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ABSTRACT 

 

 

AN APPROXIMATE METHOD TO CALCULATE THE STIFFNESS OF 

SHALLOW FOUNDATIONS SUBJECTED TO ECCENTRIC LOADS 

 

Durucan, Ayşe Ruşen 

  Ph.D., Department of Engineering Sciences 

Supervisor: Assoc. Prof. Dr. Mustafa Tolga Yılmaz 

 

December 2016, 147 pages 

 

A computationally simple method to calculate the static response of arbitrarily 

shaped shallow foundations subjected to eccentric loading is proposed. A 

theoretical relationship to estimate the area beneath the foundation that is contact 

with the load bearing support is developed. This relationship yielded an equation to 

calculate rocking angle of an arbitrarily shaped foundation under any load 

eccentricity. Consequently, a simple theoretical model capable of simulating the 

effects of material and geometrical nonlinearities on the response of arbitrarily 

shaped shallow foundations subjected to monotonically increasing eccentric and 

inclined load is developed. The theoretical results are justified by using the results 

of three available sets of experiments from the literature. Then the parametric 

analyses of shallow foundations subjected to eccentric loading are performed. It is 

observed that the proposed theoretical method yields reasonably accurate results in 

terms of moment-rotation response of shallow foundations. 

 

Keywords: Foundation uplift, soil nonlinearity, shallow footing, monotonic 

loading 
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ÖZ 

 

 

EKSANTRİK YÜKLER ALTINDAKİ SIĞ TEMELLERİN RİJİTLİK 

HESABI İÇİN YAKLAŞIK BİR YÖNTEM 

 

Durucan, Ayşe Ruşen 

 Doktora, Mühendislik Bilimleri Bölümü 

Tez Yöneticisi: Doç. Dr. Mustafa Tolga Yılmaz 

 

Aralık 2016, 147 sayfa 

 

Değişken şekillere sahip olan temellerin statik eksantrik statik yüklere karşı 

tepkisinin hesaplanması için sayısal hesabı basit bir yöntem önerilmiştir. 

Çalışmada, değişken şekilli temeller üzerinde etkiyen devrilme momenti ile temas 

yüzeyi genişliği arasında teorik bir ilişki kurulmuştur. Daha sonra, herhangi bir 

şekle sahip olan sığ temellerde uygulanabilir şekilde, devrilme momenti ve 

devrilme açısı arasındaki ilişkinin hesaplanması için bir yöntem geliştirilmiştir. 

Geometrik açıdan doğrusal olmayan probleme, malzeme özelliklerinden 

kaynaklanan doğrusal olmayan davranış da dahil edilmiştir. Ortaya çıkan hesap 

yöntemi literatürden alınan üç deney setine ait sonuçlar kullanılarak 

doğrulanmıştır. Daha sonra eksantrik yükleme altındaki sığ temeller için 

parametrik analizleri yapılmıştır. Önerilen yöntemin sığ temellerin moment – 

devrilme açışı ilişkilerini isabetli olarak hesaplayabildiği görülmüştür. 

 

Anahtar Kelimeler: Temel kalkması, doğrusal olmayan zemin davranışı, sığ temel, 

monotonik yükleme 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1. Introduction 

 

An excessive increase in overturning moment (M) acting on foundation yields a 

severe increase in the eccentricity of vertical load (V) acting on foundation, and 

builds a demand for tensile contact stress on the interface between soil and 

foundation. The lack of tensile strength on this interface yields partial separation of 

foundation’s base from the underlying soil. The rocking motion of buildings 

during severe earthquakes may cause partial separation of the shallow foundations 

from underlying soil, and consequently uplift of a side of foundation, because of 

the lack of tensional strength in load bearing soil. Figure 1.1 illustrates the 

separation of a shallow foundation from the load-bearing medium (soil) due to 

excessive M. This is particularly important for slender structures, such as towers, 

chimneys and bridge piers because of the loss in rocking stiffness of foundation 

(Apostolou et al., 2007; Yim and Chopra, 1984; Celep and Güler, 1991; Psycharis, 

1991; Jennings, P.C. and Bielak, J., 1973). Morever, Chopra and Yim (1985) 

stated that design forces acting on buildings (i.e., hospitals) may be larger than 

those required to initiate the uplift. The overturning moments acting on the base of 

typical buildings, such as hospitals, offices and low-rise structures, may exceed the 

overturning moment resistance provided by the gravity forces (Rutenberg et al., 

1982; Hayashi et al., 1999; Kutanis et al., 2002; Zhou et al, 2012). The buildings 

constructed using a combination of structural frames and shear walls may 

experience uplift during severe seismic motion. For such structural systems, uplift 

behavior of shear walls increase the level of lateral load transferred to structural 
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frames of buildings, and may cause important levels of damage on structural frame 

(Mori et al, 2008). 

 

Foundation uplift may seriously modify the structural deformations and the 

seismic response characteristics due to increase in the period of structural 

vibrations (Chopra and Yim, 1985; Roeder et al., 1996; Xu and Spyrakos, 1996; 

Mergos and Kavashima, 2005). 

 

 

 

 

 

 

 

Figure 1.1 The uplift of shallow foundations under tensile forces 

 

Figini et al. (2012) stated that the numerical tools, capable of accurately simulating 

the effects of foundation uplift on the response of foundations, are still in research 

stage. Accordingly, computationally expensive finite element modeling techniques 

and simplified approaches such as modeling the reaction of soil as a bed of 

independent nonlinear springs (i.e. namely the Winkler foundation), are among the 

alternatives. However, such simplified approaches cannot accurately simulate the 

soil-structure interaction if the reaction springs are considered to have uniform 

properties. For rigid rectangular foundations, the rotational stiffness of a uniform 

bed of springs is less than that of the same foundation resting on a continuous 

elastic material.  The main reason for this difference is that unlike a rigid 

foundation resting on uniform springs the actual pressure distribution beneath a 

rigid foundation on a continuous elastic material is not uniform. The imposed 

vertical displacement causes large pressure at the edges of the foundation. 

Moreover, the pressure at a point under the foundations affects the pressure at 

𝑉 

compression no tension 

(separation) 

𝑉 

𝑀 
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other points which is not accounted for in models consisting independent springs 

(Pender, 2007; Figini et al., 2012). The document FEMA273 (FEMA, 1997) 

presents an approach to consider the non-uniform pressure distribution by 

recommending the use of stiffer springs at the ends of the foundation. Moreover, 

Wotherspoon et al. (2004a,b) and Pender et al. (2006) proposed methods to 

consider the interaction between discrete springs. Nevertheless, the model still 

would not be capable of accurately estimating the bending moment and shear force 

distribution in the foundation (Pender, 2007). Furthermore, calibration of model 

parameters is not easy (Pender, 2007; Chatzigogos et al., 2011).  A more robust 

method for calculation of stiffness of shallow foundations necessitates a model 

involving more than a simple bed of discrete springs.  

 

The macro-element modeling technique became more popular among the 

researchers due to its computational feasibility. All nonlinearities are condensed in 

a finite domain, namely the macro-element and generalized forces as well as 

displacements on this domain are used to simulate the behavior of shallow 

foundations (Grange et al., 2008). Generally, the footing and the underlying soil 

are considered to be a single element with horizontal, vertical and rotational load 

deformation responses defined on the center of the footing. The first macro 

element model was developed by Nova and Montrasio (1991).  This model was 

based on a strain hardening theory and an incremental formulation of plasticity.  

However, the behavior of uplifting foundation was not considered. The effect of 

foundation uplift on the response of foundations was first simulated by the macro 

element model proposed by Cremer et al. (2001, 2002) considering strip 

foundations.  

 

In the macro-element approaches (Chatzigogos et al., 2011) the uplifting behavior 

of shallow foundations has been generally simulated through appropriately 

modifying the static impedances and recalculating the stiffness matrix based on the 

reduced contact area between soil and foundation due to uplift. For the dynamic 
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loads, as in the case of the ground motion excitation, the reduction of the contact 

area between the soil and foundation is transient and the instantaneous stiffness of 

foundation continuously varies.  

 

Another source of nonlinearity in the behavior of shallow foundations is the 

nonlinearity of the stress vs. strain response of soils. The yielding of soil is an 

essential feature of the load deformation response of foundations (Pecker et al, 

2012). Therefore many researchers put emphasize on the soil nonlinearity for their 

macro elements (Nova and Montrasio, 1991; Gottardi et al., 1995; Pecker, 1998; 

Cremer at al., 2002; Allotey et al., 2003; Chatzigogos et al., 2009; Gajan and 

Kutter, 2009; Figini, 2010). Typical 𝑀 − 𝜃 relationships with and without the 

nonlinearity of the soil are presented in Figure 1.2 to illustrate the effect of soil 

nonlinearity and uplift on the response of shallow foundations to monotonic 

loading.  

 

 

Figure 1.2 The change in typical 𝑀 − 𝜃 relationships due to the uplift of the 

foundation, and material nonlinearity 

 

Consequently, robust and yet simple modeling of nonlinear load-displacement  

response of shallow foundations that partially loose contact with underlying soil 

due to excessive overturning moment is critically important for more precise 

estimation of foundation displacements in structural analyses. A reasonably 



M

 

 

linear

uplift on linear material

uplift and soil nonlinearity
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accurate relationship is also important for calibration and justification of cyclic 

loading models, such as the macro-elements used for computation of response of 

shallow foundations to irregular seismic loading. The coupling between vertical 

displacement and rocking angle of foundation should be accurately modeled for 

simulation of the relationship between V and M during rocking of foundations 

(Deng et al., 2012; Kutter et al., 2010).  

 

In this study, an approximate method for computation of vertical displacement and 

rocking angle of an arbitrarily-shaped ideal rigid shallow foundation under 

eccentric and inclined load is presented.  

 

1.2. Objective 

 

The objective of this study is to develop a computationally simple yet robust 

method for calculation of nonlinear load-deformation relationships for shallow 

foundations that are partially separated from load-bearing soil by excessive 

overturning moment. The method also aims to estimate the relationship between 

vertical displacement and rocking angle of an arbitrarily shaped shallow 

foundation with a feasible computational cost. The applicable range of loading is 

limited to the ultimate bearing capacity of shallow foundation, such that the 

continuous plastic flow of soil under sustained foundation load is not possible. 

 

 1.3. Literature Review 

 

Several theoretical and experimental models on foundation uplift are presented in 

literature. The experimental studies (Negro et al., 2000; Gajan et al., 2005; Gajan 

and Kutter, 2008; Paolucci et al., 2008; Shirato et al., 2008; Tamura et al., 2011; 

Hung et al., 2011; Deng and Kutter, 2012; Anastasopoulos et al., 2012, 2013, 

2015; Deng et al., 2012; Drosos et al., 2012; Massimino and Maugeri, 2013; 

Kokkali et al., 2014, 2015; Hung et al., 2014; Loli et al., 2014, 2015; Biondi et al., 



6 

 

2015; Liu et al., 2015) have considerably contributed to the understanding of the 

rocking response of shallow foundations. The well-known Winkler model, in 

which several springs that have limited tensional load capacity are located beneath 

the rigid foundation, is successively used by a number of researchers to model 

foundation during severe cyclic loading (Wolf and Skrikerud, 1978; Celep and 

Güler, 1991; Psycharis, 1991, 2008; Chen and Lai, 2003; Houlsby et al., 2005; 

Allotey and El Naggar, 2003; Raychowdhury and Hutchinson, 2009, 2011). A 

major limitation of simple Winkler type models is the lack of interaction between 

individual springs, which react uniformly to the foundation displacements. 

Although it is possible to adjust the distribution of stiffness among springs to 

simulate the response of continuum, this adjustment becomes more difficult as the 

level of material and geometric nonlinearity increases, and as the shape of contact 

area beneath the foundation becomes non-prismatic (Figini et al. 2012, Pender, 

2007, Chatzigogos et al. 2011). Another option to simulate the uplift behavior of 

shallow foundations is the finite element modeling of elastic continuum, which is a 

complex, computationally expensive but accurate technique (Wolf, 1976; 

Ibrahimbegovic and Wilson, 1990; McCallen and Romstad, 1994; Yılmaz and 

Bakır, 2009).  

 

In the literature, also there are other alternatives to consider the uplift behavior of 

foundations. The discrete element modeling (DEM) technique is shown to be an 

alternative technique. The DEM is defined as a powerful tool to analyze the 

granular materials at small and large strains (Zamani and El Shamy, 2014).  

 

A computationally feasible alternative is the use of conical continuum models 

instead of springs for computation of the foundation stiffness by estimating the 

dimensions of contact surface beneath the foundation (Wolf, 1976). The accuracy 

of this model is similar to that of finite element approach, though it requires fewer 

computations. However, the determination of the dimensions of the contact surface 

area requires an optimization algorithm.  
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The macro-element approaches stand as robust alternatives for finite element 

techniques. A macro-element is a generalized finite element that is based on a 

constitutive relationship between generalized nodal displacements and external 

loads. A macro-element simulating the partial separation of shallow foundations 

from the load-bearing soil was first proposed by Cremer et al. (2001, 2002). The 

model is defined through a non-linear constitutive law written in terms of 

generalized force and displacement parameters. A strip foundation on purely 

cohesive soil is considered. Figini et al. (2012) developed a macro-element to 

simulate soil‐footing separation and the plastic flow of soil, and implemented a 

function for stiffness degradation. The uplift of the footing was simulated by a 

simple non‐linear elastic model, which presumes that the load eccentricity (i.e. 

𝑀 𝑉⁄ ) necessary for separation is only a function of foundation width (𝐵). The 

plasticity of the soil is considered by using a bounding surface approach.  

 

Implementation of foundation uplift in dynamic response analyses of structures 

was another issue to be solved. Analytical solutions for differential equations of 

motion may be directly employed for simple problems that involve inversed 

pendulum structures resting on two-spring models (Song and Lee, 1993; Oliveto et 

al., 2003). Rayleigh-Ritz method or Galerkin’s method may also be used to get 

approximate solutions for geometrically simple problems (Yim and Chopra, 1984; 

Celep and Güler, 1991). Applications with Newmark’s scheme with Winkler and 

conical models are presented in literature (Wolf and Skrikerud, 1978; Wolf, 1976; 

Mergos and Kavashima, 2005). The deviation of instantaneous stiffness of 

foundation must be calculated using an external routine, which initially calculate 

the dimensions of contact surface, beneath the foundation, due to transient loads 

induced on the foundation. Runge-Kutta method is an accurate alternative for 

Newmark’s scheme for dynamic foundation uplift problems (Wang and Gould, 

1993). Combinations of Newmark’s scheme and Runge-Kutta algorithms have 

been implemented in dynamic response analyses of simple structural models that 

involve a macro-element modeling foundation behavior (Paolucci, 1997; Mergos 
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and Kawashima, 2005). These algorithms were useful for understanding the 

beneficial consequences of nonlinear foundation response to severe seismic 

loading. One of the beneficial consequences of the nonlinear foundation response 

is the reduced moment bearing capacity of the foundation causing a “rocking 

isolation system” by limiting the inertial forces transferred to the super-structure 

(Mergos and Kawashima, 2005; Anastasopoulos and Kontoroupi, 2014; Paolucci, 

1997; Gazetas et al., 2003; Pecker, 2003; Gajan et al., 2005; Pender, 2007; Harden 

et al., 2006; Gajan and Kutter, 2008; Anastasopoulos et al., 2010; Anastasopoulos, 

2010; Gelagoti et al., 2012a, 2012b; Kourkoulis et al., 2012a, 2012b; Paolucci et 

al., 2013). The combined load resisting systems consisting of shear walls and 

reinforced concrete frames may be significantly affected by the uplift behavior of 

the foundations. On the document ATC-40 (Applied Technology Council, 1996), it 

was stated that the slender shear wall frames, slender bearing shear walls with 

aspect ratios greater than 2 and narrow frames are very sensitive to the uplift of the 

foundations. Rotations of the foundations at the base of such shear walls may 

induce significantly large displacement demands on the connected frame elements. 

On the other hand, short shear wall frames, short bearing shear walls with aspect 

ratios smaller than 2 and long frames are relatively less sensitive to the uplift of the 

foundations. However, tall and narrow frames can also be sensitive to the uplift 

behavior of the foundation due to the possible large overturning forces during 

ground motion excitations. A major disadvantage of the rocking isolation is the 

possible settlement particularly on poor soil layers. In the absence of a reliable 

estimation method for foundation settlement during seismic loading, the 

foundation settlement can be limited to relatively small magnitudes if the eccentric 

load on foundation does not reach to the ultimate bearing capacity, so that plastic 

flow of foundation material cannot severely accumulate (Deng et al. 2012).  
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 1.4. Scope of the Study 

 

The literature review presents the efforts for the analysis of structures on 

foundations that partially loose contact width underlying medium due to excessive 

M. The numerical integration schemes are useful for computation of dynamic 

structural response provided that the nonlinear reactions of foundation are 

precisely calculated. The first difficulty in calculation of foundation impedance 

during uplift is the estimation of the dimensions of foundation section that is 

separated from the load-bearing medium. If these dimensions are accurately 

estimated, the calculation of the effective impedance of foundation section in 

contact with soil will be straightforward. Hence, the principal aim of this study is 

to propose a theoretical relationship between the contact width and overturning 

(rocking) moment acting on foundation. Then, a robust method for computation of 

the relationship between overturning moment and rocking angle that is applicable 

to any arbitrarily shaped shallow foundation will be developed. The proposed 

method will be mainly based on two assumptions. The first assumption is the static 

impedance coefficients used in the calculations are accurate. The second 

assumption is that the boundary between the part of foundation that is in contact 

with soil and the part that is not supported by soil is linear. 

 

The theoretical study aims to contribute rigorous effort in literature by presenting a 

simple theoretical model capable of simulating the effects of material and 

geometrical nonlinearities on the response of an arbitrarily shaped shallow 

foundation to monotonic loading.  

 

This study is organized as presented by the following paragraphs 

 

The first chapter of the thesis presents introductory information and a review of 

literature. 
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In the second chapter, the static impedance coefficients for shallow foundations 

resting on ideally elastic media are presented. 

 

Third chapter defines the theoretical model used for calculation of foundation 

impedance during uplift. The computational algorithm and the computer program 

developed for impedance calculations are explained. The typical relationships 

between the load and displacement are presented.  

 

In chapter four, the computed responses of a shallow foundation resting on elastic 

halfspace, elastic layer, uniformly distributed springs, and inhomogeneous medium 

to eccentric loading are presented. The proposed theoretical model is justified by 

using the results of available solutions. The effect of foundation dimensions, that 

of thickness of deformable layer, and that of material nonlinearity on the load -

deformation relationships are investigated. 

 

In the fifth chapter, the effect of soil nonlinearity on the response of arbitrarily 

shaped shallow foundations is investigated. First, a literature review on the 

modeling techniques of soil nonlinearity for problems involving soil-structure 

interaction is presented. Then, the method used for calculation of the nonlinear 

response of shallow foundations resting on soil deposits is presented. Finally, the 

theoretical relationship between load and deformation is compared with those of 

former experimental studies. 

 

Chapter six presents the results of parametric analyses of uplifting shallow 

foundations on soil deposits with nonlinear behavior.  The analyses are conducted 

to illustrate the sensitivity of load - deformation relationships of foundations to 

considered parameters.  

