
ROBUST CONDITIONAL VALUE–AT–RISK UNDER PARALLELPIPE
UNCERTAINTY: AN APPLICATION TO PORTFOLIO OPTIMIZATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY
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Assistant Prof. Dr. Özlem Türker Bayrak
Inter–Curricular Courses Department, Çankaya University

Date:





I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: GÜRAY KARA
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ABSTRACT

ROBUST CONDITIONAL VALUE–AT–RISK UNDER PARALLELPIPE
UNCERTAINTY: AN APPLICATION TO PORTFOLIO OPTIMIZATION

Kara, Güray

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. Gerhard Wilhelm Weber

December 2016, 54 pages

In markets with high uncertainties, the trade–off between maximizing expected return
and minimizing the risk is one of the main challenges in modeling and decision mak-
ing. Since investors mostly shape their invested amounts towards certain assets and
their risk version level according to their returns; scientists and practitioners has done
studies on this subject since the beginning of the stock markets’ establishment. De-
velopments and inventions in the mathematical optimization provide a wide range of
solutions to handle this problem. Mean–Variance Approach by Markowitz is one the
oldest and best known approaches to the risk–return trade–off in the markets. How-
ever, it is a one time–step model and not very much prepared for highly volatile mar-
kets. After Markowitz, different optimization approaches have been invented for port-
folio optimization, especially, in the tradition of Conditional Value–at–Risk. In this
study, we modeled a Robust Optimization problem based on the data and used Robust
Optimization approach to find a robust optimal solution to our portfolio optimization
problem. This approach includes the use of Robust Conditional Value–at–Risk (RC-
VaR) under Parallelpipe Uncertainty sets, an evaluation and a numerical finding of the
robust optimal portfolio allocation. We obtained and then traced back our robust linear
programming model to the Standard Form of a Linear Programming model; then we
solved it by a well–chosen algorithm and software package. The main idea is mod-
eling a robust portfolio optimization problem that includes our development of RC-
VaR based on uncertainty–set–valued data. Our aim is, by considering the return–risk
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trade–off analysis under uncertain data, to obtain more robust, in fact, lower, risk–level
under worst–case scenario by using RCVaR. Uncertainty in parameters, based on un-
certainty in the prices, and a risk–return analysis are crucial parts of this study. Hence,
the trade–off (antagonism) between accuracy and risk (variance), and robustness are
our main issue. A numerical experiment is presented containing real–world data from
stock markets. The thesis ends with a conclusion and an outlook to future studies.

Keywords : Robust Portfolio Optimization, Robust Optimization, Robust Conditional
Value–at–Risk, Parallelpipe Uncertainty, Risk Management

viii



ÖZ

PARALEL ŞERİT BELİRSİZLİĞI ALTINDA SAĞLAM KOŞULLU RİSKE
MARUZ DEĞER: PORTFÖY OPTİMİZASYONU UYGULAMASI

Kara, Güray

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Gerhard Wilhelm Weber

Aralık 2016, 54 sayfa

Yüksek belirsizliğe sahip piyasalarda, beklenen getirinin maksimizasyonu ve riskin
minimizasyonu arasındaki pazarlık, karar vermede ve modellemedeki başlıca
uğraşılardan biridir. Yatırımcılar, çoğunlukla yatırımlarını belirli varlıklar üzerindeki
yatırım miktalarını ve risk seviyelerini, varlıkların getirilerine göre düzenlediklerinden
dolayı; bilim adamları ve uygulayıcılar, bu konu üzerinde borsaların kuruluşundan
itibaren çalışmaktadırlar. Matematiksel Optimizasyon alanında olan gelişmeler, bu
sorunlar ile ilgilenebilmek için çok sayıda çözüm önerisi sunmaktadırlar. Markowitz
tarafından geliştirilen Ortalama–Varyans Yaklaşımı, risk–getiri pazarlığı ile ilgili en
bilinen ve eski çalışmalardan biridir. Ancak bu yaklaşımın, tek dönemlik model ol-
ması ve yüksek volatileteye uygun olmaması durumları söz konusudur. Markowitz’den
sonra, portföy optimizasyonu için farklı optimizasyon yaklaşımları geliştirilmiştir,
özellikle, Koşullu Riske Maruz Değer geleneğine göre gelişmeler yaşanmıştır. Bu
çalışmada, portföy optimizasyon modelimiz için, sağlam optimal çözümü bulmak
adına, veri temelli Sağlam Optimizasyon Modeli geliştirilmiş ve Sağlam Optimizasyon
yaklaşımı kullanılmıştır. Bu yaklaşım Paralel Şerit Belirsizlik kümesi altında, Sağlam
Riske Maruz Değer kullanımını içermekte ve sağlam optimal portföy dağılımının bu-
lunmasını içermektedir. Sağlam doğrusal programlama modelini elde ettikten sonra,
standart formadaki doğrusal programlama haline çevrilmiş; iyi bilinen bir algoritma ve
yazılım paketi ile çözülmüştür. Çalışmamızdaki ana düşüncemiz, belirsizlik kümesine
dayalı veriye göre geliştirilmiş Sağlam Koşullu Riske Maruz Değer’i içeren sağlam
portföy optimizasyonu problemini modellemektir. Amacımız, belirsizlik içeren veriyi
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Sağlam Koşullu Riske Maruz Değer’de, en kötü senaryo durumunda kullanarak, risk–
getiri değişimini göz önüne alıp, daha sağlam, ve aslında daha az risk seviyesi elde
etmektir. Fiyatlardaki belirsizlik ve risk–getiri değişimi analizi temelinde, parametrel-
erdeki belirsizlik, bu çalışmanın önemli parçaları olmaktadır. Bu nedenle, doğruluk
ve risk (varyans) arasındaki değişim (antagonizm) ve sağlamlık öncelikli meselelerim-
izdendir. Gerçek zamanlı piyasa verisinin kullanıldığı sayısal bir deney sunulmuştur.
Tez, sonuç ve gelecekte yapılabilecek çalışmaların söz edilmesi ile son bulmaktadır.

Anahtar Kelimeler : Sağlam Portföy Optimizasyonu, Sağlam Optimizasyon, Sağlam
Koşullu Riske Maruz Değer, Paralel Şerit Belirsizliği, Risk Yönetimi
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CHAPTER 1

INTRODUCTION

Usage of the optimization models in finance has increased after Markowitz’s great
contribution, Mean–Variance Approach, to the portfolio selection theory [30]. Modern
Portfolio Theory showed us the importance of the relation between risk taking and
revenue (return) from the portfolio. While the risk–averse investors are focused on
their risk levels, less risk–averse investors have improved their revenues by taking more
risk. However, both of these investor types are affected by a common phenomenon:
The main uncertainty comes from the random fluctuation of the prices of risky assets.
Since returns from assets are calculated by asset prices, this type of uncertainty shows
itself in returns also. Hence, investors also face uncertainty in their returns.

Uncertainty in the returns is one of the major effects for all kind of investments. In-
vestors mostly shape their invested amounts towards certain assets and their risk ver-
sion level according to the returns. Since the term risk aversion is related with psy-
chology, any kind of random fluctuation on asset returns could affect the investors’
behaviors, and vice versa.

Investors prefer to hedge their investment risks by using financial instruments or mea-
suring their risk by risk management tools; such tools have been developed in recent
decades. All of these approaches are summarized under one big term which is named
as Risk Management. There are numerous risk management techniques in the litera-
ture. For instance, using financial derivatives like options, futures, swaps, etc., are risk
management or risk hedging techniques. In a financial system, there is no possibility
of terminating the risk of an investment, we can only avoid from risk as much as we
can. Moreover, to define the risk level of the investment into specific asset(s), various
risk measurement methodologies have been developed. However, from the very be-
ginning, addressing the term “risk”, the important fundamental is the phenomenon of
“uncertainty”.

Uncertainty about asset returns and the wider uncertainty about markets, especially,
of the underlying prices, are sonorous principals behind the risk management litera-
ture. The investor fears from the uncertainty because it affects the market decisions,
structure, and future. Since the total prediction of the future is almost impossible due
to various randomness in the markets, by the help of uncertainty quantification and
related risk management methodologies, the investors try to avoid the financial risk to
their very best.
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The classical Modern Portfolio Theory (MPT) or MVA “measures” risk by standard
deviation and variance. In MPT, a trade–off is considered between risk and expected
return; the objective function is to be minimized variance (risk) and also wants a cer-
tain level of expected return, i.e., to satisfy a target return constraint. Since MVA has
drawbacks like irrationality of investors, and problem with calculation of expected val-
ues; researchers commenced to investigate new approaches to portfolio optimization.
Because of the weak specifications of the MPT, Black and Litterman developed a new
approach to portfolio optimization. In their approach, the investors can combine their
views about the global look of the equities, bonds and currencies with a risk premium.
Their results are intuitive and allow for diversified portfolios [14]. Recent researches,
like Value–at–Risk (VaR) or Conditional Value–at–Risk (CVaR), prefer to consider
probability distributions. Since all returns from the market are creating a probability
distribution, VaR or CVaR are used to obtain a risk threshold through a pre–specified
confidence level.

In MVA, the covariance matrix of the returns is used to define a risk measure as a
quadratic function, called the Variance, for the portfolio vector, and its minimization is
conducted. Nevertheless, portfolio optimization with CVaR, instead of the aforemen-
tioned Variance, is employed as a risk measure and its minimization is the issue. Also,
these kinds of quantitative risk management techniques have two types of decision–
making contexts: the return–risk trade–off and the utility maximization. These kinds
of portfolio optimization approaches have three forms: (i) Minimizing of the portfolio
risk, (ii) Maximizing of the expected return, or (iii) Minimize (or maximize) a com-
bined goal with a penalty parameter. In some parametric sense, the three forms are
equivalent to each other.

However, those risk measurement techniques still have uncertainty before they become
applied. To deal with this uncertainty, according to the literature, various studies which
consider CVaR, Robust Optimization (RO), and Robust CVaR are conducted. These
researches are shown in different theoretical and applied approaches related to Robust
Optimization. For instance in [28], CVaR is studied under different constraints, while
other works like [15, 23, 24, 31, 39] emphasized risk management under the Worst–
Case scenario CVaR and contributed to the RO and the risk management literature.
During recent years, RO under different uncertainty sets is presented by [13, 26, 27, 48,
51]. As another contribution, Parallelpipe Uncertainty is considered in [33, 34, 35, 36].
In the next section, we will present all these researches in the literature with closer
details.

In our research, we applied a Robust Optimization approach under Parallelpipe Uncer-
tainty (given by particular polytopes, in fact, straight parallelpipes, in our thesis) into
the portfolio optimization with CVaR. The main idea is modeling a robust portfolio
optimization problem that includes our development of RCVaR based on uncertainty-
set–valued data. Then we have a Robust Counterpart of the portfolio optimization
problem with CVaR. Consequently, we evaluate this optimization problem further and
arrive at a Standard Form of an LP problem.

Our aim is, by considering the return–risk trade–off analysis under uncertain data,
to obtain more robust, in fact, lower, risk–level under worst–case scenario by using
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Robust CVaR. Uncertainty in parameters, based on uncertainty in the prices, and a
risk–return analysis are crucial parts of this study. Hence, the trade–off (antagonism)
between accuracy and risk (variance), and robustness are our main issue.

