Blau, Pl. 1, Figs. 17, 18

1999 Calpionella elliptica Cadisch, Lakova et al., Pl. 1, Fig. 11

2006 Calpionella elliptica Cadisch, Grabowski & Pszczółkowski, 405, Fig. 7G

2007 Calpionella elliptica Cadisch, Andreini et al., Pl. 2, Figs. 1, 2

2010 Calpionella elliptica Cadisch, Fözy et al., 537, Fig. 9U

2012 Calpionella elliptica Cadisch, Petrova et al., 60, Figs. (5) 13-17

2013 Calpionella elliptica Cadisch, Lakova & Petrova, Pl. 2, Figs. 36, 37; Pl. 3, Figs.

1, 2; Pl. 6, Fig. 14

2015 Calpionella elliptica Cadisch, Boorova et al., 103, Fig. (6) I, J

2015 Calpionella elliptica Cadisch, López-Martinez et al., 588, Fig. 7N

2016 Calpionella elliptica Cadisch, Maalaoui & Zargouni, 50, Fig. (4) 4-6

Description & Remarks: It differs from all other species of the *Calpionella* genus by its elongated, cylindrical lorica. Its first occurrence defines the basal boundary of the *elliptica* subzone (Table 3). The oblique sections of this species may be confused with *C. alpina*. Remane (1963, 1964, 1985) offers a length (without collar) to width (largest portion) ratio for their differentiation; all sections with ratio larger than 1.35 should be named as *C. elliptica*, ratio smaller than 1.25 indicates *C. alpina* and individuals with intermediate values should be named as *Calpionella* sp., regardless of whether they are real transitional forms between *C. alpina* and *C. elliptica* or not. The individuals observed in this study ranges from the base of the *elliptica* subzone (middle Berriasian) to the base of the *oblonga* subzone (late Berriasian) (Fig. 12).

In general there is a tendency towards smaller sizes in the genus *Calpionella* from latest Jurassic to earliest Cretaceous except the species *Calpionella elliptica*.

Genus Tintinnopsella Colom, 1948

Type species: Calpionella carpathica Murgeanu and Filipescu, 1933

Tintinnopsella remanei Borza, 1969 Pl. 3, Figs. a-c

1969 *Tintinnopsella remanei* n. sp., Borza, Pl. 80, Figs. 7-16
1995 *Tintinnopsella remanei* Borza, Ołoriz et al., Pl. 1, Figs. 19
1999 *Tintinnopsella remanei* Borza, Lakova et al., Pl. 1, Fig. 3
2012 *Tintinnopsella remanei* Borza, Petrova et al., 58, Figs. (4) 20, 21
2013 *Tintinnopsella remanei* Borza, Lakova & Petrova, Pl. 1, Fig. 34; Pl. 5, Figs. 42, 43

Description & Remarks: This species is characterized by small hyaline lorica, smooth transition from the body of lorica to funnel-shaped collar (divergent linear collars in thin section). The aboral part is subrounded without caudal prolongation.

They may be confused with the oblique sections of *T. carpathica*. It seems like *T. remanei* did not range beyond the J-K boundary (Lakova et al., 1999; Petrova et al., 2012; Lakova & Petrova, 2013), so there should not be any confusion in differentiation with the oblique sections of *T. longa* which occurs within the *oblonga* subzone.

The individuals of *T. remanei* were recovered from the *massutiniana* subzone (latest Tithonian).

Tintinnopsella carpathica Murgeanu & Filipescu, 1933 Pl. 3, Figs. d-t

1933 Calpionella carpathica n. sp., Murgeanu & Filipescu, Pl. 1, Figs. 20-23

1969 *Tintinnopsella carpathica* Murgeanu & Filipescu, Borza, Pl. 78, Figs. 1-16; Pl. 79, Figs. 1-8

1971 Tintinnopsella carpathica Murgeanu & Filipescu, Remane, Pl. 3, Figs. 11, 12

1991 *Tintinnopsella carpathica* Murgeanu & Filipescu, Altıner & Özkan, Pl. 2, Figs.1-12

1991 Tintinnopsella longa Colom, Tunç, Pl.3, Fig. 9

1992 Tintinnopsella carpathica Murgeanu & Filipescu, Tunç, Pl. 2, Fig. 7

1992 Tintinnopsella carpathica Murgeanu & Filipescu, Bucur, 572, Figs. (4) l, m

1994b Tintinnopsella carpathica Murgeanu & Filipescu, Pop, Pl. 2, Fig. 15

1995 *Tintinnopsella carpathica* Murgeanu & Filipescu, Olóriz et al., Pl. 1, Figs. 21-23

1997 *Tintinnopsella carpathica* Murgeanu & Filipescu, Grün & Blau, Pl. 1, Figs. 15, 16

2004 *Tintinnopsella carpathica* Murgeanu & Filipescu, Concetta Marino, Pl. 3, Fig. 15

2007 *Tintinnopsella carpathica* Murgeanu & Filipescu, Andreini et al., Pl. 1, Figs.16-18; Pl. 2, Figs. 5, 14, 15

2012 Tintinnopsella carpathica Murgeanu & Filipescu, Petrova et al., 58, Fig. (4) 19;

62, Fig. (6) 14-22

2013 Tintinnopsella carpathica Murgeanu & Filipescu, Lakova & Petrova, Pl. 1,

Figs. 35, 36; Pl. 2, Fig. 34; Pl. 3, Figs. 41-44; Pl. 4, Figs. 47-49; Pl. 5, Figs. 38-41; Pl. 6, Fig. 32; Pl. 7, Figs. 36-41

2013 *Tintinnopsella carpathica* Murgeanu & Filipescu, López-Martinez et al., 6, Fig. 5K; 7, Fig. 6H

2013 *Tintinnopsella carpathica* Murgeanu & Filipescu, Krische et al., 39, Figs. (12) A, B

2015 *Tintinnopsella carpathica* Murgeanu & Filipescu, Boorovå et al., 103, Fig. (6) K

2015 *Tintinnopsella carpathica* Murgeanu & Filipescu, López-Martinez et al., 588, Figs. (7) E, J, K

2016 *Tintinnopsella carpathica* Murgeanu & Filipescu, Maalaoui & Zargouni, 50, Figs. (4) 8, 9

Description & Remarks: This species is characterized by ovoid or cylindrical lorica with a pronounced caudal prolongation at the conical aboral pole and by its distinctive, somewhat right angle, funnel-shaped collar that may show upward deflection at the outer parts. It differs from the *T. remanei* with its larger size and aboral prolongation.

This species has the longest stratigraphic range amongst the calpionellids that spans from the *remanei* subzone to the extinction of the calpionellids (F Zone of Altıner & Özkan, 1991) (Trejo, 1980; Remane, 1985; Altıner & Özkan, 1991; Lakova et al., 1999; Petrova et al., 2012; Lakova & Petrova, 2013). The representatives of this species were recovered from *alpina* subzone (earliest Berriasian) to *darderi* subzone (earliest Valanginian) interval (Fig. 12).

Tintinnopsella longa Colom, 1939 Pl. 3, Figs. u-z 1939 Calpionella longa n. sp., Colom, Pl. 2, Fig. 9; Pl. 3, Fig. 3

1969 Tintinnopsella longa Colom, Borza, Pl. 79, Figs. 9-16

1975 Tintinnopsella longa Colom, Trejo, Pl. 5, Figs. 4-10; Pl. 6, Fig. 5; Pl. 16, Figs.

15-17?; Pl. 17, Figs. 1-5

1991 Tintinnopsella longa Colom, Altıner & Özkan, Pl. 2, Figs. 13-17

1992 Tintinnopsella longa Colom, Bucur, 572, Figs. (4) q-s

1994b Tintinnopsella longa Colom, Pop, Pl. 2, Fig. 16

1995 Tintinnopsella longa Colom, Olóriz et al., Pl. 1, Fig. 24

1997 Tintinnopsella longa Colom, Grün & Blau, Pl. 1, Figs. 19, 20

1999 Tintinnopsella longa Colom, Lakova et al., Pl. 1, Fig. 14

2004 Tintinnopsella longa Colom, Concetta Marino et al., Pl. 1, Fig. 11

- 2007 Tintinnopsella longa Colom, Andreini et al., Pl. 3, Fig. 3
- 2010 Tintinnopsella longa Colom, Fözy et al., 537, Fig. 9Q

2012 Tintinnopsella longa Colom, Petrova et al., 62, Figs. (6) 10-13

2013 Tintinnopsella longa Colom, Lakova & Petrova, Pl. 2, Fig. 35; Pl. 3, Figs. 38-

40; Pl. 4, Figs. 50-53; Pl. 7, Figs. 45-48

2013 Tintinnopsella longa Colom, López-Martinez et al., 8, Fig. 7K

2013 Tintinnopsella longa Colom, Krische et al., 39; Fig. 12P

2015 Tintinnopsella longa Colom, Boorovå, 103, Fig. 6L

2016 Tintinnopsella longa Colom, Maalaoui & Zargouni, 50, Figs. (4) 19, 20

Description & Remarks: This species differs from the *T. carpathica* by its elongated, cylindrical lorica with rounded aboral pole without a caudal prolongation. and from the *T. remanei* by its much larger size and its stratigraphic position. The first occurrence of *T. longa* has generallay been reported from the *simplex* subzone (Altiner & Özkan, 1991; Lakova et al., 1999; Skourtsis-Coroneou & Solakius; Andreini et al. 2007; Grabowski et al., 2010; Petrova et al., 2012) or from the *elliptica* subzone (Lakova & Petrova, 2013). This different reports on the first occurrence probably a confusion introduced by oblique sections, but the stratigraphic position of this species is not important in the determinations of subzones.

In this study, *T. longa* was recovered from *oblonga* (latest Berriasian) and *darderi* (earliest Valanginian) subzones (Fig. 12).

Genus Calpionellopsis Colom, 1948

Type species: Calpionella thalmanni Colom, 1939

Calpionellopsis simplex Colom, 1939 Pl. 4, Figs. a-k

1939 Calpionella simplex n. sp., Colom, Pl. 2, Fig. 11; Pl. 3, Fig. 9

1948 Calpionellopsis simplex Colom, Colom, 256, Fig. (11) 10

1985 Calpionellopsis simplex Colom, Remane, 570, Fig. (18) 9, 10

1991 Calpionellopsis simplex Colom, Altıner & Özkan, Pl. 4, Figs. 1-10

1991 Calpionellopsis simplex Colom, Tunç, Pl. 4, Fig. 2

1992 Calpionellopsis simplex Colom, Tunç, Pl. 2, Fig. 10

1992 Calpionellopsis simplex Colom, Bucur, 572, Fig. (4) t-v

1994b Calpionellopsis simplex Colom, Pop, Pl. 2, Fig. 1

1996, Calpionellopsis simplex Colom, Grün & Blau, Pl. 2, Figs. 14, 15

1999 Calpionellopsis simplex Colom, Lakova et al., Pl. 1, Fig. 12

2006 Calpionellopsis simplex Colom, Grabowski & Pszczółkowski, 405, Fig. 7I

2007 Calpionellopsis simplex Colom, Andreini et al., Pl. 2, Figs. 10, 11

2010 Calpionellopsis simplex Colom, Fözy et al., 537, Fig. 9S

2012 Calpionellopsis simplex Colom, Petrova et al., 60, Figs. (5) 22-26

2013 Calpionellopsis simplex Colom, Lakova & Petrova, Pl. 3, Figs. 19-26; Pl. 7,

Fig. 1, 2

2015 Calpionellopsis simplex Colom, López-Martinez et al., 589, Fig. 8D

Description & Remarks: *Calpionellopsis simplex* is characterized by cylindrical lorica with parallel lateral walls (curved in oblique sections), subrounded aboral pole and an internal cylindrical collar that show extinctions between crossed nicols at 45°. The collar looks like two symmetrical nodes superimposed on the lorica wall.

Its first occurrence defines the basal boundary of the *Calpionellopsis* Zone and the *simplex* subzone (Table 3). The representatives of this species were recovered from

simplex subzone (earliest Late Berriasian) to the base of the *darderi* subzone (earliest Valanginian) (Fig. 12).

Calpionellopsis oblonga Cadisch, 1932 Pl. 4, Figs. l-w

1939 Calpionella oblonga n. sp., Cadisch, 251, Figs. 20, 21

1948 Tintinnopsella oblonga Cadisch, Colom, Pl. 33, Fig. 5; 256, Fig. 13; 258, Fig.

57; 260, Fig. 5

1985 Calpionellopsis oblonga Cadisch, Remane, 570, Fig. (18) 7, 8

1991 Calpionellopsis oblonga Cadisch, Altıner & Özkan, Pl. 4, Figs. 11-20

1991 Calpionellopsis oblonga Cadisch, Tunç, Pl. 4, Fig. 3

1992 Calpionellopsis oblonga Cadisch, Tunç, Pl. 2, Fig. 11

1992 Calpionellopsis oblonga Cadisch, Bucur, 572, Fig. (4) x, y

1994b Calpionellopsis oblonga Cadisch, Pop, Pl. 2, Fig. 2

1999 Calpionellopsis oblonga Cadisch, Lakova et al., Pl. 1, Fig. 15

2004 Calpionellopsis oblonga Cadisch, Concetta Marino et al., Pl. 3, Fig. 10

2006 Calpionellopsis oblonga Cadisch, Grabowski & Pszczółkowski, 405, Fig. 7J

2007 Calpionellopsis oblonga Cadisch, Andreini et al., Pl. 2, Figs. 12, 1

2010 Calpionellopsis oblonga Cadisch, Fözy et al., 537, Figs. (9) H, O

2012 Calpionellopsis oblonga Cadisch, Petrova et al., 60, Figs. (5) 27-29

2013 Calpionellopsis oblonga Cadisch, Lakova & Petrova, Pl. 3, Figs. 27-33; Pl. 4,

```
Figs. 1-3; Pl. 7, Figs. 3-6
```

2013 Calpionellopsis oblonga Cadisch, López-Martinez et al., 202, Fig. 7G

2015 Calpionellopsis oblonga Cadisch, Boorova et al., 103, Fig. 6Q

2015 Calpionellopsis oblonga Cadisch, López-Martinez et al., 589, Fig. 8E

Description & Remarks: It differs from the *Calpionellopsis simplex* by its convergent lorica walls rather than parallel ones and conical aboral part. This gave rise to the largest portion being in the lower parts of the lorica near the aboral area. The collar is similiar to the *Cs. simplex*.

The first occurrence of this species defines the lower boundary of the *oblonga* subzone. The specimens were observed from the *oblonga* (latest Berriasian) and *darderi* (earliest Valanginian) subzones (Fig. 12).

Genus Remaniella Catalano, 1965

Type species: Tintinopsella cadsichiana Colom, 1948

Remaniella ferasini Catalano, 1965 Pl. 5, Figs. a-f

1965 Calpionellites ferasini n. sp., Catalano, Pl. 2, Figs. 1-5; Pl. 3, Figs. 5-7

1969 Remaniella cadischiana Colom, Borza, Pl. LXXXI, Fig.4

1986 Remaniella ferasini Catalano, Borza & Michalík, Pl. 4, Fig. 4

1991 Remaniella ferasini Catalano, Altıner & Özkan, Pl. 5, Figs. 1, 2

1991 Remaniella ferasini Catalano, Tunç, Pl. 3, Fig. 6

1994b Remaniella ferasini Catalano, Pop, Pl. 1, Figs. 5, 6

1996 Remaniella ferasini Catalano, Grün & Blau, Pl. 1, Figs. 12-15; Pl. 3, Fig. 7

1998 Remaniella ferasini Catalano, Rehåkovå, Pl. 1, Figs. 1, 2

1999 Remaniella ferasini Catalano, Lakova et al., Pl. 1, Fig. 10

2004 Remaniella ferasini Catalano, Concetta Marino, Pl. 3, Fig. 5

2007 Remaniella ferasini Catalano, Andreini et al., Pl. 1, Figs. 30, 31

2012 Remaniella ferasini Catalano, Petrova et al., 60, Figs. 37-39

2013 Remaniella ferasini Catalano, Lakova & Petrova, Pl.2, Figs. 23-25; Pl. 6, Figs. 36-41

2013 Remaniella ferasini Catalano, López-Martinez et al., 7, Figs. (6) F, G

2015 Remaniella ferasini Catalano, López-Martinez et al., 587, Fig. 7H

2016 Remaniella ferasini Catalano, Maalaoui & Zargouni, 50, Fig. (4) 11

Description & Remarks: It has a small ovoid lorica with bipartite detached collars. The collars are nearly equal in dimension and have triangular shaped profiles (in longitudinal sections). The inner collar is inwardly deflected and the outer one is little bit divergent in orientation; more or less upwardly directed two triangles in thin sections. The inner on show extinction at 45° under polarized light.

Its first occurrence defines the basal boundary of the *Remaniella* subzone (Table 3). The specimens of this species were identified from *Remaniella* (middle Early Berriasian) and *elliptica* (Late Berriasian) subzones (Fig. 12).

> *Remaniella duranddelgai* Pop, 1996 Pl. 5, Figs. g-i

1969 Remaniella cadischiana Colom, Borza, Pl. LXXXI, Figs. 2, 3, 5-7

1991 Remaniella cadischiana Colom, Altıner & Özkan, Pl. 5, Fig. 3

1992 Remaniella cadischiana Colom, Bucur, 572, Fig. 40

1996 Remaniella duranddelgai n. sp., Pop, Pl. 2, Figs. 1-6

1996 Remaniella duranddelgai Pop, Grün & Blau, Pl. 1, Fig. 11

1997 Remaniella duranddelgai Pop, Grün & Blau, Pl. 2, Fig. 9

1998 Remaniella duranddelgai Pop, Rehåkovå, Pl. 1, Fig. 6, 7

2004 Remaniella duranddelgai Pop, Concetta Marino, Pl. 3, Fig. 7

2007 Remaniella duranddelgai Pop, Andreini et al., Pl. 2, Figs. 3, 6

2010 Remaniella colomi Pop, Fözy et al., 537, Fig. 9P

2012 Remaniella duranddelgai Pop, Petrova et al., 60, Fig. (5) 40-43

2013 Remaniella duranddelgai Pop, Lakova & Petrova, Pl. 2, Figs. 26-28; Pl. 3, Fig.

12; Pl. 6, Figs. 42-49

2015 Remaniella duranddelgai Pop, Boorovå et al., 103, Fig. 6D

2015 Remaniella duranddelgai Pop, López-Martinez et al., 589, Fig. 8I

Description & Remarks: It is characterized by bell-shaped to slightly ovoid lorica. The aboral pole is conical with a short caudal appandage. The bipartite collar is inequal in size and shape. The inner one is more or less in the direction of the lorica wall and has triangular shape. The other one has lenticular shape. Its first occurrence observed in the middle part of the *Remaniella* subzone (middle Early Berriasian) in accordance with the Rehåkovå (1998) and Lakova and Petrova (2012) (Fig. 12). Some authors (Lakova & Petrova, 2013) suggest nearly synchronous first occurrence of it with the *R. ferasini* at the base of the *Remaniella* subzone.

Remaniella colomi Pop, 1996 Pl. 5, Figs. j, k

1991 Remaniella cadischiana Colom, Altıner & Özkan, Pl. 5, Fig. 7

1994b Remaniella cadischiana Colom, Pop, Pl. 1, Fig. 4

1996 Remaniella colomi n. sp., Pop, Pl. 2, Figs. 7-9

1996 Remaniella colomi Pop, Grün & Blau, Pl. 1, Figs. 8-9, ?10

1997 Remaniella colomi Pop, Grün & Blau, Pl. 2, Fig. 2

1998 Remaniella colomi Pop, Rehåkovå, Pl. 1, Figs. 8, 9

2007 Remaniella colomi Pop, Andreini et al., Pl. 2, Fig. 9

2012 Remaniella colomi Pop, Petrova et al., 62, Fig. (6) 1-3

2013 Remaniella colomi Pop, Lakova & Petrova, Pl. 2, Figs. 29-32; Pl. 3, Figs. 13-

16; Pl. 6, Figs. 50, 51

2015 Remaniella filipescui Pop, Boorova et al., 103, Fig. 6E

2015 Remaniella colomi Pop, López-Martinez et al, 589, Fig. 8G

2016 Remaniella ferasini Catalano, Maalaoui & Zargouni, 50, Fig. (4) 10

Description & Remarks: *Remaniella colomi* differs from *R. duranddelgai* by its cylindrical lorica shape. The other properties are nearly the same. The outer collar is more developed than the inner one.

It was observed in the uppermost part of the *Remaniella* subzone (middle Early Berriasian) and the lowermost parts of the *elliptica* subzone (late Early Berriasian) (Fig. 12).

Remaniella catalanoi Pop, 1996? Pl. 5, Figs. l, m

1995 Remaniella cadischiana Colom, Olóriz et al., Pl. 1, Fig. 25
1996 Remaniella catalanoi n. sp., Pop, 320, Figs. 10-15
1997 Remaniella catalanoi Pop, Grün & Blau, Pl. 1, Figs. 13, 14
1998 Remaniella catalanoi Pop, Rehåkovå, Pl. 1, Figs. 3-5
2007 Remaniella catalanoi Pop, Andreini et al., Pl. 2, Fig. 4
2007 Remaniella catalanoi Pop, Petrova et al., 62, Figs. (6) 4-6
2013 Remaniella catalanoi Pop, Lakova & Petrova, Pl. 6, Figs. 52-55
2016 Remaniella catalanoi Pop, Maalaoui & Zargouni, 50, Fig. (4) 16

Description & Remarks: The lorica is similiar to the *R. duranddelgai*, bell-shaped to ovoid with conical aboral pole that include a short caudal appendage. It differs from it by the configuration of the collar. The outer collar is similiar but the inner one is filiform seen as two symmetrical points in thin section.

The representatives of this species was identified from the *Remaniella* (middle Early Berriasian) and the *elliptica* (latest Early Berriasian) subzones (Fig. 12). Although the lorica shape is easy to recognize and differentiates them from *R. filipescui* and *R. cadischiana*, taking a good photograph that clearly show the inner collar was very hard. This is why the identified specimens were named with a question mark.

Remaniella borzai Pop, 1994 Pl. 5, Fig. n

1994b *Remaniella borzai* n. sp., Pop, Pl. 1, Figs. 13-16 1998 *Remaniella borzai* Pop, Rehåkovå, Pl. 1, Figs. 11-12 2007 *Remaniella borzai* Pop, Andreini et al., Pl. 2, Fig. 19 2012 *Remaniella borzai* Pop, Petrova et al., 62, Fig. (6) 9
2013 *Remaniella borzai* Pop, Lakova & Petrova, Pl. 7, Fig. 22
2016 *Remaniella borzai* Pop, Maalaoui & Zargouni, 50, Fig. (4) 18

Description & Remarks: It differs from the *R. catalanoi* by its elongated cylindrical lorica. The collars are similiar, again the inner one is filiform and the outer collar is divergent, lenticular. It may be hard to differentiate this species with *Tintinopsella longa* when the inner collar is hard to recognize.

Only an individual of this species was identified from the *oblonga* subzone (Late Berriasian) in this study (Pl. 5, Fig. n) which show an oblique section of this species.

Remaniella filipescui Pop, 1994

Pl. 5, Figs. o-u

1965 Remaniella cadischiana Colom, Catalano, Pl.1, Fig. 13

1985 Remaniella cadischiana Colom, Remane, 570, Fig. (18) 19

1991 Remaniella cadischiana Colom, Altıner & Özkan, Pl. 5, Figs. 4-6, 8, 9

1994b Remaniella filipescui n. sp., Pop, Pl. 1, Figs. 7-12

1996 Praecalpionellites filipescui Pop, Grün & Blau, Pl. 2, Figs. 7, 10.

1997 Praecalpionellites filipescui Pop, Grün & Blau, Pl. 2, Fig. 4

1998 Remaneialla filipescui Pop, Rehåkovå, Pl. 1, Figs. 13-15

1999 Praecalpionellites filipescui Pop, Grün & Blau, 207, Fig. 3

2006 Praecalpionellites filipescui Pop, Grabowski & Pszczółkowski, 405, Fig. 7K

2007 Remaniella filipescui Pop, Andreini et al., Pl. 2, Figs. 20, 22

2010 Praecalpionellites filipescui Pop, Fözy et al., 537, Figs. 9N, ?9T

2013 Remaniella filipescui Pop, Lakova & Petrova, Pl. 3, Fig. 17; Pl. 4, Fig. 10

2015 Remaniella filipescui Pop, Boorova et al., 103, Fig. 6E

Description & Remarks: It differs from the *R. cadischiana* by its bell-shaped lorica with conical aboral part that show caudal appandage. It has two unequal, divergent collars that are oblique in position with respect to the lorica wall. This configuration of the collar differs this species from the other members of *Remaniella*. Its maximum

with is near the oral part (in axial sections, oblique sections will reveal convex lorica walls that may give a view of slight restriction at the oral end).

It ranges from the uppermost parts of the *Remaniella* subzone (middle Ealry Berriasian) to the upper parts of the *oblonga* subzone (latest Berriasian) in the studied samples (Fig. 12).