 

In chapter seven, conclusions deduced from the study are presented. 
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CHAPTER 2 

 

 

THE STATIC IMPEDANCE COEFFICIENTS OF SHALLOW 

FOUNDATION RESTING ON IDEALLY ELASTIC MEDIA 

 

 

 

2.1. Introduction 

 

The relation between the set of external loads applied on a rigid shallow 

foundation and the displacements of the foundation is  

 

{
𝐻
𝑉
𝑀

} = [𝐾(𝐵, 𝐿)] {
ℎ
𝑣
𝜃

}                                                                                                      (2.1) 

 

such that, 𝐵 and 𝐿 are respectively the width and length of an arbitrarily shaped 

foundation (Figure 2.1). 𝐻, 𝑉, and 𝑀 are respectively the horizontal load (base 

shear), vertical load and overturning moment acting on the center of gravity of the 

foundation; and ℎ and 𝑣 are respectively the horizontal and vertical displacement 

of the center of gravity, and 𝜃 is the rocking angle (rotation) of foundation in the 

plane of 𝐻 and 𝑀 (Figure 2.2.). 𝐾(𝐵, 𝐿) is the matrix defining the static stiffness 

matrix of foundation. Figure 2.2 also shows the positive sign conventions for the 

load and displacement terms. 
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Figure 2.1 An arbitrarily shaped foundation 

 

 

 

Figure 2.2 A shallow foundation with no separation 

 

It is supposed that there are no coupling terms between 𝐻, 𝑉, and 𝑀 for a shallow 

foundation in the absence of embedment (Gazetas, 1991). In that case, the matrix 

𝐾(𝐵, 𝐿) involves only diagonal elements such as 

 

𝐾(𝐵, 𝐿) = [

𝐾ℎ(𝐵, 𝐿) 0 0

0 𝐾𝑣(𝐵, 𝐿) 0

0 0 𝐾𝜃(𝐵, 𝐿)
]                                                           (2.2) 

 

where, 𝐾ℎ, 𝐾𝑣  and 𝐾𝜃  are the static stiffness (impedance) coefficients of shallow 

foundation. These coefficients are related to foundation dimensions and stiffness of 

load bearing soil. A number of the analytical and semi-empirical formulas for 

static stiffness coefficients have been proposed in literature. These formulas which 

will be used for calculation of impedance coefficients during uplifting foundation 

are presented in the following sections. 

 

B 

L 

 

. 

𝑀 

𝑉 

𝐻 

𝑂 

𝐵 

𝑣 

θ 

ℎ 

𝐺, 𝜈 
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2.2. The Static Impedance Coefficients for a Shallow Foundation on an Elastic 

Half-space 

 

For simplicity, a rigid foundation resting on a homogeneous and isotropic half 

space is considered. The half space extends infinitely in all directions except for 

the plane of free boundary. The material coefficients defining the rigidity of elastic 

half space are the shear modulus (𝐺) and the Poisson’s ratio (𝜈). The geometric 

properties (dimensions) of the system are the maximum width (𝐵) and the 

maximum length (𝐿) of the foundation, the contact area (𝑓) of foundation, and the 

moment of inertia (𝐼) around the axis of rotation. The static impedance coefficients 

for shallow foundations resting on homogeneous elastic half-space were simplified 

by Dobry and Gazetas (1986) and Gazetas (1991). The formulas for calculation of 

these coefficients are presented in Table 2.1 and Table 2.2. The formulas presented 

in Table 2.1 and Table 2.2 are used for derivation of the equations presented in 

next chapter. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 A shallow foundation resting on elastic halfspace 

 

𝐺, 𝜈 

𝑉 

𝐵
2⁄  𝐵

2⁄  
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Table 2.1 The static impedance coefficients of arbitrarily shaped foundation on 

homogeneous halfspace (Dobry and Gazetas, 1986 and Gazetas, 1991) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vibration 

Mode 
Static Impedance Coefficients 

Vertical 

(B<L) 

𝐾𝜈 = 𝑆𝜈

𝐺𝐿

1 − 𝜈
                              

Sν = 0.8                                for 
f

L2
< 0.02 

Sν = 0.73 + 1.54 (
f

L2
)

0.75

for
f

L2
> 0.02 

Vertical 

(B>L) 

𝐾𝜈 = 𝑆𝜈

𝐺𝐵

1 − 𝜈
                              

Sν = 0.8                                for 
f

B2
< 0.02 

Sν = 0.73 + 1.54 (
f

B2
)

0.75

for
f

B2
> 0.02 

Horizontal  

(B<L) 

𝐾ℎ = 𝑆ℎ

𝐺𝐿

2 − 𝜈
                             

Sh = 2.24                            for 
f

L2
< 0.16 

Sh = 4.5 (
f

L2
)

0.38

              for 
f

L2
> 0.16 

Horizontal  

(B>L) 

𝐾ℎ = 𝑆ℎ

𝐺𝐵

2 − 𝜈
−

0.105𝐺𝑏

0.75 − 𝜈
(1 −

𝐿

𝐵
)   

Sh = 2.24                            for 
f

B2
< 0.16 

Sh = 4.5 (
f

B2
)

0.38

              for 
f

B2
> 0.16 

Rocking  

(B<L) 

𝐾𝜃 = 𝑆𝜃

𝐺

1 − 𝜈
(

𝐿

𝐵
)

0.25

𝐼0.75        

Sθ = 2.54                                 for 
B

L
< 0.4 

Sθ = 3.2 (
B

L
)

0.25

                     for 
B

L
> 0.4 

Rocking  

(B>L) 
𝐾𝜃 = 3.2

𝐺

1 − 𝜈
𝐼0.75                   
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Table 2.2 The static impedance coefficients of rectangular foundation, circular 

foundation and strip foundation on homogeneous halfspace (Dobry and Gazetas, 

1986 and Gazetas, 1991) 

 

Vibration 

Mode 

Static Impedance Coefficients 

Rectangular  

foundation 

Circular 

foundation 

Strip 

 foundation 

Vertical 

(B<L) 
𝐾𝑣 =

𝐺𝐿

1 − 𝜈
(0.73 + 1.54 (

𝐵

𝐿
)

0.75

) 

 

 

𝐾𝜈 =
2𝐺𝐵

1 − 𝜈
 

 

𝐾𝜈

2𝐿
=

0.8𝐺

1 − 𝜈
 

Vertical 

(B>L) 
𝐾𝑣 =

𝐺𝐵

1 − 𝜈
(0.73 + 1.54 (

𝐿

𝐵
)

0.75

) 

 

 

𝐾𝜈 =
2𝐺𝐵

1 − 𝜈
 

 

𝐾𝜈

2𝐿
=

0.8𝐺

1 − 𝜈
 

Horizontal  

(B<L) 
𝐾ℎ =

𝐺𝐿

2 − 𝜈
(2 + 2.5 (

𝐵

𝐿
)

0.85

) 

 

𝐾ℎ =
4𝐺𝐵

2 − 𝜈
 

 

𝐾ℎ

2𝐿
=

2.24𝐺

2 − 𝜈
 

Horizontal  

(B>L) 

𝐾ℎ =
𝐺𝐵

2 − 𝜈
(2 + 2.5 (

𝐿

𝐵
)

0.85

) 

          −
0.1𝐺𝐵

0.75 − 𝑣
(1 −

𝐿

𝐵
) 

𝐾ℎ =
4𝐺𝐵

2 − 𝜈
  

Rocking  

(B<L) 𝐾𝜃 =
𝐺𝐵2𝐿

1 − 𝜈
(0.372 + 0.078

𝐵

𝐿
) 𝐾𝜃 =

𝐺𝐵3

3(1 − 𝜈)
 

𝐾𝜃

2𝐿
=

𝜋𝐺𝐵2

2(1 − 𝜈)
∙ 

(1 + [
ln(3 − 4𝜈)

𝜋
]

2

) 

Rocking  

(B>L) 𝐾𝜃 =
0.465𝐺(𝐵4𝐿)0.6

1 − 𝜈
 𝐾𝜃 =

𝐺𝐵3

3(1 − 𝜈)
  



16 

 

2.3. The Static Impedance Coefficients for Rectangular Foundation on Elastic 

Layer 

 

The static impedance coefficients of rectangular foundation resting on finite layer 

are presented by Sovinc (1969, quoted by Poulos and Davis, 1974). The soil 

comprises a homogenous layer of thickness 𝐷 which rests on an ideally rigid 

geological formation (Figure 2.4). The range of 𝐷 𝐵⁄  is from 0 to 2.5. For 𝐷 𝐵⁄  

greater than 2.5, the static impedance coefficients of rectangular foundation resting 

on finite layer are similar to those of resting on an elastic half space. 

 

 

Figure 2.4 A shallow foundation resting on an elastic layer 

 

The static foundation impedances are expressed in terms of dimensionless 

parameters 𝛽 and 𝛾.  

 

𝛽 =
3𝐺𝐿

𝐾𝑣
                                                                                                                            (2.3) 

 

𝛾 =
3𝐺𝐵3

8𝐾𝜃
                                                                                                                         (2.4) 

 

𝐺, 𝜈 

𝑉 

𝐵
2⁄  𝐵

2⁄  

𝐷 



17 

 

The relationships between 𝛽, 𝛾, 𝐷 𝐵⁄  and 𝐵 𝐿⁄  are shown in Figure 2.5. 

 

 

(a) 

 

 

 

(b) 

Figure 2.5 (a) 𝛽 – 𝐷 𝐵⁄  relationship for a rectangular foundation resting on finite 

layer, (b) 𝛾 – 𝐷 𝐵⁄  relationship for a rectangular foundation resting on finite layer 

(Sovinc, 1969). 

D/B 

B/L=1 

D/B 

B/L=10 
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2.4. The Static Impedance Coefficients for a Strip Foundation resting on Deep 

Inhomogeneous Deposits 

 

Vertical and horizontal stiffness coefficients for a shallow strip foundation resting 

on a heterogeneous soil medium with a constant gradient of shear modulus are 

(Gazetas, 1991)  

 

𝐾𝑣 =
0.73𝐺0

1 − 𝜈
(1 + 2a)                                                                                                (2.5. 𝑎) 

                                                                

𝐾ℎ =
2𝐺0

2 − 𝜈
(1 +

2a

3
)                                                                                                 (2.5. 𝑏) 

 

in vertical and horizontal directions respectively. The relationship between 𝐺 and 

𝐺0  is  

 

𝐺 = 𝐺0 (1 + a
𝑧

B
)                                                                                                            (2.6) 

 

where a is the gradient of 𝐺, the shear modulus of a particular point in an elastic 

medium (Gazetas, 1991). 𝐺 increases by depth (z) linearly.  Consequently, the 

rocking stiffness of foundation resting on an inhomogeneous medium (Gazetas, 

1991)  is 

 

𝐾𝜃 =
𝜋𝐺0

2 − 2𝜈
(

𝐵2

4
) (1 +

a

3
)                                                                                          (2.7) 

    

2.5. The Static Impedance Coefficients for Shallow Foundation on Winkler 

Springs 

 

Due to its simplicity Winkler foundation is among the most widely used models 

used for simulation of the behavior of shallow foundations interacting with soil. In 
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the Winkler foundation, the reaction of soil is simulated as a bed of independent 

nonlinear springs. In this study, particular emphasize is put on Winkler Foundation 

to show its limitations, and to justify theoretical relationships about foundation 

uplift. Despite its simplicity the critical limitation of Winkler foundation is that the 

relationship between 𝐾𝑉 and 𝐾𝜃 is not consistent with that of a shallow foundation 

on elastic continuum (Table 2.1 and Table 2.2). Therefore, the model cannot 

correctly couple vertical displacement with rocking angle during foundation uplift.  

 

 The static impedance of a rigid rectangular foundation resting on (distributed) 

Winkler springs (Figure 2.6) with coefficient 𝑘𝑣 and 𝑘ℎ are 

  

𝐾𝑣(𝐵, 𝐿) = 𝑘𝑣𝐵𝐿                                                                                                         (2.8. 𝑎) 

 

 and 

 

𝐾ℎ(𝐵, 𝐿) = 𝑘ℎ𝐵𝐿                                                                                                         (2.8. 𝑏) 

 

in the vertical and horizontal directions respectively. The rocking impedance 

coefficient of foundation is 

 

𝐾𝜃(𝐵, 𝐿) =
1

12
𝑘𝑣𝐵3𝐿                                                                                                     (2.9) 

 

In order to simulate foundation behavior during uplift, it is supposed that the 

springs connected normal to the foundation (i.e. 𝑘𝑣) lack tensional resistance. 

When the normal stress reduces down to zero that part of foundation becomes 

separated from the elastic medium. It is assumed that the horizontally connected 

springs (𝑘ℎ) on the separated section do not contribute to the rocking impedance. 

The foundation uplift will initiate when the normal stress on one side of foundation 

reduces to zero due to the increase in 𝑀.  
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Figure 2.6 A rigid foundation resting on tensionless Winkler springs 
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CHAPTER 3 

 

 

A SIMPLE MODEL ON FOUNDATION UPLIFT 

 

 

 

3.1. Introduction 

 

In this chapter, development of an analytical model to calculate the static response 

of arbitrarily shaped foundations during the uplift is presented. First, the main 

equilibrium equations are presented. Then, the theory of impedance for arbitrarily 

shaped foundations during uplift is presented. Finally, the relationship between the 

applied load and response parameters is derived. 

 

3.2. Basic equations of equilibrium  

 

The main equations on static equilibrium of a shallow foundation permitted to 

uplift is presented in this section. In the verge of foundation uplift, the section of a 

foundation that is in contact with soil may be considered as a shallow foundation 

of width 𝑏 (shown as dashed section in Figure 3.1). Therefore, substitution of 𝑏 for 

𝐵 in Equation 2.1 results in the equations of equilibrium for a foundation that is 

partially separated from the supporting elastic medium. 

 

{
𝐻′

𝑉′

𝑀′
} = [𝐾(𝑏, 𝐿)] {

ℎ′

𝑣′

𝜃′
}                                                                                                    (3.1) 

  

where, 𝐻′, 𝑉′ and 𝑀′ are respectively the horizontal reaction, vertical reaction and  

moment acting on the centroidal axis of contact area, due to the horizontal 
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displacement (ℎ′), vertical displacement (𝑣′)  and rotation (𝜃′)   of the centroidal 

axis of contact area. The centroidal axis is shown by 𝑂 in Figure 3.1.  

 

Figure 3.1 Reduction in effective foundation width due to loss of contact with load 

bearing medium 

 

The relationship between the displacements on the centroidal axis of foundation (𝑂 

in Figure 3.1) and the centroidal axis of contact area (point 𝑂′ in Figure 3.1) is  

 

{
ℎ′

𝑣′

𝜃′
} = [𝐴] {

ℎ
𝑣
𝜃

}                                                                                                                  (3.2) 

 

Assuming small deflections (i.e., tan 𝜃 ≅ 𝜃),  

 

[𝐴] = [
1 0 0
0 1 𝑐
0 0 1

]                                                                                                            (3.3) 

 

where, 𝑐 is the distance between the centroidal axis of the foundation (𝑂 in Figure 

3.1) from the centroidal axis of contact area (point 𝑂′ in Figure 3.1). 𝑣′ is related 

𝑏 

θ 

𝑉′ 

𝑂′ 𝑣 𝑣′ 

𝑀′ 

𝑂 . . 

𝐵 

𝑐 
 

𝑐′ 

𝐶 
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to both  𝑣 and  𝜃 after initiation of uplift. Using general transformation rule (Cook 

et al., 1989), the relationship between resultant forces acting on the centroidal axis 

of the foundation and on the centroidal axis of contact area is 

 

{
𝐻
𝑉
𝑀

} = [𝐴]𝑇 {
𝐻′

𝑉′

𝑀′
}                                                                                                         (3.4. 𝑎)   

 

or 

 

{
𝐻′

𝑉′

𝑀′
} = [

1 0 0
0 1 0
0 𝑐 1

] {
𝐻
𝑉
𝑀

}                                                                                            (3.4. 𝑏) 

 

Substitution of Equations 3.1 and 3.2 in Equation 3.4 results in the equations of 

equilibrium during uplift. The foundation stiffness is related to the contact width 𝑏 

and foundation length 𝐿. On the other hand, 𝑏 is related to foundation 

displacements, 𝑣 and 𝜃.  

 

{
𝐻
𝑉
𝑀

} = [𝐴]𝑇[𝐾(𝑏, 𝐿)][𝐴] {
ℎ
𝑣
𝜃

}                                                                                         (3.5)       

 

Equation 3.5 constitutes a nonlinear system of equations.  

 

3.3. Theory for calculation of impedance for a foundation during uplift 

 

The rocking motion of buildings due to horizontal loading may lead to partial 

separation of the shallow foundations from underlying soil, and consequently uplift 

of a side of foundation due to the lack of tensional strength in load bearing soil. 

During the uplift of shallow foundations, reduction of effective contact width of 

the foundation, 𝑏, modifies the reaction moment due to the varying location of the 
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foundation center. The section of the foundation that is not in contact with soil 

cannot contribute to the foundation impedance. The relation between the moment 

acting on foundation during the uplift and the applied vertical load is supposed to 

be 

 

𝑀′ = 𝛼. 𝑉. 𝑐′                                                                                                                     (3.6) 

 

where, 𝑀′ is the moment acting on instantaneous central axis of the section in 

contact with soil (Figure 3.1), 𝑉 is the applied vertical load, and 𝛼 is a parameter 

dependent on the geometric properties of the foundation and mechanical properties 

of the deformable support.  

For a shallow foundation uplift behavior may be described by two mechanisms 

that compensate each other. If the overturning moment exceeds a specific limit, 

tensional stresses will tend to occur beneath the foundation. A part of foundation 

will partially separate from the soil. Consequently, the contact width of the 

foundation with soil will decrease. The section of the foundation that is not in 

contact with soil cannot contribute to the foundation impedance. Therefore, the 

effective width of foundation reduces to the width of foundation that is in contact 

with soil. This will tend to reduce the reaction moment. The second mechanism is 

related to the change in load eccentricity. The increase in the distance between the 

geometric center and the center of the effective foundation width (Figure 3.1.) will 

tend to increase the eccentricity of applied vertical load, and consequently the 

moment acting on initial centroidal axis of foundation. Because the external load 𝑉 

and its eccentricity (i.e., 𝑀) are supposed to be given (or, constant) the change in 

contact width should not have any effect on the foundation reaction balancing the 

external load. In other words, it is postulated that there should be no change in 

reaction moment due to a differentially small change in contact area between soil 

and foundation during uplift. A physical explanation of this postulate can be 

presented by the stress distribution beneath a foundation during uplift. The normal 
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stress on the edge of foundation that is in merely contact width soil is zero. 

Therefore, a differentially small change in contact width should have no effect on 

reaction moment and vertical load acting on centroidal axis of contact width of 

foundation. Consequently, two mechanisms should compensate each other during 

increment of applied external loading. Hence, 

 

𝑑𝑀′

𝑑𝑏
= 0                                                                                                                             (3.7) 

 

By substituting Equation 2.1 in Equation 3.4b: 

 

𝑀′ = 𝑐. 𝑉 + 𝐾𝜃(𝑏, 𝐿)𝜃                                                                                                   (3.8) 

 

The change in 𝑀′ due to a differential change in 𝑏 is 

 

𝑑𝑀′

𝑑𝑏
=

𝑑𝑐

𝑑𝑏
𝑉 +

𝜕𝐾𝜃(𝑏, 𝐿)

𝜕𝑏
𝜃                                                                                           (3.9) 

 

The rocking angle during initiation of uplift is equal to 𝑀′/𝐾𝜃(𝑏, 𝐿). Substitution 

of Equation 3.6 and Equation 3.7 in Equation 3.9 yields  

 

0 =
𝑑𝑐

𝑑𝑏
𝑉 + 𝛼

𝑉𝑐′

𝐾𝜃(𝑏, 𝐿)

𝜕𝐾𝜃(𝑏, 𝐿)

𝜕𝑏
                                                                             (3.10) 

 

or,  

 

𝛼 = −
𝑑𝑐

𝑑𝑏

𝐾𝜃(𝑏, 𝐿)

𝜕𝐾𝜃(𝑏, 𝐿)
𝜕𝑏

𝑐′

                                                                                                 (3.11) 
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𝑐′ will tend to decrease; or, 𝑐 will tend to increase by increasing load eccentricity, 

or 𝑀. Therefore, 𝛼 is a function of 𝑏, and can be used for calculation of the 

relationship between  𝑏, 𝜃 and 𝑀 during uplift. 

 

In case of a prismatic section, 𝑐′ = 𝑏/2 and 𝑑𝑐′/𝑑𝑏 = 1/2, yielding a simpler 

relationship 

 

𝛼 =
𝐾𝜃(𝑏, 𝐿)

𝜕𝐾𝜃(𝑏, 𝐿)
𝜕𝑏

𝑏
                                                                                                            (3.12) 

 

For non-prismatic sections, the derivatives (Equation 3.11) should be analytically 

or numerically derived, by expressing 𝑐′ in terms of 𝑏. Equation 3.11 and Equation 

3.6 will provide a formula for 𝑀 that will initiate separation of foundation from 

load-bearing medium, if 𝑐′ = 𝐵 2⁄  is substituted in Equation 3.11 to calculate 𝛼 at 

the initiation of uplift. 𝛼 at the verge of initial uplift was studied in the past by a 

number of researchers. Several values have been proposed for  𝛼 at the initiation of 

uplift, which are explained in the following paragraph. 