1.1 State of the Research

After other new risk approaches which are classical now, CVaR was introduced into lit-
erature; and portfolio optimization with CVaR spread with various applications. Since
CVaR is proposed as an extended version of VaR, CVaR is closely related to VaR. In
this study, CVaR is used for another percentile risk measure. Krokhmal et al. (2002)
used rate of return, different constraints and objective functions for calculating VaR and
optimizing CVaR simultaneously. According to aims of studying return–optimization
problems with convex constraints, one can use different optimization formulations.
Using multiple CVaR constraints for different time zones and at different confidence
intervals allows for shaping distributions according to the decision maker’s prefer-
ences. The authors developed a new model for the optimization of the portfolio returns
with CVaR constraints, and they used historical prices and conducted a case study on
optimizing the portfolio of S&P100 stocks. As a result, that optimization approach is
productive and efficient [28].

In the study of Quarante and Zaffaroni (2008), the weak points of the classical portfolio
selection problems are discussed and illustrated. Since the optimization process leads
to solutions which are likely to depend heavily on the parameters’ perturbations, it is
important to focus on “the often data” (data with high frequency). The term “param-
eter” might be considered as a random variable or a return in a portfolio optimization
problem. When the data frequency is high, dependence on the parameter perturbations
makes the theoretical and numerical results highly unreliable for practical studies. To
deal with this situation, they used a RO methodology. In their study, to define the
uncertainty set, Quaranta and Zaffaroni proposed “Soyster’s approach”. In their com-
putational part, the methodology of RO is implemented to minimize the CVaR of a
portfolio of shares and for finding a strategy of portfolio selection. In the conclusion,
a robust counterpart of the model which is proposed in that study, decides on qualita-
tively better portfolios that are also more profitable when comparing it with the other
approaches [39].

Cho (2008) proposed a worst–case robust multi–period portfolio optimization model
using CVaR. Using scenarios trees, Cho suggested a min–max algorithm and opti-
mization framework. The provided min–max algorithm is used for the determina-
tion of a worst case for a portfolio. Cho implemented the Worst–Case Robust Mean–
Conditional Value–at–Risk portfolio optimization model, and analyses the properties
of the robust portfolio. The accuracy of the model is measured by historical data.
The performance of the Mean–Conditional Value–at–Risk model against the classi-
cal Mean–Variance Model (Markowitz’s Modern Portfolio Theory) is evaluated. An-
other contribution of the paper is the performance of the Worst–Case robust portfolio
optimization model against the non-robust model. Moreover, the complex solvers’
performance is compared against the one with interior point solvers. In conclusion,

3



back–testing results are that the Robust Mean–Conditional Value–at–Risk optimiza-
tion model is minimizing the CVaR while giving better returns from the assets [15].

Huang et al. (2010) introduced the relative RCVaR where the underlying probability
distribution of portfolio return is only known to belong to a certain set. In that study,
the major criterion is given by worst–case scenarios that may rarely be realized in
practice. Also, Huang et al. tracked most probable scenarios to find best optimistic
portfolio weights. Benefits of this study are that the optimal portfolio results are less
conservative than classical absolute robust approaches, and the fact that the portfolio
selection problem could be formulated by linear programming. As an application,
RCVaR algorithm is applied to a case which includes multiple experts [24].

Hasuike and Katagiri (2013) studied a robust portfolio selection problem with an un-
certainty set of future returns and satisfaction of certain levels with total returns. An el-
lipsoidal set of future returns is proposed as an uncertainty set; then a robustness-based
(worst–case objective function) selection problem is formulated as a bi–objective pro-
gramming problem. The proposed interactive model in that study is a new robustness–
based portfolio selection problem with bi–objective functions that maximizes the total
profit and value of the robustness parameter (the diameter of an ellipsoidal set of fu-
ture, returns representing the uncertainty set here), is the robustness parameter. Since
the model is a bi–objective programming model, Hasuike and Katagiri introduced an
interactive fuzzy satisfying method in this study and transformed the main problems
into deterministic equivalent problems. During their study, fuzzy goals were inserted
for both objective functions and an interactive fuzzy–satisfying method. After sev-
eral steps, the given program is transformed into a deterministic equivalent problem.
To apply the fuzzy–satisfying method, minimax problems should be solved obtaining
M–Pareto optimal solutions. Hence, in that study, the exact solution algorithm is devel-
oped for explicit M–Pareto optimal solutions. The discoveries of Hasuike and Katagiri
are applied on real–time data from the Tokyo stock exchange market and proved that
the proposed model’s solutions are more useful those by earlier approaches [23].

Natarajan et al. (2009) presented a unified theory that relates portfolio risk measures
to robust optimization uncertainty sets. In their study, the most important contribu-
tion to the literature is adding together different risk measures and important results
and adding the authors’ perspective on computational tractability and robust optimiza-
tion definitions of risk measures. They identified how risk measures such as Standard
Deviation, Worst–Case VaR, and CVaR can be traced back to robust optimization un-
certainty sets. They also emphasized that including worst–case outcomes in robust
optimization can be used to generalize the concepts of these risk measures. Further-
more, they showed how an incoherent risk measure can be made becoming a coherent
risk measure based upon information. Duality Theory is used to construct specific
uncertainty sets that lead to coherent risk measures and address the computational
tractability of the resulting problems. Moreover, the validity of the constraints’ prob-
ability bounds is requested for practical purposes. As a computational example, the
authors compared Worst–Case VaR and other risk measures proposed in that article.
According to the authors’ conclusion, practical benefits are provided by using new
coherent risk measures [31].
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Bertsimas and Brown (2009) proposed a new methodology to construct uncertainty
sets in a RO framework for Linear Optimization models with uncertain parameters.
In this approach, they emphasized the decision maker’s risk preferences. Since a co-
herent risk measure addresses uncertainty in its data, the authors employed a convex
uncertainty set in a robust optimization network. This is important for their study, be-
cause, according to their explanation, the uncertainty set becomes a consequence of
the risk measure by the decision maker’s selection. Also, they considered distortion
risk measures. These kind of risk measures satisfy some additional risk hedging and
distribution–invariance properties. Additionally, the authors emphasized that they did
not want to make a contribution to risk theory, but they aim to make a contribution to
the robust the optimization area [9].

Bertsimas and Sim (2002) proposed a new robust linear programming approach. This
approach presents a new parameter to mediate robustness of the presented method
against the conservativeness status. By using a pre–specified number, they protected
their approach against the violation of constraints. This new method provided a fea-
sible solution for every time less than this value. Unlike other studies, their model
is a linear programming model, hence, it is efficient to solve. This approach easily
generalizes to discrete linear optimization problems [13].

Zhu and Fukushima (2009) established the Worst–Case CVaR in a situation with uncer-
tain data. They considered the minimization of the Worst–Case CVaR under mixture
distribution uncertainty, Box Uncertainty and Ellipsoidal Uncertainty. In their study,
Worst–Case CVaR is still a coherent risk measure. However, since they reflected un-
der ellipsoidal, box and mixture distribution uncertainty, the optimization software is
not conducted through an LP model. Moreover, the authors applied this extended risk
measure on portfolio optimization [51].

Tütüncü and Koenig (2004) referred to a robust portfolio allocation problems with dif-
ferent assets, under uncertain data (unreliable portfolio asset returns). They described
uncertainty sets that contain all possible realizations by using moments of returns in-
stead of making a point estimation like in MVA. Their approach is a conservative one
and also covers the Worst–Case situation. Their ultimate goal is finding the set of
values for decision variables which solves the worst–case optimization problem. Ad-
ditionally, they introduced a certain methodology to the determination of uncertainty
intervals for robust optimization data. The application part of their study is performed
on some historical data [48].

Jalilvand–Nejad et al. (2015) investigated different types of uncertainty sets in their
study. They considered a LP model with uncertain data (coefficients), and they aimed
to obtain a correlation matrix between uncertain coefficients. Additionally, they pro-
posed a new polyhedral uncertainty set which its domain–bounded to the values of the
correlation matrix. This matrix is obtained by historical data. Finally, the performance
of this model is assessed by an application, and the investigation contributed to earlier
studies [26].

Kirilyuk (2008) investigated polyhedral coherent risk measures and he applied to risk–
return optimization problems. However, the data of this study reveal partial uncer-
tainty. Since the author used Polyhedral Uncertainty, the portfolio optimization model
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in the study becomes reduced to a LP. In the application part of the work, an optimal
investment allocation problem is discussed with some continuous problems under risk
of catastrophic events [27].

Özmen et al. (2011) used recently developed Conic Multivariate Adaptive Regres-
sion Splines (CMARS) methodology under the existence of data with uncertainty and
represented a new Robust CMARS (RCMARS) algorithm. The authors faced with un-
certainty in input data and also output data. This kind of uncertainty affected input and
output variables of the objective function about the model. Hence, they employed a ro-
bust optimization technique to cope with data uncertainty in inputs and outputs. They
introduced, as they say, polyhedral, in the terminology of this thesis, in fact, paral-
lelpipe and ellipsoidal uncertainties in order to get a robust optimization algorithm for
CMARS. Since there can easily be a lack of computational power, the authors also im-
plemented a so–called Weak Robustification into their approach and applications [35].

Özmen et al. (2012) studied on Generalized Partial Linear Model (GPLM) by using
robust optimization. In their study, GPLM is used according to two different parts
of the data. They included uncertainty to future scenarios into the non–linear part by
RCMARS method and to an added linear/logit regression part, arriving at so-called
CGPLM, but now under uncertainty. After this, the authors made a robustification of
this method by dealing with the data uncertainty. As a result, they obtained a Robust
Generalized Partial Linear Model (RCGPLM) and applied it to data from financial sec-
tor. They also used a weak robustification method due to computational difficulties. In
a subsequent research, they developed Robust Conic GPLM method (RCGPLM) to
forecast the default probabilities in 45 emerging markets. The linear part of the RCG-
PLM method consists of a discrete regression model, while the non–linear part consists
of a continuous regression model. The objective of obtaining RCGPLM is to reduce
the complexity of RCMARS by decreasing the number of variables or their non–linear
involvement through the insertion of a robust linear model. In their study, RCGPLM
is specified by involving, as the authors say: polyhedral, in fact, Parallelpipe Uncer-
tainty. The reason for the usage of polyhedral uncertainty is to decrease the complexity
of the model and to be able to continue the study with Conic Quadratic Programming.
Additionally, the authors applied the model to a number of 1019 historical data from
45 emerging markets by considering the macroeconomic indicators. They also used a
Weak Robustification because of the capacity of the problem. They named it WRCG-
PLM [33, 36].

Özmen and Weber (2014) gained from robust optimization when refining the MARS
algorithm. To obtain this, they introduced data uncertainty in input and output variables
to the MARS algorithm. They presented a new RMARS algorithm as a regression and
classification tool. Since parameter estimation has a big impact on their study, RMARS
models have much less variability on the parameter estimation and the accuracy. Since
the trade-off is between model accuracy and model regularity, even model-robustness,
RMARS models have less variability (i.e., less variance) while still having very good
accuracy measures. As an application, the authors used financial datasets created by
Monte–Carlo simulation [34].
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1.2 Scope of the Thesis

The structure of this thesis is as follows: In the introduction given by Chapter 1, we
provide a literature research about our study and the main contributions of this thesis.
Chapter 2 presents the methodology behind our research; this chapter contains risk
measures, uncertainty sets and robust optimization frameworks. Chapter 3 gives our
contribution and our robust portfolio optimization approach. Chapter 4 presents a nu-
merical example of applying Robust CVaR in a robust form of portfolio optimization.
The last Chapter 5 concludes the thesis and indicates further studies for the future.
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CHAPTER 2

METHODOLOGY OF THE RESEARCH

2.1 Risk Measures in Finance

Portfolio optimization and risk management with an emphasis on the need of uncer-
tainty handling were in finance initiated by Markowitz’s theory in the 20th century,
where he introduced the Modern Portfolio Theory [30]. Since then, variance and stan-
dard deviation are fundamental and traditional risk measurement tools in financial sec-
tor. However, taking into account the so–called fat tails and other recent findings in
finance decreased the accuracy of these risk measures; thus, this provided better risk
management solutions. The MVA is often failing to address the Diversification Ef-
fect of a portfolio in a satisfying way. Hence, new risk measurement techniques have
become and integrated into the financial sector by several studies.

