

HAKI: A RUNTIME VERIFICATION TOOL

FOR

JAVASCRIPT MVC WEB APPLICATIONS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

IBRAHIM BILGE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

DECEMBER 2016

HAKI: A RUNTIME VERIFICATION TOOL
FOR JAVASCRIPT MVC WEB APPLICATIONS

Submitted by İbrahim Bilge in partial fulfillment of the requirements for
the degree of Master of Science in The Department of Information
Systems Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin
Director, Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin
Head of Department, Information Systems

Assoc. Prof. Dr. Aysu Betin Can
Supervisor, Information Systems

Examining Committee Members:

Assoc. Prof. Dr. Altan Koçyiğit
Information Systems, Middle East Technical University

Assoc. Prof. Dr. Aysu Betin Can
Information Systems, Middle East Technical University

Assist. Prof. Dr. Erhan Eren
Information Systems, Middle East Technical University

Assist. Prof. Dr. Çağdaş Evren Gerede
Computer Engineering, TOBB ETU

Assoc. Prof. Dr. Banu Günel Kılıç
Information Systems, Middle East Technical University

Date: 22.12.2016

iii

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct, I
have fully cited and referenced all material and results that are not
original to this wok.

Name, Last name : İbrahim BİLGE

Signature :

iv

ABSTRACT

HAKI: RUNTIME VERIFICATION TOOL
FOR JAVASCRIPT MVC WEB APPLICATIONS

Bilge, İbrahim
M.S., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Aysu Betin Can

December 2016, 56 pages

In this thesis, we propose an efficient approach for locating inconsistencies
in view-model bindings of JavaScript AngularJS web applications.
JavaScript is one of the most common scripting languages used for
developing web applications. It can be used to create flexible, efficient code
thanks to its highly dynamic nature. In addition, many structural
frameworks have been developed for building even more extensible and
more dynamic web applications. One of the most popular of these
frameworks is AngularJS which uses the MVC (Model-View-Controller)
pattern. The dynamism of JavaScript including abstraction and layering of
AngularJS can make coding very challenging by making it open for
mistakes and vulnerable to inconsistencies that create unreadable, not
maintainable, and particularly, unreliable code. In addition, custom web
components remain a challenge for verification and consistency of the
applications whereas these components are considered the biggest feature of
JavaScript frameworks nowadays. Differing from the existing studies in
literature, our aim in this study is to propose an effective and compact
approach to locate inconsistencies in view-model bindings including type
related errors and errors about custom web components. We introduce a tool
called HAKI that executes runtime verification process on JavaScript -
AngularJS applications and locates errors and warnings by using dynamic
analysis. We evaluated our tool using two sets of experiments, one large
scale real application and one smaller application with injected faults. Our
tool located 55 errors in real application with 8 of them are evaluated as
major errors; it also reported 35 warnings that can possibly cause errors. In
addition, the runtime verification overhead is minimal.

Keywords: JavaScript; runtime verification; MVC pattern; data binding.

v

ÖZ

HAKI: JAVASCRIPT MVC WEB UYGULAMALARI İÇİN
ÇALIŞMA ZAMANI DOĞRULAMA ARACI

Bilge, İbrahim
Yüksek Lisans, Bilişim Sistemleri Bölümü
Tez Yöneticisi: Doç. Dr. Aysu Betin Can

Aralık 2016, 56 sayfa

Biz bu tezde, JavaScript – AngularJS uygulamalarının view ve model
bağlantılarında oluşan tutarsızlıkları etkin bir şekilde tespit edebilen bir
yaklaşım sunmaktayız. JavaScript, günümüzde web uygulaması geliştirme
alanında kullanılan en yaygın betimleme dillerinden biridir. Oldukça
dinamik olan yapısı sayesinde esnek ve etkin kod yazma imkânı sağlar.
Buna ek olarak birçok yapısal çatı geliştirilmiştir. Bu çatıların en popüler
olanlarından biri MVC (Model-View-Controller) mimarisini kullanan
AngularJS’dir. JavaScript’in dinamik yapısına, AngularJS’in soyut ve
katmanlı mimarisi de eklenince kodlama yapmak oldukça zorlayıcı bir hale
gelebilir. Öyle ki geliştirilen yazılımı okunamaz, bakım yapılamaz ve
özellikle güvenilemez bir hale getirebilir. Ayrıca günümüzde uygulamaların
tutarlılığını ve doğrulamasını zorlaştıran kişiselleştirilmiş bileşen
geliştirebilme imkanı da bu JavaScript çatılarının en büyük özelliklerinden
biri olarak sayılmaktadır. Literatürdeki diğer çalışmalardan farklı olarak
bizim bu çalışmadaki amacımız view ve model bağlantılarında oluşan
tutarsızlıkları etkin bir şekilde tespit edebilen bir yaklaşım sunmaktır. Bu
amaçla HAKI adını verdiğimiz aracı geliştirdik. Aracımızı 2 farklı
uygulama üzerinde test ettik; bir büyük çaplı gerçek bir uygulama ve bir de
daha küçük kapsamlı, içerisine hatalar yerleştirilmiş bir uygulama. Aracımız
ilk uygulama için 8 tanesi önemli olmak üzere 55 hata ve hataya neden
olabileceğini düşündüğümüz 35 tane de uyarı tespit etmiş ve raporlamıştır.
Ayrıca bu deneyler sırasında HAKI sebebiyle oluşan performans kaybının
göz ardı edilebilir derecede minimum olduğu görülmüştür.

Anahtar Sözcükler: JavaScript; çalışma zamanı doğrulama; MVC örüntüsü;
veri bağlantısı.

vi

DEDICATION

Never laugh at live dragons…

vii

ACKNOWLEDGMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Aysu Betin Can for his
encouraging, advice and guidance in this study.

I would like to thank my family, collogue and friends for their support,
motivation and encouragement during the study.

I would like to thank my loving wife particularly for her presence and
infinite support anytime I need.

I would also like to express my gratitude to the examining committee
members for their valuable feedback.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. v

DEDICATION .. vi

ACKNOWLEDGMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ABBREVIATIONS .. xii

CHAPTER 1

INTRODUCTION ... 13

1.1 Motivation ... 13

1.2 Problem Definition .. 14

1.3 Running Example .. 15

1.4 Outline ... 17

CHAPTER 2

ANGULARJS AND MVC ... 19

2.1 MVC Architecture ... 21

2.2 Data Binding .. 22

2.3 Scope Object .. 22

2.4 Directive (Custom Component) .. 23

2.5 Routing .. 23

CHAPTER 3

LITERATURE REVIEW .. 25

3.1 Code Analysis for JavaScript Applications 25

ix

3.2 Code Analysis for Server Side MVC Applications 27

CHAPTER 4

PROBLEM STATEMENT .. 29

4.1 Binding Errors ... 29

4.1.1. Variable Definition .. 29

4.1.2. Type Mismatch... 30

CHAPTER 5

FORMAL MODEL AND THE TOOL .. 33

5.1 Formal Model .. 33

5.2 Approach ... 36

5.3 Implementation .. 38

CHAPTER 6

EXPERIMENTS AND RESULTS .. 41

6.1 Real Application Tests .. 41

6.1.1. Experiment ... 42

6.1.2. Results .. 42

6.1.3. Overhead .. 43

6.2 Fault Injection Tests .. 43

6.2.1 Experiment ... 44

6.2.2 Results .. 45

6.2.3 Overhead .. 45

6.3 Experiences in a Development Environment 45

CHAPTER 7

CONCLUSION .. 51

7.1 Limitations ... 51

7.2 Future Work .. 52

REFERENCES ... 53

x

LIST OF TABLES

Table 1. Metrics that shows the size of the real application 41

Table 2. Metrics that shows the size of the fault injected application 44

Table 3. Type of errors used for the fault injection 44

xi

LIST OF FIGURES

Figure 1. Example for basic data binding .. 14

Figure 2. The View, Controller and Model of SeachFlights 16

Figure 3. The View, Controller and Model of ListFlights 17

Figure 4. MVC Structure of AngularJS ... 21

Figure 5. A custom web component definition .. 31

Figure 6. Executed jobs by the tool while initializing 34

Figure 7. Executed jobs by the tool for every state transition 37

Figure 8. Available modes of the tool HAKI ... 38

Figure 9. The global API of the tool HAKI ... 39

Figure 10. An example output of the HAKI .. 46

Figure 11. The output of the HAKI in the web page 47

Figure 12. An example page with binding error .. 48

Figure 13. The View and Controller of the Page in Figure 12 49

xii

LIST OF ABBREVIATIONS

MVC Model-View-Controller Design Pattern

DOM Document Object Model

HTML Hypertext Markup Language

DSL Domain Specific Language

IT Information Technologies

JS JavaScript

SPA Single Page Application

XML Extensive Markup Language

AJAX Asynchronous JavaScript and XML

XSS Cross Site Scripting

DTD Document Type Definition

JSF Java Server Faces

PHP PHP Hypertext Preprocessor

E2E End to End

13

CHAPTER 1

INTRODUCTION

1.1 Motivation

Since its inception in the mid-90s, JavaScript has become one of the most
popular Web development languages. In September 2014, an industry
analyst firm, called RedMonk, showed JavaScript as the top language
among web development language [1]. Much of this popularity comes from
JavaScript’s ability to deliver rich, dynamic web content. Also it is
relatively lightweight and is easy to use.