 

The moment initiating uplift, 𝑀𝑢𝑝𝑙𝑖𝑓𝑡, is equal to 𝑀′, when the effective width, 𝑏, 

is equal to the true width of the foundation, 𝐵. 𝑐′ is equal to the distance between 

the center of the foundation and the edge of the foundation, 𝐶. 

 

𝑀𝑢𝑝𝑙𝑖𝑓𝑡 = 𝛼. 𝑉. 𝐶                                                                                                           (3.13) 

 

𝐶 is equal to 𝐵/ 2 for sections symmetric around centroidal axis (Figure 3.1). If a 

rigid foundation resting on an ideally rigid support was considered, the uplift 

would initiate as soon as 𝑀 reaches to an ultimate value 𝑀𝑢𝑙𝑡, such that 

 

𝑀𝑢𝑙𝑡 = 𝑉. 𝐶                                                                                                                     (3.14) 

 



27 

 

Consequently, the threshold moment for the initiation of uplift for rigid 

foundations resting on deformable medium will be proportional to 𝑀𝑢𝑙𝑡, such that 

 

𝑀𝑢𝑝𝑙𝑖𝑓𝑡 = 𝛼. 𝑀𝑢𝑙𝑡                                                                                                          (3.15) 

 

which was previously suggested by Apostolou et al. (2007). The theoretical values 

of 𝛼 on the verge of uplift for strip, rectangular and circular foundations on elastic 

support are compared with those reported in the literature in Table 3.1. The 

derivations of theoretical values of 𝛼 for these basic foundation shapes are shown 

in Appendix D. It is observed that the theoretical values of 𝛼 according to Equation 

3.11 are reasonably consistent with the fraction 1 3⁄  reported by Chopra and Yim 

(1985) for rectangular foundations resting on a Winkler type support. Parameter 𝛼 

according to Equation 3.11 agrees with the figures reported by Wolf (1976) for 

circular and strip foundation on elastic half space. Although the solution for strip 

foundation on elastic half space is consistent with that of Gazetas et al. (2013), 

𝑀𝑢𝑝𝑙𝑖𝑓𝑡 is 11% and 5% lower than that reported by Gazetas et al. (2013) in the 

cases of a rectangular foundation having an aspect ratio 5, and for a circular 

foundation respectively. These limited differences may be attributed to the 

assumptions in the finite element models of Gazetas et al. (2013) or to the 

assumption that the boundary between the part of foundation that is in contact with 

soil and the part that is not supported by soil is linear (Figure 3.2). Hence, 

Equation 3.11 is reasonably supported by these comparisons and can be used for 

computation of  𝛼 and for the relationship between 𝜃 and 𝑀 during uplift of an 

arbitrarily shaped foundation. 
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Figure 3.2 Actual and assumed contact boundaries during the uplift of foundation 

 

Table 3.1 Comparative results for  𝛼 on the verge of uplift 

 

Foundation 
𝜶  

Equation 3.11 Literature 

Rectangular foundation 

(on Winkler springs) 1 3⁄  1 3⁄  (Chopra and Yim,1985)* 

Rectangular foundation 

(B=5L)  

(on elastic halfspace) 

1 2.25⁄  1 2⁄  (Gazetas et al., 2013) 

Circular foundation 

(on elastic halfspace) 1 3⁄  
1 3⁄  (Wolf,1976) 

1 2⁄ . 85 (Gazetas et al., 2013) 

Strip foundation 

(on elastic halfspace) 1 2⁄  
1 2⁄  (Wolf,1976) 

1 2⁄  (Gazetas et al., 2013) 

* Equation showing 𝛼 = 1/3  is shown in Appendix C. 
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3.4. The relationship between 𝑴, 𝒗 and 𝜽 during uplift 

 

In this section the theory behind the equations used for calculation of the 

relationship between external load and foundation displacements is introduced. 

Also, a procedure for calculations is presented by using a flow chart and its step by 

step explanation. 

 

Only the section of foundation that is in contact with soil contributes to the 

impedance of foundation after the initiation of uplift. The load bearing section of 

the foundation, 𝑐′, varies with each increment in overturning moment acting on 

foundation. It was postulated that for the initiation of uplift the condition  

 

𝑀′  = 𝛼. 𝑉. 𝑐′                                                                                                               (3.16𝑎) 

 

or 

 

𝑀′

𝑉
−  𝛼. 𝑐′ = 0                                                                                                            (3.16𝑏) 

 

should be satisfied for any 𝑐′.  

 

𝑀′

𝑉
−  (−

𝑑𝑐

𝑑𝑏

𝐾𝜃(𝑏, 𝐿)

𝜕𝐾𝜃(𝑏, 𝐿)
𝜕𝑏

 𝑐′

) . 𝑐′ = 0                                                                         (3.17) 

 

A computer program is developed for computation of the static response of 

arbitrarily shaped shallow foundations during uplift. The computing language of 

Matlab (The MathWorks Inc., 2008) is used. The flowchart of main program is 

shown in Figure 3.2a. The program calculates the displacement response of a 

shallow foundation to an external load vector. Basically, the program calculates 𝑐′ 
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for any given set of 𝑀 and 𝑉. Moreover, 𝑉 is supposed to be a constant and 𝑀 is 

incrementally increased up to an ultimate value. 

 

In the solution algorithm, the geometric foundation properties (i.e. 𝑏, 𝑐, 𝑓, 𝐼, 𝐿), 

explained in Section 2.2 are required to calculate the rotational, vertical and 

horizontal stiffness of foundation. Such properties of foundations are calculated by 

employing cubic-spline interpolation, and used in the solution algorithm as input 

values. 
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(b) 

 

Figure 3.3 Flow Chart: (a) main program, (b) routine to calculate 𝛼 

 

The algorithm of computer program is presented in Figure 3.2. The details of the 

algorithm are presented below step by step. 

 

1. The parameters necessary for the computer program are entered.  𝑇𝑐 is a six 

column matrix showing the relationships between the geometric parameters 𝑐′, 𝑏, 

𝑐, 𝑓, 𝐼 and 𝐿 in a tabulated form. Typical geometric relationships between the 

normalized parameters (i.e. 𝑏𝑁 − 𝑐𝑁
′ , 𝑐𝑁 − 𝑐𝑁

′ , 𝑓𝑁 − 𝑐𝑁
′ , 𝐼𝑁 − 𝑐𝑁

′ , 𝐿𝑁 − 𝑐𝑁
′ ) are 

shown in Figures A.4 to A.8 in Appendix A. These parameters are presented in 

Section 3.2, and in Appendix A).  

 

𝑆𝑀 is an integer value that is equal to the number of steps considered in generation 

of the incremental moment array for 𝑀. 𝑉 is the vertical load acting on foundation. 

ℎ𝑠 is the moment arm, the vertical distance between the foundation and the point of 

application of the horizontal load.  

 

𝑝𝑎𝑟𝑎𝑚 is an array defining the properties of foundation and the soil. 𝑝𝑎𝑟𝑎𝑚(1) 

defines the methodology to simulate the soil conditions, as shown in Table 3.2. 

 

5 

𝑐′ , 𝑇𝑐 , 𝑆𝑀 

𝐾𝜃  

𝛼 
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Table 3.2 Options to simulate the soil conditions in the computer program 

 

param(1) Support type 

1 Winkler 

2 Elastic halfspace (rectangular foundation) 

3 Elastic halfspace (circular foundation) 

4 Elastic halfspace (arbitrarily shaped foundation) 

5 Heterogeneous soil medium (strip foundation) 

6 Finite thickness elastic layer (rectangular foundation) 

 

𝑝𝑎𝑟𝑎𝑚(2) defines the coefficient 𝑘0 that is used in the calculation of static 

impedance matrix for a foundation on Winkler springs. 

  

𝑝𝑎𝑟𝑎𝑚(3) gives the Poisson’s ratio of soil.  

 

𝑝𝑎𝑟𝑎𝑚(4) defines depth of finite thickness layer in case 𝑝𝑎𝑟𝑎𝑚(1) = 6.  

 

𝑝𝑎𝑟𝑎𝑚(5) is used to select the shape of foundation among the foundations shapes 

presented in Table 3.3. 

 

Table 3.3 Options for 𝑝𝑎𝑟𝑎𝑚(5) in the computer program 

 

param(5) Foundation shape 

1 Square 

2 Rectanqular (b>L) 

3 Rectangular (b<L) 

4 Circular 

5 Square*  

6 Strip 

*2 way eccentricity (see Appendix A) 
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𝑝𝑎𝑟𝑎𝑚 (6) is used to give the gradient of 𝐺, a applicable only for a strip 

foundation (see Section 2.4). 

 

𝐺𝑝𝑎𝑟𝑎𝑚 is shear modulus of elastic layer or halfspace. 

 

2. 𝑖 is the current value of the counter used in computer program. The starting 

value of the counter is zero (i.e. 𝑖 = 0). 

 

3. 𝑐′ is taken from the first row of Table 𝑇𝑐, and is used for calculation of 𝑀𝑢𝑙𝑡 by 

Equation 3.14. The array of moments (𝑀) having length of 𝑆𝑀 is generated in the 

range from 0 to 𝑀𝑢𝑙𝑡 with constant intervals. Then the magnitude of the applied 

horizontal load (𝐻) is calculated by dividing the current value of 𝑀, 𝑀(i), by  ℎ𝑠.  

 

4. Shear modulus of elastic layer or halfspace (𝐺) is equal to 𝐺𝑝𝑎𝑟𝑎𝑚. 

 

5. The rotational impedance coefficient  (𝐾𝜃) of a foundation is calculated. 𝐾𝜃 of a 

foundation resting on homogeneous elastic half-space is calculated by using Table 

2.1, 𝐾𝜃 depends on 𝑝𝑎𝑟𝑎𝑚(3) and 𝐺𝑝𝑎𝑟𝑎𝑚. Similarly, 𝐾𝜃 of foundations resting 

on a (i) finite layer, depending on 𝑝𝑎𝑟𝑎𝑚(1) and 𝐺𝑝𝑎𝑟𝑎𝑚, (ii) heterogeneous soil 

medium, depending on 𝑝𝑎𝑟𝑎𝑚(6) and 𝐺𝑝𝑎𝑟𝑎𝑚,  and (iii) Winkler springs, 

depending on 𝑝𝑎𝑟𝑎𝑚(2),  are calculated by Equation 2.4, Equation 2.7, and 

Equation 2.9, respectively. 

 

𝛼 is calculated using Equation 3.11. 𝛼 is calculated by calculating the derivative of 

𝑐 with respect to 𝑏. The forward difference approximation (Chapra and Canale, 

2010) is used for the application of numerical derivation. 𝑏, 𝑐, 𝑓, 𝐼  and 𝐿 

corresponding to 𝑐′ are taken from 𝑇𝑐. 𝑏, 𝑐, 𝑓, 𝐼  and 𝐿 corresponding to any 𝑐′ is 

calculated using the cubic spline interpolation method (Chapra and Canale, 2010). 

Then an infinitesimal value, 𝑒𝑝𝑠., is calculated. 𝑒𝑝𝑠, is calculated by taking 

reciprocal of 𝑆𝑀 multiplied with 100. Next, the new value of 𝑐′ is calculated by 
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subtracting 𝑒𝑝𝑠 from the initial value of 𝑐′. Then, new values of 𝑏, 𝑐, 𝑓, 𝐼  and 𝐿 

corresponding to new 𝑐′ are calculated together with a new 𝐾𝜃. Finally, the 

numerical derivation procedure is applied by using forward difference 

approximation. 

 

6. The threshold moment for the initiation of uplift (𝑀𝑢𝑝𝑙𝑖𝑓𝑡) is calculated using 

Equation 3.15. 

 

7. Then a new variable, 𝑀𝐶𝑂𝑈𝑁𝑇, with a length equal to the length of the moment 

array 𝑀 is used to activate a counter, 𝐼𝐶𝑂𝑈𝑁𝑇, used to distinguish between the 

moment values smaller and higher than the 𝑀𝑢𝑝𝑙𝑖𝑓𝑡. Next, a conditional 𝑖𝑓 function 

is used, such that; 

 

   a) If the overturning moment is smaller than 𝑀𝑢𝑝𝑙𝑖𝑓𝑡 (𝑖. 𝑒.  𝑀(𝑖) < 𝑀𝑢𝑝𝑙𝑖𝑓𝑡), go 

to step 9. 

 

   b) If the overturning moment is greater than 𝑀𝑢𝑝𝑙𝑖𝑓𝑡 (𝑖. 𝑒.  𝑀(𝑖) > 𝑀𝑢𝑝𝑙𝑖𝑓𝑡) go to 

step 8 and then go to step 9. 

 

8. First the transformation matrix 𝐴 is calculated using Equation 3.3. To calculate 

𝐴, the value of 𝑐 corresponding to 𝑐 ′ is taken from 𝑇𝑐. Then, the moment acting on 

centroidal axis of contact area, 𝑀(𝑖)′  is calculated using Equation 3.4b. Finally, 𝑐′ 

is calculated using Equation 3.17.  In Equation 3.17, the 𝑐′ is updated by calling a 

built-in Matlab function, 𝑓𝑧𝑒𝑟𝑜. 𝑓𝑧𝑒𝑟𝑜, determines the root of a function. The 

initial estimate for the iterative method employed by 𝑓𝑧𝑒𝑟𝑜 is set to be equal to 𝑐′ 

computed for the previous load combination. 𝛼 is also updated in each iteration  

due to the variation of 𝑐′ in the procedure.  

 

 9. The new geometric properties of foundation (𝑏, 𝑐, 𝑓, 𝐼, 𝐿) corresponding to new 
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 value of     are taken from 𝑇 . Then, using these new geometric properties, the 

impedance coefficients of foundation            are calculated using (i) Table 

2.1 for arbitrarily shaped foundations resting on homogeneous half-space, (ii) 

Equation 2.3 and Equation 2.4 for rectangular foundations resting on finite layer 

and (iii) Equation 2.8-2.9 for rectangular foundations resting on Winkler Springs. 

Furthermore, the transformation matrix   is also updated using the new value of 

 ′.   and the  stiffness matrix   (i.e. formed by using          ) is used together 

and the global stiffness matrix       is obtained. 

 

10.  The horizontal displacement    , the vertical displacement     and rotation 

    are calculated using Equation 3.5 for the load step. Finally, the   𝑖 ,   and   

values of the load step is used together with       (Equation 3.18) to calculate  ,   

and   .       is the matrix defining the static stiffness of the uplifting foundation. 

 

                                                                                                                        

 

11. The current value of the counter 𝑖 is compared with the length of generic load 

array,   . 

  a) if 𝑖    , the counter is increased by 1 and the computational process goes to 

Step 3. 

  b) if 𝑖    , the computer program ends. 

This solution procedure is repeated for each incremental step of applied 

overturning moment. 
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CHAPTER 4 

 

 

JUSTIFICATIONS AND APPLICATIONS 

 

 

 

In this chapter, theoretical responses of shallow foundations on elastic halfspace, 

elastic layer, uniformly distributed springs, and deep inhomogeneous soil deposits 

to excessive eccentric loading are presented. The theoretical method proposed in 

this study is justified by comparisons with available solutions. Also, the effect of 

foundation dimensions, thickness of deformable layer, and the nonlinear behavior 

of soil on the relationships between 𝑀 and 𝜃, and 𝑣 and 𝜃 are investigated in the 

chapter. 

 

4.1. Normalization 

 

The reaction forces and the foundation displacements are normalized to compare 

the effect of geometric (i.e., shape and dimensions of foundation) and soil 

parameters (i.e., the thickness of elastic layer) on the response of foundation. The 

normalized reaction forces and the foundation displacements are compared with 

the results obtained from different theoretical approaches, such as Winkler 

foundation and elastic half space. The overturning moment is normalized by 

 

𝑀𝑁 =
𝑀

𝑀𝑢𝑙𝑡
                                                                                                                     (4.1𝑎) 

 

or 
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𝑀𝑁 = 𝑀
2

𝑉𝐵
                                                                                                                   (4.1𝑏) 

 

The rocking angle is normalized by 

 

𝜃𝑁 = 𝜃
𝐾𝜃(𝐵, 𝐿)

𝑀𝑢𝑙𝑡
                                                                                                           (4.2𝑎) 

 

or 

 

𝜃𝑁 = 𝜃
2𝐾𝜃(𝐵, 𝐿)

𝑉𝐵
                                                                                                         (4.2𝑏) 

 

The vertical displacement is normalized by 

 

𝑣𝑁 = 𝑣
𝐾𝑣(𝐵, 𝐿)

𝑉
                                                                                                              (4.3) 

 

Hence the normalized overturning moment (𝑀𝑁), the normalized rocking angle 

(𝜃𝑁) and the normalized vertical displacement (𝑣𝑁) are used for comparisons with 

the other theoretical or numerical solutions presented in literature. 

 

4.2. Verifications 

 

In this section, results of the proposed theoretical method are compared with those 

available in the literature obtained using several benchmark studies focused on the 

response of uplifting shallow foundations. In the comparisons,  𝑀𝑁 - 𝜃𝑁, 𝑣𝑁 - 𝜃𝑁 

and 𝛼 - 𝜃𝑁 relationships are considered. The results are presented for shallow 

foundations with rectangular, circular and strip foundations. 
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Figure 4.1 shows the relationships between  𝑀𝑁 and 𝜃𝑁 calculated for a square 

foundation resting on elastic half-space and Winkler springs. The rotational 

stiffness of the foundation, 𝐾𝜃, resting on elastic half space is calculated using the 

input parameters. The vertical impedance of a Winkler foundation, 𝐾𝑣, (Equation 

2.8a) is proportional to 𝐾𝜃 (Equation 2.9). Such an assumption provided the 

comparison of the 𝑀𝑁 and 𝜃𝑁 relationships plotted for foundations resting on 

elastic half space and Winkler springs. It is observed that the 𝑀𝑁 and 𝜃𝑁 

relationships follow the same trend until the initiation of uplift. However, after the 

initiation of uplift, the range of 𝑀𝑁 forms two different lines with a maximum 

error of 13%.  This deviation may be attributed to well known drawbacks of the 

Winkler springs (Pender, 2007; Figini et al., 2012). Some of these drawbacks are 

the lack of accurate interaction between Winkler springs and lack of accurate 

modeling of the coupling between various degrees of freedom of the system 

(Figini et al., 2012). Such drawbacks result in inaccurate relationships between 𝐾𝜃 

and 𝐾𝑣, and assuming uniform spring stiffness in contrary to the actual conditions. 

 

 

 

Figure 4.1 The relationship between 𝑀𝑁 and 𝜃𝑁 for a square foundation under 

static loading on elastic half-space and Winkler springs 
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The 𝑣𝑁 and 𝜃𝑁  relationship of a square foundation on elastic half-space and 

Winkler springs are presented in Figure 4.2.  It is observed that the relationships 

between 𝑣𝑁 and 𝜃𝑁 coincide until the initiation of uplift. After the initiation of 

uplift, 𝑣𝑁 is calculated by two models deviate from each other. This figure shows 

that the Winkler model cannot yield accurate results in terms of vertical and 

rotational response of a foundation simultaneously, because of the incorrect 

relationship between 𝐾𝜃 and 𝐾𝑣. 

