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ABSTRACT

MODELING ILLIQUIDITY PREMIUM AND BID-ASK PRICES OF THE
FINANCIAL SECURITIES

Karimov, Azar
Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Gerhard Wilhelm-Weber

Co-Supervisor : Prof. Dr. Suat Teker

December 2016, 134 pages

When a financial bubble bursts, this affects the entire economy. Therefore, it is im-
portant to recognize bubbles as early as possible. In this thesis, we introduce a new
approach to identify stock market bubbles by using illiquidity premium derived by em-
ploying Conic Finance theory. This theory is connected with liquidity effects and risk
behavior of money markets. In financial markets, liquidity is an important quantity
since it mirrors the asset’s capability to be bought or sold without a significant change
in the price and with a smallest possible loss of value. During financial shocks, the
liquidity is said to evaporate and, hence, it increases the bid-ask spread of financial
securities. Therefore, illiquidity premium has been thought as a kind of indicator to
detect bubbles. In this thesis, we derive the closed form formulas of the bid and ask
prices of the European options by using the Black-Scholes and Kou models. More-
over, by using the derived formulas we numerically calculate the illiquidity premiums
of the option contracts. We deal with 2008 subprime crisis in equity markets by using
derivative contracts and use data of European put and call options written on S &P 500
index taken from the years of 2008 to 2010. Moreover, in order to monitor the market
movements closely, we use sliding windows technique. As a result, we have found a
sharply increasing process in illiquidity premium that is obtained from the derivatives
market, when the bubble-burst time approaches in a stock market. The thesis ends with
a conclusion and an outlook to future investigations.
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ÖZ

İLLİKİDİTE PRİMİ MODELLEMESİ VE FİNANSAL SENETLERİN ALIŞ-SATIŞ
FİYATLARI

Karimov, Azar
Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard Wilhelm-Weber

Ortak Tez Yöneticisi : Prof. Dr. Suat Teker

Aralık 2016, 134 sayfa

Bir finansal balon patladığında bu, tüm ekonomini etkiler. Bu nedenle balonların
mümkün olduğunca erken saptanması önem arz etmektedir. Bu tezde borsa balon-
larını tanımlamak için Konik Finans teorisinden elde edilen illikidite primi kullanılarak
yeni bir yöntem geliştirilmektedir. Bu teori, para piyasalarının likidite etkileri ve risk
davranışları ile bağlantılıdır. Finansal piyasalarda likidite, finansal varlığın fiyatında
önemli bir değişiklik olmaksızın ve değerinde en az kayıpla alınıp satılabilme kapa-
sitesini yansıttığı için önemli bir değişkendir. Finansal şoklar esnasında likidite or-
tadan kalktmakta ve buna bağlı olarak da finansal varlıkların alım satım fiyat aralığı
genişlemektedir. Bu nedenle illikidite primi, balonları tespit etmek için bir nevi göster-
ge olarak düşünülmektedir. Bu tezde, Black-Scholes ve Kou modellerini kullanarak
Avrupa tipi opsiyonların alım ve satım fiyatlarının kapalı formdaki formüllerini türetmiş
olduk. Bununla birlikte, bu türetilmiş formülleri kullanarak sayısal olarak opsiyon
sözleşmelerinin illikidite primlerini hesapladık. Biz 2008 ile 2010 arası S &P 500 en-
deksi üzerine yazılı Avrupa alım ve satım opsiyonları kullanarak 2008 yılında gerçekleş-
miş hisse senedi piyasası krizini inceledik. Ayrıca, piyasa hareketlerini yakından izle-
mek için kayan pencereler tekniği kullanılmaktadır. Sonuç olarak, bir piyasada balo-
nun patlaması öncesinde türev piyasasından elde edilen illikidite priminde keskin bir
yükseliş gözlemlenmektedir. Tez sonuç ve gelecek araştırmalara yönelik bir bakış
açısıyla sona ermektedir.
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CHAPTER 1

INTRODUCTION

Liquidity is the crucial prerequisite for the normal working of financial markets. Only
the properly liquid money markets can work successfully. The liquidity of business
sectors, more accurately the absence of it, influences the entire financial system, and
the entire economy, repressing their typical way of working. The financial bubble of
2008 has indicated remarkable significance of the liquidity of the financial markets,
and in the meantime it pushed this inquiry to the spotlight. The modification and
supplementation of the standard equilibrium and no-arbitrage models which accept the
presence of infinity liquidity has turned into a need, as there is a clear necessity to
develop new pricing and detection models and risk management systems.

A complete description and basic interpretation of liquidity does not exist. Straightfor-
ward definitions in one sentence would be like, e.g., “Liquidity in a financial market
is the capacity to assimilate easily the flow of buy and sell orders – ...” [103]. Unfor-
tunately, this definition cannot catch the reality of “liquidity”, since liquidity is not a
one-dimensional measurement but it rather incorporates several measurements.

In illiquid markets, sales charges are altogether higher than in liquid markets, i.e. deals
may be executed with particularly higher expense and time. In this way it is not unex-
pected that investors’ essential prerequisite is that every stock’s liquidity ought to be
proportionate and the trade costs have to be quantifiable. Measuring liquidity is a com-
plicated issue by itself, it is hard to express the majority of its angles with one single
pointer; likewise it is difficult to gauge how much cost illiquidity produces during the
transaction, since liquidity can be explained along various measurements and accord-
ingly at any given time some of its distinctive characteristics can be in the spotlight.

Different aspects of liquidity may be organized as in below in order to display the given
levels of liquidity:

1. The capacity to make an exchange at all: This first level of liquidity is self-
evident: if there is no liquidity entirely in the market, no exchange will occur. In
a liquid market, there exist no less than one bid and one ask quote that make an
exchange conceivable.

2. The capacity to buy or to sell a specific amount of an asset with impact on the
given price: In a liquid market, it is conceivable to exchange a specific measure
of shares with little effect on the cited cost.
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3. The capacity to buy or to sell a specific quantity of an asset without impact on the
cited price: The more liquid a market, the less is the effect on the cited prices.
Along these lines, as the liquidity rises, in the long run a point will be achieved
where there is no more value effect for a specific quantity of shares.

4. The capacity to buy and to sell an asset at about the same cost at the same time.

5. The capacity to execute a trade from items 2 to 4 quickly.

During this research we put strong emphasis on an illiquidity indicator which evaluates
the differences between the bid and ask prices of financial derivatives in a real time
frame. Another principle objective of the thesis is to help illiquidity as an idea to be
integrated into the routine of Risk Management Departments on a daily basis, i.e., to
give detailed resolutions which can be effectively incorporated into their regular work,
and also to correctly develop from hypothetical perspective. Moreover, by evaluating
the illiquidity premium we try to detect the financial bubbles before it collapses.

Stock market bubbles take place when the prices of stocks are exaggeratingly higher
than their fundamental value (intrinsic value). According to the fundamental value of
a security, an investor can decide whether the security is overvalued or undervalued.
If the intrinsic value of a security is higher than its current market price, it is classified
as overvalued, if otherwise occurs (i.e. intrinsic value lower than market price), it is
called as undervalued. Hence, an investor may build their investment decision based
on this criteria.

The thesis is divided into eight chapters and is broadly focuse on one major related
topic, i.e., bid-ask spread or illiquidity premium. This chapter serves as an introduction
to the thesis and provides various motivations for the research undertaken.

Chapter 2 provides a critical review of the current literature with existing bid-ask
spread measurement approaches. For the purpose of this thesis, we classify the lit-
erature into three broad categories: (i) the first one includes the literature about the
methods and techniques used in inventory models related to the bid-ask spread; (ii) the
second category consists of the literature about models and useful tools to extract the
effective bid-ask spreads from information models; and (iii) the third category focuses
on the model, of Conic Finance Theory which studies liquidity or bid-ask spread in
the context of asset pricing. This model abandons the one price universe, and by com-
bining theories of No-Arbitrage and Expected Utility it proposes two price framework,
one for buying and one for selling.

Chapter 3 gives an extended view onto Conic Finance Theory, by introducing main def-
initions and theorems. Afterward, distortion functions are introduced with an overview
about several main functions used in the literature.

Chapter 4 starts by providing an introduction to the properties of a Brownian Motion
and, specifically, a Geometric Brownian Motion. It continues with the derivation of
the bid and ask prices of the European call and put options. After the derivation of
the relevant formulas for the options’ bid and ask prices, the chapter moves on to
the description of the financial data used to obtain the presented results. It continues

2



to present a range of combined events that explains the increases in the illiquidity
premium during the course of the option maturity.

Chapter 5 sets out an extended model used for estimation of the effective bid and ask
prices as well as the illiquidity premium. The chapter starts by the introduction of jump
models and continues with the positive and negative attributes of these models. The
chapter then proceeds with the introduction of Kou model. Afterwards, we calculate
the distribution function of the stock price process that follows the Kou model. During
the calculation steps, we use Residue Theorem from Complex Analysis and Inversion
Formula from the Theory of Inverse Problems for densities.

Chapter 6 focuses on numerical estimations of the Kou model parameters. The chapter
begins with the theoretical introduction of several models used in numerical calculation
and moves to the evaluation of the parameters of the Kou model. After verification of
the significance of the parameters by using statistical tests, the chapter finishes with the
illiquidity premium calculation by using the bid and ask prices of European options and
with a corresponding optimization technique.

Chapter 7 presents a new Early-Warning signaling for financial bubbles by benefiting
from the theory of Conic Finance, from optimization and selected numerical methods.
The chapter starts with the most famous historical bubbles and it continues by identify-
ing how the illiquidity premium can be regarded as a main indicator for any upcoming
financial trouble or bubble. For this case, we consider the U.S. markets since bubbles,
mostly, have occurred in those markets.

The thesis concludes with Chapter 8 which presents a summary of the research un-
dertaken and provides directions for future work in this area. It draws together our
conclusions about the developed theory, the new findings and suggestions’ and proba-
ble future enhancement of current research.
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CHAPTER 2

REVIEW ON RESEARCH CONDUCTED

There are two main approaches in explaining the theory of the spread between bid
and ask prices. The first one describes the role of inventory and its impact on prices
formed by dealers. This approach focuses on the market maker’s inventory problem,
where buyers and sellers are liquidity traders without any informational advantages.
The second one describes the role of information asymmetry by analyzing the role of
trading insider information. In this approach, the market maker and liquidity traders
are both uninformed regarding to the information-motivated traders. In this chapter,
the notions spread and bid-ask spread will be used interchangeably.

2.1 Inventory Models

One of the earliest approaches in the price formation in market micro-structure theory
is considered to be inventory models. In these models, equilibrium prices are the result
of a dealer’s obligation to offer liquidity, and face uncertainty in order flow. Basically
saying dealer may end up with a position in which a price risk will arise. Hence, the
spread in this case is assumed to be a compensation for bearing that risk.

Among the first scholars to propose spread as the liquidity measure was Harold Dem-
setz [31] in his article dated back to 1968. Demsetz shows that spread can be regarded
as the cost of immediacy or trading costs. This means that, spread would occur as
the consequence of the time measure of the trade action since traders who are eager
to do business at the earliest convenience have to pay a cost for this trade immediacy.
The importance of limit orders as a source of liquidity has also been emphasized in
the same article. The results of that paper show that the greater the activity (e.g., the
number of trades) in the given stock the lower the spread, which indicates that the cost
of non-synchronization between demand and supply for similar assets is a relation of
the rate at which purchase and sell agreements reach the trading floor.

Another scholarly article was written by Mark Garman [42]. In his article, Garman
argues that the ambiguity in the order flow is the main cause of uncertainty in the
market makers’ cash position, because buy orders will cost money while sell orders
will generate cash. The article further indicates that the spread is an instrument that
market maker employs to control the order flow, the corresponding cash position and
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the arising inventory level. More specifically, endogeneity of the probability of buying
and selling orders depends on the listed bid and ask prices. Essentially, the article
argues that higher bid prices will increase the probability of facing a trader who is
selling while lower ask prices increase the probability of facing a trader who is buying.
A change in the spread enables the market maker to control the inventory, but this in
turn changes the cash position, which means that a trade-off is established between
controlling inventory and the cash position.

Ahimud and Mendelson in [4] analyze a price-setting market maker in an economy
with stochastic demand and supply where prices follow Poisson processes. In this
analysis, the spreads depend on the stock inventory position of the market maker. Au-
thors further derive the behavior of the spreads for demand and supply functions with
linear nature and prove that on a transaction bases price behavior is inter-temporally
dependent. In addition, the article proves that profits will disappear on a price depen-
dence in cases where trade will be implemented contrary to the market-maker, which
indicates that price-changes with serial dependency are in line with the market effi-
ciency hypothesis.

Some inventory models deal with the optimization problems of the risk averse market
maker. The market maker is simply a liquidity provider who maximizes the risk-return
profile of the held portfolio, hence, yielding minimal inventory costs. In this articles,
the main function of prices is adjustment of the stock position to the necessary level
(i.e. to the level that maximizes market makers utility of expected wealth), therefore
bid-ask spread is formed as a follow-up for this risk aversion.

In the context of Stoll [109], the spread can be seen as the cost of the vulnerability to
distinct set of risks, like information, holding and order. The analyses are done for the
investor or dealer willing to deviate from an optimal mean-variance efficient portfolio
in order to facilitate trading. The spread therefore can be regarded as a compensation
for the dis-utility that arises from this deviation. Additionally, these order costs consist
of fixed-order charges that decline with the order size and information charges emerg-
ing as a result of the adverse selection from traders with better informed dealers. As
in Garman [42], Stoll’s model also treats order flow as a random process, controlled
by the bid-ask prices. However, Stoll is more concerned with the costs of offering
immediacy while Garman focuses on the equilibrium price under a random arrival of
trades.

The model developed by Ho [55] is the multiperiod extension of Stoll [109]. It consid-
ers additional order uncertainty and indicates that the spread can be split into a risk pre-
mium and a risk neutral component. Specifically, holding costs rely upon the value of
the order, the variance of the return, the risk-aversion and the wealth of the dealer, etc..
The article assumes that when only holding costs are considered, the stock position on
its own does not affect the trade volume; only the placement of the spread affects the
trade volume. Moreover, the spread remains independent of the inventory level, and
also changes with the market maker’s planning horizon. In the models discussed by
Stoll [109] and Ho [55], the market makers only, discriminate between different types
of traders based on the volume.

One additional assumption of inventory models is that order flows are uncorrelated
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with future price movements. This is very unlikely as order flows contain information
about the markets’ perception about fundamentals. In this concept, information models
can be seen as earliest models that incorporate distinct kinds of traders and the role of
information onto the future price developments.

2.2 Information Models

The class of models that provide important insights of the role of adverse selection into
the price formation process is called information models. They can be divided into two
classes: one analyzes the impact of the traders with information on market makers and
the other one uses statistical models to analyze the bid-ask spread.

2.2.1 Informed Traders vs. Market Makers

A first series of information-based models is introduced as competitive-behavior mod-
els. The main assumption of these models is that the market participants act compet-
itively. Within this category we can include the works of Copeland and Galai [27],
Easley and O’Hara [32] and Glosten and Milgrom [46].

Copeland and Galai [27] use a 2-period structure to analyze the markets with informed
traders. In this structure, the interest of informed traders is obvious while the un-
informed traders do business for exogenous reasons. Dealers unable to differentiate
between these two types of investors, will apply positive spreads to make up for the
expected loss that dealer will bring upon himself in case there is a probability of some
investors being informed. The article also suggests that limit orders or quotes are dis-
closed to the prospect of being “picked off ” when the market pricing varies, leading to
unprofitable execution. Additionally, the asymmetry in the timing of the moves is at
the origin of the adverse selection.

Unlike Copeland and Galai [27], Glosten and Milgrom [46] form an exchange with
three participants: market maker, informed traders, and uninformed traders. All par-
ticipants ought to be risk neutral and competitive. The article shows that the unbal-
anced information alone requires a positive spread, which relies upon the nature of
the underlying information, the number of informed traders and the uninformed sup-
ply and demand elasticities. Prices form martingales and mirror all publicly available
information, hence, the market is semi-strong form of efficiency. Additionally, ad-
verse information costs bring almost no serial correlation in prices. Eventually, when
the adverse selection is exceptionally inflated, spreads increase so much that markets
close.

Both articles that we discussed above indicate that the likelihood of trade based on
information can cause a deviation between bid and ask prices. Easley and O’Hara [32],
on the contrary, show that the possibility of the same trade need not always leads to a
spread. Depending on the market conditions, traders with information may determine
to trade only considerable quantities, which will have no effect on the prices of small
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trades. The article also establishes that prices and spreads will vary across different
trade volumes.

2.2.2 Bid-Ask Spread as the Statistical Model

There are numerous spread definitions. Some focus on the gap between the bid and
ask prices and some like Roll-Indicator introduced by Roll [98] determine the adequate
spread with regard to the first-order serial covariance of changes of prices. This indi-
cator uses readily available time series of market prices, which makes it efficient and
easy to use. In the same article, Roll considers an informationally competent market
with zero trading costs, meaning that any price changes would be an explicit result of
the release of new information. The paper presumes that in an efficient market, the
likelihood of a trade occurring at the bid price is 0.5 and it is independent of past trans-
actions. Roll argues that in such a market, with only an order processing component of
the spread, the movement of transaction prices between bid and ask creates a negative
first-order auto covariance of differences in transaction values. Using this relationship,
he derives a plain estimator of the adequate spread:

S Roll = 2
√
−Cov(∆Pt,∆Pt−1). (2.1)

The generalized version of the Roll model, introduced by Choi, Salandro, and Shastri,
[19], allows for the possibility of serial covariance in the chain of trade initiations. This
means that the possibility of the new trade being initiated at the ask (bid) price given
that the last trade occurred at the ask (bid) price may differ from 0.5. The authors
concluded that the conditional probability of an extension could be bigger than 0.5
because large market orders often initiate trades with more than one participant as a
counterparty. Hence, single trades will be recorded as multiple sequential trades in a
ticker tape output, with ticker tape being the earliest digital electronic communications
device, that transmitted stock price information over telegraph lines till 1970. The
article also derives the following modified Roll estimator:

S CS S =

√
−Cov(∆Pt,∆Pt−1)

π
, (2.2)

with π indicating the likelihood of a trade reversal and, moreover the first-order auto
covariance of transaction prices being negative.

The costs of inventory holding, order processing, and adverse selection are three fac-
tors of the bid-ask spread analyzed by Stoll [110]. In this context, the relationship be-
tween abnormal trading volume and elements beside adverse selection costs can also
force the negative relationship. This work also expresses that in the model, possibility
of a trade switch regarding inventory control (a sell followed by a buy order or vice
versa) is higher than 1

2 .

Huang and Stoll [58] used trade indicator models and generalized the methodology of
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Stoll [110] so that they would became able to assess the elements of the spread. In
their article, spread has been decomposed into inventory, order processing and adverse
selection components. Such a model assumes that all trades are of unitary size, and the
“true” public information price of a stock evolves according to the following formula:

Vt =Vt−1 + α
S
2

(
unexpected change in inventory

)
+ (public information innovation)

=Vt−1 + α
S
2

(It−1 − E [It−1 | It−2]) + εt,

(2.3)

where εt is an indicator for the public information innovation and It is an indicator
function with the following specifications:

It =

1, buyer initiated trade at time t,
−1, seller initiated trade at time t.

(2.4)

Hence, the expected change in inventory is simply:

E [It−1 | It−2] = (1 − 2π)It−2, (2.5)

with π being the reversal probability.

Lesmond in his article [72] allowed for the assessment of transaction costs by using
the zero-returns measure, which Roll [98] had assumed to be non-real since transaction
costs are not always accessible. Lesmond was also able to internally calculate the
efficient transaction costs using historical data of security returns on a daily basis.
This estimate essentially contains trading costs in order to capture the explicit cost of
trade (i.e., the change between cost portions of sale and purchase).

Holden’s [56] extended Roll’s [98] assumption on securities being traded half of the
time at the ask and the other half at the bid by introducing a measure which contains the
probability that the stated end price may be the average of these prices. Holder gives
two justifications for this. Firstly, the last trade of the day may be improving prices
for both orders as a result of the buy and sell orders crossing the midpoint. Secondly,
the trade price may be set at the average of closing bid and ask prices as the result of
absence of sufficient trades on the particular day.

2.2.3 Introduction of Transaction Costs

Another approach, different from the information and inventory models, given in the
literature is related with the transaction costs. The spread is assumed to be equal to the
fee expenses for trading and could be associated with numerous experimental features
of the asset under analysis, such as the flow of order and quantity of trade. Research
also discusses liquid markets trading fees.

9



Constantinides [23] does not account for transaction costs in asset pricing, as authors
research shows that the risk premium due to these costs is very small. He presumes
a rather long holding period, and disputes that investors decrease the frequency and
amount of trades when transaction costs are large. The same line of thinking has been
used to reach an equilibrium condition with a definition of the illiquidity premium. The
decrease in expected return on an illiquid asset makes the investor indifferent between
the illiquid asset and a liquid asset.

By using martingales, Jouini and Kallal [64] investigated the no-arbitrage problem in
securities markets under transaction costs and constraints on short sales. They showed
that the lack of arbitrage is equivalent to the presence of a frictionless arbitrage-free
process between bid and ask prices. Hence, all the constant proportional transaction
cost models tested on frictionless arbitrage-free price process, are arbitrage-free. The
converse is not always true.

Lo et al. [74] analyzed the effect of fixed transaction cost when investors have a con-
tinuous trading need. Investors receive a non-traded income continuously over time
so that in the frictionless market, they trade continuously to share risks. However, the
existence of transaction costs prevents investors from the continuous risk-sharing trad-
ing. The authors found that even a small transaction cost can lead to a large non-trading
zone and generate a significant liquidity premium in asset prices. In the presence of
transaction cost, the trading volume is finite. The increase of transaction cost, however,
has marginal effects only on the trading volume.

2.3 Conic Finance

The models mentioned in Sections 2.1 and 2.2 are based on empirical studies in rel-
atively liquid markets. The spread between bid and ask prices in those markets have
been justified by costs like the volume of trades and commissions. In this thesis, we
will analyze derivative markets which are often much less liquid and requires market
maker to have additional compensation for holding unhedgeable risks. Contrary to the
models formed on the law of one price, the model proposed by Madan and Cherney
[77] introduce two different prices for the price processes in the market: one price for
buying and another price for selling. They simply abandon the law of one price and the
no-arbitrage theory, and propose different formulas for bid and ask prices applicable
to financial derivatives.

Carr, Geman and Madan [14] introduce a new approach that combines the theories
of arbitrage pricing and expected utility maximization. More importantly, the set of
opportunities is expanded from arbitrage opportunities to a set of acceptable opportu-
nities, and acceptable opportunities are defined as opportunities that a wide range of
risk-averse investors would be willing to accept.

In a market with a vast amount of investment opportunities it is crucial to evaluate
the performance of all different opportunities in order to decide which investment to
make. The theory of Conic Finance is a new measure for performance and uses indices
of acceptability to choose between different investment opportunities. The indices
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of acceptability are a mixture of the theory of expected utility maximization and the
arbitrage pricing theory. Need for little information is an advantage of arbitrage pricing
theory, but lack of strong implications to decide between two cash flows which are not
arbitrage opportunities, when one cash flow might be more attractive to the investor
than the other, is the major disadvantage of this theory. On the other hand, the theory
of expected utility maximization is a powerful tool for the decision on the investment
opportunity. This theory only works as long as the behavior of an investor is consistent
with the Von Neumann Morgenstern axioms [115]. In practice this does not always
hold and, more importantly, there are difficulties in correctly specifying the required
inputs for optimization. In summary, the theory of expected utility maximization turns
out not to be a good way to decide whether an investor should accept or reject an
investment opportunity.

Cherny and Madan [18] presented a set of axioms that might be satisfied by mea-
sures of performance. They consider eight axioms: quasi-concavity, monotonicity,
scale invariance, Fatou property, law invariance, second-order stochastic dominance,
arbitrage and expectation consistency. When combined, the first four axioms define
new acceptability indices. The other axioms are used to make additional comparisons.
Cherny and Madan used performance measures that assign a value α(X) to a stochastic
investment opportunity. A higher value of α(X) means a higher level of acceptabil-
ity. These values enable financial managers to decide between different investment
opportunities.
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CHAPTER 3

THEORY OF CONIC FINANCE

Some models try to determine whether an investor should invest in an uncertain op-
portunity or not, for example it can be done by specifying an index that measures the
performance of a stochastic cash-flow on the basis of some specific characteristics.
This reduces an investment decision to the comparison of a value attached to the cash-
flow with the one that is attached to other cash-flows or with a certain benchmark.
The main point here is to define which characteristics of stochastic cash-flows must be
considered in order to develop an index that leads to sound investment decisions.

The field of Conic Finance specifies a new index of acceptability as improvement of the
economic characteristics of the traditional performance measures. Theory integrates
the full probability distribution of a zero costs stochastic cash-flow into the index,
which is used to calculate a stress level that the stochastic cash-flow can tolerate, while
being attractive for a wide range of investors. A higher level of maximum stress implies
a higher level of acceptability that is attached to the stochastic cash-flow.

3.1 Conic Finance

In finance, transactions are based of buying or selling of a contracts or an opportunity
with a stochastic cash-flow at a certain time in the future. Suppose that a random
variable X, a zero cost stochastic cash-flow at some particular time, is identified on
probability space (Ω, F , P). The assumption of a zero cost investment is not entirely
realistic, but it does not affect the generality of the theory, as the premium, cost of the
opportunity, can be borrowed at a risk-free rate and paid back at the final payoff date
of the cash-flow. The time value of money is important, that is why suitable discount
factors should be used in calculations.

It is crucial to evaluate the performance of each investment when there are numerous
opportunities in the market in order to decide which investment to make. In this re-
gards, Conic Finance as a theory is based on indices of acceptability as a new measure
for performance. These indices of acceptability are a combination of the Theory of Ex-
pected Utility Maximization and the Arbitrage Pricing Theory. Arbitrage pricing the-
ory only needs little information, which is an advantage, but it cannot decide between
two cash flows that are not arbitrage opportunities, although one cash flow might be
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more attractive to the investor, which is a disadvantage. The theory of Expected Utility
Maximization is a very effective tool to decide which investment opportunity should
be accepted and which not. It works as long as the behavior of an investor is guided by
the Von Neumann Morgenstern axioms [115]. Unfortunately this is not always the case
in practice and, even more importantly, there are difficulties in correctly specifying the
required inputs for optimization. In brief, the theory of expected utility maximization
turns out not to be a good way to decide whether an investor should accept or reject an
investment opportunity.