Developers prefer JavaScript applications to traditional server-side web
applications. The reason is that JavaScript offers a more responsive user
experience because of its dynamic nature. Although most languages have
some aspect of dynamic behavior, JavaScript has pretty much everything
about dynamism like dynamic variables, dynamic types, dynamic functions
and objects. JavaScript applications can be developed without using a
framework. However, it is so easy to run into trouble because code
management and refactoring quickly becomes a challenge with native
JavaScript and often leading to a bad structured code. Modern JavaScript
frameworks offer a way around the problem of code management by
providing well-defined application architectures using the MVC design
pattern that can greatly ease development. So choosing one of these
frameworks should help to have highly responsive user interfaces along
with well-structured and maintainable code, which have considerable
benefits in the long run.

Although the MVC framework for JavaScript has certain benefits, there are
also potential problems regarding the variable binding between the View
and the Model components. For example, AngularJS has automated data
binding which is a favorable feature. This feature describes the condition
where data is bound to an HTML element in the View and the Model can
update the data. That HTML element in the View has the ability to display
those data. Although the implementation of this type of data binding reduces
the amount of effort to create dynamic views, it complicates debugging and
has potential dangers in larger, more complex applications that are

14

developed by multiple teams from multiple locations, since the errors in
bindings do not fire any exception for most of the cases. Consider the
example in Figure 1 that creates a loop which renders the inner html content
of the div element for each phone of the user defined in the model.

1. <div ng‐repeat=″phone in user.phones″>
2. <input ng‐model=″phone.number″/>
3. </div>

Figure 1. Example for basic data binding

There is the “two-way data binding” for the ng‐model attribute of the input
element. If the View also can update the data, then it is called “two-way”. It
will update the view automatically when the phone number of the user is
changed in the model and vice versa.

The requirement for this script to work properly is the definition of the user
object in the related model of this view. Also the user object should have an
array field for the phone data. If the user.phones or phone.number is
undefined, this line of code will not work as expected and no error will be
generated. Moreover, it is not possible to put a breakpoint at this line of
code for debugging purposes. There is no effective way for debugging these
types of errors, since it is not a part of the JavaScript code. The code is in a
view file which is just an HTML file. The variables like “user.phones”
and “phone.number” are non-executable texts for an HTML file.

1.2 Problem Definition

Our study focuses on locating errors and warnings of inconsistencies about
these data bindings automatically in the development phase. There are a few
studies ([35], [36], [37], [38]) about this problem but there is no effective
solution for type mismatches and custom web components. Custom web
components are critical in web development. Almost all of the JavaScript
frameworks support custom components which enable the extension of
HTML by developing custom reusable components and create a Domain
Specific Language (DSL). This feature became so popular that it was
announced as a web standard in 2011 [11] and all major browsers have
started implementing the technologies needed to run web components
natively. While browser vendors are still working on native
implementations, most of the JavaScript frameworks have already made
web components available to developers.

We propose an approach to help developers locate errors about bindings in
both built-in attributes and attributes of custom components developed
within the JavaScript MVC framework. Our approach consists of four main
steps. We register the state transitions of the page, then, we search for
attribute changes in the “Document Object Model” (DOM). When we find

15

an attribute with a value in the view, we evaluate that value within the
context of the associated model. After getting the result of that evaluation,
we check for inconsistencies and specifically for errors about variable
definitions and type mismatches.

We implemented our approach as a tool called HAKI, which is designed to
work for AngularJS applications since it is the most popular JavaScript
MVC framework. Our tool is used in a big scale JavaScript MVC web
application to measure its ability to locate real errors in a real-world
application. In addition, for accuracy assessment, we used HAKI in an
application where we applied a systematic fault injection process. HAKI
located 55 real errors 8 of which were flagged as blocking defects in the real
application and was able to locate all 18 of the injected errors in our
application.

1.3 Running Example

The running example is a part of an application used by an imaginary airline
company. We refer to this motivating example as FlightApp throughout the
study.

FlightApp is an AngularJS application with two routes. Customers use the
first route, namely SearchFlights, to select the travel cities and dates.
When they click the “List Available Flights” button, they are redirected to
the second route called ListFlights. Here, the information about the
available flights is listed. If there is no flight available, a message is shown
to inform the customer. Also there are links for every flight for selection.

1. <!‐‐ The View of the route ‐‐>
2. <label for="flyingFrom">Flying From?</label>
3. <input id="flyingFrom" type="text"
4. ng‐model="selectedCity.from"/>
5.
6. <label for="flyingTo">Flying To?</label>
7. <input id="flyingTo" type="text"
8. ng‐model="selectedCity.to"/>
9.
10. <label for="departDate">Departure Date?</label>
11. <input id="departDate" type="date"
12. ng‐model="selectedDate.depart"/>
13.
14. <label for="returnDate">Returning Date?</label>
15. <input id="returnDate" type="date"
16. ng‐model="selectedDate.return"/>
17.
18. <button type="submit"
19. ng‐click="searchFlights()">
20. List Available Flights
21. </button>

16

22.
23. <script type="text/JavaScript">
24. //* The Controller of the route ‐‐>
25. flightApp.controller("SearchFlightCtrl",
26. function ($scope, RoutingService) {
27.
28. //* The Model of the route ‐‐>
29. $scope.selectedCity = {from: "", to: ""};
30. $scope.selectedDate = {
31. depart: new Date(),
32. return: new Date()
33. };
34.
35. $scope.searchFlights = function () {
36. RoutingService.redirect("/flight‐list",
37. $scope.selectedCity,
38. $scope.selectedDate,
39.);
40. };
41. }
42.);
43.
44. </script>

 Figure 2. The View, Controller and Model of SeachFlights

The View of the SearchFlights route includes two inputs for the
customer to enter the cities that she wants to travel from and travel to
respectively. There are also two date input elements to select the travel dates
and a button to submit these values. The Controller populates the model
with default values and defines a function to handle the click event of the
button (Figure 2). This function redirects application to the ListFlights
state with entered parameters.

1. <!‐‐ The View of the route ‐‐>
2. <div class="msg" ng‐hide="availableFlights.length">
3. There is no flight available.
4. </div>
5. <flight‐table
6. header="Available Flight List"
7. flight‐list="availableFlights"
8. flight‐selected="chooseFlight">
9. </flight‐table>
10.
11. <script type="text/JavaScript">
12. //* The Controller of the route ‐‐>
13. flightApp.controller("ListFlightCtrl",
14. function ($scope, RoutingParams, RemoteService) {
15.
16. //* The Model of the route ‐‐>
17. $scope.availableFlights = RemoteService.query({
18. RoutingParams.selectedCity
19. RoutingParams.selectedDate

17

20. });
21.
22. $scope.chooseFlight = function (id) {
23. alert("The flight "+ id +" selected!");
24. };
25. }
26.);
27.
28. </script>

 Figure 3. The View, Controller and Model of ListFlights

The view of the ListFlights route includes a message to inform the user
when there are no flights available to list. The table flight‐table is used
to list the available flights. This element is a custom web component and it
has three attributes: header, flight‐list, flight‐selected
respectively. The Controller invokes a Service to query the flights and
populates the Model with the result. Also there is a function named
chooseFlight to set the flight‐selected attribute of the custom
element (Figure 3).

1.4 Outline

This thesis organized in seven chapters as follows:

1. Introduction. It includes motivation, problem definition and our
running example.

2. AngularJS and MVC. It focuses on background of the problem and
defines MVC Architecture. It also defines properties of the
framework.

3. Literature Review. It lists related studies.
4. Problem Statement. It defines the problem in two sections.
5. Formal Model and The Tool. It explains the formal model,

approach and implementation.
6. Experiments and Results. It contains evaluation of the tool.
7. Conclusion. It includes limitations and future work sections.