 

 

Figure 4.2 The relationship between 𝑣𝑁 and 𝜃𝑁 for a square foundation under static 

loading on elastic half-space and Winkler springs 

 

The relation between 𝛼 and 𝜃𝑁 for circular foundation resting on elastic half-space 

is presented in Figure 4.3 to observe the variation of 𝛼 with the normalized rotation 

values, 𝜃𝑁 , in circular foundations. Before initiation of uplift, 𝛼 obtained from 

Equation 3.11 remains constant (i.e., 1 3⁄ ). It is worth noting that Wolf (1976) and 

Gazetas et al. (2013) proposed two different α for circular foundations (i.e. α=1/3 

(Wolf, 1976) and α=1/2.85 (Gazetas et al., 2013)). However, after the initiation of 

uplift 𝛼 obtained by Equation 3.11 continuously changes.  The continuous 

variation of 𝛼 is attributed to the formation of arbitrarily shaped foundations 

during the uplift of circular foundations (Appendix A) which results in variations 

in the rotational stiffness of foundation. These variations in the rotational stiffness 
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necessitate the use of different formulations in solution algorithms. Different 

solution algorithms to calculate the rotational stiffness create sudden change in 𝛼.  

 

 

Figure 4.3 The relationship between 𝛼 and 𝜃𝑁 obtained using Equation 3.11 for 

circular foundations resting on homogeneous half-space. 

 

In Figure 4.4, the variation of 𝑀𝑁 as a function of 𝜃𝑁 is compared with those given 

by Wolf (1976). It may be observed that the maximum difference between the 

results of this study and that of the Wolf (1976) is 6.7%. This difference may be 

attributed to the approximations in the study of Wolf (1976). One of these 

approximations may be due to the transformation of actual irregular contact area to 

an equivalent circular area in calculations. Another reason can be the assumption 

made in this study, such that the boundary between contact zone and separated 

zone beneath foundation is linear. 
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Figure 4.4 The relationship between 𝑀𝑁 and 𝜃𝑁 for a circular foundation on 

homogeneous half-space 

 

In Figure 4.5, the variation of 𝑣𝑁 as a function of 𝜃𝑁 is compared with those given 

by Wolf (1976). There is a difference between the relationship developed in this 

study and that of Wolf (1976). The differences between the results of Wolf (1976) 

and this study are calculated as 42%, 29% and 22% for 𝜃𝑁 values 3, 4 and 6, 

respectively. The relative difference is smaller at the initial stage of uplift. 

However, the difference shows an increasing trend by increasing of 𝜃𝑁. On the 

other hand, the opposite is true in terms of percent relative error. As stated in the 

previous paragraph, this trend of difference may be attributed to the 

approximations in the study of Wolf (1976) or to the assumption of a linear 

boundary between contact and separated zone beneath foundation. 
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Figure 4.5 The relationship between 𝑣𝑁 and 𝜃𝑁 for a circular foundation on 

homogeneous half-space 

 

In Figure 4.6 the 𝛼 - 𝜃𝑁 relationship for a strip foundation resting on elastic half-

space is presented. 𝛼 obtained by Equation 3.11 remains constant during eccentric 

loading (i.e. 𝛼 = 1 2⁄ ) as proposed by Wolf (1976) and by Gazetas et al. (2013), 

because the shape of strip foundations remains unchanged during foundation uplift.  

 

 

 

Figure 4.6 The relationship between 𝛼 and 𝜃𝑁 (Equation 3.11) for strip foundations 

on homogeneous half-space  
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In Figure 4.7, the relationships between  𝑀𝑁 and 𝜃𝑁 for strip foundations resting 

on elastic half-space are presented. It is observed that the results obtained from this 

study and those of Cremer et al. (2001) are in good agreement. The equations 

proposed by Cremer et al. (2001) are summarized in Appendix B. 

 

 

Figure 4.7 The relationship between 𝑀𝑁 and 𝜃𝑁 for strip foundations on elastic 

half-space 

 

4.3. Applications 

 

In this section, figures showing the effect of several parameters on the response of 

shallow foundations are presented. The relationships presented in the figures are 

illustrating the effect of geometric properties of shallow foundations that of 

underlying soil properties, and that of using variable α on the response of shallow 

foundations.  

 

4.3.1. A Comparison of Rocking Impedances for Rectangular Foundations 

Resting on Different Types of Elastic Supports 

 

A rectangular foundation resting on elastic half-space, Winkler springs and, elastic 

layer is considered in this section to compute impedance with increasing 𝜃. 
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In Figure 4.8, the relationships between 𝛼 and 𝜃𝑁 are compared for rectangular 

foundations resting on elastic half-space. 𝛼 for a rectangular (i.e., 𝐵 = 5𝐿 and 𝐵 =

𝐿/2) and for a square (𝐵 = 𝐿) shaped foundation (Equation 3.11) approaches to 

1/2 due to their similarity with strip foundations  in case of uplift (Table 3.1). The 

main reason for the abrupt change of α is the change in 𝐾𝜃 at a particular B/L ratio 

(Table 2.1). 

 

 

Figure 4.8 The relationship between 𝛼 and 𝜃𝑁 for various rectangular foundations 

resting on homogeneous half-space  

 

In Figure 4.9, the relationships between  𝑀𝑁 and 𝜃𝑁 of the rectangular foundations 

are compared for a set of 𝛼. In the figure, the relationship between 𝑀𝑁 and 𝜃𝑁 is 

also plotted for 𝛼 varying according to Equation 3.11. It is observed that the 

relation between  𝑀𝑁 and 𝜃𝑁 pertinent to variable 𝛼 yields a smooth transition 

between the regions before and after uplift.   
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Figure 4.9 The relationship between  𝑀𝑁 and 𝜃𝑁 for rectangular (𝐵 = 5𝐿) 

foundations on homogeneous half-space 

 

Next, the ratio of homogeneous layer thickness, D, to the width of the foundation 

is considered. For this purpose, the relationship between   𝑀𝑁 and 𝜃𝑁 for a 

rectangular foundation resting on elastic layer is presented Figure 4.10 for a set of 

𝐷/𝐵 in. The effect of 𝐷/𝐵  ratio on the variation of  𝑀𝑁 − 𝜃𝑁  relationship 

diminishes in case 𝐷/𝐵 is greater than 1, such that the solution reaches to the 

solution for a foundation on elastic half space. Hence the models assuming an 

elastic half-space are applicable provided that the practically rigid geological 

formation is not shallower than B. Rectangular foundations resting on elastic layer 

were considered in Section 2.3 in detail. 
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Figure 4.10 The relationship between 𝑀𝑁 and 𝜃𝑁 for a rectangular (𝐵 = 5𝐿) 

foundation under static loading 

 

In Figure 4.11 the relationship between 𝑀𝑁 and 𝜃𝑁 for rectangular foundations 

resting on elastic half-space with variable 𝐵/𝐿 are presented to observe the effect 

of the ratio of foundation dimensions on its impedance. In the figure, length of the 

foundation is represented by 𝐿, and width of the foundation is represented by B. It 

is observed that the variation of 𝐵/𝐿 does not have any significant effect on the 

relationship between 𝑀𝑁 and 𝜃𝑁 for rectangular foundations resting on an elastic 

half-space. 

 
 

Figure 4.11 The relationship between 𝑀𝑁 and 𝜃𝑁 for various rectangular 

foundations resting on an elastic half-space for cases  
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In Figure 4.12, the relationship between 𝑣𝑁 and 𝜃𝑁 for rectangular foundations, 

with varying 𝐵/𝐿, resting on elastic half-space are presented. It is observed that 𝑣𝑁 

and 𝜃𝑁 relationships coincide until the initiation of uplift. But, after this point, it is 

observed that 𝑣𝑁 for foundations with higher 𝑏/𝐿 ratios deviate from each other. 

Such a deviation may be attributed to the deviation of center of contact area from 

the geometric center of the foundation in a large amount even at small rotation 

angles. 

 

 
 

Figure 4.12 The relationship between 𝑣𝑁 and 𝜃𝑁 for various rectangular 

foundations resting on elastic half-space  

 

4.3.2. A Circular Foundation Resting on Elastic Half-space 
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variable 𝛼 calculated by Equation 3.11. It is observed that 𝑀𝑁 − 𝜃𝑁 relationship 
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Figure 4.13 The relationship between 𝑀𝑁 and 𝜃𝑁 for circular foundations on 

homogeneous halfspace 

 

4.3.3. A Strip Foundation Resting on Deep Inhomogeneous Deposits and 

Elastic Half-space 

 

Response of a strip foundation resting on elastic half-space and resting on deep 

inhomogeneous deposits are considered. The relationships between 𝑀𝑁 and 𝜃𝑁 for 

strip foundations are compared in Figure 4.14. The 𝑀𝑁 − 𝜃𝑁 relationships are 

compared for a set of 𝛼 and for a variable 𝛼 calculated by Equation 3.11. It is 

observed that 𝑀𝑁 − 𝜃𝑁 relationship for the continuously varying 𝛼 yield a smooth 

impedance transition between the regions before and after uplift.  
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Figure 4.14 The relationship between 𝑀𝑁 and 𝜃𝑁 for strip foundations on 

homogeneous half-space 

 

In Figure 4.15, the relationship between 𝑀𝑁 and 𝜃𝑁 for a strip foundation resting 

on deep inhomogeneous deposits is presented as a function. In Section 2.4, the 

impedance relalationships for foundations are presented for constant foundation 

widths without considering the effect of uplift behavior. Consequently, the shear 

modulus of the shallow foundations is given for constant foundation width 

(Equation 2.6). However, for the uplifting shallow foundations, the effective width 

of foundation continuously varies due to the uplift behavior. The relationship 

between instantaneous and initial shear modulus should involve the variation in the 

effective contact width between load bearing medium and foundation. For this 

purpose a variable form of 𝑎 is used to provide identical shear modulus for 

uplifting and linear foundations for the same depth of soil. This is achieved by 

modifying Equation 2.6 as 

 

G = G0 (1 + 𝑎𝑠𝑒𝑐
𝑧

𝑏
)             (4.4) 

 

where asecis defined as 
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𝑎𝑠𝑒𝑐 = 𝑎
𝑏

𝐵
                                                                                                                        (4.5) 

 

In Figure 4.15, the relationship between 𝑀𝑁 and 𝜃𝑁 of strip foundation is plotted 

as a function of the initial value of 𝑎. The figure shows that the depth dependent 

increase in shear modulus can yield an significant increase in the stiffness of 

foundations during uplift. This is explained by the increasing rigidity of load 

bearing medium, which moves the 𝑀𝑁 in greater ranges of 𝜃𝑁 to the ultimate value 

for a foundation on rigid support.  

 

 

Figure 4.15 The relationship between 𝑀𝑁 and 𝜃𝑁 for strip foundations on deep 

inhomogeneous deposits 
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calculated and implemented in the computer program with the aid of an external 

routine. Details about the calculation of these properties are presented in the 

Appendix A. 

 

In Figure 4.16, the relationship between 𝛼 and 𝜃𝑁 is plotted for a square 

foundation subjected to 2 way eccentric loading resting on elastic half-space. 

Before initiation of uplift, 𝛼 calculated by Equation 3.11 remains constant. 

However, after the initiation of uplift 𝛼 continuously varies due to the changing 

shape of foundation section that is in contact with the load bearing medium during 

uplift. 

 

 

Figure 4.16 The relationship between 𝛼 and 𝜃𝑁 for square foundations subjected to 

2 way eccentric loading resting elastic halfspace  

 

The relationships between 𝑀𝑁 and 𝜃𝑁 for square foundations subjected to 1 way 

and 2 way eccentric loading,  and resting on an elastic half-space are shown in 

Figure 4.17. In the figure, a linear relationship followed by a nonlinear curve is 

observed showing the effect of uplift on the variation of 𝑀𝑁 as a function of 𝜃𝑁 for 

1 way eccentric loading. A similar relationship with lower moment magnitudes is 

observed for 2 way eccentric loading.  
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Figure 4.17 The relationships between 𝑀𝑁 and 𝜃𝑁 for square foundations subjected 

to 1 way and 2 way eccentric loading resting elastic halfspace 

 

Figure 4.18 shows the relationships between 𝑣𝑁 and  𝜃𝑁 for a square foundation 

subjected to 1 way and 2 way eccentric loading. In the figure, a flat plateau  

observed until the initiation of uplift is followed by sloping curve due to the 

increasing effect of foundation uplift on stiffness of foundation. The 𝜃𝑁 defining 

the transition between these two parts is consistent with 𝜃𝑁 corresponding to this  

transition in Figure 4.17.   

 

 

Figure 4.18 The relationships between 𝑣𝑁and 𝜃𝑁 for square foundations subjected 

to 1 way and 2 way eccentric loading resting elastic halfspace 
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CHAPTER 5 

 

 

EFFECT OF SOIL NONLINEARITY ON BEARING CAPACITIES OF 

SHALLOW FOUNDATIONS 

 

 

 

5.1 Introduction  

 

The effect of soil nonlinearity on the stiffness of an arbitrarily shaped shallow 

foundation is investigated in this chapter. A brief literature review on the modeling 

techniques of soil nonlinearity in the problems involving soil-structure interaction 

is presented. The method for calculation of the nonlinear response of a shallow 

foundation resting on soil deposits is illustrated. The results obtained from the 

proposed theoretical method are compared with those of former experimental 

studies to verify the accuracy of the proposed theoretical method. 

 

In an analysis of foundation uplift, the behavior of soils can be considered as linear 

if the foundation is resting on very stiff soils, or if the foundation is subjected to 

light loading conditions (Apostolou, 2011). Otherwise, the nonlinear behavior of 

soil is inevitable due to excessive stress levels concentrated particularly at the 

corners of the foundations (Pecker and Pender, 2000; Anastasopoulos and 

Kontourpi, 2014). Figure 5.1 shows the reduction of shear modulus of a Toyoura 

sand sample with increasing shear strain (Kokusho, 1980). In the figure,  ratio 

between the instantaneous shear modulus, G,  and initial shear modulus, G0, of soil 

is plotted with respect to the cyclic amplitude of the shear strain in soil. Significant 

degradation of shear modulus of soil with increasing shear strain is clearly 

observed. The nonlinear soil behavior may result in nonlinearity of foundation 

response even if a foundation is completely in contact with the load bearing soils  
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(Apostolou, 2011). An accurate technique accounting for the nonlinear behavior of 

soil deposits should be adopted to estimate the nonlinear response of foundations 

to severely eccentric loads.   

 

Figure 5.1 Normalized shear modulus versus shear strain for Toyoura sand 

(Kokusho, 1980) 

 

Finite element modeling techniques are used by researchers considering the 

nonlinear behavior of soil in soil-structure interaction analyses (Apostolou, 2011). 

In these techniques, using kinematic hardening models with appropriate failure 

criteria and associated flow rules is a way to simulate the nonlinear soil behavior 

(Gelagoti et al., 2012a,b; Gazetas et al., 2013; Zafeirakos and Gerolymos, 2013; 

Adamidis et al., 2014; Kourkolis et al.,2012a; Ntritsos et al. 2015). Advances in 

the computer technology motivated the researchers using finite element methods to 

focus on nonlinear soil-structure interaction analyses (Gazetas and Apostolou, 

2004; Gazetas et al., 2013). Whereas, these analyses are computationally 

expensive to be considered for practical engineering purposes, due to the necessity 

for domain discretisation. 

 

In macro element modeling method, bounding surface plasticity model is a way to 

simulate the nonlinear soil behavior (Figini et al., 2012; Gajan and Kutter, 2009; 

Chatzigogos et al., 2009, 2011; Cremer et al. 2001, 2002). The bounding surface 
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plasticity model was developed by Dafalias and Popov (1975) to simulate the 

nonlinear behavior of materials when subjected to complex loading conditions. In 

this model, the nonlinear deformation at a loading point is calculated by defining 

the modulus of plasticity as a function of the distance between the loading point 

and the image point lying on a bounding surface. Such an approach provides a 

smooth shift in the response from elastic to plastic state (Kan et al. 2014). In the 

bounding surface, any combination of the load vectors lying out of the bounding 

surface leads to an unstable condition. On the other hand, any combination of the 

loads lying in the bounding surface corresponds to a potential by stable condition 

(Pecker and Pender, 2000). Paolucci (1997) simulated the inelastic behavior of the 

soil deposit by assuming a linear visco-elastic soil behavior until reaching the 

failure surface. This assumption was based on the fact that possible plastic 

behavior of soil in the failure surface can be disregarded with respect to the plastic 

deformations occurring at failure. 

 

As an alternative to bounding surface plasticity models, equivalent linearization is 

a technique that can be employed to take soil nonlinearity in account soil-structure 

interaction analyses (Adamidis et al. 2014). The pioneering studies that developed 

the theory of approximation of real nonlinear soil behavior by equivalent linear 

method were performed by Idriss and Seed (1968) and Schnabel et al. (1972). In 

the equivalent linear modeling of soil behavior, the empirical relationships 

describing the variation of secant shear modulus (Figure 5.2) and hysteretic 

damping ratio with shear strain are iteratively used for modifying the parameters of 

linear elasticity. However, equivalent linearization method cannot capture the 

actual behavior of soil deposits in the presence of excessive soil nonlinearity. 
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Figure 5.2 Variation of secant shear modulus with shear strain  

 

In this study, the effect of soil nonlinearity on the static response of arbitrarily 

shaped shallow foundations is modeled by continuously modifying the shear 

modulus of load-bearing soil as a function of magnitude of vertical load acting on 

the foundation due to the simplicity of equivalent linearization method. It was 

numerically and experimentally shown that the hyperbolic and exponential 

functions are suitable to describe the relationship between vertical load and vertical 

displacement for a foundation resting on homogenous medium (Kohno et al., 2009; 

Apostolou, 2011; Uzielli and Mayne, 2012). The vertical load-displacement 

relationship of a shallow foundation is described by using hyperbolic and 

exponential functions (Figure 5.3). Details of this methodology are presented in the 

following section. 
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Figure 5.3 Comparison of the vertical load – displacement relationships calculated 

using exponential and hyperbolic law with those calculated using the finite element 

analyses (Apostolou, 2011) 

 

5.2. Methodology  

 

The effect of soil nonlinearity on the static response of shallow foundations is 

considered by continuously modifying the shear modulus of the load-bearing soil 

deposit. The calculations are performed by employing the method of equivalent 

linearization. Hence, the shear modulus of load bearing soil is reduced by 

increasing load eccentricity. It is supposed that the secant shear modulus is related 

to the ratio of vertical load to ultimate bearing capacity (𝑉 𝑉𝑢𝑙𝑡⁄ ) under any given 

load eccentricity (𝑀 𝑉⁄ ) and load inclination (𝐻 𝑉⁄ ). The relationship between 

𝐺𝑠𝑒𝑐 and 𝑉 𝑉𝑢𝑙𝑡⁄  is estimated by using vertical loading tests on model foundations. 

In practice, this is possible by plate loading tests on a site where a shallow 

foundation will be constructed (Chen et al., 2004). 

 

The hyperbolic and the exponential functional forms were used to simulate the 

static vertical load–vertical displacement relationships of shallow foundations. 