Carr, Geman and Madan [14] introduced a new approach that combines the theories of
arbitrage pricing and expected utility maximization. Importance of this concept is the
idea that the set of opportunities is expanded from arbitrage opportunities to a set of
acceptable opportunities. Acceptable opportunities are defined as opportunities that a
wide range of risk-averse investors will be willing to accept.

With a view to escape the details related to the finite moments, the subgroup of delim-
ited random variables defined by L∞ = L∞(Ω,F ,P) will be used in this thesis and,
moreover a map of α : L∞ → R

+
, where R

+
:= [0,∞], will be defined as the measure

of performance. For a random variable X ∈ L∞ which could be a cash flow from a
trading strategy, α(X) will be measuring the performance or quality of X.

3.2 Conic Finance in Practice

The space of traded cash flows, which are all bounded random variables, is assumed
to be a base probability space (Ω, F , P). Moreover, there is a unique pricing measure
Q, equivalent to P, and a complete market. In these regards, we assume that we have a
cash flow, CF, that has a price of p such that p , 0; then the difference X = CF− p can
be formed with zero price and any quantity of the cash flow X may be traded with the
market. Moreover, the set of cash flows traded in liquid markets will have the property
EQ(X) ≥ 0.

Specifically, if a cash flow CF has a price of p and the cash flow of X = CF − p
is bought by the market, then we may say that in an incomplete market the price of
CF, indicated by p, will be a bid price. It would be impossible for the market to sell
and keep −X = p − CF, as an individual will be expected to pay a spread s, to the
market, which will be ready to get (p + s) − CF. In this setup, the set of cash-flows is
no longer closed under negation due to the fact on incompleteness. The market model
is identified by defining the set of cash flows which is the cash flows smaller than the
one in the liquid market.

It must be noted that the set of marketed cash flows is convex, closed under scaling,
and also only a linear mixture of any amount of these cash flows can be marketed.
The generic model for the set sustains the given two characteristics and, thus, the set
of cash flows would nevertheless be a convex cone. Moreover, since all non-negative
cash flows are marketed, it is obvious that the set consisting of marketed cash flows
could be a convex cone and this set will include the non-negative cash flows. It can be
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easily deducted from Artzner et al. [7] that this set will be made of all cash flows X
satisfying the following condition:

EQ (X) ≥ 0 for any Q ∈ D, (3.1)

where D is a set of measures that are equivalent to P, and also these sets are convex. It
is supposed that the risk-neutral universe is also included in D.

To achieve this degree of change for the set of given marketed cash flows, Cherny
and Madan [18] proposed an acceptability index that permits to deliver the cash flows
which are acceptable or equivalently marketed at level γ.

An index of acceptability is a function α that links every delimited random variable
X to a number α(X) in [0,∞], which is named as acceptability level of X. Such an
α would have four features, as we have discussed in Subsection 3.1. First of all, if
2 distinct random variables are acceptable at a level γ, then so does the sum of these
2 random variables. Secondly, if one random variable is acceptable at a level γ and
another one prevails over this random variable, then the second random variable will
also be acceptable at the same level. Thirdly, for a random variable Y acceptable at a
level γ and for any positive scalar of a, a random variable aY would also be acceptable
at the same level. Lastly, if the set of random variables (Xn)n≥1 are all acceptable at a
level γ and Xn → X in probability then the random variable of X is also acceptable at
the same level.

Cherny and Madan in their paper [18] provided examples of four new law-invariant
indices of acceptability and, hence, distortion functions related with them. These in-
dices, aimin, aimax, aimaxmin, and aiminmax (where “ai” means the “acceptability
index”) are established by taking into account 4 distinctive categories of sampling:

• aimin - a sample is formed as the expected value of the smallest of several se-
lections from the cash flow distribution. The risk measure associated with this
acceptability index is called as minvar.

• aimax - a sample is formed by making several selections from the distribution
and taking the biggest to get the cash flow distribution. The relevant risk measure
is called as maxvar.

• aiminmax and aimaxmin - merge the aforementioned processes in different con-
sequences. The applicable risk measures are called minmaxvar and maxminvar
appropriately.

An elementary link exists between the groups of probability measures and acceptabil-
ity indices. For the acceptability index of α, and for each γ > 0 there is an absolutely
continuous set of probability measures of Dγ equivalent to the initial probability mea-
sure of P. A random variable is acceptability at level γ if and only if it has a positive
expectation under each measure from Dγ:
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α (X) > γ ⇔ EQ (X) ≥ 0 for any Q ∈ Dγ. (3.2)

The sets Dγ are non-decreasing in γ, i.e., Dγ ⊆ Dγ
′ when γ

′

≥ γ. In regards to the
family (Dγ)γ≥0, the index α will satisfy the subsequent corollary (for the proof see
[18]).

Corollary 3.1. [18] The value of α(X) is the largest value of γ which makes the ex-
pected values of X to be positive in terms of each measure from Dγ:

α (X) = sup
{
γ ≥ 0 : EQ (X) ≥ 0 for any Q ∈ Dγ

}
. (3.3)

Suppose that the trader sells a cash flow, X, for which driven by competition he charges
a minimal price of a. Notwithstanding, the emerging remaining cash flow, a−X, ought
to be α-acceptable at level γ. Hence, this price, a, would be the ask price of X. For
a − X to be acceptable at level γ, the price a must exceed EQ (X) ≥ 0 for any Q ∈ Dγ,
so the minimal price would be derived using the following formula:

aγ (X) = inf {a : α (a − X) ≥ γ}

= inf{a : EQ[a − X] ≥ γ for any Q ∈ Dγ} = sup
Q∈Dγ

EQ[X]. (3.4)

For the buy side, when the trader buys a cash flow, X, again driven by competition he
charges a maximum price of b. Nevertheless, the emerging remaining cash flow, X−b,
again ought to be acceptable at level γ. Hence, this price, b, would be the bid price and
will have the following expression:

bγ (X) = inf
Q∈Dγ

EQ[X] . (3.5)

Operational and parametric models for cash flows can be formulated by restricting
the characteristics of acceptability so that these models would completely map the
probability law of the imminent risk. Thus, in order to check the acceptability at a
level γ for a random variable X, the only information needed is the CDF, FX, of this
process. Generally, investors and traders are caring about the relationship between the
future and presently held risks, and the probability law on its own is not an adequate
model for the market acceptability.

As proposed by Cherny and Madan in [18], parameter family of distortion functions
can be used to formulate an operational index of acceptability. A distortion function,
indicated by Ψ, is an increasing concave function from [0, 1] onto [0, 1]; when applied
to a cumulative distribution function, it is said to “distort” it at a rate specified by
the parameter γ. Because of the concavity, the distortion functions will assign higher
weights to lower outcomes of the random variable X, and higher outcomes will be
weighted lighter. Hence, the larger γ, the lower becomes the distorted expectation of a
cash flow X, which is characterized as:
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α (X) = sup
{
γ ≥ 0 :

∫ ∞

−∞

xdΨγ (FX (x)) ≥ 0
}
. (3.6)

or

EQγ(X) =

∫ ∞

−∞

xdΨγ(FX(x)), (3.7)

where X is the random variable, F is the distribution function of X and γ ≥ 0. The
density Ψγ(FX(X)) is identified in regard to the initial measure of P. We have to indicate
that for a concave distortion the new density gives more weight to the losses when
FX(X) is near zero, and it decreases weights of the gains when FX(X) is near one.

The value α(X) expressed by Eqn. (3.6) can be numerically computed if we have the
distribution function of X.

3.3 Distortion Functions

The distortion function performs a crucial part in the realization of explicit bid and
asks prices. As discussed, there are different distortion functions that can be used.
Although some of them are not preferred, due to some undesirable properties, there
are still a lot of different distortion functions to choose from. Therefore, an interesting
question might be whether there is one particular distortion function that is best to use.
Madan and Cherny [18] conclude that maxminvar and minmaxvar provide relatively
similar results and prefer one of them to maxvar and minvar. The Wang transform that
is used in this thesis is similar to minmaxvar. At this moment, there is no scientific
proof that one particular distortion function is best to use, so further research on this
topic is recommended.

Minvar:

Ψγ (u) = 1 − (1 − u)1+γ, u ∈ [0, 1] , γ ≥ 0. (3.8)

This distortion function is based on the risk measure minvar, which corresponds to
acceptability index aimin. A disadvantage of minvar is that the maximal weight on
big losses is relatively small and hence this distortion function does not have enough
relevance in economic theory. Consumers are generally risk-averse and absolutely do
not want large losses, but this risk measure is too lenient towards large losses and,
therefore, not risk-averse enough to be a good risk measure. minvar is rarely used,
because there are more relevant alternatives. Fig. 3.1 shows the effects of the minvar
distortion on the standard normal distribution. The PDF and CDF shift to the left.
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Figure 3.1: Minvar distortion function on a standard normal distribution.

Maxvar:

Ψγ (u) = u
1

1+γ , u ∈ [0, 1] , γ ≥ 0. (3.9)

This distortion function is based on risk measure maxvar, which corresponds to ac-
ceptability index aimax. Maxvar is more promising than the previous risk measure,
but also has a potential drawback. It does not discount large gains and, therefore, is
rarely used. The effects of this distortion is depicted in Fig. 3.2.

Figure 3.2: Maxvar distortion function on a standard normal distribution.

Maxminvar:

Ψγ (u) =
(
1 − (1 − u)1+γ

) 1
1+γ
, u ∈ [0, 1] , γ ≥ 0. (3.10)

This distortion function is based on risk measure maxminvar and the corresponding ac-
ceptability index aimaxmin. It is obtained by first using a minvar procedure and then a

18



maxvar procedure. This risk measure does not have the drawbacks of the previous two
and satisfies all eight desirable axioms. See Fig. 3.3 for the effects of the application
of this distortion function.

Figure 3.3: Maxminvar distortion function on a standard normal distribution.

Minmaxvar:

Ψγ (u) = 1 −
(
1 − u

1
1+γ

)1+γ
, u ∈ [0, 1] , γ ≥ 0. (3.11)

This distortion function is based on risk measure minmaxvar and corresponding ac-
ceptability index aiminmax. It is obtained by first using a maxvar procedure and then
a minvar procedure. Minmaxvar satisfies all eight desirable axioms and has no draw-
backs. It is relatively comparable to maxminvar, but small differences are noticeable
when comparing Fig. 3.3 to Fig. 3.4.

Figure 3.4: Minmaxvar distortion function on a standard normal distribution.

Apart from the four distortion functions introduced by Madan and Cherny [18], there
are also several other distortion functions that are used in risk management. The Wang

19



transform [116] is an important one.

Wang Transform:

Ψγ (u) = Φ(Φ−1 (u) + γ), u ∈ [0, 1] , γ ≥ 0. (3.12)

This distortion function is introduced by Wang and shifts the original distribution.
These effects are visible in Fig. 3.5. Here, Φ is the standard normal CDF.

Figure 3.5: Wang transform on a standard normal distribution.
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CHAPTER 4

STOCK PRICES FOLLOW A BROWNIAN MOTION

In both expressions for calculating prices of put and call options the outcome rely on
the CDF of underlying process. In this instance, distribution function of the stock pro-
cess is needed to calibrate gamma. This part of the thesis assumes that stock or index
price processes are lognormally distributed. We will start this chapter by introducing
a Geometric Brownian Motion and then we will move onto the calculation of the illiq-
uidity premium. Moreover, by employing the assumptions of Black-Scholes model,
we will infer the distribution function of stock price process.

4.1 Geometric Brownian Motion - Introduction

Brownian motion stands in one of the central roles in probability theory, theory of
stochastic processes, and also in finance. We will start this section of the thesis with a
description of this process, and will move on to listing of several of the basic properties
of Brownian motion.

Definition 4.1. [66] On a probability space (Ω,F ,P), a real-valued stochastic process
(Wt)t≥0 is called a Brownian motion or a Wiener process, if it satisfies the following
conditions:

• (Wt)t≥0 has independent increments. In other words, Wy − Wt and Ws − Wv are
independent for v < s ≤ t < y;

• (Wt)t≥0 has continuous paths;

• Wt −Ws follows a Normal Distribution function with zero mean and variance of
t − s or Wt −Ws ∼ N(0, t − s) for 0 ≤ s < t.

The Brownian motion is called standard if it starts at 0, i.e., P(W0 = 0) = 1.

The finite-dimensional distributions of Brownian motion are multivariate Gaussian, so,
(Wt)t≥0 is a Gaussian process. From the definition, we know that Wt −Ws will have the
same distribution as Wt−s −W0 = Wt−s, which is an N(0, t − s) distribution.
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From the above statement we can deduct that a Brownian motion has expectation op-
erator with the value of,

E(Wt) = 0 (t ≥ 0).

It has a covariance value of

Cov(Wt,Ws) = min{s, t} (s, t ≥ 0).

Lévy’s characterization is often considered as another way to define and identify Brow-
nian motions.

Theorem 4.1. (Lévy’s characterization [66]). Let (Ω,F , (Ft)t≥0,P) be a filtered prob-
ability space. Let (Wt)t≥0 be an adapted continuous local martingale in regards to
(Ω,F , (Ft)t≥0,P). In this case, W is a Brownian motion if and only if the quadratic
variation of W is equal to t, i.e., < W,W >t= t.

Brownian motion is assumed to be in the nature of the stock markets, the foreign
exchange markets, commodity markets and bond markets. In these markets assets are
changing within very small time and position intervals which happens continually, and
this is in the very characteristics of the Brownian motion. Essentially, all financial
asset pricing and derivatives pricing models are based on the mathematical algorithms
describing Brownian motions. These mathematical models are of main importance to
the work that is being done on market models and risk analysis. One of these models
is the Geometric Brownian Motion which has the following definition.

Definition 4.2. [105] A stochastic process (S t)t≥0 on a probability space of (Ω,F ,P)
is said to follow a Geometric Brownian Motion if it satisfies the stochastic differential
equation

dS t = S t(µdt + σdWt), (4.1)

with µ being a drift term and σ being a volatility.

Eqn. (4.1) has a below given solution:

S t = S 0e(µ−σ
2

2 )t+σWt (t ≥ 0), (4.2)

where S 0 represents the initial value of stochastic process. The same model is also
used in pricing of option contracts.

Definition 4.3. [20] An option is the contract between two parties in which one party
has the right but not the obligation to buy or sell an underlying asset, subject to the
contract.

The rights beyond obligations given under the option contract has a financial value, so
option buyers must pay a fee in order to purchase these rights, which basically makes
options an asset to buyers. The given assets infer or derive their prices from their
underlying assets, that is why they are called derivative assets or derivative contract.
Nowadays, option pricing techniques, by using stochastic calculus, are among the most
mathematically complex areas of finance [20].
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4.2 Option Pricing with Geometric Brownian Motion

Knowing acceptability indices and distortion functions provides an opportunity to
compute expressions for bid and ask prices. It is critical to notice that in Conic Fi-
nance the market is seen as a counterparty, willing to accept all stochastic process or
cash-flows X that have an acceptability level of at least γ. The ask price aγ(X) is what
the market asks from the trader, so the trader needs to pay that price to buy it. The bid
price bγ(X) is the price that a trader gets for selling an asset to the market. The market
makers will set their price in such a manner that the payoff of variable X is acceptable
to them at level γ: specifically, for the case of an ask price the market maker will re-
quire a random variable of a − X to be acceptable at the level of γ, which can be given
in the inequality form as α(a − X) ≥ γ, and for the case of a bid price market maker
will be satisfied in case when X − b is acceptable at the level of γ, or α(X − b) ≥ γ. In
the formulas below, with the use of Riemann-Stieltjes integral in (3.7), we will derive
the ask price and, then, the bid price of the financial instruments:

α(a − X) ≥ γ ⇐⇒
∫ ∞

−∞

xdΨγ(Fa−X(x)) ≥ 0⇐⇒ a +

∫ ∞

−∞

xdΨγ(F−X(x)) ≥ 0,

aγ(X) = −

∫ ∞

−∞

xdΨγ(F−X(x)). (4.3)

Analogously, for bγ(X), the bid price, we obtain:

α(X − b) ≥ γ ⇐⇒
∫ ∞

−∞

xdΨγ(FX−b(x)) ≥ 0⇐⇒ −b +

∫ ∞

−∞

xdΨγ(FX(x)) ≥ 0,

bγ(X) =

∫ ∞

−∞

xdΨγ(FX(x)). (4.4)

Theoretically, the ask price must be more than the bid price, because of the concave
characteristics of the distortion functions. The parameter γ, fitting the theoretical bid-
ask prices around the historical market prices will be called, the Implied Illiquidity
Parameter or the Illiquidity Premium from here afterward.

It is assumed that (S t)t≥0, the stock prices at times t ≥ 0, follow a Geometric Brownian
Motion [66], with a stochastic differential equation having the following expression:

dS t = µS tdt + σS tdWt (t ≥ 0), (4.5)

where Wt (t ≥ 0) a Brownian Motion, reflects uncertainty of the price process in a
standardized way.
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The solution of Eqn. (4.5) can be calculated to be equal to the following formula:

S t = S 0eXt , (4.6)

where Xt = σWt + (µ− σ2

2 )t, (t ≥ 0) is a Brownian Motion with drift term µ and scaling
or volatility term of σ, with respect to probability measure P. Moreover, S 0 > 0 is
assumed to be the initial value of price process. The Black-Scholes model will be used
to derive the distribution function of S t (t ≥ 0) [9].

With the help of Itô’s Lemma which is shown in below, we can identify the distribution
of the given stock price process.

Lemma 4.1. [25] For every twice differentiable function of F(x, t), defined in
L2 (Ω × [0,∞]), the Itô Formula is explained as follows:

dF(x, t) =
∂F(x, t)
∂t

dt +
∂F(x, t)
∂x

dx +
1
2
∂2F(x, t)
∂x2 (dx)2. (4.7)

To simplify the calculations, we can take F(S t, t) = ln S t (t ≥ 0) and derive the follow-
ing distribution function of stock price process:

S T
dist
= lognormal

[(
µ −

1
2
σ2

)
(T − t) + ln S t, σ

2 (T − t)
]
. (4.8)

It is known from measure theory that under the risk-neutral measure Q, the expected
return of all securities is equal to the risk free rate, r, [44]; so if we change µ to r, we
will get:

S T
dist
= lognormal

[(
r −

1
2
σ2

)
(T − t) + ln S t, σ

2 (T − t)
]
, (4.9)

or

FS (x) = Φ

 ln x
S t
−

(
r − 1

2σ
2
)

(T − t)

σ
√

T − t

 . (4.10)

After calculating the distribution function of the stock price process, we have to apply
the distortion function to derive the bid and ask prices. When we apply the Wang
transform of Ψγ, the distortion function, to the distribution function of FS T , we obtain
another lognormal distribution function with mean µ∗ := µ+γσ, and variance σ∗ := σ,
and Ψγ will have the following representation:

Ψγ (FS T (x)
)

:= Φ

 ln x
S t
−

(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t

σ
√

T − t

 . (4.11)
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4.3 Bid-Ask Prices of European Options under Brownian Motion

The price of the European call option can be expressed by the subsequent function:

CT = max{(S T − K), 0}, (4.12)

with S t being the index price, K being the strike price, and T being the maturity time
of the option.

By using Eqn. (4.4) we will get the bid price of the call option:

bγ(C) =

∫ ∞

0
x dΨγ(FCT (x))

=

∫ ∞

K
(x − K) dΨγ(FS T (x))

=

∫ ∞

K
x dΨγ(FS T (x)) −

∫ ∞

K
K dΨγ(FS T (x)) =: A − B.

(4.13)

By employing change of variables and basic calculus techniques we can derive the first
integral in Eqn. (4.13) as follows (for more detailed calculation please see Appendix
B):

A =

∫ ∞

K
x dΨγ(FS T (x))

= elnS t+r(T−t)−γσ
√

T−t · Φ

 lnS t + (r + 1
2σ

2)(T − t) − γσ
√

T − t − lnK

σ
√

T − t

,
and the second part of the above integral can be calculated as:

B =

∫ ∞

K
K dΨγ(FS T (x)) = K

1 − Φ

 ln K
S t
−

(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t

σ
√

T − t


 .

Black-Scholes model assumes that the starting premium is borrowed at the risk-free
rate, therefore, we will have to use a suitable discount factor. Hence, the price needs
to be multiplied by discount factor e−r(T−t), which leads to the following expression for
the bid price:
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bγ(C) = S te−γσ
√

T−t · Φ

 lnS t + (r + 1
2σ

2)(T − t) − γσ
√

T − t − lnK

σ
√

T − t


− e−r(T−t)K

1 − Φ

 ln K
S t
−

(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t

σ
√

T − t


 .

Similarly, by using Eqn. (4.3) we will get the ask price of the European put option,
where the option price process will be expressed by the following value:

PT = max{(K − S T ), 0}, (4.14)

with S T being the index price, K the strike price, and T the maturity time of the option.
Employing Eqn. (4.3) we will get the ask price of the put option as given subsequently:

aγ(P) = −

∫ 0

−∞

x dΨγ(F−PT (x))

= −

∫ 0

−∞

x dΨγ(FS T (K + x))

= −

∫ ∞

0
x dΨγ(FS T (K − x))

=

∫ K

0
(K − x) dΨγ(FS T (x))

=

∫ ∞

K
(K − x) dΦ

 ln K
S t
−

(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t

σ
√

T − t

.

(4.15)

By conducting the same calculation steps that we used during the calculation of the
bid price of the call option, we will get the subsequent expression for ask price of put
option:

aγ(P) = er(T−t)K

1 − Φ

 ln K
S t
−

(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t

σ
√

T − t




− S teγσ
√

T−t · Φ

 ln K
St
− (r + 1

2σ
2)(T − t) + γσ

√
T − t

σ
√

T − t

.
If we do the above calculation for the ask price of the European call option and also the
bid price of the European put option, we will get the formulas as presented in Table 4.1.
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Table 4.1: Prices of European Call and Put Options.

Option Price d1 d2

bγ (C) S te−γσ
√

T−tΦ (d1) − e−r(T−t)KΦ(d2) ln S t
K +(r+ 1

2σ
2)(T−t)−γσ

√
T−t

σ
√

T−t
d1 − σ

√
T − t

aγ (C) S teγσ
√

T−tΦ (d1) − e−r(T−t)KΦ(d2) ln S t
K −(r+ 1

2σ
2)(T−t)+γσ

√
T−t

σ
√

T−t
d1 − σ

√
T − t

bγ (P) e−r(T−t)KΦ (d2) − S teγσ
√

T−tΦ (d1)
ln K

S t
−(r+ 1

2σ
2)(T−t)−γσ

√
T−t

σ
√

T−t
d1 + σ

√
T − t

aγ (P) e−r(T−t)KΦ (d2) − S te−γσ
√

T−tΦ (d1)
ln K

S t
−(r+ 1

2σ
2)(T−t)+γσ

√
T−t

σ
√

T−t
d1 + σ

√
T − t

4.4 Data and Numerical Application

In this part we employ the formulas in Table 4.1 to real data and derive the daily values
of the γ. We use the data of European put and call options written on S &P 500 index.
The index value being from 2008 to 2010 is depicted in Fig. 4.1. This index mainly
consists of large U.S. companies and trade either on the New York Stock Exchange
or on the NASDAQ. We chose this index option, because it gives a general overview
of the North-American option market that is one of the effective option markets in the
world. Additionally, due to the nature of the S &P 500 index we may assume that the
company specific events will have minor effects on the calculation of values of γ, and
all the effects will be the consequence of the financial bubble.

As it is seen from Fig. 4.1, the S &P 500 prices have declined by around 30%, from
1282 on August 28, 2008, to 900 on October 13, 2008.
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Figure 4.1: S &P 500 Index Price.

We obtained the data from a financial database of Bloomberg Terminal. The data con-
tain the daily bid and ask prices of European call and European put options in the
period between 02/01/2008 and 16/12/2010, when U.S. mortgage crises emerged.
Both types of options have a strike price of 1300, a base date in January 2008 and an
expiration date in December 2010. The data also contain the daily values of the S &P
500 index, quarterly Federal Reserve interest rates, implied volatility values and cover
a period of 748 trading days.

As we have mentioned above, there are different distortion functions that can be em-
ployed when applying the theory of Conic Finance. In this thesis, we used the Wang
transform, because this distortion function is almost similar to minmaxvar, which is
mostly used in literature, as the corresponding risk measure of minmaxvar works best
in most cases [18].

In Fig. 4.2, we display the spread between the bid and ask prices of the European Call
and Put options. It is obvious that the spread has substantially increased during the
U.S. Mortgage bubble.
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Figure 4.2: Spreads of the European Call and Put options.

One of the parameters in the pricing model is the risk-free rate, depicted in Fig. 4.3.
It plays an crucial role in the Black-Scholes model, as the change in interest rates will
automatically change the call and put premiums. We determined r at time t using the
Bloomberg Terminal, by finding the risk-free rate at the given date and corrected it for
T − t, the time from moment t until the expiration date, T , of the option.
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Figure 4.3: Interest Rate on 3 Months Treasury Bills.

In Fig. 4.3, we see the starting point of the stock market bubble in 2008 when the
interest rates reached one of their highest points. In 2008, during the mortgage crisis,
the labor market weakened and, moreover, business investment, consumer spending,
and industrial production decreased, as financial markets remained utterly tense and
credit conditions stiffened. In general, the prospect for economic activity has dimin-
ished further. Under these circumstances, the Federal Reserve employed all tools and
policies to encourage the continuation of sustainable economic growth and to protect
price stability. One of the implemented policies was cutting or decreasing the interest
rate to the levels that will stimulate the economic activity.

Another parameter, σ, illustrated in Fig. 4.4, is the volatility of the returns on the S &P
500 index. We make use of implied volatility obtained with the use of Black-Scholes
formula.
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Figure 4.4: Implied Volatility of S &P 500 index.