Furthermore, in the literature, risk measures for finance are divided into two main
categories: moment–based and quantile–based risk measures. The moment–based risk
measures can be traced back to classical economic utility theory. On the other hand,
quantile–based risk measures have arisen from recent developments in the theory of
stochastic dominance. In this chapter, we will investigate two quantile–based risk
measures: VaR and CVaR [31].

2.1.1 Value–at–Risk (VaR)

In finance industry, the most popular and well–known downside risk measure method-
ology is Value–at–Risk. It has been first developed by JP Morgan and made available
through the RiskMetricsTM software in October 1994 [40]. This methodology basically
explains the possible worst return loss (or portfolio loss) that can be expected with a
certain confidence level (typically 95% or 99% and represented with 1−α) in a certain
time period. Mathematically, the definition of the VaR (α–VaR) is as follows:

VaR = ζα(ξ) := inf {ζ ∈ R|P (ξ ≤ ζ) ≥ α} , (2.1)

where ξ denotes the random variable (asset return), α is the percentile of the distribu-
tion of the random variable and ζ is the threshold value [49].
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VaR is a simple representation of the risk level (just one number); this is one of the main
reasons of its popularity. It measures the downside risk of a portfolio or an asset. VaR
is useful for the risk measurement process of non–linear instruments such as options,
etc. Moreover, it is applicable under non–normal loss (return) distributions [49].

Furthermore, VaR does not take into account risks exceeding value at risk level. Also,
it is non–sub–additive and non–convex.

From a practical and computational perspective, optimization of VaR is difficult to
handle, unless the distribution of returns is assumed to be normal or log–normal [17].
It is difficult to obtain reliable optimization results if the portfolio consists of both long
and short term. VaR also has several undesirable properties which are explained in the
work [21].

2.1.2 Coherent Risk Measures

To obtain a coherent risk measure, we might desire additional properties such as struc-
tural, monotonicity, translational invariance and sub–additivity. Artzner et al. (1999)
presented an axiomatic definition of risk measures which satisfy these properties [3].

Definition 2.1. (Measure of Risk) Let G represents the set of all risks in Rn. A risk
measure is a mapping from G into R, e.g., ρ : G → R.

Definition 2.2. (Acceptance set associated with a risk measure). An acceptance set
associated with a risk measure ρ is the set denoted by Aρ, defined by

Aρ := {ξ ∈ G|ρ(ξ) ≤ 0} .

If a risk measure ρ satisfies the following properties, it is called a coherent measure of
risk:

1. Monotonicity: If ξ ≥ 0, then ρ ≤ 0. Since there are only positive returns, the risk
should be non–positive.

2. Sub–additivity: ρ(ξ1 + ξ2) ≤ ρ(ξ1) + ρ(ξ2), where ξ1 and ξ2 are vectors of random
variables. The risk of a portfolio of two assets should be less than or equal to the sum
of their individual risks (Markowitz’s MVA).

3. Positive homogeneity: Suppose c is any positive real number. Then, ρ(cξ) = cρ(ξ).
When the portfolio value increases c times (i.e., by a factor of c), then the portfolio risk
should be increased c times either.

4. Translational invariance: Suppose some c ∈ R, then ρ(ξ + c) ≤ ρ(ξ) − c.
In fact c comes from a risk–free asset (e.g., government bond price, etc.) here, which
means that it is not involved into the total portfolio risk (correctly expressed, one can
indeed add c to the vector ξ as another Cartesian coordinate).
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The mathematical determination those inequalities between vectors derived from, if
a ≤ b ⇔ ai ≤ bi (i = 1, 2, . . . , n), where a = (a1, a2, . . . , an)T and
b = (b1, b2, . . . , bn)T . Since VaR is not proper for these conditions, a new risk mea-
surement technique has been founded. This coherent risk measure with its properties
is satisfied and explored as Conditional Value–at–Risk.

2.1.3 Conditional Value–at–Risk (CVaR)

Since VaR has undesirable properties, a new risk measurement technique has been
developed by Rockafellar and Uryasev (2000). CVaR (α–CVaR) is also called Mean
Excess Loss and Expected Shortfall [1]. As a definition, CVaR is a risk measure with
a certain probability level α; the α–VaR of an asset (portfolio) is the lowest amount ζ
such that, with a probability α, the loss will not exceed ζ , whereas the α–CVaR is the
conditional expectation of losses above the amount ζ . In the literature, for the param-
eter α three values are taken mostly: 90%, 95% and 99%. The definitions provided
cause that the value of α–VaR cannot exceed the value of α–CVaR. Figure 2.1 shows
the graphical look of CVaR and VaR properties [43].

As an alternative risk measurement methodology, CVaR has better properties than VaR.
First, CVaR is a coherent risk measure according to [3], as it satisfies conditions of
monotonicity, sub–additivity, positive homogeneity and translational invariance. Also,
CVaR has a convex structure.

Figure 2.1: Representation of VaR and CVaR [49].
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CVaR allows for an simple convenient representation of the risk as one number. It
measures the downside risk just like VaR. Unlike VaR, CVaR can be used to non–
symmetric loss distributions, too. CVaR takes into account the risks which exceed
VaR, i.e., it is more conservative than VaR.

Minimizing the CVaR of an asset (or a portfolio) gives almost the same results as
minimizing the VaR of an asset (portfolio). If the distribution of random variables
(e.g., returns) is normal distributed, minimization of VaR and of CVaR give the same
results. CVaR is applicable even for different financial instruments like linear and non–
linear derivatives (options, futures, etc.), measuring market and credit risks or other
circumstances in any corporation that is exposed to financial risks. CVaR could be used
by hedge funds, banks, energy companies, insurance companies and elsewhere [43].

There are various benefits of CVaR applications. CVaR has steady statistical estima-
tions unlike VaR. CVaR is continuous w.r.t. the confidence level α. CVaR is easy to
control and easy to optimize for non–normal distributions. For optimization of CVaR,
LP approaches are very useful –and helpful, even for big–size problems. Furthermore,
the loss distribution of a portfolio can be shaped via CVaR constraints. Mostly, for con-
tinuous distributions, CVaR synchronizes with the conditional expected loss exceeding
VaR. However, CVaR could be different from conditional expected loss exceeding VaR
if the underlying random variable distribution is non–continuous [49].

2.1.3.1 Mathematical Definitions

Since CVaR is founded on return distributions, first we need to define the return func-
tion and then we could define the rest of the theory. Let ξ be the vector of returns
(regarded as random variables) of assets (in a portfolio) and x be the vector of the as-
sets’ (portfolio) weights; then, x is the decision vector or vector of control variables of
CVaR theory. Finally, x has to be chosen from a certain subset X of Rn, where X is a
convex set of feasible decisions, and based on a given random vector ξ in Rn [43].

Before starting the formal definition of the return functions, the backbone of our study,
the definition of a portfolio should be presented.

Definition 2.3. The term return, portfolio in finance and economics represents a com-
bination of different financial assets such as stocks, derivatives, bonds, and etc. The
mathematical representation of a portfolio is:

x = (x1, x2, . . . , xn)T , (2.2)

n∑
j=1

xj = 1, (2.3)

xj ≥ 0 (j = 1, 2, . . . , n). (2.4)

Here, n is number of financial assets, x is a portfolio, i.e., vector of assets, where
xj ∈ R is the relative amount (corresponding to a percentage) of the financial asset j.
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Another alternative way to define a portfolio of the weights xj is to replace its total
sum to the total sum x which is the capital instead of 1, as follows:

n∑
j=1

xj = x.

This alternative is preferred in multi–period contexts with emphasis on the develop-
ment of the capital (wealth) and on its re–balancing decisions.

In our research, we prefer to specify convex set X as follows.

Definition 2.4. The convex set X of portfolios is defined by:

X =

{
x ∈ Rn

∣∣∣ n∑
i=1

xi = 1; xi ≥ 0 (i = 1, 2, . . . , n)

}
.

Our research comfortably permits the inclusion of further linear constraints in the def-
inition of convex set X .

Definition 2.5. The term return of an asset or a portfolio return represents a benefit
or an interest of an asset of the portfolio holder after a certain period of time. In this
time interval we assume the prices of each asset to be random and address those assets
as risky assets. The return definition has similarities with rate of return definition.
Hence, in this research we refer rate of return as return. The mathematical definition
of an asset (ξj) or portfolio (ξ) return is:

ξ :=

(
pT − p0
p0

)
=

(
pT
p0
− 1

)
, (2.5)

where pT is the terminal price of the asset at the end of a period and p0 is the initial
price of the asset. The constant 1 does not lead to any change in our decision making,
neither in total expected return nor in risk, as one can easily see. This definition can be
applied for any discrete time points like t1 and t2, where 0 ≤ t1 < t2 ≤ T , instead of
0 and T themselves (T is the end or terminal time of a given maturity).

In our context, letX denote the set of all the portfolios with different constraints, espe-
cially Equations (2.3, 2.4). We might add more constraints to this definition; however,
we do not prefer to do that in this work. The vector ξ represents the n returns but
the most important matter is that it also contains uncertainty; in fact, information of ξ
comes as a market variable. Here, with all these different variables, we can develop
a loss (or alternatively, reward) function for this risk measurement technique. Let ξ
represent the vector of asset returns from different market scenarios and x represent
the set of portfolio weights; hence, we have [49]

f(x, ξ)

as the loss (or reward) function. Naturally, if this function’s numerical result (value)
is negative, this means that we have a loss function, and if it is positive, we have a
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reward function associated with our returns (ξ). In this thesis, we address by f the
loss; whenever we refer to the reward or total return, we use the notation −f .

For each x, the function f(x, ξ) is a random variable having a distribution in R obtained
by ξ. The random vector ξ’s density function in R is represented as p(ξ).

The probability of f(x, ξ) not exceeding a threshold ζ is then given by

Ψ(x, ζ) =

∫
f(x,ξ)≤ζ

p(ξ)dξ. (2.6)

According to Equation (2.6), Ψ is the cumulative distribution function for the loss
associated with the decision vector (the portfolio weights) x. The distribution function
at ζ is associated with a fixed Ψ value. This equation completely explains the behavior
of the random variables and their fundamentals in VaR and CVaR definitions. The
function Ψ is continuous from the right, however, it is not continuous from the left
necessarily, because of the possibility of jumps in random variable values. But the
authors of [43] assume that there are no jumps in the underlying process of random
variables. With this assumption, the utilization and determination of p(ξ) becomes
more easy.

The α–VaR and α–CVaR values for the loss random variable associated with the deci-
sion vector x and a certain confidence interval α will be denoted by ζα(x) and φα(x).
So, in the setting of [43],

ζα(x) := min {ζ ∈ R : Ψ(x, ζ) ≥ α} (2.7)

and

φα(x) := (1− α)−1
∫
f(x,ξ)≤ζ

f(x, ξ)p(ξ)dξ. (2.8)

As a consequence, a combination of these two functions ζα(x) and φα(x) in terms of
some function Fα on X × R gives us the main equation of CVaR:

Fα(x, ζ) = ζ + (1− α)−1
∫
ξ∈Rn

[f(x, ξ)− ζ]+ p(ξ)dξ, (2.9)

where we use the positive part as follows:

v+ = max {v, 0} .