18

19

CHAPTER 2

ANGULARJS AND MVC

JavaScript was initially developed as a browser-agnostic scripting language;
however, in recent years, it has evolved beyond the browser to areas such as
mobile and server-side web applications. Over the next few years,
JavaScript is poised to become the dominant language of the enterprise for
IT [12]. This evolution is leading to an increase in the number of the new
JavaScript tools and frameworks.

There are back-end frameworks, such as the web application
framework NodeJS [3] and real-time application framework EngineIO [4]
which are capable of transporting real time information using various
methods and are suitable for testing using JS libraries, such as Mocha [5]
and Should.js [6]. There are also front-end development frameworks, such
as Ember.js [7], Backbone.js [8], Knockout.js [9], and AngularJS [10].

We focus on JavaScript MVC frameworks, particularly on AngularJS.
Generally, developers prefer client-side JavaScript to traditional server-side
web applications to increase responsiveness of their applications. For
example, when a user clicks a button, instead of sending an entire page and
waiting for the page to reload as in a traditional server-side web application,
JavaScript frameworks only send required data to the server and then load
portions of the page as the user interacts with them, thus speeding up the
responsiveness of the user interface. The aim is to create a user interface
that feels as fast as a native application.

The definition of AngularJS as put by its official documentation is as
follows [12];

“AngularJS is a structural framework for dynamic web applications. It lets
you use HTML as your template language and lets you extend HTML's
syntax to express your application's components clearly and succinctly.
AngularJS’s data binding and dependency injection eliminate much of the
code you currently have to write. And it all happens within the browser,
making it an ideal partner with any server technology.”

20

AngularJS became the most popular JavaScript framework quickly with its
strong features, such as:

 being capable of creating Single Page Applications (SAP) in a very
clean and maintainable way,

 providing data binding capability to HTML thus giving user a rich
and responsive experience,

 providing unit testable code,
 using dependency injection and making use of separation of

concerns,
 providing reusable components,
 letting the developer write less code and get more functionality,
 providing views which are pure html pages, and having controllers

written in JavaScript for business processing,
 being able to run on all major browsers and smart phones including

Android and iOS based phones/tablets.

Although AngularJS has many advantages, there are also certain concerns:

 Detecting of inconsistencies in data bindings can easily become a
problem, since there is not even any error message addressing the
problem when an inconsistency occurs for the most of the cases.

 When an inconsistency is detected, debugging the code is
problematic as in other MVC JavaScript frameworks due to the fact
that exceptions are fired by the mechanism called digest-cycle. Then
browser generate a stack trace that shows the mechanism as the
source of the error.

As an example of these concerns, consider the code in Figure 1. It is
difficult to debug the code when an error occurs. This is due to the
mechanism called “digest cycle” which is responsible for automated data
binding. This script re-renders the view with the values of the variables in
the related model every time these variables are updated. The errors that
occur in this JavaScript code are caught by the internal interceptors, and
interpreted by the browser as a caught error, and then a stack trace is
generated that shows the digest cycle as source of the error. A binding error
about any of the variables in the whole application will produce the exact
same stack trace; therefore, it is hard to locate the actual source of the error
using the debugger.

In this study, we focus on locating errors in these bindings using runtime
verification methodology. Our approach provides a considerable
improvement for the development phase of MVC JavaScript applications by
helping to locate the error between the View and the Model as applications
scale-up.

21

2.1 MVC Architecture

Model-View-Controller, or shortly MVC, is a software design pattern which
is very popular in web application development. An MVC pattern consists
of three parts.

2.1.1 Model

The model is responsible for managing application data. It responds to the
requests from the View and to the instructions from the Controller to update
itself. It corresponds to JavaScript objects for AngularJS as shown in Figure
4.

2.1.2 View

The view is responsible for displaying all or a portion of the data to the user.
View presents the data in a particular format, triggered by the controller's
decision. The particular format is HTML for AngularJS and it means values
of attributes are just texts with no meaning from the point of View. On the
other hand, these values may be defined as variables in the model and the
framework handles that binding. The View corresponds to DOM in Figure 4
which is generated by browsers from the HTML code.

Model

View

Controller

JS Object

DOM

JS Class

Notifies

Triggers

Changes

Notifies

Figure 4. MVC Structure of AngularJS

2.1.3 Controller

Controller is the part of the software that controls the interactions between
the Model and the View. The controller responds to user input and performs
interactions on the data model objects. The controller receives input,
validates it, and then performs business operations that modify the state of

22

the data model. It is a JavaScript class for AngularJS as shown in Figure 4.
Controller is related to a subtree of the DOM. This relation creates
inheritance between controllers since they may relate each other’s subtrees.

MVC is popular because it isolates the application logic from the user
interface layer and supports separation of concerns. The controller receives
all requests for the application and then works with the model to prepare any
data needed by the view. The view then uses the data prepared by the
controller to generate a final presentable response.

2.2 Data Binding

Data binding is the automatic synchronization of data between model and
view components. It is the most known feature of AngularJS as many
supporters, especially Google, list two-way binding as a main framework
benefit [12].

Indeed, automated data binding is a good feature, and its easy
implementation is impressive for those with a background in an imperative
library like JQuery [13] where such behavior requires several lines of code
to implement. All the details are hidden in the black box that drives the logic
of data binding in AngularJS.

In traditional MVC frameworks, models are the application’s connection to
the backend data source. When the application is used, models are accessed
(by the controller) and the retrieved data is blended with the view template
to form the page which the user ultimately interacts with. As the user clicks
around, the controller continues to query the model for data. Once the data
is returned, it becomes available to the view at “render time” – usually on
page reload. “Asynchronous JavaScript and XML” (AJAX) helps with some
parts of this process by eliminating the burden of page reloading just to
update potentially small parts of data. Nevertheless, an explicit view change
is still required and, more importantly, additional effort is required from the
developer to provide this functionality.

AngularJS takes a different approach to the model concept. The view and
the model are intertwined in an AngularJS application. Views are
considered a projection of the current model state, as data sourcing from the
view is handled by the model and then turned around and fed right back into
the view immediately. In fact, no developer effort is required to provide this
binding effect.

2.3 Scope Object

Scope is a special object in AngularJS. It is injected to the Controller and
populated with the Model references to be ready for use in the View. In

23

other words, scopes are objects that refer to the Model. They act as the glue
between the Controller and the View. The Controller should populate the
scope object using plain JavaScript objects or services, which represent the
real model, and then, the scope is used in the render phase of the view.

We use the term “model” in the remaining part of this paper instead of the
term “scope” for simplicity, since the scope refers to the model.

Controllers are related to a certain subtree of the DOM as mentioned above.
They are not directly related to the View, but use the Model to render the
variables in the View. There can be many active models on an HTML page
and they can be nested, which means the inner ones inherit from the parents
as in inheritance in OOP. This makes locating of inconsistencies (manual or
automated) harder.

2.4 Directive (Custom Component)

Directives are markers on DOM elements (such as elements or attributes).
These can be used to create custom HTML tags that serve as new, custom
widgets to create a Domain Specific Language. AngularJS has some built-in
directives to support generic web development requirements. For example,
ng‐show is a built-in attribute that takes a value in the View. This value has
to be an expression of Boolean type within the context of the model. If the
evaluated result is false, then ng‐show will hide the HTML element that it
is related to. There are many built-in special attributes like ng‐show and it
is possible to implement custom components with custom special attributes.

2.5 Routing

The Routing is the concept of switching views; it enables creation of Single
Page Applications (SPA) easily as it can switch views just in a portion of
the page. The state of the application changes when the route transition
happens. AngularJS has a built-in router that enables creation of routes with
view and controller groupings. These routes can be used for transition when
triggered by an event such as the clicking of a link by the user.

24

25

CHAPTER 3

LITERATURE REVIEW

JavaScript is becoming the most popular web application development
language. The number of studies about JavaScript has started to increase in
recent years [1]. Although there are studies about the analysis of JavaScript
code, the most of these studies are only inside the JavaScript code itself.
There are limited studies about the relation between JavaScript code and
HTML code (data binding) to the best of our knowledge. This limitation is
reasonable since the application of the MVC framework to web application
programming is a fairly recent improvement.

3.1 Code Analysis for JavaScript Applications

Chugh et al. focus on the staged analysis of JavaScript code and finding
information flow violations [15]. They study information flow properties by
reading document cookies and URL redirects. A valuable feature of that
work is its support for dynamically loaded and generated JavaScript in the
context of what is generally thought of as whole-program analysis. The
technique is similar to our approach, but HTML bindings are not
considered.