The values of γ, related to the dataset are estimated by minimizing the total-squared
error (TSE). TSE is the sum of the squared variation between the market prices and the
theoretical prices:

TS Ebid(γ) =

τ∑
i=1

(
bidi − bγ,i

)2
, (4.16)

TS Eask(γ) =

τ∑
i=1

(
aski − aγ,i

)2
, (4.17)

or

TS Ebid,ask(γ) =

τ∑
i=1

((
bidi − bγ,i

)2
+

(
aski − aγ,i

)2
)
, (4.18)

with τ being the number of days for which illiquidity premium will be calculated,
for example for daily γ calculations τ = 1, for weekly γ calculation τ = 5, and so
on. Minimizing TSE gives the market level’s γ. We use (4.18) and the minimization
problem can be given as in below:

minimize
γ

TS Ebid,ask(γ)

subject to γ ≥ 0.
(4.19)
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The variable γ, can be estimated hourly, daily, weekly, monthly or yearly as a constant
value. We have estimated daily γ values. One of the interesting characteristics of the
dataset is that it covers the period of the latest financial crises. It is essential to know
the effects of a crisis on the acceptability level of the derivative that needs to be priced.
These effects can be taken into consideration by adjusting the expected level of the γ.

Analyzing the bid and ask prices of the options and the corresponding values of the
γ shows some interesting findings. These values of γ can be used to estimate future
values of the γ to price financial products. Fig. 4.5 shows the minimum of the TSE
of the bid and ask prices of the call option. First of all it is very remarkable that the γ
never take values of zero, because this indicates that the bid and ask prices never equal
to the Black-Scholes price.

Figure 4.5: Daily Implied Illiquidity.

The implied illiquidity parameter, or γ, is highest between September 2008 and De-
cember 2008. September 2008 was a month full of escalations of several problems in
the financial world. Numerous large and important banks had huge problems, because
the interbank lending market got severely worse; moreover, the mortgage bubble had
already been inflated to its maximum and the burst started. On September 15-th the
important investment bank Lehman Brothers went bankrupt after the U.S. government
decided not to bail them out, and in the rest of September several banks from all over
the world went bankrupt. This led to extreme uncertainty on the financial markets and
stock exchanges crashed, which caused higher spreads between bid and ask prices.
Therefore, days with a larger bid-ask spread were likely to have higher values for γ.

Other peaks in the γ level in Fig. 4.5 occurred in Spring and Summer 2009 and in
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Spring 2010. In 2009 there was still uncertainty in the market after the crash in 2008
and important economic powers from all over the world were reporting highly nega-
tive economic growth. Furthermore, large companies like Chrysler and General Motors
were in financial trouble. This severe decline in economic growth can be an explana-
tion for the peaks of the γ in 2009. The rise of the γ in Spring 2010 can be explained
by the European Debt Crisis and by the problems of public finance in countries such
as Greece and Spain [57; 65].
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CHAPTER 5

STOCK PRICES FOLLOW A DOUBLE EXPONENTIAL
JUMP-DIFFUSION MODEL

Leptokurticity, volatility clustering as well as implied volatility smile are are keywords
which represent three deficiencies of Black-Scholes model. Hence, there have been
conducted various researches in order to adjust Black-Scholes model and explain these
facts on deficiency. Some of those studies include Chaos Theory and fractal Brownian
Motion [80; 97], Generalized Hyperbolic models [8; 99; 11], Levy Processes [111],
Constant Elasticity Variance model [28; 29] and many more.

In this chapter, we are going to review and apply the Jump-Diffusion models proposed
by Kou in [69] .

5.1 Details of Jump-Diffusion Models

An experimental interest to use jump-diffusion models are the result of the reality
where asset return follow a heavy tail distribution. Nonetheless, heaviness of the tail
distributions are ambiguous, while several academicians prefer power type distribu-
tions, and some favor exponential-type distributions. It is hard to differentiate power-
type tails from exponential-type tails by using empirical data only when one has quite
large sample size and a preference of either one of the models as a subjective issue.
Moreover, distribution selection has an important meaning in reaction to specifying
suitable risk measures [53].

There are numerous methods for the selections of the pricing measure, as jump-diffusion
models can result with incomplete markets, some of them are entropy methods, mean-
variance hedging, indifference pricing, local mean variance hedging, etc. In this thesis,
we employ the Esscher transform, which is giving an easy transition from the base to
a risk-neutral probability.

Reasons for Using Jump-Diffusion Models

Let us examine the daily prices of S &P 500 index (S &P 500) from January 1950
until mid 2016. We calculate the daily returns of S &P 500 by employing continuously
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compounded returns, rt = ln S (t)
S (t−1) (t ≥ 1). The normalized daily rates of returns are

plotted in Fig. 5.1.

Figure 5.1: Normalized daily rate of returns of the S&P 500 Index.

From Fig. 5.1 we can observe the big spikes in late 80th, 2000 and 2008. The maximum
and minimum values are about 11.2422 and −23.5872 times of standard deviation.
We have to take into account that for a standard normal random variable Z, P(Z <
−21.1550) ≈ 2.6 × 10−123.

Next, let us draw the histogram of the daily returns of S &P 500. Fig. 5.2 presents
the histogram together with the standard normal density function, which is basically
constrained inside the interval of (−3, 3). From the figure we may indicate that the
features of a high peak and of two heavy tails, of leptokurticity, are quite evident.

Leptokurticity of Returns

Clearly the histogram of S &P 500 shows asymmetric heavy tails and a high top. Be-
side S &P 500 this fact is true for almost all asset classes. High peaks and asymmetric
heavy tails are so apparent that a name “leptokurtic distribution” is used, meaning
that there is a large kurtosis. In detail, the kurtosis and skewness are determined as
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Figure 5.2: Illustration of the histogram of the normalized daily returns of S &P 500
index and the histogram of the random variable from standard normal distribution.

K = E( (X−µ)4

σ4 ), and S = E( (X−µ)3

σ3 ), respectively, and for the standard normal density
the kurtosis is equal to 3. If kurtosis is bigger than 3, the distribution will be named
leptokurtic and it will have a higher peak and heavier tails. Double-exponential distri-
bution (DED) can be given as an example of leptokurtic distributions.

To evaluate the sample skewness and kurtosis, the following formulas are used:

Ŝ =
1

(n − 1)σ̂3

n∑
i=1

(Xi − X̄)3,

K̂ =
1

(n − 1)σ̂4

n∑
i=1

(Xi − X̄)4,

with σ̂ being the sample standard deviation. For the daily returns of the S &P500
index, the kurtosis is equal to 30.1178, and the skewness is equal to −1.0101, where
negativity of skewness means that the return has a heavier left tail.

Exponential and Power-Type Tails

From what we said above, heavy tail distributions of stock returns are very much ob-
vious. In this regard, power and exponential-type tails distributions are the two main
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classes used in the literature [37]. As indicated by Kou [69], right tails having power-
type distributions are not appropriate for the models with continuous compounding.

Implied Volatility Smile

We can easily specify an inverse function that maps option price to the volatility, due
to the simple fact that prices derived from Black–Scholes model are monotonically
increasing functions of the volatility. In detail, implied volatility σ(T,K) is associated
with a strike price of option, K, and a maturity T such that if used in the Black–Scholes
formula we will achieve a price that accurately equals the market price of an option.

Implied volatility can be easily calculated from real-world prices with diverse maturi-
ties and strike prices. If the assumptions of the geometric Brownian motion are true,
then implied volatilities should be equal to each other for all the options on the same
underlying. Nevertheless, options on the same underlying but with distinctive strikes
or maturities will have different implied volatilities.

Particularly, it is extensively investigated that if we depict implied volatilities and
strikes, then the volatility curve will resemble a “smile”, which means that the im-
plied volatility is a convex function of the strikes. Moreover, the “smile” curve adjusts
for distant maturities. It is beneficial to note that leptokurticity under a risk-neutral
measure leads to the “volatility smiles” in option prices.

Alternatives for Black-Scholes Model

There have been made numerous analyses in order to customize the Black–Scholes
model and include leprokurticity, implied volatility smile and volatility clustering.

One type of these models is fractal Brownian motions, where Brownian motion is
replaced by the fractal Brownian motion which has dependent increments [80]. But,
Rogers [97] indicates that these types of models may lead to arbitrage opportunities.
Another model is given by generalized hyperbolic models, which changes the normal
distribution assumption by some other class of Lévy proces distributions [8; 11; 99].
There are also stochastic volatility and GARCH models [34; 40; 52; 59], designed
to catch the volatility clustering effect. Constant elasticity of variance (CEV) model
[28; 29] and time-changed Lévy processes and Brownian motion [15; 21; 54; 76; 78]
are other types of alternatives of the aforementioned models.

Yet another type of model that capture leprokurticity, volatility clustering and implied
volatility smile is Jump-Diffusion models. Suggested by Merton [82] and Kou [69],
jump-diffusion models obey the following representation:

S (t) = S (0)e(µ− 1
2σ

2)t+σW(t)
N(t)∏
i=1

eYi (t ≥ 0),
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with (Nt)t≥0 being a Poisson process. The model suggested by Merton assumes that Y
follow a normal distribution, and in the model proposed by Kou Y has a DED. This
distribution allows to have analytical solutions for some path-dependent options.

Unique Characteristics of Jump Diffusion

The asset price process, (S t)t≥0, determined under the probability measure P can be
modeled as:

dS t

S t−
= µdt + σdBt + d

 Nt∑
i=1

(Vi − 1)

 (t > 0), (5.1)

with (Bt)t≥0 being a standard Brownian motion, (Nt)t≥0 Poisson process with rate of
λ, and (Vi)i∈N is a sequence of i.i.d. non-negative random variables. Moreover, all
random processes, (Nt)t≥0 , (Bt)t≥0, and (Vt)t≥0’s, are pairwise independent. If solved the
stochastic differential equation given by Eqn. (5.1) will give us the following formula
of the asset price process:

S t = S 0e(µ− 1
2σ

2)t+σW(t)
Nt∏
i=1

Vi (t ≥ 0). (5.2)

Kou [69] proposed Y = ln(V) to have an asymmetric DED with the density

fY(y) = pη1e−η1y1y≥0 + qη2eη2y1y<0,

with p, q ≥ 0, p + q = 1, representing the likelihood of up and down jumps and
η1 > 1, η2 > 0. The prerequisite of η1 > 1 is required to guarantee that E(V) < ∞ and
E(S (t)) < ∞, basically meaning that the typical up-jump will not be more than 100%.
For clarity and in order to have systematic solutions of option pricing problems, the
drift and the volatility terms are considered fixed, and the Brownian motion and jumps
are expected to be one-dimensional. Ramezani and Zeng [94] individually suggest
a double-exponential jump-diffusion model from an econometric aspect as a way to
improve the empirical fit of Merton’s normal jump-diffusion model into stock price
data.

The DED has two appealing characteristics that are important for the model. First
of all, it has the leptokurticity [63]. The leptokurticity of the distribution of jump
sizes is acquired by the return distribution. Secondly, as a special property of the
DED, originated from the exponential distribution, is the memoryless property. This
unique feature clarifies why closed-form solutions for option pricing problems under
the double-exponential jump-diffusion are possible even though it sounds complicated
for other models.
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5.2 Jump-Diffusion Model

Assume that we have the following process given by the Stochastic Differential Equa-
tion (SDE),

dS (t)
S (t−)

= µdt + σdW(t) + d
N(t)∑
i=1

(Vi − 1) (t > 0). (5.3)

We will use the Lévy-Itô Theorem in order to solve the SPDE.

Theorem 5.1 (Lévy-Itô [105]). For a process of the type

Lt = L0 +

∫ t

0
bsds +

∫ t

0
σsdWs +

Nt∑
i=1

∆Xi, (5.4)

where t ≥ 0, (Ws)s≥0 is a Standard Brownian Motion, and (Nt)s≥0 is the Poisson Pro-
cess, the Itô Formula will have the following representation:

d f (Lt, t) =
∂ f (Lt, t)

∂t
dt + bt

∂ f (Lt, t)
∂x

dt +
σ2

t

2
∂2 f (Lt, t)
∂x2 dt + σt

∂ f (Lt, t)
∂x

dWt

+
[
f (Xt− + ∆Xt) − f (Xt−)

]
.

(5.5)

By employing the Itô Formula from Eqn. (5.5) to the log returns of a price process,
f (S t) = ln(S t), we will gradually obtain the subsequent expressions:

d f =
∂ f
∂t

dt + µS t
∂ f
∂S t

dt +
σ2S 2

t

2
∂2 f
∂S 2

t
dt + σS t

∂ f
∂S t

dWt

+
[
f (S t− + S t(Vt − 1)) − f (S t−)

]
,

by making a substitute of f (S t) = ln S t, we will have:

d(ln S t) = µS t
1
S t

dt −
σ2S 2

t

2
1

S 2
t
dt + σS t

1
S t

dWt + ln S t + ln Vt − ln S t,

or

d(ln S t) = (µ −
σ2

2
)dt + σdWt + ln Vt.

By integrating both sides of the above Stochastic Differential Equation we will have
the following equation,
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ln S t = ln S 0 + (µ −
σ2

2
)t + σWt +

N(t)∑
k=1

ln Vt,

or

S t = S 0e(µ−σ
2

2 )t+σWt+
∑N(t)

k=1 Yk ,

where Yk = ln Vt.

Finally, we will have an exponential Lévy process S t = S 0eLt (t ≥ 0) where Lt has the
following representation:

Lt =

(
µ −

σ2

2

)
t︸      ︷︷      ︸

Drift

+ σWt︸︷︷︸
Brownian Motion

+

N(t)∑
k=1

Yk︸︷︷︸
Sum of Double-Exponential process

(t ≥ 0). (5.6)

The distribution of the sum of Drift and Brownian Motion parts has a Normal Distri-
bution with the mean of

(
µ − σ2

2

)
t + ln S 0, where S 0 is the initial value of the price

process, and with the standard deviation of σ
√

t.

Now let us calculate the distribution function of Sum of Double-Exponential process
and use the Convolution Formula [68] to combine the above two distributions in order
to find the distribution of (Lt)t≥0.

5.3 Distribution Function of Jump Process

In order to calculate the distribution of the sum of the Double-Exponential process,
we will employ the characteristics function. From probability theory we know that the
characteristics function ϕ of the distribution f is given as,

ϕX(u) =

∫ ∞

−∞

eiux f (x)dx. (5.7)

We have the following distribution:

fX (x) = pη1e−η1 x1x≥0 + qη2eη2 x1x<0, (5.8)

where η1 > 1 and η2 > 0. If we apply Eqn. (5.7) to the distribution function in Eqn.
(5.8), then we will have the following representation:
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ϕX (u) =

∫ ∞

−∞

eiux f (x)dx =

∫ ∞

−∞

eiux [pη1e−η1 x1x≥0 + qη2eη2 x1x<0
]
dx

= pη1

∫ ∞

0
e−x(η1−iu)dx + qη2

∫ 0

−∞

ex(η2+iu)dx

= pη1

(
e−x(η1−iu)

−(η1 − iu)

∣∣∣∣∣∞
0

)
+ qη2

(
ex(η2+iu)

η2 + iu

∣∣∣∣∣0
−∞

)
=

pη1

η1 − iu
+

qη2

η2 + iu
.

Let us start our calculations with the below transformation,

ϕ∑Nt
k=1 Xk

(u) = E
{
eiu

∑Nt
k=1 Xk

}
=

∞∑
n=1

E
{
eiu

∑Nt
k=1 Xk |Nt = n

}
P(Nt = n)

=

∞∑
n=1

E
{
eiu

∑n
k=1 Xk

}
P(Nt = n)

=

∞∑
n=1

ϕ∑n
k=1 Xk (u)P(Nt = n).

(5.9)

In order to compute the distribution function g of the Θ =
∑Nt

k=1 Xk we have to employ
the Inversion Formula on the above calculated characteristics function.

Theorem 5.2 (Inversion formula for densities [68]). Let X be a real random variable
whose characteristics function ϕ is integrable over R, so

∫ ∞
−∞
|ϕ(u)| du < ∞. Then X

has a bounded continuous density f on R given by,

f (x) =
1

2π

∫ ∞

−∞

e−iuxϕ(u)du. (5.10)

If we apply Theorem 5.2 to the final outcome of Eqn. (5.9), we will get the following
expression for the distribution function of Θ:

gΘ(x) =
1

2π

∫ ∞

−∞

e−iux
∞∑

n=1

{
ϕ∑n

k=1 Xk (u)P(Nt = n)
}

du. (5.11)

Using the Tonelli’s theorem [118] on interchanging the sequence of integration and
summation and the fact that function of ϕ∑n

k=1 Xk (u)P(Nt = n) is non-negative we will
be able to make the following changes in the Eqn. (5.11):

gΘ(x) =

∞∑
n=1

{
1

2π

∫ ∞

−∞

e−iuxϕ∑n
k=1 Xk (u)P(Nt = n)du

}
(5.12)
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and as the P(Nt = n) does not depend from the variable u it can be taken out of the
integral. Hence, we will have the following equality,

gΘ(x) =

∞∑
n=1

{
1

2π

∫ ∞

−∞

e−iuxϕ∑n
k=1 Xk (u)du

}
P(Nt = n)

=

∞∑
n=1

gΘn(x)P(Nt = n),

(5.13)

where Θn =
∑n

k=1 Xk.

Using the final part of Eqn. (5.13) we may deduce that, in order to calculate the
distribution function

∑Nt
k=1 Xk we will have to calculate the characteristics function of∑n

k=1 Xk. Moreover, by using this characteristics function we will derive the distribution
function of

∑n
k=1 Xk and afterward we will use Eqn. (5.13) to arrive at the distribution

function of
∑Nt

k=1 Xk. In this regards, we have the condition that all the Xk, k ∈ N, are
i.i.d. random variables. Hence, the characteristics functions of Θn =

∑n
k=1 Xk, being

sums of aforementioned random variables, would equate to the product of the charac-
teristic functions, or:

ϕ∑n
k=1 Xk (u) =

n∏
k=1

ϕXk (u) =

n∏
k=1

[
pη1

η1 − iu
+

qη2

η2 + iu

]
=

(
pη1

η1 − iu
+

qη2

η2 + iu

)n

.

(5.14)

If we apply Theorem 5.2 to Eqn. (5.14), we will get the following expression for the
distribution function of (Θn)n∈N:

gΘn(x) =
1

2π

∫ ∞

−∞

e−iux

(
pη1

η1 − iu
+

qη2

η2 + iu

)n

du.

For the cases of n ≥ 2,

gΘn(x) =
1

2π
lim

R→+∞

∫ R

−R
e−iux

(
pη1

η1 − iu
+

qη2

η2 + iu

)n

du

=
1

2π
lim

R→+∞

n∑
k=0

(
n
k

)
(pη1)k (qη2)n−k

∫ R

−R

e−iux

(η1 − iu)k (η2 + iu)n−k du.

If we change the places of summation and limit, then we will get the following equa-
tion:

gΘn(x) =
1

2π

n∑
k=0

(
n
k

)
(pη1)k(qη2)n−k lim

R→+∞

∫ R

−R

e−izx

(η1 − iz)k(η2 + iz)n−k dz. (5.15)
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Let us calculate the function gΘn(x) for the case x ≥ 0.

We introduce a function Gk by

Gk(z, x) =
e−izx

(η1 − iz)k(η2 + iz)n−k , (5.16)

and let DR =
^

ABCD be a curve connecting points of A, B,C,D depicted in Figure 5.3.

Figure 5.3: The point of singularity and the curve of integration of the function Gk.

It can easily be seen that for large enough values of R > 0 in Figure 5.3, the following
equality holds:

−

∫ R

−R
Gk(z, x)dz =

∫
DR

Gk(z, x)dz −
∫

^
DA

Gk(z, x)dz

−

∫
^
AB

Gk(z, x)dz −
∫

^
BC

Gk(z, x)dz.
(5.17)

The equation of the curve of
^

DA is z = −R − iη for all 0 ≤ η ≤ R. Hence, for each
z ∈

^

DA and for sufficiently large values of R, we will get the following expression:
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∣∣∣(η1 − iz)k(η2 + iz)n−k
∣∣∣ ≥ ||z| − η1|

k
||z| − η2|

n−k

≥ (R − η1)k (R − η2)n−k

≥

(R
2

)k (R
2

)n−k

=

(R
2

)n

.

(5.18)

The equation of the curve of
^

AB is z = ξ − iR for all −R ≤ ξ ≤ R. Hence, for all z ∈
^

AB
and for sufficiently big values of R, the relationship of (5.18) holds.

The equation of the curve of
^

BC is z = R + iη for all −R ≤ η ≤ 0. Hence, for all z ∈
^

BC
and for sufficiently large values of R, the relationship of (5.18) holds.

Moreover, as for all z ∈
^

ABCD we have Im Z ≤ 0, then for all z ∈
^

ABCD and x ≥ 0 the
following inequality holds:

∣∣∣e−izx
∣∣∣ = ex Im z ≤ 1. (5.19)

From (5.16), (5.18), and (5.19), for all z ∈
^

DA ∪
^

AB ∪
^

BC and x ≥ 0, the following
estimation will be satisfied:

|Gk(z, x)| ≤
(

2
R

)n

, (5.20)

where k = 0, 1, . . . , n (n ≥ 2) and R is sufficiently large number.

In accordance with the inequality (5.20), the following calculations hold true:

∣∣∣∣∣∫ ^
DA

Gk(z, x)dz
∣∣∣∣∣ ≤ (

2
R

)n

·

∣∣∣∣ ^DA
∣∣∣∣ =

2n

Rn · R =
2n

Rn−1 ,∣∣∣∣∣∫ ^
AB

Gk(z, x)dz
∣∣∣∣∣ ≤ (

2
R

)n

·

∣∣∣∣ ^AB
∣∣∣∣ =

2n

Rn · 2R =
2n+1

Rn−1 ,∣∣∣∣∣∫ ^
BC

Gk(z, x)dz
∣∣∣∣∣ ≤ (

2
R

)n

·

∣∣∣∣ ^BC
∣∣∣∣ =

2n

Rn · R =
2n

Rn−1 ,

(5.21)

where |l| indicates the length of the curve of l.

From here we can easily get the following equalities,

lim
R→+∞

∫
^

DA
Gk(z, x)dz = lim

R→+∞

∫
^
AB

Gk(z, x)dz = lim
R→+∞

∫
^

BC
Gk(z, x)dz = 0. (5.22)

Taking into account (5.22) in (5.17), we will find that,
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lim
R→+∞

∫ R

−R
Gk(z, x)dz = − lim

R→+∞

∫
DR

Gk(z, x)dz. (5.23)

From Eqns. (5.23), (5.15) and (5.16) we will get the subsequent expression for gΘn(y):

gΘn(x) = −
1

2π

n∑
k=0

(
n
k

)
(pη1)k(qη2)n−k lim

R→+∞

∫
DR

Gk(z, x)dz. (5.24)

To calculate the integral at the right-hand side of (5.24), we will benefit from the theo-
rems of Residue Theory [101].

Since, the function Gk(z, x) is analytical with respect to the variable z in the domain,
which is bounded by curve of DR; hence, the following equality holds

∫
DR

G0(z, x)dz = 0. (5.25)

Thus, we may infer that,

gΘn(x) = −
1

2π

n∑
k=1

(
n
k

)
(pη1)k(pη2)n−k lim

R→+∞

∫
DR

Gk(z, x)dz. (5.26)

For k = 1, 2, ..., n, the function Gk(z, x) is meromorphic with respect to the z in the
domain, bounded with curve DR, and the only singularity point is z = −iη1.

Therefore, in accordance with the Residue Theory we will have the following expres-
sion for Gk for k = 1, 2, ..., n,

∫
DR

Gk(z, x)dz = 2πi · Res
z=−iη1

Gk(z, x).

By this way (5.26) will be simplified to the following term,

gΘn(x) = −i
n∑

k=1

(
n
k

)
(pη1)k(pη2)n−k lim

R→+∞
Res

z=−iη1
Gk(z, x). (5.27)

It is known that [101], if the function f (z) is analytical around the point a, then

Res
z=a

f (z)
(z − a)k =

1
(k − 1)!

dk−1

dzk−1 f (z)
∣∣∣∣∣
z=a
. (5.28)
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If we write the function Gk(z, x) as

Gk(z, x) =

e−izx

(−i)k(η2+iz)n−k

(z + iη1)k ,

and use Eqn. (5.28), then we will get the subsequent equation:

Res
z=−iη1

Gk(z, x) =
ik

(k − 1)!
dk−1

dzk−1

(
e−izx

(η2 + iz)n−k

) ∣∣∣∣∣
z=−iη1

. (5.29)

By this way and in accordance with Eqns. (5.27) and (5.29) we will have,

gΘn(x) = −

n∑
k=1

ik+1
(

n
k

)
(pη1)k(qη2)n−k

(k − 1)!
Tk(x), (5.30)

where

Tk(x) =
dk−1

dzk−1

(
e−izx

(η2 + iz)n−k

) ∣∣∣∣∣
z=−iη1

(k = 1, 2, ..., n). (5.31)

For k = n, Eqn. (5.31) will have the subsequent expression:

Tn(x) =
dn−1

dzn−1 e−izx
∣∣∣∣∣
z=−iη1

= (−ix)n−1e−η1 x. (5.32)

Moreover, for all α ∈ N we have the following representation:

d j

dz j

(
1

(η2 + iz)α

) ∣∣∣∣∣
z=−iη1

=
(−i) j(α + j − 1)!

(α − 1)!(η1 + η2)α+ j . (5.33)

Taking into account Eqns. (5.31) and (5.33) for k = 1, 2, ..., n − 1, we will have the
subsequent representation for Tk(x):

Tk(x) =

k−1∑
j=0

(
k − 1

j

)
(e−izx)( j)

(
1

(η2 + iz)n−k

)(k−1− j) ∣∣∣∣∣
z=−iη1

=

k−1∑
j=0

(
k − 1

j

)
(−ix) je−η1 x (−i)k− j−1(n − j − 2)!

(n − k − 1)!(η1 + η2)n− j−1 .

Combining the above result and Eqns. (5.30) and (5.32), we will get the following
expressions for gΘn(x). For the case of x ≥ 0,
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gΘn(x) =e−η1 x
n−1∑
k=1

ik+1
(

n
k

)
(pη1)k(qη2)n−k

(k − 1)!

k−1∑
j=0

(
k−1

j

)
(−ix) j(−i)k− j−1(n − j − 2)!

(n − k − 1)!(η1 + η2)n− j−1

−
in+1

(
n
n

)
(pη1)n

(n − 1)!
(−ix)n−1e−η1 x,

or,

gΘn(x) =

 (pη1)n

(n − 1)!
xn−1 +

n−1∑
k=1

k−1∑
j=0

(
n
k

)(
k−1

j

)
(n − j − 2)!(pη1)k(qη2)n−k

(k − 1)!(n − k − 1)!(η1 + η2)n− j−1 x j

 e−η1 x.