Two functional forms can be used optionally, because no superiority of one to the 

other was observed. 
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5.2.1 The Hyperbolic Model  

  

The hyperbolic functional form is expressed as: 

  

𝑉 =
𝑣

𝑚 + 𝑛𝑣
                                                                                                                   (5.1𝑎) 

 

or  

 

1

𝑉
=

𝑚

𝑣
+ 𝑛                                                                                                                      (5.1𝑏) 

 

where 𝑉 is the applied vertical load, 𝑣  is the  vertical displacement of the 

foundation and 𝑚 and 𝑛 are constants of functional form. The differentiation of the 

hyperbolic function (Equation 5.1) with respect to 𝑣 results in the initial vertical 

stiffness of the shallow foundation (𝐾𝑣0): 

 

𝑑𝑉

𝑑𝑣
|

𝑣=0
= 𝐾𝑣0                                                                                                                   (5.2) 

 

which yields  

 

𝑚 =
1

𝐾𝑣0
                                                                                                                            (5.3) 

 

𝑉 reaches to its ultimate value by increasing 𝑣, such that  

 

lim
𝑣→∞

𝑣

𝑚 + 𝑛𝑣
= 𝑉𝑢𝑙𝑡                                                                                                          (5.4) 

 

so 

 



61 

 

𝑛 =
1

𝑉𝑢𝑙𝑡
                                                                                                                             (5.5) 

 

By substituting Equation 5.3 and Equation 5.5 in Equation 5.1, the vertical load 𝑉 

is related to 𝑣 by 

 

𝑉 =
𝑣

1
𝐾𝑣0

+
1

𝑉𝑢𝑙𝑡
𝑣

                                                                                                             (5.6) 

 

Substitution of Equation 2.1 and Equation 2.2 (𝐾𝑣 = 𝑉 𝑣⁄ ) in Equation 5.6 yields 

the relation between the secant vertical stiffness (Kv) and initial vertical stiffness 

(𝐾𝑣0), such that 

 

𝐾𝑣

𝐾𝑣0
= 1 −

𝑉

𝑉𝑢𝑙𝑡
                                                                                                                 (5.7) 

 

Because 𝐾𝑣 is proportional to 𝐺 for a foundation on a linearly elastic medium 

(Table 2.1), the relationship between maximum shear modulus (𝐺0), the secant 

shear modulus (𝐺𝑠𝑒𝑐), 𝐾𝑣 and 𝐾𝑣0 is 

 

𝐺𝑠𝑒𝑐

𝐺0
=

𝐾𝑣

𝐾𝑣0
                                                                                                                        (5.8) 

 

or, by substituting Equation 5.7 in Equation 5.8 the relation between the secant 

shear modulus (𝐺𝑠𝑒𝑐) and initial shear modulus (𝐺0) is  

 

𝐺𝑠𝑒𝑐

𝐺0
= 1 −

𝑉

𝑉𝑢𝑙𝑡
                                                                                                                (5.9) 
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5.2.2 Exponential Model  

  

The experimental relationship between vertical load and displacement is (Nova 

and Motrasio, 1991)  

  

 

    
        

    

    
                                                                                                    

 

By substituting Equation 2.1 and Equation 2.2 (i.e.         in Equation 5.10, 

relationship between the simultaneous vertical stiffness      and initial vertical 

stiffness (   ) is calculated by  

 

  

   
  

 

         
 

    
 
                                                                                                

 

Consequently, the relationship between      and    for the exponential model is 

 

    

  
  

 

         
 

    
 
                                                                                               

 

5.2.3 Estimation of      

 

Distribution of contact stresses under a rigid foundation is non-uniform (Schultz 

and Ing, 1961; Terzaghi and Peck, 1967).  For a rigid foundation resting on elastic 

cohesive soil deposit, theoretical level of stresses at the outer edges is infinite. In 

actual case, the level of stress at the outer edges is limited with the shear strength 

of soil deposit  ( Figure 5.4 ).  For a rigid foundation resting on a granular soil 
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deposit, a parabolic stress distribution with zero stress at each corner occurs 

(Terzaghi and Peck, 1967; Holtz, 1991). In contrast to the nonlinear distribution of  

actual contact stresses, in structural design of footings, generally, uniform contact 

stress distribution is assumed by the designers (Holtz, 1991, Yamin et al., 2016). 

The ultimate vertical load resisting capacity of a shallow foundation is calculated 

by using this uniform contact stress under the foundation and the area of contact. 

 

 

   (a)     (b) 

Figure 5.4 Contact pressures for cohesive and granular soils under rigid 

foundations (Holtz, 1991) 

 

The bearing capacity of a strip foundation (𝑞𝑢) on soil with cohesion, friction and 

self weight was proposed by Terzaghi (1943):  

 

𝑞𝑢 = 𝑐𝑠𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝛾𝑠𝑏𝑁𝛾                                                                                      (5.13) 

 

where, 𝑐𝑠 is unit cohesion, 𝑞 is effective overburden pressure at the base level of 

the foundation, 𝛾𝑠 is effective unit weight of soil below the foundation base, and b 

is the width of the foundation. The terms 𝑁𝑐, 𝑁𝑞 and 𝑁𝛾 are  the bearing capacity 

factors to scale the contribution of the variables 𝑐𝑠, 𝑞 and 𝛾𝑠 respectively to 𝑞𝑢 as a 

function of internal angle of friction, 𝜙. In this study, the bearing capacity factors 
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 proposed by Reissner (1924), Prandtl (1921) and Hansen (1970) are used for 

estimation of 𝑞𝑢, such that  

 

𝑁𝑞 = 𝑒𝜋 tan 𝜙 (
1 + sin 𝜙

1 − sin 𝜙
)                                                                                        (5.14𝑎) 

 

𝑁𝑐 = (𝑁𝑞 − 1) cot 𝜙                                                                                                  (5.14𝑏) 

 

𝑁𝛾 = 1.5𝑁𝑐 tan2 𝜙                                                                                                      (5.14𝑐) 

 

The bearing capacity equation for a strip foundation (Equation 5.13) was 

generalized by Meyerhof (1963) for foundations with rectangular and circular 

geometries, embedded foundations and foundations subjected to inclined loading, 

such that  

 

𝑞𝑢 = 𝑐𝑠𝜆𝑐𝑠𝜆𝑐𝑑𝜆𝑐𝑖𝑁𝑐 + 𝑞𝜆𝑞𝑠𝜆𝑞𝑑𝜆𝑞𝑖𝑁𝑞 +
1

2
𝜆𝛾𝑠𝜆𝛾𝑑𝜆𝛾𝑖𝛾𝑠𝑏𝑁𝛾                                (5.15) 

 

where, 𝜆∗𝑠, 𝜆∗𝑑 and 𝜆∗𝑖 are shape, depth and inclination factors. The depth factors 

( 𝜆𝑐𝑑 , 𝜆𝑞𝑑 and 𝜆𝛾𝑑) are equal to unity for a foundation resting on ground surface. 

The load inclination factors presented by Hansen (1970) are in the following 

equations  

 

𝜆𝑞𝑖 = (1 −
0.5𝑞𝑢 sin 𝛽𝑖

𝑞𝑢 cos 𝛽𝑖 + 𝑐𝑠 cot 𝛽𝑖
)

5

                                                                        (5.16𝑎) 

 

𝜆𝑐𝑖 = 𝜆𝑞𝑖 − (
1 − 𝜆𝑞𝑖

𝑁𝑞 − 1
)                                                                                              (5.16𝑏) 
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𝜆𝛾𝑖 = (1 −
0.7𝑞𝑢 sin 𝛽𝑖

𝑞𝑢 cos 𝛽𝑖 + 𝑐𝑠 cot 𝛽𝑖
)

5

                                                                         (5.16𝑐) 

 

 

where 𝛽𝑖 (𝑟𝑎𝑑) is the angle of load inclination defined as 

 

𝛽𝑖 = atan
𝐻

𝑉
                                                                                                                    (5.17) 

  

The shape factors in Equation 5.15 are suggested by DeBeer (1970) as 

 

𝜆𝑐𝑠 = 1 +
𝑁𝑞

𝑁𝑐

𝑏

𝐿
                                                                                                           (5.18𝑎) 

 

𝜆𝑞𝑠 = 1 +
𝑏

𝐿
tan 𝜙                                                                                                      (5.18𝑏) 

 

𝜆𝛾𝑠 = 1 − 0.4
𝑏

𝐿
                                                                                                           (5.18𝑐) 

 

These expressions are used for estimation of ultimate vertical load on a shallow 

foundation, 𝑉𝑢𝑙𝑡, such that 

 

𝑉𝑢𝑙𝑡 = 𝑞𝑢𝑓                                                                                                                      (5.19) 

 

f  is the contact area of the shallow foundation.  

 

The flow chart shown by Figure 5.5 and explained in the following paragraphs is 

developed to account for the effect of soil nonlinearity on the load - displacement 

response of foundations. This algorithm is substituted into step 4 in the main flow 

chart (Figure 3.2) to reduce shear modulus due to nonlinear behavior of load 
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bearing soils. The parameters required by the subroutine implemented in the 

computer program (see Appendix E) are explained in the following paragraphs. 

 

 

Figure 5.5 Flow Chart to calculate 𝐺 

 

1. 𝐺𝑝𝑎𝑟𝑎𝑚(1) is the shear modulus of elastic layer or half-space (𝐺0). 

𝐺𝑝𝑎𝑟𝑎𝑚(2) is unit cohesion (𝑐𝑠). 𝐺𝑝𝑎𝑟𝑎𝑚(3) is internal angle of friction (𝜙), in 

degrees. 𝐺𝑝𝑎𝑟𝑎𝑚(4) is effective unit weight of soil below the foundation (𝛾𝑠). 

𝐺𝑝𝑎𝑟𝑎𝑚(5) is effective overburden pressure at the base level of the foundation  

 

4 

𝑇𝑐 , 𝑉, 𝐻, 𝐺𝑝𝑎𝑟𝑎𝑚 

𝑞𝑢 , 𝜆𝑐𝑖 , 𝜆𝑞𝑖 , 𝜆𝛾𝑖  3 

𝑉𝑢𝑙𝑡  4 

𝐺𝑠𝑒𝑐  5 

𝑁𝑐 , 𝑁𝑞 , 𝑁𝛾 , 𝜆𝑐𝑠 , 𝜆𝑞𝑠 , 𝜆𝛾𝑠  2 

1 

𝐺 6 
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(𝑞). 𝐺𝑝𝑎𝑟𝑎𝑚(6) is used to select the functional form to fit the static vertical load-

vertical displacement relationship of shallow foundations presented in Table 5.1. 

 

Table 5.1 Functional forms in the proposed method 

 

𝐺𝑝𝑎𝑟𝑎𝑚(6) Functional form 

1 Hyperbolic 

2 Exponential 

 

2. 𝜙 (in degrees) is converted to radians. 𝑁𝑐, 𝑁𝑞 and 𝑁𝛾 are calculated by using 𝜙 

(Equations 5.14a-c). Then 𝜆𝑐𝑠 is calculated by using 𝑁𝑐 and  𝑁𝑞 and dimensions of 

the foundation (Equation 5.18a). 𝜆𝑞𝑠 and 𝜆𝛾𝑠 are calculated using 𝜙 and 

dimensions of the foundation (Equations 5.18b,c). 

 

3. Initial guess for 𝑞𝑢 (Equation 5.15), 𝑞𝑢𝑜𝑙𝑑 is calculated by assigning 1 to 𝜆𝑐𝑖, 𝜆𝑞𝑖 

and 𝜆𝛾𝑖. The new value of 𝑞𝑢 is calculated by using 𝑓𝑧𝑒𝑟𝑜 calibrated to find the 

root of 𝑞𝑢 around 𝑞𝑢𝑜𝑙𝑑. 𝜆𝑐𝑖 is a factor used to account for the load inclination (𝛽𝑖) 

to modify the cohesion given by 𝐺𝑝𝑎𝑟𝑎𝑚(2). Similarly, 𝜆𝑞𝑖 is a factor used to 

account for 𝛽𝑖 to modify the effective overburden pressure given by 𝐺𝑝𝑎𝑟𝑎𝑚(5) 

and 𝜆𝛾𝑖 is a factor used to consider the effect of 𝛽𝑖 to modify the effective unit 

weight of soil deposit given by 𝐺𝑝𝑎𝑟𝑎𝑚(4).  

 

4. 𝑉𝑢𝑙𝑡 is calculated by multiplying 𝑞𝑢 with the contact area, f, obtained by 𝑇𝑐 

(Equation 5.19). If the calculated instantaneous value of 𝑉𝑢𝑙𝑡 is smaller than 𝑉, 

value of  𝑉 is assigned to 𝑉𝑢𝑙𝑡 . 

 

5. Finally, 𝐺𝑠𝑒𝑐  is calculated by using Equation 5.9 and Equation 5.12.  

 

6. 𝐺𝑠𝑒𝑐 is used as the shear modulus, 𝐺, in calculation of foundation impedance. 
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5.3. Model Validations 

 

The accuracy of theoretical model developed in this study is justified by 

comparisons with experiments. In the justification of the theoretical model, results 

of three experimental studies are used. Experimental studies used to justify the 

developed theoretical model were presented by Shirato et al. (2008), Negro et al. 

(2000), and Kokkali et al. (2014).  

 

5.3.1. Foundation model of PWRI  

 

The Public Works Research Institute of Japan (PWRI) tests were conducted to 

measure the response of shallow foundations subjected to monotonic and cyclic 

loading conditions (Shirato et al., 2008). The tests were conducted on square 

footings with 0.5 m width, as shown in Figure 5.6.  

 

 

Figure 5.6 Sketches and photo of the test setup used for cyclic loading experiments 

(Shirato et al., 2008) 
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In the experiments, soil deposit lying under the test specimens was composed of a 

2 m deep layer of air-dried Toyoura standard sand. The tests were conducted by 

using a sand deposit with two relative densities. Unit weights of the air-dried 

Toyoura standard sand layers were 𝛾 = 15.1 kN/m3 and 𝛾 = 15.7 kN/m3 for relative 

densities of 𝐷𝑟 = 60%  (i.e. loose condition) and  𝐷𝑟 =  80% (i.e. dense condition), 

respectively. In the experimental study, vertical and horizontal loading tests were 

conducted on test specimens. The vertical loading tests are considered for 

determination of parameters used in the theoretical model, and horizontal loading 

tests are considered for verification of model predictions. The summary 

information about the PWRI tests are presented in Table 5.2.  

Table 5.2 Selected load cases in the experiments of PWRI 

 

Loading Case Model Load Pattern 𝑫𝒓(%) 

1 V Vertical load 80 

2 V Vertical load 60 

3 T Monotonic horizontal load 80 

5 T Cyclic horizontal load 80 

6 S Monotonic horizontal load 80 

8 S Cyclic horizontal load 80 

9 S Monotonic horizontal load 60 

11 S Cyclic horizontal load 60 

S: short pier 

T: tall pier 

V: vertical loading on base plate 

 

The vertical loading tests were conducted by applying vertical forces on tested 

foundations as shown in Figure 5.7. Consequently, the relationship between 𝑉 and 

𝑣 of the test specimens were determined as shown in Figure 5.8. 
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Figure 5.7 The experimental model for vertical loading  

 

 

 

Figure 5.8 Results of the vertical loading tests (Shirato et al., 2008; 𝑉𝑚 = 𝑉𝑢𝑙𝑡) 

 

In the proposed theoretical method, the maximum shear modulus, 𝐺0, of sand 

deposit underlying the footing is a parameter required to perform the numerical 

analyses. The 𝐺0 of the Toyoura standard sand layer is calculated by using the 

initial vertical stiffness, 𝐾𝑣0, of the test specimens. Figure 5.9 shows that the 

relationship between 𝑉 and 𝑣 is empirically estimated. 𝐾𝑣0 and 𝑉𝑢𝑙𝑡 of the test 

models are calculated by applying a curve fitting procedure (see Sections 5.2.1 and 

5.2.2 for further information about exponential and hyperbolic functions). In the 

curve fitting procedure, the regression coefficients are selected to make the 

coefficient of determination, R2, close to 1. For this purpose the principle of least 

squares (Chapra and Canale, 2010) is applied on the data pairs of 1/ 𝑉 and 1/𝑣. 

 𝑉 



71 

 

 

Figure 5.9 Typical 𝑉 − 𝑣 relationship of a shallow foundation in exponential form 

 

𝐾𝑣 values are used for calculation of 𝐺0 for Toyoura sand with different relative 

densities by Equation 5.8. The internal angle of friction,  𝜙, is calculated by using 

the ultimate load, 𝑉𝑢𝑙𝑡, via Equations 5.13-5.19. The parameters used in the 

theoretical model are presented in Table 5.3. 

 

Table 5.3 Calculated parameters used in the theoretical model for PWRI tests 

 

Load  

Case 

𝝓(°) 𝑮𝟎 

(𝑘𝑁/𝑚2) 

𝜸 

(𝑘𝑁/𝑚3)  

𝑵𝒒 𝑵𝒄 𝑵𝜸 

1 48.8 21701 15.7 256 223 437 

2 45.5 15380 15.1 146 143 221 

 

Shear wave velocities, 𝑉𝑠, of the soil deposits are calculated. 𝑉𝑠 of the Toyoura sand 

with different relative densities are estimated by using the well known relationship 

between 𝑉𝑠, 𝐺0, and unit mass of the soil, 𝜌, such that  
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𝑉𝑠 = √
𝐺0

𝜌
                                                                                                                        (5.20) 

 

The calculated 𝑉𝑠 for the test specimens are given as a function of the relative 

density of sand. 𝑉𝑠 is estimated by the fitted functional form of the 𝑉 − 𝑣 

relationship of the model foundation.  It is observed that the shear wave velocities 

obtained using exponential and hyperbolic functions are slightly different.  𝑉𝑠 

values of Toyoura sand for a Dr of 80% are calculated as 116 m/s and 128 m/s by 

using exponential and hyperbolic functional forms, respectively. Similarly, 𝑉𝑠 

values of Toyoura sand for Dr =60% are calculated as 100 m/s and 122 m/s by 

using exponential and hyperbolic functional forms, respectively.  

 

In this study either a hyperbolic (Equation 5.8) or exponential (Equation 5.9) 

functional form is used to simulate the degradation of shear modulus of soil 

deposit. The difference in the calculated 𝑉𝑠 for hyperbolic and exponential cases is 

negligible. In the horizontal loading tests, horizontal displacement patterns were 

applied at the cap of the pier (Figure 5.10). In the tests, two foundation models 

with different pier lengths were used.  The height of the pier was 0.9 m in the 

Model H and 1.3 m in the Model L. The total weight of Model H was 8.924 kN 

and, that of Model L was 8.728 kN.  

 

Figure 5.10 The schematic view of the horizontal loading experiment  

 

 𝐻 

 ℎ𝑠 
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The results of the proposed theoretical model are compared with the results of 

PWRI tests, in terms of normalized moment - rotation, 𝑀𝑁 − 𝜃𝑁, (Equations 4.1b, 

4.2b) and normalized vertical displacement – rotation, 𝑣𝑁 − 𝜃𝑁, (Equation 4.3) 

relationships. Theoretical 𝑀𝑁 − 𝜃𝑁 relationships are compared with the 

experimentally obtained 𝑀𝑁 − 𝜃𝑁 envelopes gathered from the monotonic and 

cyclic - loading tests. Details about the normalization procedure are presented in 

Section 4.1. 

 

In the calculation of the theoretical 𝑀𝑁 − 𝜃𝑁 relationships, the parameters (i.e. 

𝐺0, 𝜙) required to conduct numerical analyses are obtained by using parameters 

based on fitted 𝑉 − 𝑣 relationships (Figure 5.8). The 𝑀𝑁 − 𝜃𝑁 relationships 

calculated without considering the soil nonlinearity are also presented with other 

experimental and theoretical relationships to clearly observe the effects of soil 

nonlinearity on the response of shallow foundations.  

 

In Figure 5.11, theoretical and experimental 𝑀𝑁 − 𝜃𝑁 relationships obtained from 

Load Case 3 are presented. Both of the proposed nonlinear theoretical relationships 

(i.e. estimated based on the parameters calculated using exponential and 

hyperbolic functional forms of vertical load displacement relationships) agree with 

the experimental results. On the other hand, the theoretical relationship calculated 

without considering the effects of soil nonlinearity coincided with the other 

relationships until the initiation of uplift. However, for the higher values of 𝜃𝑁, an 

increasing discrepancy between the linear and other relationships is observed. Such 

discrepancy is indicative of amplified effects of soil nonlinearity in higher ranges 

of 𝜃𝑁. In the figure, 𝑀𝑁 representing the initiation of uplift is identified for load 

Case 3. This is achieved by using the theoretical rotational stiffness of the 

foundation (𝐾𝜃) which is normalized with its initial stiffness (𝐾𝜃0). 
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Figure 5.11 The relationship between 𝑀𝑁 and 𝜃𝑁 calculated by considering (a) an 

exponential function, (b) a hyperbolic function, (c) a linear response, and  (d) the 

experimental data for load Case 3. 

 

In Figure 5.12, 𝐾𝜃 𝐾𝜃0⁄  of foundation is plotted as a function of 𝜃𝑁. The end of flat 

plateau shows the initiation of uplift.  𝜃𝑁 corresponding this transion marks the 

initiation of uplift. 𝑀𝑁 corresponding to this specific value of  𝜃𝑁 is shown in 

Figure 5.11. 