The Gatekeeper project [16], [17] proposes a points-to analysis together
with a range of queries for security and reliability as well as support for
incremental code loading. Sridharan et al. [18] analyze the characteristics of
common JavaScript frameworks, such as jQuery. Their technique allows
them to reason precisely about properties that are copied from one object to
another as is often the case in the jQuery library. These studies mostly focus
on usability, maintainability and performance issues instead of reliability
and inconsistency issues, which are our main focus in this study.

There are studies that have proposed dynamic analysis techniques to detect
client-side errors in JavaScript web applications. Li et al. [19] analyzed user
behavior to find failures in AJAX web applications. Robustness testing of
web applications studied by Pattabiraman et al. [20]. There is a study about
invariant-based testing of web application by Mesbah et al. [21]. Differing

26

from these studies our approach uses dynamic analysis to detect errors about
two-way data bindings even if it is not causing a problem in the user
interface.

Many researchers focused on reliability of the web applications have also
used static analysis techniques. For example, Guha et al. used the static
analysis to detect intrusion [22] and Zheng et al. [23] has also used static
techniques to locate bugs caused by asynchronous calls in web applications.
There are also tools created during researches such as Mugshot [24] to
capture and replay for JavaScript web applications and WaRR [25] to
reproduce client-side errors. However, these studies used static analysis
unlike our work and they have not focused on errors about two-way data
binding between controller and view of JavaScript MVC web applications.
Static analysis lacks the detection of variable types because of the nature of
JavaScript. In other words, type mismatches cannot be located statically in
an interpreted programming language like JavaScript on the other hand
dynamic techniques are applied after the interpretation process and for that
reason our approach uses dynamic analysis.

Some researchers have studied the performance issues of JavaScript web
applications in recent years. For instance, Richards et al. [26] conduct an
empirical study of dynamic JavaScript behavior based on collected traces. A
similar work was done by Ratanaworabhan et al. [27] with their JSMeter
tool. Fortuna et al. [28] perform a limit study on the parallelism available in
JavaScript code. However, none of these studies focus the reliability of web
applications.

There are empirical studies focus on the security and privacy of JavaScript
web applications. For instance, Yue et al. [29] characterized insecure
JavaScript practices on the web analyzing the Alexa top websites and Jang
et al. [30] studies privacy issues violating information flows in JavaScript
web applications. These papers also differ from our study in that they do not
study web applications’ errors, which may or may not lead to security
vulnerabilities.

Researchers have noticed that a more useful type system in JavaScript could
prevent safety violations and inconsistencies. Since JavaScript does not
have a rich type system to begin with, the work here is forming a correct
type system for JavaScript and then building on the proposed type system.
Soft typing [31] might be one of the first steps toward a type system for
JavaScript. Several other projects propose type systems for JavaScript [32],
[33], [34]. These projects focus on a subset of JavaScript and provide sound
type systems and semantics for their restricted subsets. To the best of our
knowledge, none of these approaches have been applied to large scale
JavaScript code. Also there is no approach that proposes a solution to type
inconsistencies in HTML bindings.

27

The most similar work to our study is by Mesbah et al. [35] for detecting
undefined values in HTML bindings. They use static analysis differing from
our study. Therefore, the approach they use lacks analysis of custom web
components and type mismatches about these components. Custom web
components are used in almost every JavaScript MVC application and
continuing to gain more and more popularity. In addition, the type checking
feature of their tool cannot handle many cases since most of the variable
types are determined at runtime in JavaScript. Our focus is to offer a more
compact approach covering most of the real world cases.

3.2 Code Analysis for Server Side MVC Applications

MVC based web applications has been the target of various studies, since it
is comparable in popularity to JavaScript. The pattern has been applied to
the server side of web applications [39], where the Model and the Controller
are implemented on the server and the View is represented by the HTML
output on the client. Considerable work has been done on the application of
MVC on the server-side [40], [41], [42], [43], where frameworks such as
Spring MVC and JSF are used. Artzi et al. [44] implemented a tool that
validates the output of the PHP web applications. The validation in this
approach is the confirmation to the HTML specification and it does not
consider inconsistencies about data bindings.

Braband et al. [45] studied HTML documents to conform validation of the
code according to the official DTD using statically analysis techniques.
Another study by Jovanovic et al. [46] focused server side PHP scripts, and
used static analysis to detect cross-site scripting vulnerabilities. In addition
to previous work Wassermann et al. [47] used the same analysis over server-
side generated HTML and JavaScript codes to detect particularly XSS
attacks. Wojciechowski et al. [48] compared different MVC-based design
patterns on the server-side, and analyzed the frameworks’ characteristics,
such as their susceptibility to file upload issues. In contrast, our work is
concerned with the client-side of web applications.

28

29

CHAPTER 4

PROBLEM STATEMENT

MVC frameworks for JavaScript have certain benefits, there are also
potential problems regarding the variable binding between the View and the
Model components. For example, AngularJS has two-way data binding
which is a favorable feature. This feature describes the condition where data
is bound to an HTML element in the View and that element has the ability
to both update and display those data. Model can also update the data, thus
the “two-way” descriptor is used. Although the implementation of this type
of data binding reduces the amount of effort to create dynamic views, it
complicates debugging and has potential dangers in larger, more complex
applications that are developed by multiple teams from multiple locations,
since the errors in bindings do not fire any exception or are not caught by
the browser.

4.1 Binding Errors

In this study, we refer the errors in the View with respect to the Model as
binding inconsistencies. There are two types of inconsistencies: undefined
variables and type mismatches.

4.1.1. Variable Definition

Variables of the model should exist in the Controller where they are defined
or used in JavaScript code. These same variables are also used in the View
inside the HTML code. It is straightforward to define a JavaScript variable
in the Controller and use the same identifier of variable in the HTML code.
However, it gets harder to ensure existence of a variable for both sides in
MVC applications because of the following reasons:

 The View is written in HTML and the Controller is a JavaScript file.
The same variable used in different languages makes the application
susceptible to identifier inconsistencies.

 As the application grows, views and controllers are separated in
separate files and usually maintained by separate programmers.

30

When they are merged in the render time of the DOM,
inconsistencies are highly likely to occur.

 A view can be associated with multiple controllers. While this
feature enables flexibility and reusability, it becomes harder to
refactor a piece of code without affecting other parts of the code.

 Sometimes an undefined variable in model hides a piece of the View
(ng‐show, ng‐hide…) unintentially. For example if a developer
refactors the FlightApp in our motivating example and changes the
name of the variable availableFlights in Figure 3 line 17
while forgetting to reflect this change for the ng‐hide attribute in
Figure 3 line 2. The View will be totally empty if there is no flight
available for the selected dates instead of showing a message to the
user. This is the hardest type of inconsistency to notice with manual
testing. The tester should know and remember all of the fields that
the View should have. The Automated End-to-End (E2E) tests
usually catch these inconsistencies, however, the maintenance is
difficult as it depends on the values in HTML and HTML is edited
often during the application development.

4.1.2. Type Mismatch

In addition to ensuring variable definition, the developer of the MVC
JavaScript application should also need to ensure that the type of the
variable matches the expected type in the View. For example, in AngularJS,
the ng‐include attribute in the View must be assigned a String value,
which is the path of another HTML fragment to fetch and include in the
View. It should cause type mismatch error if a variable that contains a non-
string value is attached to the ng‐include attribute in the View. Locating
these types of errors becomes complicated since JavaScript has a loosely
typed structure.

Our approach handles this problem by simplifying expected types as;

 String
 Number
 Object
 Function
 Array
 Boolean
 Date
 File
 Undefined

31

This set of variable types is sufficient for almost all of the cases. There are
methods to query the type of a variable, such as the “typeof” operation in
AngularJS. We discuss such methods in Approach section.

It is even harder to track the types of variables if they are used for bindings
in the View as custom HTML elements and attributes. These custom
components are created using the directives for AngularJS. There are
usually different developers for developing custom components and creating
views in large-scale projects. It may not be possible to enforce the expected
type requirement for a custom attribute by the developers who use this
component in their view.

For instance, there is a custom component definition named flight‐
table in Figure 5.

1. myModule.directive("flightTable", function() {
2.
3. var component = {};
4.
5. component.restrict = "E";
6.
7. component.scope = {
8. flightList: "=",
9. header: "@",
10. flightSelected: "&"
11. };
12.
13. component.template =
14. "<table>" +
15. "<th><td>" +
16. "<label ng‐bind='header'></label>" +
17. "</td></th>" +
18. "<tr ng‐repeat='flight in flightList'>" +
19. "<td ng‐click='flightSelected()'>" +
20. "<label ng‐bind='flight.desc'></label>" +
21. "</td>" +
22. "</tr>" +
23. "</table>";
24.
25. return component;
26. });

Figure 5. A custom web component definition

This definition creates the ability to use HTML element <flight‐table>
and when this element is used in the View, the browser will replace the
element with the HTML content defined in its template property (Line 13 to
23 in the Figure 5). This is a very useful feature for refactoring a repeated
block on HTML files. We are more interested in the scope property (Lines 7
to 11 in the Figure 5) of the custom component; since this property is the

32

map of the special attributes and their types that the component expects
from users of the component.