Remaniella cadischiana Colom, 1948 Pl. 5, Figs. v-aa

1948 Tintinnopsella cadischiana n. sp., Colom, Pl.12, Figs. 34-35

1965 Remaniella cadischiana Colom, Catalano, Pl. 1, Figs. 6, 7, 11-14; Pl. 3, Fig. 1

1994b Remaniella cadischiana Colom, Pop, Pl. 1, Figs. 1-4

1996 Praecalpionellites dadayi Knauer, Grün & Blau, Pl. 1, Figs. 1-3

1996 Remaniella cadischiana Colom, Grün & Blau, Pl. 1, Figs. 4-7

1997 Remaniella cadischiana Colom, Grün & Blau, Pl. 2, Fig. 1

1997 Praecalpionellites dadayi Knauer, Grün & Blau, Pl. 2, Fig. 5

1998 Remaniella cadischiana Colom, Rehåkovå, Pl. 1, Figs. 16, 17

2004 Praecalpionellites dadayi Knauer, Concetta Marino et al., Pl. 3, Fig. 13

2006 Remaniella cadischiana Colom, Grabowski & Pszczółkowski, 405, Fig. 7H

2007 "Praecalpionellites" dadayi Knauer, Andreini et al., Pl. 2, Fig. 21

2010 Praecalpionellites dadayi Knauer, Fözy et al., 537, Fig. 9C

2010 Remaniella cadischiana Colom, Fözy et al., 537, Fig. 9K

2012 Remaniella cadischiana Colom, Petrova et al., 62, Figs. (6) 7, 8

2013 Remaniella cadischiana Colom, Lakova & Petrova, Pl. 3, Fig. 18; Pl. 7, Figs.

23, 24

2015 Remaniella cadischiana Colom, Boorova et al., 103, Fig. 6F

2016 Remaniella cadischiana Colom, Maalaoui & Zargouni, 50, Figs. (4) 13, 14

Description & Remarks: It differs from the *R. filipescui* by its cylindrical, elongated lorica with acute aboral part that has caudal appendage. The collar configurations is similiar with the *R. filipescui*.

The specimens of *R. cadischiana* were recovered from middle of the *elliptica* subzone (Late Berriasian) to the uppermost levels of the *oblonga* subzone (latest Berriasian) (Fig. 12).

Generally, after the emendations on the genus Remaniella (Pop, 1994a; Grün & Blau, 1996), revisions have been made to the previously published bizonation schemes with introduction of more subdivisions, although the main zonal boundaries have remained the same with the Remane's 1971 scheme (Table 3). Among them, Grün and Blau (1997)'s scheme proposed an unusual first occurrence for the Remaniella catalanoi in the Crassicollaria zone. They introudced a catalanoi subzone as the equivalent of the previously defined colomi subzone (Table 3). Then it was understood that the Late Tithonian Crassicollaria zone is missing and elliptica subzone (of Calpionella zone) is in direct contact with the remanei subzone (of Crassicollaria zone) in the Rau Stau section on which Grün and Blau (1997) based their biozonation (Rehåkovå, 1998). Additionally the definition of the genera Remaniella and Praecalpionelllites in the studies of Grün and Blau (1996, 1997) were very unusual that differentiates them mainly according to the shape of the lorica instead of the collar partitions. They eliminated the tripartite collar definition. This emendation had introduced additional problems in the identification of the remaniellid calpionellids and the determination of their stratigraphical ranges. In this study, Pop (1994a, 1996)' s emendations were followed for the identification of them. In most recent studies mainly these definitions have been followed as the synonmy lists indicate. As mentioned in the Chapter 2, more recently, Lakova and Petrova (2012, 2013) tried to synthesize a global standard calpionellid zonation scheme. In order to achieve this aim, they discarded taxa with controversial vertical ranges and morphologies and subzones that are not recognized globally. They dismissed all zonation based on the controversial taxa like R. borzai, R. colomi, R. catalanoi, R. catalanoi and R. cadischiana. So the identification of remaniellid calpionellids are not so important in terms of biostratigraphy, except from the Remaniella ferasini that defines the lower boundary of the Remaniella subzone.

Genus Lorenziella Knauer & Nagy, 1963

Type species: Lorenziella hungarica Knauer & Nagy, 1963

Lorenziella hungarica Knauer & Nagy, 1963 Pl. 6, Fig. b

1963 Lorenziella hungarica n. sp., Knauer & Nagy, Pl. 1, Figs. 1, 4, 7, 8
1985 Lorenziella hungarica Knauer & Nagy, Remane, 570, Figs. (18) 16-18
1991 Lorenziella hungarica Knauer & Nagy, Altıner & Özkan, Pl. 5, Figs. 17-18
1991 Lorenziella hungarica Knauer & Nagy, Tunç, Pl. 4, Fig. 1
1992 Lorenziella hungarica Knauer & Nagy, Tunç, Pl. 2, Fig. 12
1996 Lorenziella hungarica Knauer & Nagy, Grün & Blau, Pl. 2, Fig. 5
1997 Lorenziella hungarica Knauer & Nagy, Grün & Blaue, Pl. 2, Figs. 6, 7
1999 Lorenziella hungarica Knauer & Nagy, Lakova et al., Pl. 1, Fig. 5
2006 Lorenziella hungarica Knauer & Nagy, Grabowski & Pszczółkowski, 405, Fig. 7L
2010 Lorenziella hungarica Knauer & Nagy, Fözy et al., 537, Fig. 9F

2012 *Lorenziella hungarica* Knauer & Nagy, Petrova et al., 60, Figs. (5) 18-21 2013 *Lorenziella hungarica* Knauer & Nagy, Lakova & Petrova, Pl. 3, Figs. 5-8; Pl. 7, Figs. 9-12

Description & Remarks: *Lorenziella hungarica* is characterized by a small test with a rounded aboral pole and suboral constriction. The funnel-shaped collar is reduced in size seen as inwardly convex symmetric crescentic shapes at the oral part in thin sections. There is no shoulder or swelling below the collar. It may be confused with oblique sections of smaller forms of *T. carpathica*.

This species was recovered from the *oblonga* subzone (Late Berriasian) (Fig. 12) and is very rare in the studied sections.

Genus Borzaiella Grün & Blau, 1996

Type species: Borzaiella atava Grün & Blau, 1996

Borzaiella atava Grün & Blau, 1996 Pl. 6, Figs. e-g

1996 Borzaiella atava n. gen., n. sp., Grün & Blau, Pl. 2, Figs. 1, 2, 6
1997 Borzaiella atava Grün & Blau, Grün & Blau, Pl. 2, Fig.3
2007 Borzaiella atava Grün & Blau, Andreini et al., Pl. 2, Fig. 23
2012 Borzaiella atava Grün & Blau, Petrova et al., 62, Fig. (6) 28

Description & Remarks: The characteristic feature of this species is the single comma-shaped collar that abuts the wall of lorica at the oral end. The lorica is amphora-shaped with caudal appendage. This species has been considered to be very rare (Andreini et al., 2007).

The representatives of this species were recovered from the *oblonga* subzone (Late Berriasian) (Fig. 12). In our samples, mostly the oblique sections were encountered that do not show caudal appandage.

Genus Praecalpionellites Pop, 1986

Type species: Calpionellites murgeanui Pop, 1974

Praecalpionellites murgeanui Pop, 1974 Pl. 6, Figs. c

1974 Calpionellites murgeanui n. sp., Pop, 105, Figs. 1a-b; Pl. 1, Figs. 1-5, 7-9

1985 Remaniella murgeanui Pop, Remane, 570, Fig. (18) 20

1986 Praecalpionellites murgeanui Pop n. gen., Pop, 104, Figs. 1c-d; Pl. 1, Figs. 4, 5

1991 Remaniella murgeanui Pop, Altıner & Özkan, Pl. 5, Fig. 10

1994b Praecalpionellites murgeanui Pop, Pop, Pl. 2, Figs. 4, 5

?1996 Praecalpionellites murgeanui Pop, Grün & Blau, Pl. 2, Fig. 11

1997 Praecalpionellites murgeanui Pop, Grün & Blau, Pl. 2, Fig. 11

1999 Praecalpionellites murgeanui Pop, Lakova et al., Pl. 1, Fig. 16

1999 Praecalpionellites murgeanui Pop, Grün & Blau, 207, Fig. 2

?2007 Praecalpionellites murgeanui Pop, Andreini et al., Pl. 2, Fig. 17; Pl. 3, Figs.1,6

2010 Praecalpionellites murgeanui Pop, Fözy et al., 537, Fig. 9D 2013 Praecalpionellites murgeanui Pop, Lakova & Petrova, Pl. 4, Figs. 12-15; Pl. 7, Figs. 15-17

Description & Remarks: The most characteristic feature of this genus is the tripartite collar system (actually a bipartite collar placed just below the end of the lorica, giving a tripartite appearance in the sense of Grün & Blau, 1999). It differs from the *Pcts. siriniaensis* by its smaller, amphorellid lorica.

This species is very rare in the studied sections and was recorded from the uppermost parts of the *oblonga* subzone (latest Berriasian) (Fig. 12).

Praecalpionellites siriniaensis Pop, 1986 Pl. 6, Figs. d

1986 Praecalpionellites siriniaensis n. sp., Pop, 105, Figs. 1a-b; Pl. 1, Figs. 1-3
1994b Praecalpionellites siriniaensis Pop, Pop, Pl. 2, Fig. 6
1997 Praecalpionellites siriniaensis Pop, Grün & Blau, Pl. 2, Fig. 10
2010 Praecalpionellites siriniaensis Pop, Fözy et al., 537, Fig. 9E
2013 Praecalpionellites siriniaensis Pop, Lakova & Petrova, Pl. 4, Figs. 16, 17; Pl. 7, Figs. 18-20

Description & Remarks: *Pcts. sirniaensis* differs form *Pcts. murgeanui* by its elongated, cylindrical lorica. It also has tripartite collar.

This species was recorded from the uppermost part of the *oblonga* subzone (latest Berriasian) (Fig. 12).

Genus Calpionellites Colom, 1948

Type species: Calpionella darderi Colom, 1934

Calpionellites darderi Colom, 1934

Pl. 6, Figs. a

1934 Calpionella darderi n. sp.,Colom, Pl. 31, Fig. 3

1948 Calpionellites darderi Colom n. gen., Colom, 258, Fig. (12) 1-15

1985 Calpionellites darderi Colom, Remane, 570, Fig. (18) 5, 6

1991 Calpionellites darderi Colom, Altıner & Özkan, Pl. 5, Figs. 11-16

1991 Calpionellites darderi Colom, Tunç, Pl. 4, Figs. 4, 5

1994b Calpionellites darderi Colom, Pop, Pl. 2, Figs. 7, 8

1997 Calpionellites darderi Colom, Grün & Blau, Pl. 2, Fig. 12

2004 Calpionellites darderi Colom, Concetta Marino et al., Pl. 3, Fig. 16

2007 Calpionellites darderi Colom, Andreini et al., Pl. 3, Fig. 5

2010 Calpionellites darderi Colom, Fözy et al., 537, Fig. 9A-B

2013 *Calpionellites darderi* Colom, Lakova & Petrova, Pl. 4, Figs. 20-24; Pl. 7, Figs. 25, 26

2015 Calpionellites darderi Colom, Boorovå, 103, Fig. 6S

Description & Remarks: *Cts. darderi* is characterized by oral restriction resulted from an inward deflection of a collar just below the end of the lorica wall. It differs from the *Cts. major* by its bell-shaped shorter lorica and from other species (*Cts. coronatus* and *Cts. caravacaensis*) of this genus by its simple conical collar.

The first occurrence of this species determines the basal boundary of the *Calpionellites* Zone/ *darderi* subzone and the Berriasian – Valanginian boundary (Table 3, Fig. 12).

4.2. Foraminifera Taxonomy

PHYLUM FORAMINIFERA d'Orbigny 1826

FAMILY GLOBULIGERINIDAE Loeblich & Tappan 1984

Genus Globuligerina Bignot & Guyader, 1971

Type species: Globuligerina oxfordiana Grigelis, 1958

Globuligerina oxfordiana Grigelis, 1958 Pl. 8, Fig. a

1958 "Globigerina" oxfordiana n. sp., Grigelis, 110-111, Fig. 1
1966 Globigerina oxfordiana Grigelis, Bignot & Guyader, Pl. 1, Figs. 1-11
1971 Globuligerina oxfordiana Grigelis, Bignot & Guyader, Pl. 1, Figs. 1-4; Pl. 2,
Figs. 3, 4
1991 Globuligerina gr. oxfordiana Grigelis, Altıner, Pl. 1, Figs. 1-9
1997 Globuligerina oxfordiana Grigelis, Boudagher-Fadel et al., Pl. 1.1, Fig. 1; Pl.
1.2, Figs. 1-5; Pl. 2.9; Figs. 1-15
1998 Globuligerina oxfordiana Grigelis, Banner & Desai, Pl. 1, Figs. 1-3
2002 Globuligerina oxfordiana Grigelis, Görög & Wernli, Pl. 1, Figs. 1-27
2016 Globuligerina oxfordiana Grigelis, Grigelis, Pl. 1, Figs. 1-4; Pl. 2, Figs. 1-4; Pl. 5, Figs. 1-4

Description & Remarks: The wall is hyaline. It is trochospirally coiled with two whorls. Each whorl includes 4 globular chambers, easily recognizable in equatorial sections (like in the Pl. 8, Fig.a). The test is small with a narrow umbilicus. The outline the test is rounded. Only one specimen of this species was recovered from the Kimmeridgian (Fig. 12).

Test diameter: 120 μm **Test wall thickness:** 8.29 - 12.75 μm

?FAMILY ROSALINIDAE REISS 1963

Genus Mohlerina Bucur, Senowbari-Daryan and Abate, 1996

Type species: Conicospirillina basiliensis Mohler, 1938

Mohlerina basiliensis Mohler, 1938 Pl. 8, Figs. b-l

1938 Conicospirillina basiliensis n. sp., Mohler, Pl. 28-28; Pl. 4, Fig.5
1991 "Conicospirillina" basiliensis Mohler, Altıner, Pl. 3, Figs. 8, 9; Pl. 7, Figs. 6-8
1996 Mohlerina basiliensis Mohler, Bucur et al., Pl. 3, Figs. 3-6; Pl. 4, Figs. 2, 3, 5-9
2010 Mohlerina basiliensis Mohler, Ivanova & Kolodziej, Pl. 5, Figs. 12-18
2012 Mohlerina basiliensis Mohler, Schlagintweit, 639, Figs. (2) a-j; 640, Figs. (3)
a-d; 641, Figs. (4) a-f; 642, Figs. (5), (6) a-e; 643, Fig. 7d
2015 Mohlerina basiliensis Mohler, Pleş et al., 51, Figs. (4) g, h

Description & Remarks: The test wall consits of two layers; inner microgranular and outer hyaline. Test is large, trochospirally coiled. It may fix itself to any substratum (any type of sediment grains or other fossils) via a basal cement layer. With these characteristics it presents great similarities with Paleozoic foraminifera *Tetrataxis* that has the layers of the test in the other way around (inner hyaline, outer microgranular) (for more discussion see Schlagintweit, 2012). In our material no specimen was observed in encrusting position. Individuals of this species were recovered from the slope and carbonate platform environments in this study and generally represented by resedimented individuals. The reported wide range of test dimensions most probably a function of the encrusting processes (depending on the shape of the substratum to which organism attached itself) (Schlagintweit, 2012).

It ranges from Middle Jurassic to Early Cretaceous and recorded from the Kimmeridgian to Early Berriasian interval in this study (Fig. 12). The most of the examples identified here represents the transported, resedimented individuals.

Max. test diameter: 537 - 1227 μm Max. test height: 159 - 395 μm Max. test apex angle (spiral side): 96 - 162°

FAMILY VENTROLAMINIDAE WEYNSCHENCK 1950

Genus Protopeneroplis Weynschenk, 1950

Type species: Protopeneroplis striata Weynschenk, 1950

Protopeneroplis striata Weynschenk, 1950 Pl. 7, Figs. a-c

1950 Protopeneroplis striata n. sp., Weynschenk, Pl. 2, Figs. 12-14

1974 Protopeneroplis striata Weynschenk, Septfontaine, Pl. 2, Figs. 1-15

1991 Protopeneroplis striata Weynschenk, Altiner, Pl. 3, Figs. 1-7

1997 Protopeneroplis striata Weynschenk, Bucur, Pl 1, Figs. 1-12

2010 Protopeneroplis striata Weynschenk, Ivanova & Klodziej, Pl. 5, Figs. 7, 8

2015 Protopeneroplis striata Weynschenk, Pleş et al., 48, Fig. 30

Description & Remarks: The test is involute, planispirally or slightly trochospirally coiled with double wall; inner layer microgranular and outer layer hyaline. This double layering form striation in this species and differentiates it from *Protopeneroplis ultragranulata* (Pl. 7, a-c). In our specimens, mostly oblique sections were encountered.

Some studies (Bucur et al., 1993; Bucur, 1997) extends the range of *P. striata* into Berriasian but generally Aalenian – Late Tithonian interval is accepted for its range (Loeblich & Tappan, 1988; Velic, 2007; Ivanova & Kolodziej, 2010). The representatives of this species were only recovered from the Kimmeridgian platform succession (Günören Limestone) in this study (Fig. 12).

Max. test width (in axial section): 376 μm (only one specimen provide an axial section)

Max. test diameter: 425 - 471 µm

Protopeneroplis ultragranulata Gorbatchik, 1971 Pl. 7, Figs. e-p

1971 Hoeglundina (?) ultragranulata n. sp., Gorbatchik, Pl. V, Figs. (2) a-c

1974 Protopeneroplis trochangulata n. sp., Septfontaine, Pl. 1, Figs. 1-18

1991 Protopeneroplis trochangulata Septfontaine, Altiner, Pl. 7, Figs. 1-5

1993 Protopeneroplis ultragranulata Gorbatchik, Bucur, Pl. 2, Figs. 1, 2, 5, 8, 11, 12

1996 Protopeneroplis ultragranulata Gorbatchik, Bucur et al., Pl. 3, Figs. 14-17

1997 Protopeneroplis ultragranulata Gorbatchik, Bucur, Pl. 1, Figs. 13-16; Pl. II,

Figs. 1-14; Pl. III, Figs. 1-3

2010 *Protopeneroplis ultragranulata* Gorbatchik, Ivanova & Klodziej, Pl. 5, Figs. 1-6

2012 *Protopeneroplis ultragranulata* Gorbatchik, Petrova et al., 66, Fig. (8) 28 2015 *Protopeneroplis ultragranulata* Gorbatchik, Okay & Altiner, Fig. (5) 1-5

Description & Remarks: It differs from the *P. striata* by its trochospiral coiling. It ranges from Late Tithonian to Early Valanginian (See Chapter 2). *P. ultragranulata* were recovered from latest Tithonian to Early Berriasian (Fig. 12). As discussed in Chpt. 2, the first occurrence of this species within the studied slope deposits of the Yosunlukbayırı succession is facies controlled, but since it appears within the *Saccocoma* subzone there should not be any question about its proposed stratigraphic position in this study.

Max. test diameter: 376 - 570 μm **Max. test height:** 266 - 311 μm

FAMILY MESOENDOTHYRIDAE VOLOSHINOVA, 1958

Genus Labyrinthina Weynschenk, 1951

Type species: Labyrinthina mirabilis Weynschenk, 1951

Labyrinthina mirabilis Weynschenk, 1951 Pl. 11, Figs. a-f

1951 Labyrinthina mirabilis n. sp., Weynschenk, Pl. 1, Figs. 5, 7, 8

1988 Labyrinthina mirabilis Weynschenk, Septfontaine, Pl. 1, Figs. 10, 12

1991 Labyrinthina mirabilis Weynschenk, Altıner, Pl. 3, Figs. 17-24

2005 Labyrinthina mirabilis Weynschenk, Schlagintwiet et al., 31, Figs. (13) a, b

2015 Labyrinthina mirabilis Weynschenk, Pleş et al., 46, Figs. (2) a-h

Description & Remarks: The simple, imperforate, microgranular test shows early involute planispiral coiling (Pl.11, Figs. c, d, e & f) and later posses an uncoiled portion (Pl.11, Figs. b, c, d & e). The outer wall includes exoskeletal beams that do not reach to the median parts of the test. They may introduce additional thickness the wall in thin section views (Pl.11, Figs. a-f). The endoskeletal pillars are clearly seen in the uncoiled stage (Pl.11, Figs. a-f). Septfontaine (1988) restricted the stratigraphic range of this species to Late Jurassic. The representatives of this species were identified from Kimmeridgian in this study.

Max. test diameter (coiled portion): $842 - 1197 \mu m$ Max. test width (in longitudinal sections and transverse sections that cut coiled involute portion): $695 - 1071 \mu m$ Max. test height: $1412 - 1869 \mu m$

Genus Mesoendothyra Dain, 1958

Type species: Mesoendothyra izjumiana Dain, 1958

Mesoendothyra? sp. Pl. 12, Figs. k

Description & Remarks: Involute enrolled test shows early streptospiral stage, later planispiral but not symmetrical. The wall is microgranular; outer wall imperforate, the inner one alveolar. Only one speciemen was recorded in this study that show early streptospiral stage and later planispiral coiling in the earliest Berriasian, suggesting reworking. The presence of a halo around the specimen (probably a relict of earlier cementation) also support this interpretation.

Test width: 163 μm **Test diameter:** 249 μm

FAMILY HAURANIIDAE SEPTFONTAINE, 1988

Genus *Pseudocyclammina* Yabe & Hanzawa, 1926 Type species: *Cyclammina lituus* Yokoyama, 1890

Pseudocyclammina lituus Yokoyama, 1890 Pl. 11, Figs. g-i; Pl. 12, Figs. a, c

1890 Cyclammina lituus n. sp., Yokohama, Pl. 5, Fig. 7

1926 Pseudocyclammina lituus Yokohama, Yabe & Hanzawa, Pl. 2, Figs. 3-6

1991 Pseudocyclammina lituus Yokohama, Altıner, Pl. 4, Fig. 10; Pl. 7, Fig. 14

2005 *Pseudocyclammina lituus* Yokohama, Schlagitnweit, Gawlick & Lein, 38, Figs. 22a-d

2007 *Pseudocyclammina lituus* Yokohama, Krajewski & Olszewska, 301, Fig. 6F 2010 *Pseudocyclammina lituus* Yokohama, Ivanova & Kolodziej, Pl. 4, Figs. 1-10 2015 *Pseudocyclammina lituus* Yokohama, Okay & Altiner, Fig. (5) 24

Description & Remarks: This species is characterized by an early involute planipiral stage (clearly seen in Pl. 12, Fig.a), later uncoiled and by its coarsely alveolar wall and septa (Pl.11 Figs. g-i; Pl. 12, Figs. a, c). In our material except form

an individual (Pl. 12, Fig.a), none of the thin sections we assign to this species is a characteristic section of the taxon. Mostly longitudinal, tangential and oblique-transverse sections were encountered in which the recognition of the planispiral stage is not easy. *Pseudocyclammina lituus* ranges from Oxfordian to Hauterivian (Ivanova & Kolodziej, 2010). In this study, it was recovered from the Kimmeridgian of Günören Limestone and the uppermost Tithonian of Yosunlukbayırı Formation (Fig. 12).

Test width: 775 – 1425 μm **Max. test height:** 1891 – 2671 μm **Wall thickness:** 29 – 157 μm

Genus Alveosepta Hottinger, 1967

Type species: Cyclammina jaccardi Schrodt, 1894

Alveosepta? sp. Pl. 12, Fig. b

Description & Remarks: This genus is characterized by planispiral coiling, and an agglutinated wall that bears exoskeleton beams and rafters forming subepidermal network. Septa are also alveolar. It ranges from Oxfordian – Kimmeridgian (Loeblich & Tappan, 1988). Only a questionable broken specimen of this genus was recoverd from Kimmeridgian that show subepidermal network and alvolar septa (Fig. 12). At the center of the thin section photograph, chambers of previous tours can also be seen.

Max. test diameter: 1178 µm

FAMILY EVERTICYCLAMMINIDAE SEPTFONTAINE, 1988

Genus Everticyclammina Redmond, 1964

Type species: Everticyclammina hensoni Redmond, 1964

Everticyclammina sp. Pl. 12, Figs. d-i

Description & Remarks: It differs from *Pseudocyclammina* by its short, nonalveolar septa that seen as triangular to rectangular thickened prolongation at the base of the septal face in the equatorial section (Pl. 12, Figs. f, h & j). In comparision to the cribrate aperture of the *Pseudocyclammina*, *Evericyclammina* has simple, short vertical areal slit (Pl. 12, Fig.s d-h). It ranges from Middle Sinemurian to Aptian (Boudagher-Fadel, 2008). The representatives of this genus were recorded from the Kimmeridgian of the Günören Limestone and from the uppermost Tithonian of the Yosunlukbayırı Formation (Fig. 12).

Test width: 859 - 1013 μm **Test height:** 851 - 2362 μm **Test diameter:** 381 - 1452 μm

FAMILY LITUOLIDAE de BLAINVILLE, 1827

Genus Ammobaculites Cushman, 1910

Type species: Spirolina agglutinans d'Orbigny, 1846

Ammobaculites sp. Pl. 17, Figs. g-i **Description & Remarks:** Test is coarsely agglutinated. The early stage is tightly coiled (Pl. 17, Figs. g & i) later uncoiled with rectilinear chambers. Aperture is single, that can be clearly seen in longitudinal thin sections cutting across septal face (Pl. 17, Figs. g-i). In the observed specimens, the apertural face of the previous chamber seems to be penetrating into the succeeding chamber, suggesting slight overlap in addition of new chambers at the outer walls. This genus was observed Kimmeridgian – Tithonian rocks in this study (Fig. 12).