 

 

Figure 5.12 Variation of 𝐾𝜃 𝐾𝜃0⁄  with 𝜃𝑁 for load Case 3 
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The theoretical and experimental 𝑀𝑁 − 𝜃𝑁 relationships are compared for the Load 

Case 6 in Figure 5.13. The test specimen was subjected to monotonic horizontal 

loading. It is observed that the theoretical 𝑀𝑁 − 𝜃𝑁 relationships considering the 

nonlinearity of soil were in reasonable agreement with the experimental results.  

On the other hand, the accuracy of the theoretical model is more satisfactory for 

higher 𝜃𝑁. 

 

 

Figure 5.13 The relationship between 𝑀𝑁 and 𝜃𝑁 calculated by considering (a) an 

exponential function, (b) a hyperbolic function, (c) a linear response, and (d) the 

experimental data for load Case 6 

 

The experimental and theoretical 𝑀𝑁 − 𝜃𝑁 relationships of the Load Case 9 are 

presented in Figure 5.14. It is observed that the proposed theoretical model yields 

slightly different results than those obtained from the experiments. On the other 

hand, the experimental data do not show a smoothly changing trend in this 

experiment, implying a possible problem in the set up. 
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Figure 5.14 The relationship between 𝑀𝑁 and 𝜃𝑁 calculated by considering (a) an 

exponential function, (b) a hyperbolic function, (c) a linear response, and (d) the 

experimental data for load Case 9 

 

In Figure 5.15, 𝐾𝜃(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)/𝐾𝜃(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) is compared for Case 6 and Case 9 

for a range of 𝜃. 𝐾𝜃(𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) was computed according to Table 2.1 and 

𝐾𝜃(𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙) was  computed by substituting Equation 2.1 in Equation 2.2. The 

ratios of two parameters are ranging between 0.75 and 1.05, which indicates a 

reasonable agreement between experimental and theoretical results. Such 

alterations in the ratio may be attributed to the variability in test conditions, such as 

the densification of sand. 
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Figure 5.15 Comparison of ratio of experimental to theoretical (exponential 

function) 𝐾𝜃 for Load Cases 6 and 9  

 

Normalized relationships of theoretical and experimental 𝑣𝑁 vs. 𝜃𝑁 are compared 

in Figures 5.16-5.18 for load Cases 3, 6 and 9, respectively.  The settlement 

behavior is represented by the positive (upward) direction, and the separation of 

foundation center and load bearing soil (i.e., uplift) is represented by the negative 

(downward) direction.   

 

In Figure 5.16, theoretical and experimental relationships between 𝑣𝑁 and 𝜃𝑁 are 

presented for Case 3. A reasonable agreement between the experimental and 

theoretical relationships is observed until the severe plastic flow of the load 

bearing soil (the theoretical relationship is calculated by using the parameters 

obtained from the exponential form of the vertical load displacement relationship). 

The theoretical 𝑣𝑁 - 𝜃𝑁 relationships calculated (i) without considering the soil 

nonlinearity and, (ii) by considering a hyperbolic 𝑉 − 𝑣 relationship are not in 

good agreement with the experimental one. During the experiment of specimen 

tested under the conditions of load Case 3, probably a premature settlement 

occurred due to possible errors in the compaction process of the underlying soil. 
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experimental results at the beginning of the test.  The theoretical relationships 

between 𝑣𝑁 and 𝜃𝑁 is applicable until the excessive plastic flow of the load 

bearing soil. Consequently, the experimental and theoretical relationships are not 

compared after the formation of this plastic flow. 

 

 

Figure 5.16 The relationship between 𝑣𝑁 and 𝜃𝑁 calculated by considering (a) an 

exponential function, (b) a hyperbolic function, (c) a linear response, and (d) the 

experimental data for load Case 3 

  

In Figure 5.17, the relationships between 𝑣𝑁 and 𝜃𝑁 of short pier are compared for 

case 6. It is observed that the experimental response of the foundation reasonably 

agree with the theoretical response calculated by ignoring the effect of soil 

nonlinearity. Such behavior indicates that the nonlinear behavior of soil was not 

significantly effective on the 𝑣𝑁 − 𝜃𝑁 relationship of the foundation. 

Consequently, a discrepancy is observed between the experimental and theoretical 

results obtained by both of nonlinear relationships between 𝑣𝑁 − 𝜃𝑁.  
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Figure 5.17 The relationship between 𝑣𝑁 and 𝜃𝑁 calculated by considering (a) an 

exponential function, (b) a hyperbolic function, (c) a linear response, and (d) the 

experimental data for load Case 6 

 

The relationship between 𝑣𝑁 and 𝜃𝑁 are presented in Figure 5.18 for Case 9. It is 

observed that the most accurate theoretical relationship is the one calculated using 

the exponential function. This accuracy illustrates that the theoretical values of 𝜙 

and 𝐺0calculated using exponential function (Table 3) is more convenient than 

those calculated by using hyperbolic function for this experimental study. 
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Figure 5.18 The relationship between 𝑣𝑁 and 𝜃𝑁 calculated by considering (a) an 

exponential function, (b) a hyperbolic function, (c) a linear response, and (d) the 

experimental data for load Case 9 

 

It was observed that use of exponential function (Equation 5.12) in calculating the 

theoretical relationship between 𝑀𝑁 and 𝜃𝑁 generally yielded more consistent 

results with the experimental ones than the hyperbolic function (Equation 5.9). 

Therefore, only the theoretical results obtained by the exponential functional form 

are plotted.  

 

The theoretical relationships between 𝑀𝑁 and 𝜃𝑁 are compared with the 

experimental cyclic 𝑀𝑁 − 𝜃𝑁 relationships in Figures 5.19, 5.20, and 5.21. In 

Figure 5.19, a complete number of loading cycles is used to observe the general 

behavior and associated accuracy of the theoretical relationships in longer ranges 

of 𝜃𝑁 for load cases 3 and 5. It is observed that the theoretical 𝑀𝑁 − 𝜃𝑁 envelope 

is in reasonable agreement with the peak points of experimental results.   
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Figure 5.19 The relationship between 𝑀𝑁 and 𝜃𝑁 calculated by considering (a) an 

exponential function and by experimental data for (b) Case 3 and (c) Case 5 

 

In Figure 5.20 complete loading cycles are used to observe the accuracy of the 

proposed theoretical relationships for load cases 6 and 8. Figure 5.20 shows that 

the theoretical 𝑀𝑁 − 𝜃𝑁 envelope is in reasonable agreement with the experimental 

results for relatively small values of 𝜃𝑁 (i.e., 𝜃𝑁 = 10). On the other hand, for 

higher values of 𝜃𝑁 agreement between the theoretical and experimental 

relationships decays. 

 

 

Figure 5.20 The relationship between 𝑀𝑁 and 𝜃𝑁 calculated by considering (a) an 

exponential function and by experimental data for (b) Case 6 and (c) Case 8 
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Figure 5.21 compares the proposed theoretical 𝑀𝑁 and 𝜃𝑁 relationships with 

experimental ones for load cases 9 and 11. Figure shows that the theoretical 𝑀𝑁 −

𝜃𝑁 envelope follows a similar trend with the experimental data until  𝜃𝑁 = 10.  For 

higher ranges of 𝜃𝑁, the agreement between the theoretical and experimental 

relationships decays. 

 

 

 

Figure 5.21 The relationship between 𝑀𝑁 and 𝜃𝑁 calculated by considering (a) an 

exponential function and by experimental data for (b) Case 9 and (c) Case 11 

 

In Figures 5.22, 5.23 and 5.24, only the first three cycles of cyclic loading 

experiments are used to observe the accuracy of the theoretical relationships in 

lower ranges of 𝜃𝑁. In Figure 5.22, the closer views of the cyclic 𝑀𝑁 − 𝜃𝑁 

relationships show a reasonable accuracy for load cases 3 and 5. The peak points 

of each load cycle are almost on the theoretical relationship. 
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Figure 5.22 The relationship between 𝑀𝑁 and 𝜃𝑁 in the lower range of 𝜃𝑁 

calculated by considering (a) an exponential function and by experimental data for 

(b) Case 3 and (c) Case 5 

 

In Figure 5.23, the closer views of the cyclic 𝑀𝑁 − 𝜃𝑁 relationships are compared 

with the theoretical relationship. In the figure, a reasonable accuracy is observed 

for load cases 6 and 8. The maximum difference between theoretical and 

experimental values of 𝑀𝑁 is approximately 20% appearing around 𝜃𝑁 = 1. For 

the longer range of 𝜃𝑁, theoretical and experimental 𝑀𝑁 show better agreement. 

 

 

Figure 5.23 The relationship between 𝑀𝑁 and 𝜃𝑁 in the lower range of 𝜃𝑁 

calculated by considering (a) an exponential function and by experimental data for 

(b) Case 6 and (c) Case 8 
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Figure 5.24 shows the closer views of the cyclic 𝑀𝑁 − 𝜃𝑁 relationships for load 

cases 9 and 11. It is observed that the experimental value of 𝑀𝑁 initiating the uplift 

is smaller than that calculated by using the proposed theoretical model. The 

relative difference between these two 𝑀𝑁 values is approximately 10%. 

Furthermore, the maximum difference between theoretical and experimental values 

of 𝑀𝑁 for the same 𝜃𝑁 is approximately 40% in the range 0 < 𝜃𝑁 < 5. 

 

 

Figure 5.24 The relationship between 𝑀𝑁 and 𝜃𝑁 in the lower range of 𝜃𝑁 

calculated by considering (a) an exponential function, and by experimental data for 

(b) Case 9 and (c) Case 11  

 

Another important observation on Figures 5.19 to 5.24 is the increase in the 

moment values in cyclic loading cases with respect to the monotonic loading cases. 

Such increase is explained with the densification of the soil by Drosos et al. 

(2012). 
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Earthquake and Vibration Risk Evaluation” to examine the response of rigid 

shallow foundations subjected to dynamic loads (Negro et al., 2000). Results 

obtained from this experimental study were used by a number of researchers for 

the validation of proposed analytical procedures (Allotey and El Naggar, 2008; 

Grange et al., 2008; Figini et al. 2012). The results of TRISEE tests are used to 

verify the results obtained by the proposed theoretical method. 

 

In TRISEE experiments, 1 m length square shallow foundations were embedded 

by 1m  in the Ticino sand with two relative densities: (i) 𝐷𝑟 = 85% (high density) 

and (ii) 𝐷𝑟 = 45% (low density). 𝜙 and 𝐹𝑆 for loose and dense sand conditions are 

obtained by Harden et al. (2005). In the study, 𝜙 values are recommended as 42 

and 38 degrees, respectively for the dense and loose Ticino sand. In this study, the 

𝜙 values for loose and dense sand conditions are also calculated. The calculated 

ranges of 𝜙 values are identical with those presented by Harden et al. (2005). 

Similarly, vertical factors of safety are given as 12.5 and 20.7 for the dense and 

loose sand conditions, respectively. 𝐺0 is calculated by using the horizontal 

stiffness, 𝐾ℎ, and by using pertinent equation in Table 2.1. In the study of Faccioli 

et al. (2001), 𝐾ℎ is given as 110000 kN/m for TRISEE experiments. By using this 

recommended value of 𝐾ℎ, 𝐺0 is calculated as 41555 kN/m2 for TRISEE 

experiments. 

 

In the experimental procedure, tests were conducted with variable loading 

conditions. In the tests, three types of cyclic loading patterns were used:  Type 1 

loading – small amplitude force controlled cyclic loading; Type 2 loading – ground 

motion like cyclic loading; and Type 3 loading - sinusoidal displacement cycles 

with increasing amplitude. In this study, results obtained from Type 3 loading for 

loose and dense sand conditions are used for verification purposes.  Other details 

of the experimental study are presented by Faccioli and Paolucci (1998). All 

parameters required to conduct the analyses are summarized in Table 5.4. 
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Table 5.4 Calculated parameters used in the theoretical model for TRISEE tests 

 

𝑫𝒓 

(%) 

𝝓 

(°) 

𝑮𝟎 

(𝑘𝑁/𝑚2) 

𝜸 

(𝑘𝑁/𝑚3) 
𝑵𝒒 𝑵𝒄 𝑵𝜸 

45 38 15000 14.5 49 61 56 

85 42 41555 16.2 84 93 112 

 

The results of the theoretical model are compared with the experimental results, in 

Figure 5.25 for loose soil conditions. The peak points of the experimental cyclic 

curves are marked with solid circles for comparisons with the theoretical 

relationship. It is observed that the maximum difference between the theoretical 

experimental relationships is approximately 40% appearing at 𝜃=0.01 rad. The 

figure shows that there is a constant increase in the peak M of experimental 𝑀 - 𝜃 

relationship. The theoretical model calculates an average theoretical M value lying 

between the peak M values of experimental 𝑀 - 𝜃 relationship. This difference 

between the theoretical and experimental relationship can be explained by the 

effect of limited foundation embedment in the experiments. More detailed 

numerical analyses involving discretization of nonlinear continuous load-bearing 

medium can be necessary for clarification of the reasons. Such a study is left as a 

future study.  
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Figure 5.25 The relationship between 𝑀 and 𝜃 for loose sand conditions and 

loading Type 3 

 

Similarly, the results of the theoretical model, in terms of 𝑀 and 𝜃 relationship, are 

compared with the experimental 𝑀 and 𝜃 relationships for dense soil conditions in 

Figure 5.26. Figure 5.26 shows a reasonable agreement until 𝜃= 0.01 rad. After 

this point, the theoretical model cannot capture the increasing values of M for 

higher values of 𝜃. Nevertheless, the agreement between the theoretical and 

experimental results is better that that shown in Figure 5.25. 

 

 

Figure 5.26 The relationship between 𝑀 and 𝜃 for dense sand conditions and 

loading Type 3 
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5.3.3. Simulation of the tests conducted by Kokkali et al. (2015) 

 

Kokkali et al. (2015) conducted centrifuge experiments of shallow foundations 

resting on dry Nevada sand. Results of the tests conducted in scope of 

experimental study are used for validation of the proposed theoretical model. 

 

In the centrifuge experiments, Kokkali et al. (2015) simulated the tests of a square 

shallow foundation with a prototype width of 3 m. The actual dimensions of the 

tested foundation surfaces were 6 cm x 6 cm.  The test specimens were placed on 

dry Nevada sand with relative densities of Dr =45% (loose) and Dr =90% (dense). 

The physical properties of the dry Nevada sand are presented in Table 5.6. The 

factor of safety against bearing failure against 𝑉 for loose and dense sand 

conditions are given as 5 and 11, respectively. 𝜙 is 44.5 and 48 degrees for loose 

and dense conditions of sand, respectively. 𝐺0 values are calculated by considering 

the relationships between 𝑉 and 𝑣 of the experimental data (Figure 5.27), and 𝐹𝑆 

was reported by Kokkali et al. (2015). Details of the calculation procedure of  𝜙 

and  𝐺0 are identical to the aforementioned procedure in Section 5.3.1.  

 

  

Figure 5.27 Results of the vertical loading tests (Kokkali et al., 2015) 
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It should be noted that calculated 𝜙 values are later modified to improve the 

agreement between theoretical and experimental relationships between 𝑀𝑁 and 𝜃𝑁. 

On the other, Kokkali et al. (2015) does not present any further information on the 

effective value of 𝜙 in the model, whereas this parameter is sensitive to the 

preparation and other conditions in testing. In Table 5.5, 𝜙 values derived using 

experimental vertical load-displacement relationships are presented instead of 𝜙 

that provides a good agreement between the theoretical and the experimental 

relationships.  

 

 

Table 5.5 Calculated parameters used in the theoretical model for the tests 

conducted by Kokkali et al. (2015) 

 

𝑫𝒓 

(%) 

𝝓 

(°) 

𝑮𝟎 

(𝑘𝑁/𝑚2) 

𝜸 

(𝑘𝑁/𝑚3) 
𝑵𝒒 𝑵𝒄 𝑵𝜸 

45 44.5 19176 15.25 43 56 47 

90 48 74800 16.9 85 94 114 

 

Experimental relationships between 𝑀𝑁 and 𝜃𝑁 of the test specimens are presented 

in Figure 5.28. The figure shows that the 𝑀𝑁 obtained for the dense soil conditions 

are higher than the 𝑀𝑁 values obtained for the loose soil conditions. These  

experimental relationships between 𝑀𝑁 and 𝜃𝑁 of the test specimens are compared 

with relationships between 𝑀𝑁 and 𝜃𝑁 calculated by using the theoretical 

relationship in Figures 5.29 and 5.30 for loose and dense soil conditions 

respectively.  
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Figure 5.28 The relationships between 𝑀𝑁 and 𝜃𝑁 according to the results of the 

monotonic loading tests (Kokkali et al., 2015) 

 

Figure 5.29 shows that the theoretical relationship between 𝑀𝑁 and 𝜃𝑁 is not 

consistent with the experimental datas. It is known that the results obtained from 

reduced scale tests may suffer from scaling effects (Perkins and Madson, 2000). 

Possible problems associated with scaling effects may arise due to: (i) the 

nonlinearity of Mohr Coulomb failure envelope for soil deposits; (ii) progressive-

failure mechanism leading to different mobilized ∅ values in different locations on 

failure plane; (iii) inherent anisotropic deformation and strength (Siddiquee et al., 

2001); and (iv) highly nonlinear stress-hardening or softening of in stress strain 

relationship (Siddiquee et al., 2001). In relation to that the discrepancy between the 

experimental and theoretical curves may be due to such scaling effects in the 

experimental study. A more detailed numerical simulation of the test model is 

necessary for clarification of the reasons of inconsistency. These studies, involving 

numerical discretization of nonlinear medium, are left as future studies.  
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Figure 5.29 Comparison of the relationship between 𝑀𝑁 and 𝜃𝑁 for loose sand 

conditions: (a) experimental, (b) theoretical with 𝜙 = 44.5°, (c) theoretical with 

𝜙 = 37° 

 

Figure 5.30 illustrated that the theoretical relationship between 𝑀𝑁 and 𝜃𝑁 is not in 

good agreement with the experimental relationship. The differences between the 

 theoretical and experimental results may be attributed to the questionable test 

results obtained by using small scale test specimens (Perkins and Madson, 2000). 

On the other hand, if the calculated 𝜙 values are modified to yield compatible 

theoretical results with the experimental data (Figures 5.29 and 5.30), 𝜙 of dry 

Nevada sand appear as 37⁰ for loose sand and 41.5⁰ for dense sand. These 

observations may imply an uncertainty about the presumed test conditions, or a 

limitation of theoretical model. 
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Figure 5.30 Comparison of the relationship between 𝑀𝑁 and 𝜃𝑁 for dense sand 

conditions: (a) experimental, (b) theoretical with 𝜙 = 48°, (c) theoretical with 𝜙 =

41.5° 
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CHAPTER 6 

 

 

APPLICATIONS  

 

 

 

6.1. Introduction 

 

Parametric analyses are conducted to observe the sensitivity of 𝑀/𝑀∞ − 𝜃𝑁 and 

𝑣/𝑣∞ − 𝜃𝑁 relationships to model parameters. In the analyses, the moment and 

vertical displacement of the foundations are normalized by the moment reaction of 

a foundation resting on a linearly elastic halfspace. 𝑀∞ represents the moment on 

the foundation calculated without considering the material nonlinearity. Similarly 

𝑣∞ represents the vertical displacement of the foundation without considering the 

material nonlinearity. It should be noted for 𝐹𝑆 → ∞, 𝑀/𝑀∞ ratio and 𝑣/𝑣∞ ratio 

are equal to 1. In the analyses, the principal parameters are the length of moment 

arm (ℎ𝑠), the internal friction angle of load bearing soil (𝜙), the cohesion of soil 

(𝑐𝑠), factor of safety against bearing failure (𝐹𝑆), shape and dimensions of shallow 

foundations. The parametric theoretical analyses are conducted by using an 

exponential function for the 𝑉 − 𝑣 relationship, because this function was shown 

to provide better agreement with the experimental data (section 5.3.1).   