There is an example usage of this custom web component in the motivating
example, Figure 3, lines 5 to 9. This usage is inconsistent if there is no
variable called availableFlights defined in the related model (Figure 3
line 17). It is also inconsistent if the type of the variable
availableFlights is not an array. There has to be a function defined
and named chooseFlight in the model as well (Figure 3 line 22). If these
requirements are not met, the application will still be loaded but an
inconsistent HTML will be rendered from the template of the custom
component since non-existent variables are used in the bindings of the
template.

The users of the component need to know these custom attributes of the
component and their expected types exactly but that is not always an easy
task. For example, it may not be possible to know the details of the custom
web components in our motivating example FlightApp before looking at its
actual implementation in Figure 5. Most of the web applications use many
third party component libraries. They usually do not have well maintained
documentation and the documentation is not used properly by developers. It
is useful to automate the process of finding inconsistencies between the
definition of custom components and the usage of them.

33

CHAPTER 5

FORMAL MODEL AND THE TOOL

We propose an approach to help developers locate errors about bindings in
both built-in attributes and attributes of custom components developed
within the JavaScript MVC framework. Our approach consists of four main
steps. We register the state transitions of the page, then, we search for
attribute changes in the DOM. When we find an attribute with a value in the
view, we evaluate that value within the context of the associated model.
After getting the result of that evaluation, we check for inconsistencies and
specifically for errors about variable definitions and type mismatches.

5.1 Formal Model

Here we first give a formal model for JavaScript MVC applications. Then
we define the binding inconsistencies on this model. Finally, we describe
our approach to detect these inconsistencies based on the model.

Let M be the set of models, C be the set of controllers, V be the set of views.
Let Type = {object, string, number, function, array, boolean, date, file,
undefined} and AttrName be the set of special attribute names, which is
explained later in this section. Also, let Value be the set of all values of each
variable defined in the models in M. We define;

Val = Value {undefined}.

A JavaScript MVC application is a tuple <S, A> where S={<m,v,c> | m
M, v V, c C} is the set of states and A={<name, type>| name
AttrName, type Type} is the set of attributes. We need to explain states
and attributes briefly since our approach is based on these terms.

First of all, we need to define the “state” of an application. Almost every
JavaScript MVC framework offers a grouping of Controller and View for
page rendering. We use the routes in AngularJS as the states of the
application (see Section 2.5). We collect state information of the application
while the application loading (Figure 6 Step 1). We use this information in
our analysis process when the state transition occurs.

34

States can be nested in a page. In this study, we call the states with no
substates as non-nested states. A substate has its own view. A substate may
have its own controller. If there is a controller, the substate uses the variable
of the model defined in its controller in addition to the controller of its
superstate. In case of name conflict, the model definition in the inner
controller is used. This relationship between controllers is called
prototypical inheritance in AngularJS.

In this case, it is almost impossible to find an inconsistency with a static
analysis as variables in the view do not have values in the controller because
controller gets these values from model which can be a remote service.
Controller also can get these values from a local model which can be created
in a previous state dynamically from the user inputs. So it is not possible to
find out the model values which are not exist in the compilation time.

Figure 6. Executed jobs by the tool while initializing

Our approach includes finding special HTML attributes since these
attributes have values. HTML elements cannot have value but they do have
attributes which may have value. These values are used to bind model
variables to HTML attributes. We use the word “special” because not all
HTML attributes have their value as a binding to the Model. Almost every

35

basic HTML attributes have a static value. For example there is “type”
attribute of element “button” is just a text in FlightApp (Figure 2 line 18).
Another example can be “class” attribute which is applicable to almost all of
the HTML elements (Figure 3 line 2).

First part of the special attributes is from framework itself. AngularJS has
built-in special attributes that we need to predefine their names and their
expected types (Figure 6 Step 4). So we can use them to search for their
name in the view of the state. An example built-in special attribute is “ng‐
click” which we use in FlightApp (Figure 2 line 19). Simply it expects a
function and invokes that function when the associated element is clicked by
the user.

Second and more important part of the special attributes are defined in the
application itself. As developers define custom web components, they
usually define expected attribute names and their types by these custom web
components. But the developers cannot ensure the right usage of the
attributes in the view as these custom web components are independent,
reusable templates. In addition, these components are not rendered by
browser before they are encountered in the loading phase of the DOM.

For instance, in our FlightApp example, there are 3 built-in attributes and 3
attributes from custom web component. The set of special attributes;

 A = {

<"ng-model", OBJECT>, <"ng-click", FUNCTION>,

<"ng-hide", BOOLEAN>, <"header", STRING>,

<"flight-list", ARRAY>, <"flight-selected", FUNCTION>

}

Here we define three functions;

Function 1 (Eval Function): Given m M, v V, and a A, the function
eval(m,v,a) returns the value of the variable of the model which is defined in
the controller c and used as attribute a in the view v.

Function 2 (TypeOf Function): Given val Val, the function typeOf(val)
returns the type of the value val which is an element of the set Type.

Function 3 (Flatten Function): Let v1, v11, v12 V, m1, m11, m12 M, and
c1, c11, c12 C. Given a state s1 : < m1, v1, c1> in S with s11 : <m11, v11, c11>
and s12 : < m12, v12, c12> as substates, flatten(s1) = {s’11, s’12} where s’11 : <
m1 m11, v1 v11, c1 ₱ c11> and s’12 : <m1 m12, v1 v12, c1 ₱ c12> and ₱
is the prototypical inheritance operation in JavaScript.

36

Now we define the binding consistency rules;

Rule 1 (Definition Rule): Given an attribute a A and a non-nested state
s=<m,v,c> where c C, v V, and m M which is defined in c, then
eval(m, v, a) ≠ undefined.

Rule 2 (Type Matching Rule): Given an attribute a A and a non-nested
state s=<m,v,c> where c C, v V, and m M which is defined in c, then
typeof(eval(m, v, a)) = a.type

Definition: A JavaScript MVC web application <S, A> is consistent if and
only if for every state s S, the above two rules are met for every attribute a
∈ A in every elements of flatten(s).

5.2 Approach

We present a runtime verification approach to detect the sources of
inconsistencies in data bindings. We propose to employ runtime checks by
leveraging the underlying execution environment whenever a state transition
occurs. AngularJS fires an event for every transition as most of other
frameworks do. We can register to that event or decorate the function which
initializes the transition. We choose the first option as it helps to isolate the
analysis logic (see the Step 2 in Figure 6).

Employing runtime checks at state transitions enables us to report errors in a
state immediately when the state is loaded. Furthermore since the part of the
HTML page where the transition will occur is predefined in the application,
it is possible to execute analysis process only on the changing part of the
HTML page preventing whole page to be analyzed again and again and
gaining performance (Figure 7 Step 1). Additionally, this feature is very
useful especially in the development environment of a big scale application
where developers need to focus business domain logic more than finding
inconsistencies in the binding between view and controller.

After registering state transitions we need to search the view for the special
attributes, collect their values in the view and evaluate these values in the
context of the particular model (Figure 7 Step 2). Searching these special
attributes is done by using routing system to detect the changing area and
then using DOM traversal utilities of AngularJS which use jQuery internally
on this area. These evaluated values can refer to a Model variable directly or
can be a statement which has model variables in it. In this case evaluation
becomes harder. Fortunately, there is parsing mechanism both in native
JavaScript and in the MVC framework. We have used parsing service of
AngularJS framework since it is already loaded and ready to use while
runtime verification occurs. We evaluate the model variables in the
statement expressions after parsing them and locating the variable itself.

37

Choosing context to run the parsing service on is important but it is solved
easily by running it in the context of the model itself and then on the
prototype of the model. It means that parsing service takes prototypically
inherited variables into consideration as well.

Figure 7. Executed jobs by the tool for every state transition

Checking the rules of the formal model is the next step of the analysis
process. We can move to the checking phase since we have the special
attribute with name and expected type, value of the attribute in the view and
evaluated value of the attribute in the model. We defined two rules to use
for checking purposes. First rule executes the variable definition checking
process (Rule 1). This process looks for the evaluated value of the attribute
and returns false if evaluated value is undefined. If result is false then the
first rule fails and logs the error (Figure 7 Step 3). If result is true then Rule
2, the type checking rule, starts execution and initializes the type
expectation checking process. This process looks for the type of the
evaluated value and tries to match it with the expected type of the special
attribute. If this matching fails then the second rule logs the error about type
expectation (Figure 7 Step 4).