Test length: 379 - 846 μm **Wall thickness:** 48 - 53 μm

FAMILY HORMOSINIDAE HAECKEL, 1894

Genus Reophax de Montfort, 1808

Type species: Reophax scorpiurus de Monfort, 1808

Reophax spp. Pl. 17, Figs. j-m

Description & Remarks: *Reophax* differs from *Ammobaculites* in having thin wall and by the absence of early coiled stage (Pl. 17, Figs. j-m). It has terminal, rounded aperture situated on a short neck (Pl.17, Figs. k & l). Individuals of this species were observed Tithonian – Berriasian interval in this study.

Test length: 266 - 524 μm **Wall thickness:** 16 - 24 μm

FAMILY PFENDERINIDAE SMOUTH & SUGDEN, 1962

Genus Siphovalvulina Septfontaine, 1988

Siphovalvulina? sp. Pl. 17, Figs. n-p

Description & Remarks: *Siphovalvulina* has trochospirally coiled, finely agglutinated test. The most caharacteristic feature of this genus is the twisted siphonal canal that travel the test and connects the apertures. Especially longitudinal sections reveals this canal. Additionally in transverse sections the canal can be seen as an inward deflection of a chamber wall. In observed specimens only some transverse sections were recorded that show traces of siphonal canal between the chambers. But, the presence of only two chambers may suggest a biserially coiled form like *Belorussiella*. As Ivanova and Kolodziej (2010) suggest *Belorussiella* does not posses siphonal canal. With this uncertainities, the observed specimens were grouped under the name *Siphovalvulina*? sp. They were recoverd from Tithonian – Berriasian interval in this study.

FAMILY CHARENTIIDAE LOEBLICH and TAPPAN, 1985

Genus Charentia Neumann, 1965

Type species: Charentia cuvillieri Neumann, 1965

Charentia sp. Pl. 13, Figs. d-h

Description & Remarks: Test is lenticular and early stage is planispiral involute later with a tendency to uncoil. This uncoiled portion is not observed in our

specimens. The base of the apertural face is thickened and may seen as a chomotalike small triangular swellings at the base of the septa. Wall is microgranular. *Charentia* sp. was observed from the Kimmeridgian and from the Upper Tithonian to Lower Berriasian (Fig. 12).

Test diameter: 388 - 621 μm **Test width:** 241 - 302 μm **Wall thickness:** 7 - 47 μm

FAMILY HAPLOPHRAGMOIDIDAE MAYNC, 1952

Genus Haplophragmoides Cushman, 1910

Type species: Nonionina canariensis d'Orbigny, 1839

Haplophragmoides joukowskyi (Charollais, Brönnimann & Zaninetti, 1966) Pl. 17, Figs. a-e

1966 *Haplophragmoides joukowskyi* n. sp., Charollais, Brönnimann & Zaninetti, Pl. 2, Figs. 1, 5, 7; text-fig. 2, 3

1991 Haplophragmoides joukowskyi Charollais, Brönnimann & Zaninetti, Altıner,
Pl. 8, Figs. 1-16
2005 Haplophragmoides joukowskyi Charollais, Brönnimann & Zaninetti, Bucur &

Sásáran, Pl. 4, Figs. 1, 2

2008 *Haplophragmoides joukowskyi* Charollais, Brönnimann & Zaninetti, Ivanova et al., 72, Fig.7I

2012 *Haplophragmoides joukowskyi* Charollais, Brönnimann & Zaninetti, Olszewska et al., Pl. 2, Fig. 3; Pl. 10, Fig. 1

2014 *Haplophragmoides joukowskyi* Charollais, Brönnimann & Zaninetti, Bucur et al., 75, Figs. (8) u-v

Description & Remarks: Small agglutinated tests are planispirally coiled and involute. Test shows umbilical depressions on both sides. In our material, the

individuals are usually composed of 7 to 9 chambers in the last whorl (Pl.17, Figs. ae). Aperture is an elongated equatorial slit at the base of the apertural face, can be recognized in the equatorial sections by the absence of wall material near the base of the septa (Pl. 17, Fig. e). It has been reported from the Berriasian – Valanginian interval (Altıner, 1991; Ivanova, 2000; Olszewska et al.). *H. joukowskyi* were identified form Late Berriasian (*oblonga* subzone) in this study (Fig. 12).

Test diameter: 127 - 147 μm

FAMILY MONTSALEVIIDAE ZANINETTI, SALVINI-BONNARD, CHAROLLAIS & DECROUEZ, 1987

Genus Montsalevia Zaninetti, Slavini-Bonnard, Charollais & Decrouez, 1987

Type species: *Montsalevia elavata* Zaninetti, Salvini-Bonnard, Charollais & Decrouez, 1987

Montsalevia salevensis (Charollais, Brönnimann & Zaninetti, 1966) Pl. 17, Fig. f

1966 Pseudotextularia salevensis n. sp. ,Charollais, Brönnimann & Zaninetti, Pl. 1,
Figs. 1-5; Pl. 2, Figs. 2, 6; text-fig. 1
1987 "Montsalevia" salevensis Charollais, Brönnimann & Zaninetti; Zaninetti,
Salvini-Bonnard & Decrouez, p. 166
1991 Montsalevia salevensis Charollais, Brönnimann & Zaninetti; Altıner, Pl. 11,
Figs. 1-23 2005
Montsalevia salevensis Charollais, Brönnimann & Zaninetti; Bucur & Sásáran, Pl. 4,
Figs. 3-8
2007 Montsalevia salevensis Charollais, Brönnimann & Zaninetti; Krajewski &
Olszewska, 298, Fig. 5K
2010 Montsalevia salevensis Charollais, Brönnimann & Zaninetti; Ivanova &
Kolodziej, Pl. 2, Fig. 10
2014 *Montsalevia salevensis* Charollais, Brönnimann & Zaninetti; Bucur et al., 78, Figs. (8) j-r

Description & Remarks: Test is conical, small. Chambers are biserially arrenged. Chambers aditionally are subdivided by exoskeletal beams that can be easily seen in transervse sections, and tangential sections. It ranges from Late Berriasian to Hauterivian (Krajewski & Olszewska, 2007). Only one specimen was observed from Lower Valanginian rocks in this study (Fig. 12).

Test length: 162 μm Chamber height: 12 - 23 μm (from the first series to the final chambers) Wall thickness: 5 - 10 μm Beam thickness: 4 - 10 μm

FAMILY COSCINOPHRAGMATATIDAE THALMANN, 1951

Genus Coscinophragma Thalmann, 1951

Type species: Lichenopora cribrosa Reuss, 1846

Coscinophragma cribrosum Reuss, 1854 Pl. 13, Figs. a-c

1846 Lichenopora cribrosa n. sp., Reuss, Pl. 14, Fig. 10; Pl. 24, Figs. 3-5

1957 Coscinophragma cribrosum Reuss, Maync, 184, Figs. 1-3; 185, Fig. 4

1996 Coscinophragma cribrosum Reuss, Bucur et al., Pl. 1, Figs. 1, 5, 6; Pl. 6, Figs.

1-3, 5

1999 Coscinophragma cribrosum Reuss, Schlagintweit & Ebli, Pl. 5, Fig. 6

2010 Coscinophragma cribra Reuss, Bucur et al., Pl. 3, Fig. 13

2010 Coscinophragma cribrosum Reuss, Ivanova & Kolodziej, 27, Figs. 1-4

Description & Remarks: The test is more or less cylindrical or curved tube. The anastomosing character of the irregular internal projections forms a coarsely cellular structure. It was recorded from the Late Tithonian – Early Berriasian interval (Fig. 12).

FAMILY NAUTILOCULINDAE LOEBLICH and TAPPAN, 1985

Genus Nautiloculina Mohler, 1938

Type species: Nautiloculina oolithica Mohler, 1938

Nautiloculina sp.

Pl. 13, Figs. i-k

Description & Remarks: Previously, debate on the wall type (whether the wall is microgranular or porcelaneous) gave rise to placement of this genus into different taxonomic levels (into lituloids by Loeblich & Tappan, 1988; into miliolines by Loeblich & Tappan, 1964 and Boudagher-Fadel, 2008). Recently, Kaminski (2004) has grouped Nautiloculunidae under suborder Nezzazatina that is characterized by trochospiral to planispiral test with simple microgranular wall.

The shape of the test is nautiliform, planispirally coiled, involute. The inner and outer wall is simple without any exoskeletal and endoskeletal structure. In thin section it may be easily confused with *Charentia*. *Nautiloculina* differs from the *Charentia* by the absence of chomata-like, basal septal projections and in having blunt septa characteristicly seen in equatorial sections.

The individuals of this genus were recovered from Kimmeridgian and Tithonina intervals in this study (Fig. 12).

Test diameter: 348 - 538 μm **Test width:** 214 - 390 μm **Wall thickness:** 11 - 34 μm

FAMILY TEXTULARIOPSIDAE LOEBLICH & TAPPAN, 1982

Genus Haghimashella Neagu & Neagu 1995

Type species: Haghimashella arcuata Haeusler, 1890

Haghimashella? sp. Pl. 18, Figs. a-c

Description & Remarks: *Haghimashella* has early biserial stage and later uniserial. The biserial stage show deep oblique sutures resulted from the chamber shape and slight overlapping of each successive chambers. The observed individuals in this study show two-series of biserial arrengment then continue with uniserial part that has 2 to 3 chambers. The samples were identified from the Kimmeridgian – Tithonian interval.

FAMILY TEXTULARIIDAE EHRENBERG, 1838

Genus Textularia Defrance, 1824

Type species: Textularia sagittula Defrance, 1824

Textularia spp. Pl. 18, Figs. d-i **Description & Remarks:** All finely agglutinated tests showing biserial arrangement. were grouped under *Textularia* spp. in this study. These forms generally show 5 to 7 rows of bisearial chambers with globular, semiglobular and rectengular chambers. The individuals were recovered from the Kimmeridgian – Valanginian interval in this study.

FAMILY TROCHAMMINIDAE SCHWAGER, 1877

Genus *Trochammina* Parker & Jones, 1859 Type species: *Nautilus inflatus* Montagu, 1808

Trochammina sp. Pl. 18, Fig. s

Description & Remarks: Trochospiral test with thick agglutinated wall. Periphery is rounded. *Trochammina* sp. was identified from the Kimmeridgian in this study.

FAMILY PARAVAVULINIDAE BANNER, SIMMONS & WHITTAKER, 1991

Genus Redmondoides Banner, Simmons & Whittaker, 1991

Type species: Pseudomarssonella media Redmond, 1965

Redmondoides? sp. Pl. 18, Figs. k-n

Description & Remarks: Wall is finely agglutinated. Characteristic quadriserial arrangement could not be observed in the studied samples. Due to the great

similarites of the observed samples with the individuals attributed to the *Redmondoides* genus in the literature (like Ivanova et al., 2008, p. 71, Fig.&H ;Ivanova & Kolodziej, 2010, Pl. 1, Figs. 6-8), specimens with at least 5 rows of chambers that show agglutinated wall and well separated septal flaps were grouped under *Redmondoides*? sp..

The specimens were observed from the Kimmeridgian – Berriasian interval in this study.

FAMILY PROLIXOPLECTIDAE LOEBLICH & TAPPAN 1985

Genus Protomarssonella Desai & Banner, 1987

Type species: Dorothia hechti Dieni & Massari, 1966

Protomarssonella sp.. Pl. 18, Fig. j

Description & Remarks: The most characteristic feature of this genus is the conical test shape with straight side walls and flattend septal surface. Coiling is early trochospiral to biserial. It is identified from the Tithonian – Berriasian interval in this study.

FAMILY HAUERINIDAE SCHWAGER, 1876

Genus *Quinqueloculina* d'Orbigny, 1826 Type species: *Serpula seminulum* Linné, 1758 *Quinqueloculina* spp. Pl. 13, Figs. 1-o Pl. 14, Figs. a-m

Description & Remarks: Porcelaneous test is ovate in outline. It shows quinqueloculine coiling that is coiling axis shift 72° in each half of coiling resulted in 144° gap between successive chambers in transverse sections. In axial sextions, it is not possible to trace all chambers from the proloculus to the final chamber without coming across with the wall material as a result of shift in coiling axis. The individuals of this genus were identified from the Kimmeridgian to Early Berriasian interval in this study (Fig. 12).

Genus Moesiloculina Neagu, 1984

Type species: Quinqueloculina danubiana Neagu, 1968

Moesiloculina spp. Pl. 15, Figs. a, b, d-h

Description & Remarks: Porcelaneous test is ovate in outline. Coiling is quinqueloculine. Carinae like thickening is characteristic in transverse sections, at the periphery of the test.

This genus was recorded from the Tithonian - Berriasian interval in this study (Fig. 12).

Genus Istriloculina Neagu, 1984

Type species: Pyrgo elliptica Yovcheva, 1962

Istriloculina spp. Pl. 15, Figs. i-n

Description & Remarks: The most characteristic feature of this genus is the thin porcelaneous wall. The coiling is quinqueloculine in the early stage, later pseudotriloculine to biloculine. The individuals of this genus were identified from the Tithonian – Berriasian interval (Fig. 12).

FAMILY CORNUSPIRIDAE SCHULTZE, 1854

Genus Cornuspira Schultze, 1854

Type species: Orbis foliaceus Philippi, 1844

Cornuspira sp. Pl. 15, Figs. o-s

Description & Remarks: Discoidal test planispirally coiled and evolute. Proloculus is followed by undivided second chamber and the wall is porcelaneous. It was identified from the Tithonian – Berriasian interval (Fig. 12).

Genus Meandrospira Loeblich & Tappan, 1964

Type species: Meandrospira washitensis Loeblich & Tappan, 1946

Meandrospira favrei Charollais, Brönnimann & Zaninetti, 1966 Pl. 16, Figs. l-m *Citaella*? *favrei* n. sp., Charollais, Brönnimann & Zaninetti, Pl. 2, Figs. 3, 4; Pl. 3, Figs. 1-5; Pl.5, Figs. 1, 2; text-figs. 4-6

1988 Meandrospira favrei Charollais, Brönnimann & Zaninetti, Bucur, Pl. 2, Figs. 1-

Meandrospira favrei Charollais, Brönnimann & Zaninetti, Altıner, Pl. 13, Figs. 1-5

Meandrospira favrei Charollais, Brönnimann & Zaninetti, Schlagintwiet & Ebli, Pl. 4, Figs. 8, 11

Meandrospira favrei Charollais, Brönnimann & Zaninetti, Ivanova et al., 72, Figs. (7) N, O

Meandrospira favrei Charollais, Brönnimann & Zaninetti, Olszewska et al., Pl. 2, Figs. 4a, b; Pl. 10, Fig. 3

Description & Remarks: Porcelaneous test is composed of a proloculus which is followed by a second undivided tube that bends back and forth in involute zigzag bends (meandering second tube). Exact equatorial sections gives an impression of planispiarly coiled multilocular specimen. Slight obliquity in a section is enough to reveal zigzag bends. The specimens were identified from the latest Tithonian – Late Berriasian interval.

As previoulsy discussed in Chpt. 2, the unexpected occurrence of *Meandrospira favrei* in the *massutiniana* subzone (latest Tithonian) is unusual and contradicts with the previously published data. Altiner (1991), Rojay and Altiner (1998) and Ivanova (1999) reported Late Valanginian onward occurrence of the taxon (Table 3). Although there are other studies suggesting base Valanginian first occurrence like Ivanova et al. (2008, from Bulgaria), Ivanova and Kolodziej (2010, from Polish Carpathians) and Bucur et al. (2014, from southern Carpathians Romania) and latest Berriasian first appearance like Krajewski and Olszewska (2007, from Crimea Mountains) and Velić (2007, from Kars Dinarides), there is no report on the Tithonian occurrence of the form. There can be two possiblities; (1) the identification in this study could well be erroneous, the identified specimens may belong to another species of the genus that shows great convergent evolutionary morphology to the *M*.

favrei or (2) the taxon could have been evolved in an anonymous period in the Jurassic with a modest population size and then may have been dispersed and its acme may have been recorded diachronously in the Late Valanginian (Altıner, 1991; Rojay & Altıner, 1998 and Ivanova, 1999), at the base of Valanginian (Ivanova & Kolodziej, 2010; Bucur et al., 2014) and in the latest Berriasian (Krajewski and Olszewska, 2007; Velić, 2007). For the first case, all previously proposed first occurrences could be the real first occurrences for the studied areas indicating slight diachronism in the dispersion of the taxon. In the second case, all other reported first occurrences should represent local first occurrence of *Meandrospira favrei* in the works of Altıner (1991), Rojay and Altıner (1998) and Ivanova (1999) still provide useful biohorizon at least for regional correlations, if not present a biozone with globally synchronous basal boundary.

Test diameter: 108 - 115 μm

Genus Meandrospira Loeblich & Tappan, 1964

Type species: Meandrospira washitensis Loeblich & Tappan, 1946

Meandrospira spp. Pl. 16, Figs. e-k

Description & Remarks: Individuals that cannot be assigned a certain species of *Meandrospira* genus are grouped under *Meandrospira* spp. They were observed from the Early Tithonian – Late Berriasian interval in this study.

Genus Meandrospiranella Salaj, 1969

Type species: Meandrospiranella samueli Salaj in Salaj et al., 1967

Meandrospiranella sp. Pl. 16, Fig. n

Description & Remarks: Early stage is *Meandrospira*-like, later irregular and uncoiling. Wall is porcelaneous. A speciemen of this genus was identifed from the Kimmeridgian in this study.

FAMILY AMMODISCIDAE REUSS, 1862

Genus Glomospira Rzehak, 1885

Type species: Trochammina squamata Jones & Parker, 1860

Glomospira sp. Pl. 16, Figs. a-d

Description & Remarks: Proloculus is followed by stretptopirally to irregularly coiled second undivided tube. Wall is finel-agglutinated. The examples of this genus were identified from the Kimmeridgian – Berriasian interval (Fig. 12).

FAMILY TROCHOLINIDAE KRISTAN-THOLMANN, 1963

Genus Coscinoconus Leupold in Leupold and Bigler, 1936

Type species: Coscinoconus alpinus Leupold in Leupold and Bigler, 1936

Coscinoconus spp. Pl. 19, Figs. a-h; Pl. 20, a-e **Description & Remarks:** It is characterized by reduced lamellae on the spiral side. The aragonitic test is low (Pl. 19, Figs. a & c; Pl. 20, Fig. e) to high (Pl. 19, Figs. b, d-h; Pl. 20, Figs. a-e) trochospirally coiled, proloculus followed by second chamber. The stratigraphical range includes Bathonian – Cenomanian interval (Rigaud et al., 2013). The representatives of the genus were recovered from Upper Tithonian – Lower Berriasian successions in this study (Fig. 12).

> Neotrocholina spp. Pl. 20, Figs. f-l

Description & Remarks: The most characteristic feature of this trochospirally coiled form is the presence of well-defined umbilical pillars. The outer wall is thicker when compared with *Coscinoconus*. Rigaud et al. (2013) discarded this genus from Trocholinidae due to the calcitic wall material. Individuals of this genus were identified from the the Tithonian – Valanginian interval in this study.

FAMILY SPIRILLINIDAE REUSS & FRITSCH, 1861

Genus Spirillina Ehrenberg, 1843

Type species: Spirillina vivipara Ehrenberg, 1843

Spirillina spp.

Pl. 21, Figs. b-i

Description & Remarks: The calcite, discoidal test is planispirally coiled. The proloculus is followed by a seconday undivided tube. Plane of coiling may show slight oscilations as can be seen in the illustrated samples (Pl. 21, Figs. b, d, g, l). The

genus was identified from the Kimmeridgian – Valanginian interval in this study (Fig. 12).

FAMILY VAGINULINIDAE REUSS, 1860

Genus Lenticulina Lamarck, 1804

Type species: Lenticulina rotulatus Lamarck, 1804

Lenticulina sp. Pl. 21, Figs. m, n

Description & Remarks: The hyline test is planispirally coiled, involute. Test is biconvex (Pl. 21, Fig. m). Chambers somewhat rapidly increasing in size as new chambers added (Pl. 21, Fig. n). *Lenticulina* sp. was recorded from the Kimmeridgian – Valanginian interval.

FAMILY PATELLINIDAE RHUMBLER, 1906

Genus Patellina Williamson, 1858

Type species: Patellina corrugata Williamson, 1858

Patellina sp. Pl. 22, Figs. a-d **Description & Remarks:** The test shape is conical with flat umbilical side. Wall is calcareous. Presence of keel like projections. Early trochospiral stage (proloculus followed by undivided second chamber) is followed by biserial later stage with crescentic chambers. The representatives of this genus was recovered from the Tithonian to Valanginian interval.

FAMILY TELAMMINIDAE LOEBLICH & TAPPAN, 1985

Genus Troglotella Wernli & Fookes, 1992

Type species: Troglotella incrustans Wernli & Fookes, 1992

Troglotella incrustans Wernli & Fookes, 1992 Pl. 22, Figs. e-g

1992 *Troglotella incrustans* n. sp., Wernli & Fookes, Pl. 1, 2
1996 *Troglotella incrustans* Wernli & Fookes, Schmid & Leinfelder, 22, Figs. 1, 2;
27, Fig. 3; 28, Fig. 4; Pl. 1, Fig.d 1-6; 36, Fig. 6; Pl. 2, Figs. 1-5
1999 *Troglotella incrustans* Wernli & Fookes, Schlagintweit & Ebli, Pl. 3, Fig. 4; Pl.
6, Fig. 7, 9, 10
2007 *Troglotella incrustans* Wernli & Fookes, Krajewski & Olszewska, 296, Fig. 4b
2010 *Troglotella incrustans* Wernli & Fookes, Krajewski, 126, Fig. 4.33C; 130, Fig.
4.35A; 138, Fig. 4.39D; 142, Fig. 4.41D; 170, 4.52C; 180, Fig. 4.57D; 236, Fig.
4.67A
2012a *Troglotella incrustans* Wernli & Fookes, Schlagintweit, 18, Fig. 1; 19, Fig. 3,
4; 20, Fig.5, 6;21, Figs. 7, 8; 22, Fig. 9; 23, Fig. 12;

25, Fig. 15

2015 Troglotella incrustans Wernli & Fookes, Ples et al., 51, Fig. (4) g-i

2015 Troglotella incrustans Wernli & Fookes, Okay & Altiner, Fig. (5) 11, 12

Description & Remarks: Typical buble-shaped chambers that grow in uniserial early stage (Pl. 22, Figs. f, g), later irregular (Pl. 22, Fig. e). *Trogrotella incrustans* is

commonly associated with enigmatic encruster *Lithocodium aggregatum*, interprated as a commensal relationship (Schmid & Leinfelder, 1996).

The stratigraphic range covers the Kimmeridgian – Berriasian interval (Krajewski & Olszewska, 2007). This taxon was identified from the Kimmeridgian – Berriasian interval in this study (Fig. 12). It is mostly encountered in the Kimmeridgian of Günören Limestone (platform carbonates) and generally found in association with *Lithocodium aggregatum*.

4.3. Taxonomy of Incertae sedis, annelids and crinoids

INCERTAE SEDIS (Microproblematica)

Genus Lithocodium Elliott, 1956

Type species: Lithocodium aggregatum Elliott, 1956

Lithocodium aggregatum Elliott, 1956 Pl. 23, Figs. a-f; Pl. 24, Fig. a, b

1956 Lithocodium aggregatum n. sp., Elliott, Pl. 1, Figs., 2, 4, 5
1971 Lithocodium aggregatum Elliott, Basson & Edgell, Pl. 1, Fig. 1
1996 Lithocodium aggregatum Elliott, Schmid & Leinfelder, 22, Figs. 1, 2; 27, Fig. 3; 28, Fig. 4; Pl. 1, Fig.d 1-6; 36, Fig. 6; Pl. 2, Figs. 1-5
2007 Lithocodium aggregatum Elliott, Bacinella irregularis Radoičić – Lithocodium aggregatum Elliott, Bucur et al., Pl. 3, Fig. 4; Pl. 7, Fig. 3
2010 Lithocodium aggregatum Elliott, Pleş et al., 36, Figs. (11) a-d
2014 Lithocodium aggregatum Elliott, Kaya & Altıner, Pl. 3, Fig. 3
2015 Lithocodium aggregatum Elliott, Pleş et al., 51, Fig. (4) i

Description & Remarks: This encrusting organism is characterized by micritic crust that bears cavities along it that look like alveolar structures. As mentioned previously *Lithocodium aggregatum* is mostly found in association with *Troglotella incrustans* and bacinellid structures. This encruster was identified from the Kimmeridgian – Berriasian interval.

Bacinella (Radoicic 1959) – type structre Pl. 22, Figs. h, i

Description & Remarks: *Bacinella* is characterized by somewhat regular to irregular cell assemblages. It is commonly associated with *Lithocodium aggregatum* and *Troglotella incrustans*. This type of fabric is known form Middle Triassic to Late Cretaceous (Flügel, 2010) and is observed from the Kimmeridgian – Berriasian interval in this study (Fig. 12).