 

6.1.1. The Effect of 𝒉𝒔 on the variation of 𝑴/𝑴∞  − 𝜽𝑵 and 𝒗/𝒗∞ − 𝜽𝑵 

relationships 

 

Effect of ℎ𝑠 on the variation of the relationships between  𝑀/𝑀∞  and 𝜃𝑁 (Figure 

6.1), and that between 𝑣/𝑣∞ and 𝜃𝑁 (Figure 6.2) relationships are presented in this 

section. The parametric analyses are conducted by considering a square shaped 

(i.e., 1 m x 1 m) shallow foundation with a factor of safety, 𝐹𝑆, equal to 5. In 
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Figure 6.1, the relationships between 𝑀/𝑀∞ and 𝜃𝑁 of a square foundation are 

plotted for a set of ℎ𝑠. An increase in ℎ𝑠, increases moment capacity. This is 

attributed to the observation that a small amount of 𝐻 will be required to initiate 

uplift if ℎ𝑠 is relatively long. The decrease in load inclination yields to relatively 

higher bearing capacity due to decreasing load inclination factor (section 5.2.3) 

leading to a smaller soil nonlinearity. 

 

 

Figure 6.1 Variation of the relationship between 𝑀/𝑀∞ and 𝜃𝑁 by ℎ𝑠 

 

Similar explanation is also valid for the relationship between  𝑣/𝑣∞ and 𝜃𝑁 

presented in Figure 6.2.  For a shallow foundation with a long column, a smaller 𝐻 

is required to have the rotation value causing uplift. Such a smaller disturbance 

leads to a small amount of settlement. Consequently, the foundation displays only 

upward displacement (i.e., decreasing 𝑣/𝑣∞) in case ℎ𝑠 is as large as two times the 

width of the foundation. 
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Figure 6.2 Variation of the relationship between 𝑣/𝑣∞ and 𝜃𝑁 with ℎ𝑠 

 

6.1.2. Effect of 𝝓 on the 𝑴/𝑴∞ − 𝜽𝑵 and 𝒗/𝒗∞ − 𝜽𝑵 relationships 

 

Effects of 𝜙 on the variation of 𝑀/𝑀∞ − 𝜃𝑁 (Figure 6.3), and 𝑣/𝑣∞ − 𝜃𝑁 (Figure 

6.4) relationships are presented. The parametric analyses are conducted by using a 

square shaped shallow foundation (i.e., 1 m x 1 m). In Figure 6.3, the relationship 

between 𝑀/𝑀∞ and 𝜃𝑁 of foundation are plotted as a function of 𝜙 for a load 

bearing soil with zero cohesion, 𝑐𝑠.  As known,  𝜙 is an effective factor on the 

variation of 𝐹𝑆. Varying 𝜙 used in the analyses lead to varying 𝐹𝑆 which are also 

shown in this figure. It is observed that increasing 𝜙 leads to higher ranges of 𝐹𝑆. 

An increase in 𝐹𝑆 reduces the effect of soil nonlinearity on the variation of the 

response.  
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 Figure 6.3 Variation of the relationship between 𝑀/𝑀∞ and 𝜃𝑁 with 𝜙 

 

Figure 6.4, shows the relationship between 𝑣/𝑣∞  and 𝜃𝑁  of the foundation as a 

function of 𝜙 for a load bearing soil with zero cohesion. Behavior similar to that 

observed in Figure 6.3 is also observed from this figure. Increasing 𝜙 leads to 

higher ranges of 𝐹𝑆. An increase in 𝐹𝑆 reduces the effect of soil nonlinearity on 

the variation of the response. In conclusion, increasing 𝜙 leads to a decrease in 

𝑣/𝑣∞ due to reduced effect of soil nonlinearity.  

 

 

Figure 6.4 Variation of the relationship between 𝑣/𝑣∞ and 𝜃𝑁 with 𝜙 
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6.1.3. Effect of 𝒄𝒔 on the variation of 𝑴/𝑴∞ − 𝜽𝑵 and 𝒗/𝒗∞ − 𝜽𝑵 

relationships 

 

The effects of 𝑐𝑠 on the variation of the relationships between 𝑀/𝑀∞ and 𝜃𝑁 

(Figure 6.5), and 𝑣/𝑣∞ and 𝜃𝑁 (Figure 6.6) are presented. The parametric analyses 

are conducted by using a square shaped foundation (i.e., 1 m x 1 m). The 𝑀/𝑀∞ 

and 𝜃𝑁 relationships of foundation are plotted as a function of 𝑐𝑠 (Figure 6.5). 𝑐𝑠 is 

effective on the variation of 𝐹𝑆 of a foundation. Varying 𝑐𝑠 used in the analyses 

lead to varying 𝐹𝑆. It is observed that 𝑀/𝑀∞ increases with increasing 𝑐𝑠 and 

leads to higher ranges of 𝐹𝑆. Such an increase illustrates the reduced effect of soil 

nonlinearity on the relationship between 𝑀/𝑀∞ and 𝜃𝑁.  

 

 

Figure 6.5 Variation of the relationship between 𝑀/𝑀∞ and 𝜃𝑁 as a function of 𝑐𝑠 

 

The relationships between 𝑣/𝑣∞ and 𝜃𝑁 of foundation are plotted as a function of 

𝑐𝑠, cohesion of soil, in Figure 6.6. As explained before, variability of 𝑐𝑠 used in the 

analyses lead to variability in 𝐹𝑆. It is observed in Figure 6.6 that 𝑣/𝑣∞ decreases 

with increasing 𝑐𝑠 and with decreasing 𝐹𝑆 due to the reduced soil nonlinearity. 
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Figure 6.6 Variation of the relationship between 𝑣/𝑣∞ and 𝜃𝑁 as a function of 𝑐𝑠 

 

6.1.4. The effect of foundation shape and loading direction on the relationship 

between 𝑴/𝑴∞ − 𝜽𝑵 and 𝒗/𝒗∞ − 𝜽𝑵 

 

Effect of foundation shape and loading direction on the variation of the 

relationship between 𝑀/𝑀∞ and 𝜃𝑁 (Figure 6.7, Figure 6.8), and that between 

𝑣/𝑣∞ and 𝜃𝑁 (Figure 6.9, Figure 6.38) are presented in this section. The analyses 

are conducted on square and circular shallow foundations. The foundations with 

different shapes but identical properties (i.e., 𝐾𝑣, 𝐾𝑟 and 𝐹𝑆) are considered to 

observe the effect of theoretical parameters. The identical properties of foundations 

are obtained by modifying the parameters 𝐺, 𝐵 and 𝜙. In the analyses, square-

shaped shallow foundations are subjected to one and two-way eccentric loadings 

(Appendix A). The results are compared in terms of load eccentricity and are 

presented in Figure 6.8 and Figure 6.10 for 𝑀/𝑀∞ − 𝜃𝑁, and 𝑣/𝑣∞−𝜃𝑁 

relationship, respectively. 

 

Figure 6.7 shows that the range of 𝑀/𝑀∞ for the square shaped foundations are 

greater than those of their circular counterparts with identical 𝐹𝑆. It should be 
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noted that higher ranges of 𝜙 are assigned for comparisons (i.e., to have identical 

𝐹𝑆 for circular and square foundations). Higher ranges of 𝜙 results in relatively 

higher ranges of 𝑀/𝑀∞ for square shaped foundations due to the increased load 

bearing capacity of the soil deposit.  

 

 
 

Figure 6.7 Variation of the relationship between 𝑀/𝑀∞ and 𝜃𝑁 by the shape of 

foundation 

 

Figure 6.8 shows that 𝑀/𝑀∞ for the square shaped foundations subjected to one-

way eccentric loading are greater than those of their counterparts subjected to two-

way eccentric loading with identical 𝐹𝑆. It is observed that two-way eccentric 

loading leads to a higher soil nonlinearity with respect to one-way eccentric 

loading. The increase in the soil nonlinearity may be attributed to the relatively 

higher disturbance of load bearing soil deposit in two-way eccentric loading 

conditions.  
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Figure 6.8 Variation of the relationship between 𝑀/𝑀∞ and 𝜃𝑁 as a function of 

loading direction 

 

It is observed in Figure 6.9 that the settlement of a circular foundation is higher 

than that of square foundation with identical FS. Higher ranges of 𝜙 resulted in 

relatively smaller ranges of 𝑣/𝑣∞ for square shaped foundations due to the 

increased load bearing capacity of the soil deposit. Moreover, the ranges of 𝑣/𝑣∞ 

of the foundations with higher FS are smaller than those of foundations with 

smaller FS.  

 

 

 

Figure 6.9 Variation of the relationship between 𝑣/𝑣∞ and 𝜃𝑁 by the foundation 

shape 
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Figure 6.10 shows that the settlement of the foundations subjected to two-way 

eccentric loading are higher than those of foundations subjected to one way 

eccentric loading.  Amplified soil nonlinearity due to two-way eccentric loading 

leads higher ranges of 𝑣/𝑣∞ as expected. Figure 6.10 shows that the settlement of 

the foundations subjected to two-way eccentric loading are higher than those of 

foundations subjected to one way eccentric loading.  Amplified soil nonlinearity 

due to two-way eccentric loading leads higher ranges of 𝑣/𝑣∞ as expected. 

 

 
 

Figure 6.10 Variation of the relationship between 𝑣/𝑣∞ and 𝜃𝑁 by loading 

direction 

 

6.1.5. The effect of foundation dimensions on 𝑴/𝑴∞ − 𝜽𝑵 and 𝒗/𝒗∞ − 𝜽𝑵 

relationships 

 

Effect of foundation dimensions on the variation of 𝑀/𝑀∞ and 𝜃𝑁 (Figure 6.11), 

and on the relationship between 𝑣/𝑣∞ and 𝜃𝑁 (Figure 6.12) are presented for 

rectangular foundations. In the analyses, FS of the model foundations are equal to 

5. Figure 6.11 shows that the ratio 𝑀/𝑀∞ the foundation with dimensions L=2B is 

close to 1. This is attributed to the higher cross sectional area of the foundation 

which results in smaller stresses on the load bearing soil deposit. Due to reduced  
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stress values, the shear modulus of the underlying soil deposit degrades slower 

than that of a load bearing soil deposit underlying a foundation with smaller area. 

Consequently, the effect of soil plasticity becomes less pronounced in a relatively 

large foundation. On the other hand, a high amount of H will be required to initiate 

uplift if the cross sectional area of the foundation is relatively large. The increase 

in the load inclination yields to relatively smaller bearing capacity due to 

increasing load inclination factor (section 5.2.3) leading to a higher soil 

nonlinearity. Thus, negative effect of the increased foundation length reduces the 

positive effect of the smaller stress and consequently, a limited difference may be 

observed in the response of shallow rectangular foundations with varying lengths 

in the direction of uplift.  

 

 

Figure 6.11 Variation of the relationship between      and    as a function of 

rectangular foundation dimensions for      

 

Figure 6.12 shows that the      ratio of the foundation with smaller length is 

greater than those with greater length. This may be attributed to the higher cross 

sectional area of the larger foundation which results in smaller stresses on the load 

bearing soil deposit. These reduced stress values lead to a small decrease in the 

shear modulus of the underlying soil deposit. Consequently, the effect of soil 

plasticity becomes less pronounced in a relatively large foundation.  
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Figure 6.12 Variation of the relationship between 𝑣/𝑣∞ and 𝜃𝑁 as a function 

rectangular foundation size for 𝐹𝑆 = 5 
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CHAPTER 7 

 

 

SUMMARY AND CONCLUSIONS 

 

 

 

7.1. Summary 

 

Eccentric loading on foundations can cause partial separation of shallow 

foundations from load bearing soil due to the lack of tensional strength on the 

interface between soil and foundation. The partial separation, namely the uplift of 

foundation, may significantly alter the foundation stiffness to be considered in 

structural design. The nonlinear response of shallow foundations partially loosing 

contact with underlying soil due to eccentric loading is important for an accurate 

estimation of foundation stiffness in structural analyses.  

 

This study presents an approximate theoretical method to calculate the 

displacements of arbitrarily shaped ideally-rigid shallow foundations subjected to 

inclined and eccentric loading. The theoretical method is mainly based on two 

assumptions such that (i) the static impedance coefficients used in the calculations 

are accurate; and (ii) the boundary between the part of foundation that is in contact 

with soil and the part that is not supported by soil is linear. 

 

 The proposed method is a computationally simple yet robust technique, and is 

capable of involving the effects of material and geometrical nonlinearities on the 

response of shallow foundations to monotonic loading conditions. The threshold 

moment for the initiation of foundation uplift for ideally rigid foundations resting 

on deformable medium is proportional to the ultimate moment that can be applied 

on a foundation resting on a rigid support. The moment on foundation after 
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initiation of uplift is related to the geometric properties of the instantaneous shape 

of the foundation that is in contact with soil, and to the mechanical properties of 

the deformable support. In the study, the material nonlinearity (i.e. inelasticity of 

the soil) is taken into account by using an equivalent shear modulus to simulate the 

lumped stiffness of load bearing medium. 

 

The approximate theoretical method is justified by comparing the results with the 

available solutions in the literature. Furthermore, parametric analyses are 

conducted to investigate the effect of geometric and material properties of the 

problem on the response of shallow foundations. Finally, the accuracy of the 

approximate theoretical method is tested by using the results of several 

experimental studies presented in literature. 

 

7.2. Conclusions 

 

The following conclusions are deduced. 

 

 The response of a foundation to eccentric load is related to a non-

dimensional parameter 𝛼 which is the ratio of moment acting on a 

foundation to the ultimate moment that can be applied on a foundation 

resting on a rigid support. 

 The effect of the thickness of a finite elastic layer on the relationship 

between overturning moment (𝑀𝑁) and the rocking angle (𝜃𝑁) is 

insignificant in the case that the layer thickness is not less that the 

foundation width. Hence, the theoretical solutions on the rocking stiffness 

of foundations resting on a uniform medium is applicable provided that the 

layer thickness is not less than the foundation width. 
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 The proposed theoretical model can be used for computation of the 

response of an arbitrarily shaped foundation during uplift with reasonable 

accuracy.  

 The calculated theoretical range of 𝛼 initiating the foundation uplift is 

consistent with those reported by Chopra and Yim (1985) and Wolf (1976). 

A reasonable agreement between the theoretical relationships for 𝛼 

proposed in this study and that given by Gazetas et al. (2013) is also 

observed. So the alternative solutions presented by these researchers are 

supported. 

 The theoretically calculated the relationship between 𝑀𝑁 and 𝜃𝑁 are in 

reasonable agreement with those calculated using methods of Wolf (1976) 

and Cremer (2001). 

 

 Factor of safety against bearing capacity failure significantly effects the 

relationship between 𝑀𝑁 and 𝜃𝑁, provided that this factor is not greater 

than 15. 

 

7.3. Future Studies 

 

The observed inconsistencies between the theoretical relationships proposed in this 

study and the results of some of experiments is showing the need for a more 

detailed numerical analysis of continuum, so that further improvements in the 

computationally simple method presented in this study will be possible.    
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APPENDIX A 

 

The Relation between the Normalized Value of 𝒃, 𝒄, 𝑳, 𝒇, 𝑰 and the Normalized 

Value of 𝒄′ for Various Foundations 

 

The shape of rectangular foundation remains stable during uplift (Figure A.1). 

During the uplift of the shape of rectangular foundation and the shape of square 

foundation become similar to that of strip foundation. 

 

 

Figure A.1 Reduction in effective foundation width of the rectangular foundation 

after initiation of uplift 
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The circular shaped foundation is replaced by an arbitrarily shaped foundation 

after initiation of uplift (Figure A.2). Approximate methods may be developed to 

determinate the contact area in the literature. Wolf (1976) proposed that the actual 

irregular area of contact is replaced by an equivalent circular plate. Consequently, 

in this research study, the actual irregular area of contact is accurately calculated 

for the stiffness coefficients of the circular foundation. 

 

 

 

Figure A.2 Reduction in effective foundation width of the circular foundation after 

initiation of uplift 

 

In the study one way (Figure A.3a) and two-way eccentric loading (Figure A.3b) 

were applied by using a rotated square foundation (Figure A.4). 
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(a)      (b)  

Figure A.3 Applied loading: (a) one way eccentricity, (b) two-way eccentricity 

 

The shape of a rotated square foundation during uplift changes considerably. In 

fact, the diagonal square shaped foundation is replaced by an arbitrarily shaped 

foundation after initiation of uplift (Figure A.4).  

 

Figure A.4 Reduction in effective foundation width of the diagonal square 

foundation after initiation of uplift 
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The relation between 𝑐 and 𝑐′ for a foundation is presented in Equation A.1. 

 

𝑐 = 𝐶 − 𝑐′                                                                                                                        (𝐴. 1) 

 

As an example the analytical relationships between stated parameters are presented  

for a square foundation: 

 

𝑏 = 2. 𝑐′                                                                                                                         (𝐴. 2𝑎) 

 

𝐿 = 𝑏                                                                                                                               (𝐴. 2𝑏) 

 

𝑓 = 𝑏. 𝐿                                                                                                                           (𝐴. 2𝑐) 

 

𝐼 =
𝑏3. 𝐿

12
                                                                                                                        (𝐴. 2𝑑) 

 

The relation between the normalized value of 𝑏, 𝑐, 𝐿, 𝑓, 𝐼 (i.e.,𝑏𝑁, 𝑐𝑁 , 𝐿𝑁 , 𝑓𝑁 , 𝐼𝑁) and 

the normalized value of 𝑐′ (i.e., 𝑐𝑁
′ )for various foundations are presented in Figure 

A.5 - Figure A.9.  𝑐′, 𝑏, 𝑐, 𝐿, 𝑓 and  𝐼 are normalized with the initial value of that, 

respectively.  
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Figure A.5 The relation between 𝑏𝑁 and 𝑐𝑁
′  for (a) rectangular foundations,  

(b) circular foundations and (c) diagonal square foundations 

 

 

Figure A.6 The relation between 𝑐𝑁 and 𝑐𝑁
′  for (a) rectangular foundations,  

(b) circular foundations and (c) diagonal square foundations 
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Figure A.7 The relation between 𝑓𝑁 and 𝑐𝑁
′  for (a) rectangular foundations,  

(b) circular foundations and (c) diagonal square foundations 

 

 

Figure A.8 The relation between 𝐼𝑁 and 𝑐𝑁
′  for (a) rectangular foundations,  

(b) circular foundations and (c) diagonal square foundations 
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Figure A.9 The relation between 𝐿𝑁 and 𝑐𝑁
′  for (a) rectangular foundations, 

 (b) circular foundations and (c) diagonal square foundations 
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APPENDIX B 

 

 

Equations Proposed by Cremer (2001) 

 

Equations proposed by Cremer (2001) to calculate the response parameters of strip 

foundations. 

 

Cremer (2001) proposed the following relationships; 

 

 

𝑀 = 𝐾𝜃𝜃                             𝑀 < 𝑀𝑢𝑝𝑙𝑖𝑓𝑡 (𝑏𝑒𝑓𝑜𝑟𝑒 𝑢𝑝𝑙𝑖𝑓𝑡)                                    (𝐵. 1)  

 

 

𝑀𝑢𝑝𝑙𝑖𝑓𝑡 = 𝐾𝜃𝜃𝑢𝑝𝑙𝑖𝑓𝑡            𝑀 = 𝑀𝑢𝑝𝑙𝑖𝑓𝑡 (𝑢𝑝𝑙𝑖𝑓𝑡 𝑜𝑛𝑠𝑒𝑡)                                     (𝐵. 2)  

 

 

and 

 

𝑀

𝑀𝑢𝑝𝑙𝑖𝑓𝑡
= 2 −

𝜃𝑢𝑝𝑙𝑖𝑓𝑡

𝜃
        𝑀 > 𝑀𝑢𝑝𝑙𝑖𝑓𝑡 (𝑑𝑢𝑟𝑖𝑛𝑔 𝑢𝑝𝑙𝑖𝑓𝑡)                                   (𝐵. 3) 

 

where  𝐾𝜃 is calculated by using Equation 2.7 (a=0). 
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APPENDIX C 

Derivation of 𝜶 for Foundation on Winkler Springs 

 

Figure C.1 Typical behavior of foundation on Winkler springs 

 

Derivation of 𝛼 for foundation on Winkler springs is 

 

∑ 𝐹𝑦 = 0 →   𝑅 = 𝑉                                                                                                    (𝐶. 1) 

 

and  

 

∑ 𝑀 = 0 →  𝑀𝑢𝑝𝑙𝑖𝑓𝑡 =
𝑅𝑏

6
=

𝑉𝑏

6
                                                                            (C. 2) 

 

Substitution of Equation C.2 in Equation 3.13 yields to 

𝛼 =
1

3
                                                                                                                                (C. 3) 
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APPENDIX D 

Derivation of 𝜶 for Foundations with Regular Shapes 

 

For a prismatic section 𝛼 is calculated using Equation 3.12. From Equation 3.12, it 

may be observed that the 𝛼 of a prismatic shaped foundation depends on the term 

𝜕𝐾𝜃(𝑏, 𝐿) 𝜕𝑏⁄ . In relation to that 𝜕𝐾𝜃(𝑏, 𝐿) 𝜕𝑏⁄  of several prismatic foundations 

are calculated and substituted in to Equation 3.12 to calculate 𝛼. 