Unlike the common acceptance, α–CVaR is not equal to an average of outcomes which
are greater than α–VaR. To show this situation when the distribution is modeled by sce-
narios, CVaR could be determined by averaging a fractional number of scenarios [45].
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Theorem 2.1. (Characterization of VaR and CVaR [49]):

a) α–VaR is a minimizer of the function Fα with respect to ζ:

VaRα (f(x, ξ)) = ζα (x) = arg minζFα(x, ζ);

b) α–CVaR equals the minimal value (w.r.t. ζ) of the function Fα:

CVaRα (f(x, ξ)) = minζFα(x, ζ).

Theorem 2.2. (Minimization of CVaR [49]):

a) α–VaR is a minimizer of Fα with respect to ζ:

minxCVaRα (f(x, ξ)) = minx,ζFα(x, ζ).

According to these two theorems, minimization of Fα(x, ζ) simultaneously calculates
VaR = ζα(x), the optimal portfolio weight (decision) x and the optimal CVaR. More-
over, minimization of CVaR can be traced back to approximately an LP model by dis-
cretizing the integral. The optimization approach of CVaR supported by Theorem 2.2
can be applied on Equation (2.9) of Fα(x, ζ). The minimization of Fα over X × R is
located in the scientific field of Stochastic Programming or Stochastic Optimization.
Since there is an expectation (the integral) in the definition of Fα(x, ζ), stochastic pro-
gramming approaches can give us the results. Eventually, a stochastic programming
approach of α–CVaR minimization is possible after using Theorem 2.2 [43].

When a decision maker chooses a risk measure for assessing the exposed risk, another
important matter is that the risk measurement model should be tractable. The choice
of the risk measure can affect the tractability of the risk counterpart model. A model
which satisfies the certain risk level in its constraints is proper for this aim. VaR has a
non–convex and intractable risk counterpart. However, CVaR is generally more easy
to optimize than VaR. Apart from the convexity, another important issue is whether
a risk measure can be computed with any arbitrary accuracy. This is very important
during an optimization process under high reliability, such as for providing a structural
design [8, 31].
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2.2 Robust Optimization

Data uncertainty is a big challenge for optimization problems. In the real world, the
data are mostly incomplete or reveal a high uncertainty. Data uncertainty can be caused
by several reasons [5]:

1. Measurement or estimation errors.

2. Implementation errors.

When a person performs an optimization on any topic, if some case of the aforemen-
tioned two kinds of errors is given –the reasons which are stated above stated are taken
into account–, he or she cannot ignore that an even small amount of uncertainty can
causes big changes in view of the result. Optimization algorithms are affected by data
uncertainty for more than these two reasons even; those further reasons can increase
the error propagation. That is why the determination and assessment of uncertainty
(or perturbation) of the model’s underlying data is important. Hence, the study field
of optimization has a real need of a powerful methodology which is strong enough
for the detection of optimization cases (optimal solution–finding processes) when data
include uncertainty [5].

Nowadays, the technology of computation tools is sufficiently powerful to obtain mean-
ingful and feasible results from optimization algorithms and software while it allows us
to deal with a wide range of complex optimization problems, especially, given real–life
data under uncertainty. A number of optimization methods have been used to handle
this uncertainty. These methods take into account any uncertainty during the modeling
or the computing or in the result.

Among these methods, the oldest one is Sensitivity Analysis. It deals with data uncer-
tainty after an optimal solution has been obtained by an algorithm. This methods al-
lows the optimizer to change the results between predefined intervals while the current
solution remains optimal, assuming that only one parameter at a time deviates from its
nominal value. Sensitivity analysis is easy to perform upon an LP while it uses dual-
ity theory; however, since it considers the results, it is a “post–mortem” (a–posteriori)
tool [21, 38].

The second method is Stochastic Programming. It incorporates and intervenes directly
into the computation of an optimal solution. According to the generated scenarios, a
traditional stochastic LP model finds an optimal solution that produces the best aver-
age objective function value for all scenarios. Under uncertainty parameters with a
pre–specified probability distribution, the objective function will includes a collection
of random variables (ξ) (e.g., in our work, the components of a random vector). After
this, the LP method chooses the optimal one among the random variable collection
by considering its constraints. Hence, it is a pro–active tool unlike sensitivity anal-
ysis. However, in very big optimization problems with a huge amount of data, it is
ineffective to use it [21, 38].
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The third methodology is named as Dynamical Programming. This technique is use-
ful to deal with stochastic uncertain systems over multiple stages. The optimization
problem is solved recursively by starting, e.g., in cases of backward dynamics, from
the last state, returning to the to first state, and by computing each state individually.
Unfortunately, this optimization approach may suffer from the curse of dimensionality.
This means that the problem size increases exponentially as new scenarios or states are
added to the problem [21].

Robust Optimization has evolved differently from the three other methodologies. It
is more computationally attractive than others. It eventually treats uncertainty as de-
terministic, but does not limit parameter values to be point estimates. In the next
subsection, robust optimization and its application areas are explained in closer detail.

2.2.1 Robust Optimization Framework

Now, we are going to describe some main RO algorithms, their pioneering works,
application areas and a new areas of practical utilization through robustification. To
understand RO, principally, LP –the best known and widely used approach– should
become very well understood.

Scientists focused on RO heavily from both theoretical and practical perspectives, since
it has a modeling framework for immunizing against parametric uncertainties in math-
ematical optimization. This optimization technique is useful when some parameter(s)
include uncertainty (U) and are only known to belong to some uncertainty set. RO
finds an optimal solution that is feasible, e.g., according to confidence intervals in due
to uncertain data [5].

The history of RO started in the early 1970s with Soyster [47]. He was one of the
first researchers to investigate explicit approaches to robustness. In his study, he ex-
plained robust linear optimization in the case where the column vectors of the con-
straint matrix were constrained to belong to Ellipsoidal Uncertainty sets. According
to some pre–specified intervals, the algorithm proposes a feasible solution to all in-
put data points such that each element of the data has its own uncertainty; but, his
solution proposal has been found to be overly conservative by some scientific author-
ities. In the 1990s and 2000s, Ben-Tal and Nemirovski [5, 6, 7] and El Ghaoui et
al. [19, 20] proposed new approaches in RO. They bypassed the over conservatism by
using ellipsoidal uncertainty sets for the data; the way how ellipsoids are chosen and
evaluated is what they achieved. In the late 2000s, Bertsimas, Sim and Pachamanova
presented new studies on RO by considering the Price of Robustness and Polyhedral
Uncertainty. Furthermore, Ben-Tal and Nemirovski discussed Polyhedral Uncertainty
in their research; also, Bertsimas et al. further contributed to this topic by many more
details and insights [9, 10, 11, 12, 13].

RO is a complementary methodology to Stochastic Programming and Sensitivity Anal-
ysis. It seeks a robust feasible solution that will have an “acceptable” performance
under most realizations of the uncertain inputs. Normally, for a random variable or a
vector of random variables (ξ) of uncertain parameters, a special distribution assump-
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tion is not needed. However, if the model includes such kind of information, it might
be beneficial 1. RO is a worst–case oriented methodology [5, 38].

This optimization technique is useful if some parameters come from an estimation pro-
cess, which means that they have a certain “contamination” caused by estimation errors
that we mentioned at the beginning of this chapter. Finally, there are hard constraints
which must be satisfied under any conditions [38].

There are two main stages to constructing a robust model. The first one (i) is the mod-
eling of the robust counterpart of the nominal model. The model has become robust
when the robust counterpart of the model is solved within a pre–specified uncertainty
sets for the uncertain parameters [21]. Second (ii) this robust counterpart is to be solved
for the worst–case realization of the uncertain parameter associated with underlying
data, uncertainty on input (or output) data based and expressed by a pre–determined
uncertainty set. This means, we are minimizing the maximum, namely, the worst (or
a disaster) situation for our objective (or objective function). Another definition for
this situation is: an optimal solution is robust if it minimizes the maximum relative
regret [38].

A visual representation of a robust solution approximation is shown in Figure 2.2. This
figure represents the case of an ellipsoidal set (since our aim is to address a particular
kind of uncertainty set with parallelpipe sets, we will have a different figure).

Figure 2.2: Approximating a robust solution (basic idea from [18]).

Although it has its difficulties, RO gives us another perspective to deal with data un-
certainty. During the application of this technique, two criteria are strongly impor-
tant. The first one is tractability. This criterion is about preserving the computational
tractability of the nominal (actual) problem both theoretically and practically. This

1 However, in the case of ellipsoidal uncertainty, usually a normal distribution is supposed.
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means, the problem should be solvable easily and rapidly from a theoretical perspec-
tive. The second criterion is given by probability bounds. If the uncertain coefficients
within uncertainty sets are under some certain probability distribution, the probability
of a feasible robust solution should be accurate. By this guarantee, the trade–off be-
tween robustness of the solution and optimal (crisp) parameters can be specified [46].

Regarding this, first, we should consider a basic LP model which contains uncertainty:

minimize cTx
subject to

Ax = b
x ∈ X.

(2.10)

Without loss of generality, our assumption is that only the matrix A implies the un-
certainty and in Subsection 2.2.2, we shall consider uncertain matrix A in different
uncertainty sets. Herewith, our robust counterpart of Equation (2.10) takes the follow-
ing form:

minimize cTx
subject to

Ăx = b, ∀Ă ∈ U ,
x ∈ X.

(2.11)

Subsequently, we will reflect on and evaluate this robustified problem of Equation (2.11)
in every step which we are going to show next.

2.2.2 Uncertainty Sets

Uncertainty sets are important elements of RO. When the relevant data reveal uncer-
tainty, the robust counterpart of the mathematical problem is a worst–case formulation
of the mathematical model with uncertainty. In this context, the mathematical pa-
rameters of the model include uncertainty over a bounded interval (scale). Instead of
nominal values, the uncertainty sets can take any values within a bounded and usu-
ally (but not necessarily) symmetric region. This set is known as an uncertainty set U .
The scale and structure of such a set U is defined by the decision modeler There are
different structural shapes which refer to the geometry: Box, Polyhedral, Ellipsoidal,
etc.

Soyster’s approach in RO is one of the earliest approaches in this area of research and
application [47]. Fundamentally, in his study, an uncertain optimization problem for
each coefficient may include disturbances (or perturbations) of any coefficient, e.g.,
within a specified interval. However, this approach is regarded as very conservative by
recent studies, although it gives feasible solutions. As shown in Subsections 2.2.2.1,
if the perturbation level of a box uncertainty set is put to a certain level, the model is
identical to Soyster’s approach and it is over conservative.
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Hence, new uncertainty set structures for RO are defined in different works by [6, 12,
13, 19, 20] to avoid the conservatism. Ben–Tal and Nemirovski (1998), El–Ghaoui and
Lebret (1997), El–Ghaoui, Oustry, and Lebret (1998) proposed Ellipsoidal Uncertainty
for the robust counterpart in their independent studies. Bertsimas and Sim (2003, 2004)
introduced another geometrical structure, named as Polyhedral Uncertainty set, for
their research’s robust counterpart to avoid conservatism. Their polyhedral uncertainty
has an advantage over the ellipsoidal set. Calculation and modeling under Polyhedral
Uncertainty is much easier than under Ellipsoidal Uncertainty.

However, Ellipsoidal Uncertainty sets can give more robust solutions than Polyhedral
Uncertainty sets. The reasons behind of this robustness difference is based on the prob-
abilistic and statistical approach of having confidence regions. When addressing the
case that Parallelpipe Uncertainty sets are products of intervals, one looks at products
of intervals (see Subsection 3.2). The main reasons of the robustness difference be-
tween Ellipsoidal and Parallelpipe Uncertainty (under Parallelpipe Uncertainty) are:
(i) Confidence ellipsoids are bigger than confidence intervals in each dimension. (ii)
Ellipsoids (confidence ellipsoids) take into account the existing covariances between
the coordinates where random variables (e.g., the components of ξ) take their values.
For further information, one might refer to [2, 4].