Genus Koskinobullina Cherchi & Schroeder, 1979

Type species: Koskinobullina socialis Cherchi & Schroeder, 1979

Koskinobullina socialis Cherchi & Schroeder, 1979 Pl. 24, Figs. c-f

1979 Koskinobullina socialis n. sp., Cherchi & Schroeder, Pl. 1
1991 Koskinobullina socialis Cherchi & Schroeder, Altıner, Pl. 5, Figs. 30, 31
1999 Koskinobullina socialis Cherchi & Schroeder, Schlagintweit & Ebli, Pl. 5, Fig.
7; Pl. 11, Fig. 10
2007 Koskinobullina socialis Cherchi & Schroeder, Schlagintweit & Gawlick, 600,
Fig. 71

2013 *Koskinobullina socialis* Cherchi & Schroeder, Pleş et al., 34 ,Fig. 10 e-h 2014 *Koskinobullina socialis* Cherchi & Schroeder, Kaya & Altiner, Pl. 3, Fig. 5

Description & Remarks: *Koskinobullinas socialis* is characterized by superimposed assemblages of hemispherical chambers with calcitic walls that bear irregular pores. It was recoderd from the Tithonian – Lower Berriasian rocks in this study (Fig. 12).

Genus *Thaumatoporella* Raineri, 1922 Type species: *Gyroporella parvovesiculifera*, 1922

Thaumatoporella parvovesiculifera Raineri, 1922 Pl. 26, Figs. h-j

Gyroporella parvovesiculifera n. sp., Raineri, Pl. 13, Figs. 17, 18 *Thaumatoporella parvovesiculifera* Raineri, Schlagintweit & Ebli, Pl. 10, Fig. 3 *Thaumatoporella parvovesiculifera* Raineri, Bucur et al., Pl. 5, Fig. 10 *Thaumatoporella parvovesiculifera* Raineri, Schlagintweit, 6, Fig. (1) a-g; 7, Fig. (2) a, b *Thaumatoporella parvovesiculifera* Raineri, Kaya & Altiner, Pl. 3, Fig. 8

Description & Remarks: Also known as *Thamatoporella* ladders in the literature, this microproblematica is closely related with bacinellid structures, found intermingled with each other. *T. parvovesiculifera* shows a layer of cells, giving comb-like view. They can be found isolated (Pl. 26, i, j) or in an encrusting position (Pl. 26, h) as mentioned by Schlagintweit (2013). The isolated examples have been generally named as *Thaumatoporella* "ladders" (Schlagintweit, 2013). It was

Genus Crescentiella Senowbari-Daryan, Bucur, Schlagintweit, Săsăran &

observed from the Kimmeridgian – Tihonian interval in this study.

Matyszkiewicz 2008

Type species: Tubiphytes morronensis Crescenti, 1969

Crescentiella morronensis Crescenti, 1969 Pl. 9, Figs. a-f; Pl. 10, Figs. a-g

1969 Tubiphytes morronensis n. sp., Crescenti, 35-37, Figs. 10, 20-22

1991 Tubiphytes morronensis Crescenti, Altıner, Pl. 6, Figs. 4-8

2008 Crescentiella morronensis Crescenti, Senowbari-Daryane et al., Pl. 1, Figs. a-i;

193, Figs. a-h; Pl. 3, Figs. a-g; Pl. 3, Figs. a-h; Pl. 5, Figs. a-h; Pl. 6, Figs. a-h; Pl. 7, Figs. l-e

2012 *Crescentiella morronensis* Crescenti, Olszewska et al., Pl. 6, Fig. 1; Pl. 16, Fig. 2

2013 *Crescentiella morronensis* Crescenti, Pleș et al., 26, Figs. (6) d, e; 28, Fig. 7a; 34, Figs. (10) a-d

2015 Crescentiella morronensis Crescenti, Okay & Altiner, Fig. (5) 29

Description & Remarks: The most characteristic feature of *C. morronensis* is the dark micritic envelopes and the general outline having a tube-like shape. This encruster may have foraminifera with amphorellid chambers (Pl., 9, d; Pl. 10, b, c) or any other type of clasts in the cortext. The envelope may include any kind of encrusted clats. In this study foraminifera (Pl. 9, Fig. e) and even calpionellids (Pl. 10, Fig. f) were found within the micritic envelops. The last one especially indicates open marine environments for that specific individual that enveloped the calpionellid and then resedimented on a slope environment (the Yosunlukbayırı Formation, see Chapter 3).

The stratigraphic range covers the Oxfordian – Berriasian interval and this species shows an acme in the Kimmeridgian – Tithonian inteval (Pleş et al. 2013). Altiner (1991) used this taxon as a Kimmeridgian-base index fossil in his biozonations (Table 3). As discussed in Chpt. 2, the first occurrence of this taxon is synchronous

with the acme of *Saccocoma* sp. (Tithonain base indicator), indicating a facies controlled first occurrence for *Crescentiella morronensis* in this study. It was recorded from the Tithonian – Berriasian interval in the slope deposits (Yosunlukbayırı Fm.) and from the Kimmeridgian in the platform carbonates (Günören Limestone) (Fig. 12). This diachronism clearly indicates a facies controlled distribution and first occurrence of *C. morronensis* in the slope to basin deposits.

Genus *Labes* Eliasova, 1986 Type species: *Labes antramentosa* Eliasova, 1986

> Labes antramentosa Eliasova, 1986 Pl. 25, Figs. a-d

1986 Labes antramentosa n. sp., Eliasova, Pl. 1, 2
1996 "Tubiphytes" morronensis colony, Leinfelder et al., 231, Fig. 4
2003 "Tubiphytes" like structure, Uta & Bucur, Pl. 4, Fig. 4
2008 Labes antramentosa Eliasova, Senowbari-Daryan et al., Pl. 8, Fig. c
2013 Labes antramentosa Eliasova, Pleş et al., 40, Figs. (14) e, f

Description & Remarks: As the synonym list suggests (Leinfelder et al., 1996; Uta & Bucur, 2003) it shows similarity with the *Crescentiella morronensis* in having micritic cortex and internal cavity. This encruster differs from *C. morronensis* in having additional tubular cavities in the cortex. It was identified from the Tithonian in this study.

Genus *Radiomura* Senowbari-Daryan & Schäfer, 1979 Type species: *Radiomura cautica* Senowbari-Daryan & Schäfer, 1979

Radiomura cautica Senowbari-Daryan & Schäfer, 1979 Pl. 26, Fig. g

1979 *Radiomura cautica* n. sp., Senowbari-Daryan & Schäfer, Pl. 2, Fig. 6; Pl. 4,
Figs. 1-4; Pl. 5, Figs. 2, 3; Pl. 6, Fig. 4; Pl. 7, Fig. 1
2005 *Radiomura cautica* Senowbari-Daryan & Schäfer, Schlagintweit, Pl. 2, Fig.
3 2007 *Radiomura cautica* Senowbari-Daryan & Schäfer, Schlagintweit &
Gawlick, 601, Fig. 8
2008 *Radiomura cautica* Senowbari-Daryan & Schäfer, Ivanova et al., 79, Fig.
(13) F, G
2013 *Radiomura cautica* Senowbari-Daryan & Schäfer, Pleş et al., 32, Fig. 9g,
39, Figs. (12) e-h
2014 *Radiomura cautica* Senowbari-Daryan & Schäfer, Kaya & Altiner, Pl. 3, Fig.

Description & Remarks: This microproblematica is characterized by spherical chambers that has darker, finer grained inner wall. The outer wall is light grey composed of fibrous calcite. The tubes do not show interconnection. Rare individuals were recorded in the Tithonian and Late Berriasian in this study.

Genus *Perturbatacrusta* Schlagintweit & Gawlick, 2011 Type species: *Perturbatacrusta leini* Schlagintweit & Gawlick, 2011

> Perturbatacrusta leini Schlagintweit & Gawlick, 2011 Pl. 26, Figs. a-f

2011 Perturbatacrusta leini n. sp., Schlagintweit & Gawlick, 129, Figs. (5) c, d, g, h;
132, Figs. (7) a-g
2013 Perturbatacrusta leini Schlagintweit & Gawlick, Pleş et al., 26, Fig. 6d; 38,

Figs. (12) a-d 2014 Perturbatacrusta leini Schlagintweit & Gawlick, Kaya & Altiner, Pl. 3, Fig. 7

Description & Remarks: *Perturbatacrusta leini* differs from *Radiomura cautica* by its interconnected tubes and lateral closed tubes. *P. leini* was identified from the Tithonian – Berriasian interval in this study.

Genus *Globochaete* Lombard, 1945 Type species: *Globochaete alpina* Lombard, 1945

> *Globochaete* sp. Lombard, 1945 Pl. 27, Figs. k-aa

Description & Remarks: *Globochaete* is characterized by kidney-shaped (Pl. 27, Figs. m, o, r, t), spherical (Pl. 27, Figs. l, n, p, r) calcite bodies that has micritic nucleus (Pl. 27, Figs. k, p s). They may show serial arrangement (Pl. 27, Figs. n, p, s), occur in clusters (Pl. 27, Figs. r, o). They may attach to a calcitic plates (Pl. 27, Figs. l, n). They are abundant in Late Jurassic deep waters (Brönnimann, 1965; Skompski 1982; Altıner, 1991; Flügel, 2010) and attributed to a planktonic single-celled green algae (Skompski 1982). *Globochaete* is observed from the Kimmeridgian – Valanginian interval in this study.

Genus *Pithonella* Lorenz, 1902 Type species: *Pithonella ovalis* Kauffmann in Heer, 1865

> Pithonella? sp. Lorenz, 1902 Pl. 21, Figs. r-u

Description & Remarks: Calcareous shell with spherical, elongated, flattened and pyramidal shapes that bear main apical and antapical pores. An affinity to cyst-forming organism dinoflagellates has been suggested by Wendler et al. (2013), recently.

The individuals attributed to this taxon were observed the Kimmeridgian-Berriasian interval in this study (Fig. 12).

Genus *Cayeuxia* Frollo, 1938 Type species: *Cayeuxia piae* Frollo, 1938

> *Cayeuxia* sp. Frollo, 1938 Pl. 22, Figs. j-l

Description & Remarks: *Cayeuxia* is characterized by parallel tubes showing radial branching in longitudinal sections. This taxon has been attributed to calcareous algae and calcimicrobes (Basson & Edgell, 1971; Flügel, 2010). Representative individuals were recovered from the Kimmeridgian – Tithonian interval in this study (Fig. 12).

PHYLUM ANNELIDA LAMARCK, 1809

FAMILY TEREBELLIDAE MALMGREN, 1867

Genus Terebella Linnaeus, 1767

Type species: Terebella lapidaria Linnaeus, 1767

Terebella lapilloides Münster, 1833 Pl. 28, Figs. a-h

1833 Terebella lapilloides n. sp., Münster, Pl. 71, Fig. 16
1993 Terebella lapilloides Münster, Leinfelder et al., Pl. 41, Figs. 1, 3
1996 Terebella lapilloides Münster, Schmid, 204 – 205, Fig. 74
1999 Terebella lapilloides Münster, Schlagintweit and Ebli, Pl. 1, Fig. 5; Pl. 2, Fig. 6; Pl. 12, Figs. 6-11
2008 Terebella lapilloides Münster, Schlagintweit & Gawlick, Fig. 13a
2011 Terebella lapilloides Münster, Krajewski et al., Fig. 4B
2014 Terebella lapilloides Münster, Kaya & Altıner, Pl. 1, Figs. 1-16; Pl. 2, Figs. 1-8; Pl. 3, Fig. 1

Description & Remarks: *Terebella lapilloides* is an annelid with an agglutinated tube that is common in Late Jurassic reefal, fore-reef and slope environments (Leinfelder et al., 1993; Kaya & Altiner, 2014). The worm tubes belong to this species were identified from the latest Tithonian – earliest Berriasian interval in this study (Fig. 12).

FAMILY SERPULIDAE Burmeister, 1837

Genus Mercierella Fauvel, 1923

Type species: Mercierella enigmatica Fauvel, 1923

Mercierella ? dacica Münster, 1833 Pl. 27, Figs. a-j

(For synonyms before the year 1998 see Miík et al. 1999)

1966 Mercierella ? dacica n. sp., Dragastan, 148, Fig. 1; 149, Fig. 2
1991 Mercierella ? dacica Dragastan, Altıner et al., not illustrated
1999 Mercierella ? dacica Dragastan, Miík et al. 1999, Pl. 1, Figs. 1-11
2001 Mercierella ? dacica Dragastan, Såsåran et al., Pl. 10, Fig. 1

2005 *Mercierella* ? *dacica* Dragastan, Dragastan et al., not illustrated 2010 *Mercierella* ? *dacica* Dragastan, Bucur et al., not illustrated

Description & Remarks: *Mercierella dacica* is characterized by a microgranular tube, open at both ends, with unequally spaced collars (3 collars according to Miík et al. 1999). The generic name has a question mark in the literature (and here) due to the fact that Fauvel (1923) described this genus from brackish water limestones however, *M. dacica* has been found in generally platform margin environments (fore-reef, slope, outer shelf), associated with calpionellids, *Crescetiella morronensis* and *Mohlerina basiliensis* (Dragastan, 1966; Miík et al. 1999; Såsåran et al.; Dragastan et al. and Bucur et al. 2010) which is the same case in this study.

It is nearly impossible to differentiate oblique sections and incomplete tubes of *M*. *dacica* from *Aeolisaccus* or *Earlandia* in thin sections. Unlike *Earlandia*, *Aeolisaccus* and *Mericierella* do not have a proloculus and a second tubular chamber. They are characterized by a microgranular tube with open ends. *Mercierella* differs from *Earlandia* in having collars diverging from the wall of the tube in irregularly spaced intervals.

This species have been identified from the Kimmeridgian – Berriasian interval (Miík et al. 1999; Dragastan, 2005). In this study *Mercierella ? dacica* was identified from the Kimmeridgian to earliest Valanginian interval (Fig. 12).

CIASS CRINOIDAE MILLER, 1821

FAMILY SACCOCOMIDAE D' ORBIGNY, 1852

Genus Saccocoma Agassiz, 1853

Saccocoma sp. Pl. 10, Figs. h-m **Description & Remarks:** In thin sections, they are recognized by their characteristic antler-shaped calcitic structures (facetalia and brachilia). This pelagic crinoids were placed under different genera by several authors like *Eothrix* (by Lombard, 1945) and *Lombardia* (by Brönniman, 1955). They range from Middle Oxfordian to latest Tithonian (Nicosia & Parisi, 1979; Kroh & Lukeneder, 2009). *Saccocoma* shows important abundance in the Tithonian which was used as a possible base-Tithonian marker event in several studies (Nicosia & Parisi, 1979; Altıner, 1991; Skourtis-Coroneou & Solakius, 1999). This pelagic crinoid has generally been considered as Middle to Late Jurassic – confined taxon that did not extend into the Berriasian in the literature but *Saccocoma* was identified from Tithon – earliest Berriasian interval in this study (Fig. 12). This anomaly can be explained by the different interpration of the J-K boundary (see Chpt. 2).

CHAPTER 5

DISCUSSION AND CONCLUSION

The Upper Jurassic – Lower Cretaceous carbonate succession that crop out to the north of Sivrihisar (Eskişehir) was studied in detail. Along two measured stratigraphic sections (925 m thick in total), 200 samples were collected.

According to the micropaleontological analyses, biozonation and microfacies types, two coeval but dissimilar depositional domains, seperated by an overthrust, have been detected along the measured sections. The one on the southern part shows a slope to basin facies and is characterized by the Kimmeridgian - Berriasian Yosunlukbayırı Formation and the overlying Valanginian Soğukçam Limestone. Two depositional environments were identified; namely, the "toe of slope" facies and the "slope" facies. The microfacies of the "toe of slope" deposits are generally characterized by peloidal, bioclastic packstone, bioclastic mudstone and bioclastic/ calpionellid/ radiolarian wackestone - packstone facies with related pelagic taxa (calpionellids, radiolaria, Globochaete sp., Pithonella sp., Saccocoma sp., calcareous dinocysts, aptychi and very rare planktonic foraminifera and nannoconids) and rare platform derived groups (larger and smaller foraminifera, microencrusters, Mercierella ? dacica, echinoid spines, bivalve fragments, crinoid and echinoid fragments). These deposits represent the background pelagic deposition on a slope. The "slope" facies are mainly represented by bioclastic, peloidal/ bioclastic, lithoclastic packstone, peloidal, intraclastic/ intraclastic, bioclastic grainstone/ rudstone to grainstone, bioclastic, lithoclastic floatstone/ rudstone facies characterized by a gradual increase in the amount of platform derived material (larger and smaller benthic foraminifera, microencrusters, worm tubes, corals, sponges, bryozoa). The matrix of these coarse grained deposits also includes pelagic

taxa like (calpionellids, radiolaria, *Saccocoma* sp., *Globochaete* sp., *Pithonella* sp., aptyhci). The slope facies also shows intercalations with the "toe of slope" type facies indicating quiescence periods, dominated by background pelagic sedimentation.

Within the slope to basin deposits, the following biozones were defined: *Globuligerina oxfordiana – Mohlerina basiliensis* Zone (Kimmeridgian), *Crescentiella morronensis* (*Saccocoma* subzone) Zone (Lower Tithonian), *Protopeneroplis ultragranulata* Zone (Upper Tithonian), *Crassicollaria (massutiana* subzone) Zone (uppermost Tithonian), *Calpionella (alpina, Remaniella* and *elliptica* subzones) Zone (Lower Berriasian), *Calpionellopsis (simplex* and *oblonga* subzones) Zone (Upper Berriasian) and *Calpionellites (darderi* subzone) Zone (Lower Valanginian). The Jurassic – Cretaceous boundary is located at the base of the Calpionella Zone.

This succession is overthrusted from north to south by a thin slice of the Berriasian Yosunlukbayırı Formation and an overlying thicker slice consisting of the Kimmeridgian Günören Limestone which is a part of the Edremit – Bursa - Bilecik Carbonate Platform. Platform carbonates of the Günören Limestone are characterized by peloidal/ peloidal, intraclastic poorly washed grainstone with bioclasts, bioclastic mudstone/ wackestone, intraclastic packstone/ rudstone including shallow marine groups (larger and smaller benthic foraminifera, encrustres and rare echnoid, bivalve and coral fragments) without any pelagic taxa. These carbonates were interpreted as back-reef platform deposits that should not be so far away from the platform margin due to the co-occurrence of Protopeneroplis striata and Mohlerina basiliensis (abundant in the reefal areas along the shelf edge) with the complex benthic foraminifera like Labyrinthina mirabilis (abundant in lagoonal areas). Within the Günören Limestone, Labyrinthina mirabilis _ *Protopeneroplis* striata (Kimmeridgian) Zone was recognized.

After detecting the presence of Günören Limestone in the study area, a much thinner section was measured to the north of these successions with the purpose of checking whether there is any record of the well documented Bilecik Carbonate Platform drowning event. However, on the contrary of our expectations, a succession consisting of the Early Berriasian Yosunlukbayırı Formation deposited on the slope and the basinal Soğukçam Limestone was recorded. The boundary of these two formations is probably tectonic. These formations show similiar facies characteristics with the slope to basin successions.

Due to the presence of two different depositional domains and wide time span of the successions, various fossil groups were studied, including foraminifera, calpionellids, incertae sedis and worm tubes. The established biozonation for the slope to basin facies may seem to be facies controlled; G. oxfordiana – M. basiliensis Zone using a pelagic and benthic foraminifera association is followed by a pelagic taxon zone (Saccocoma zone) and again followed by a benthic foraminifera zone (Protopeneroplis ultragranulata zone). But this is the nature of the fossil associations of slope environments continuously fed by surrounding carbonate platforms (the Günörene Limestone in this case). There should not be any question about the first occurrences of the pelagic taxa in this slope environments like the first occurrences of Saccocoma sp. and calpionellid species. Although some benthic taxa show slight diachronism in their first occurrences in the study area like Crescentiella morronensis (which has been recorded in the Kimmeridgian of Günören Limestone and observed Tithonian onwards in the Yosunlukbayırı Formation), there should not be any doubt about the chronostratigraphic position of the Protopeneroplis ultragranulata Zone. Even if the basal boundary of this zone is diachronic, it still indicates a Late Tithonian time since it is bounded below and above by the Tithonian Saccocoma Zone and latest Tithonian massutiniana subzone, respectively. Additionally, due to the nature of environment they inhabit (mostly platform margin), P. ultragranulata and Crescentiella morronensis were easily transported into the slope facies without causing important diachronism regarding their first occurrences. Pelagic calpionellid - based bizonation follows this P. ultragranulata zone as a result of latest Tithonian onward decrease in the platform derived material and domination of the background pelagic sedimentation.

If the position of the studied sections with respect to the Edremit – Bursa - Bilecik Carbonate Platform is considered, the studied basin and slope facies should represent the southern platform margin and slope environments of this carbonate platform that faced an ocean to the south during the Jurassic – Cretaceous interval. The slope and basinal facies (the Yosunlukbayırı Formation and the Soğukçam Limestone) overthrusted by the shallow marine deposits (the Günören Limestone) in a region situated to the south of the main İzmir-Ankara-Erzincan (İAE) suture suggests an important disruption and shortening of the Edremit – Bursa - Bilecik Carbonate Platform margin and slope deposits, probably related to the closure of the İAE ocean.

REFERENCES

Alleman, F., Catalano, R., Fares, F. and Remane, J., 1971, Standard calpionellid zonation (Upper Tithonian – Valanginian) of the Western Mediterranean province *In:* Farinacci, A. (eds.), Proceedings of the II Planktonic Conference, Roma 1970, 1337-1340

Altıner, D., 1991, Microfossil biostratigraphy (mainly foraminifers) of the Jurassic – Lower Cretaceous carbonate successions in north-western Anatolia, Turkey, v. 27, p. 167-213

Altıner, D. and Özkan, S., 1991, Calpionellid zonation in north-western Anatolia (Turkey) and calibration of the stratigraphic ranges of some benthic foraminifera at the Jurassic – Cretaceous boundary, v. 27, p. 215-235

Altıner, D., Koçyiğit, A., Farinacci, A., Nicosia, U. and Conti, M. A., 1991, Jurassic – Lower Cretaceous stratigraphy and paleogeographic evolution of the southern part of northwestern Anatolia (Turkey), Geologica Romana, v. 27, p. 13-80

Altıner, D., Özkan-Altıner, S. and Koçyiğit, A., 2000, Late Permian foraminiferal biofacies belts in Turkey: paleogeographic and tectonic implications *In*: Bozkuert, E., Winchester, J. A. and Piper, J. D. A. (eds.) Tectonics and magmatism in Turkey and the surrounding area, Geological Society, London, Special Publications, 173, 83-86

Altınlı, İ. E., 1965a, İnegöl havzasının jeolojisi ve hidrojeolojisi, İ. Ü. Fen. Fak. Mecmuası, B, 28, 3-4, 173-199

Altınlı, İ. E., 1965b, Yenişehir havzasının jeolojik ve hidrojeolojik incelenmesi, İ. Ü. Fen. Fak. Mecmuası, B, 30, 1-2, 31-51

Altınlı, İ. E., 1973a, Orta Sakarya jeolojisi, Cumhuriyet' in 50. yılı Yerbilimleri Kongresi, Tebliğler, 159-191

Altınlı, İ. E., 1973b, Bilecik Jurasiği, Cumhuriyet' in 50. yılı Yerbilimleri Kongresi, Tebliğler, 103-111

Altınlı, İ. E., 1976, Geology of the northern portion of the Middle Sakarya River, İ. Ü. Fen. Fak. Mecmuası, B, 41, 35-46

Altınlı, İ. E., 1977, Geology of the Eastern Territory of Nallıhan (Ankara province) İ. Ü. Fen. Fak. Mecmuası, B, 42, 29-44

Altınlı, İ. E., Gürpınar, O., and Ersen, S., 1970, Erenköy – Deresakarı (Bilecik ili) alanının jeolojisi, İ. Ü. Fen. Fak. Mecmuası, B, 35, 1-2, 77-83

Altınlı, İ. E., and Saner, S., 1971 Bilecik yakın dolayının jeolojik incelenmesi, İ. Ü. Fen. Fak. Mecmuası, B, 36, 1-2, 9-21

Altınlı, İ. E., and Yetiş, C., 1972, Bayırköy – Osmaneli alanının jeolojik incelenmesi, İ. Ü. Fen. Fak. Mecmuası, B, 37, 1-2, 1-18

Andreini, G., Caracuel, J.E. and Parisi, G., 2007, Calpionellid biostratigraphy of the Upper Tithonian - Upper Valanginian interval in Western Sicily (Italy), Swiss Journal of Geosciences, 100, 179–198.