 

For rectangular foundations on Winkler Springs, 𝜕𝐾𝜃(𝑏, 𝐿) 𝜕𝑏⁄   is calculated by 

using Equation 2.9  

 

𝜕𝐾𝜃(𝑏, 𝐿)

𝜕𝑏
=

3

𝑏
𝐾𝜃(𝑏, 𝐿)                                                                                                 (𝐷. 1) 

 

Substitutng  Equation D.1 in Equation 3.12 results in 

 

𝛼 =
1

3
                                                                                                                                (𝐷. 2) 

 

For rectangular foundations on elastic halfspace, 𝜕𝐾𝜃(𝑏, 𝐿) 𝜕𝑏⁄  is calculated by 

using the expression giving the rotational stiffness of arbitrarily shaped 

foundations (Table 2.1) 

 

𝜕𝐾𝜃(𝑏, 𝐿)

𝜕𝑏
=

2.25

𝑏
𝐾𝜃(𝑏, 𝐿)                                                                                           (𝐷. 3) 

 

Substitutng  Equation D.3 in Equation 3.12 results in 

 

𝛼 =
1

2.25
                                                                                                                          (𝐷. 4) 
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For circular foundations on elastic halfspace, 𝜕𝐾𝜃(𝑏, 𝐿) 𝜕𝑏⁄   is calculated by using 

the expression giving the rotational stiffness of arbitrarily shaped foundations 

(Table 2.1) or the expression giving the rotational stiffness of circular foundations 

(Table 2.2) 

 

  

𝜕𝐾𝜃(𝑏, 𝐿)

𝜕𝑏
=

3

𝑏
𝐾𝜃(𝑏, 𝐿)                                                                                                (𝐷. 5) 

 

Substituting  Equation D.5 in Equation 3.12 results in 

 

𝛼 =
1

3
                                                                                                                                (𝐷. 6) 

 

For strip foundations on elastic halfspace, 𝜕𝐾𝜃(𝑏, 𝐿) 𝜕𝑏⁄   is calculated by using the 

expression giving the rotational stiffness of strip foundations (Table 2.2) 

 

𝜕𝐾𝜃(𝑏, 𝐿)

𝜕𝑏
=

2

𝑏
𝐾𝜃(𝑏, 𝐿)                                                                                                 (𝐷. 7) 

 

Substituting Equation D.7 in Equation 3.12 results in 

 

𝛼 =
1

2
                                                                                                                                (𝐷. 8) 
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APPENDIX E 

 

 

Matlab Code for Calculating the Theoretical Response of Uplifting Shallow 

Foundations Subjected to Eccentric Loading 

 
function [out]=uplift(hs,V,SM,param,Gparam) 
Tc=dim(param);           
cp=Tc(1,2); 
Mult=V*cp;                   
dM=Mult/SM; 
M=0:dM:(Mult-dM);                 
H=M/hs; 
Mupl=SUB1(cp,H,V,SM,Tc,param,Gparam); 
MCOUNT=length(M); 
  for ICOUNT=1:MCOUNT 
if M(ICOUNT)>Mupl                                            

cp=SUB2(cp,H(ICOUNT),V,M(ICOUNT),SM,Tc,param,Gparam); 

end  
  [alpha(ICOUNT)]=SUB4(cp,H(ICOUNT),V,SM,Tc,param,Gparam); 
  hvtheta=SUB3(cp,H(ICOUNT),V,M(ICOUNT),Tc,param,Gparam);    
  h(ICOUNT)=hvtheta(1); 
  v(ICOUNT)=hvtheta(2); 
  theta(ICOUNT)=hvtheta(3); 

  end  

end 

 
function [x]=dim(param) 
  switch param(5) 
    case 1 
        x=load ('square.txt');  
    case 2 
        x=load ('rectangularwide.txt'); 
    case 3 
        x=load ('rectangularnarrow.txt'); 
    case 4 
        x=load ('circular.txt');  
    case 5 
        x=load ('diagonalsquare.txt'); 
    case 6 
        x=load ('strip.txt'); 
  end 
end 

 
function [b,c,L,f,I]=SUB0(cp,Tc) 
b=interp1(Tc(:,1),Tc(:,3),cp,'splines');   
c=interp1(Tc(:,1),Tc(:,4),cp,'splines');  

L=interp1(Tc(:,1),Tc(:,5),cp,'splines');   
f=interp1(Tc(:,1),Tc(:,6),cp,'splines');   
I=interp1(Tc(:,1),Tc(:,7),cp,'splines');   

end 
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function [Mupl]=SUB1(cp,H,V,SM,Tc,param,Gparam) 
Mult=V*cp;                                   
Mupl=SUB4(cp,H,V,SM,Tc,param,Gparam)*Mult;          

end 

  
function [cp]=SUB2(cpold,H,V,M,SM,Tc,param,Gparam) 
cp=fzero(@(cpnew)SUB5(cpnew,H,V,M,SM,Tc,param,Gparam),cpold, 

         optimset('TolX',1e-12));          
end 

  
function [hvtheta]=SUB3(cp,H,V,M,Tc,param,Gparam) 

B=Tc(1,1); 
[b,c,L,f,I]=SUB0(cp,Tc);  
hvtheta=(Kglob(B,b,c,f,I,L,H,V,param,Gparam)\[H;V;M])';           

end  

  
function [alpha]=SUB4(cp,H,V,SM,Tc,param,Gparam) 

B=Tc(1,1); 
[b,c,L,f,I]=SUB0(cp,Tc); 
eps=1/(SM*100); 
cpforward=cp*(1-eps); 
[bf,cf,Lf,ff,If]=SUB0(cpforward,Tc); 
alpha=(-(cf-c)/(bf-b))*Kr(B,b,f,I,L,H,V,param,Gparam) 

/(((Kr(B,bf,ff,If,Lf,H,V,param,Gparam)-           

Kr(B,b,f,I,L,H,V,param,Gparam))/(bf-b))*cp);               

end 

  
function [FUN]=SUB5(cp,H,V,M,SM,Tc,param,Gparam) 
[b,c,L,f,I]=SUB0(cp,Tc);  
HVMp=SUB6(c,H,V,M); 
Hp=HVMp(1); 
Vp=HVMp(2); 
Mp=HVMp(3); 
FUN=Mp/Vp-SUB4(cp,H,V,SM,Tc,param,Gparam)*cp;              

end  

  
function [HVMp]=SUB6(c,H,V,M) 
HVMp=(A(c)'\[H;V;M])';                            
end   

  
function [x]=A(c)                                
x=[1,0,0;0,1,c;0,0,1];                           
end 

   
function [x]=Kglob(B,b,c,f,I,L,H,V,param,Gparam) 
x=A(c)'*K(B,b,f,I,L,H,V,param,Gparam)*A(c);                   

end 

 
function [x]=K(B,b,f,I,L,H,V,param,Gparam) 
x=[Kh(B,b,f,L,H,V,param,Gparam),0,0;0,Kv(B,b,f,L,H,V,param,Gparam)

,0;0,0,Kr(B,b,f,I,L,H,V,param,Gparam)];    
end 
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function [x]=Kh(B,b,f,L,H,V,param,Gparam)                    

Gb=G(b,f,L,H,V,Gparam); 
  switch param(1) 
    case 1 
        x=Khwinkler(b,L,param);              
    case 2 
        x=Khrectangular(b,L,Gb,param);  

    case 3   
        x=Khcircular(b,Gb,param);           
    case 4 
        x=Khgeneral(b,f,L,Gb,param);            
    case 5 
        x=Khdepthrect(b,L,Gb,param);             
    case 6 
        x=Khdeepstrip(B,b,Gb,param);                  
  end 
end 

  
function [x]=Kr(B,b,f,I,L,H,V,param,Gparam)                     

Gb=G(b,f,L,H,V,Gparam); 
  switch param(1) 
    case 1 
        x=Krwinkler(b,L,param);             
    case 2 
        x=Krrectangular(b,L,Gb,param); 

    case 3   
        x=Krcircular(b,Gb,param);     
    case 4 
        x=Krgeneral(b,I,L,Gb,param);           
    case 5 
        x=Krdepthrect(b,L,Gb,param);           
    case 6 
        x=Krdeepstrip(B,b,Gb,param);             
  end 
end 

  
function [x]=Kv(B,b,f,L,H,V,param,Gparam)                    

Gb=G(b,f,L,H,V,Gparam); 
  switch param(1) 
    case 1 
        x=Kvwinkler(b,L,param);             
    case 2 
        x=Kvrectangular(b,L,Gb,param);  

    case 3   
        x=Kvcircular(b,Gb,param);          
    case 4 
        x=Kvgeneral(b,f,L,Gb,param);           
    case 6 
        x=Kvdeepstrip(B,b,Gb,param);                  
  end 
end 
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function [x]=Kv0(B,b,f,L,param,Gparam)                    

Gb=Gparam(1); 
  switch param(1) 
    case 1 
        x=Kvwinkler(b,L,param);                
    case 2 
        x=Kvrectangular(b,L,Gb,param); 

    case 3   
        x=Kvcircular(b,Gb,param);             
    case 4 
        x=Kvgeneral(b,f,L,Gb,param);           
    case 5 
        x=Kvdepthrect(b,L,Gb,param);           
    case 6 
        x=Kvdeepstrip(B,b,Gb,param);                  
  end 
end 

  
function [x]=Khwinkler(b,L,param)                

k0=param(2); 
x=k0*b*L/12;                                     
end 

  
function [x]=Krwinkler(b,L,param)                

k0=param(2); 
x=k0*b^3*L/12;                                   
end 

  
function [x]=Kvwinkler(b,L,param)                
k0=param(2); 
x=k0*b*L;                                        
end 
  

function [x]=Khrectangular(b,L,Gb,param)               
  if b/L>1 
   x=Khxrectangular(b,L,Gb,param); 
  else  
   x=Khyrectangular(b,L,Gb,param); 
  end 
end 

  
function [x]=Khxrectangular(b,L,Gb,param)                

nu=param(3); 
x=Gb*b*(2+2.5*(L/b)^0.85)/(2-nu)-0.1*Gb*b*(1-(L/b))/(0.75-nu);   

end 

  
function [x]=Khyrectangular(b,L,Gb,param)               

nu=param(3); 
x=Gb*L*(2+2.5*(b/L)^0.85)/(2-nu);     
end 
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function [x]=Krrectangular(b,L,Gb,param)              

  if b/L>1 
   x=Krxrectangular(b,L,Gb,param); 
  else  
   x=Kryrectangular(b,L,Gb,param); 
  end 
end 

  
function [x]=Krxrectangular(b,L,Gb,param)                

nu=param(3); 
x=(0.465*Gb*(b^4*L)^0.6)/(1-nu);                
end 

  
function [x]=Kryrectangular(b,L,Gb,param)                

nu=param(3); 
x=Gb*b^2*L*(0.372+0.078*b/L)/(1-nu);              
end 

  
function [x]=Kvrectangular(b,L,Gb,param)              
  if b/L>1 
   x=Kvxrectangular(b,L,Gb,param); 
  else  
   x=Kvyrectangular(b,L,Gb,param); 
  end 
end 

  
function [x]=Kvxrectangular(b,L,Gb,param)                

nu=param(3); 
x=Gb*b*(0.73+1.54*(L/b)^0.75)/(1-nu);             
end 

  
function [x]=Kvyrectangular(b,L,Gb,param)               

nu=param(3); 
x=Gb*L*(0.73+1.54*(b/L)^0.75)/(1-nu);             
end 
 

function [x]=Khcircular(b,Gb,param)                

nu=param(3); 
x=4*Gb*b/(2-nu);                          

end 

  
function [x]=Kvcircular(b,Gb,param)                

nu=param(3); 
x=2*Gb*b/(1-nu);                           

end 

  
function [x]=Krcircular(b,Gb,param)                

nu=param(3); 
x=Gb*b^3/(3-3*nu);   

end 
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function [x]=Khgeneral(b,f,L,Gb,param)              

  if b/L>1 
   x=Khxgeneral(b,f,L,Gb,param); 
  else  
   x=Khygeneral(f,L,Gb,param); 
  end 
end 

  
function [x]=Khxgeneral(b,f,L,Gb,param)             

nu=param(3); 
x=Shx(b,f)*Gb*b/(2-nu)-0.105*Gb*b*(1-L/b)/(0.75-nu);  
end 

  
function [x]=Shx(b,f) 
  if f/(b^2)<0.16 
   x=2.24; 
  else 
   x=4.5*(f/(b^2))^0.38; 
  end 
end 

  
function [x]=Khygeneral(f,L,Gb,param)               

nu=param(3); 
x=Shy(f,L)*Gb*L/(2-nu);                          
end 

  
function [x]=Shy(f,L) 
  if f/(L^2)<0.16 
   x=2.24; 
  else 
   x=4.5*(f/(L^2))^0.38; 
  end 
end  

  
function [x]=Krgeneral(b,I,L,Gb,param)              

  if b/L>1 
   x=Krxgeneral(I,Gb,param); 
  else  
   x=Krygeneral(b,I,L,Gb,param); 
  end 
end 

  
function [x]=Krxgeneral(I,Gb,param)                  

nu=param(3); 
x=3.2*Gb*I^0.75/(1-nu);                           
end 

  
function [x]=Krygeneral(b,I,L,Gb,param)             

nu=param(3); 
x=Sr(b,L)*Gb*I^0.75/((1-nu)*(b/L)^0.25);           
end 
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function [x]=Sr(b,L) 
  if b/L<0.4 
   x=2.54; 
  else 
   x=3.2*(b/L)^0.25; 
  end 
end 

  
function [x]=Kvgeneral(b,f,L,Gb,param)              

  if b/L>1 
   x=Kvxgeneral(b,f,Gb,param); 
  else  
   x=Kvygeneral(f,L,Gb,param); 
  end 
end 

  
function [x]=Kvxgeneral(b,f,Gb,param)               

nu=param(3); 
x=Svx(b,f)*Gb*b/(1-nu);                         
end 

  
function [x]=Svx(b,f) 
  if f/(b^2)<0.02 
   x=0.8; 
  else 
   x=0.73+1.54*(f/(b^2))^0.75; 
  end 
end  

  
function [x]=Kvygeneral(f,L,Gb,param)               

nu=param(3); 
x=Svy(f,L)*Gb*L/(1-nu);                          
end 

  
function [x]=Svy(f,L) 
  if f/(L^2)<0.02 
   x=0.8; 
  else 
   x=0.73+1.54*(f/(L^2))^0.75; 
  end 
end  

  
function [x]=Khdeepstrip(B,b,Gb,param)                

nu=param(3); 
a=param(6); 
x=2*Gb*(1+2*a*(b/B)/3)/(2-nu);                    
end 

  
function [x]=Kvdeepstrip(B,b,Gb,param)                
nu=param(3); 
a=param(6); 
x=0.73*Gb*(1+2*a*(b/B))/(1-nu);                   
end 
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function [x]=Krdeepstrip(B,b,Gb,param)                

nu=param(3); 
a=param(6); 
x=pi*Gb*(b^2/4)*(1+a*(b/B)/3)/(2-2*nu);          
end 

 

function [x]=Kvdepthrect(b,L,Gb,param)      
D=param(4); 
mmv=load ('finitelayerKv.txt'); 
pv=load ('pv.txt'); 
yv=load ('yv.txt'); 
[av,cv]=meshgrid(yv,pv); 
for i=1:6 
    for j=1:48 
        zv(i,j)=mmv((i-1)*48+j,3); 
    end 
end 
hbv=D/b; 
lbv=b/L; 
beta=interp2(av,cv,zv,hbv,lbv,'spline');     
x=3*Gb*L/beta; 
end 

  
 

function [x]=Krdepthrect(b,L,Gb,param)      
D=param(4); 
mmr=load ('finitelayerKr.txt'); 
pr=load ('pr.txt'); 
yr=load ('yr.txt'); 
[ar,cr]=meshgrid(yr,pr); 
for i=1:10 
    for j=1:49 
        zr(i,j)=mmr((i-1)*49+j,3); 
    end 
end 
hbr=D/b; 
lbr=b/L; 
gama=interp2(ar,cr,zr,hbr,lbr,'spline'); 
x=3*b^3*Gb/(8*gama);                     
end 

 
function [G]=G(b,f,L,H,V,Gparam) 
G0=Gparam(1); 
FS=Vult(b,f,L,H,V,Gparam)/V; 
  switch Gparam(6) 
    case 1 
        G=G0*(1-1/FS); 
    case 2 
        G=-G0*(1/FS)*(1/log(1-1/FS));     
  end 
end 
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function [Vult]=Vult(b,f,L,H,V,Gparam) 
Vult0=qu(b,L,H,V,Gparam)*f; 
V0=V*(1+10*eps); 
Vult=max(V0,Vult0); 
end 

  
function [qu]=qu(b,L,H,V,Gparam) 
coh=Gparam(2); 
gamma=Gparam(4); 
q=Gparam(5); 
delqi0=1; 
delci0=1; 
delgmi0=1; 
quold=coh*Nc(Gparam)*delcs(b,L,Gparam)*delci0+q*Nq(Gparam) 

      *delqs(b,L,Gparam)*delqi0+(1/2)*gamma*b*Ngm(Gparam) 

      *delgms(b,L)*delgmi0; 

qu=fzero(@(qu) qu-coh*Nc(Gparam)*delcs(b,L,Gparam) 

   *delci(H,V,qu,Gparam)-q*Nq(Gparam)*delqs(b,L,Gparam) 

   *delqi(H,V,qu,Gparam)-(1/2)*gamma*b*Ngm(Gparam)*delgms(b,L) 

   *delgmi(H,V,qu,Gparam),quold); 
end 

  
function [fi]=fi(Gparam) 
fii=Gparam(3); 
fi=fii*pi/180; 
end 

  
function [Nq]=Nq(Gparam) 
Nq=exp(pi*tan(fi(Gparam)))*((1+sin(fi(Gparam)))/(1-          

sin(fi(Gparam)))); 
end 

  
function [Nc]=Nc(Gparam) 
Nc=(Nq(Gparam)-1)*cot(fi(Gparam)); 
end 

  
function [Ngm]=Ngm(Gparam) 
Ngm=1.5*Nc(Gparam)*(tan(fi(Gparam)))^2; 
end 

  
function [delcs]=delcs(b,L,Gparam) 
delcs=1+(Nq(Gparam)/Nc(Gparam))*(b/L); 
end 

  
function [delqs]=delqs(b,L,Gparam) 
delqs=1+(b/L)*tan(fi(Gparam)); 
end 

  
function [delgms]=delgms(b,L) 
delgms=1-0.4*(b/L); 
end 
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function [delqi]=delqi(H,V,qu,Gparam) 
coh=Gparam(2); 
alfa=atan(H/V); 
delqi=(1-0.5*qu*sin(alfa)/(qu*cos(alfa)+coh*cot(fi(Gparam))))^5; 
end 

  
function [delci]=delci(H,V,qu,Gparam) 
delci=delqi(H,V,qu,Gparam)-((1-delqi(H,V,qu,Gparam))/(Nq(Gparam) 

      -1)); 
end 

  
function [delgmi]=delgmi(H,V,qu,Gparam) 
coh=Gparam(2); 
alfa=atan(H/V); 
delgmi=(1-0.7*qu*sin(alfa)/(qu*cos(alfa)+coh*cot(fi(Gparam))))^5; 
end 
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