38

Our approach uses runtime verification methodology instead of static
analysis since this method enables us to handle nested states easily. In
addition, we can make use of the parsing service to evaluate variables in
sentences given in HTML. For example it is possible to evaluate the
variable flightList in Figure 5 line 18 using parsing service. Inferring
the value of the variables is also not a problem in dynamic verification
because we use the runtime environment to determine these values.

5.3 Implementation

We implemented our approach as a tool namely HAKI that helps developers
to find about sources of inconsistencies in their code by locating errors
using runtime verification. Our tool can report the errors and warnings about
the page that it is working on. The tool is currently working dynamic mode
only which means that the tool runs background with the application while
application runs in the browser. Our tool should be loaded to the application
after AngularJS framework’s source file and before the source code of the
application itself. This order enables us to decorate some features of MVC
structure of the AngularJS and custom web component creation process
(Figure 6 Step 3). Particularly there is no way to be notified about custom
web component creation in the application without decorating some
functions of AngularJS. So we used JavaScript as well to implement HAKI
and currently it is depended on AngularJS because of the decoration
process.

1. /* The tool should be run manually */
2. MANUAL: "MANUAL",
3.
4. /* Default, The tool runs automatically,
5. * when application transit to
6. * that state for the first time */
7. AUTO_ONCE: "AUTO_ONCE",
8.
9. /* The tool runs automatically,
10. * when application transit to
11. * that state for every time */
12. AUTO_ALWAYS: "AUTO_ALWAYS",
13.
14. /* The tool runs automatically,
15. * when the application loaded */
16. ALL: "ALL"

Figure 8. Available modes of the tool HAKI

HAKI can be used by loading it to the application just after AngularJS. It
will run automatically for every state transition by default. There are other
execution strategies available for the tool. These modes and their
explanation are shown in Figure 8. In addition, HAKI provides a global API

39

which developers can use to configure the tool. The global API provides the
methods shown in Figure 9. The methods are self-explanatory.

1. /**
2. * Sets the execution strategy
3. * @param {string} hakiMode
4. * @see haki.HAKI_MODES
5. */
6. hakiAPI.mode = function (hakiMode) {
7. haki.mode = hakiMode;
8. };
9.
10. /**
11. * Disables the analysis for given type
12. * @param {string} type
13. */
14. hakiAPI.ignoreType = function (type) {
15. haki.ignoreList.add({
16. type: "type",
17. value: type
18. });
19. };
20.
21. /**
22. * Disables the analysis for given attribute
23. * @param {string} attributeName
24. */
25. hakiAPI.ignoreAttribute = function (atrName) {
26. haki.ignoreList.add({
27. type: "attribute",
28. value: attributeName
29. });
30. };
31.
32. /**
33. * Executes the analysis for given state
34. * It will run for current state,
35. * If stateName is not defined
36. * @param {string} stateName
37. */
38. hakiAPI.run = function (stateName) {
39. haki.analyze(stateName);
40. };

 Figure 9. The global API of the tool HAKI

The tool executes the steps shown in Figure 7 at state transition time for the
transitioned state. When all steps are completed, the tool marks the state as
analyzed and does not try to analyze it again before reloading the
application. This means a state is not analyzed if the application transits to
that state the second time. It is a parametrical feature that can be turned off
using the global API, but since our tool designed to be used mostly in

40

development or testing phase, it is not necessary to analyze a page twice.
Developers usually develop pages by the following, possibly repetitive,
sequence of tasks: 1) code the web application, 2) run the application, 3)
check for errors, 4) if there is any error, close the application, 5) fix the
error, and 6) rerun the application to see if it is error free. In addition, it is a
performance enhancement to disable analyzing a page more than once.

41

CHAPTER 6

EXPERIMENTS AND RESULTS

We integrated our tool to the development phase of a real big scale
JavaScript application. In our first experiment, we use this real application
to evaluate the efficiency, reliability, and usability of the tool. In our second
experiment, we used HAKI in an application, where we created and injected
erroneous states, to measure the accuracy of the tool. In both of the
experiments we examined whether there are any performance issues.

6.1 Real Application Tests

The application we use to evaluate our tool is a big scale web application. It
is used in Turkey, mainly by manufacturers and distributors of medical
devices and cosmetic products. The aim of the application is to register and
track all unique medical devices and cosmetic products in the country
starting with their production or import to the country and ending with their
consumption or use by clients. Therefore, it is a data-heavy application and
the pages that show the data should be reliable and error free.

The application uses the Java Spring Framework at server side and the
JavaScript AngularJS framework at client side. There are four development
teams with 28 developers and one test team with four testers working on
that project. There are seven main modules and three domain independent
supportive modules. Table 1 gives more detail about the size of the
application.

Table 1. Metrics that shows the size of the real application

Metric Value

Number of States 526

Number of Controllers 512

Number of Views 526

42

Number of JavaScript Files 1459

Number of HTML Files 642

Number of Custom Elements 59

Number of Lines of JavaScript Code 49536

6.1.1. Experiment

During the first run of the experiments, we encountered an issue about false
positives. The developers of this application have a tendency to assign string
or object variables directly to the Boolean attributes. Since any value other
than null or zero is interpreted as true, this behavior does not result in any
error during page rendering. Below is an example of this usage in our
FlightApp Figure 3 line 2. It should be:

1. ng‐hide="availableFlightList.length > 0"

instead of;

1. ng‐hide="availableFlightList.length"

To avoid reporting false positives in these situations, we decided to add a
function to the global API to disable the type checking of Boolean
attributes. This setting is the default behavior of HAKI since such misuse is
common among web developers. We were able to reduce the false positives
with the help of this improvement. Finally, we reran the experiment and
collected the results that are discussed in the following section.

6.1.2. Results

The logs and messages created by HAKI were collected and evaluated with
the developers and testers of the subject application. There were a total of
55 errors that our tool located and all of them were acknowledged as real
issues that need to be fixed. Additionally, eight of the errors were marked as
major errors with high priority.

Major errors include wrong variable names used in View attributes for data
bindings, which result in undesirable situations. In two cases, the data
entered by the user is bound to the wrong variable and the actual variable is
sent to the server side with an undefined value. This binding error results in
creation of inconsistent data. There are two cases with the same effect; but
these are caused by using wrong types in bindings. In these cases, variables
with the type of function are used for binding, whereas the expected type is

43

string. There is also a major error about type mismatch where the expected
type is date but given type is function. This is a potential inconsistency
within the data. The other three errors are about the pages shown to the user.
The bindings expect string variables but objects are used. This situation
caused the browser to attempt to convert these objects into string and
display “[object Object]” on the page.

There were also 35 warning messages reported that show possibility of
errors. Most of these warning messages are about undefined variables used
for the ng-model attribute. We report this situation as warning since ng‐
model attribute can create the variable it is bound if the variable is not
defined. In this case, the usages can be intentional therefore we just report a
warning about the situation. Actions are taken for all of those warning
messages and specific improvements are applied since they can cause errors
easily if they are used as sub-states in the future. To conclude, HAKI
detected a considerable amount of fault where all results are evaluated as
true positives.

6.1.3. Overhead

We evaluated HAKI in a big scale project which has a big performance
concern. The overhead that our tool brings to the application is very
important, because the tool always runs automatically in the background as
the application runs. The application is loaded with all of its components
shown in Table 1 during the experiment. The average time of HAKI to
analyze a state is 185 milliseconds. We measure its performance for two
chosen states. The first one is chosen as the big state with at least 50 HTML
elements used at depth 6 of the DOM tree. The second one, called small
state, has just seven elements and one of them is a custom web component
with a flat DOM tree. In addition, we measure the performance of HAKI for
the most visited states which are dashboard pages (users are redirected to a
dashboard page according to their role after login). The average time of
HAKI to analyze these most visited states is 218 milliseconds which is
satisfying for this particular case. Although these values extremely depend
on the power of client’s computer, the tool verifies only the changing
portion of the view, not the whole DOM and it uses simple JavaScript loops
for this verification, which are simple and efficient to execute. This
indicates that there is a negligible overhead our tool brings to applications.

6.2 Fault Injection Tests

The application we use to inject faults is a middle size real world JavaScript
application that uses AngularJS as MVC framework on the client side. It is
used to help development teams to share information by creating wikis for
their services and components. They use the application every time they

44

create a component or a public service to inform others about that new
feature. Developers are responsible to maintain this information, so they
also use the application for updates.