According to the general optimization theory with uncertain random variables, in the
RO literature, the general form of U , i.e., the common form of an uncertainty set, is as
follows [32]:

U =

{
ξ̆ = ξ +

K∑
i=1

ρiξ
i ∈ RK

∣∣∣ρ ∈ Z} , (2.12)

where ξ is the nominal value of the uncertain vector ξ̆, the vectors ξi are so–called
possible scenarios of it, and ρ = (ρ1, ρ2, . . . , ρK)T is a so–called perturbation vector.
The set Z represents the structure of the uncertainty set. These sets might be box (i.e.,
box–shaped), ellipsoidal or polyhedral [32]. We emphasize that in many applications
the elements of U are represented in the form of matrices. In fact, we, in our work,
shall regard K as the format M ×N .

Detailed information about Box, Polyhedral and Ellipsoidal uncertainty sets are shown
in Subsections 2.2.2.1, 2.2.2.2 and 2.2.2.3.
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2.2.2.1 Box Uncertainty

When an optimization problem has uncertainty in its parameters, it is assumed that
terms ξij are random variables of the problem and also they are independent. Their
absolute values are occurring in intervals [0, Ψi]. Each perturbation has a connection
with any other one, in terms of shape, size and position. This relationship creates a box
which constitutes called Box Uncertainty in the literature. Such a Box Uncertainty set
can be expressed as follows [26, 29]:

UA :=
{

(ăij)i=1,...,M ; j=1,...,N

∣∣∣ăij = aij + ξij∆ij; |ξij| ≤ Ψi,∀i,j
}
. (2.13)

In Equation (2.13), aij , ăij , ∆ij denote the nominal, actual and maximum positive per-
turbation of corresponding uncertain coefficient values, respectively. Furthermore, Ψi
is the perturbation bound for all of the uncertain coefficients related to the ith constraint
of the optimization model. Put in a more clear way, the result of the RO modeling as-
sociated with the uncertainty set as stated in Equation (2.13) is acceptable if and only
if, the absolute value of all perturbations within uncertain coefficients is less than Ψi,
respectively. The robust counterpart formulation of Equation (2.23) for the case of
Equation (2.13) can be represented as follows [26, 29]:

minimize cTx
subject to

N∑
j=1

aijxj + Ψi

N∑
j=1

∆ijyj ≤ bi (i = 1, 2, . . . ,M),

− yj ≤ xj ≤ yj (j = 1, 2, . . . , N),

l ≤ x ≤ u,
y ≥ 0.

(2.14)

In this problem, if Ψi = 1, the model will be identical the one in [47]. Figure 2.3
is associated with several values of Ψi. It shows that if the value of Ψi increases, the
conservation of the model increases also [26].
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Figure 2.3: Box Uncertainty sets [26].

2.2.2.2 Ellipsoidal Uncertainty

After years of Soyster’s approach, Ben–Tal and Nemirovski (1998, 2000) proposed an
alternative and new methodology to avoid from too high conservativeness in RO [6, 7].
They implemented the idea of ellipsoidal uncertainty in this field of research. The
following uncertainty set is an ellipsoidal set [26, 29]:

UA :=

{
(ăij)i=1,...,M ; j=1,...,N

∣∣∣ăij = aij + ξij∆ij,∀i,j;
N∑
j=1

ξ2ij ≤ Ω2
i ,∀i

}
, (2.15)

where UA expresses the ellipsoidal uncertainty set and Ω2
i defines the so–called borders

of the set. Eventually, this set has an ellipsoidal structure. Big values of such param-
eters, like Ω2

i , imply big sizes of the ellipsoid. The robust counterpart of an LP model
can be represented as follows [26, 29]:

minimize cTx
subject to

N∑
j=1

aijxj +
N∑
j=1

∆ijyij + Ωi

√√√√ N∑
j=1

∆2
ijz

2
ij ≤ bi, ∀i,

− yij ≤ xj − zij ≤ yij, ∀i, j,
l ≤ x ≤ u,
y ≥ 0,

(2.16)
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where yij are integer variables and zij are dual variables of the primer model. The
robustness level of this approach can be determined by changing the values of the Ωi

parameter. The disadvantage of this model is that it leads to an optimization problem
with a higher computational and complex structure, compared to Box and Polyhedral
uncertainty. Hence, it gives the most robust solution to us. Figure 2.4 illustrates the
ellipsoidal uncertainty set with two coefficients [26].

Figure 2.4: Ellipsoidal Uncertainty sets [26].

2.2.2.3 Polyhedral Uncertainty

Since the ellipsoidal uncertainty is hard to solve, Bertsimas and Sim (2004) proposed
new kind of uncertainty structure [13]. Polyhedral Uncertainty reduces the level of
complexity; however, the solution becomes less robust, compared with the ellipsoidal
case. Their model’s solution is a robust solution that is protected against all scenar-
ios. To confirm this, they added a boundary Γi for the coefficients which limits the
perturbation number. At most Γi coefficients of the ith constraint are allowed to be
perturbed. The polyhedral uncertainty set for the coefficient matrix A can be formu-
lated as follows [26, 29]:

UA :=

{
(ăij)i=1,...,M ; j=1,...,N

∣∣∣ăij = aij + ξij∆ij,∀i,j;
N∑
j=1

|ξij| ≤ Γi, ∀i

}
. (2.17)

For an LP optimization problem with two coefficients, such uncertainty sets are de-
scribed in Figure 2.5 [26].
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Figure 2.5: Polyhedral Uncertainty sets [26].

The robust counterpart of an LP problem with Polyhedral Uncertainty can be stated as
follows [26, 29]:

minimize cTx
subject to
N∑
j=1

aijxj+

max{Si∪{ti}|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

{∑
j∈Si

∆ijyj + (Γi − bΓic)∆ityt

}
≤ bi, ∀i,

− yj ≤ xj ≤ yj, ∀j,
l ≤ x ≤ u,
y ≥ 0,

(2.18)

where Ji is the set of column indexes j with coefficients aij of the ith constraint that
are subject to uncertainty. Here, Γi is a parameter which takes its value within the
interval [0, |Ji|] for any i. In all cases, the model’s solution is protected so that, up
to bΓic2 many coefficients are allowed to change and one coefficient, ait, changes by
(Γi − bΓic)ait, as explained in [46]. The robust counterpart of an ordinary LP model

2 This lower bracket term represents the greatest integer which does not exceed Γi.

24



like in Equation (2.23) associated with Equation (2.18) is as follows:

mininimize cTx
subject to

N∑
j=1

aijxj + ziΓi +
∑
j∈Ji

pij ≤ bi, ∀i,

zi + pij ≥ ∆ijyj, ∀j ∈ Ji, ∀i
− yj ≤ xj ≤ yj, ∀j,
lj ≤ xj ≤ uj, ∀j,
pij ≥ 0, ∀j ∈ Ji, ∀i,
yj ≥ 0, ∀j,
zi ≥ 0, ∀i.

(2.19)

Furthermore, when our LP model includes an invertible covariance matrix
Σ ∈ R(M ·N)(M ·N) which represents uncertainty and dependences in matrix coeffi-
cients, another approach should be deployed to the model which can be found in [37]
for closer details. According to Pachamanova’s study, the following polyhedral uncer-
tainty set should be defined:

UA :=

{
Ă

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Σ−1/2 (vec(Ă

)
− vec

(
Ǎ
)) ∣∣∣∣∣
∣∣∣∣∣
1

≤ Γ

}
, (2.20)

where all the appearing letters represent matrices. In this equation, Ă ∈ RM ·N and
Ǎ ∈ RM ·N denotes the matrices of actual values and expected values of the uncertain
coefficient matrix A, respectively. In Equation (2.20), the vectors vec(Ă) ∈ R(M ·N)×1

and vec(Ǎ) ∈ R(M ·N)×1 are generated by consequently aligning the rows of the matrix
one and another. These two matrices precisely represent the vectors which are equal
to Ă and Ǎ, respectively, through a standard reshape. Furthermore, ||x||1 represents the
L1 norm of a vector x and equals

∑
j |xj| [26].

The robust counterpart with uncertain covariance matrix of an LP model as Equa-
tion (2.23) is described by [37] and it is equivalently represented as follows:

minimize cTx
subject to

(xTi )vec(Ă) + uiΓ ≤ bi (i = 1, 2, . . . ,M),

uieT ≥ Σ 1/2xi (i = 1, 2, . . . ,M),

uieT ≥ −Σ 1/2xi (i = 1, 2, . . . ,M),

ui ≥ 0 (i = 1, 2, . . . ,M),

(2.21)

where the vector xi ∈ R(M ·N)×1 includes x in the entries (i− 1) ·N + 1 through i ·N
of the vector x, and zero everywhere else (i = 1, 2, . . . ,M). Moreover, e ∈ RM is the
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vector of entries 1 and ui are added variables to the deterministic linear programming
model of polyhedral uncertainty [26].

2.2.3 Robust Optimization under Parallelpipe Uncertainty

Consider a standard optimization problem and then a Linear Optimization or LP model
with uncertain data. We minimize (or maximize) the objective function. Our general
optimization problem is:

minimize f(x, ξ)

subject to
gi(x, ξ) ≤ 0 (i = 1, 2, . . . ,M),

x ∈ X,

(2.22)

where x is the vector of decision variables, ξ is the vector of data (uncertain), f 3 and
gi (i = 1, 2, ...,M) given convex functions and X is a possibly (usually) convex set (it
is well–known in optimization theory [22]).

Regarding to this model, our LP model (which is very practical for us often) and a
Standard Form of an LP model are as follows, respectively:

minimize cTx
subject to

Ax ≥ b,
l ≤ x ≤ u;

(2.23)

minimize cTx
subject to

Ax = b,
x ∈ X.

(2.24)

In our study, we assume that data uncertainty affects only the matrix A in the above
Equations (2.23) and (2.24). The parameters l and u comprise lower and upper bounds
of decision variables. We note that in our research, we allow components of the vector
u also to attain ∞ as a value, in order to serve as “upper bounds” of the real-valued
variables xj in the model; this, in fact, allows for unboundedness from above in those
random and decision variables. Herewith and by other standard arguments that we
shall apply, we could move from one representation or form of an LP model to another.
Now, we imply uncertainty into our matrix A. We assume without loss of generality
that in our optimization model, the vectors c, b, l and u are not subject to uncertainty.
Our objective function is to be minimized: hence, we could use a height variables, z
(by an epigraph argument) and add z − cTx ≥ 0 as an inequality constraint; and we
include this constraint into the vector–matrix notation of the constraints Ax ≥ b. Soon
we will employ such kinds of standard arguments comfortably.

Hence, there is a model uncertainty in our study. Let us consider a row i in matrix A,
and referring to the entries, we denote by each entry of A, denoted by aij , j ∈ Ji, the
set of columns met by row i which are subject to uncertainty. Actually, every entry aij

3 There might be a possible confusion of the reader since this f is just a general objective function. However,
in further sections, the function f is a loss function within CVaR and RCVaR.
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(nominal value of the parameter coefficient) in row i, j ∈ Ji, is modeled as a symmetric
and bounded random variable ăij , j ∈ Ji [7].

In this investigation, we want to solve an LP model by turning it to a robust LP model.
Since Ellipsoidal Uncertainty turns our optimization problem into a Conic Quadratic
Programming model, it is more robust but less tractable. Therefore, we prefer to imply
Parallelpipe Uncertainty (as we name it now) in the sense of Özmen, et al. [34, 35].
This new type of uncertainty set has similarities with Box Uncertainty in Subsec-
tion 2.2.2.1, but generalizes the Box type by fully variable, indeed independent side
lengths of our Parallelpipes. In fact, our uncertainty set U will have different structural
properties than others.