Arabu, N., 1934/1935, Contribution à l'étude géologique des environs de la mer de Marmara, C. R., Inst. Geol. Romanie, 23

Argand, E., 1942, La Tectonique de l'Asie, C. R. Congres Gtol Intern. XIII. Sess. Belgique, 1922, fasc. I

Arkad'ev, V. V., Fedora, A. A., Savel'eva, Y. N., Tesakova, E. M., 2006, Biostratigraphy of Jurassic-Cretaceous Boundary sediments in the Eastern Crimea, Stratigraphy and Geological Correlation, Vol. 14, No. 3, pp. 302-330

Arni, 1939, Doğu Anadolu ve mücavir mıntakalarının tektonik ana hatları, M.T.A. Yayınları, seri B, no. 4, Ankara

Aslaner, M., 1964, Etude géologique et pétrographique de la région d' Edremit – Havran (Turquie), M.T.A., Publ., 119, 1-98 Auer, M., Gawlick, H. J., Suzuki, H. and Schlagintweit, F., 2009, Spatial and temporal development of siliceous basin and shallow-water sedimentation in Oxfordian (Northern Calcareous Alps), Facies, 55, p. 63-87

Aygen, T., 1956, Balya bölgesi jeolojisinin incelenmesi. Etude géologique de la région de Balya (Turquie), M.T.A. Publ., D., 11, 1-95

Baccelle, L. and Bosellini, A., 1965, Diagrammi per la stima visiva della composizione percentuale nelle rocce sedimentarie. Annali della Università di Ferrara, Sezione IX, Science Geologische e Paleontologische 1, 59-62

Bakalova, D., 1977, La succession a calpionelles de la coupe pres du village de Ginci, Bulgarie du Nord-Ouest. Comptes rendus de l' Academie bulgare des Sciences, 30, 423–426

Bakalova-Ivanova, D., 1986, Peculiarities of the calpionella zone in Bulgaria, Acta Geologica Hungarica, 29, 89–92

Banner, F. T. and Desai, D., 1988, A review and revision of the Jurassic – Early Cretaceous Globigerinina, with especial reference to the Aptian assemblages of Speeton (Nowth Yorkshire, England), J. micropalaeontology, 7(2), p. 143-185

Basson, P. W. and Edgell, H. S., 1971, Calcareous algae from the Jurassic and Cretaceous fo Lebanon, Micropaleontology, v.17, n.4, p. 411-433

Bignot, G. and Guyader, J., 1966, Découverte de foraminiféres planctoniques dans l'Oxfordien du Havre (Seine-Maritime), Revue Micropaléontologie, 9(2), p. 104-110

Bignot, G. and Guyader, J., 1971, Observations nouvelles sur *Globugerina oxfordiana* Grigelis, *In:* A. Farinacci (ed.) Proceedings of the II Planktonic Conference in Rome 1970, Rome, p.79-83

Biju-Duval, B., DErcourt, J. and Le Pichon, X., 1977, From the Tethys ocean to the Mediterranean seas: a plate tectonic model of the evolution of the western Alpine System, *In*: Biju-Duval, B. and Montadert, I. (eds.), Structural history of the Mediterranean basins, Editions Echnip, Paris, p. 143-164

Bingöl, E., Akyürek, B., and Korkmazer, B., 1973, Biga yarımadasının jeolojisi ve Karakaya Formasyonu'nun bazı özellikleri, Cumhuriyet'in 50. yılı, Yerbilimleri Kongresi, Tebliğler, 70-76

Birkelund, T., Hancock, J. M., Hart, M. B., Rawson, P. F., Remane, J., Robaszynski, F., Schmid, F. and Surlyk, F., 1984, Cretaceous stage boundaries – proposals, Bull. geol. Soc. Denmark, Copenhagen, v. 33, p. 3-20

Blumenthal, M., 1946, Die neue geologische Karte der Turkei und einige ihrer stratigraphisch-tektonischen Grundzüge. Eclogae Geol. Helv., vol. 39, no. 2

Boorovå, D., Skupien, P., Vašiček, Z. and Lobitzer, H., 2015, Biostratigraphy of the Lower Cretaceous Schrambach Formation on the classical locality of Schrambachgraben (Northern Calcareous Alps, Salzburg Area), Bulletin of Geosciences, Czech Geological Survey, Prague, 90(1), p. 89-131

Borza, K., 1969, Die mikrofazies und mikrofosilien des Oberjuras und der Unterkreide der Klippen-Zone der West-karpatien, Verlag der Slowakischen Akademie der Wissenschaften, Bratislava, 302 p

Borza, K. and Michalik, J., 1986, Problems with delimitation of the Jurassic/Cretaceous boundary in the Western Carpathians, Acta Geologica Hungarica, 29(1-2), p. 133-149

Boudagher-Fadel, M. K., Banner, F. T. and Whittaker, J. E. (with a contribution by M. D. Simmons), 1997, The early evolutionary history of planktonic foraminifera, London, Chapman & Hall, 269 p

Brönnimann, P., 1965, Microfossils incertae sedis from the Upper Jurassic and Lower Cretaceous of Cuba, Micropaleontology, v.1, n.1, p. 28-51

Bucur, I. I., 1988, Les foraminiféres du Crétacé inférieur (Berriasien-Valanginien) de la zone de Reşiţa-Moldova Nouă (Carpathes Méridionales, Roumanie), Remarques biostratigraphiques, Revue de Paléobiologie, Genéve, vol. spéc. no. 2 (Benthos '86), p. 379-389

Bucur, I. I., 1992, Calpionellids and calcispheres from the Upper Jurassic-Lower Cretaceous deposits in the Resita-Moldova Noua zone, Southern Carpathians, Romania, 13, p. 565-576

Bucur, I. I., 1993, Les représentants du genre Protopeneroplis Weynschenk dans les dépôts du Crétacé inférieur de la zone de Resita-Moldova Nouă (Carpathes Méridionales, Roumanie), Revue de Micropaléontologie, Paris, 36(3), p. 2013-233

Bucur, I. I., 1997, Representatives of the genus Protopeneroplis (Foraminifera) in the Jurassic and Lower Cretaceous deposits in Romania, comparisions with other regions of the Tethyan area, Acta Palaeontologica Romaniae, 1, 65-74

Bucur, I. I. and Săsăran, E., 2005, Micropaleontological assemblages from the Upper Jurassic-Lower Cretaceous deposits of Trascău Mountains and their biostratigraphic significance, v.5, p. 27-38

Bucur, I. I., Senowbari-Daryan, B. and Abate, B., 1996, Remarks on some foraminifera from the Upper Jurassic (Tithonian) reef limestones of Madonie Mountain (Sicily), Bollettino della Società Paleontologica Italiana, 35(1), p. 65-80

Bucur, I. I., Hoffmann, M. and Kołodziej, B., 2005, Upper Jurassic-Lowermost Cretaceous Benthic Algae from Tethys and the European Platform: A case study from Poland, Revista Espanola de Micropaleontologia, 37(1), p. 105-129

Bucur, I. I., Piteiu, M. –A. and Săsăran, E., 2007, The Mesozoic carbonate deposits from the borehole 6042 Deleni (Transylvanian Depression), Studia Univ. Babeş-Bolyai, Geol., XLIX, p. 27-48

Bucur, I. I., Beleš, D., Săsăran, E. and Balica, C., 2010, New data on facies development and micropaleontology of the eastern margin of the Getic Carbonate Platform (South Carpathians, Romania): case study of the Mateiaş Limestone, Studia Universitatis Babeş-Bolyai, Geologia 55(2), p. 33-41

Bucur, I. I., Grădinaru, E., Lazăr, I. and Grădinaru, M., 2014, Early Cretaceous micropaleontological assemblages from a condensed section of the Codle area (Southern Carpathians, Romania), Acta Palaeontologica Romaniae, v. 9(2), p. 67-84

Burşuk, A., 1981, Aşkale - Bayburt yöresinde (KB Erzurum) calpionellid biyozonları, Karadeniz Teknik Üniversitesi Yer Bilimleri Dergisi, Jeoloji, 1:1, p. 21-28

Burşuk, A., 1982, Eight new species of calpionellidae from the Late Jurassic - Lower Cretaceous found in the Kop Mountains (Eastern Anatolia, Turkey), Karadeniz Teknik Üniversitesi Yer Bilimleri Dergisi, Jeoloji, 2:1-2, p. 81-86

Burşuk, A., 1992, Bayburt ve Kop Dağları (KB Erzurum) yöresindeki calpionellid biyozonları (Üst Jurasik – Alt Kretase), c. 35, 127-140

Cadisch, J., 1932, Ein Beitrag zum Calpionellen-Problem, Geologische Rundschau, 23, p. 241-257

Catalano, R., 1965, Calpionelle di Calabianca (Castellammare, Sicilia), Atti della Società Toscana di Scienze Naturali (A), 72, p. 1-26

Charollais, J., Brönnimann, P. and Zaninetti, L., 1966, Troisiëme note sur les foraminiféres du Crétacé inférieur de la région genevoise, Remarques stratigraphiques et description de *Pseudotextulariella salevensis*, n.sp.; *Haplophragmoides joukowskyi*, n. sp., *Citaella ? favrei*, n. sp., Arch. Sci. Soc. Physiq. Hist. Nat. Geneve, 19, 23-48

Cherchi, A. and Schroeder, R., 1979, *Koskinobullina* n. gen., microorganism en colonie incertae sedis (Algues?) du Jurassique-Crétacé de la region méditerranéenne; note préliminaire, Bull Centre Rech Elf Explor Prod 3, p. 519-523

Ciborowski, T. and Kołodziej, B., 2001, Tithonian-Berriasian calpionellids from the Štramberk-type Limestones, Polish Flysch Carpathians, 52(6), p. 343-348

Colom, G., 1934, Estudio sobre las calpionelas, Boletin de la Real Sociedad Espaňola de Historia Natural, 34, p. 371-391

Colom, G., 1939, Tintinnidos fósiles (Infusorios oligótricos), Las Ciencias, Madrid, 4(4), p. 815-825

Colom, G., 1948, Fossil tintinnids: loricated infusoria of the order of the Oligotricha, Journal of Paleontology, 22, p. 233-263

Cope, J. C. W., 1991, Ammonite faunas of the ammonitico rosso of the Pontide Mountains, northern Anatolia, v. 27, 303-325

Cope, J. C. W., 2008, Drawing the line: the history of the Jurassic – Cretaceous boundary, Proceedings of the Geologists' Associations, 119, 105-117

Coquand, H., 1871, Sur le Klippenkalk du département du Var et des Alpes -Maritimes. Bulletin de la Société Géologique de France 28, p. 232-233

Crescenti, U, 1969, Biostratigrafia delle facies mesozoiche dell'Appennino centrale, Corelazioni, Geol. Rom., 8, p. 15-40

Derman, A. S. and Sayılı, A., 1995, İnaltı Formation: a key unit for regional geology, *in:* A. Erler, T. Ercan, E. Bingöl and S. Örçen (eds.), Geology of the Black Sea Region, General Directorate of Mineral Research and Exploration, and Chamber of Geological Engineers, Ankara - Turkey, p. 99-103

Doyle, P. and Mariotti, N., 1991, Jurassic and Lower Cretaceous belemnites from North-Western Anatolia (Turkey), Geologica Rom., 27, p. 347-379

Dragastan, O., 1966, A new serpulid species in the Upper Jurassic of Rumania, Paläont. Z., Stuttgart, 40, ¹/₂, p. 147-150

Dragastan, O., Popescu, I. S. and Popescu, A., 2005, Early Cretaceous microfacies and algae from the central-eastern sectors of the Moesian Carbonate Platform, Acta Palaeontologica Romaniae, v.5, p. 141-162

Drzewiecki, P. A. and Simó, J. A., 2002, Depositional processes, triggering mechanisms and sediment composition of carbonate gravity flow deposits: examples from the Late Cretaceous of the south-central Pyrenees, Spain, Sedimentary Geology, 146, p. 155-189

Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture; *in:* Ham, W. E., Classification of carbonate rocks, American Association of Petroleum Geologists, Memoir 1, p. 108-121

Durand-Delga, M., 1957, Une nouvelle forme de Calpionelles, Publications du Service géologique de l'Algérie (nouvelle série), 13, p. 165-170

d'Orbigny, A., 1842-1851, Paléontologie Français. Description zoologique et géologique de tous les animaux mollusques et rayonnés fossiles de France. Terrains oolitiques ou jurassiques. I. Céphalopodes. Masson, Paris. p. 642

d'Orbigny, A., 1852, Cours élémentaire de paléontologie et de géologie stratigraphique, V. 2. Masson, Paris, p. 383-847

Eliasova, H., 1986, A new binding microorganism of shallow-water limestones, Vést. Ustř. Ust. Geol., 61, p. 109-111

Elliot, G. F., 1956, Further records of fossil calcareous algae from the Middle East, Micropaleontology, 2, p. 327-334

Egeran, N., 1947, Tectonique de la Turquie et relations etc., G. Thomas, Nancy.

Embry, A. F. III and Klovan, J. S., 1971, A Late Devonian reef tract on northeastern Banks Island, N.W.T. Bulletin of Canadian Petroleum Geology, v. 4, p. 730-781

Emery, D. and Myers, K. J., 1996 (4th ed), Sequence stratigraphy, Blackwell Publishing, 297 p

Erk, S., 1942, Etude géologique de la région entre Gemlik et Bursa, M.T.A., Publ., B, 9

Eroskay, S. O., 1965, Paşalar Boğazı – Gölpazarı sahasının jeolojisi, İ. Ü. Fen. Fak. Mecmuası, B, 30, 135-159

Fiorentino, A., 1991, Nannofossil stratigraphy of the Late Jurassic – Early Cretaceous Çay sequence, Western Pontides, Turkey, v. 27, 113-133
Flügel, E., 2004, Microfacies of carbonate rocks: analysis, interpretation and application, Springer, 976 p

Flügel, E., 2010, Microfacies of carbonate rocks: analysis, interpretation and application (2nd ed.), Springer, Verlag Berlin Heidelberg, 1006 p

Forquin, C., 1975, L' Anatolie du nord-quest, marge meridionale du continent european, histoire paleogeographique, tectonique et magmatique durant le Secondaire et le Tertiaire, Bull. Soc. Geol., France, VII, 17 (6), 1058-1070

Fözy, I., Janssen, N. M. M., Price, G. D., Knauer, J. and Pålfy, J., 2010, Integrated isotope and biostratigraphy of a Lower Cretaceous section from the Bakony Mountains (Transdanubian Range, Hungary): a new Tethyan record of the Weissert event, 31, p. 525-545

Frau, C., Bulot, L. G., Rehåkovå, D., Wimbledon, W. A. P. and Ilfirm, C., 2016, Revision of the ammonite index species *Berriasella jacobi* Mazenot, 1939 and its consequence for the biostratigraphy of the Berriasian Stage, 66, 94-114

Gautier, Y., 1984, Déformations et métamorphismes associeés à la fermeture téthysienne en Anatolie Centrale (Région de Sivrihisar, Turquie), PhD thesis, Université de Paris-Sud, Centre d'Orsay

Gawlick, H. –J. and Schalgintweit, F., 2006, Berriasian drowning of the Plassen carbonate platform at the type-locality and its bearing on the early Eoalpine orogenic Dynamics in the Northern Calcareous Alps (Austria), Int. J. Earth Sci. (Geol Rundsch), 95, p. 451-462

Gawlick, H. –J. and Schalgintweit, F., 2010, The drowning sequence of Mount Bürgl in the Salzkam-Mergut Area (Northern Calcareous Alps, Austria): evidence for a diachronous Late Jurassic to Early Cretaceous drowning of the Plassen Carbonate Platform, Austrian Journal of Earth Sciences, v. 103(1), p. 58-75

Genç, Ş., 1986, Uludağ – İznik Gölü arasının jeolojisi, M.T.A. Jeoloji Dairesi Rap. Arşv., unpublished report, 243, 122 p Genç, Ş., Selguk, H., Cevher, F., Gözler, Z., Karaman, T., Bilgi, C., and Akgören, F., 1986, İnegöl (Bursa) – Pazaryeri (Bilecik) arasının jeolojisi, M.T.A. Jeoloji Dairesi Rap. Arşv., unpublished report, 255, 68 p

Gorbatchik, T. N., 1971, On Early Cretaceous foraminifera of the Crimea, Akad. Nauk, Voprosi Micropaleontol., Moskwa, 14, p. 125-139 (in Russian)

Göncüoğlu, M. C., Dirik, K. and Kozlu, H., 1997, General characteristics of pre-Alpine and Alpine terranes in Turkey: explanatory notes to the terrane map of Turkey, Annales Geologique de Pays Hellenique, 37, 515-536

Görög, A. and Wernli, R., 2002, The Middle and Late Bathonian parotoglobigerinids of Gyenepuzsta (Bakony Mts., Hungary), Revue Paléobiologique, Geneve, 21(1), p. 21-34

Görür, N., Şengör, A. M. C., Akkök, R., and Yılmaz, Y., 1983, Pontidlerde Neo-Tetis'in kuzey kolunun açılmasına ilişkin sedimentolojik veriler, Türkiye Jeoloji Kurumu Bülteni, s. 26, ss. 11-19

Grabowski, J. and Pszczółkowski, A., 2006, Magneto- and biostratigraphy of the Tithonian - Berriasian pelagic sediments in the Tatra Mountains (central Western Carpathians, Poland): sedimentary and rock magnetic changes at the Jurassic/Cretaceous boundary, Cretaceous Research, 27, p. 398-417

Granit, Y. and Tintant, H., 1960, Observation préliminaires sur le Jurassique de la region de Bilecik (Turquie), C. R. Acad. Sc. Paris, 251, 1807-1803

Grădinaru, M., Lazăr, I., Bucur, I. I., Grădinaru, E., Săsăran, E., Ducea, M. N. and Andrăşanu, A., 2016, The Valanginian history of the eastern part of the Getic Carbonate Platform (Southern Carpathians, Romania): Evidence for emergence and drowning of the platform, Cretaceous Research, 66, p. 11-42

Grigelis, A., 1958, *Globuligerina oxfordiana* sp. n. – discovery of the first planktonic foraminifera in the Upper Jurassic of Lithuania, Nauchnye doklady Vys'shey shkoly, seriya geologo-geograficheskich nauk, Moskva, No. 3, p.109-111 (in Russian)

Grigelis, A., 2016, *Globuligerina oxfordiana* (Grigelis, 1958) – revision of the first planktonic foraminifera discovered in the Upper Jurassic of Lithuania, Geologija, Geografija, 2 (2), p. 62-83

Grün, B. and Blau, J., 1996, Phylogenie, systematik und biostratigraphie der Calpionellidae Bonet, 1956: neue daten aus dem rosso ammonitico superiore und dem biancone (Oberjura/ Unterkreide: Tithon-Valangin) von Ra Stua (Prov., Belluno, Italien), Revue de Paléobiologie, v. 15(2), p. 571-595

Grün, B. and Blau, J. 1997, New aspects of calpionellid biochronology: proposal for a revised calpionellid zonal and subzonal division, Revue de Paleobiologie, 16, 197-214

Grün, B. and Blau, J., 1999, On *Praecalpionellites* Pop (Calpionellidae Bonet) and description of *Praecalpionellites hillebrandti* n.sp. (Lower Cretaceous, Italy), N. Jb. Geol. Paläont. Abh., Stuttgart, 211 (1/2), p. 201-212

Gümüş, A., 1964, Contribution a l'étude géologique du secteur septentrional de Kalabak Köy – Eymir Köy (région d'Edremit, Turquie), M.T.A. Publ., 117, 1-109

Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, Th., de Graciansky, P. C. and Vail, P. R., 1998, Meosozoic and Cenozoic sequence chronostratigraphic framework of European basins *In:* de Graciansky, P. C., Hardenbol, J., Jaquin, T. and Vail, P. R. (eds.), Mesozoic and Cenozoic sequence stratigraphy of European basins, SEPM Special Publication Series, No. 60, p. 786

Houša, V., Krs, M., Man, O., Pruner, P. and Vendohova, D. 1999, Correlation of magnetostratigraphy and calpionellid biostratigraphy of the Jurassic/Cretaceous boundary strata in the Western Carpathians. Geologica Carpathica, 50, 125–144

Irwin, M. L., 1965, General theory of epeiric clear water sedimentation, Amer. Ass. Petrl. Geol. Bull., 49, p. 445-459

Ivanova, D., 1999, Middle Callovian to Valanginian microfossil biostratigraphy in the West Balkan Mountain, Bulgaria (SE Europe), Acta Paleontologica Romaniae, v. 2, p. 231-236 Ivanova, D. and Kołodziej, B., 2010, Late Jurassic–Early Cretaceous foraminifera from Štramberk-type limestones, Polish Outer Carpathians, Studia Universitatis Babeş-Bolyai, Geologia, 55(2), p. 3-31

Ivanova, D., Kołodziej, B, Koleva-Rekalova, E. and Roniewicz, E., 2008, Oxfordian to Valanginian palaeoenvironmental evolution on the western Moesian carbonate platform: a case study from SW Bulgaria, Annales Societatis Geologorum Poloniae, v. 78, p.65-90

Jenkyns, H. C., 1972, Pelagic "oolites" from the Tethyan Jruassic, Journal of Geology v. 80, p. 21-33

Jenkyns, H. C., 1986, Pelagic environments *In:* Sedimentary environments and facies (ed. by H. G. Reeding), Blackewell Scient. Publ., (2nd ed), 343-397

Kaaden, G., 1957, Report on geological fieldwork and mineral deposits within the Çanakkale – Biga – Edremit Peninsula, M.T.A. Archieve, unpublished repor, 2661

Kaminski, M. A., 2004, The year 2000 classification of the agglutinated foraminifera *In:* M. K. Bubik, Ma (ed.) Proceedings of the sixth international workshop on agglutinated foraminifera, Grzybowski Foundation Special Publication, p. 237-255

Kaya, M. Y. and Altıner, D., 2014, *Terebella lapilloides* Münster, 1833 from the Upper Jurassic-Lower Cretaceous İnaltı carbonates, northern Turkey: Its taxonomic position and paleoenvironmental – paleoecological significance, Turkish Journal of Earth Sciences, 23, p. 166-183

Ketin, İ., 1959, Türkiye'nin orojenik gelişmesi, M.T.A. Derg., 53, 78-86, Ankara

Ketin, İ., 1966, Anadolu'nun tektonik birlikleri, M.T.A. Derg., 7, 16-32, Ankara

Ketin, İ. and Gümüş, A., 1963, Sinop-Ayancık güneyinde üçüncü bölgeye dahil sahaların jeolojisi hakkında rapor (2. Kısım: Jura ve Kretase formasyonlarının etüdü), TPAO Rap. No. 288

Kırmacı, M. Z., 1992, Alucra – Gümüşhane - Bayburt yörelerindeki (Doğu Pontid Güney Zonu) Üst Jura - Alt Kretase yaşlı Bedirgs Kireçtaşı'nın sedimentolojik incelemesi, Doktora tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, 257 s

Knauer, J. and Nagy, I., 1963, *Lorenziella* nov. gen. uj Calpionellidae nemzetség, *Lorenziella* nov. gen. nouveau genre des Calpionellidés, Foldt. Int. Evi. Jel., 1961, 143-153

Kober, L., 1931, Das Alpine europa und sein rahmen, Gebrüder Borntraeger, Wien, 310 p

Kober, L., 1942, Tektonische geologie, Berlin

Koçyiğiy, A., and Altıner, D., 2002, Tectonostratigraphic evolution of the North Anatolian Paleorift (NAPR): Hettangian – Aptian passive continental margin of the northern Neo-Tethys, Turkey, Turkish Journal of Earth Science, v.11, p. 169-191

Koçyiğit, A., Altıner, D., Farinacci, A., Nicosia, U., and Conti, M. A., 1991, Late Triassic – Aptian evolution of the Sakarya divergent margin: implications for the opening history of the northern Neo-Tethys in North-Western Anatolia, Turkey, Estratto da Geologica Romana, v. 27, p. 81-99

Krajewski, M., 2010, Facies, microfacies and development of the Upper Jurassic-Lower Cretaceous of the Crimean carbonate platform from the Yalta and Ay-Petri massifs (Crimea Mountains, Southern Ukraine), Dissertation Monographs 2017, Wydawnictwa AGH University of Science and Technology Press, Krakow

Krajewski, M. and Olszewska, B., 2007, Foraminifera from the Late Jurassic and Early Cretaceous carbonate platform facies of the southern part of the Crimea Mountains, southern Ukraine, Annales Societatis Geologorum Poloniae, v. 77, p. 291-311

Krische, O., Bujtor, L. and Gawlick, H-J., 2013, Calpionellid and ammonite biostratigraphy of uppermost Jurassic to Lower Cretaceous sedimentary rocks from the Leube Quarry (Northern Calcareous Alps, Salzburg, Austria), Austrian Journal of Earth Sciences 106(1), p. 26-45 Kroh, A. and Lukeneder, A., 2009, Crinoids from the Late Jurassic of the Nutzhof section (Lower Austria, Gresten Klippenbelt), Ann. Naturhist. Mus. Wien., 110A, p. 383-399

Krushensky, R. D., Akçay, Y., and Karaeğe, E., 1980, Geology of the Karalar – Yeşiller Area, northwest Anatolia, Turkey, Geol. Surv. Bull., 1461, 72 p

Kukoč, D., Goričan, S and Košir, A., 2012, Lower Cretaceous carbonate gravity-flow deposits from the Bohinij area (NW Slovenia): evidence of a lost carbonate platform in the Internal Dinaride, Bulletin Société géologique de France, 183(4), p. 383-392

Kulaksız, S., 1981, Sivrihisar kuzeybatı yöresinin jeolojisi, Yerbilimler, 8, 103-124

Lakova, I. and Petrova, S., 2012, Towards a standard calpionellid zonation of the Mediterranean Realm (Tithonian to Valanginian), Bulgarian Geological Soceity National Conference with international participation "GEOSCIENCES 2012" Abstract, p. 89-90

Lakova, I. and Petrova, S., 2013, Towards a standard Tithonian to Valanginian calpionellid zonation of the Tethyan Realm, Acta Geologica Polonica, v. 63, p. 201-221

Lakova, I., Stoykova, K., Ivanova, D., 1997, Tithonian to Valanginian bioevents and integrated zonation on calpionellids, calcareous nannofossils and calcareous dinocycts from the Western Balkanides, Bulgaria, Mineralia Slovaca, 29, p. 301-303

Lakova, I., Stoykova, K. and Ivanova, D., 1999, Calpionellid, nannofossil and calcareous dinocyst bioevents and integrated biochronology of the Tithonian to Valanginian in the Western Balkanides, Bulgaria. Geologica Carpathica, 50, 131-168