The last formula can be rewritten by the subsequent expression:

gΘn(x) := g1
Θn

(x) =

[
(pη1)n

(n − 1)!
xn−1

+

n−2∑
j=0

(n − j − 2)!
(η1 + η2)n− j−1

 n−1∑
k= j+1

(
n
k

)(
k−1

j

)
(pη1)k(qη2)n−k

(k − 1)!(n − k − 1)!

 x j

 e−η1 x,

(5.34)

where n ≥ 2. We have to note that Eqn. (5.34) is correct only for the case of x ≥ 0.

Let us now calculate the gΘn(x) for the case of x < 0, and n ≥ 2:

gΘn(x) =
1

2π

∫ +∞

−∞

e−iux

(
pη1

η1 − iu
+

qη2

η2 + iu

)n

du

u=−u
=

1
2π

∫ +∞

−∞

eiux

(
qη2

η2 − iu
+

pη1

η1 + iu

)n

du,

or,

gΘn(x) =
1

2π

∫ +∞

−∞

e−iu(−x)
(

qη2

η2 − iu
+

pη1

η1 + iu

)n

du. (5.35)

In Eqn. (5.35), we refer to −x > 0, so we can infer the gΘn(x) formula for the case of
x < 0 from Eqn. (5.34), simply by changing the variables x and η1 in Eqn. (5.34) by
−x and η2, respectively. In this way, we will get the following equation for gΘn(x), if
x < 0, and n ≥ 2,
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gΘn(x) := g2
Θn

(x) =

[
(qη2)n

(n − 1)!
(−x)n−1

+

n−2∑
j=0

(n − j − 2)!
(η1 + η2)n− j−1

 n−1∑
k= j+1

(
n
k

)(
k−1

j

)
(qη2)k(pη1)n−k

(k − 1)!(n − k − 1)!

 (−x) j

 eη2 x.

(5.36)

We may combine the two representations of the gΘn(x) distribution function, given by
(5.34) and (5.36) into one as follows:

gΘn(x) = g1
Θn

(x)1x≥0 + g2
Θn

(x)1x<0, (5.37)

where

g1
Θ1

(x) = pη1e−η1 x, g2
Θ1

(x) = qη2eη2 x. (5.38)

By calculating the functions gΘn(x) we have found the distribution function of sum of n
i.i.d. Double Exponential Processes, Θn =

∑n
k=1 Xk, where n ∈ N. Let us calculate the

distribution function of Θ =
∑Nt

k=1 Xk. It is well known that (Nt)t≥0 is a Poisson Process
with the following distribution:

P(Nt = n) = e−λt (λt)n

n!
(t ≥ 0), (5.39)

where any positive real λ is equal to the expected value of Nt and with its variance,

tλ = E(Nt) = Var(Nt).

If we will use the PDF of Poisson distribution given by Eqn. (5.39) with Eqn. (5.37),
we will get the following formula for the distribution function of Θ:

gΘ(x) =

∞∑
n=1

[
g1

Θn
(x)1x≥0 + g2

Θn
(x)1x<0

]
e−λt (λt)n

n!
. (5.40)

In order to get the distribution function of Lt, we will use the following definition and
theorem [68].

Definition 5.1. [68] Let X and Y be two continuous random variables with density
functions f (x) and g(y), respectively. We assume that both f (x) and g(y) are defined
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for all real numbers. Then the convolution of f and g, f ∗ g , is the function given by

( f ∗ g)(z) =

∫ +∞

−∞

f (z − y)g(y)dy

=

∫ +∞

−∞

g(z − y) f (y)dy.
(5.41)

Theorem 5.3. [68] Let X and Y be two independent random variables with density
functions fX(x) and fY(y) defined for all x. Then, the sum Z = X + Y is a random
variable with density function fZ(z), where fZ is the convolution of fX and fY .

Let us take a closer look at Eqn. (5.6). We may see that, as indicated above, the right
side can be separated into two components, one for the Sum of Double-Exponential
Process, gΘn(x), and one for the Drift plus Brownian Motion part, gDBM(x). The distri-
bution of the Sum of Double-Exponential Processes is characterized with Eqn. (5.37),
and the distribution of the Drift plus Brownian Motion part is given subsequently:

gDBM(x) =
1

σ
√

2πt
e
−

(
x−

((
µ−σ

2
2

)
t+ln S 0

))2
2σ2t . (5.42)

In order to find the distribution of the jump process (Lt)t≥0 we will use Theorem 5.3,
so the distribution would be as follows:

gLt(z) =

∫ +∞

−∞

gDBM(z − x)gΘ(x)dx

=

∫ +∞

−∞

gDBM(z − x)
∞∑

n=1

[
g1

Θn
(x)1x≥0 + g2

Θn
(x)1x<0

]
e−λt (λt)n

n!
dx

=

∞∑
n=1

[∫ +∞

0
gDBM(z − x)g1

Θn
(x)dx

]
(λt)n

n!
e−λt +

∞∑
n=1

[∫ 0

−∞

gDBM(z − x)g2
Θn

(x)dx
]

(λt)n

n!
e−λt

= g1
Lt

(z) + g2
Lt

(z).
(5.43)

As already have been mentioned we need to calculate the distribution FS t of the Stock
Price Process given by S t = eL(t) (t ≥ 0).

In order to calculate these distributions, by using Eqn. (5.43), we will employ the fol-
lowing transformation:

FS t(x) = P (S t ≤ x) = P

(
Lt(z) ≤ ln (

x
S 0

)
)

=

∫ ln ( x
S 0

)

−∞

gLt(z)dz =

=

∫ ln ( x
S 0

)

−∞

g1
Lt

(z)dz +

∫ ln ( x
S 0

)

−∞

g2
Lz

(z)dz,

(5.44)
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where

g1
Lt

(z) =

+∞∑
n=1

[∫ +∞

0
gDBM(z − ξ)g1

Θn
(ξ)dξ

]
(λt)n

n!
e−λt, (5.45)

and

g2
Lz

(z) =

+∞∑
n=1

[∫ 0

−∞

gDBM(z − ξ)g2
Θn

(ξ)dξ
]

(λt)n

n!
e−λt. (5.46)

From Eqns. (5.44) - (5.46) we will get,

FS t(x) =

∞∑
n=1

 2∑
s=1

A(s)
n (x)

 (λt)n

n!
e−λt, (5.47)

where

A(1)
n (x) =

∫ ln ( x
S 0

)

−∞

dz
∫ +∞

0
gDBM(z − ξ)g1

Θn
(ξ)dξ, (5.48)

A(2)
n (x) =

∫ ln ( x
S 0

)

−∞

dz
∫ 0

−∞

gDBM(z − ξ)g2
Θn

(ξ)dξ. (5.49)

We shall calculate the expressions for A(1)
n (x) and A(2)

n (x) separately. Let us make the
following designation:

τ = ln (
x

S 0
). (5.50)

By making a variable change of ξ = z − ξ and using Eqn. (5.50) in Eqns. (5.48), we
will have:

A(1)
n (x) =

∫ τ

−∞

dz
∫ z

−∞

gDBM(ξ)g1
Θn

(z − ξ)dξ,

and also

A(1)
n (x) =

∫ τ

−∞

gDBM(ξ)
(∫ τ

ξ

g1
Θn

(z − ξ)dz
)

dξ.
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By this way, we obtain

A(1)
n (x) =

∫ τ

−∞

gDBM(ξ)
(∫ τ−ξ

0
g1

Θn
(z)dz

)
dξ. (5.51)

Let us identify the number r(1)
j,n in the following way:

r(1)
j,n := r j,n(p, q, η1, η2). (5.52)

where,

r j,n(p, q, η1, η2) =


(pη1)n

(n−1)! , if j = n − 1 and n ≥ 1,
(n− j−2)!

(η1+η2)n− j−1

(∑n−1
k= j+1

(n
k)( j

k−1)(pη1)k(qη2)n−k

(k−1)!(n−k−1)!

)
, if j = 0, . . . , n − 2 and n ≥ 2,

(5.53)

In accordance with Eqns. (5.34), (5.38) and (5.52), we will get:

g1
Θn

(z) =

n−1∑
j=0

r(1)
j,nz je−η1z. (5.54)

Note that for a ∈ R and j = 0, 1, ..., the following representation holds:

∫ a

0
z je−ϕzdz =

j!
ϕ j+1

1 − e−aϕ
j∑

r=0

(aϕ)r

r!

 . (5.55)

From here by using Eqn. (5.54) it follows that,

∫ τ−ξ

0
g1

Θn
(ξ)dξ =

n−1∑
j=0

j!r(1)
j,n

η
j+1
1

1 − e−η1(τ−ξ)
j∑

r=0

(η1(τ − ξ))r

r!

,
or, which is equivalent also,

∫ τ−ξ

0
g1

Θn
(ξ)dξ =

n−1∑
j=0

j!r(1)
j,n

η
j+1
1

− e−η1(τ−ξ)
n−1∑
r=0

 n−1∑
j=r

j!r(1)
j,n

η
j+1−r
1

 (τ − ξ)r

r!
. (5.56)

Taking into account Eqns. (5.51) and (5.56), we will get:
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A1
n(x) =

 n−1∑
j=0

j!r(1)
j,n

η
j+1
1

 ∫ τ

−∞

gDBM(ξ)dξ

−

n−1∑
r=0

 n−1∑
j=r

j!r(1)
j,n

η
j+1−r
1

 1
r!

∫ τ

−∞

gDBM(ξ)(τ − ξ)re−η1(τ−ξ)dξ.

(5.57)

Let us simplify the expression for A2
n(x). In accordance with Eqns. (5.49) and (5.50),

we shall have

A2
n(x) =

∫ τ

−∞

dz
∫ 0

−∞

gDBM(z − ξ)g2
Θn

(ξ)dξ

=

∫ +∞

−∞

dz
∫ 0

−∞

gDBM(z − ξ)g2
Θn

(ξ)dξ −
∫ +∞

τ

dz
∫ 0

−∞

gDBM(z − ξ)g2
Θn

(ξ)dξ

=

∫ 0

−∞

g2
Θn

(ξ)
(∫ +∞

−∞

gDBM(z − ξ)dz
)

dξ −
∫ +∞

τ

dz
∫ +∞

z
gDBM(ξ)g2

Θn
(z − ξ)dξ

=

[∫ +∞

−∞

gDBM(z)dz
] [∫ 0

−∞

g2
Θn

(ξ)dξ
]
−

∫ +∞

τ

gDBM(ξ)
[∫ ξ

τ

g2
Θn

(z − ξ)dz
]

dξ,

or we will have the following expression, which means the same value:

A2
n(x) =

[∫ +∞

−∞

gDBM(z)dz
] [∫ 0

−∞

g2
Θn

(ξ)dξ
]
−

∫ +∞

τ

gDBM(ξ)
[∫ 0

τ−ξ

g2
Θn

(z)dz
]

dξ. (5.58)

By using Eqn. (5.36), the expression for g2
Θn

(z) will be given in the following form:

g2
Θn

(z) =

n−1∑
j=0

r(2)
j,n(−z) jeη2z, (5.59)

where,

r(2)
j,n := r j,n(q, p, η2, η1), (5.60)

and r j,n(q, p, η2, η1) is identified by Eqn. (5.53).

Taking the above formulas into account, we can rewrite Eqn. (5.58) in the following
representation, by making the change of variables ξ = −ξ in the minuend, and z = −z
in the subtrahend:
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A2
n(x) =

[∫ +∞

−∞

gDBM(z)dz
] [∫ ∞

0
g2

Θn
(−ξ)dξ

]
−

∫ +∞

τ

gDBM(ξ)
[∫ ξ−τ

0
g2

Θn
(−z)dz

]
dξ.

(5.61)

If we will use Eqns. (5.55) and (5.59), we will have,

∫ ∞

0
g2

Θn
(−ξ)dξ =

n−1∑
j=0

j!r2
j,n

η
j+1
2

, (5.62)

∫ ξ−τ

0
g2

Θn
(−z)dz =

n−1∑
j=0

j!r2
j,n

η
j+1
2

− e−η2(ξ−τ)
n−1∑
r=0

 n−1∑
j=r

j!r2
j,n

η
j+1−r
2

 (ξ − τ)r

r!
. (5.63)

By combining Eqns. (5.62) - (5.63) in Eqn. (5.61), we shall have the subsequent
representation for A2

n:

A2
n(x) =

 n−1∑
j=0

j!r2
j,n

η
j+1
2

 ∫ τ

−∞

gDBM(ξ)dξ

+

n−1∑
r=0

 n−1∑
j=r

j!r2
j,n

η
j+1−r
2

 1
r!

∫ +∞

τ

gDBM(ξ)(ξ − τ)re−η2(ξ−τ)dξ.

(5.64)

5.4 Distribution Function of Lt

Let us introduce φ(x) as the Laplace function (or the Error function) [6],

φ(x) =
2
√
π

∫ x

0
e−ζ

2
dζ. (5.65)

It is well-known that [6],

φ(+∞) = 1. (5.66)

From Eqns. (5.65) and (5.66) we may infer the following:

∫ x

0
e−ζ

2
dζ =

√
π

2
φ(x), (5.67)

∫ +∞

0
e−ζ

2
dζ =

√
π

2
. (5.68)
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Lemma 5.1. The following equalities hold:∫ +∞

0
e−ζ

2
ζ2ldζ =

1
2

Γ(l +
1
2

) =
(2l)!

l!

√
π

22l+1 , (5.69)

∫ +∞

0
e−ζ

2
ζ2l+1dζ =

1
2

Γ(l + 1) =
l!
2
, (5.70)

for all l = 0, 1, 2, ....

Lemma 5.2. The following equalities hold:∫ x

0
e−ζ

2
ζ2l+1dζ =

l!
2
−

l!
2

l∑
r=0

x2r

r!
e−x2

(l = 0, 1, 2, ...), (5.71)

∫ x

0
e−ζ

2
ζ2ldζ =

(2l)!
√
π

l!22l+1 φ(x) −
(2l)!

l!22l+1

l∑
r=1

r!22r

(2r)!
x2r−1e−x2

(l = 1, 2, ...), (5.72)

where x ∈ R.

Let us assume that a ∈ R, b > 0 and

M j(a, b) = M j =

∫ +∞

0
e−

(x−a)2

b2 x jdx ( j = 0, 1, 2, ...). (5.73)

In the following steps, we shall get the expression of M j in terms of φ(x).

If we make a change of x = a + bζ in Eqn. (5.73), then we will have

M j = b
∫ +∞

− a
b

e−ζ
2
(a + bζ) jdζ. (5.74)

By assuming that θ = a/b, and using Eqn. (5.74), we will get the following represen-
tation:

M j = b j+1
∫ +∞

−θ

e−ζ
2
(θ + ζ) jdζ. (5.75)

For j = 0, Eqn. (5.74) obtains a form as follows:

M0 = b
∫ +∞

−θ

e−ζ
2
dζ; (5.76)
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and by applying Eqns. (5.67) and (5.68) to the above expression we shall get:

∫ +∞

−θ

e−ζ
2
dζ =

∫ +∞

0
e−ζ

2
dζ +

∫ θ

0
e−ζ

2
dζ =

√
π

2
+

√
π

2
φ(θ). (5.77)

Hence, Eqn. (5.76) will be given in the subsequent representation,

M0 =
b
√
π

2
+

b
√
π

2
φ(θ). (5.78)

Let us analyze the cases of j ≥ 1. Eqn. (5.75) can be simplified in the following
manner:

M j = b j+1
j∑

r=0

(
j
r

)
θ j−r

∫ +∞

−θ

e−ζ
2
ζrdζ

= b j+1
[ j

2 ]∑
l=0

(
j

2l

)
θ j−2l

∫ +∞

−θ

e−ζ
2
ζ2ldζ + b j+1

[ j−1
2 ]∑

l=0

(
j

2l + 1

)
θ j−2l−1

∫ +∞

−θ

e−ζ
2
ζ2l+1dζ,

(5.79)

where [c] simply depicts the integer part of the c.

Note that for ν = 0, 1, ..., the next equation holds:

∫ 0

−θ

e−ζ
2
ζνdζ = (−1)ν

∫ θ

0
e−ζ

2
ζνdζ. (5.80)

Hence,

∫ +∞

−θ

e−ζ
2
ζνdζ =

∫ +∞

0
e−ζ

2
ζνdζ + (−1)ν

∫ θ

0
e−ζ

2
ζνdζ. (5.81)

From Eqns. (5.69) - (5.72) and (5.81), we can infer the subsequent simplification:

∫ +∞

−θ

e−ζ
2
ζ2ldζ =

(2l)!
l!22l+1

√π +
√
πφ(θ) − e−θ

2
l∑

r=1

r!22r

(2r)!
θ2r−1

 (l = 1, 2, ...), (5.82)

and ∫ +∞

−θ

e−ζ
2
ζ2l+1dζ =

l!
2

e−θ
2

l∑
r=0

θ2r

r!
(l = 0, 1, 2, ...). (5.83)
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By taking into account Eqns. (5.77), (5.79) and (5.83), we will have the following
formula for M1:

M1 =
b2

2

(
θ
√
π + θ

√
πφ(θ) + e−θ

2)
. (5.84)

Eqn. (5.79) can be written as stated below for the cases of j ≥ 2:

M j =b j+1θ j
∫ +∞

−θ

e−ζ
2
dζ + b j+1

[ j
2 ]∑

l=1

(
j

2l

)
θ j−2l

∫ +∞

−θ

e−ζ
2
ζ2ldζ+

+ b j+1
[ j−1

2 ]∑
l=0

(
j

2l + 1

)
θ j−2l−1

∫ +∞

−θ

e−ζ
2
ζ2l+1dζ.

(5.85)

By taking into account Eqns. (5.77), (5.82) and (5.83), we will get the following
expression for Eqn. (5.85) in cases of j ≥ 2:

M j =
b j+1

2

√π
[ j/2]∑
l=0

(
j

2l

)
(2l)!
l!22l θ

j−2l +
√
πφ(θ)

[ j
2 ]∑

l=0

(
j

2l

)
(2l)!
l!22l θ

j−2l +

+ e−θ
2

[ j−1
2 ]∑

l=0

l!
(

j
2l + 1

) l∑
r=0

θ2r+ j−2l−1

r!
− e−θ

2
[ j

2 ]∑
l=1

(
j

2l

)
(2l)!
l!22l

l∑
r=1

r!22r

(2r)!
θ2r+ j−2l−1

 .
(5.86)

In can be easily inferred that,

[ j−1
2 ]∑

l=0

l!
(

j
2l + 1

) l∑
r=0

θ j−1−2(l−r)

r!
=

[ j−1
2 ]∑

l=0

l!
(

j
2l + 1

) l∑
r=0

θ j−1−2r

(l − r)!

=

[ j−1
2 ]∑

r=0

θ j−1−2r
[( j−1)/2]∑

l=r

l!
(

j
2l+1

)
(l − r)!

,

and

[ j
2 ]∑

l=1

(2l)!
(

j
2l

)
l!22l

l∑
r=1

r!22r

(2r)!
θ j−2(l−r)−1 =

[ j
2 ]∑

l=1

(2l)!
(

j
2l

)
l!22l

l−1∑
r=0

(l − r)!22(l−r)

(2(l − r))!
θ j−2r−1

=

[ j
2 ]−1∑
r=0

θ j−2r−1
[ j/2]∑
l=r+1

(2l)!(l − r)!
(

j
2l

)
l!(2(l − r))!22r .
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From the above expressions and from Eqn. (5.86), for j ≥ 2, the following is true:

M j =

√
π

2
b j+1 [

1 + φ(θ)
] [ j

2 ]∑
l=0

αl, jθ
j−2l+

+
b j+1

2
e−θ

2


[ j−1

2 ]∑
l=0

βl, jθ
j−2l−1 +

[ j
2 ]−1∑
l=1

γl, jθ
j−2l−1

 ,
(5.87)

where,

αl, j :=
(2l)!
l!22l

(
2l
j

)
, (5.88)

βl, j :=
[ j−1

2 ]∑
r=l

r!
(r − l)!

(
2r + 1

j

)
, (5.89)

and

γl, j := −
1

22l

[ j
2 ]∑

r=l+1

(2r)!(r − l)!
r!(2(r − l))!

(
2r
j

)
. (5.90)

Below let us introduce some denotation:

σ0 := (µ −
σ2

2
)t + ln (s0), θ0 :=

τ − σ0

σ
√

2t
. (5.91)

By using the above designations and Eqn. (5.42), distribution function of Drift plus
Brownian Motion, we will get the subsequent representation for the integral part of the
minuend of Eqn. (5.57):

∫ τ

−∞

gDBM(ξ)dξ =
1

σ
√

2πt

∫ τ

−∞

e−
(ξ−σ0)2

2σ2t dξ.

Making the variable change of

ξ − σ0

σ
√

2t
= u, (5.92)

and using the variables discribed in Eqn. (5.91) will result in the following expression:
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∫ τ

−∞

gDBM(ξ)dξ =
1
√
π

∫ τ−σ0
σ
√

2t

−∞

e−u2
du

=
1
√
π

∫ 0

−∞

e−u2
du +

1
√
π

∫ θ0

0
e−u2

du.

From the above integral and in accordance with Eqns. (5.67) and (5.68), the subsequent
will follow:

∫ τ

−∞

gDBM(ξ)dξ =
1
2

+
1
2
φ(θ0). (5.93)

Let us introduce the below designations:

σ1 := τ − σ0 − σ
2tη1, (5.94)

T1 := e−η1(τ−σ0−
1
2σ

2tη1). (5.95)

After a simple transformation, the integral in the subtrahend of Eqn. (5.57) will obey
the following formula:

∫ τ

−∞

gDBM(ξ)(τ − ξ)re−η1(τ−ξ)dξ =

∫ ∞

0
gDBM(τ − ξ)ξre−η1ξdξ

=
T1

σ
√

2πt

∫ ∞

0
e−

(ξ−σ1)2

2σ2t ξrdξ,
(5.96)

where σ1 and T1 are identified by the equalities of Eqns. (5.94) and (5.95) accordingly.
Analogically, for the integral in subtrahend of Eqn. (5.64) we will have,

∫ ∞

τ

gDBM(ξ)(ξ − τ)re−η2(ξ−τ)dξ =

∫ ∞

0
gDBM(ξ + τ)ξre−η2ξdξ

=
T2

σ
√

2πt

∫ ∞

0
e−

(ξ−σ2)2

2σ2t ξrdξ,
(5.97)

where,
σ2 := σ0 − τ − σ

2tη2, (5.98)

T2 := e−η2(σ0−τ−
1
2σ

2tη2). (5.99)

Eqns. (5.96) and (5.97) can be represented by using Eqn. (5.73) as stated below:
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∫ τ

−∞

gDBM(ξ)(τ − ξ)re−η1(τ−ξ)dξ =
T1

σ
√

2πt
Mr(σ1, σ

√
2t), (5.100)

∫ ∞

τ

gDBM(ξ)(ξ − τ)re−η2(ξ−τ)dξ =
T2

σ
√

2πt
Mr(σ2, σ

√
2t). (5.101)

Let us introduce D(s)
r,n by:

D(s)
r,n :=

1
r!

n−1∑
j=r

j!r(s)
j,n

η
j+1−r
s

. (5.102)

From Eqns. (5.57), (5.64), (5.93) and (5.100) - (5.102), we will have

A(s)
n (x) =

1
2

D(s)
0,n(1 + φ(θ0)) +

(−1)sTs

σ
√

2πt

n−1∑
r=0

D(s)
r,nMr(σs, σ

√
2t), (5.103)

where s = 1, 2.

In accordance with Eqn. (5.103),

∞∑
n=1

A(s)
n (x)

(λt)n

n!
e−λt =

1
2

(1 + φ(θ0))
∞∑

n=1

D(s)
0,n

(λt)n

n!
e−λt

+
(−1)sTs

σ
√

2πt

∞∑
n=1

 n−1∑
r=0

D(s)
r,nMr(σs, σ

√
2t)

 (λt)n

n!
e−λt.

The above formula can be revised in the following way:

∞∑
n=1

A(s)
n (x)

(λt)n

n!
e−λt =

e−λt

2
(1 + φ(θ0))

∞∑
n=1

D(s)
0,n

(λt)n

n!

+
(−1)sTse−λt

σ
√

2πt

∞∑
r=0

 n−1∑
n=r+1

D(s)
r,n

(λt)n

n!

 Mr(σs, σ
√

2t).

(5.104)

Let us introduce,

θs :=
σs

σ
√

2t
(s = 1, 2), (5.105)

and
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B(s)
r :=

∞∑
n=r+1

D(s)
r,n

(λt)n

n!
e−λt. (5.106)

By using the variables identified above, Eqn. (5.104) will have the representation
below:

∞∑
n=1

A(s)
n (x)

(λt)n

n!
e−λt =

B(s)
0

2
(1 + φ(θ0)) +

(−1)sTs

σ
√

2πt

∞∑
r=0

B(s)
r Mr(σs, σ

√
2t). (5.107)

From Eqns. (5.78), (5.84) and (5.87), we can infer the following:

M0(σs, σ
√

2t) =
σ
√

2πt
2

(1 + φ(θs)), (5.108)

M1(σs, σ
√

2t) =
(σ
√

2t)2

2
(θs
√
π + θs

√
πφ(θs) + eθ

2
s ), (5.109)

Mr(σs, σ
√

2t) =

√
π

2
(σ
√

2t)r+1(1 + φ(θs))
[ r

2 ]∑
l=0

αl,rθ
r−2l
s

+
1
2

(σ
√

2t)r+1e−θ
2
s


[ r−1

2 ]∑
l=0

βl,rθ
r−2l−1
s +

[ r
2 ]−1∑
l=0

γl,rθ
r−2l−1
s

 ,
(5.110)

where r ≥ 2.