In Parallelpipe Uncertainty, the definition and construction of an uncertainty set is
different than from a one with Polyhedral Uncertainty. Despite of similarities with
the other uncertainty sets, differences of the parallelpipes are revealed regarding their
structural occurrence. Parallelpipe uncertainty sets are products of the entry–wise in-
tervals in matrix Ă; we shall look at such intervals in Equation (2.26) soon. The benefit
of parallelpipes to our research is that instead of a single price we consider several and
flexibly varying prices of an asset. The specific definition as a product of intervals is
explained in further sections with all the necessary details.

So, any of our regarded Parallelpipe Uncertainty sets U will be built up by entries in
our uncertain matrix A where the corresponding uncertainty may, to some degree (or
budget), differ from one entry to another. According to the models which are described
above, the following criteria are important in RO modeling [37]:

Formulation flexibility: How to allow for expressing dependencies among the uncertain
coefficients along a set of constraints;

Conservativeness of optimal solution: Associated with probabilistic guarantees, for-
mulating the RO problem by a pre–decided level of conservativeness;

Tractability: Preserving the RO model’s computational tractability, e.g., computation-
ally being easy to solve.

Consequently, according to our Parallelpipe Uncertainty sets, the new closed–form
general Robust LP model with uncertainty implied is

minimize cTx
subject to

Ăx = b, ∀Ă ∈ U ,
x ∈ X.

(2.25)

In the literature, Polyhedral Uncertainty based upon uncertain matrix entries intervals.
The major property of intervals involved towards our set U in the sense of Polyhedral
Uncertainty is that uncertain coefficients ăij (j ∈ Ji), lie in intervals [9]
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[âij −∆ij, âij + ∆ij] , (2.26)

where âij is the arithmetic mean of the ăj and ∆ij is the perturbation term for represent-
ing the margin of uncertainty in the corresponding random variable (i = 1, . . . ,M ; j =
1, 2, . . . , N). Change in the value of perturbation term ∆ij could be determined by con-
sidering the standard deviations (σij) of random variables (components ξj of ξ) or in
general, the uncertain matrix entries (ăij).

From Section 2.2.2.3 we know that the value of perturbation is restricted by a value
Γi at each level which; this value is the semi–length of an interval on parametric un-
certainties which is called a budget of uncertainty. Such a restriction of perturbation
with a parameter, Γi, could be applied to our intervals when considering a Polyhedral
Uncertainty matrix Ă [46].

In this research, we refer to Equation (2.26) differently, namely, from the perspective
of Parallelpipe Uncertainty. However, with our entries ăij we address return values
based on uncertain prices. Since Parallelpipe Uncertainty is based on intervals of the
uncertain parameters, definition and size of price and return intervals are important
for the set U of matrices Ă. For prices and returns we employed interval calculus and
suitable definitions. In fact, Equation (2.26) is benefited by us with regard to prices
and returns.
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CHAPTER 3

ROBUST PORTFOLIO OPTIMIZATION WITH ROBUST CVaR
UNDER PARALLELPIPE UNCERTAINTY

In this chapter, there are two major sections which describe our main contribution.
Since, our research differs from the involvement of box, ellipsoidal and polyhedral un-
certainty in the literature, we call our RO approach Parallelpipe Uncertainty. However,
before using this new uncertainty set, CVaR should be prepared carefully for this appli-
cation. Section 3.1 explains the discretization and worst–case approximation of CVaR
according to the existing literature and stated for our scientific purposes. Section 3.2
offers our contribution to literature by considering Parallelpipe Uncertainty. In this sec-
tion, we present our modeling approach for numerical applications, explain the logic
behind, Parallelpipe Uncertainty, and conclude the theoretical and methodological part
of our research.

3.1 Robust Conditional Value–at–Risk (RCVaR)

Robustification of CVaR starts with the uncertainty on the distribution of portfolio
returns, based on the underlying prices that include uncertainty. In the markets, the
distribution of the asset returns is partially unknown. This situation is supporting our
claim to involve uncertainty in the design or our model matrix A. Instead of assuming
one certain probability distribution of the random variable vector (ξ), our assumption
is that some density function of the portfolio returns only belongs to a certain set
P of distributions of various types, i.e., p(·) ∈ P , which covers all the possible (or
reasonable) return scenarios (including the worst–case return scenario).

Since our data (including returns) reveal uncertainty, to prepare a RO under a Paral-
lelpipe Uncertainty set, we prefer to use the WCVaR optimization model with under-
lying probability distribution, being an element of some given set P . From that view-
point, we prefer to use [25, 51]. The function f(x, ξ) := −(x1ξ1+x2ξ2+ . . .+xnξn) is
the loss (if the multiplication has positive sign, then it is a reward) of the portfolio with
decision vector x ∈ X ⊆ Rn and random vector ξ ∈ Rn that presents the portfolio
returns at the maturity time T .
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Suppose E(|f(x, ξ)|) < +∞ in view of all x ∈ X . For the simplicity and tractability
of the optimization model, we assume ξ ∈ Rn has a continuous density function p(ξ).
By the theory of [44], all the results can also be applied to discontinuous distributions.
Now, Equations (2.1), (2.6), (2.7), (2.8), and (2.9) will lead us to a new approximation.
If X is a convex set in Rn, and the function f(x, ξ) is convex with respect to x, then
the optimization problem is called Convex Programming problem.

Our further task in the construct on an optimization model by using the CVaR ap-
proach, consisting in the determination of the density of the random vector ξ with a
given maturity time T . Stated in another way, we need to know the probability distri-
bution of the random vector ξ at time T . However, in the real life and in most of the
practical cases, the distribution of the random vector (returns) ξ is partially unknown.
This means, our random variable vector (along the different data underlying the matrix
in the LP model) contains uncertainty from the assets’ prices. Hence, [51] assumed
that the density function is only known to belong to a certain set P of distributions,
i.e., p(·) ∈ P .

Therefore, the precise and yet general definition of the Robust Conditional Value–
at–Risk (or Worst–Case Conditional Value–at–Risk) in the boundaries of coherent risk
measures definition of [3] and with the given confidence level α, in short RCVaRα, for a
given portfolio x ∈ X with respect the set of distributions, P , is defined as [16, 25, 51]:

RCVaRα(x) := sup
p(·)∈P

CVaRp
α(x). (3.1)

In CVaRp
α, the index p serves as reminder about the reference (dependence) of CVaR on

the return distribution p. Likewise we add an index p at the function Fα to express the
same reference and dependence. Then, by the definition from Equation (2.9), RCVaRα

is
RCVaRα(x) := sup

p(·)∈P
min
ζ∈R

F p
α(x, ζ). (3.2)

Hence, to minimize the RCVaR over x ∈ X is equivalent to the following min–sup–
min problem:

minimizex∈X sup
p(·)∈P

min
ζ∈R

F p
α(x, ζ). (3.3)

The definition above give us the related connection between RCVaR and CVaR. Now,
let us suppose that we have a discrete probability which, in fact, we shall later–on
achieve by a discretization. In fact, this assumption provides us an easy path for the
tractability purposes of our forthcoming main LP model.

Let the sample space of random vector ξ be given by {ξ1, ξ2, . . . , ξm} with discrete
probability Pr ξi = πi and

∑m
i=1 πi = 1, πj ≥ 0 (i = 1, 2, . . . ,m). Moreover, we

denote the discrete probability as π = (π1, π2, . . . , πm)T and define [16, 43, 51]:

Mα(x, ζ,π) := ζ +
1

(1− α)

m∑
i=1

πi[f(x, ξi)− ζ]+. (3.4)
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For a given x and π the related CVaR is defined as [44]

CVaRα(x,π) := min
ζ∈R

Mα(x, ζ,π). (3.5)

As a particular case, P is presented now as Pπ ⊂ Rm and the RCVaR for fixed x ∈ X
with respect to Pπ is defined as

RCVaRα(x) := sup
π̃∈Pπ

CVaRα(x, π̃) (3.6)

or, in our case
RCVaRα(x) := sup

π̃∈Pπ

min
ζ∈R

Mα(x, ζ, π̃). (3.7)

So far, we developed the theoretical part of the RCVaR model. Now, we need the
computational aspects of RCVaR minimization over x ∈ X and with X being the
convex set of portfolio weight vectors. Let us consider the following objective function
and problem:

minimizeζ,x,π ζ +
1

1− α

m∑
i=1

πi[f(x, ξi)− ζ]+

subject to all constraints.

(3.8)

Additionally, a lower bound for returns in the model can be implemented in order to
satisfy an investor’s risk attitude; however, this extension will be used in later parts
of our research. In Equation (3.8), the term [f(x, ξi) − ζ]+ should be expressed in a
simplified manner within our optimization problem. Hence, we use a vector of z, height
variables beyond the positive part terms in Equation (3.8), and case–wise evaluate the
[f(x, ξi) − ζ]+–term. As we say, we minimize the hight variables in the epigraphs of
the aforementioned positive–part functions. So,

zi ≥ f(x, ξi)− ζ,
zi ≥ 0 (i = 1, 2, . . . ,m).

(3.9)

We insert this new type of variables to the minζ,x–kind of problem formulation with
the discretized goal function; then we obtain the problem representation

minimizeζ,x,π,z ζ +
1

(1− α)

m∑
i=1

πizi

subject to

zi + xTξi + ζ ≥ 0,

zi ≥ 0 (i = 1, 2, . . . ,m),

x ∈ X.

(3.10)
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By using this model, we could implement all possible, but piecewise–linear convex
optimization terms into linear constraints, continuing with a linear objective function
also [42]. However, before finishing this determination, we need to reformulate the ob-
jective function to a tractable one for computational purposes. Above, we are involved
with Stochastic Programming since CVaR is based upon it. Since our main aim is a
Robustification of CVaR, we are going to gradually imply RO rules after this point.
Hence, according to the steps above, the RCVaR minimization is equivalent to

minimizeζ,x,Λ,p(·) Λ
subject to

ζ +
1

(1− α)

∫
ξ∈Rn

[f(x, ξ)− ζ]+p(ξ)dξ ≤ Λ ∀p(·) ∈ P,

and all the other constraints.

(3.11)

Again to numerally overcome the difficulty of integration, we immediately approxi-
mate the integral by a Riemann–kind of sum. Then, we have the constraint

minimizeζ,x,Λ,z Λ
subject to

ζ +
1

(1− α)

m∑
i=1

π̃izi ≤ Λ ∀π̃ ∈ Pπ,

and all the other constraints.

(3.12)

At last we arrive are the following equivalent LP model [42, 51]:

minimize(ζ,x,z,Λ,π)∈R×Rn×Rm×R×Rm Λ

subject to

ζ +
1

(1− α)
(π̃ij)

T zj ≤ Λ ∀π̃ ∈ Pπ,

zi + xTξi + ζ ≥ 0 (i = 1, 2, . . . ,m),

z ≥ 0,
x ∈ X.

(3.13)

In fact, according to Theorem 2 of [51], if Pπ ⊂ Rm is a compact convex set, then for
each x, we obtain the following result:

Theorem 3.1 (Theorem 2 from [51]). The closed form RCVaR model is:

RCVaRα(x) = min
ζ∈R

max
π̃∈Pπ

Mα(x, ζ, π̃).

By Theorem 3.1, our RCVaR minimization model turns into the subsequent form:
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minimize(ζ,x,z,Λ)∈R×Rn×Rm×R Λ

subject to

max
π̃∈Pπ

ζ +
1

(1− α)
(π̃)T zj ≤ Λ,

zi + xTξj + ζ ≥ 0 (i = 1, 2, . . . ,m),

z ≥ 0,
x ∈ X,

(3.14)

from where we obtain the problem representation of Equation (3.13) equivalently.