Leinfelder, R. R., Nose, M., Schmid, D. U. and Werner, W., 1993, Microbial crusts of the Late Jurassic: composition, palaeoecological significance and importance in reef construction, Facies, 29, p. 195-230

Leinfelder, R. R., Werner, W., Nose, M., Schmid, D. U., Krautter, M., Laternser, R., Takacs, M., and Hartmann, D., 1996, Paleoecology, growth parameters and Dynamics of coral, sponge and microbolite reefs from the Late Jurassic, *In*: Reitner,

J., Neuweiler, F. & Gunkel, F. (eds.): Global and Regional Controls on Biogenic Sedimentation, I. Reef Evolution. Res. Reports, Göttinger Arb. Geol. Paläont. Sb2, pp. 227-248, Göttingen

Loeblich, A. R. Jr. and Tappan, H., 1988, Foraminiferal genera and their classification, von Nostrand Reinhold Company, New York, 2 volumes, 970 p

Lombard, A., 1945, Attribution de microfossiles du Jurassique supérior alpin à des Chlorophycées (Proto- et Pleurococcacées), Ecl. Geol. Helv., 38(1), 163-173 Basel

López-Martinez, R., Barragån, R., Rehåkovå, D. and Cobiella-Reguera, J. L., 2013, Calpionellid distribution and microfacies across the Jurassic/Cretaceous boundary in western Cuba (Sierra de los Órganos), 64(3), p. 195-208

López-Martinez, R., Barragån, R. and Rehåkovå, D., 2015, Calpionellid biostratigraphy across the Jurassic/ Cretaceous boundary in San José de Iturbide, Nuevo León, northeastern Mexico, 59(3), p. 581-592

Lorenz, Th., 1902, Geologische Studien im Grenzgebiet zwischen helvetischer und ostalpiner Fazies, II Der südliche Rhätikon, Berichte der Naturforschenden Gesellschaft zu Freiburg, 12, 35-95

Maalaoui, K. and Zargouni, F., 2016, The lower and middle Berriasian in Central Tunisia: integrated ammonite and calpionellid biostratigraphy of the Sidi Kralif Formation, 66(1), p. 43-58

Marino, M. C., Andreini, G., Baldanza, A., D'Arpa, C., Mariotti, N., Pallini, G., Parisi, G., and Petti, F. M., 2004, Middle Jurassic-Early Cretaceous integrated biostratigraphy (ammonites, calcareous nannofossils and calpionellids) of the Contrada Diesi Section (south-western Sicily, Italy), 110(1), p. 357-372

Matyszkiewicz, J. and Slomka, T., 1994, Organodetrital conglomerates with ooids in teh Cieszyn Limestone (Tithonian-Berriasian) of the Polish Flysch Carpathians and their paleogeographic significance, Annales Societatis Geologorum Poloniae, 53, p. 211-248 Maync, W., 1957, *Coscinophragma cribrosum* (Reuss) in a lower Cretaceous limestone from Switzerland, Micropaleontology, 3(2), p. 183-186

Michalík, J. and Rehåkovå, D., 2011, Possible markers of the Jurassic/ Cretaceous boundary in the Mediterranean Tethys: a review and state of art, Geoscience Frontiers, 2 (4), 475-490

Miík, M., Sotåk, J. and Ziegler, V., 1999, Serpulid worms Mercierella Fauvel, Durandella Dragastan and Carpathiella Nov. Gen. from the Upper Jurassic, Cretaceous and Paleogene of the Western Carpathians, Geol. Carp., 50(4), p. 305-312

Mohler, W., 1938, Mikropaläontologische Untersuchungen in der nordschweizerischen Juraformation, Abh Scchweiz Paläont Ges, 60, p. 1-53

Monod, O., Andrieux, J., Gautier, Y. and Kienast, J. R., 1991, Pontides-Taurides relationships in the region of Eskişehir (NW Turkey), Bulletin of the Technical University İstanbul, v. 44, p. 257-278

Murgeanu, G. et Filipescu, M. G., 1933, *Calpionella carpathica* n. sp. dans les Carpathes roumaines, Notationes Biologicae, 1(2), p. 63-64

Nagy, I., 1986, Investigation of Calpionellides from the Mecsek Mountains (S. Hungary), Acta Geologica Hungarica, 29(1-2), p. 45-64

Nauman, E., 1886, Die grundlinien Anatoliens und Zentralaseien, Geogr. Zs., 2

Neumann, A. C. and Macintyre, I., 1985, Reef response to sea level rise: keep-up, catch-up or give-up *In:* Proceedings, 5th International coral reef congress (Tahiti) (Eds B. DElesalle et al.), v. 3, p. 105-110, International Society for Reef Studies, Antenne Museum-Ephe, Moorea, French Polynesia

Nicosia, U. and Parisi, G., 1979, *Saccocoma tenella* (Goldfus) – Distribuzione stratigrafica e geografica, Boll. del. Soc. Pal. Italiana, v. 18 (2), p. 320-326

Ogg, J. G. and Hinnov, L. A., 2012, Cretaceous *In:* Gradstein, F. M., Ogg, J. G., Schmitz, M. D. and Ogg, G. M. (eds.) The geological times scale 2012, p. 793-853

Ogg, J. G., Ogg, G. M., and Gradstein, F. M., 2016, A concise geologic time scale, Elsevier, p. 234

Olszewska B., 2010, Microfossils of the Upper Jurassic – Lower Cretaceous formations of the Lublin Upland (SE Poland) based on thin section studies. Pol. Geol. Inst. Sp. Pap., 26, p. 1–32

Olszewska B., Matyskiewicz, J., Król, K. and Krajewski, M., 2012, Correlation of the Upper Jurassic-Cretaceous epicontinental sediments in southern Poland and southwestern Ukraine based on thin sections, Biuletyn Państwowego Instytutu Geologicznego, 453, p. 29-80

Okay, A I., 1984, Distribution and characteristics of the nort-west Turkish blueschists, Geological Society, London, Special Publications, v. 17, p. 455-466

Okay, A.I. 1986. High-pressure / low-temperature metamorphic rocks of Turkey. Geological Society of America, Memoir 164, p. 333-347

Okay, A. I. 1989, Tectonic units and sutures in the Pontides, northern Turkey. *In*: Şengör, A.M.C. (Ed.), Tectonic evolution of the Tethyan Region, 109-116. Kluwer Academic Publisher

Okay, A. I., 2000, Was the Late Triassic orogeny in Turkey caused by the collision of an oceanic plateau?, *In:* Bozkurt, E., Winchester, J. A. and Piper, J. D. A. (eds.) Tectonic and magmatism in Turkey and the surrounding area, Geological Society, London, Special Publications, 173, p. 25-41

Okay, A. I. and Siyako, M., 1991, İzmir – Balıkesir arasında İzmir – Ankara Neo-Tetis kenedinin yeni konumu, (ed. S. Turgut) Anadolu ve Çevresinin Tektoniği – Petrol Potansiyeli, Ozan Sungurlu Sempozyumu Bildirileri, Türkiye Petrol Jeologları Derneği, 333-355, Ankara Okay, A. I. and Tüysüz, O., 1999, Tethyan sutures of northern Turkey, Geological Society, London, Special Publications, v. 156, p. 475-515

Okay, A. I. and Göncüoğlu, M. C., 2004, The Karakaya Complex: a review of Data and Concepts, Turkish. J. of Earth Sci., v. 13, p. 77-95

Okay, A. I. and Whitney, D. L., 2010, Blueschists, eclogites, ophiolites and suture zones in northwestern Turkey: a review and a field excursion guide, Ofioliti, 35 (2), 131-172

Okay, A. I. and Nikishin, A. M., 2015, Tectonic evolution of the southern margin of Laurasia in the Black Sea region, International Geology Review, v. 57, p. 1051-1076

Okay, A. I. and Altiner, D., 2015, Carbonate sedimentation in an extensional active margin: Cretaceous history of the Haymana region, Pontides, International Journal of Earth Sciences, 7 (105), p. 2013-2030

Okay, A. I., Siyako, M., and Bürkan, K. A., 1990, Biga Yarımadası'nın jeolojisi ve tektonik evrimi, TPJD Bülteni, v. 2/1, p. 83-121

Okay, A. I., Şengör, A. M. C. and Görür, N., 1994, Kinematic history of the opening of the Black Sea and its effect on the surrounding regions, Geology, v. 22, p. 267-270

Okay, A. I., Satır, M., Maluski, H., Siyako, M., Monie, P., Metzger, R. and Akyüz, S., 1996, Paleo- and Neo-Tethyan events in Northwestern Turkey, Geologic and geochronologic constraints, *In*: Yin, A. and Harrison, T. M. (eds.), The tectonic evolution of Asia, Cambridge University Press, 420-441

Okay, A. I., Satır, M. and Siebel, W., 2006, Pre-Alpide Palaeozoic and Mesozoic orogenic events in the Eastern Mediterranean region, *In*: Gee, D. G. and Sephenson, R. A. (eds.), European lithosphere Dynamics, Geological Society of London, Memoirs, v. 32, p. 389-405

Okay, A. I., Bozkurt, E., Satır, M., Yiğitbaş, E., Cowley, Q. G., and Shang, C. K., 2008, Defining the southern margin of Avalonia in the Pontides: geochronological

data from the Late Proterozoic and Ordovician granitoids from NW Turkey, Tectonophysics, v. 461, 252-264

Olóriz, F., Caracuel, J. E., Marques, B. and Rodriguez-Tovar, F. J., 1995, Associaciones de tintinoides en facies ammonitico rosso de la Sierrar Norte (Mallorca), Revista Española de Paleontologia, p. 77-93

Olszewska, B. and Wieczorek, J., 2001, Jurassic sediments and microfossils of the Andrychów Klippes (Outer Western Carpathians), 55(4), p. 217-228

Oppel, C. A., 1856-1858, Die Juraformation Englands, Frankreichs und des Südwestlichen Deutschlands. Württemberger Naturforschende Jahreshefte 12-14, 857

Oppel, C. A., 1865, Die Tithonische Etage. Zeitschrift der Deutschen Geologischen Gesellschaft, Jahrgang 17, p. 535-558

Özgül, N., 1976, Torosların bazı temel jeoloji özellikleri, Türkiye Jeoloji Kurumu Bülteni, c. 19, s. 65-78

Önal, M., Helvacı, C., İnci, U., Yağmurlu, F., Meriç, E., and Tansel, İ., 1988, Çayırhan, kuzeybatı Ankara kuzeyindeki Soğukçam Kireçtaşı, Nardin Formasyonu ve Kızılçay Grubu'nun stratigrafisis, yaşı, fasiyesi ve depolanma ortamları, T.P.J.D. bulteni, C/ 1-2, 152-163

Özkan, S., 1993, Calcareous nannofossils from the Late Jurassic – Early Cretaceous of northwest Anatolia, Turkey, Geological Journal, v. 28, 295-307

Ozkan, S., 1993a, Calcareous nannofossils and calpionellid biostratigraphy of the Upper Jurassic - Lower Cretaceous in Northwest Anatolia, Turkey, University of London, University College London, Department of Geological Sciences, Ph.D. thesis, 336 pages, 28 plates

Özkan-Altıner, S., 1996. Calcareous nannofossil biostratigraphy of Valanginian-Aptian in Northwest Anatolia, Turkey. Revue de Paléobiologie, 15, 2, 479-498 Öztürk, A., 1968, Çerkeş – Eskipazar – Gerede bölgesinin jeolojisi, A. Ü. Fen. Fak., Doktora Tezi, 193 p

Page, K. N., The evolution and geography of Jurassic ammonoids, Proceedings of the Geologists' Association, 199, p. 35-57

Pawlowski, J., Holzmann, M., Tyszka, J., 2013, New supraordinal classification of Foraminifera: Molecules meet morphology, Marine Micropaleontology, 100, 1-18

Pelin, S., 1977, Alucra (Giresun) Güneydoğu yöresinin petrol olanakları bakımından jeolojikiİncelenmesi, Doçentlik Tezi, K.T.Ü., Trabzon

Petrova, S., Rabrenović, D., Lakova, I., Koleva-Rekalova, E., Ivanova, D., Metodiev, L. and Malešević N., 2012, Biostratigraphy and microfacies of the pelagic carbonates across the Jurassic/Cretaceous boundary in eastern Serbia (Stara Planina-Preć Zone), Geologica Balcanica, 41 (1-3), p. 52-76

Pleş, G., Bucur, I. I. and Păcurariu, A., 2015, Foraminiferal assemblages and facies associations in the Upper Jurassic carboantes from Ardeu Unit (Metaliferi Mountains, Romania), Acta Palaeontologica Romaniae, v. 11(2), p. 43-57

Pleş, G., Mircescu, C. V., Bucur, I. I., and Săsăran, E., 2013, Encrusting microorganisms and microbial sutructures in Upper Jurassic limestones from the Southern Carpathians (Romania), Facies, 59, p. 19-48

Pop, G., 1974, Une nouvelle espéce néocomienne de Calpionellidés, Révue roumanie de Géologie, Géophysique, Géographie, 18, p. 105-107

Pop, G., 1986, Réflexions sur certaines calpionelles néocomiennes, D. S. Inst. Geol. Geofiz., 3(70-71), p. 103-108

Pop, G., 1994a, Calpionellid evolutive events and their use in biostratigraphy, Romanian Journal of Stratigraphy, 76, 7-24

Pop, G., 1994b, Systematic revision and biochronology of some Berriasian – Valanginian calpionellids (Genus Remaniella), Geologica Carpathica, 45(6), 323-331

Pop, G., 1996, Trois nouvelles espéces du genre *Remaniella* (Calpionellidae Bonet, 1956), Comptes Rendus de l'Académie des Sciences Paris 332, p. 317-323

Pop, G., 1997, Tithonian to Hauterivian praecalpionellids and calpionellids: bioevents and biozones, Mineralia Slovaca, 29, 304-305

Radoičić, R., 1959, Some problematic microfossils from the Dinarian Cretaceous (in Serbian), Vesnik, 17, p. 87-92

Raineri, R., 1922, Alghe sifonee fossili della Libia, Nota I, Atti della Società italiana di scienze naturali e del Museo civico di storia natural di Milano, 61, p. 72-86

Rehåkovå, D., 1998, Calpionellid genus *Remaniella* Catalano 1956 in Lower Cretaceous pelagic deposits of Western Carpathians, Mineralia Slovaca, 30, p. 443-452

Rehåkovå, D. and Michalik, J. 1997a, Calpionellid associations versus Late Jurassic and Early Cretaceous sea – level fluctuations. Mineralia Slovaca, 29, 306–307

Rehåkovå, D. and Michalik, J. 1997b, Evolution and distribution of calpionellids – the most characteristic constituents of Lower Cretaceous Tethyan microplankton, Cretaceous Research, 18, 495–504.

Rehåkovå, D. and Wierzbowski, A., 2005, Microfacies and stratigraphi position of the Upper Jurassic Rogoża coquinas at Rogoźnik, Pieniny Klippen Belt, Carpathians, Tomy Jurajskie, 3, p. 15-27

Remane, J., 1962, Zur Calpionellen-Systematik, Neus Jahbuch für Geologie und Paläontologie, Monatshefte, 1, p. 8-24

Remane, J., 1971, Les Calpionells, Protozoaires planctoniques des mers mésogéennes de l'époque secondaire, Annales Guébhard, 47, p. 369-432

Remane, J., 1974, Les Calpionelles, Cours de 3 éme cycle en Sciences de la Terre, partie II, Paléontologie, Univ., Genéve, 58 p.

Remane, J., 1985, Calpionellids, *In:* Bolli, H. M., Saunders, J. B. and Perch-Nielsen,K. (Eds.): Plankton stratigraphy, Cambridge Earth Science Series, CambridgeUniversity Press, 555-572

Remane, J., Bakalova-Ivanova, D., Borza, K., Knauer, J., Nagy, I., Pop, G. and Tardi-Filacz, E., 1986, Agreement on the subdivision of the standard calpionellid zones defined at the II planktonic conference, Roma 1970, Acta Geologica Hungarica, 29, 5-14

Remane, J., 1991, The Jurassic – Cretaceous boundary: problems of definition and procedure, Cretaceous Resarch, v. 12, p. 447-453

Reuss, A. E., 1846, Die Versteinerungen der böhmischen Kreideformation, pt.2, Stuttgart, E. Schweizerbartsche Verlagsbuchhandlung und Druckerei

Rigaud, S., Blau, J., Martini, R. and Rettori, R., 2013, Taxonomy and phylogeny of the Trocholinidae (Involutinina), Journal of Foraminiferal Research, v. 43(4), p. 317-339

Robertson, A. H. F. and Dixon, J. E., 1984, Introduction: aspects of the geological evolution of the Eastern Mediterranean, Geological Society, London, Special Publications, v. 17, p. 1-74

Rojay, B., 1985, The tectonostratigraphic characteristics of the Kelkit valley subzone of the North Anatolian Fault, MSc. Thesis, M.E.T.U., Ankara, 105 p

Rojay, B., 1995, Post-Triassic evolution of Central Pontides: evidence from Amasya Region, Northern Anatolia, Geologica Romana, 31, p. 329-350

Rojay, B. and Altıner, D., 1998, Middle Jurassic - Lower Cretaceous biostratigraphy in the Central Pontides (Turkey): Remarks on paleogeography and tectonic evolution, Rivista İtaliana di Paleontologia e Stratigrafia, v. 104 (2), p. 167-180

Saner, S., 1978, Geology and the environment of deposition of Geyve – Osmaneli – Gölpazarı – Taraklı area, İ. Ü. Fen. Fak. Mecmuası, B, 43, 63-91

Saner, S., 1980, Mudurnu – Göynük havzasının Jura ve sonrası çökelim nitelikleriyle paleocoğrafik yorumlaması, Türkiye Jeoloji Kurumu Bülteni, 23, 39-52

Saner, S., Taner, İ., Aksoy, Z., Saiyako, M., and Bürkan, K. A., 1980, Safranbolu havzasının jeolojik yapısı ve Tersiyer paleocoğrafyası, Türkiye 5. Petrol Kongresi, s. 11-112, Ankara

Sarg, J. F. (1988). Carbonate sequence stratigraphy *In*: Wilgus, C. K., Hastings, B. S., Posamentier, H., Wagoner, J. V., Ross, C. A. And Kendall, C. G. St. C. (eds) Sea-Level Changes: An Integrated Approach . SEPM. Special Publicaions, 42, p. 155-181

Săsăran, E., Bucur, I. I. and Prica, I., 2001, Microfacies and microfossils in Upper Jurassic Limestones from Cheile Turenilor, Studia Universitatis Babeş-Bolyan, Geologica, XLVI, 2, p. 35-52

Schlager, W., Reijmer, J. J. G., and Droxler, A., 1994, Highstand shedding of carbonate platforms, Journal of Sedimentary Research, v. B64 (3), p. 270-281

Schlagintweit, F, 2005, *Consinocodium japonicum* ENDO, 1961, from the Upper Jurassic of the Northern Calcareous Alps of Austria: not a siphonous green alga, but a coralline sponge, Revue de Paléobiologie, 24(2), p. 533-540

Schlagintweit, F, 2012, *Mohlerina basiliensis* (Mohler, 1938): a Middle Jurassic-Early Cretaceous facultative (?) epilithic benthic foraminifera, Facies, 58, p. 637-647

Schlagintweit, F, 2012a, New insights into *Troglotella incrustans* Wernli & Fookes, 1992, a fascinating Upper Jurassic-Upper Cretaceous foraminifer, Studia UBB, Geologia, 57(2), p. 17-26

Schlagintweit, F., 2013, *Thaumatoporella* ladders unraveled, Studia UBB Geologia, 58, p. 5-9

Schlagintweit, F. and Ebli, O., 1999, New results on microfacies, biostratigraphy and sedimentology of Late Jurassic – Early Cretaceous platform carbonates of Northern Calcareous Alps, Part I: Tressenstein Limestone, Plassen Formation, Abhandlungen des Geologisches Bundesanstalt-A, 56(2), p. 379-418

Schlagintweit, F. and Gawlick, H. -J., 2007, Analysis of Late Jurassic to Early Cretaceous algal debris-facies of the Plassen carbonate platfrom in teh Northern Calcareous Alps (Germany, Austria) and in the Kurbnesh area of the Mirdita zone (Albania): a tool to reconstruct tectonics and palaeogeography of eroded platform, Facies, 53, p. 209-227

Schlagintweit, F. and Gawlick, H. -J., 2008, The occurrence and role of microencrusters frameworks in Late Jurassic to Early Cretaceous platform margin deposits of the Northern Calcareous Alps (Austria), Facies, 54, p. 207-231

Schlagintweit, F. and Gawlick, H. -J., 2011, *Perturbatacrusta leini* n. gen., n. sp. A new microencruster incertae sedis (?sponge) from Late Jurassic to earliest Cretaceous platform margin carbonates of the Northern Calcareous Alps of Austria, Facies, 57, p. 123-135

Schlagintweit, F, Gawlick, H. –J and Lein, R., 2005, Mikropaläontologie und biostratigraphie der Plasse-Karbonaplattform der Typlokalität (Ober-Juras bis Unter-Kreide, Salzkammergut, Österreich), Mitt. Ges. GEol. Bergbaustad. Österr., Wien, 47, p. 11-102 (Journal of Alpine Geology)

Schmid, D. U., 1996, Marine mikrobiolithe und mikroinkrustierer aus dem Oberjura, Profil, 9, p. 101-251

Schmid, D. U. and Leinfelder, R. R., 1996, The Jurassic *Lithocodium aggregatum – Troglotella incrustans* foraminiferal consortium, Palaeontology, 39(1), p. 21-52

Seidlitz, W. von 1931, Dİskordanz und orogenes der gebirge am mittelmeer, Berlin

Senowbari-Daryan, B. and Schäfer, P., 1979, Neue Kalkschwämme und ein Problematikum (*Radiomura cautica* n. g., n. sp.) aus Oberrhät-Riffen südlich von Salzburg (Nördliche Kalkalpen), Mitteilungen der österreichischen geologischen GEsselschaft (1977)70, 17-42

Senowbari-Daryan, B., Bucur, I. I., Schlagintweit, F., Săsăran, E. and Matyszkiewicz, J., 2008, *Crescentiella*, a new name for "*Tubiphytes*" morronensis

CRESCENTI, 1969: an enigmatic Jurassic-Cretaceous microfossil, Geologica Croatica, 61(2-3), p. 185-214

Septfontaine, M., 1974, Présence de *Protopeneroplis trochangulata* sp. nov. (Foraminifére) dans le Crétacé inférieur du Jura méridional et révision de *Protopeneroplis* Weynschenk, 1950, Eclogae geol. Helv., v. 67(3), p. 605-628

Septfontaine, M, 1988, Vers une classification évolutive des Lituolidés (Foraminiféres) jurassiques en milieux de plate-forme carbonatée, Revue de Palébiologie, Vol. Spéc. 2 (Benthos '86), p. 229-256

Skompski, S., 1982, The nature and systematic position of the microfossils *Globochaete alpina* Lombard, 1945, aota geologioa polonica, Warszawa, v. 32, n.1-2, p. 47-59

Skourtsis-Coroneou, V. and Solakius, N. 1999, Calpionellid zonation at the Jurassic/Cretaceous boundary within the Vigla Limestone Formation (Ionian Zone, western Greece) and carbon isotope analysis, Cretaceous Research, 20, 583–595

Staub, R., 1924, Der Bau der Alpen, versuch einer synthese – Beitr. Geol. Karte d.Schweiz, N. F., 52, 1-272

Staub, R. (1928), Der bewegungsmechanismus der erde, pp. I-VIII, 1-270

Şengör, A. M. C., 1979, Mid-Mesozoic closure of Permo-Triassic Tehtys and its implications, Nature, v. 279, p. 590-593

Şengör., A. M. C., 1984, The Cimmeride orogenic system and the tectonics of Eurasia, The Geological Society of America, Special Paper, 195

Şengör, A. M. C and Yılmaz, Y., 1981, Tethyan evolution of Turkey: plate tectonic approach, Tectonophysics, 75, 181-241

Şengör, A. M. C., Yılmaz, Y. and Sungurlu,O., 1984, Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Paleotethys, Geological Society, London, Special Publications, v. 17, p. 77-112 Şengör, A. M. C., Altıner, D., Cin, A., Ustaömer, T. and Hsü, K. J., 1988, Origin and assembly of the Tethyside orogenic collage at the expense of Gondwana Land, Geological Society, London, Special Publications, v. 37, p. 119-181

Taslı, K., 1984, İkisu (Gümüşhane) ile Hamsiköy (Trabzon) yörelerinin jeolojisi ve Berdiga Formasyonu'nun biyostratigrafik deneştirmesi, Yüksek Lisans Tezi, K.T.Ü. Fen Bil. Enst., Trabzon

Tekeli, O., 1981, Subduction complex of pre-Jurassic age, northern Anatolia, Turkey, Geology, v. 9, p. 68-72

Toker, V., 1976, Stratigraphical studies of the area located between Nallıhan and Bozyaka villages along the Sorgun River, Communications de la Faculté de Sciences de l'Université d'Ankara, C 1, Géologie, 19, 1-63

Trejo, M., 1975, Los Tintinidos mesozoicos de México (Taxonomía y datos Paleobiológicos), Boletin de la Asociación Mexicana de Geólogos Petroleros, 27(10-12), p. 329-449

Trejo, M., 1980, Distribucion estratigrafica de los tintinidos mesozoicos mexicanos, Rev. Inst. Mex. Pet., 12, 4-13