Table 2 gives more information about the size of the application:

Table 2. Metrics that shows the size of the fault injected application

Metric Value

Number of States 42

Number of Controllers 42

Number of Views 42

Number of JavaScript Files 44

Number of HTML Files 42

Number of Custom Elements 2

Number of Lines of JavaScript Code 2911

6.2.1 Experiment

We first ran HAKI before fault injection to identify background errors.
After identification and fixing of these errors, we injected 18 errors into the
application as given in Table 3:

Table 3. Type of errors used for the fault injection

Error Introducing Method Violating Rule
Number
of Errors

Used undefined variable in view Rule 1 2

Used variable from unrelated model in view Rule 1 1

Changed the name of variable in model Rule 1 3

Used a mistyped variable in view Rule 2 2

Changed the type of variable in model Rule 2 5

45

Deleted the definition of variable from model Rule 1 1

Used an undefined variable in view for
custom component

Rule 1 2

Used a mistyped variable in view for custom
component

Rule 2 2

We tried to use as many different attributes as to make the experiment more
realistic. There are also injections about type mismatch violating Rule 2.
After all the errors were injected, we ran HAKI for runtime verification.

6.2.2 Results

The error messages that HAKI created were collected and analyzed. There
were a total of 18 error messages which show that our tool successfully
located all of the injected faults. These faults are introduced to the subject
system using the methods in Table 3:

Table 3. Any other scenario that causes an inconsistency about data bindings
has to be violating Rule 1 (variable definition rule) or Rule 2 (type
mismatch rule) and nothing else. Since our approach covers these rules,
HAKI is complete.

6.2.3 Overhead

We measured the running time performance of HAKI for all of the states in
the application. The longest time it takes HAKI to analyze a state is 361
milliseconds and shortest time is 106 milliseconds. Although HAKI should
mostly be used in development environments where performance is not a
big concern, it can also be used in production since it carries negligible
overhead.

6.3 Experiences in a Development Environment

Our tool HAKI has been used in a large-scale real project for approximately
four months. We integrated the tool to the development environment of this
project and developers started to use the output of the tool. This process has
also provided us to enhance HAKI to support the needs of a real world
software project. There are development teams and a test team in the
project. HAKI provides a significant decrease the number of the failures that
comes back from test team to the development teams since it enables the
developers to detect more errors during the development process. It is a
known fact that the earlier an error found the lower it costs to fix it.

HAKI analysis states of the application and outputs the messages about the
binding errors it finds. Figure 10 shows an example output of the tool. In

46

this Figure it is shown that HAKI analyzed the states of the application and
if it detects an inconsistency in the state, the error message about that
inconsistency is printed. This error messages includes the special attribute
name, value and inconsistency type. HAKI outputs only the state names that
have at least one error, if silent mode of the tool is activated via global API
differing from the figure below.

Figure 10. An example output of the HAKI

HAKI has a silent mode in which it only sends a message about the states
that have an error. In the development environment we enabled HAKI to
send its output directly to the user interface as well as the application
console since the developers activates silent mode it is usable to see the

47

errors directly in the upper right corner of the web page itself (Figure 11).
Some of the errors that HAKI reported may not affect the functionality of
the page but just the appearance. Even so it is not a desirable situation that
the end users of the project see these error messages therefore developers
are enforced to fix the errors that HAKI reported. In the end HAKI provides
the consistency for the project.

In Figure 12 there is an error in the page about the “GMDN” value. We
have highlighted the particular label; it is too hard to detect manually
otherwise.

Figure 11. The output of the HAKI in the web page

Testers may think that this particular record does not have any GMDN value
so that it is empty. They should access the database and check the values to
match with these page. It requires a lot of effort to detect the error. Although
there is not a functional error, there is deficiency of the customer
requirements. In addition, it can easily cause loss of system functionality if
the same error occurs in a binding in any of the forms where user inputs data
to the system.

48

Figure 12. An example page with binding error

The root cause of this error is as follows. For this particular instance the
developer of the page used four partial HTML for every header and one
Controller for all of them. One of the partial HTMLs is shown in Figure 13
lines 1 to 12 and the Controller is shown in Figure 13 lines 15 to 28
(summarized). Please take into consideration that the Controller and the
View are in the separate physical files. The view fragment in Figure 13 line
7 binds to kayit.gmdnJenerik.code. In the specific Controller in
Figure 13 line 23; the gmdnJenerik field of the variable kayit is
populated via a remote request. It is assumed that the gmdnJenerik object
has a field namely code but the name of this field is changed by the
developer who develops the remote resource to kod while it remains
unchanged in the specific partial HTML; because of that, the page does not

49

render the GMDN value of the record and the users will never see that value
even it is recorded in the application.

1. //* Partial HTML included by the view of the page ‐‐>
2. <form‐block header="Sınıflandırma Bilgileri">
3. <form‐element element‐name="Sınıf:">
4. <label ng‐bind="kayit.sinif"/>
5. </form‐element>
6. <form‐element element‐name="GMDN:">
7. <label ng‐bind="kayit.gmdnJenerik.code"/>
8. </form‐element>
9. <form‐element element‐name="Branş Kodu:">
10. <label ng‐bind="kayit.bransKodu.aciklama"/>
11. </form‐element>
12. </form‐block>
13.
14. //* The controller of the page ‐‐>
15. utsApp.controller("tibbiCihazDetayController",
16. function ($scope, URLParameters, RemoteService) {
17.
18. var cihazId = URLParameters.get("id");
19.
20. //* The Model of the page ‐‐>
21. $scope.kayit = {
22. ...
23. gmdnJenerik: RemoteService.getGMDN(cihazId);
24. ...
25. };
26.
27. }
28.);

Figure 13. The View and Controller of the Page in Figure 12

HAKI detected the error in this page when it analyzed the page. All four
partial HTML were merged as a View and the Controller loads the Model
values from remote resources. HAKI access the Model and matches with the
View then parses the View and evaluates the variables respectively.

To conclude HAKI reduced the number of the errors caused by the data
bindings in the testing phase since it enables developers to detect and
resolve every inconsistency in the development phase. In addition, it
removes these kinds of errors from the production environment as well;
considering some of the errors had not been detected in the testing phase
before our tool.

50

51

CHAPTER 7

CONCLUSION

We have presented a runtime verification approach for JavaScript MVC
web applications. We implemented the proposed approach as a tool named
HAKI. The key insight of our work is that despite the challenging dynamic
features of the JavaScript MVC frameworks, it is possible to locate
inconsistencies between JavaScript code and HTML code with a predefined
rule set using runtime verification. We showed that our tool is capable of
detecting real world bugs in very large scale JavaScript MVC applications
with a minor performance overhead.

7.1 Limitations

We have a few limitations in our approach as explained in Section 5.2. The
implementation of our approach is for AngularJS and the current version is
limited to AngularJS (Section 5.3). But it can be applied to another
JavaScript MVC framework with little modification, since most of the
implementation is independent from AngularJS. The core analysis process is
written in pure JavaScript. Core analysis is triggered when an AngularJS
dependency is detected. Different frameworks manage page transitions
differently. However, there are mechanisms to catch those transitions in
almost all of the frameworks. Therefore, little effort is required for applying
HAKI to another JavaScript MVC framework.

Since we employ runtime analysis techniques, our approach lacks the
analysis of the states which load partial HTML contents asynchronously.
We execute the runtime verification process after the state is loaded, so if
there is asynchronous loading in a state, it cannot be analyzed by HAKI. In
a similar way, any HTML content rendered and added to the DOM after the
state transition occurs should be missed too since there are a few special
attributes which behaves that way like ng‐switch. To conclude HAKI has
just a few limitations since it is designed to handle many cases like
plurization, interpolation, inheritance, filters, and custom components,
which are commonly used features of web application frameworks.

52

7.2 Future Work

In future work, we will focus on improving the tool to make it more generic
and independent from the MVC framework itself. It may be possible by
adding a specific analysis logic for every framework. Another direction of
future work is to implement runtime verification process of generic custom
web components, which are not dependent on framework implementation
and can work even with native JavaScript. Since custom component
JavaScript applications are considered as the future of the web development
(Section 2.4), working on further improvements in this area will have
significant benefits for the developer community.