Furthermore, the decision maker could add a new constraint as mentioned in Subsec-
tion 3.1. This additional constraint may denote the minimum required return amount
for the model:

µT
ξ x ≥ R,

where µξ stands for the vector of mean–asset returns and R denotes the targeted ex-
pected portfolio return (reward or return). According to [43], the optimal portfolio
weights (x) from CVaR model are the same as the weights derived from MVA if the
returns of the portfolio are normal distributed and α ≥ 0.5. In our research, this con-
straint could be used in the nominal model, however, in our robust model, it is not
always necessary to use. In the next section, we will reflect about this question in fur-
ther detail, addressing also cases of need for such an additional constraint and, then,
its robustification within the context of our RO approach.

Here, either addressing original objective function or, equivalently, minimizing a height
variable of that function is a question of usefulness and practicability in the given con-
text. Finally, this minimization problem’s form is a matter of focus to some aspects,
such as objective function versus constraints and optimality versus feasibility.

We recall that hight variables are often used in order to overcome non–differentiability,
such as as resulting from max–type functions, e.g., our positive–part functions.

Any focus on the representation of all the constraints allows for an overall problem rep-
resentation and programming in a matrix–vector form, i.e., by arrays that permit deeper
structural investigations in terms of sub–matrices, stability, and parametric control.
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3.2 Robust Portfolio Optimization with Robust CVaR under Parallelpipe Un-
certainty

The multiple steps presented in the last section prepared us a general form for an or-
ganized program of our RO problem. However, when the optimization modeling is an
issue, vectors and the matrices are to be included into our model of the problem. Fur-
thermore, we are going to imply the given but uncertain data at the place of our samples
now, and we shall do this in the multi–valued way of intervals, according to each co-
ordinate of the random return vector ξ. In the uniform kind of linear constraints, we
shall address all elements of those intervals. Hence, we will present and discuss the
LP model and the Robust LP model of our research using a matrix–vector form in this
section.

Herewith, we changed our equation style. In this section, since we explained the WC-
VaR above, we use a discretized version of CVaR. We do not need all possible convex
optimization terms as we did in Equations (3.13) and (3.14), as we shall discuss. To
make it clear, the representation of CVaR in a discretized form as an LP model under
various constraints is as follows:

minimize ζ +
1

(1− α)

m∑
i=1

[f(x, ξi)− ζ]+p(ξi),

subject to all constraints,

(3.15)

where m is number of periods (data). However, this type of model is not conve-
nient for the purpose of this study, so, by expanding the problem dimension, Equa-
tion (3.15) is reduced to LP form again by using positive parts v+ = max{v, 0} and
zj ≥ f(x, ξj) − ζ . For Standard Form purposes we write ζ = (ζ1, ζ2)

T as a new de-
cision vector in our forthcoming models; here, we will substitute ζ by (ζ1 − ζ2) with
ζ1, ζ2 ≥ 0. Consequently, the discretized version of minx∈X (CVaR) is equivalently
expressed by

minimize(ζ,x,z)∈R2×Rn×Rm ζ1 − ζ2 +
1

(1− α) ·m

m∑
i=1

zi

subject to
zi ≥ f(x, ξi)− (ζ1 − ζ2) (i = 1, 2, . . . ,m),
n∑
j=1

xj = 1,

x ≥ 0, z ≥ 0, ζ ≥ 0.

(3.16)
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In this work, our move p(ξi) = πi, from Stochastic Programming to a handy RO
will be complete when we concentrate on particular values for each of the discrete
probabilities whose sum amounts to one. Instead, we reflect uncertainty in the form of
the random vectors ξ1, ξ2, . . . , ξm and their coordinate–wise treatment in the form of
intervals. During our research, we confine us to the case of equal (uniform) weights
p(ξi) = πi = 1/m, but we underline that: (i) our approach works likewise well with
any other (i.e., non-uniform) discrete distribution, too, and (ii) we could also permit
generalized set–valued, e.g., interval–valued discrete probabilities, but we do not prefer
this additional modeling complexity.

Let us note that the function−f , which we will canonically have at the right–hand side
of the first constraint, signifies the reward or (total) return. Most of the other studies,
especially in the tradition of Markowitz’s MVA, added an expected return lower bound
(or target return value) constraint into their models. At the end of Section 3.1, we men-
tioned and discussed about it. In our research, since we are following an RO approach,
we do not necessitate that constraint. Our algorithm works with min–max operators
which means we are maximizing our ζ (as a discussion of our original objective func-
tions in Equation (2.23) and (2.24) shows, together with an immediate case study),
while we are minimizing our height variables z, herewith, in tendency, pushing–up the
total return in the second constraint of Equation (3.13). Hence, we are in no need to
use an additional target expected return constraint, unless our results lead to unsatis-
factory and too small total returns. In such a case, we would implement the additional
constraint –in a robustified way, however. Actually, we will replace the mean returns
of assets by interval–valued counterparts, implying uncertainty.

Now, we can present the model matrices and vectors of Equation (3.16) in the general
LP form of Equation (2.23) as follows 1:

A :=



ξ11 ξ12 . . . ξ1n 1 0 . . . 0 1 −1

ξ21 ξ22 . . . ξ2n 0 1 . . . 0 1 −1

...
... . . . ...

...
... . . . ...

...
...

ξm1 ξm2 . . . ξmn 0 0 . . . 1 1 −1

1 1 . . . 1 0 0 . . . 0 0 0


,

x :=



x1
x2
...
xn
z1
z2
...
zm
ζ1
ζ2


,

1 For the sake of convenience and better reading, we do not include the various dimensions at the matrix and
vector notations explicitly.
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c :=

[
0 . . . 0

1

m · (1− α)
. . .

1

m · (1− α)
1 −1

]T
,

b :=


0
0
...
0
1

 .

In the Standard Form of an LP model, as presented in Equation (2.24), the matrix
representation of Equation (3.16) turns to become

minimize(ζ,x,z,e)∈R2×Rn×Rm×Rm ζ1 − ζ2 +
1

(1− α) ·m

m∑
i=1

zj

subject to

z1 + ξ11x1 + ξ12x2 + . . .+ ξ1nxn − (ζ1 − ζ2)− e1 = 0,

z2 + ξ21x1 + ξ22x2 + . . .+ ξ2nxn − (ζ1 − ζ2)− e2 = 0,

...
zm + ξm1 x1 + ξm2 x2 + . . .+ ξmn xn − (ζ1 − ζ2)− em = 0,

x1 + x2 + x3 + . . .+ xn = 1,

x ≥ 0, z ≥ 0, e ≥ 0, ζ ≥ 0.

(3.17)

To obtain the form of Equation (2.24), we implied a vector of surplus variables (e) to
relevant constraints in Equation (3.16). This vector e, such to say, subtracts the artificial
amount of portfolio return to satisfy the equality component–wise in our model. The
matrix–vector representation of this Standard Form model will be given terms of A,
c, b, and x. First we will give their updated definitions. Then, we will present the
interval–, in fact, parallelpipe– valued of the set of matrices A. Now the coefficient
matrix of the model in Equation (3.17) is found to be

A :=



ξ11 ξ12 . . . ξ1n 1 0 . . . 0 1 −1 −1 0 . . . 0

ξ21 ξ22 . . . ξ2n 0 1 . . . 0 1 −1 0 −1 . . . 0

...
... . . . ...

...
... . . . ...

...
...

...
... . . . ...

ξm1 ξm2 . . . ξmn 0 0 . . . 1 1 −1 0 . . . 0 −1

1 1 . . . 1 0 0 . . . 0 0 0 0 . . . 0 0


,

where ξji (i = 1, . . . ,m; j = 1, . . . , n) represents the random variables, namely, the
percentage returns as introduced in Equation (2.5).
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The right–hand side of Equation (3.17) contains the vector b which is defined as:

b :=


0
0
...
0
1

 ;

in our context, the vector of decision variables matrix x (portfolio weights and various
auxiliary variables) is:

x :=



x1
x2
...
xn
z1
z2
...
zm
ζ1
ζ2
e1
e2
...
em



,

and the vector c is

c :=

[
0 . . . 0

1

m · (1− α)
. . .

1

m · (1− α)
1 −1 0 . . . 0

]T
.

Let us underline that this modeling is applicable for any set of our dimensions, espe-
cially, for any given number of risky assets. Here, optimization with respect to x and in
view of the matrices and vectors introduced above should provide the solution which
must satisfy all constraints by considering the data–based (return) uncertainty in the
coefficient matrix A. This type of optimization problem, i.e., where uncertain entries,
here: the returns (random variables ξ) are expressed through uncertainty sets, here: by
intervals, and where we aim at an optimal solution, is called the Robust Counterpart
of the original LP problem of CVaR (which revealed certain parameters only). Robust
counterparts represent a worst–case situation. More specifically, RO addresses some
optimization problem in a parametric worst–case consideration. Of course, this worst–
case situation in our problem will be specified in constraints and in further sections it
will be closely evaluated.
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Those matrices and vectors, i.e., those “arrays”, are backbones of this study. From now
on, the entry contents of the coefficient matrix A will be widened through products of
uncertainty intervals from a set U . This immunizes our problem against parameter
uncertainty, in fact, against underlying data uncertainty in the prices, eventually.

To obtain a matrix A with uncertainty intervals, Equation (2.5) from Definition 2.5
will be employed. This equation is rigid if we only address for nominal returns. In this
work’s context, the return formula should be denoted with Parallelpipe Uncertainty
based on intervals. The return interval determination formula –now to be translated
for Parallelpipe Uncertainty– is given in Equation (2.26). For the required parallelpipe
setting of our returns with intervals, we shall employ the following definition, here-
with generalizing Equation (2.5) where, for some non–negativity reasons, we address
a return defined by the ratio of price at end time and price at beginning time.

Definition 3.1. Suppose we have an asset which has prices as intervals. In that sense,
our return formula is based on

[a, b]

[c, d]
=

[
a

d
,
b

c

]
(b ≥ a ≥ 0; d ≥ c > 0). (3.18)

In our study, where a, b, c and d will be in the role of lower and upper bounds of asset
prices, respectively. In this research, our goal is obtaining return intervals by using
price intervals. These price intervals are calculated by Equation (2.26). Hence, we
have [

ξl, ξu
]

:=

[
plT , p

u
T

][
pl0, p

u
0

] − [1, 1] =

[
plT
pu0
− 1,

puT
pl0
− 1

]
, (3.19)

where ξl and ξu are lower and upper bounds of a return interval, respectively. Here l
and u represent lower and upper bounds indexes of a price (or a return). The nominator
refers to the end and the denominator stands for the beginning of a time interval or time
subinterval.

For detailing the introduction of percentage return from Subsection 2.1.3, Equation (2.5),
within our present interval–valued setting, each return in some entry of the matrix A is
generalized, in fact, “randomized”, with Equation (3.19). There is a fundamental issue
here on how to obtain the new (perturbed, uncertain) matrix Ă. Since our matrix has
0, 1 and −1 values related to the various (also auxiliary) decision variables of the de-
cision vector and the constraints of the model, we have to consider and represent them
for the needed calculations. In fact, there are two certain options during the applica-
tion of the model: either we treat all entries of Ă as intervals, even if some entries are
numbers (0, 1 or −1), i.e., degenerate intervals, or we could consider just the intervals
which have positive lengths (i.e., which are not scalars), encountered for uncertainty
representation by (non–degenerate) intervals. For practicability purposes, we consider
just the intervals in the matrix Ă, in order to find the number of all vertex points by the
combinations between all beginning and all end points of such intervals. According to
this preference, the new matrix Ă which located in the uncertainty set U is
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Ă ∈



[
ξl,11 , ξ

u,1
1

]
. . .