Tunç, M., 1991, Aktaş (Kızılcahamam) yöresinin pelajik kireçtaşlarının biyostratigrafisi, Türkiye Jeoloji Bülteni, c. 34, 27-42

Tunç, M., 1992, Olur (Erzurum) yöresindeki Üst Jura – Akt Kretase yaşlı kireçtaşlarının biyostratigrafisi, Türkiye Jeoloji Bülteni, c. 35, 121-130

Tüysüz, O., Yiğitbaş, E., Yılmaz, Y., Serdar, H., S., 1990, Orta Pontidlerde Üst Jura – Alt Kretase stratigrafisi ve tektonik anlamı, Türkiye 8. Petrol Kongresi Bildirileri, p. 340-350

Uta, A. and Bucur, I. I., 2003, Microbial structures and microencrusters in the Upper Jurassic-Lower Cretaceous deposits from Buila-Vânturarita Massif (South Carpathians), Studia Univ. Babeş-Bolya, XLVIII, 2, p. 3-14

Varol, B. and Kazancı, N., 1981, Nallıhan – Seben (Bolu) bölgesinde Üst Jura - Alt Kretase karbonat istifinin lito- ve biyofasiyes özellikleri, TJK Bülteni, 24, 31-38

Velić, I., 2007, Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe), Geologia Croatica, 60(1), p. 1-113

von Humboldt, F. W. H. A., 1799, Über die Unterirdischen Gasarten und die Mittel ihren Nachtheil zu Vermindern. Ein Beitrag zur Physik der Praktischen Bergbaukunde. Braunschweig, Wiewag, p. 384

Weingart, W., 1954, 56/2, 56/4 Sivrihisar ve 57/1, 57/3 Ankara paftalarının jeoloji haritası hakkında rapor, M.T.A. Rap., No. 2248, yayınlanmamış, Ankara

Wernli, R. and Fookes, E., 1992, *Troglotella incrustans* n. gen., n. sp., un étrange et nouveau foraminifére calcicavicole du complexe récifal Kimméridgien de Saint-Germain-de-Joux (Ain, France), Bolletino della Societa Paleontologica Italiana, 31, p. 95-103

Wendler, J. E., Wendler, I. and Hubber, B. T., 2013, Revision and evolution fo the sytematic affinity of the calcitarch genus *Pithonella* based on exquisitely preserved Turonian material from Tanzania, Journal of Paleontology, 87(6), p. 1077-1106

Weynschenk, R., 1950, Die Jura-mikrofauna und –flora des Sonnwendgebirges (Tirol), Schlern-Schr., 83, p. 1-32

Weynschenk, R., 1951, Two new foraminifera from the Dogger and Upper Triassic of the Sonnwend Moutains of Tyrol, Journal of Paleontology, 25, p. 793-795

Wilson, J. L., 1975, Carbonate facies in geologic history, Springer-Verlag, New York, 471 p

Wimbledon, W. A. P., 2008, The Jurassic – Cretaceous boundary: an age-old correlative enigma, Episodes, v. 31 (4), 423-428

Wimbledon, W. A. P., 2014, Warsaw remarks – Berriasian progress, Volumina Jurassica, XII (1), p. 107-112

Wimbledon, W. A. P., Casellato, C. E., Rehåkovå, D., Bulot, L. G., Erba, E., Gardin, S., Verreussel, R. M. C. H., Munsterman, D. K. and Hunt, C. O., 2011, Fixing a basal Berriasian and Jurassic/ Cretaceous (J/K) boundary – is there perhaps some light at the end of the tunnel?, Rivista Italiana di Paleontologia e Stratigrafia, v. 117 (2), p. 295-307

Yabe, H. and Hanzawa, S., 1926, *Choffatella* Schlumberger and *Pseudocyclammina*, a new genus of aranaceous foraminifera, Sci. Rep. Tohoku Univ., Sendai, ser. 2, geology, 9, 9-11, Tokyo

Yılmaz, Y., 1981, Sakarya Kıtası günye kenarının tektonik evrimi, İ. Ü. Yerbilimleri, 1, 33-52

Yılmaz, A., Adamia, S., Chabukiana, A., Chkhotua, T. Erdoğan, K., Tuzcu, S. and Karabıyıkoğlu, M. 2000, Structural correlation of the southern Transcaucausus (Georgia) – eastern Pontides (Turkey), *In*: Bozkuert, E., Winchester, J. A., and Piper, J. A. D. (eds.), Tectonics and magmatism in Turkey and surrounding area, London, Geological Society, Special Publicaiton 173, p. 171-182

Yılmaz, İ. Ö., 2008, Cretaceous pelagic red beds and black shales (Aptian – Santonian), NW Turkey: global oceanic anoxic and oxic events, Turkish Journal of Earth Science, v. 17, p. 263-296

Yılmaz, İ. Ö., Altıner, D., and, Ocakoğlu, F., 2016, Upper Jurassic-Lower Cretaceous depositional environments and evolution of the Bilecik (Sakarya Zone) and Tauride carbonate platforms, Turkey, Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 321-340

Yılmaz, Y., Tüysüz, O., Gözübol, A. M., and Yiğitbaş, E., 1981, Abant (Bolu) – Dokurcan (Sakarya) arasındaki Kuzey Anadolu Fay Zonunun kuzey ve güneyinde kalan tektonik birliklerin jeolojik evrimi, İstanbul Üniversitesi Yerbilimleri, 1, 239-261

Yılmaz, Y., and Tüysüz, O., 1984, Kastamonu – Boyabat – Vezirköprü - Tosya arasındaki bölgenin jeolojisi (Ilgaz - Kargı masiflerinin etüdü), MTA Raporu, 275 p.

Yokoyama, M., 1890, Foraminiferan aus dem Kalksteine von Torinosu und Kompira, *In:* Naumann, E. & Neumayr, M. (Hrsg.), Zur Geologie und Paläntologie von Japan, Denkschr. Kais. Akad. Wiss., math.-natwiss. Cl., 57, 26-27, Wien

Zaninetti, L., Salvini-Bonnard, G. and Decrouez, D., 1987, *Montsalevia* n. gen. (Montsaleviidae, n. fam. Foraminifére), dans le Crétacé inférieur (Berriasian moyen-Valanginien) du Mont Saléve et du Jura Méridional (Haute-Savoie, France), Note préliminaire, Revue de Paléobiologie, Genéve, v.6, n.1, p. 165-168

APPENDIX A

CD

APPENDIX B

PLATE 1

All scale bars 50µm

a. *Crassicollaria brevis*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

b. *Crassicollaria brevis*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

c. *Crassicollaria brevis*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

d. *Crassicollaria brevis*, STG-70, *massutiniana* subzone (latest Tithonian), STG section

e. *Crassicollaria intermedia*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

f. *Crassicollaria intermedia*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

g. *Crassicollaria intermedia*, STG-69, *massutiniana* subzone (latest Tithonian), STG section

h. *Crassicollaria intermedia*, STG-70, *massutiniana* subzone (latest Tithonian), STG section

i. *Crassicollaria massutiniana*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

j. *Crassicollaria massutiniana*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

k. *Crassicollaria massutiniana*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

l. *Crassicollaria massutiniana*, STG-70, *massutiniana* subzone (latest Tithonian), STG section

m. Crassicollaria massutiniana, STG-70A, alpina subzone (earliest Berriasian),

STG section

n. *Crassicollaria massutiniana*, STG-70A, *alpina* subzone (earliest Berriasian), STG section

o. *Crassicollaria massutiniana*, STG-71A, *alpina* subzone (earliest Berriasian), STG section

p. *Crassicollaria parvula*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

r. *Crassicollaria parvula*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

s. *Crassicollaria parvula*, STG-69, *massutiniana* subzone (latest Tithonian), STG section

t. *Crassicollaria parvula*, STG-70, *massutiniana* subzone (latest Tithonian), STG section

u. *Crassicollaria parvula*, STG-70A, *alpina* subzone (earliest Berriasian), STG section

v. *Crassicollaria parvula*, STG-71A, *alpina* subzone (earliest Berriasian), STG section

w. *Crassicollaria parvula*, STG-71A, *alpina* subzone (earliest Berriasian), STG section

x. Crassicollaria parvula, STG-72, alpina subzone (earliest Berriasian), STG section

y. Crassicollaria parvula, STG-72, alpina subzone (earliest Berriasian), STG section

z. *Crassicollaria parvula*, STG-75, *Remaniella* subzone (Early Berriasian), STG section

aa. *Crassicollaria parvula*, STG-79, *Remaniella* subzone (Early Berriasian), STG section

ab. *Crassicollaria parvula*, STG-80, *Remaniella* subzone (Early Berriasian), STG section

ac. *Crassicollaria parvula*, STG-82, *elliptica* subzone (Early Berriasian), STG section

ad. *Crassicollaria parvula*, STG-84, *elliptica* subzone (Early Berriasian), STG section

ae. Crassicollaria parvula, STG-86A, simplex subzone (Late Berriasian), STG

section

af. *Crassicollaria parvula*, STG-109A, *Calpionella* Zone (Early Berriasian), STG section

ag. Crassicollaria parvula, SG-4, Calpionella Zone (Early Berriasian), SS section

PLATE 1

PLATE 2

All scale bars 50µm

a. *Calpionella grandalpina*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

b. *Calpionella grandalpina*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

c. *Calpionella grandalpina*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

d. *Calpionella grandalpina*, STG-70A, *alpina* subzone (earliest Berriasian), STG section

e. *Calpionella grandalpina*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

f. *Calpionella alpina*, STG-66B, *massutiniana* subzone (latest Tithonian), STG section

g. *Calpionella alpina*, STG-70A, *alpina* subzone (earliest Berriasian), STG section
h. *Calpionella alpina*, STG-70A, *alpina* subzone (earliest Berriasian), STG section
i. *Calpionella alpina*, STG-70A, *alpina* subzone (earliest Berriasian), STG section
j. *Calpionella alpina*, STG-70A, *alpina* subzone (earliest Berriasian), STG section
k. *Calpionella alpina*, STG-72, *alpina* subzone (earliest Berriasian), STG section
l. *Calpionella alpina*, STG-72, *alpina* subzone (earliest Berriasian), STG section
l. *Calpionella alpina*, STG-72, *alpina* subzone (earliest Berriasian), STG section
l. *Calpionella alpina*, STG-75, *Remaniella* subzone (Early Berriasian), STG section
m. *Calpionella alpina*, STG-81, *Remaniella* subzone (Early Berriasian), STG section
n. *Calpionella alpina*, STG-84A, *elliptica* subzone (Early Berriasian), STG section
p. *Calpionella alpina*, STG-86A, *elliptica* subzone (Early Berriasian), STG section
p. *Calpionella alpina*, STG-109A, *Calpionella* Zone (Early Berriasian), STG section
r. *Calpionella alpina* and *Calpionella minuta*, STG-82, *elliptica* subzone (Early Berriasian), STG section

s. Calpionella minuta, STG-74, alpina subzone (Early Berriasian), STG section

t. Calpionella minuta, STG-75, Remaniella subzone (Early Berriasian), STG section

u. Calpionella minuta, STG-84, elliptica subzone (Early Berriasian), STG section

v. Calpionella minuta, STG-109A, Calpionella Zonze (Early Berriasian), STG section

w. Calpionella elliptalpina, STG-70, massutiniana subzone (latest Tithonian), STG section

x. *Calpionella elliptalpina*, STG-70, *massutiniana* subzone (latest Tithonian), STG section

y. Calpionella elliptica, STG-84, elliptica subzone (Early Berriasian), STG section

z. Calpionella elliptica, STG-86A, simplex subzone (Early Berriasian), STG section

aa. Calpionella elliptica, STG-84, elliptica subzone (Early Berriasian), STG section

PLATE 2

PLATE 3

All scale bars 50µm

a. *Tintinnopsella remanei*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

b. *Tintinnopsella remanei*, STG-67B, *massutiniana* subzone (latest Tithonian), STG section

c. *Tintinnopsella remanei*, STG-69, *massutiniana* subzone (latest Tithonian), STG section

d. *Tintinnopsella carpathica*, STG-80, *Remaniella* subzone (Early Berriasian), STG section

e. *Tintinnopsella carpathica*, STG-80, *Remaniella* subzone (Early Berriasian), STG section

f. *Tintinnopsella carpathica*, STG-80, *Remaniella* subzone (Early Berriasian), STG section

g. *Tintinnopsella carpathica*, STG-84, *elliptica* subzone (Ealry Berriasian), STG section

h. *Tintinnopsella carpathica*, STG-84A, *elliptica* subzone (Early Berriasian), STG section

i. *Tintinnopsella carpathica*, STG-84A, *elliptica* subzone (Early Berriasian), STG section

j. *Tintinnopsella carpathica*, STG-87, *oblonga* subzone (Late Berriasian), STG section

k. *Tintinnopsella carpathica*, STG-87, *oblonga* subzone (Late Berriasian), STG section

l. *Tintinnopsella carpathica*, STG-87, *oblonga* subzone (Late Berriasian), STG section

m. *Tintinnopsella carpathica*, STG-88A, *oblonga* subzone (Late Berriasian), STG section

n. *Tintinnopsella carpathica*, STG-89, *oblonga* subzone (Late Berriasian), STG section

o. Tintinnopsella carpathica, STG-89, oblonga subzone (Late Berriasian), STG

section

p. *Tintinnopsella carpathica*, STG-89, *oblonga* subzone (Late Berriasian), STG section

r. *Tintinnopsella carpathica*, STG-89A, *oblonga* subzone (Late Berriasian), STG section

s. *Tintinnopsella carpathica*, STG-89A, *oblonga* subzone (Late Berriasian), STG section

t. *Tintinnopsella carpathica*, STG-93, *darderi* subzone (earliest Valanginian), STG section

u. Tintinnopsella longa, STG-89, oblonga subzone (Late Berriasian), STG section

v. Tintinnopsella longa, STG-89A, oblonga subzone (Late Berriasian), STG section

y. Tintinnopsella longa, STG-91, oblonga subzone (Late Berriasian), STG section

z. Tintinnopsella longa, STG-92A, oblonga subzone (Late Berriasian), STG section

PLATE 3

PLATE 4

All scale bars 50µm

a. Calpionellopsis simplex, STG-87, oblonga subzone (Late Berriasian), STG section

b. *Calpionellopsis simplex*, STG-87, *oblonga* subzone (Late Berriasian), STG section **c.** *Calpionellopsis simplex*, STG-88, *oblonga* subzone (Late Berriasian), STG section

d. Calpionellopsis simplex, STG-88, oblonga subzone (Late Berriasian), STG section

e. *Calpionellopsis simplex*, STG-88A, *oblonga* subzone (Late Berriasian), STG section

f. Calpionellopsis simplex, STG-89, oblonga subzone (Late Berriasian), STG section

g. *Calpionellopsis simplex*, STG-89, *oblonga* subzone (Late Berriasian), STG sectionh. *Calpionellopsis simplex*, STG-89A, *oblonga* subzone (Late Berriasian), STG

section

i. Calpionellopsis simplex, STG-90, oblonga subzone (Late Berriasian), STG section

j. Calpionellopsis simplex, STG-91, oblonga subzone (Late Berriasian), STG section

k. Calpionellopsis simplex, STG-85, simplex subzone (Late Berriasian), STG section

I. Calpionellopsis oblonga, STG-87, oblonga subzone (Late Berriasian), STG section

m. *Calpionellopsis oblonga*, STG-87, *oblonga* subzone (Late Berriasian), STG section

n. *Calpionellopsis oblonga*, STG-87, *oblonga* subzone (Late Berriasian), STG section

o. *Calpionellopsis oblonga*, STG-88, *oblonga* subzone (Late Berriasian), STG section

p. *Calpionellopsis oblonga*, STG-88A, *oblonga* subzone (Late Berriasian), STG section

r. *Calpionellopsis oblonga*, STG-89, *oblonga* subzone (Late Berriasian), STG section

s. *Calpionellopsis oblonga*, STG-89, *oblonga* subzone (Late Berriasian), STG section **t.** *Calpionellopsis oblonga*, STG-91, *oblonga* subzone (Late Berriasian), STG section **u.** *Calpionellopsis oblonga*, STG-92, *oblonga* subzone (Late Berriasian), STG section section

v. Calpionellopsis oblonga, STG-92, oblonga subzone (Late Berriasian), STG

section

w. *Calpionellopsis oblonga*, STG-92, *oblonga* subzone (Late Berriasian), STG section

All scale bars 50µm

a. *Remaniella ferasini*, STG-75A, *Remaneilla* subzone (Early Berriasian), STG section

b. Remaniella ferasini, STG-76, Remaneilla subzone (Early Berriasian), STG section

c. Remaniella ferasini, STG-80, Remaneilla subzone (Early Berriasian), STG section

d. Remaniella ferasini, STG-90, oblonga subzone (Late Berriasian), STG section

e. *Remaniella ferasini*?, STG-109A, *Calpionella* Zone (Early Berriasian), STG section

f. Remaniella ferasini, STG-75, Remaneilla subzone (Early Berriasian), STG section
g. Remaniella duranddelgai, STG-80, Remaneilla subzone (Early Berriasian), STG section

h. *Remaniella duranddelgai*, STG-83, *elliptica* subzone (Early Berriasian), STG section

i. *Remaniella duranddelgai*, STG-84, *elliptica* subzone (Early Berriasian), STG section

j. *Remaniella colomi*, STG-81, *Remaneilla* subzone (Early Berriasian), STG section k. *Remaniella colomi*, STG-82, *elliptica* subzone (Early Berriasian), STG section l. *Remaniella catalanoi*?, STG-82, *elliptica* subzone (Early Berriasian), STG section m. *Remaniella catalanoi*?, STG-85, *simplex* subzone (Late Berriasian), STG section n. *Remaniella borzai*, STG-89, *oblonga* subzone (Late Berriasian), STG section o. *Remaniella filipescui*, STG-82, *elliptica* subzone (Early Berriasian), STG section p. *Remaniella filipescui*, STG-82, *elliptica* subzone (Early Berriasian), STG section r. *Remaniella filipescui*, STG-83, *elliptica* subzone (Early Berriasian), STG section s. *Remaniella filipescui*, STG-87, *oblonga* subzone (Late Berriasian), STG section t. *Remaniella filipescui*, STG-89, *oblonga* subzone (Late Berriasian), STG section s. *Remaniella filipescui*, STG-89, *oblonga* subzone (Late Berriasian), STG section t. *Remaniella filipescui*, STG-90, *oblonga* subzone (Late Berriasian), STG section w. *Remaniella filipescui*, STG-91A, *oblonga* subzone (Late Berriasian), STG section v. *Remaniella cadischiana*, STG-84, *elliptica* subzone (Early Berriasian), STG section

w. *Remaniella cadischiana*, STG-84, *elliptica* subzone (Early Berriasian), STG section

x. *Remaniella cadischiana*, STG-84, *elliptica* subzone (Early Berriasian), STG section

y. *Remaniella cadischiana*, STG-84A, *elliptica* subzone (Early Berriasian), STG section

z. *Remaniella cadischiana*, STG-86A, *simplex* subzone (Late Berriasian), STG section

aa. *Remaniella cadischiana*, STG-87, *oblonga* subzone (Late Berriasian), STG section

All scale bars 50µm

a. *Calpionellites darderi*, STG-93, *darderi* subzone (earliest Valanginian), STG section

b. *Lorenziella hungarica*, STG-89, *oblonga* subzone (Late Berriasian), STG section **c.** *Praecalpionellites murgeanui*, STG-92, *oblonga* subzone (Late Berriasian), STG section

d. *Praecalpionellites siriniaensis*, STG-92, *oblonga* subzone (Late Berriasian), STG section

e. Borzaiella atava, STG-75A, Remaniella subzone (Early Berriasian), STG section

f. Borzaiella atava, STG-76, Remaniella subzone (Early Berriasian), STG section

g. Borzaiella atava, STG-83, elliptica subzone (Early Berriasian), STG section

All scale bars 200 μm

a. Protopeneroplis striata, STG-120, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction b. Protopeneroplis striata, STG-136, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction c. Protopeneroplis striata, STG-139, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction d. Protopeneroplis ultragranulata, STG-54, Protopeneroplis ultragranulata Zone (Late Tithonian), STG section e. Protopeneroplis ultragranulata, STG-51, Protopeneroplis ultragranulata Zone (Late Tithonian), STG section f. Protopeneroplis ultragranulata, STG-57, Protopeneroplis ultragranulata Zone (Late Tithonian), STG section g. Protopeneroplis ultragranulata, STG-75, Remaniella subzone (Early Berriasian), STG section h. Protopeneroplis ultragranulata, STG-75, Remaniella subzone (Early Berriasian), STG section i. Protopeneroplis ultragranulata, STG-106A, Calpionella Zone (Early Berriasian), STG section j. Protopeneroplis ultragranulata, STG-77, Remaniella subzone (Early Berriasian), STG section k. Protopeneroplis ultragranulata, SG-3, Calpionella Zone (Early Berriasian), SS section I. Protopeneroplis ultragranulata, SG-2, Calpionella Zone (Early Berriasian), SS section m. Protopeneroplis ultragranulata, SG-2, Calpionella Zone (Early Berriasian), SS section

n. *Protopeneroplis ultragranulata*, SG-1, *Calpionella* Zone (Early Berriasian), SS section

o. *Protopeneroplis ultragranulata*, SG-1, *Calpionella* Zone (Early Berriasian), SS section

a. Globuligerina gr. oxfordiana, STG-6, Scale 50 µm, Globuligerina oxfordiana –

Mohlerina basiliensis Zone (Kimmeridgian), STG section

b. Mohlerina basiliensis, STG-14, Scale 200 µm, Globuligerina oxfordiana –

Mohlerina basiliensis Zone (Kimmeridgian), STG section

c. *Mohlerina basiliensis*, STG-17, Scale 200 µm, *Saccocoma* Zone (Early Tithonian),

STG section

d. Mohlerina basiliensis, STG-46, Scale 200 µm, Saccocoma Zone (Early

Tithonian), STG section

e. Mohlerina basiliensis, STG-51, Scale 200 µm, Protopeneroplis ultragranulata

(Late Tithonian), STG section

f. Mohlerina basiliensis, STG-66, Scale 200 µm, Protopeneroplis ultragranulata

(Late Tithonian), STG section

g. *Mohlerina basiliensis*, STG-79, Scale 200 μm, *Remaniella* subzone (Early Berriasian), STG section

h. Mohlerina basiliensis, STG-114, Scale 200 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

i. Mohlerina basiliensis, STG-115, Scale 200 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

j. Mohlerina basiliensis, STG-135, Scale 200 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

k. Mohlerina basiliensis, STG-138, Scale 200 µm, Labyrinthina mirabilis -

Protopeneroplis striata Zone (Kimmeridgian), STG sction

l. Mohlerina basiliensis, STG-139, Scale 200 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

a. *Crescentiella morronensis*, STG-38, 200 μm, *Saccocoma* Zone (Early Tithonian), STG section

b. *Crescentiella morronensis*, STG-46, 200 μm, *Saccocoma* Zone (Early Tithonian), STG section

c. Crescentiella morronensis with bryozoa, STG-48, 200 µm, Saccocoma Zone

(Early Tithonian), STG section

d. *Crescentiella morronensis*, STG-56, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

e. Crescentiella morronensis showing two stages of encrusting including a

foraminifera in the second phase, STG-59, 400 µm, Protopeneroplis ultragranulata

(Late Tithonian), STG section

f. *Crescentiella morronensis*, STG-59, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

a. *Crescentiella morronensis*, STG-66A, 400 µm, *massutiniana* subzone (latest Tithonian), STG section

b. *Crescentiella morronensis*, STG-66A, 400 μm, *massutiniana* subzone (latest Tithonian), STG section

c. *Crescentiella morronensis*, STG-71A, 200 μm, *alpina* subzone (Early Berriasian), STG section

d. *Crescentiella morronensis*, STG-72, 400 μm, *alpina* subzone (Early Berriasian), STG section

e. *Crescentiella morronensis*, SG-3, 400 μm, *Calpionella* Zone (Early Berriasian), SS section

f. *Crescentiella morronensis* with a calpionellid in the micritic envelope, STG-87,
400 μm, *oblonga* subzone (Late Berriasian), STG section

g. *Crescentiella morronensis*, STG-75A, 400 μm, *Remaniella* subzone (Early Berriasian), STG section

h. *Saccocoma* sp., STG-18, 200 μm, *Saccocoma* Zone (Early Tithonian), STG section

i. Saccocoma sp., STG-26, 200 µm, Saccocoma Zone (Early Tithonian), STG section

j. Saccocoma sp., STG-31, 200 µm, Saccocoma Zone (Early Tithonian), STG section

k. *Saccocoma* sp., STG-35, 200 μm, *Saccocoma* Zone (Early Tithonian), STG section

l. *Saccocoma* sp., STG-31, 200 μm, *Saccocoma* Zone (Early Tithonian), STG section **m.** *Saccocoma* sp., STG-71A, 200 μm, *alpina* subzone (Early Berriasian), STG section

n. Aptychus fragment, STG-31, 400 μm, *Saccocoma* Zone (Early Tithonian), STG section

a. Labyrinthina mirabilis, STG-111A, 200 µm, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction b. Labyrinthina mirabilis, STG-113, 400 µm, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction c. Labyrinthina mirabilis, STG-115, 400 µm, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction d. Labyrinthina mirabilis, STG-117, 400 µm, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction e. Labyrinthina mirabilis, STG-134, 400 µm, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction f. Labyrinthina mirabilis, STG-136, 400 µm, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction g. Pseudocyclammina lituus, STG-66, 400 µm, Protopeneroplis ultragranulata (Late Tithonian), STG section h. Pseudocyclammina lituus, STG-114, 400 µm, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction i. Pseudocyclammina lituus, STG-114, 400 µm, Labyrinthina mirabilis – Protopeneroplis striata Zone (Kimmeridgian), STG sction

a. Pseudocyclammina lituus, STG-129, 400 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

b. *Alveosepta*? sp., STG-129, 400 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

c. *Pseudocyclammina lituus*, SG-1, 400 μm, *Calpionella* Zone (Early Berriasian), SS section

d. Everticyclammina sp., STG-56, 400 µm, Protopeneroplis ultragranulata Zone

(Late Tithonian), STG section

e. Everticyclammina sp., STG-114, 400 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

f. Everticyclammina sp., STG-114, 400 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

g. Everticyclammina sp., STG-114, 400 µm, Labyrinthina mirabilis -

Protopeneroplis striata Zone (Kimmeridgian), STG sction

h. Everticyclammina sp., STG-117B, 400 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

i. Everticyclammina sp., STG-134, 400 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

j. Unidentified foraminifera, SG-1, 200 μ m, *Calpionella* Zone (Early Berriasian), SS section

k. *Mesoendothyra*? sp., STG-71A, 200 μm, *alpina* subzone (Early Berriasian), STG section

a. *Coscinophragma cribrosum*, STG-57, 400 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

b. *Coscinophragma cribrosum*, STG-72, 400 μm, *alpina* subzone (Early Berriasian), STG section

c. *Coscinophragma cribrosum*, STG-72A, 400 μm, *alpina* subzone (Early Berriasian), STG section

d. *Charentia* sp., STG-56, 200 µm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

e. *Charentia* sp., STG-57, 200 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

f. *Charentia* sp., STG-75, 200 μm, *Remaneilla* subzone (Early Berriasian), STG section

g. *Charentia*? sp., STG-133, 200 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

h. *Charentia* sp., STG-46, 200 μm, *Saccocoma* Zone (Early Tithonian), STG section **i.** *Nautiloculina* sp., STG-51, 200 μm, *Protopeneroplis ultragranulata* Zone (Late