53

REFERENCES

[1] S. O’Grady, “The RedMonk Programming Language Rankings”, June
2015, http://redmonk.com/sogrady/2015/07/01/language-rankings-6-15

[2] D. Rowinski, “JavaScript is eating the world”,
https://arc.applause.com/2015/11/06/javascript-is-eating-the-world,
2015

[3] M. Cantelon, T.J. Holowaychuk and M. Harter, the book: “NodeJS in
Action”, August 2013

[4] EngineIO, https://github.com/socketio/engine.io, last visited November
2016

[5] MochaJS, http://www.mochajs.org, last visited October 2016

[6] ShouldJS, http://shouldjs.github.io, last visited October 2016

[7] EmberJS, http://www.emberjs.com, last visited November 2016

[8] BackboneJS, http://www.backbonejs.org, last visited November 2016

[9] KnockoutJS, http://knockoutjs.com/documentation/introduction.html,
last visited November 2016

[10] AngularJS, http://www.angularjs.org, last visited October 2016

[11] C. Wilson, “Componentizing Web Applications”,
https://www.w3.org/TR/NOTE-HTMLComponents

[12] A. Lerner, the book: “ng-book The Complete Book on AngularJS”
https://www.ng-book.com, last visited September 2016

[13] B. Bibeault, The book: “JQuery in Action”, 2008

[14] D. Crockford, the book: “JavaScript: The Good Parts”, “Unearthing the
Excellence in JavaScript”, pages 110-132, May 2008

[15] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information
flow for JavaScript. In PLDI, June 2009

[16] S. Guarnieri and B. Livshits. Gatekeeper: Mostly static enforcement of
security and reliability policies for JavaScript code. In Proceedings of
the Usenix Security Symposium, Aug. 2009

[17] S. Guarnieri and B. Livshits. Gulfstream: Incremental static analysis for
streaming JavaScript applications. In Proceedings of the USENIX
Conference on Web Application Development, June 2010

54

[18] M. Sridharan, J. Dolby, S. Chandra, M. Schaefer, and F. Tip.
Correlation tracking for points-to analysis of JavaScript. In ECOOP,
2012

[19] W. Li, M. Harrold, and C. Gorg, “Detecting user-visible failures in
AJAX web applications by analyzing users’ interaction behaviors,” in
IEEE/ACM Conference on Automated Software Engineering, 2010, pp.
155–158.

[20] K. Pattabiraman and B. Zorn, “DoDOM: Leveraging DOM Invariants
for Web 2.0 Application Robustness Testing,” in IEEE Intl.
Symposium on Software Reliability Engineering (ISSRE), 2010, pp.
191–200.

[21] A. Mesbah and A. van Deursen, “Invariant-based automatic testing of
AJAX user interfaces,” in Intl. Conference on Software Engineering,
2009, pp. 210–220.

[22] A. Guha, S. Krishnamurthi, and T. Jim, “Using static analysis for
AJAX intrusion detection,” in Intl. Conference on World Wide Web,
2009, pp. 561–570.

[23] Y. Zheng, T. Bao, and X. Zhang, “Statically locating web application
bugs caused by asynchronous calls,” in Intl. Conference on the World-
Wide Web (WWW), 2011, pp. 805–814.

[24] J. Mickens, J. Elson, and J. Howell, “Mugshot: deterministic capture
and replay for JavaScript applications,” in 7th USENIX Conference on
Networked Systems Design and Implementation, 2010, pp. 11–11.

[25] S. Andrica and G. Candea, “WaRR: High Fidelity Web Application
Recording and Replaying,” in IEEE Intl. Conference on Dependable
Systems and Networks, 2011.

[26] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the
dynamic behavior of JavaScript programs,” in ACM Conference on
Programming Language Design and Implementation, ser. PLDI ’10,
2010, pp. 1–12.

[27] P. Ratanaworabhan, B. Livshits, D. Simmons, and B. Zorn, “JSMeter:
Measuring JavaScript behavior in the wild,” Usenix Conference on
Web Application Development (WebApps), 2010.

[28] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers, “A limit study of
JavaScript parallelism,” in IEEE Intl. Symposium on Workload
Characterization (IISWC), 2010, pp. 1–10.

[29] C. Yue and H. Wang, “Characterizing insecure JavaScript practices on
the web,” in Intl. Conference on World Wide Web (WWW), 2009, pp.
961–970.

55

[30] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical study of
privacyviolating information flows in JavaScript web applications,” in
ACM Conference on Computer and Communications Security, 2010,
pp. 270–283.

[31] R. Cartwright and M. Fagan. Soft typing. SIGPLAN Notices,
39(4):412–428, 2004

[32] C. Anderson and P. Giannini. Type checking for JavaScript. In WOOD
S04, volume WOOD of ˇ ENTCS. Elsevier, 2004.
http://www.binarylord.com/ work/js0wood.pdf, 2004

[33] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type
inference for JavaScript. In Proceedings of the European Conference on
Object-Oriented Programming, pages 429–452, July 2005

[34] R. Thiemann. Towards a type system for analyzing JavaScript
programs. European Symposium On Programming, 2005.

[35] A. Mesbah, F. Ocariza, and K. Pattabiraman. “Detecting
inconsistencies in javascript mvc applications”. In Proceedings of the
37th International Conference on Software Engineering-Volume 1,
pages 325--335. IEEE Press, 2015

[36] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An empirical
study of client-side JavaScript bugs,” in Proceedings of the
International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE Computer Society, 2013, pp. 55–64

[37] F. Ocariza, K. Pattabiraman, and A. Mesbah, “AutoFLox: an automatic
fault localizer for client-side JavaScript,” in Proceedings of the
International Conference on Software Testing, Verification and
Validation (ICST). IEEE Computer Society, 2012, pp. 31–40

[38] F. Ocariza, K. Pattabiraman, and A. Mesbah, “Vejovis: suggesting fixes
for JavaScript faults,” in Proceedings of the International Conference
on Software Engineering (ICSE). ACM, 2014, pp. 837–847

[39] A. Leff and J. T. Rayfield, “Web-application development using the
model/view/controller design pattern,” in Proceedings of the
International Enterprise Distributed Object Computing Conference
(EDOC). IEEE Computer Society, 2001, pp. 118–127

[40] J. L. Singleton and G. T. Leavens, “Verily: a web framework for
creating more reasonable web applications,” in Companion Proceedings
of the International Conference on Software Engineering (ICSE).
ACM, 2014, pp. 560–563.

[41] S. Halle, T. Ettema, C. Bunch, and T. Bultan, “Eliminating navigation ´
errors in web applications via model checking and runtime enforcement
of navigation state machines,” in Proceedings of the International

56

Conference on Automated Software Engineering (ASE). ACM, 2010,
pp. 235–244.

[42] J. Nijjar and T. Bultan, “Bounded verification of Ruby on Rails data
models,” in Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). ACM, 2011, pp. 67–77.

[43] R. Morales-Chaparro, M. Linaje, J. Preciado, and F. Sanchez-Figueroa,
´ “MVC web design patterns and rich internet applications,”
Proceedings of the Jornadas de Ingenierıa del Software y Bases de
Datos, pp. 39–46, 2007.

[44] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. M. Paradkar, and M.
D. Ernst. Finding Bugs in Dynamic Web Applications. In Proceedings
of ISSTA 2008, pages 261–272. ACM, 2008

[45] C. Braband, A.Moller, and M. Schwartzbach. Static validation of
dynamically generated HTML. In PASTE 2001.

[46] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static analysis tool for
detecting Web application vulnerabilities (short paper). In Security and
Privacy, 2006.

[47] G. Wassermann and Z. Su. Static detection of cross-site scripting
vulnerabilities. In ICSE, 2008.

[48] J. Wojciechowski, B. Sakowicz, K. Dura, and A. Napieralski, “MVC
model, struts framework and file upload issues in web applications
based on J2EE platform,” in Proceedings of the International
Conference on Modern Problems of Radio Engineering,
Telecommunications and Computer Science (TCSET). IEEE Computer
Society, 2004, pp. 342– 34

TEZ FOTOKOPİSİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

 Sosyal Bilimler Enstitüsü

 Uygulamalı Matematik Enstitüsü

 Enformatik Enstitüsü X

 Deniz Bilimleri Enstitüsü

YAZARIN

 Soyadı : Bilge
 Adı : İbrahim
 Bölümü : BİLİŞİM SİSTEMLERİ

TEZİN ADI (İngilizce) : HAKI: A RUNTIME VERIFICATION TOOL
FOR JAVASCRIPT MVC WEB APPLICATIONS

TEZİN TÜRÜ: Yüksek Lisans X Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek
şartıyla tezimin bir kısmı veya tamamının fotokopisi alınsın. X

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullanıcılarının

erişimine açılsın. (Bu seçenekle tezinizin fotokopisi ya da elektronik
kopyası Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin

fotokopisi ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına
dağıtılmayacaktır.)

Yazarın imzası Tarih