By using Eqns. (5.107) - (5.110) and making some simple transformations, we will get
this equality:

∞∑
n=1

A(s)
n (x)

(λt)n

n!
e−λt =

B(s)
0

2
(1 + φ(θ0)) +

(−1)sTs

2
(1 + φ(θs))

∞∑
r=0

B(s)
r (σ

√
2t)r

[ r
2 ]∑

l=0

αl,rθ
r−2l
s

+
(−1)sTs

2
e−θ

2
s

 ∞∑
r=1

B(s)
r (σ

√
2t)r

[ r−1
2 ]∑

l=0

βl,rθ
r−2l−1
s

+

∞∑
r=2

B(s)
r (σ

√
2t)r

[ r
2 ]−1∑
l=0

γl,rθ
r−2l−1
s

 ,
(5.111)

where
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α0,0 = β0,1 = 1. (5.112)

Eqn. (5.111) can be revised in the following way:

∞∑
n=1

A(s)
n (x)

(λt)n

n!
e−λt =

B(s)
0

2
(1 + φ(θ0))

+ (1 + φ(θs))
∞∑

m=0

d(s)
m θ

m
s + e−θ

2
s

∞∑
m=0

D(s)
m θ

m
s ,

(5.113)

where

d(s)
m :=

 (−1)sTs
2

∑∞
r=l B(s)

2r (σ
√

2t)2rαr−l,2r, if m = 2l,
(−1)sTs

2

∑∞
r=l B(s)

2r+1(σ
√

2t)2r+1αr−l,2r+1, if m = 2l + 1,
(5.114)

and

D(s)
m :=


(−1)sTs

2
√
π

∑∞
r=0 B(s)

2r+1(σ
√

2t)2r+1βr,2r+1, if m = 0,
(−1)sTs

2
√
π

∑∞
r=l B(s)

2r+1(σ
√

2t)2r+1(βr−l,2r+1 + γr−l,2r+1), if m = 2l (l = 1, 2, ...),
(−1)sTs

2
√
π

∑∞
r=l+1 B(s)

2r (σ
√

2t)2r(βr−l−1,2r + γr−l−1,2r), if m = 2l + 1 (l = 0, 1, ...).
(5.115)

Finally, from the Eqns. (5.47) and (5.113) we will get the subsequent distribution
function for S t (t ≥ 0):

FS t(x) =
1
2

(
B(1)

0 + B(2)
0

)
(1 + φ(θ0)) + (1 + φ(θ1))

∞∑
m=0

d(1)
m θm

1

+ (1 + φ(θ2))
∞∑

m=0

d(2)
m θm

2 + e−θ
2
1

∞∑
m=0

D(1)
m θm

1 + e−θ
2
2

∞∑
m=0

D(2)
m θm

2 .

(5.116)

5.5 Risk-Neutral Dynamics

Under a risk-neutral measure, the financial instrument must grow at a risk free rate in
order for the discounted prices to be a martingale. Hence, the very natural thing to do is
to specify the mean return rate, µ, that will be equal to a risk free rate, which have been
done for the Black-Scholes case and moreover refer to other variables as a risk neutral,
too. For any model that incorporates jump, as in our case the jump-diffusion model,
there are more that one equivalent risk-neutral measures Q ∼ P where the discounted
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prices become martingales. In another words, there is no way an investor would be
able to construct a hedging portfolio that is totally risk-free.

Incompleteness of the market is one of the crucial problems that we are facing with
jump-diffusion or Lévy processes. Surely, the risk arousing from jumps is unhedgable
and no exclusive risk-neutral measure exists. Researchers suggest that several mea-
sures with distant characteristics can be selected, such as Hellinger distance, L2 dis-
tance, entropy or Kullback-Leibler distance, which would be equivalent to the histori-
cal probability measure

We select the Esscher measure as the change of measure technique that is based on
the compound return of the price process. Hans U. Gerber in his article [43] has de-
veloped this change of measure. Our choice relies on several reasons. Firstly, a math-
ematical viewpoint, in the sense of power metrics Esscher measure can be regarded
as the equivalent martingale measure closest to the real-world probability measure.
Secondly, we refer to an economic point of view. As the risk-neutral universe for
jump-diffusion models is not unique, the behavior of economic agents toward risk will
shape the prices. Thirdly, by employment of either neo-Bernoulli theory or expected
utility, we can achieve “clean” price with the principle of marginal utility. In fact,
it could be demonstrated that the proper prices derived from a logarithmic utility or
power utility function can be formulated by using the Esscher measure that employs
compound return calculation.

Asset value can be given by the exponent of Lévy process X or by the Doléans-Dade
exponential of some other process X̃. The processes could be connected among each
other and connections between the characteristic triplets may be quickly calculated.
Hence, we are allowed to speak about the Esscher measure, specified with X̃. From
the economic viewpoint, the given measure is associated with the utility functions of
exponential forms. Furthermore, when the given measure is applied, Lévy processes
stay as Lévy processes during the transition from the real-world universe to the new
risk-neutral universe. Under this risk measure, the characteristic triplet of the process
X also has a ready to use common formula.

Let us now employ of the Esscher transform in the framework of our universe. Follow-
ing Radon-Nikodym formula characterizes the Esscher risk-neutral measure with one
parameter, indicated by Q, which is related with the process X and the parameter u:

(
dQ
dP

)
t
=

euXt

EP
[
euXt

] .
The risk-neutral measure on the Laplace exponent ψQ(β) can be represented by the next
formula:

EQ
[
eβXt

]
= EP

[
ηteβXt

]
= etψQ(β).

Let X be a Lévy process, and Qu be a u-Esscher measure related to X and specified by:
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dQu

dP
=

euXt

EP
[
euXt

] .
The Laplace exponent of ψ(β) would be such that,

E
(
eβXt

)
= etψ(β).

Let us first consider the martingale condition that under in risk neutral world the dis-
counted process must be a martingale. For t ≥ 0 this condition can be interpreted in
the subsequent way:

S t = EQu

(
S 0eX(t)e−rt

)
,

or

S t = S 0e−rt
∫

Ω

e(u+1)X(t)

EP(euX(t))
dP.

This latter condition writes as

S t = S 0e−rtψP(u + 1)
ψP(u)

,

where real-world probability is designated by ψP. Lastly, the martingale condition
conforms the description of an answer of the next equation which is identified by the
parameter u∗:

− r + ψP(u+1) − ψP(u) = 0. (5.117)

The main purpose of this part of the thesis is to identify the link between parameters
of the Kou model in the historical and in the risk-neutral world, by using the rationale
of the Laplace exponent under Qu∗ . We will designate the solution of Eqn. (5.117) by
u instead of u∗, and by Q in lieu of Qu∗ the risk-neutral measure. In this regard, we can
easily have:

EQ
(
eβX(t)

)
=

∫
Ω

eβX(t) euX(t)

EP(euX(t))
dP,

or

eψQ(β) = EP

(
e(β+u)X(t)

EP(euX(t))

)
=

eψP(β+u)

eψP(u) .
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This generates a very easy equation, associating the Laplace exponent in the (Esscher)
risk-neutral measure with the same exponent in the historical universe:

ψQ(β) = ψP(β + u) − ψP(u). (5.118)

Let us employ the above general outcome in the framework of Kou model, which has
the subsequent expression:

X(t) =

(
µ −

1
2
σ2

)
t + σWt +

Nt∑
k=1

Yk (t ≥ 0).

Kou process has the subsequent Laplace exponent

ψP(β) =
1
2
σ2β2 +

(
µ −

1
2
σ2

)
β + λ

[
pη1

η2 − β
+

pη2

η2 + β
− 1

]
. (5.119)

Putting the final expression into the martingale condition of Eqn. (5.117) yields

r = uσ2 + µ − λ

[
pη1

(η1 − u)(η1 − (1 + u))
−

qη2

(η2 + u)(η2 + (1 + u))

]
.

To achieve the corresponding martingale measure, the parameter u is selected in a way
so that the discounted price process would be a martingale. It can be easily shown
that the risk-neutral parameter u under the Esscher measure can be represented by the
below given martingale condition:

r = uσ2 + µ − λ

[
pη1

η1 − u
+

qη2

η2 + u
−

pη1

η1 − (1 + u)
−

qη2

η2 + (1 + u)

]
. (5.120)

The Esscher transform, parametrized only over u, is therefore entirely characterized at
this stage.

Now, using Eqn. (5.119) inside Eqn. (5.118), and after some mild computations, one
obtains:

ψP(β) =
1
2
σ2β2 +

(
µ −

1
2
σ2 + σ2u

)
β + λ̂

[
p̂η̂1

η̂2 − β
+

p̂η̂2

η̂2 + β
− 1

]
, (5.121)

where:
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

p̂ := pη1
ζ(η1−u) ,

q̂ := 1 − p̂,
η̂1 := η1 − u,
η̂2 := η2 + u,
λ̂ := λζ, and
ζ := pη1

η1−u +
qη2
η2+u ,

(5.122)

which is the relationship between the real-world and the risk-neutral parameters.

Eqn. (5.121) indicates that X is a Kou process under the Esscher risk-neutral measure.
The parameters of the process are presented in Eqn. (5.122), where u = u∗ is the
solution of Eqn. (5.120). We have to take into account that the characteristic triplet
of the Kou process X under the Esscher measure could be achieved directly from the
representations of Eqn. (5.121).

After the computations exhibited above, we will get the subsequent expression:

ψQ(β) = Aβ +
1
2

Γ2β2 +

∫
R

(eβy − 1)ν̂(dy),

with (A,Γ, ν̂) being the characteristic triplet of the Kou process under the u-Esscher
measure, or:

A := a + σ2u, Γ := σ, ν̂(dy) := euyν(dy).

So, in conclusion, we can say that the gain process would still be a Kou process in the
risk-neutral world, although with distant parameters.

We can get all the details of the risk-neutral parameters by using the formulas given by
Eqn. (5.122). The main conclusion may be summarized in the following way: When
the gain process follows a Kou model in the real-world universe, it will follow similar
Kou model in the risk-neutral universe, related to the selection of correct Esscher mea-
sure. Moreover, under these circumstances the change of parameter can be defined as
given in Eqn. (5.122) above. Certainly, the formulas in Eqn. (5.122) show the way
how the coefficients of the real and the risk-neutral world are exactly related. As a
summary we may indicate that, in the selected risk-neutral world, the following will
hold true:

Xt =

(
r −

1
2
σ2 − λ̂ξ̂

)
t + σŴt +

N̂t∑
k=1

Ŷk, (5.123)

with Ŵ being a standard Q-Brownian motion, N̂ being a Poisson process with fixed
intensity rate λ̂, and the variables Ŷk being positive i.i.d. random variables of DED
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with density:

f̂Y(y) = p̂η̂1e−η̂1yI{y≥0} + q̂η̂2eη̂2yI{y<0}, (5.124)

under the trivial conditions of η̂1 > 1, η̂2 > 0, p̂, q̂ > 0, and p̂ + q̂ = 1.

We have to take into account that ξ̂ is identified by ξ̂ = Eh

[
eŶ1

]
− 1 = p̂ η̂1

η̂1−1 + q̂ η̂2
η̂2+1 − 1,

and that all stochastic processes: N̂ , Ŵ and the Ŷk, are taken to be independent.

Hence, in the risk-neutral world, asset prices will have the following path:

dS t

dS t−
= rdt + σdŴt + dM̂t, (5.125)

where M̂ is the compensated martingale given by

M̂t =

N̂t∑
k=1

(Ẑk − 1) − λ̂ξ̂t,

with Ẑk = eŶk .

Therefore, as a consequence of Itô’s Lemma [25], we may indicate that:

S t = S 0eâ+σŴt

Nt∏
k=1

Ẑt,

where â = r − σ2

2 − λ̂Φ̂(1), and where the function Φ̂ is characterized by

Φ̂(x) = p̂
η̂1

η̂1 − x
+ q̂

η̂2

η̂2 + x
− 1,

with Φ̂(1) = ξ̂.

We have completely clarified how a stock price process, designed by using Kou model,
is adjusted when changing the historical universe to the Esscher risk-neutral universe.
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CHAPTER 6

NUMERICAL IMPLEMENTATION AND PARAMETER
ESTIMATION UNDER KOU MODEL

In this chapter, an overview of the different estimation methods, and the calculation
of the parameters of the Kou model based on these estimations are presented. Among
the used estimation methods are Maximum-Likelihood Estimation, Empirical Charac-
teristic Function method, Generalized Method of moments, and Cumulant Matching
method.

6.1 Estimation Method - Theoretical Background

In the following subsections, we will explain some estimation methods that have been
used in this thesis.

6.1.1 Maximum-Likelihood Estimation

Maximum-Likelihood Estimation (MLE) can be expressed as the likelihood function
of the given data. In other words the likelihood of a set of data is the probability of
achieving that particular set of data within the given probability distribution model.
Unknown model parameters are also incorporated in this expression. The values of
these parameters that maximize the sample likelihood are known as the Maximum-
Likelihood Estimates [85]. MLE method can be used in a large variety of statistical,
data mining and optimization situations which makes it a consistent approach to pa-
rameter estimation problems. The choice of starting values affect the estimation, and
the optimality characteristics may not be appropriate for small sample sets [85]. In
finance, alternatives to the MLE approach have been used by practitioners. Despite its
generality and well-known asymptotic properties, such as consistency, normality and
efficiency, the likelihood function may not be tractable in many situations, namely, due
to its boundlessness over the parametric space, instabilities or the existence of many
local maxima [88]. Another obstacle with the MLE approach is that a closed form
density cannot be attained for some families of distribution functions and, therefore,
the MLE method will be computationally expensive when applied.
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Let us denote by S = (S t)t≥0 the stochastic process of index values given at equally-
spaced times: the one period rate of return X∆t = ln S t − ln S t−∆t assumed to be i.i.d.,
where ∆t is the length of any subinterval of equally spaced observations. Let X denote
the observed (random) return vector; then its PDF is:

f (X, θ), (6.1)

with θ = (θ1, θ2, . . . , θm)T being the vector of m unknown parameters that needs to be
calculated.

Likelihood and Log-likelihood Functions

The likelihood function can be calculated by the following product:

L(X|θ) =

n∏
i=1

f (Xi∆, θ).

In writing the right hand side as the product of the density function assumptions have
been made that the random sample variables are i.i.d.. The log likelihood function is
given by:

ln L(X|θ) =

n∑
i=1

ln f (Xi∆, θ). (6.2)

The MLE of θ are obtained by maximizing the likelihood function. Since the maxima
of this function are the same with that of the log-likelihood, and due to the monotonic-
ity in θ of natural logarithm function, we can maximize log-likelihood which is much
simpler to work with than likelihood function.

6.1.2 Generalized Method of Moments

Generalized Method of Moments (GMM) is a generalization of the classical Method of
Moments (MoM) estimation technique. MoM procedure equates population moments
to sample moments in order to estimate population parameters. Since the introduction
of GMM in 1982 by Lars Hansen [48], it has been widely applied to analyze economic
and financial data. Even though MLE is a more efficient estimator than GMM, the
dependence of MLE on probability distribution can be a weakness. Some of these
problems are sensitivity of statistical properties to the distributional assumption and
computational burden [47]. In the GMM framework, the probability density function
is not specified and this makes GMM a more computationally convenient method for
parameter estimation. To employ the GMM to calculate parameters, the estimators
are derived from so called moment conditions. A moment condition is a statement
involving the data and the parameters [84]. For a dataset of Xt, where t = 1, 2, . . . , n,
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drawn from a given probability distribution P and the parameter vector θ0 satisfies the
moment condition

E
[
g(Xt, θ0)

]
= 0

for some known function g. In GMM, the basic idea is to construct the function g to
form a valid moment condition, and the sample data are used to establish a sample
analog of E

[
g(·)

]
using the Law of Large Numbers [47]. A parameter θ̂ is chosen to

solve the next equation

1
2

n∑
t=1

E
[
g(Xt, θ0)

]
= 0.

This allows us to consider the quadratic form

Qt(Θ) = Mt(θ)T WtMt(θ), (6.3)

where by Mt(θ) we indicate

Mt(θ) =
1
2

n∑
t=1

E
[
g(Xt, θ0)

]
,

and Wt is a symmetric, positive semi-definite matrix which may depend on the data but
it is required to converge in probability to a positive definite matrix for the estimator
to be well defined. If Mt(θ) is a q × 1 matrix, then W is a q × q matrix. The estimate
θ̂ is obtained by minimizing Qt(θ). There are two main problems associated with the
GMM, first one is which moments to match, and the second one is the number of mo-
ments included in estimation. Andersen [5] showed that the inclusion of an excessive
number of moments produces bigger biases and larger root mean square errors. Hence,
the employment of extra information may be harmful. We can conveniently derive all
the moments via the characteristic function by taking advantage of the relationship be-
tween moments and cumulants. Denoting φx as a characteristic function of a random
variable X and assuming that E|X|n < ∞, then φx has n continuous partial derivatives
at u = 0, and we obtain for all k = 1, 2, . . . , n, the subsequent representations,

Mk = E [Xk] =
1
ik

∂kφx(0)
∂uk ,

and

Ck =
1
ik

∂k ln φx(0)
∂uk ,

where Mk and Ck are the k-th moment and k-th cumulant, respectively.
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6.1.3 Characteristic Function Estimation Method

Characteristic Function (CF) estimation method is applied in situations when the like-
lihood has more complicated form than the characteristic function because the char-
acteristic function (CF) is always bounded and is available in a simpler form than the
density in some important cases [88]. Empirical Characteristic Function (ECF) pre-
serves all information in the data because there is an injective correspondence between
the CF and cumulative distribution function due to the fact that CF is the Fourier -
Stietjes transform of the CDF and this justifies the use of the ECF estimation method
[119] and, therefore, an inference based on ECF can outperform the one which is based
on generalized method of moments. Moreover, the final estimators will be consistent
and asymptotically normal, under some conditions. In Lévy models, the CF is known
via Lévy Khintchine theorem, given in below:

Theorem 6.1 (Lévy-Khinchin representation [25]). Let (Xt)t≥0 be a Lévy process in R
with characteristic triplet (A, ν, γ). Then, the characteristic function of Xt satisfies the
relation

φXt(u) = etψ(u), u ∈ Rd,

where ψ(u) known as the characteristics exponent and given by

ψ(u) = iγu −
1
2

Au2 +

∫
Rd

(
eiux − 1 − iuxI|x|≤1

)
ν(dx),

where A is the diffusion component, γ ∈ Rd is the drift component and ν is a positive
Radon measure on Rd \ {0} verifying:

∫
|x|<1
|x|2ν(dx) < ∞,

∫
|x|≥1

ν(dx) < ∞,

with ν being a Lévy measure of the jump distribution.

The ECF estimation method will be used to model log-returns as i.i.d. random vari-
ables using Kou’s model. This method builds upon the works of Jiang and Knight
[61] and Rockinger and Semenova [96] to evaluate the parameters of jump diffusion
models. Former article used ECF method to calculate the parameters of affine jump
diffusion models with latent variables while the second one employed the method to
estimate the parameters of affine jump diffusion models with stochastic volatility. ECF
method for i.i.d. random variables proposed by Heathcote [50] is used in this thesis.

Independent and Identical Distribution Case

Suppose that the PDF of X is defined as in Eqn. (6.1), and θ = (θ1, θ2, . . . , θm)T are m
unknown parameters that needs to be measured and denote by X = (X1, X2, . . . , Xn)T

i.i.d. random variables, then the CF is specified by
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φ(u, θ) = E[eiuX],

and the ECF is determined by

φ̂(u) =
1
n

n∑
j=1

eiuX j .

By the Law of Large Numbers, φ(u) is a consistent estimator of φ̂(u). The main idea
used in ECF estimation is to minimize various distance measures between the ECF and
CF. This method finds

θ̂ = arg min
θ

∥∥∥φ̂(u) − φ(u, θ)
∥∥∥ ,

where ‖·‖ is usually a L∞ or Lr weighted norm. In this thesis the L2 norm have been
used. One can minimize

h(θ) =

∫ ∞

−∞

∣∣∣φ̂(u) − φ(u, θ)
∣∣∣2 g(u)du, (6.4)

with g(u) being a continuous weighting function. The choice of the weighting function
g(u) is often a concern. The inverse Fourier transform of the score function is the
optimal weight function obtained by Feuerverger [38] using the Parseval identity, and
it is given by

g(u) =
1

2π

∫ ∞

−∞

exp(−iux)
∂ log fθ(x)

∂θ
,

depends on the density function. The resulting estimator attains maximum likelihood
efficiency. We will define the exponential weighting function in the application part of
this thesis (cf. Section 6.2).

Consistency and Asymptotic Normality

Consistency and asymptotic normality of the ECF estimators presented here follow
from Heathcote [50]. The assumption here is that h(θ) can be differentiated under the
integral sign.

∂h(θ)
∂θ

=

∫ ∞

−∞

d
dθ

∣∣∣φ̂(u) − φ(u, θ)
∣∣∣2 g(u)du. (6.5)

73



The statistics θ̂ minimizes

h(θ) =

∫ ∞

−∞

∣∣∣φ̂(u) − φ(u, θ)
∣∣∣2 g(u)du

=

∫ ∞

−∞

([
Re φ̂(u) − Re φ(u, θ)

]2
+

[
Im φ̂(u) − Im φ(u, θ)

]2
)

g(u)du.
(6.6)

Here, φ̂(u) = Re φ̂(u) + i Im φ̂(u) and φ(u, θ) = Re φ(u, θ) + i Im φ(u, θ). The estimating
equation becomes

∂h(θ)
∂θ

= −2
∫ ∞

−∞

([
Re φ̂(u) − Re φ(u, θ)

] ∂Re φ(u, θ)
∂θi

+
[
Im φ̂(u) − Im φ(u, θ)

] ∂ Im φ(u, θ)
∂θi

)
g(u)du.

(6.7)

Since eiuX j = cos(uX j) + i sin(uX j), this implies that

1
n

n∑
j=1

eiuX j =
1
n

n∑
j=1

(
cos(uX j) + i sin(uX j)

)
.

This means that Re φ̂(u) = 1
n

∑n
j=1 cos(uX j) and Im φ̂(u) = 1

n

∑n
j=1 sin(uX j).

Equation (6.7) can be written as,

∂h(θ)
∂θ

=
−2
n

∫ ∞

−∞

([
cos(uX j) − Re φ(u, θ)

] ∂Re φ(u, θ)
∂θi

+
[
sin(uX j) − Im φ(u, θ)

] ∂ Im φ(u, θ)
∂θi

)
g(u)du.

(6.8)

The estimator φ̂(u) is the root of Eqn. (6.8) for which h′(θ̂) > 0.

The ECF estimator is consistent, i.e.,

θ̂
a.s.
→ θ,

and asymptotically normally distributed,

√
n(θ̂ − θ)

d
→ N(0,B−1(θ)A(θ)B−1(θ)), n→ ∞, (6.9)

where d in Eqn. (6.9) stands for convergence in distribution, A(θ) is the covariance
matrix of the random variables
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K(i)(θ) =

∫ ∞

−∞

([
cos(uX j) − Re φ(u, θ)

] ∂Re φ(u, θ)
∂θi

+
[
sin(uX j) − Im φ(u, θ)

] ∂ Im φ(u, θ)
∂θi

)
g(u)du,

for i = 1, 2, . . . ,m, given by

A(θ) = E

1
n

n∑
j=1

n∑
h=1

K j(θi)Kh(θi)

 .
Since X is a vector of i.i.d. observations, the above expression is given by:

Ai, j(θ) =
1
n

∫ ∞

−∞

∫ ∞

−∞

[
∂Re φ(u, θ)

∂θi

∂Re φ(s, θ)
∂θ j

Cov(cos(u, X), cos(s, X))

+ 2
∂Re φ(u, θ)

∂θi

∂ Im φ(s, θ)
∂θ j

Cov(cos(u, X), sin(s, X))

+
∂ Im φ(u, θ)

∂θi

∂ Im φ(s, θ)
∂θ j

Cov(sin(u, X), sin(s, X))
]

e−u2
e−s2

duds,

where, from elementary trigonometric identities, for real numbers u, s we will get:

Cov(cos(u, X), cos(s, X)) =
1
2

[
Re φ(u − s, θ) + Re φ(u + s, φ) − 2 Re φ(u, θ) Re φ(s, θ)

]
,

Cov(cos(u, X), sin(s, X)) =
1
2

[
Im φ(u + s, θ) − Im φ(u − s, φ) − 2 Re φ(u, θ) Im φ(s, θ)

]
,

Cov(sin(u, X), sin(s, X)) =
1
2

[
Re φ(u − s, θ) − Re φ(u + s, φ) − 2 Im φ(u, θ) Im φ(s, θ)

]
,

where the i-th element in the vector θ = (θ1, θ2, . . . , θm)T is denoted by θi and B(θ) is
the m × m symmetric matrix whose (i, j)-th entry is given by,

Bi, j(θ) =

∫ ∞

−∞

[
∂Re φ(u, θ)

∂θi

∂Re φ(u, θ)
∂θ j

+
∂ Im φ(u, θ)

∂θi

∂ Im φ(u, θ)
∂θ j

]
e−u2

du.

The method applied for approximating the integrals above is adaptive Gauss-Kronrod
quadrature using MATLAB quadgk built-in function which attempts to approximate
the integral of a scalar-valued function from a to b empoying high-order global adap-
tive quadrature. The integral limits a and b can be −∞ or∞.
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6.1.4 Monte-Carlo Simulation

A method for iteratively assessing a deterministic model by using as input the sets of
random numbers is called Monte-Carlo simulation. This method is employed when the
model is complicated, nonlinear, or comprising more than a couple uncertain parame-
ters. Monte-Carlo methods are based on the analogy between probability and volume,
and simulation can normally contain over 10, 000 assessments of the considered model
[45].

Principle of Monte-Carlo Simulation

The basic concept of Monte-Carlo simulation is as follows, assume that we are analyz-
ing a random variable Y on a probability space (Ω, F , P), which also notes the results
of a conducted experiment. The repetitions of the experiment can be modeled by sug-
gesting a sequence of random variables Y1,Y2, . . . ,Yn, each having the same probability
distribution as Y . Assuming that Y1,Y2, . . . ,Yn are independent, the sequence can be
regarded as a model for repeated and independent runs for the experiment [12]. The
Strong Law of Large Numbers shows that with certainty, we can derive the common
expected values of the random variables.

Strong Law of Large Numbers

Theorem 6.2. [35] Let (Yi)i∈N be a sequence of i.i.d. integrable random variables
determined on the same probability space, such that for i ∈ N, let y = E[Yi], then

P
(
lim
n→∞

Y1 + Y2 + . . . + Yn

n
= y

)
= 1.

The Strong Law of Large Numbers says that for almost every sample point ω ∈ Ω,

Y1(ω) + Y2(ω) + . . . + Yn(ω)
n

→ y as n→ ∞.

Therefore, if Y1, . . . ,Yn is a sequence of random variables each of which has the same
probability information as Y and E[Y] < ∞, then

1
n

n∑
i=1

Yi
a.s.
→ E(Y) as n→ ∞.

Monte-Carlo simulation has an advantage of being flexible compared to other numer-
ical methods. Moreover, it serves as the only method of simulation in higher dimen-
sions.
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6.2 Estimation Methods - Numerical Application

6.2.1 Characteristic Function and Moments of Kou Model

Jump size in the Kou model has the double exponential distribution with the density
given by Eqn. (5.10) and the Lévy density being defined [25] as

ν(y) = λ fY(y) = λpη1e−η1y1y≥0 + λqη2eη2y1y<0,

with Lévy triplet given by
(
µ, σ2, λ fY(y)

)
.