Tithonian), STG section

j. *Nautiloculina* sp., STG-117A, 200 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

k. *Nautiloculina* sp., STG-114, 200 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

l. *Quinqueloculina*? sp., STG-28, 50 μm, *Saccocoma* Zone (Early Tithonian), STG section

m. *Quinqueloculina*? sp., STG-29, 50 μm, *Saccocoma* Zone (Early Tithonian), STG section

n. *Quinqueloculina* sp., STG-19, 200 μm, *Saccocoma* Zone (Early Tithonian), STG section

o. *Quinqueloculina* sp., STG-30, 200 μm, *Saccocoma* Zone (Early Tithonian), STG section

p. *Ophthalmidium* sp., STG-14, 200 μm, *Globuligerina oxfordiana – Mohlerina basiliensis* Zone (Kimmeridgian), STG section

r. *Ophthalmidium* sp., STG-1, 200 μm, *Globuligerina oxfordiana – Mohlerina basiliensis* Zone (Kimmeridgian), STG section

a. *Quinqueloculina* sp., STG-72A, 200 µm, *alpina* subzone (Early Tithonian), STG section

b. *Quinqueloculina* sp., STG-72A, 200 µm, *alpina* subzone (Early Tithonian), STG section

c. *Quinqueloculina* sp., STG-75, 200 μm, *Remaniella* subzone (Early Tithonian), STG section

d. *Quinqueloculina* sp., STG-109A, 100 μm, *Calpionella* Zone (Early Berriasian), STG section

e. *Quinqueloculina* sp., STG-114, 200 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

f. *Quinqueloculina* sp., STG-114, 200 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

g. *Quinqueloculina* sp., STG-115, 200 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

h. *Quinqueloculina* sp., STG-116, 200 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

i. Quinqueloculina sp., STG-118B, 200 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

j. *Quinqueloculina* sp., STG-119, 200 µm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

k. *Quinqueloculina* sp., STG-129, 200 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

l. *Quinqueloculina* sp., STG-130, 100 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

m. Quinqueloculina sp., STG-135, 100 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

n. *Ophthalmidium* sp., STG-25, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

o. Ophthalmidium sp., STG-111A, 100 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

p. Ophthalmidium sp., STG-119C, 100 µm, Labyrinthina mirabilis -

Protopeneroplis striata Zone (Kimmeridgian), STG sction

r. *Ophthalmidium* sp., STG-30, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

s. *Ophthalmidium*? sp., STG-60, 100 μ m, *Protopeneroplis ultragranulata* (Late Tithonian) STG section

t. *Ophthalmidium* sp., STG-79, 100 μ m, *Remaneilla* subzone (Early Berriasian), STG section

a. *Moesiloculina*? sp., STG-20, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

b. *Moesiloculina*? sp., STG-26, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

c. Unidentified miliolid, STG-52, 100 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

d. *Moesiloculina* sp., STG-59, 100 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

e. *Moesiloculina* sp., STG-65, 100 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

f. *Moesiloculina* sp., STG-71, 100 μm, *alpina* subzone (Early Berriasian), STG section

g. *Moesiloculina* sp., STG-90, 100 μm, *oblonga* subzone (Late Berriasian) STG section

h. *Moesiloculina*? sp., STG-129, 100 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

i. *Istriloculina* sp., STG-21, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

j. *Istriloculina* sp., STG-25, 100 µm, *Saccocoma* Zone (Early Tithonian), STG section

k. *Istriloculina* sp., STG-48, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

l. *Istriloculina* sp., STG-72, 100 μm, *alpina* subzone (Early Berriasian), STG section **m.** *Istriloculina* sp., STG-84, 100 μm, *elliptica* subzone (Early Berriasian), STG section

n. *Istriloculina* sp., STG-86, 100 μm, *simplex* subzone (Late Berriasian), STG section

o. *Cornuspira* sp., STG-21, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

p. *Cornuspira* sp., STG-77, 100 μm, *Remaniella* subzone (Early Berriasian), STG section

r. *Cornuspira* sp., STG-80, 100 μm, *Remaniella* subzone (Early Berriasian), STG section

s. Cornuspira sp., STG-90, 100 μ m, oblonga subzone (Late Berriasian) STG section

a. *Glomospira* sp., STG-14, 100 μm, *Globuligerina oxfordiana – Mohlerina basiliensis* Zone (Kimmeridgian), STG section

b. *Glomospira* sp., STG-72, 100 μm, *alpina* subzone (Early Berriasian), STG section **c.** *Glomospira* sp., STG-88A, 100 μm, *oblonga* subzone (Late Berriasian) STG section

d. *Glomospira* sp., STG-119A, 100 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

e. *Meandrospira*? sp., STG-39, 100 µm, *Saccocoma* Zone (Early Tithonian), STG section

f. *Meandrospira*? sp., STG-43, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

g. *Meandrospira* sp., STG-20, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

h. *Meandrospira* sp., STG-40, 100 μ m, *Saccocoma* Zone (Early Tithonian), STG section

i. *Meandrospira* sp., STG-79, 100 μm, *Remaniella* subzone (Early Berriasian), STG section

j. *Meandrospira* sp., STG-92A, 100 µm, *oblonga* subzone (Late Berriasian) STG section

k. *Meandrospira* sp., STG-66A, 100 μm, *massutiniana* subzone (latest Tithonian), STG section

l. *Meandrospira favrei*, STG-67A, 100 μm, *massutiniana* subzone (latest Tithonian), STG section

m. *Meandrospira favrei*, STG-91, 100 μm, *oblonga* subzone (Late Berriasian) STG section

n. *Meandrospiranella* sp., STG-15, 100 μm, *Globuligerina oxfordiana – Mohlerina basiliensis* Zone (Kimmeridgian), STG section

a. *Haplophragmoides joukowskyi*, STG-90, 100 μm, *oblonga* subzone (Late Berriasian), STG section

b. *Haplophragmoides joukowskyi*, STG-88, 100 μm, *oblonga* subzone (Late Berriasian), STG section

c. *Haplophragmoides joukowskyi*, STG-90, 100 μm, *oblonga* subzone (Late Berriasian), STG section

d. *Haplophragmoides joukowskyi*, STG-91A, 100 μm, *oblonga* subzone (Late Berriasian), STG section

e. *Haplophragmoides joukowskyi*, STG-92, 100 μm, *oblonga* subzone (Late Berriasian), STG section

f. *Montsalevia salevensis*, STG-94, 100 μm, *darderi* subzone (Earliest Valanginian), STG section

g. *Ammobaculites* sp., STG-25, 100 µm, *Saccocoma* Zone (Early Tithonian), STG section

h. *Ammobaculites* sp., STG-40, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

i. *Ammobaculites* sp., STG-131, 200 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

j. *Reophax* sp., STG-40, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section **k.** *Reophax* sp., STG-70, 100 μm, *massutiniana* subzone (latest Tithonian), STG section

l. *Reophax* sp., STG-88A, 100 μm, *oblonga* subzone (Late Berriasian), STG section **m**. *Reophax* sp., STG-87, 100 μm, *oblonga* subzone (Late Berriasian), STG section **n**. *Siphovalvulina*? sp., STG-51, 100 μm, *Protopeneroplis ultragranulata* Zone (Late Tihonitan) STG seciton

o. *Siphovalvulina*? sp., STG-70, 100 μm, *massutiniana* subzone (latest Tithonian), STG section

p. *Siphovalvulina*? sp., STG-91A, 100 μm, *oblonga* subzone (Late Berriasian), STG section

a. *Haghimashella*? sp., STG-20, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

b. Haghimashella? sp., STG-119A, 100 µm, Labyrinthina mirabilis -

Protopeneroplis striata Zone (Kimmeridgian), STG sction

c. *Haghimashella*? sp., STG-130, 100 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

d. Textularia sp., STG-17, 100 µm, Saccocoma Zone (Early Tithonian), STG section

e. Textularia sp., STG-19, 100 µm, Saccocoma Zone (Early Tithonian), STG section

f. Textularia sp., STG-47, 100 µm, Saccocoma Zone (Early Tithonian), STG section

g. *Textularia*? sp., STG-60, 100 μm, *Protopeneroplis ultragranulata* Zone (Late Tihonitan) STG seciton

h. *Textularia* sp., STG-76, 100 μm, *Remaniella* subzone (Early Berriasian), STG section

i. *Textularia* sp., STG-91A, 100 μm, *oblonga* subzone (Late Berriasian), STG section **j.** *Protomarssonella* sp., STG-22, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

k. *Redmondoides*? sp., STG-20, 100 µm, *Saccocoma* Zone (Early Tithonian), STG section

l. *Redmondoides*? sp., STG-24, 100 µm, *Saccocoma* Zone (Early Tithonian), STG section

m. *Redmondoides*? sp., STG-115, 100 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

n. *Redmondoides*? sp., STG-84, 100 μm, *elliptica* subzone (Early Berriasian), STG section

o. Verneuilinid foraminifera, STG-57, 200 μm, *Protopeneroplis ultragranulata* Zone (Late Tihonitan) STG seciton

p. Verneuilinid foraminifera, STG-111A, 100 µm, Labyrinthina mirabilis -

Protopeneroplis striata Zone (Kimmeridgian), STG sction

r. Verneuilinid foraminifera, STG-113, 200 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

s. *Trochammina* sp.., STG-133, 100 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

a. *Coscinoconus* sp., STG-46, 100 μ m, *Saccocoma* Zone (Early Tithonian), STG section

b. *Coscinoconus* sp., STG-56, 200 µm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

c. *Coscinoconus* sp., STG-56, 200 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

d. *Coscinoconus* sp., STG-51, 100 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

e. *Coscinoconus* sp., STG-56, 100 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

f. *Coscinoconus* sp., STG-56, 100 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

g. *Coscinoconus* sp., STG-75, 200 μm, *Remaniella* subzone (Early Berriasian), STG section

h. *Coscinoconus* sp., STG-75, 200 μm, *Remaniella* subzone (Early Berriasian), STG section

a. *Coscinoconus* sp., STG-109, 200 μm, *Calpionella* Zone (Early Berriasian), STG section

b. Coscinoconus sp., SG-1, 200 µm, Calpionella Zone (Early Berriasian), SS section

c. *Coscinoconus* sp., STG-71A, 100 μm, *alpina* subzone (Early Berriasian), STG section

d. *Coscinoconus* sp., STG-86A, 100 μm, *simplex* subzone (Late Berriasian), STG section

e. *Coscinoconus* sp., STG-56, 200 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

f. *Neotrocholina* sp., STG-54, 200 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

g. *Neotrocholina* sp., STG-73, 200 µm, *alpina* subzone (Early Berriasian), STG section

h. *Neotrocholina* sp., STG-80, 200 μ m, *Remaniella* subzone (Early Berriasian), STG section

i. *Neotrocholina* sp., STG-84, 200 μm, *elliptica* subzone (Early Berriasian), STG section

j. *Neotrocholina* sp., STG-88A, 200 µm, *oblonga* subzone (Late Berriasian), STG section

k. *Neotrocholina* sp., STG-93, 200 μm, *darderi* subzone (earliest Valanginian), STG section

l. *Neotrocholina* sp., STG-109A, 200 μm, *Calpionella* Zone (Early Berriasian), STG section

a. Lagenid foraminifera, STG-83, 50 μm, *elliptica* subzone (Ealry Berriasian), STG section

b. *Spirillina* sp., STG-1, 50 μm, *Globuligerina oxfordiana – Mohlerina basiliensis* Zone (Kimmeridgian), STG section

c. *Spirillina* sp., STG-1, 50 μm, *Globuligerina oxfordiana – Mohlerina basiliensis* Zone (Kimmeridgian), STG section

d. *Spirillina* sp., STG-15, 50 μm, *Globuligerina oxfordiana – Mohlerina basiliensis* Zone (Kimmeridgian), STG section

e. Spirillina sp., STG-21, 50 µm, Saccocoma Zone (Early Tithonian), STG section

f. *Spirillina* sp., STG-70, 50 μm, *massutiniana* subzone (latest Tithonian), STG section

g. *Spirillina* sp., STG-75, 50 μm, *Remaniella* subzone (Early Tithonian), STG section **h.** *Spirillina* sp., STG-80, 50 μm, *Remaniella* subzone (Early Tithonian), STG section

i. Spirillina sp., STG-90, 50 µm, oblonga subzone (Late Berriasian), STG section

k. Lagenid foraminifera, STG-43, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

l. Lagenid foraminifera, STG-71A, 100 μm, *alpina* subzone (Early Berriasian), STG section

m. *Lenticulina* sp., STG-79, 100 μm, *Remaniella* subzone (Early Tithonian), STG section

n. *Lenticulina* sp., STG-87, 100 μm, *oblonga* subzone (Late Berriasian), STG section **o.** Lagenid foraminifera, STG-87, 100 μm, *oblonga* subzone (Late Berriasian), STG section

p. Lagenid foraminifera, SG-1, 100 μm, *Calpionella* Zone (Early Berriasian), SS section

r. *Pithonella* sp., STG-1, 50 μm, *Globuligerina oxfordiana – Mohlerina basiliensis* Zone (Kimmeridgian), STG section

s. *Pithonella* sp., STG-20, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section **t.** *Pithonella* sp., STG-25, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

u. *Pithonella* sp., STG-1, 50 μm, *Globuligerina oxfordiana – Mohlerina basiliensis* Zone (Kimmeridgian), STG section

a. *Patellina* sp., STG-39, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section **b.** *Patellina* sp., STG-85, 100 μm, *simplex* subzone (Late Berriasian), STG section

c. *Patellina* sp., STG-87, 100 μm, *oblonga* subzone (Late Berriasian), STG section

d. *Patellina* sp., STG-94, 100 μm, *darderi* subzone (earliest Valanginian), STG section

e. *Troglotella incrustans*, STG-47, 400 μm, *Saccocoma* Zone (Early Tithonian), STG section

f. *Troglotella incrustans*, STG-47, 400 μm, *Saccocoma* Zone (Early Tithonian), STG section

g. Troglotella incrustans, STG-119A, 400 µm, Labyrinthina mirabilis –

Protopeneroplis striata Zone (Kimmeridgian), STG sction

h. Bacinellid fabric, STG-47, 400 μ m, *Saccocoma* Zone (Early Tithonian), STG section

i. Bacinellid fabric, STG-47, 400 μ m, Saccocoma Zone (Early Tithonian), STG section

j. Cayeuxia sp., STG-42, 400 µm, Saccocoma Zone (Early Tithonian), STG section

k. *Cayeuxia* sp., STG-56, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

l. *Cayeuxia* sp., STG-119, 400 μm, *Labyrinthina mirabilis – Protopeneroplis striata* Zone (Kimmeridgian), STG sction

a. *Lithocodium aggregatum*, STG-39, 400 μm, *Saccocoma* Zone (Early Tithonian), STG section

b. *Lithocodium aggregatum*, STG-50, 400 μm, *Saccocoma* Zone (Early Tithonian), STG section

c. *Lithocodium aggregatum*, STG-56, 400 µm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

d. *Lithocodium aggregatum*, STG-44, 400 μm, *Saccocoma* Zone (Early Tithonian), STG section

e. *Lithocodium aggregatum*, STG-66A, 400 μm, *massutiniana* subzone (latest Tithonian)

f. *Lithocodium aggregatum*, STG-68, 400 μm, *massutiniana* subzone (latest Tithonian)

a. *Lithocodium aggregatum*, STG-106A, 400 µm, *Calpionella* Zone (Early Berriasian), STG section

b. *Lithocodium aggregatum*, SG-4, 400 μ m, *Calpionella* Zone (Early Berriasian), SS section

c. *Koskinobullina socialis*, STG-49, 400 μm, *Saccocoma* Zone (Early Tithonian), STG section

d. *Koskinobullina socialis*, STG-69, 400 μm, *massutiniana* subzone (latest Tithonian), STG section

e. *Koskinobullina socialis*, STG-73, 400 μm, *alpina* subzone (Early Berriasian), STG section

f. Koskinobullina socialis, SG-4, 400 μ m, Calpionella Zone (Early Berriasian), SS section

a. Labes atramentosa, STG-30, 400 μ m, Saccocoma Zone (Early Tithonian), STG section

b. *Labes atramentosa*, STG-38, 400 µm, *Saccocoma* Zone (Early Tithonian), STG section

c. *Labes atramentosa*, STG-55, 400 µm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

d. *Labes atramentosa*, STG-61, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

a. *Perturbatacrusta leini*, STG-41, 400 µm, *Saccocoma* Zone (Early Tithonian), STG section

b. *Perturbatacrusta leini*, STG-50, 400 μm, *Saccocoma* Zone (Early Tithonian), STG section

c. *Perturbatacrusta leini*, STG-64A, 400 µm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

d. *Perturbatacrusta leini*, STG-66A, 400 µm, *massutiniana* subzone (latest Tithonian), STG section

e. *Perturbatacrusta leini*, STG-66B, 400 μm, *massutiniana* subzone (latest Tithonian), STG section

f. *Perturbatacrusta leini*, STG-74A, 400 μm, *alpina* subzone (Early Berriasian), STG section

g. *Radiomura cautica*, STG-91, 200 μm, *oblonga* subzone (Late Berriasian), STG section

h. *Thaumatoporella parvovesiculifera*, STG-17, 200 μm, *Saccocoma* Zone (Early Tithonian), STG section

i. *Thaumatoporella parvovesiculifera*, STG-46, 200 μm, *Saccocoma* Zone (Early Tithonian), STG section

j. *Thaumatoporella parvovesiculifera*, STG-119B, 200 µm, *Labyrinthina mirabilis* – *Protopeneroplis striata* Zone (Kimmeridgian), STG sction

a. *Mercierella* ? *dacica*, STG-1, 100 μm, *Globuligerina oxfordiana* – *Mohlerina basiliensis* Zone (Kimmeridgian), STG section

b. *Mercierella* ? *dacica*, STG-21, 100 µm, *Saccocoma* Zone (Early Tithonian), STG section

c. *Mercierella* ? *dacica*, STG-23, 100 µm, *Saccocoma* Zone (Early Tithonian), STG section

d. *Mercierella* ? *dacica*, STG-29, 100 µm, *Saccocoma* Zone (Early Tithonian), STG section

e. *Mercierella* ? *dacica*, STG-31, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

f. *Mercierella* ? *dacica*, STG-50, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

g. *Mercierella* ? *dacica*, STG-64A, 100 μm, *Protopeneroplis ultragranulata* Zone (Late Tithonian), STG section

h. *Mercierella* ? *dacica*, STG-66A, 400 μm, *massutiniana* subzone (latest Tithonian), STG section

i. *Mercierella* ? *dacica*, STG-67A, 400 μm, *massutiniana* subzone (latest Tithonian), STG section

j. *Mercierella* ? *dacica*, STG-73, 400 µm, *alpina* subzone (Early Berriasian), STG section

k. *Globochaete* sp., STG-23, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

l. *Globochaete* sp., STG-24, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

m. *Globochaete* sp., STG-28, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

n. *Globochaete* sp., STG-29, 100 μm, *Saccocoma* Zone (Early Tithonian), STG section

o. *Globochaete* sp., STG-29, 50 μm, *Saccocoma* Zone (Early Tithonian), STG section

p. Globochaete sp., STG-35, 100 µm, Saccocoma Zone (Early Tithonian), STG

section

r. *Globochaete* sp., STG-70A, 50 μm, *alpina* subzone (Early Berriasian), STG section

s. *Globochaete* sp., STG-89, 100 μm, *oblonga* subzone (Late Berriasian), STG section

t. *Globochaete* sp., STG-89A, 50 μm, *oblonga* subzone (Late Berriasian), STG section

u. Calcareous dinocyst, STG-20, 50 μm, *Saccocoma* Zone (Early Tithonian), STG section

v. Calcareous dinocyst, STG-31, 50 μm, *Saccocoma* Zone (Early Tithonian), STG section

w. Calcareous dinocyst, STG-75A, 50 μm, *Remaniella* subzone (Early Tithonian), STG section

x. Calcareous dinocyst, STG-88, 50 μm, *oblonga* subzone (Late Berriasian), STG section

y. Calcareous dinocyst, STG-90, 100 μ m, *oblonga* subzone (Late Berriasian), STG section

z. Calcareous dinocyst, STG-91, 50 μm, *oblonga* subzone (Late Berriasian), STG section

aa. Calcareous dinocyst, STG-91A, 50 μm, *oblonga* subzone (Late Berriasian), STG section

ab. Radiolaria, SS-8, 100 μ m, "Radiolaria Zone" (Late Berriasian ?), SS section **ac.** Radiolaria, SS-8, 100 μ m, "Radiolaria Zone" (Late Berriasian ?), SS section **ad.** Radiolaria, SS-8, 100 μ m, "Radiolaria Zone" (Late Berriasian ?), SS section **ae.** Radiolaria, SS-7, 100 μ m, "Radiolaria Zone" (Late Berriasian ?), SS section **af.** Radiolaria, SS-7, 100 μ m, "Radiolaria Zone" (Late Berriasian ?), SS section **ag.** Radiolaria, SS-7, 100 μ m, "Radiolaria Zone" (Late Berriasian ?), SS section **ag.** Radiolaria, SS-7, 100 μ m, "Radiolaria Zone" (Late Berriasian ?), SS section **ah.** Radiolaria, SS-7, 100 μ m, "Radiolaria Zone" (Late Berriasian ?), SS section **ai.** Radiolaria, ST-7, 100 μ m, "Radiolaria Zone" (Valanginian), STG section **aj.** Radiolaria, STG-98, 100 μ m, "Radiolaria Zone" (Valanginian), STG section **ak.** Radiolaria, STG-100, 100 μ m, "Radiolaria Zone" (Valanginian), STG section **al.** Radiolaria, STG-102, 100 μm, "Radiolaria Zone" (Valanginian), STG section **am.** Radiolaria, STG-102, 100 μm, "Radiolaria Zone" (Valanginian), STG section

a. *Terebella lapilloides*, STG-46, 400 μm, *Saccocoma* (Early Tithonian), STG section

b. *Terebella lapilloides*, STG-54, 400 µm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

c. *Terebella lapilloides*, STG-61, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

d. *Terebella lapilloides*, STG-61, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

e. *Terebella lapilloides*, STG-64A, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

f. *Terebella lapilloides*, STG-66A, 400 μm, *massutiniana* subzone (latest Tithonian), STG section

g. *Terebella lapilloides*, STG-66A, 400 μm, *massutiniana* subzone (latest Tithonian), STG section

h. *Terebella lapilloides*, STG-66A, 400 μm, *massutiniana* subzone (latest Tithonian), STG section

i. Serpulid, STG-51, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

j. Serpulid, STG-57, 400 µm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

k. Serpulid, STG-61, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

l. Serpulid, STG-61, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

m. Serpulid, STG-62, 400 µm, *Protopeneroplis ultragranulata* (Late Tithonian),

STG section

n. Serpulid, STG-63, 400 μm, *Protopeneroplis ultragranulata* (Late Tithonian), STG section

o. Serpulid, STG-72A, 400 µm, alpina subzone (Early Berriasian), STG section

p. Serpulid, STG-77, 400 µm, Remaniella subzone (Early Berriasian), STG section

r. Serpulid, SG-3, 400 µm, Calpionella Zone (Early Berriasian), SS section