We have already introduced the Lévy-Khinchin representation in Theorem 6.1. For the
case where the related process has a limited activity, i.e., in a limited period of time it
has a finite number of jumps, then

ψ(z) = iγz −
1
2

Az2 +

∫ +∞

−∞

(eizx − 1)ν(dx).

Applying Theorem 6.1 to the Kou model we get,

ψ(z) =iµz −
1
2
σ2z2 +

∫ +∞

−∞

(eizy − 1)ν(dy)

=iµz −
1
2
σ2z2 +

∫ +∞

0
(eizy − 1)λpη1e−η1ydy +

∫ 0

−∞

(eizy − 1)λqη2eη2ydy

=iµz −
1
2
σ2z2 + λ

(
pη1

η1 − iz
+

qη2

η2 + iz
− 1

)
.

Thus, the following holds

φXt(z) = exp
(
t
(
iµz −

1
2
σ2z2 + λ

(
pη1

η1 − iz
+

qη2

η2 + iz
− 1

)))
. (6.10)

The log-characteristic function Ψ(z) = ln φ(z) which which Ψ(0) = 0 is called a Cumu-
lant Generating Function. To derive the cumulants we use the characteristic exponent
calculated above, with the n-th cumulants being defined by

Cn =
1
in

∂nΨ(0)
∂zn . (6.11)

Applying the formula given in Eqn. (6.11) to log-characteristic function gives the
following population cumulants for Kou model:
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C1 =∆t
(
µ −

σ2

2
+ λ

(
p
η1
−

1 − p
η2

))
,

C2 =∆tσ2 + 2∆tλ
(

p
η2

1

+
1 − p
η2

2

)
,

C3 =6∆tλ
(

p
η3

1

−
1 − p
η3

2

)
,

C4 =24∆tλ
(

p
η4

1

+
1 − p
η4

2

)
,

C5 =120∆tλ
(

p
η5

1

−
1 − p
η5

2

)
,

C6 =720∆tλ
(

p
η6

1

+
1 − p
η6

2

)
.

6.2.2 Simulation of Kou Model

We simulate at fixed set of dates 0 = t0 < t1 < . . . < tn without explicitly distinguishing
the effects of the jump and diffusion terms, as specified by [45]. Let us set Xt =

ln S t (t = {t0, t1, . . . , tn}), then the algorithm for the steps in a sequential Monte-Carlo
procedure for Kou model will be as follows:

1. Simulate Z ∼ N(0, 1),

2. Simulate N ∼ P(λ∆t), where P stands for the Poisson distribution,

3. If N , 0, then simulate ln Y1, . . . , ln YN and set Jump = ln Y1 + . . . + ln YN else
if N = 0, set Jump = 0. Since an exponential distribution is basically a Gamma
distribution with shape and scale parameters of 1 and β, then ln Y1 + . . . + ln YN
will have a Gamma distribution with shape parameter N and scale parameter β,
and the sign of ln Y j is positive with probability p and negative with probability
1 − p. In case if the Poisson random variable N takes the value n, the number of
ln Y j with positive sign obeys a Binomial distribution with parameters n and p.
Herewith,

(a) Generate B ∼ Binomial(N, p),
(b) Generate G1 ∼ Gamma(B, β) and G2 ∼ Gamma((N−B), β), and set Jump =

G1 −G2,

4. Set
X(ti + 1) =X(ti) + (µ −

1
2
σ2)∆t + σ

√
∆Z + Jump,

X∆t =(µ −
1
2
σ2)∆t + σ

√
∆Z + Jump.

(6.12)
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In 3(b), interpret a Gamma random variable with shape parameter zero as the constant
0 in case B = 0 or B = N. Some sample paths for simulated Kou model are shown
in Fig. 6.1, the parameters chosen in the simulation are µ = 0, σ = 0.2, η1 = 0.2,
η2 = 0.3, p = 0.5, and λ = 4.25.

Figure 6.1: Sample Paths of Kou Model.

6.2.3 Cumulant Matching Method

The method of moment can be applied to evaluate the parameters of the Jump models,
and these parameters are used as the point of origin in the subsequent methods of cal-
culations. The procedure utilized in this thesis is an alternative version of the Method
of Moments and it is named as Cumulant Matching. The cumulant catching method is
based on the relationship between the population cumulant and the distribution param-
eters. Population cumulants are not known, the sample cumulants are used to estimate
the parameters. Parameter estimation by cumulant matching is known to yield con-
sistent estimators, but these estimators are not always efficient [93]. The cumulants
are matched with the sample central moments because of the relationship that exists
between them. The log-characteristic function ψ(u) = ln(φ(u)) is applied in generating
the population cumulants Ck [25], with k > 0. Using this relationship between the cen-
tral moment Mk and Ck, the first six sample cumulants of the models can be computed
from the sample moments in the following way [67]:
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Ĉ1 =M1,

Ĉ2 =M2,

Ĉ3 =M3,

Ĉ4 =M4 − 3M2
2 ,

Ĉ5 =M5 − 10M3M2,

Ĉ6 =M6 − 15M4M2 − 10M2
3 + 30M3

2 ,

where M1 is the mean and M2 being the second central moment is equal to the variance
of the sample.

For Kou model, equating the population cumulants of the models to the sample cumu-
lants gives the parameter estimates. As stated above, the parameters estimated by this
method are consistent, but not always efficient. However, these estimates provide a
good initial parameter for the algorithms of GMM and ECF. Nevertheless, the cumu-
lant estimates may not exist or may have the wrong sign. In this thesis, the method
proposed involves setting the population cumulants Ck = Ĉk as the sample cumulants,
for k = 1, . . . , 6. Solving these sets of equations without constraints might lead to get-
ting values outside of the range that is desired; for instance, one could get a negative
value for σ or a value greater than 1 or less than 0 for p. Therefore, we set

fk := Ck − Ĉk, (6.13)

and the Sum of Squared Error, by S S E := f 2
1 + f 2

2 +. . .+ f 2
6 ; furthermore, the constrained

optimization function fmincon from MATLAB is used to minimize S S E subject to the
constraints that σ > 0, η1 > 1, η2 > 0 and 0 ≤ p ≤ 1. S S E is at its minimum when
Ck ≈ Ĉk. In particular, Kou model is achieved as described in the set of equation given
in below:

f1 =∆t
(
µ −

σ2

2
+ λ

(
p
η1
−

1 − p
η2

))
− M1,

f2 =∆tσ2 + 2∆tλ
(

p
η2

1

+
1 − p
η2

2

)
− M2,

f3 =6∆tλ
(

p
η3

1

−
1 − p
η3

2

)
− M3,

f4 =24∆tλ
(

p
η4

1

+
1 − p
η4

2

)
− (M4 − 3 − M2

2),

f5 =120∆tλ
(

p
η5

1

−
1 − p
η5

2

)
− (M5 − 10M3M2),

f6 =720∆tλ
(

p
η6

1

+
1 − p
η6

2

)
− (M6 − 15M4M2 − 10M2

3 + 30M3
2).
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In Table 6.1, we provide the results of the optimization problem given as sum of
squared errors and solved by fmincon function of MATLAB:

Table 6.1: Parameters calculated using the Methods of Moments.

µ σ η1 η2 p λ

0.0902 0.3848 165.34395 2.1447 0.9101 86.0.2890

6.2.4 Maximum-Likelihood Estimation

The closed form of the transition density of Kou model is not known. Hence, the
density is approximated using inverse Fourier transform of the characteristic function
shown in Eqn. (6.10):

fX∆t(X) =
1

2π

∫ +∞

−∞

(e−iuXφX∆t(u))du =
1
π

∫ +∞

0
(e−iuXφX∆t(u))du. (6.14)

After approximation of the right-hand side of Eqn. (6.14) by using MATLAB fmincon,
and getting estimation of parameters from CMM as initial parameter, we will minimize
the negative value of the log-likelihood specified in Eqn. (6.2), which is equivalent
to maximizing the log-likelihood function. The parameters that maximize the log-
likelihood function will also maximize the likelihood function and will be the MLE
estimates for the proposed Kou model.

The integral given in Eqn. (6.14) is evaluated using Matlab built-in function quadgk. In
this thesis, the MATLAB built-in function mle is employed to evaluate the parameters
of Kou model and mlecov is used to get the covariance matrix, applying the estimation
of parameters, and the square roots of the diagonal entries in the covariance matrix give
the standard error of the estimation. Parameter estimates for the model are shown in the
Table 6.2. The numbers in parenthesis are the standard deviations of the corresponding
parameters.

Table 6.2: Parameters calculated using the Maximum-Likelihood Estimation Method.

µ σ η1 η2 p 1/λ
1e − 06 0.01649 5.00179 0.81393 0.68753 0.01898
(0.00064) (0.00058) (2.3055) (0.41747) (0.14257) (0.00737)
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6.2.5 Method of Characteristic Function Estimation

For Kou model, the characteristic function (CF) φ(θ, u) is defined in Equ. (6.10). The
real part of the characteristic function is:

Re(φ) = exp
[
δt

(
−

1
2
σ2u2 + λ

(
pη2

1

η2
1 + u2

+
qη2

2

η2
2 + u2

− 1
))]

× cos
[
∆t

(
uµ −

1
2

uσ2 + λ

(
pη2

1

η2
1 + u2

+
qη2

2

η2
2 + u2

))]
.

The Imaginary part is represented by:

Im(φ) = exp
[
δt

(
−

1
2
σ2u2 + λ

(
pη2

1

η2
1 + u2

+
qη2

2

η2
2 + u2

− 1
))]

× sin
[
∆t

(
uµ −

1
2

uσ2 + λ

(
pη2

1

η2
1 + u2

+
qη2

2

η2
2 + u2

))]
.

In order to find the parameter vector θ = (µ, σ, η1, η2, p, λ)T , we will minimize the
term in Eqn. (6.4), given by Eqn. (6.15) below, using parameters from MLE as initial
parameters.

∫ K

−K
|ϕθ(z) − ϕ̂(z)|2w(z)dz, (6.15)

where

ϕ̂(z) =
1
t

log
1
N

N∑
k=1

eizXk

is the so-called Empirical Characteristic Exponent. Furthermore,

ϕθ(z) = iµz −
1
2
σ2z2 +

pη1λ

η1 − iz
+

qη2λ

η2 + iz
− λ

is the CF of the Kou model, and w(z) is a weight function. Here, the set (Xk)k=1,2,...,N is
the dataset of log-returns used for calibration, and t is the period of these returns (e.g.,
∼ 1

252 for daily returns using the unit 1 year, etc.).

Ideally, the weight function w(z) should answer to the precision of ϕ̂(z) as an estimate
of ϕθ(z) for every z. Therefore it must be chosen as the reciprocal of the variance of
ϕ̂(z):
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w(z) =
1

E[(ϕ̂(z) − E[ϕ̂(z)])(ϕ̂(z) − E[ϕ̂(z)])

=
t2ϕθ∗(z)ϕθ∗(z)

E[(ϕ̂(z) − ϕθ∗(z))(ϕ̂(z) − ϕθ∗(z))
,

with θ∗ being a true parameter. Nevertheless, this definition is not fruitful to deal with,
as it relies upon the unknown parameter vector θ and therefore cannot be calculated.
Since the return distribution is somewhat close to Gaussian, the CF of the weight w
may be calculated with a Gaussian one,

w(z) ≈
e−σ

2
∗z

2

1 − e−σ2
∗z2
,

where σ2
∗ = Var(Xk), k = 1, 2, . . . ,N, is the log returns data variance. The cut-off

parameter K in Eqn. (6.15) has be chosen to be equal to 60, based on tests with
simulated data [26].

Obtained parameter estimations of the Kou model are displayed in Table 6.3. The
values for the parameters depend on the estimation method used. For Kou Model,
estimation based on ECF saves time, because of Fourier inversion involved in using
the MLE estimation method.

Table 6.3: Parameters calculated using the Empirical Characteristic Function Method.

µ σ η1 η2 p λ

−0.34970 0.15743 60.67018 53.45101 0.65765 86.19877
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Fig. 6.2 illustrates the goodness of our fit achieved. Solid line in the figure indicates the
Kernel density estimator applied directly on the data. Dashed line on the other hand is
the Kernel density estimator derived from the Kou model simulation with parameters
calculated via ECF. We note that indeed Kou model fits the smoothed returns density
very well.

Figure 6.2: Logarithm of the density for S &P 500 Index time series.

For the sake of assessing the goodness of fit of the Kou distributions to the market
index data from another point of view, we use the quantile-quantile (Q-Q)-plot. A Q-Q
plot is a plot of the quantiles of two distributions against each other. The order of the
points in the plot is chosen to analyze the two distributions. If the plotted points lie
roughly on the line y = x, then the compared distribution fits the data well. In order
to show the goodness of fit using Q-Q plot, the parameters obtained by ECF from
logreturns are used to simulate the distributions of the models, and then the quantiles
of the distributions are compared to the quantiles of historical log-return data sets. Q-
Q plots for our models are provided in Fig. 6.3. For the model based on the normal
distribution, the deviation from the straight line is clearly seen (cf. the right panel). The
Q-Q plots of the simulated returns against the historical returns show that Kou models
do significantly better when compared to the models based on normal distribution. The
quantiles of the simulated distributions are much more aligned with the quantiles of the
historical return distribution than it was the case for the plain normal distribution.

One-sample and Two-sample Kolmogorov-Smirnov (KS) statistic goodness-of-fit tests
are also employed to elaborate the null hypothesis that the log-returns have the normal
distribution, and to test whether the empirical distribution Femp and the fitted distribu-
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Figure 6.3: The Q-Q plot of Kou fitted S &P 500 Index Data vs. Historical Data (left
panel) and Q-Q plot of Historical Data vs. Normal Density (right panel).

tion F f it are sampled from the same distribution, respectively. MATLAB’s one-sample
Kolmogorov-Smirnov test, [h, p, ksstat, cv] = kstest(x), is applied to compare the em-
pirical data X to the standard normal distribution. The null hypothesis says that the
distribution function of X is the same as the standard normal distribution. The alter-
native hypothesis is that the distribution function of X significantly different from the
standard normal distribution. In case when the value of h is equal to 1 the null hypoth-
esis can be rejected at the 5% significance level, and if value of h is equal to 0 then
the test will fail to reject the null hypothesis. The null hypothesis is accepted if p is
greater than 5% and rejected otherwise. As shown in Table 6.4, the null hypothesis is
rejected. In order to contrast the distributions of the two data vectors we will employ
the two-sample Kolmogorov-Smirnov test. The test uses the empirical data X1 and the
fitted data X2 to check whether the empirical cumulative distribution function Femp and
the fitted cumulative distribution function F f it are sampled from the same distribution.
The null hypothesis consists of the statement: X1 and X2 are from the same continuous
distribution. The alternative hypothesis is that these samples are from distant continu-
ous distributions. As in the one-sample test the null hypothesis will be rejected the 5%
significance level if h is 1, and the test will fail to reject the null hypothesis if h is 0.
The test statistic is:

KS = max
y∈R

∣∣∣Femp(y) − F f it(y)
∣∣∣ ,

The compared values of the KS test at α = 5% for Kou distributions are reported in
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Tables 6.4, the null hypothesis is accepted if the distance is too large and the p value is
greater than α, and rejected otherwise.

Table 6.4: Kolmogorov-Smirnov Distance and Probability Kou Distribution.

KS Distance Probability
One Sample Test 0.49675 8.19e-236
Two Sample Test 0.02071 0.94414

6.3 Bid-Ask Prices of European Options under Kou Model

The price of the European Call Option is given by the function

CT = max{(S T − K), 0} (6.16)

with S being the index price, K the strike price, and T the maturity of the option.

By using Eqn. (4.4) apply integration by parts formula we can derive the general form
of the bid price of the European call option:

bγ(C) =

∫ ∞

0
x dΨγ(FCT (x))

=

∫ ∞

K
(x − K) dΨγ(FS T (x))

= (x − K)
(
Ψγ(FS T (x)) − 1

)∣∣∣∞
K

+

∫ ∞

K

(
1 − Ψγ(FS T (x))

)
d(x − K)

=

∫ ∞

K

(
1 − Ψγ(FS T (x))

)
dx.

(6.17)

For the ask price of call option, we have to note that for x > 0:

F−C(x) = P(−(S − K) ≤ x) = P((S − K) ≥ −x)
= P(S ≥ K − x) = 1 − P(S ≤ K − x) = 1 − FS (K − x).

(6.18)

Now by using Eqn. (4.3) and applying integration by parts formula, we can derive the
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general form of the ask price of the European call option:

aγ(C) = −

∫ 0

−∞

x dΨγ(F−CT (x))

= −

∫ 0

−∞

x dΨγ(1 − FS T (K − x))

= −

∫ ∞

0
x dΨγ(1 − FS T (K + x)) = −

∫ ∞

K
(x − K) dΨγ(1 − FS T (x))

= −Ψγ(1 − FS T (x))(x − K)
∣∣∣∞
K

+

∫ ∞

K
Ψγ(1 − FS T (x)) d(x − K)

=

∫ ∞

K
Ψγ(1 − FS T (x)) dx.

(6.19)

Analogically, we can derive the general form of the ask price of the European put
option. It is well recognized that the price of the European put option at maturity is
defined by the following formula:

PT = max{(K − S T ), 0}, (6.20)

with S T being the index price at maturity time, K the strike price, and T the maturity
time of the option.

Again by using Eqn. (4.4) and employing the integration by parts formula, we can
derive the general form of the bid price of the European put option:

bγ(P) =

∫ ∞

0
x dΨγ(FPT (x))

=

∫ ∞

K
x dΨγ(1 − FS T (K − x)) = −

∫ K

0
(K − x) dΨγ(1 − FS T (x))

= −(K − x)
(
Ψγ(1 − FS T (x)) − 1

)∣∣∣K
0

+

∫ K

0

(
1 − Ψγ(1 − FS T (x))

)
d(K − x)

=

∫ K

0

(
1 − Ψγ(1 − FS T (x))

)
dx.

(6.21)

For the ask price of put option, we have to note that for x > 0:

F−P(x) = P(−(K − S ) ≤ x) = P((K − S ) ≥ −x)
= P(S ≤ K + x) = FS (K + x).

(6.22)

Now, by using Eqn. (4.3) and applying integration by parts formula, we arrive at the
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general form of the ask price of the European put option:

aγ(P) = −

∫ 0

−∞

x dΨγ(F−PT (x))

= −

∫ 0

−∞

x dΨγ(FS T (K + x))

= −

∫ ∞

0
x dΨγ(FS T (K − x)) =

∫ K

0
(K − x) dΨγ(FS T (x))

= Ψγ(FS T (x))(K − x)
∣∣∣K
0

+

∫ K

0
Ψγ(FS T (x)) d(x − K)

=

∫ K

0
Ψγ(FS T (x)) dx.

(6.23)

The general formulas of the options are provided in Table 6.5.

Table 6.5: Bid and Ask Prices of European Options under the Double-Exponential Kou
Model.

Option Price

bγ (C)
∫ ∞

K

(
1 − Ψγ(FS T (x))

)
dx

aγ (C)
∫ ∞

K
Ψγ(1 − FS T (x)) dx

bγ (P)
∫ K

0

(
1 − Ψγ(1 − FS T (x))

)
dx

aγ (P)
∫ K

0
Ψγ(FS T (x)) dx

We have already calculated straightforwardly the form of the distribution function of
S T , FS T (x), and the distortion function that we are going to use in this calculation
will be minmaxvar function as it is similar to the Wang distortion function that has
been applied in the Brownian case. This distortion function possesses the following
representation:

Ψγ (u) = 1 −
(
1 − u

1
1+γ

)1+γ
, u ∈ [0, 1] ; γ ≥ 0. (6.24)

6.4 Data and Numerical Application of the Estimation Results of Kou Model

In this part we will employ the formulas at Table 6.5 to real data and derive the daily
values of the γ. As in Section 4.4, we use the data of European put and call options
written on S &P 500 index. Again the chose of this index option is made mainly be-
cause it gives a general overview of the North-American option market that is one of
the effective option markets in the world. Additionally, due to the nature of the S &P
500 index we may assume that the company-specific events will have minor effects
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only on the calculation of the values of γ, and all the effects will come from the im-
pacts of main events in the market, such as the financial crisis.

Expressions of bid and ask prices of the European options in Table 6.5 are easy to
estimate numerically, if the distribution function of S T is given. The formulas related
to the put option, given by integrals with bounded limits, can be further simplified by
employing Simpson’s Rule for the numerical approximation of the integral

∫ b

a
f (x)dx ≈

∆x
3

[
f (x0) + 4 f (x1) + 2 f (x2) + ... + 2 f (xn−2) + 4 f (xn−1) + f (xn)

]
,

(6.25)

with ∆x = b−a
n , n being the even number of the subintervals. For the formulas related

with call options, firstly we will have to make a change of variables of x = 1
t , and,

afterward, we will employ the method of Gauss-Legendre approximation.

The values of γ on a dataset are again estimated by minimizing the total-squared error
(TSE), where TSE is the sum of the squared variations between the market prices and
the theoretical prices:

TS Ebid(γ) =

τ∑
i=1

(
bidi − bγ,i

)2
, (6.26)

TS Eask(γ) =

τ∑
i=1

(
aski − aγ,i

)2
, (6.27)

or

TS Ebid,ask(γ) =

τ∑
i=1

((
bidi − bγ,i

)2
+

(
aski − aγ,i

)2
)
, (6.28)

with τ being the number of days for which illiquidity premium will be calculated, for
example for daily γ calculations τ = 1, for weekly γ calculation τ = 5, and so on. Min-
imizing TSE delivers the market level’s γ. We use Eqn. (6.28) and the minimization
problem can be given as in below:

minimize
γ

TS Ebid,ask(γ)

subject to γ ≥ 0.
(6.29)

The parameter γ can be estimated hourly, daily, weekly, monthly or yearly as a con-
stant value. We have estimated daily γ values. One of the interesting characteristics
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of the dataset is that it covers the period of the latest financial crises. It is essential to
know the effects of a crisis on the acceptability level of the derivative that needs to be
priced. These effects can be taken into consideration by adjusting the expected level
of γ.

Figure 6.4 reflects the daily values of the Illiquidty Premium, calculated using the Kou
model.

Figure 6.4: S &P 500 Index and Daily Illiquidity Premium.

Figure 6.5 depicts the differences between the illiquidity premium, calculated by using
the Kou and Black-Scholes Models.
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Figure 6.5: Comparison of Illiquidity Premium Derived from Kou and Black-Scholes
Models.

There are several noticeable differences between the illiquidity premiums calculated
from different models. The first one is the smoothness of the illiqudity premium de-
rived from Kou model. In our opinion this is the case due to the fact that the Black-
Scholes model does not take into account the jumps which have been proved to be the
part of the movements of financial instruments. Kou model, on the contrary, by em-
ploying a double-exponential jump process takes into account the jumps related to the
movements stock market price.

Secondly, the premium calculated from the Kou model starts with high values; then it
declines untill the start of the Mortgage crisis, but the Black-Scholes model does not
have this feature as the illiquidity premium has a nearly constant value initially. This
is due to the fact that on 9th of August 2007, BNP Paribas, one of the Systematically
Important Financial Institutes (SIFI), announced that it ceased activity of number of
its hedge funds specialized over the mortgage debt. This was the moment when it
became clear that investors and bankers were incorrect regarding the prices of more
than trillions of dollars worth of derivative contracts, and they were worth a lot less
than these investors had imagined [33]. This action of BNP Paribas began the seizure
in the banking system and, moreover, in the overall economy. Around then no one
knew how enormous the losses were or how big the exposure of individual banks to
the crisis really was; thus, trust dissipated overnight and banks quit working with each
other, which send market and economy to fluctuate.

Thirdly, after a couple of months of low values, between May and June 2008, which
we think is the result of the calming of the market after the BNP Paribas news, the
illiquidity premium started to rise, which occurred around the beginning of the third
quarter of the year 2008. As we have mentioned, the premiums calculated from the
Black-Scholes model are flat during the first 3 quarters and show an increase only
towards the end of the third quarter of the 2008. The nearly one-quarter of difference
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is related with the bankruptcy of the Lehman Brothers. On 15th of September 2008
the investment bank Lehman Brothers went bankrupt, as the U.S. government did not
bail it out. Before the bankruptcy, on 9th of June 2008, Lehman Brothers reported
a second-quarter loss of $2.8 billion [117]; moreover the Lehman’s quest to find a
capital infusion created many speculations regarding them, and so the uncertainty in
the market increased, hence the illiquidity premium went up.

At the point when Lehman Brothers went bankrupt, the thought that all banks were “too
big to fail” no more remained true, and the outcome was that banks were considered
to be dangerous and risky. Within a month, the danger of a domino effect through the
worldwide monetary system constrained western governments to infuse immeasurable
amounts of capital into their banking system to counteract them from collapsing. The
banks were saved at the last possible second, however it was past the point where it
is possible to keep the worldwide economy from going into freefall. This came after
a period when high oil prices had influenced national banks that the need was to keep
interest rates high as a defense against expansion instead of to cut them in expectation
of the financial crisis spreading to the real economy [33].

From Figure 6.5 we may also see that there are two more peaks for the results of the
Kou model, namely, in early 2009 and in mid 2009. These peaks are also true for the
Black-Scholes model results. The first peak in both models that has occurred in early
2009 is related with the General Motors (GM) and Chrysler solicitation of emergency
loans with a specific end goal to address approaching money deficiencies following
dramatic drops in automobile deals all through 2008. By April 2009, the circumstance
had intensified to such an extent that both GM and Chrysler were confronted with ap-
proaching chapter 11 and liquidation. With the aim to avoid unemployment increase
and a destabilizing harm to the whole assembling segment, the U.S. also, Canadian
governments gave extraordinary financial bailout ($85 billion) help in order for or-
ganizations to restructure [114]. Both organizations independently petitioned for this
protection by June 1, 2009, and this is where uncertainty in the market started again,
which corresponds to the second peak in Figure 6.5.
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CHAPTER 7

ILLIQUIDITY PREMIUM AND CONNECTION WITH
FINANCIAL BUBBLES

In this chapter, we present an early-warning signaling for financial bubbles by benefit-
ing from the theory of Conic Finance, from optimization and suitably chosen numerical
methods. We consider the U.S. markets since bubbles, mostly, occur in this market.

7.1 A Brief History of Financial Bubbles

Here, we present famous financial bubbles which occurred in the history, in order
to perceive destructive results of a possible forthcoming bubble in present times and
future.

Tulip Mania

The first well-known bubble in economic history is the tulip mania that originated in
the Republic of Netherlands in the 1630s. The nation was encountered an extraordi-
nary flourishing in the sixteenth and seventeenth century, during which the tulip was
brought into Europe from the Ottoman Empire. The bloom quickly turned into a de-
sired extravagance thing and a symbol of status as a result of its magnificence and the
abundance of its varieties. Countless speculators began trading tulip and, therefore,
the cost of the tulip bulbs raised to a mind blowing high levels. For instance, the knob
of “Viceroy” costed around 3000 and 4200 florins; at the same time, a talented expert
earned around 300 florins a year [86]. In February 1637, the tulip market suddenly
broke down [113] abruptly, as shown in Figure 7.1.
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Figure 7.1: Tulip Prices between 1636 and 1637 [81].

South-Sea Bubble

The South-Sea bubble which originated in 1720 was an incredible financial bubble,
caused by the stock speculation in the South-Sea Company. Along with the War of
the Spanish Succession, a lot of the British government obligations were issued, and
the administration needed to remove the interest rates of the obligation to alleviate its
financial pressure. In the meantime, the stock of South-Sea organization was excep-
tionally well known in the light of the fact that it was given a trade monopoly with
Spain’s South American provinces as an element of a treaty throughout the War of
Spanish Succession. The South-Sea Company wanted to hedge its risks by purchasing
the government obligations with its overvalued stocks and get a steady income. Under
this condition, the South-Sea scheme was put into action precisely the same way as
our arguments above. This plan was thought to be a win-win trading. As an outcome,
people in general began to purchase the stocks of South-Sea Company and the illicit
activities from the organization (misrepresentation, loaning cash to the purchasers to
empower the purchase of their stocks, etc.) increased the irrational behavior.

As Figure 7.2 shows, the offer cost had ascended from the time when the plan was
suggested: from 128 pounds in January, 1720, to 1,000 pounds toward the beginning
of August, 1720, trailed by a sensational tumble down to around 100 pounds during
several months. Many investors lost a huge amounts of cash, along with Sir Isaac
Newton. When he was given a question regarding the continuance of the rising of
South-Sea stock, he replied: “I can calculate the movement of the stars, but not the
madness of men” [112].
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Figure 7.2: South Sea Company Share Prices [81].

1929 Great Depression

The end of World War I introduced a new era to America. A time of certainty, good
faith and welfare was experienced by the people of the United States in the 1920’s.
After World War I, industrialization and development of new technologies, for exam-
ple, of radio, automobile and air flight, supported the economic and social blast. The
Dow Jones Industrial Average, DJIA, expanded all through the 1920’s and due to the
nation’s solid economic conditions, the greater part of the financial experts believed
that shares were the most certain investment. These brought about numerous investors
to purchase stocks, greedily [22]. After a while, speculators acquired stocks on mar-
gin. In those years, just 10 to 20% of the stock cost were paid by the purchaser and,
thus, 80 to 90% of the expense of the stock cost were being paid by the broker. Given
the chance that the cost of the shares declined lower than the loan amount, the agent
or broker would most likely issue a margin call, i.e., the purchaser had to pay back
his loan as cash instantly. Along these lines, to purchase shares on margin could be
exceptionally unsafe. Nonetheless, in the 1920’s, numerous investors appeared who
anticipated to make a profit on the stock market effectively, called speculators, in order
to buy these stocks on margin. They assumed that this ascending process in prices
would never end; so they could not perceive how genuine the danger was which they
were getting in [95].

95



So, after all of these speculations, the Dow Jones Industrial Average had increased
from 60 to 400 between 1921 and 1929. This produced a considerable number of
new millionaires. Numerous individuals sold their homes and put their savings into
securities at the exchange markets. In any case, few individuals truly knew about the
companies in which they invested [22].

In 1929, from June through August, stocks prices saw some highest peaks. Economist
Irving Fisher expressed that “Stock prices have achieved what resembles an all time
high level”; this was just the comment numerous speculators needed to hear and be-
lieve. On 3rd of September 1929, the closing price of DJIA index was at 381.17 and
after two days, the market started falling. Stock prices vacillated all through September
and into October [95].

Figure 7.3: Dow Jones Industrial Average between 1922 and 1937 (source: Thomson
Reuters Eikon).

As demonstrated in Figure 7.3, a steady bear market, a market in which the prices of
shares were diminishing, had begun by October 1929. At 24th of October 1929 which
is known as Black Thursday, alarm offering began since investors recognized that the
stock market boom was indeed an over-inflated speculative bubble [22]. Despite the
fact that the Federal Reserve Bank raised interest rates a few times to alleviate the
uncertainty in securities’ exchange and the overheated economy in 1929, this could
not prevent from a tragic end. At the point when stock markets crashed at 28th and
29th of October, millionaire margin investors went bankrupt right away. In November
1929, DJIA sharply declined from 400 to 145. Over $5 billion worth of business
sector capitalization had vanished from stocks that were traded at the New York Stock
Exchange in only three days. The market crash of 1929 brought an extraordinary
economic crisis, known as the Great Depression [22].
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The Tech Bubble

By the mid 1990s, PCs were turning out to be progressively common for both business
and individual use. PCs already become to be truly helpful business instruments that
conceded their users a huge support in productivity. Business applications were devel-
oped to help end users with a diversity of assignments from bookkeeping via expense
planning to word processing.

In the course of the 1990s, the U.S. PC industry chose to concentrate fundamentally
upon software as opposed to designing and assembling PC equipment. The purpose
behind this focus was founded in the reason that PC software was an item with high
overall revenues, dissimilar to PC equipment. Software organizations’ stocks were ex-
tremely strong performers all through the 1990s. Enthusiasm over the software busi-
ness prompted the making of numerous small software startups, with a decent part of
these organizations being pushed by undergrads in garages. For all intents and pur-
poses each software startup wanted to become “the Next Microsoft”.

By the mid 1990s, the index of technology stocks, NASDAQ, was ascending at a high
pace, making numerous tech-centered investors to become wealthy. By 1994, the web
first got to be accessible to the general public. Very quickly, companies saw the web as
an important profit opportunity, America Online (AOL), Yahoo!, Amazon.com, EBay
are a few examples of these opportunities. Technology stocks continued on taking
off and made an exceptionally solid incentive for more technology startups to become
traded at an open market. Tech startups kept on paying their workers in stock options,
meant great benefits as long as stocks preserved their strong upward direction.

From 1996 to 2000, the NASDAQ stock index increased from 600 to 5, 000 points.
“Dot-com” startups, went on running by individuals who were scarcely out of school,
were opened up to the world and raised a huge amount of capital. A considerable
number of these companies needed clear marketable strategies and significantly more
had no profit at all.

By early 2000, a sense of reality began to return. Investors soon understood that the
dot-com dream had degenerated into an exemplary speculative bubble. In the period
of several months, the NASDAQ stock index slammed from 5, 000 to 2, 000, as shown
in the Figure 7.4. Several stocks which once had a multi-billion dollar market capital-
ization, were off the map of the capital market as fast as they appeared. Panic selling
resulted as the stock market’s value broke down by trillions of dollars. The NASDAQ
further decreased to 800 by 2002. At the same time, various bookkeeping scandals
became known in which tech startups had falsely inflated their profits. In 2001, the
U.S. economy encountered a post dot-com bubble recession, which forced the Federal
Reserve to decrease interest rates again in order to stop the recession. A huge num-
ber of technology experts lost their occupations and, since they had invested into tech
stocks, they also lost a noteworthy part of their life savings.
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Figure 7.4: NASDAQ Composite Index During the Tech Bubble (source: Thomson
Reuters Eikon).

Subprime Mortgage Bubble

After the tech bubble and the September 11, 2001, the Federal Reserve stimulated a
battling economy by decreasing interest rates to historically low levels. In under two
years, from December 2000 until November 2002, the Fed decreased the rates from
6.5% to 1%. Contrasting this with the inflation rate, it is questionable that not taking
on debt would infer losing cash. Accordingly, a housing bull market was created. Indi-
viduals with poor credit into this rush when mortgage lenders made non-conventional
home loans: interest-only loans, installment options and home loans with augmented
amortization periods.

Loan costs were generally low during the initial part of the decade. This low loan
fee environment spurred increase in home loan financing and also in house prices.
It urged investors to look for instruments that offer a yield enhancement. In this re-
gards, subprime contracts offered higher yields than standard home loans and, thus,
they have been in demand for securitization. The interest for progressively complex
structured contract, for example, collateralized obligation obligations (CDOs) which
embed leverage inside their structure, exposed investors to a more serious risk of de-
fault, however, with generally low financing costs and rising house prices. This risk
was not viewed as excessive.

In the same time frame, financial markets have been abnormally liquid, which has
cultivated higher leverage and more serious risk-taking. Spurred by enhanced risk
management strategies and a movement by worldwide banks towards the supposed
“originate - to - distribute” plan of action, where banks give loans, and then convey a
great part of the credit risk arousing from these loans to end investors. Hence, finan-
cial innovation has prompted a sensational development in the business sector towards
credit risk transfer instruments. In the course of the next four years, the worldwide
outstanding amount of credit default swaps has increased more than ten times [17]. At
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that time, investors had a much more extensive scope of instruments available for them
to price, repackage and circulate through the financial markets.

From the above discussions, it is obvious that if a small problem arose inside the sub-
prime mortgage sector, it would rapidly spread to other sectors, too. In the long run,
loan fees increased and numerous subprime borrowers defaulted when their loans’
payments were updated into much more regularly scheduled installments. This left
mortgage lenders with property that was worth less that the outstanding credit because
of decreasing house prices. Defaults expanded; the issue snowballed, and some lenders
went bankrupt. As subprime borrowers defaulted, investors in the subordinate tranche
of the subprime CDOs took the first hit. This prompted lost confidence even among
investors in the more secure tranches who had not endured any losses. But as they
started to sell their investment, that panic started. The fire sale of assets led to a down-
ward spiral of prices and a freeze in funding for these CDOs. In Figure 7.5 we may see
the real effect of this event on the S &P 500 index.

Figure 7.5: S&P 500 Index During Subprime Mortgage Bubble (source: Thomson
Reuters Eikon).

As we see from all of the popular bubble cases above, irrational expectations con-
stantly generate damaging financial crashes. In fact, the enormous but enigmatically
comprehended reality of bubbles requests a high excellence in academics. Neverthe-
less, academicians and national bankers attempt to discover a strategy to anticipate
the financial bubbles and to build up a model and technique in order to forecast the
bubbles.

In the upcoming section, we will identify how the Illiquidity Premium can be related
to some financial bubble and how we can identify the early warning signs of the crisis
with the help of Illiqudity Premium.
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7.2 Illiquidity Premium vs. Financial Bubbles

Financial bubbles occur when the prices of assets transiently accelerate upward and
raise over much their fundamental value (intrinsic value). The most common calcula-
tion method of the fundamental value of a stock or any security is the discounted cash
flow (DCF) analysis that is defined as follows [3]:

Fundamental Value of a stock = DCF :=
CF1

(1 + d)1 +
CF2

(1 + d)2 + . . .+
CFn

(1 + d)n . (7.1)

This formula benefits from weighted average cost of capital (WACC) as a discount
variable to explain the time value of money. Here, d is a discount rate and CFn (n ∈ Z+)
is a free cash flow along periods n, calculated in the following way [3]:

Free cash flow = Net income + Amortization & Depreciation − Changes in
Working Capital − Capital Expenditures.

In an efficient market, the price of an asset is equal to its fundamental value and,
according to the fundamental value of a security, an investor can decide whether the
security is overvalued or undervalued. If the intrinsic value of a security is higher than
its current market price, it is classified as overvalued, if not, it is called as undervalued.
If the price of an asset is less than its intrinsic value, a wise investor will purchase more
to get profit. This behavior will boost the price of the security until no further profit
can be obtained: in other words, until the price equals to the intrinsic value. If an asset
is traded at a price which is higher than its fundamental value and if this case continue
persistently, its price shows a bubble.

A bubble does not have a strong effect on the general economy if only a few investors
are effected. Bubbles can lead to major troubles when they emerge in a financial instru-
ment that is regularly held. Therefore, devastating bubbles are, for their major parts,
the one in securities’ exchanges [13]. Since stock market bubbles are only realized dur-
ing a continuous bull market circumstance, the confidence of the traders is very high
[16]. They believe that the demand for the stocks will never end and stocks will always
become profitable. This belief about the stock market causes irrational expectations,
and it escalates the stock prices upward and inflates the size of the stock market bub-
ble as well. This trend ends when some investors recognize that the prices have risen
unrealistically, thus they begin selling their stocks before the prices go down. Then,
other traders follow this attitude; hence, panic selling starts. Not always but mostly,
this process is completed by a sharp decline and when this acute drop occurs, it is said
that the bubble bursted.

Most of the firms that are growing more and more rapidly through a stock market bub-
ble go bankrupt when the bubble bursts. This gives rise to an increase of the unemploy-
ment rates [16]. Business and consumer consumptions diminish and this may cause to
commence an economic recession [16]. Because of these negative effects of bursting
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of a bubble, it is important to develop early-warning methods to detect it, timely [71].
However, it is still exceptionally hard to describe, to calculate and to keep them from
further inflating ahead of time. Therefore, one of the various scientific contributions
of this thesis is to introduce an early-warning method for bubbles, for the first time
by using derivative markets as an application field of Conic Finance theory which is a
very new field in the literature. This theory is deeply connected with liquidity effects
and risk behavior of financial markets.

Here, as a new approach, we use implied liquidity from Conic Finance theory. In fi-
nancial markets, liquidity is an important feature. It mirrors the asset’s capability to
be purchased or sold without a huge change in the price and with a least loss of value.
Liquidity is closely associated with bid-ask spread: highly liquid products have a nar-
row spread; illiquid assets have a wide spread. During financial shocks, the liquidity
is said to evaporate and, hence, drive further the bid and ask prices of financial secu-
rities from their fundamental values. Therefore, implied liquidity, or as we called it
in previous chapters, Illiquidity Premium has been thought as a kind of indicator to
detect bubbles. Also, Conic Finance theory is founded on the basis of two concepts:
acceptability and distorted expectations. The bubbles can be interpreted as distorted
expectations of investors; therefore, we benefited from this theory to identify stock
market bubbles.

In Chapters 4 and 6, we have already calculated the daily illiquidity premium for the
derivative market, and we saw that the premium increases during the times of distur-
bance or recession and it decreases during the times of recovery and expansion. In
this regard, as we have mentioned in preceding paragraphs, illiquidity premium can be
regarded as an indicator for the market contraction or recession and, specifically, for
financial bubbles. To do this we are going to utilize the sliding window technique.

It is common practice to use a sliding-window to dynamically model the changing
properties, in our case: the illiquidity premium, of a single or multiple time series. The
simplest method makes use of a window of a fixed length which slides through the data
at fixed intervals, usually one datum at each step. This involves updating some or all of
the model parameters at each time step, using a window in which a fixed number of past
data points are used to estimate the parameters. We now describe some major criteria
which need to be considered when selecting the appropriate window length for a fixed-
length sliding-window. The window should be large enough so as to accurately capture
any variation of the market signals within it. However, a large window also may not
be able to properly reflect rapid changes in the dynamics of the market and may result
in big computational times. Therefore, the window should be small enough so as
to accurately compare disparity of the market signals at corresponding points [87],
without leading to “noisy” results. However, a very small window may not contain
enough data points for an accurate computation of the dependency measure, which is
illiquidity premium. Hence, any sliding window model carries this complexity-benefit
trade-off with respect to the choice of window length.

Sliding window analysis of time series is usually applied to dynamically update the pa-
rameters of a model. It is a common form to compute the parameter estimates through
a window of sample data which is sliding in a fixed length. The estimates of model
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parameters over the sliding windows should be similar if the data are stationary. On
the other hand, if the parameters change frequently or at some observations, the rolling
window analysis is able to detect the unstable changes over the estimations [91].

In this thesis, we concentrate on dynamic variation of the stock markets’ movements
advancing with time t, so we examine the illiquidity premium estimated over a sliding
window. In order to do this, we create a time-evolving sequence of matrices by rolling
the time window of τ prices through the full data set. Saying in another way, τ will
represent the sliding window length.

As having been indicated by us in the above paragraphs, the choice of τ is a com-
promise between an excessively noisy and an over excessively smoothed curve [89].
Also, it must be taken in consideration the type of data that we are dealing with. In
this work, it would be interesting to study sizes τ of the rolling window to be τ = 5 or
τ = 22 trading days, i.e., weekly and monthly data. Generally, the shorter the interval,
the earlier the early-warning for the crises and the better the monitoring of the price
process [70].

Eqns. (6.26), (6.27) or (6.28) are applied to calculate the illiquidity premium over a
subset of option bid and ask price series within the rolling window [t − τ + 1, t]. For
instance, the illiquidity premium in the first sliding windows are computed by the price
series within [1, τ] and [2, τ+ 1] for the following sliding window. By only shifting the
time window by one data point, there is a significant overlap in the data contained in
consecutive windows. This approach enables us to track the evolution of the derivative
market’s illiquidity premium and to identify time steps at which there were significant
changes in it.

As we have noted, a sliding window approach will be used to analyse and calculate
the values for the illiquidity premium with respect to the data set. This will help us
to confine the search for “early warning signs” to a few windows before and after the
events of interest. It is in the nature of this approach that we can apply this technique
to different intervals of fixed size. Each one of these intervals can be characterized
by different results. Another purpose of our analysis on different scales is to test the
dependence of the results on the granularity of the data, since we expected different
behaviors at different scales for financial time series. The other studied criterion is the
window size. We wonder: Do the results, in general, remain the same independently
of the size of the window?

Let us remember that in Eqns. (6.26), (6.27) and (6.28), the parameter τ stood for the
number of days for which we want to calculate the illiquidity premium. As we have
mentioned, for the weekly premiums we have to take τ = 5, as the number of busi-
ness days in a week is five. Under these conditions, minimizing TSE gives the market
level’s weekly γ. Moreover, we generate sliding window values of γ by choosing a
windows of 5 days of length and sliding it along the historical data, beginning at the
first date (January 2, 2008) and continuing until the window reaches the last date of
the data (December 12,2010). The window moves forward in steps of 1 day. At each
position of the window, the value of γ is calculated, by using the total sum-of-squares
method, and assigned it against the window position.
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We did the same calculation steps for the monthly values, too, but in this case we took
22 working days. The results of these calculations can be found in Figure 7.6 for the
Kou Model and in Figure 7.7 for the Black-Scholes Model: for a comparison we also
provide the results of the daily illiquidity premium curve.

Figure 7.6: Illiquidity Premium Derived from the Kou Model.

Figure 7.7: Illiquidity Premium Derived from the Black-Scholes Model.
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By analyzing the above figures we may see that the γ never takes zero values, as this
indicates that in the two-price world the bid and ask prices never equal to each other.
One main difference between the illiquidity premium derived from Kou and Black-
Scholes models are the trend that the different curves follow. In premiums derived
from the Kou model, we may see that the curves do not have a significant change in
local max and min values; they only shift to the right. Meanwhile, in the premiums
derived from the Black-Scholes model we have seen that both the local max and min
and also the curves’ positions change. We believe that this characteristics is due to the
simple fact that the illiquidity premium derived from the Black-Scholes model does
not take into account the jumps, an inseparable part of the stock market process and,
hence when we calculate the sliding windows, some of the jumps get smoothed out
due to the increased size of the data used in each window position.

Figures 7.8 and 7.9 represent the values of the implied illiquidity parameter for the
cases where we use monthly and weekly sliding windows.

Figure 7.8: Comparison of Monthly Illiquidity Premiums Calculated from Kou Model
and Black-Scholes Model.

104



Figure 7.9: Comparison of Weekly Illiquidity Premiums Calculated from Kou Model
and Black-Scholes Model.

As a result, we observed a sharply increasing process in the illiquidity premium ob-
tained from the derivatives market, when the bubble-burst time approaches. Moreover,
the increase in the illiquidity premium over periods, like financial trouble of Chrysler
and General Motors or European debt crisis, etc., is lower than the increase which we
have calculated for the financial crisis and the bubble-burst time, which means that
their effects on the U.S. economy were not as critical as the Subprime Crisis.

As final remarks of this chapter, we may deduct that an increase in the illiquidity
premium goes hand in hand with problems in the financial market and, in particular,
with the financial crises. In our opinion, this is related with the investors’ unwillingness
to execute the order during uncertain times, which can be the times when there is
an insufficient information regarding the current economical conditions or during the
deteriorating state of the systematic institution, as in the cases of Chrysler/General
Motors or European debt crisis.

7.3 Comparison with other Bubble-Detection Techniques

Bubbles are still a controversial subject in classical economics; they imply that there
is sizable and persistent deviation between the fundamental value of an asset and its
market value. But the dominant paradigm in economics, the Efficient Market Hypoth-
esis (EMH) [79], states that all information about the fundamentals of an asset are
reflected in the market price through the action of the rational market participants. As
such, the fundamental and the market value are the same: if there was a difference
between the two, there would be an arbitrage opportunity and that difference would
quickly be traded away. An important challenge to this paradigm is the empirical evi-
dence about bubbles, such as the historical examples cited at the beginning of Section
7.1. Furthermore, while economists who base their assumptions on EMH argue that
even large bubbles, such as the Tulip Mania, can be explained fundamentally, a grow-
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ing number of models have been proposed to explain these phenomena. The theories
on bubbles can be classified into three broad categories: rational bubbles, heteroge-
nous belief bubbles and behavioral bubbles. Before giving an overview of the main
bubble-related literature, we will explain the crucial concept of (fundamental) value in
economics. This overview of the existing literature does not aim to be exhaustive, but
rather to give a basic understanding of some of the main theories.

7.3.1 Value in Economics

The notion of value in economics is based on two fundamental concepts. The first
one can be enunciated as follows: $100 today is worth more than $100 tomorrow.
Generalizing this elementary concept, the present value of $CF in t years with an
annual return of d is:

Present Value =
CF

(1 + d)t , (7.2)

where the exponent t comes from compounding. As we have indicated in Eqn. (7.1)
the value of an asset distributing dividends CFt every year is:

Fundamental Value (Price) =

∞∑
t=0

CFt

(1 + d)t . (7.3)

The second fundamental concept relates to the magnitude of d, also called risk pre-
mium or weighted average cost of capital. Economics postulate a positive relationship
between risk and return. In other words, a higher risk has to be remunerated by a
higher return. The value d has a lower bound called the risk-free rate (r f ) which is the
remuneration that one gets for a riskless investment. It embodies time value and for
the U.S. market is usually proxied by the return on U.S. T-bills. Determining the value
of the additional component of d associated with the riskiness of an asset is the major
problem of economics. Theories such as the Capital Asset Pricing Model [102] or the
3-factor model [36] propose specific relationships between risk and return. Although
this economic definition of value is very narrow, since it ignores other dimensions of
value such as the social or tactical dimensions, it offers a well-defined framework to
postulate and test hypotheses.

7.3.2 Rational Bubbles

Rational bubbles are probably the dominant approach taken by economists to explain
the emergence of bubbles. These models examine the conditions under which bubbles
can form given that all the agents are rational.

The foundation of the rational bubble models is the one proposed by Blanchard and
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Watson [10]. In this model, the value of an asset is decomposing into its fundamental
value and a bubble component:

Pricet = Pricefund
t + Bt = Et

 ∞∑
τ=t+1

CFt

(1 + d)τ−1

 + lim
T→∞

Et

[
BT

(1 + d)T−t

]
, (7.4)

where the fundamental component is the present value of the discounted future cash-
flows (cf. Eqn. (7.3)) and the bubble component is the present value at T → ∞. The
first consequence of this model is that, for the bubble to exist, it has to grow with rate
d. Indeed, if the bubble would grow with growth rate dB < d, the present value of the
bubble component would be 0 and, as such, the price of the asset would be equal to
its fundamental value. In this case, we will have to replace BT with B0(1 + dB)T−t in
Eqn. (7.4). If on the contrary, dB > d, the bubble component would be infinite and,
as a consequence, so would be the price. The second implication of the model is that
the asset has to be lived infinitely: suppose that the asset has a maturity date T . At
that time, the asset would be liquidated for its fundamental value and BT = 0. But
if BT = 0, nobody would be willing to buy the asset for more than its fundamental
value at T − 1, knowing that one time step later, the bubble component will be 0. This
backward induction argument implies that a bubble can only exist for infinitely lived
assets.

One of the many problems of the Blanchard and Watson’s model is that, as the bub-
ble component of the price grows exponentially, the price-to-cash-flow ratio becomes
infinite, i.e., limT→∞(PriceT/CFT ) = ∞, which is unrealistic. To remedy this prob-
lem, Froot and Obstfeld [41] proposed to make the bubble component depend on the
cash flows rather than on time. This choice was motivated by the observation that
investors are bad at predicting future cash flows. By doing so, the authors show that
under the hypothesis of no bubbles, the price-to-cash-flow ratio would be constant,
PriceT/CFT = k, with k being a constant. Applying this criteria on the S &P 500 over
the 1900 − 1988 period, they rejected the hypothesis of no bubbles.

By relaxing the assumption about common knowledge, i.e., the fact that everybody
knows that everybody knows, and limiting short-selling, Allen et al. [2] show that
bubbles can form on finitely lived assets. The intuition behind this result is that the
absence of common knowledge eliminates the backward induction argument, since a
rational agent can hope to resell the asset to another one who might not know. Further-
more, constraining short-selling limits the ability of the agents to learn other agents’
private information from market prices.

Another class of models departs from the assumption that all agents are rational and
achieves bubbles by introducing a second class of traders that are behavioral feed-
back traders. It is the interaction between the rational arbitrageurs and the behavioral
traders that creates the bubbles. Delong et al. [30] show that, in their setup, rational
arbitrageurs buy the asset after a good news in order to bait the behavioral feedback
traders into pushing the price further up, allowing the rational agents to sell their stock
shares profitably at the expense of the behavioral ones.
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In Abreu and Brunnermeier [1], all the rational agents know that there is a bubble, but
it is the difference of opinions about the timing of the start of the bubble or, in other
words, their estimate of the asset’s fundamental value that leads to a synchronization
problem, each agent not being able to burst the bubble on its own. As such, rational
arbitrageurs ride the bubble until they can synchronize, due to a piece of exogenous
information for example. These models offer a powerful argument against the EHM
which claims that even if there are irrational agents in the market, rational arbitrageurs
will prevent any possibility of mispricing.

Lin and Sornette [73] on the other hand argue that it is the difference of opinions about
the timing of the end of the bubble leading to the persistence of bubbles. They support
their claim by applying their model on real data and derive an operational procedure
that allows them to diagnose bubbles and forecast their termination.

7.3.3 Heterogeneous Beliefs Bubbles

Heterogeneous belief bubbles take place in a setup where agents do not agree on the
fundamental value of the asset. This can be due to psychological biases, or due to the
difficulty in making predictions about an uncertain future. Miller [83] shows in a very
simple framework that given a limitation on short selling, the divergence in opinion
between the agents about the asset’s return leads to an equilibrium where the price is
higher than the average estimate. Put simply, the optimists push the price higher than
the average estimate because the pessimists stay out of the market, not being able to
fully reflect their opinion by shorting the asset. Moreover, the author shows that the
price of the asset increases with the diversity of the opinions about its future returns.

In a dynamic framework, Harrison and Kreps [49] demonstrates that not only can a
bubble arise when agents have different opinions about the fundamentals of an asset,
but the price of the asset can even surpass the valuation of the most optimistic agent.
This happens because the optimistic agent chooses to pay a premium to buy the asset
in the hope of reselling it later when he will be pessimistic (and other agents will be
optimistic). We should note that short-selling is also restricted in this model.

Scheinkman and Xiong [100] build their model on Harrison and Kreps [49] model and
extend it into continuous time. They interestingly conclude that bubbles are character-
ized by higher trading volumes, a fact that can be observed empirically.

7.3.4 Behavioral Bubbles

Some financial economists agree that psychological biases must play a fundamental
role in the formation of bubbles, departing completely from the claim that agents are
rational, and frontally attacking the EHM. Shiller [104] cites several behavioral mech-
anisms to be at the origin of bubbles. Among the most relevant ones are positive
feedback loops between price and investor’s enthusiasm, as well as herding, i.e., the
fact that people tend to imitate each other. In the light of the historical bubbles and
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crashes, some of which were described in previous sections, these mechanisms seem
very convincing in generating bubbles. It is also worth mentioning the work of Hens
and Schenk-Hoppé [51] who show in an evolutionary framework, where strategies im-
plemented by heterogenous agents with different opinions and behaviors compete for
market capital, that seemingly irrational strategies can outperform seemingly rational
ones.

Models coming from physics, in particular the Ising model, have been very successful
at describing how imitation between agents can lead to bifurcation in their aggregate
opinions [106]. The Ising model consists of agents influencing each other. In a nut-
shell, if an agent is surrounded by agents willing to sell, it is likely that he or she will
start selling as well. Two opposite forces are at play: the ordering force of social im-
itation and the disordering force of idiosyncratic noise. In an Ising-like framework,
Orléan [90] shows that Bayesian opinion leads to two qualitatively different dynamics.
When the agents’ estimates of the group’s opinion, i.e., the estimation of the fraction
of agents that would buy, are heterogenous, the stationary distribution of opinions is
peaked around 50%: half of the agents would buy and the other half would sell. How-
ever, when the same estimate is homogenous, the interaction among agents leads to a
stationary distribution with two peaks: most agents would buy and a few would sell,
or most agents would sell and a few would buy. These situations can be interpreted as
bubble and crash states, respectively.

Lux [75] sets up a framework with two kinds of agents: speculative traders and funda-
mentalists. Speculative traders form their decisions based on the opinion about other
traders of their kind, as well as on price dynamics (momentum). Fundamentalists buy
or sell based on the difference between the asset’s market and fundamental values. The
interaction between the Ising-like speculative traders and fundamentalists gives rise to
a rich phenomenology of price dynamics, with prices moving around an equilibrium
as well as boom and bust cycles, depending on different parameters. This shows that
simple mechanisms are enough to generate a variety of dynamical regimes.

Contrary to the previous works, where every agent was interacting with every other,
Cont and Bouchaud [24] impose a random graph topology on how the agents interact.
A random graph is a network where an agent has a probability c/N to be connected
to another agent, N being the total number of agents and c the average number of
connections of per agent. In their setup, the authors propose that every agent of a
component, i.e., the set of agents connected through a path, would take the same action
of buying, selling or staying out of the market. The components could be thought of
as organizations such as hedge funds, individual traders, etc.. The main result of the
paper is that for 0 < c < 1, the fat-tails of the distribution of returns can be recovered.
The case c = 1 corresponds to a critical value where a giant component emerges,
encompassing a finite fraction of the system. This can be interpreted as a bubble or a
crash, since the giant component contains agents with the same action.

Although nearly all of the models described so far offer an explanation as to what
mechanisms could be at the origin of the formation of bubbles, they suffer from a
major limitation: either they cannot be calibrated to real data and as such are not
testable, or they lack any predictive power. Hence, among the different types of the
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bubble models that we have described above, the model that can be related to the model
developed in this thesis is Log-Periodic Power Law (LPPL) model. We are going to
give a comparison between the LPPL model and Conic Finance model (or Illiquidity
Premium model) in the subsequent section.

7.4 Log-Periodic Power Law Model vs. Illiquidity Premium

The major model that distinguishes itself by proposing a functional form for the price
dynamics up to the crash is the LPPL model and was first suggested by Sornette et
al. [107]; it was later formalized by Johansen et al. [62]. LPPL model is constructed
on the behavioral and well-documented phenomenon of positive feedback between
demand and price, i.e., the fact that an increase in price leads to an increased demand in
speculative periods, which itself leads to an increase in price. Translating the positive
feedback mechanism into mathematical terms, one can show that the price dynamics
obeys a super-exponential law with a finite-time singularity, beyond which the solution
does not exist. This finite-time singularity can be interpreted as the time of the crash.
In addition, imposing a hierarchical topology on the networks of traders leads to the
super-exponential price dynamics, being characterized by log-periodic oscillations of
decreasing amplitude. Other explanations for the log-periodic oscillations include the
rivalry within nonlinear trend followers and nonlinear value investors [60].

The LPPL model was expanded to interpret the dynamics of financial markets during
bubbles and crashes. Similar to the agent-based model it is assumed that there are
rational traders and noise traders who display herding behavior that can destabilize
the asset price [39]. Employing the LPPL approach, Sornette et al. [107] have ana-
lyzed the stock market bubbles and crashes at the macroeconomic and microeconomic
levels. From a macroeconomic perspective, the model presumes that we are deal-
ing with rational markets which have incomplete information. In this kind of market,
the trade price will reflects both the fundamental value and also the future expecta-
tions associated with the profitability and risk. From a microeconomic perspective,
the Sornette-Johansen model considers that investors, both rational investors and noisy
traders, are connected narrowly through the networks that govern their anticipations
regarding market earnings. Moreover, trade choices rely upon the choices of other
members of the network, but may also consist of external influences.

One of main disadvantage of LPPL model is that it can not differentiate between sev-
eral sources of price growth as described below:

• Possibility that the prices are high and keep increasing as investors expect high
future earnings growth. This growth could be related to a shift in the economic
structure and the way economic gains are divided between companies and em-
ployees, or between retaining earnings and dividend payments.

• Possibility that there could be a bubble in the sense that prices are high today,
simple because investors anticipate future prices to be even higher, without tak-
ing into account the fundamentals.
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• Possibility that bubbles and crashes can be formed by fluctuations in investors’
risk premia. Sudden rises in prices can be result of the investors suddenly be-
coming more risk tolerant and requiring a lower expected return for the asset.
Contrary, as risk premia suddenly change its course, markets can experience
crashes. Prices in accordance with this theory are always rational, and reflect
investors’ stand towards risk. One might see a sharp increase in asset prices, but
one should not clarify this as inconsistent with the fundamentals [92].

Another disadvantage of the LPPL model is that for pre-crash bubbles on stock mar-
kets the LPPL model [62] require the expected prices to be non-decreasing during the
whole bubble period (as recognized by Sornette and Zhou [108]). In the same study, it
was described that the LPPL model fitted to the price process decreases at some point
during the bubble.

Moreover, estimating LPPL models in general never was an easy task, as there are
numerous local minimum of the price function where the minimization method can
get trapped.

However, in a series of papers, Madan, Cherny and their co-authors developed a new
method which succeeded to overcome the shortcomings of the aforementioned tradi-
tional approach.

Conic Finance is a new way to price financial assets; it combines No-Arbitrage the-
ory and Expected Utility theory. The level of acceptability is very important in Conic
Finance, because it helps market-makers to set good bid and ask prices. In general,
this theory is very helpful for investors and portfolio optimizers to distinguish between
different investment opportunities. It disregards the law of one-price by incorporating
the bid and ask prices. Moreover, by being established on the basis of two principles,
namely, Acceptability and Distorted Expectations, Conic Finance theory is deeply con-
nected with liquidity effects and risk behavior within financial markets.

We can empirically characterize bubbles as periods in which illiquidity premium ex-
periences explosive dynamics, and produce statistical tools to discover and time-stamp
the existence of such a behavior.

When applied to historical bid and ask prices of the European options written on the
S &P 500 index, the method classifies five cases where bid and ask prices deviated
from fundamentals and in which there were elevated levels of uncertainty in the market
between the start of the 2008 and end of 2010.

Subsequently, we summarized the advantages of an Illiquidity Premium model:

• An Illiquidity Premium model does not require to differentiate between the dif-
ferent sources, different types of price growth.

• An Illiquidity Premium model determines a real-time tool for identification of
the bubbles. To decide whether an asset is in the state of a bubble or not, only
current and past information is necessary and there is no look-ahead bias.
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• An Illiquidity Premium model has no constrains on prices to be increasing through-
out the bubble.

• Instead of providing an answer to the question of if there is a bubbles in asset
prices, Illiquidity Premium model specifies a live-dating algorithm in order to
identify when bubble end, which can be beneficial to the stock market investors.

• An Illiquidity Premium model quantifies the bubble state of an asset through its
price dynamics, without resorting to the determination of a fundamental value.

• The increase in the illiqudity premium in this model leads to a critical point that
characterizes the beginning of the market crash.

Yet these models have never been compared to each other in a statistical meaning. The
major reason is that the data used in LPPL model are the stock prices, or S &P 500
index prices, but the data that is used in the Illiquidity Premium model are the bid and
ask prices of the European options.

7.5 Investment Management and Illiquidity Premium

This chapter has defined a new mathematical approach for detecting the termination
of bubbles in real-time. The technique does not have the disadvantages of traditional
methods, and demonstrates that bubbles and consequent price increases of the market
are a frequent characteristics of stokc market.

For investors and investment managers, being able to determine periods when asset
prices are in a bubble state in real-time and when this bubble bursts has crucial im-
plications for portfolio optimization and hedging. Moreover, correctly determining
the periods of enormous exuberance and panic is valuable for measuring how differ-
ent strategies function in these episodes with respect to more calm periods of market
behavior.

We choose as default strategy for non-bubble times that the investors are rational in
the current model, i.e., investing a fixed percentage in the risky asset. An investor
will consider that an economy is experiencing economic uncertainty or, particularly, a
financial bubble as soon as the illiquidity premium of the bid and ask prices derived
from the model in consecutive time windows will yield increasing results. If investors
detect this signal, i.e., increased illiquidity premium, they decrease their investment in
the risky asset to 0% of their wealth to limit the loss arising from the bubble bursts. As
soon as the signal is not picked up anymore, i.e., the illiqudity premium is gradually
decreasing or is stable, investors will have to reevaluate their strategy and revert to their
previous behavior of investing a fixed percentage of their wealth in the risky asset.
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CHAPTER 8

CONCLUSION AND FUTURE OUTLOOK

In our thesis, we present a new measure to account for the differences between the bid
and ask prices of the financial instruments and an early-warning signaling for financial
bubbles by benefiting from Conic Finance theory, modern optimization techniques and
well-chosen numerical methods. For the time being, we consider the U.S. derivative
markets since bubbles, mostly, occurred in these markets. Yet, we intend to extend our
work for further countries’ markets and also for other types of assets, such as gold and
oil markets.

Conic Finance is a new way to price financial assets: it combines the No-Arbitrage
theory and Expected Utility theory. The level of acceptability is very important in
Conic Finance, because it helps market-makers to set good bid and ask prices. In
general this theory is very helpful for investors and portfolio optimizers to distinguish
between different investment opportunities. It disregards the law of one-price by in-
corporating the bid and ask prices. Moreover, by being established on the basis of two
principles, namely, Acceptability and Distorted Expectations, Conic Finance theory is
deeply connected with liquidity effects and risk behavior within financial markets.

In markets of the financial sector, liquidity is a core criterion. It mirrors the asset’s
capability to be bought or sold without a significant change in the price and with a
lowest loss in value. Liquidity is closely associated with bid-ask spreads: highly liquid
products have narrow spreads; illiquid assets have a wide spread. During financial
shocks, liquidity is sometimes said to evaporate. Therefore, it is increasing the bid
and ask prices of financial securities. Financial bubbles can be interpreted as distorted
expectations of investors; hence, we can benefit from Conic Finance theory in order
to recognize and identify the stock market bubbles as early as possible. In this thesis,
in line with the numerical calculation of the illiquidity premium, we presented a new
approach to identify stock market bubbles by benefiting from Conic Finance theory,
and illiquidity premium was understood to be a kind of indicator to detect bubbles.

In this thesis we deal with the 2008 Subprime Crisis in equity markets, by analyzing the
derivative markets and the movement of the acceptability index of European options
written on the S &P 500 index during that financial crisis, from 2008 and December
2010.

In order to calculate the illiquidity premium we firstly employ the Black-Scholes Model
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and extend it so that it will include our implied liquidity parameter. By this way we
derive the bid and ask prices of the European put and call options. The second model
that we use is the Kou model. This model have been chosen as it better represents the
movements in the stock markets. In this case, by using the Inversion formula for den-
sities, Residue Theorem from Complex Analysis, Taylor Series Expansion and from
Theory of Inverse Problems we also derive the bid and ask prices of the European call
and put prices that incorporate the illiquidity premium.

Moreover, in order to monitor the market movements closely, weekly and monthly
sliding windows have been used. As a result, we observed a sharply increasing process
in illiquidity premium obtained from the derivatives market, when the bubble-burst
time approaches. Moreover, the increase in the illiquidity premium for other periods,
like financial trouble of Chrysler and General Motors or European debt crisis, etc., is
lower than the increase which we have calculated for the financial crisis and its bubble-
burst time.

Conic Finance theory is a very new field in the finance literature and its applications
have begun very recently. One of the various scientific contributions of this thesis is
the introduction of an early-warning method for bubbles, for the first time by using
derivative markets as an application field of Conic Finance theory which is a very
new field in the literature. In this regards, we can empirically characterize bubbles as
periods in which the illiquidity premium experiences explosive dynamics, and produce
statistical tools to discover and time-stamp the existence of such a behavior.

We are going to extend our work to derivatives contracts which are written on other
countries’ stock markets and also to other types of assets such as gold and petrol mar-
kets. This thesis analyzes the derivatives market’s illiquidity based on daily data; it
would also be very challenging and interesting to take a look at how illiquidity pre-
miums will behave with respect to higher frequency data, for instance, at a trade-
by-trade frequency. What is more, we shall address financial dynamics beyond the
use of geometric Brownian motion or Kou Model and investigate the application of
more advanced processes in the calculation of implied liquidity or illiquidity premium.
Moreover, we are going to apply a more complex approach for the window-size de-
termination by using adaptive windows whose sizes change with time depending on
some properties of the underlying assets or the entire economy. This will offer a pos-
sible compromise between the two conflicting criteria, namely, accurately capturing
the variation of the signals and accurately comparing disparity of the signals at corre-
sponding points, for selecting the windows’ lengths. Eventually, we aim at practical
tools and a Graphical User Interface for the analyst, manager and decision maker, re-
lated with our computational and probabilistic methods on the detection, early warning
of financial bubbles and further problems of liquidity. In addition, we will be working
on a more detailed investment portfolio management strategy that will use illiquidity
premium as a signal to change the combination of different investments.
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[51] T. Hens and K. R. Schenk-Hoppé, Survival of the fittest on wall street, Discus-
sion Paper, 2004.

[52] S. L. Heston, A closed-form solution for options with stochastic volatility with
applications to bond and currency options, Review of financial studies, 6(2), pp.
327–343, 1993.

[53] C. Heyde, S. Kou, and X. Peng, What is a good risk measure: Bridging the gaps
between robustness, subadditivity, prospect theory, and insurance risk measures,
Preprint, 2006.

[54] C. C. Heyde, A risky asset model with strong dependence through fractal activ-
ity time, Journal of Applied Probability, pp. 1234–1239, 1999.

[55] T. Ho and H. R. Stoll, Optimal dealer pricing under transactions and return
uncertainty, Journal of Financial economics, 9(1), pp. 47–73, 1981.

[56] C. Holden, New low-frequency liquidity measures, Journal of Financial Mar-
kets, 12(4), pp. 778–813, 2009.

[57] A. Y. Huang, To what extent does the european debt crisis affect both the euro-
pean and the global economies, University of Kentucky UKnowledge, 2013.

[58] R. D. Huang and H. R. Stoll, The components of the bid-ask spread: A general
approach, Review of Financial Studies, 10(4), pp. 995–1034, 1997.

[59] J. Hull and A. White, The pricing of options on assets with stochastic volatilities,
The journal of finance, 42(2), pp. 281–300, 1987.

[60] K. Ide and D. Sornette, Oscillatory finite-time singularities in finance, popula-
tion and rupture, Physica A: Statistical Mechanics and its Applications, 307(1),
pp. 63–106, 2002.

[61] G. J. Jiang and J. L. Knight, Estimation of continuous-time processes via the
empirical characteristic function, Journal of Business & Economic Statistics,
2012.

[62] A. Johansen, O. Ledoit, and D. Sornette, Crashes as critical points, International
Journal of Theoretical and Applied Finance, 3(02), pp. 219–255, 2000.

[63] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distribu-
tion, volume 2, New York: John Wiley & Sons, 1995.

[64] E. Jouini and H. Kallal, Martingales and arbitrage in securities markets with
transaction costs, Journal of Economic Theory, 66(1), pp. 178–197, 1995.

118



[65] R. Kahn, What is the impact of the eurozone crisis on the u.s. economy?,
http://tinyurl.com/jl92yup, 2013.

[66] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, volume
113, Springer Science & Business Media, 2012.

[67] J. Kenney and E. Keeping, Cumulants and the cumulant-generating function,
Mathematics of Statistics, Princeton, NJ, 1951.

[68] A. N. Kolmogorov, Foundations of the theory of probability, Chelsea Publishing
Co., 1950.

[69] S. G. Kou, A jump-diffusion model for option pricing, Management science,
48(8), pp. 1086–1101, 2002.
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APPENDIX A

Some Distributions under Wang Transform

Assume that the function Ψγ is the Wang transform, then it will have the following
formula:

Ψγ (u) = Φ(Φ−1 (u) + γ), u ∈ [0, 1] , γ ≥ 0, (A.1)

where Φ is the standard normal distribution function.

Wang transform of the normal and lognormal distributions are also normal and lognor-
mal distributions are preserved:

• If F has a normal(µ, σ2) distribution, Ψγ (F) is also a normal distribution with
µ∗ = µ − λσ and σ∗ = σ,

• If F has a lognormal(µ, σ2) distribution such that ln(X) ∼ normal(µ, σ2), Ψγ (F)
is another lognormal distribution with µ∗ = µ − λσ and σ∗ = σ.

Let us prove this statement for the case of the lognormal distribution (the case when F
has a normal distribution can be easily deducted).

If F has a lognormal(µ, σ2) distribution, then it means that F

F(x) =

∫ x

−∞

1

σ
√

2π
e−

(ln x−µ)2

2σ2 dx, (A.2)

or

F(x) = Φ

(
ln x − µ
σ

)
, (A.3)

If we will apply the Wang Transform to the function of F then we will have the fol-
lowing:
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Ψγ (F) = Φ(Φ−1 (F) + γ) = Φ

(
Φ−1

(
Φ

(
ln x − µ
σ

))
+ γ

)
= Φ

(
ln x − µ
σ

+ γ

)
= Φ

(
ln x − (µ − γσ)

σ

)
.

(A.4)

The last expression in Eqn. (A.4) is the standardization of the lognormal distribution
with µ∗ = µ − λσ and σ∗ = σ.
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APPENDIX B

Deriving Bid and Ask Prices for Options under Brownian Motion
Assumptions

B.1 Prices of a European Call Options

The price of the European Call Option CT can be expressed by the following form:

CT = max{(S T − K), 0}, (B.1)

where S T is the index price, K is the strike price, and T is the maturity of the option.

B.1.1 Bid Price

By using Eqn. (4.4) we can derive the bid price of the European call option:

bγ(C) =

∫ ∞

0
x dΨγ(FCT (x))

=

∫ ∞

K
(x − K) dΨγ(FS T (x))

=

∫ ∞

K
x dΨγ(FS T (x)) −

∫ ∞

K
K dΨγ(FS T (x)) =: A − B.

(B.2)

In order to calculate the part A we will make a variable change of ln x = y, hence the
integral limits will change from ln K to∞;
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A =

∫ ∞

K
x dΨγ(FS T (x))

=

∫ ∞

ln K
ey dΦ

y − ln S t −
(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t

σ
√

T − t


=

∫ ∞

ln K
ey 1
√

2π
exp

−
y − ln S t −

(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t

σ
√

T − t


2

/2

d
(

y

σ
√

T − t

)

=
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ln K
ey 1
√

2π

1

σ
√

T − t
exp

−
y − lnS t −

(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t

σ
√

T − t
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2

/2
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=

∫ ∞

ln K

1
√

2π

1

σ
√

T − t
exp

−
(
y − ln S t −

(
r − 1

2σ
2
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(T − t) + γσ
√

T − t
)2

2σ2 (T − t)
+ y
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(B.3)

Let us take a closer look to the expression in the power of the exponents:

A1 = −

(
y − ln S t −

(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t
)2

2σ2 (T − t)
+ y

= −

(
y − ln S t −

(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t
)2
− 2yσ2 (T − t)

2σ2 (T − t)

= −

(
y −

(
ln S t +

(
r − 1

2σ
2
)

(T − t) − γσ
√

T − t
))2
− 2yσ2 (T − t)

2σ2 (T − t)

= −
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2σ
2
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(B.4)
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= −
y2 − 2y
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r + 1
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Putting the last expression back to the integral gives us:

A =

∫ ∞
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(B.6)
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Basically the first integral in Eqn. (B.2) will have the following expression:

A =

∫ ∞

K
x dΨγ(FS T (x))

= elnS t+r(T−t)−γσ
√

T−t · Φ

 ln S t
K + (r + 1

2σ
2)(T − t) − γσ

√
T − t

σ
√

T − t

,
and the second integral can be calculated as:

B =

∫ ∞

K
K dΨγ(FS T (x)) = K
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√
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T − t




= K · Φ
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(
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2σ
2
)

(T − t) − γσ
√

T − t

σ
√
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 .
The following transformation have been used in the derivation of the part B:

1 − FS T (x) = 1 − Φ

 ln x
S t
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σ
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2σ
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σ
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 .
One of the assumptions of the Black-Scholes Model is that the starting premium is
borrowed at the risk-free rate, therefore, we will need to use a suitable discount factor.
Hence, the price needs to be multiplied by discount factor e−r(T−t), which leads to the
following expression for the bid price:

bγ(C) = S te−γσ
√

T−t · Φ

 ln S t
K + (r + 1

2σ
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√
T − t

σ
√

T − t


− e−r(T−t)K · Φ

 ln S t
K +

(
r − 1

2σ
2
)

(T − t) − γσ
√

T − t

σ
√

T − t

 .

B.1.2 Ask Price

By using Eqn. (4.3) we can derive the ask price of the European call option:
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aγ(C) = −

∫ 0

−∞

x dΨγ(F−CT (x))

= −

∫ 0

−∞

x dΨγ(1 − FS T (K − x))
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∫ ∞

0
x dΨγ(1 − FS T (K + x))
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∫ ∞

K
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= −

∫ ∞

K
x dΨγ(1 − FS T (x)) +

∫ ∞

K
K dΨγ(1 − FS T (x)) =: −A + B.

(B.7)

By employing the same steps which we used during the calculation of bid price we can
derive the first integral in Eqn. (4.13) as follows:

A =

∫ ∞

K
x dΨγ(1 − FS T (x))

= eln S t+r(T−t)+γσ
√
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K − (r + 1

2σ
2)(T − t) + γσ
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σ
√

T − t

,
and the second integral can be calculated as:

B =

∫ ∞

K
K dΨγ(1 − FS T (x)) = K ·
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By combining the part of A and B and multiplying the price with the discount factor
of e−r(T−t) will leads to the following expression for the bid price:

aγ(C) = S teγσ
√
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σ
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 .
B.2 Prices of a European Put Options

The price of the European Put Option can be expressed by the following function:
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PT = max{(K − S T ), 0}, (B.8)

where S is the index price, K is the strike price, and T is the maturity of the option.

B.2.1 Bid Price

By using Eqn. (4.4) and also the transformations that we used in the process of calcu-
lation of bid and ask prices of the European call option we can derive the bid price of
the European put option as follows:

bγ(P) =

∫ ∞

0
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=
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0
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(B.9)

Again we split the integral into two parts and afterwards apply the discount factor in
order to get the formula of the bid price of European put option:

bγ(P) = e−r(T−t)KΦ

 ln K
S t
−

(
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σ
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T − t


− S teγσ

√
T−t · Φ

 ln K
S t
− (r + 1

2σ
2)(T − t) − γσ

√
T − t

σ
√

T − t

.
B.2.2 Ask Price

By using Eqn. (4.3) and also the transformations that we used in the process of calcu-
lation of bid and ask prices of the European call option we will derive the ask price of
the European put option as follows:
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aγ(P) = −

∫ 0

−∞
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=

∫ K

0
(K − x) dΨγ(FS T (x))

=

∫ K

0
(K − x) dΦ

 ln x
S t
−

(
r − 1

2σ
2
)

(T − t) + γσ
√

T − t

σ
√

T − t

.

(B.10)

Again we split the integral into two parts and afterwards apply the discount factor in
order to get the formula of the ask price of European put option:

aγ(C) = e−r(T−t)KΦ

 ln K
S t
−

(
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σ
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.
Table B.1: Bid and Ask Prices of European Options.

Option Price d1 d2
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√
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