[
ξl,1n , ξ

u,1
n

]
1 0 . . . 0 1 −1 −1 0 . . . 0[

ξl,21 , ξ
u,2
1

]
. . .

[
ξl,22 , ξ

u,2
2

]
0 1 . . . 0 1 −1 0 −1 . . . 0

... . . . ...
...

... . . . ...
...

...
...

... . . . ...[
ξl,m1 , ξu,m1

]
. . .

[
ξl,mn , ξu,mn

]
0 0 . . . 1 1 −1 0 . . . 0 −1

1 . . . 1 0 0 . . . 0 0 0 0 . . . 0 0


,

i.e., Ă ∈ U and

U := conv(Ă
1
, Ă

2
, . . . , Ă

2m·n

) (3.20)

is the convex hull of the canonical vertices Ă
l
, where l = 1, 2, . . . , 2m·n. The matrix Ă

is situated in RM×N , where M = (m+ 1) and N = (n+ 2m+ 2). A set which is the
convex hull of finitely many points is called a polytope, as a special case of a polyhe-
dron (which might be unbounded). The convex hull U is an m · n–dimensional (non–
degenerate) polytope, placed in a higher dimensional Euclidean space. That higher
dimension is M ·N . For closer information about the related convex analysis we refer
to [41].

In fact, U is a polytope given by all convex combinations of its vertices Ă
1
, Ă

2
, . . . ,

Ă
2m·n

. The elements of an uncertainty set U are founded by the Cartesian product of
the uncertainty intervals, and also by the degenerate intervals which consist of scalar
entries, namely, 0, 1 and−1; the products of uncertainty intervals are our parallelpipes.
Herewith, these uncertainty sets turn out to be straight parallelpipes; they are lower
dimensional because of the scalar entries.

To understand this calculation and geometrical shape more clearly, the Cartesian prod-
ucts of the coefficient matrix with uncertain contents is represented in the Figure 3.1.
For the sake of simplicity, we do not include dimensions (entries) here where the in-
tervals are degenerate.
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Figure 3.1: Parallelpipe Uncertainty Set: Cartesian product of intervals for 3 en-
tries [32].

This figure is representing the Cartesian product of intervals or, equivalently, the con-
vex hull of vertices as an element (Ă) of U in a simplified manner. Here, any el-
ement matrix Ă is a vector with uncertainty; these elements altogether generate a
parallelpipe and U is a polytope with maximum 2m·n vertices, since we have m · n
(non–degenerate) interval–valued entries and take into account all combinatorial cases
given by the boundary points of the intervals. The matrix Ă can be represented as a
vector with uncertainty that, on the other hand, is represented through a parallelpipe C.
By taking into account all these parallelpipes we have a special type of uncertainty set
named Parallelpipe Uncertainty set. At the first view, this new uncertainty set looks
like a box, however, in Box Uncertainty sets, lengths of intervals are same for every
row of the uncertainty matrix Ă. In a Parallelpipe Uncertainty set, the lengths of inter-
vals may vary among each other, e.g., along the columns and the rows of the regarded
uncertainty matrix Ă.

The coefficient matrices represented as Ă generates parallelpipe C. Let C be a paral-
lelpipe that encompasses entries of our uncertain returns. Then, C is

C = [ξl,11 , ξ
u,1
1 ]× [ξl,12 , ξ

u,1
2 ]× . . .× [ξl,mn , ξu,mn ]× . . . =:

m·n∏
k=1

Ck, (3.21)

where ξl ≤ ξ ≤ ξu. Here, ξl is the lower bound and ξu stands for the upper bound of the
intervals in the m · n return–value dimensions (non–degenerate uncertainty intervals).
We recall that there are degenerate intervals like [a, a] = {a} inserted into the set–
valued coefficient matrix. They take 0, 1 and −1 values, but since they are single–
valued and their upper and lower limits are the same, we may say that for representing
and programming the set C, these trivial or degenerate intervals of single constant
values mean no complexity and no coding problem.
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CHAPTER 4

APPLICATION AND STATISTICAL COMPARISON OF RCVaR

As a numerical part of this study, we used RCVaR based on historical financial data to
obtain an optimal portfolio allocation. By this way, we could illustrate the implementa-
tion of RCVaR to historical financial data. Here, we strongly refer to our discussions of
earlier sections to optimize a portfolio by using RCVaR and satisfy a certain minimum
portfolio return.

4.1 Data

Three historical price datasets are chosen for this numerical application. We created
a portfolio which contains three different financial assets. The components of our
portfolio are Intel, Aaon and Microsoft monthly stock prices from NASDAQ stock
exchange. We used the historical monthly price data of these financial instruments
from March 2000, to September 2016. Graphical representations of these datasets are
shown in Figure 4.1.
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Figure 4.1: Historical monthly price data of Intel, Aaon and Microsoft from NASDAQ
stock market.
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At the beginning of the numerical application, all price datasets are turned into a per-
centage return series by Equation (2.5). It is one of the contributions of our study,
because mostly researches are eventually done with return calculation based on using
logarithmic returns.

Many of the investigations take into particular account the return distribution. One of
the fundamental properties of CVaR is that with Gaussian shaped data it gives same
results when compared to VaR and MVA, as we mentioned before. Nevertheless, CVaR
also works on non–normal datasets either; in fact, here it is not important whether our
data are normal or not1. Because of this reason, the Q–Q plot of portfolio assets’ data
are shown in Figure 4.2 as an example.
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Figure 4.2: Normal Q–Q plot of portfolio assets.

Lastly, descriptive statistics of our asset price datasets are presented in Table 4.1. Be-
sides the regular statistical results like maximum, minimum, etc., skewness, kurtosis,
and JB test show important description about our data. The skewness illustrates sym-
metry of the data around mean. As a consequence, the data are not normally distributed
since we have a positive skewness. Additionally, the data distribution has positive ex-
cess kurtosis (leptokurtic); in fact, the kurtosis values of Asset 1 and 3 are higher than
the one of Asset 2. Therefore, our data have fat tails, which means that an investor will
be risk averse. Another evidence for non–normally distributed data is given by JB–test
as shown in Table 4.1. According to p–values, null hypothesis (H0) should be rejected,
since those values are lower than the significance level.

1 According to the data distribution analysis on assets, our datasets reveal Burr (4P), Loglogistic and Burr
distributions, respectively.
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Table 4.1: Descriptive statistics of portfolio asset prices.

Intel (Asset 1) Aaon (Asset 2) Microsoft (Asset 3)
Max 52.5396 28.8200 57.6000
Min 9.8004 1.3455 13.2876
Mean 20.7719 8.1515 25.9097
Median 18.8469 5.1746 22.6234
Std 7.6186 7.2733 10.0486
Variance 58.0426 52.9011 100.9752
Kurtosis 5.6145 3.5911 4.5977
Skewness 1.5109 1.3692 1.5718
CoV 0.3667 0.8922 0.3878
JB test (p–value) 2.2e-16 7.327e-15 2.2e-16

4.2 Algorithm

As a beginning, we used nominal CVaR algorithm to obtain asset allocations and risk
levels of our portfolio. This application is conducted by using Equation (3.16). In this
sense, we only employed CVaR algorithm on MATLAB and obtained our results.

For RCVaR application, our robust algorithm is founded on some basic LP algorithm;
an Interior Point Method is chosen in this research. All optimization and CVaR codes
are conducted in MATLAB Software according to the problem representation as given
in Equations (3.16, 3.17); furthermore, both the nominal and the new robust optimiza-
tion model are performed also. In this numerical part, we set α = 0.99 to obtain a
maximum conservatism.

To apply RCVaR, i.e., our RO technique upon CVaR optimization model, first, we cre-
ated uncertainty intervals based on our price data by Equation (2.26). Second, we trans-
formed the price intervals to the return data in the form of using Equation (3.19). We
included these uncertainty intervals into the real–world data–based matrix A in each
dimension and corresponding entry; then the uncertainty matrices with Parallelpipe
Uncertainty are constructed. Consequently, we included those prepared matrices into
the problem representation of Equation (3.16). The part or “block” of coefficient ma-
trix Ă with uncertainty entries shows the following form:

Ă1 :=


ă11 ă12 ă13
ă21 ă22 ă23
...

...
...

ă1991 ă1992 ă1993



∈


[0.018, 1.318] [−0.011, 0.069] [−1.203, 0]
[0.008, 0.948] [−0.012, 0.067] [−0.228, 0.059]

...
...

...
[−0.028, 0.914] [0.002, 0.082] [−0.001, 0.034]

 .
(4.1)
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Naturally, the matrix Ă1, in order to reach the full size of matrix Ă, should attain more
row(s) and, especially, more columns. Herewith, the auxiliary variables of our linear
optimization problem in Standard Form narrows down the degree of freedom as far as
it came from a very small number n of risky assets. Of course, not all of the auxiliary
decision variables and related columns would be needed for that purpose. Eventually,
our whole example comfortably works with portfolios whose number n of risky assets
is larger than three. We choose a number 3 of assets because of ease of notation and
understanding.

Remark 4.1. If Parallelpipe Uncertainty sets are used, then there can be a computa-
tional drawback in the numerical experiment. The number of vertices might be too
large and to handle them computationally causes a high complexity. Additionally, the
matrix Ă has a very big dimension in our numerical practice, and our computer ca-
pacity is not enough for such a size of the coefficient matrix. Hence, we employed
a Weak Parallelpipe Robustification to solve that practical problem. Weak robustifi-
cation means an entry–wise robustification with respect to the matrix Ă. This finite
robustification process goes row by row, and it represents all the other data accord-
ing to interval midpoints, as shown in Figure 3.1 (ceteris paribus). Eventually, our
“weak” version of RO approach addresses the worst– (robust) case with respect to all
entry–wise robustifications [32].

Remark 4.2. One major assumption during the calculation of returns series from prices
series is that first period returns for each asset have zero value. The logic behind the
assumption is that an investor does not have a return when he/she invested in a stock
on the market. Then, the investor only invests money.

One criticism might come up to minds could be the curse of dimensionality or over–
determination problem. The usage of medium amount data could be seen as huge
amount however in finance, since there are tremendous uncertainty at everywhere,
more data are needed than in some more classical engineering applications, even when
compared to the number of decision variables

4.3 Nominal CVaR Application

This application provided a numerical result for portfolio optimization. The considered
model is here the objective given in Equation (2.9) and all its constraints. Addition-
ally, we employed constraint on minimum required return amount which is presented
in Sections 3.1 and 3.2 (R = 0.0062). As we discussed in those Sections, such a con-
straint can be inserted into the model and its given constraints to improve the entire
return and risk level.

Two different confidence levels are implied into the CVaR model. First, since α = 0.95
is considered as a standard value, we employed it for a first experiment. Second, we
optimized our portfolio regarding the conservation level α = 0.99. During the RO
process, our research is interested in worst–case situations. The second confidence–
level value is employed for various difficult situations when the decision should be
more conservative then a usually before.
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Table 4.2: Nominal portfolio weights and CVaR results.

Intel (Asset 1) Aaon (Asset 2) Microsoft (Asset 3) CVaR
α=0.95 0.0840 0.4760 0.4400 0.1217
α=0.99 0.1991 0.5030 0.2979 0.1717

According to the nominal portfolio optimization results in Table 4.2, the decision vec-
tor put particular weight on Asset 2 (Aaon) and Asset 3 (Microsoft). Furthermore, the
confidence interval changed the amount of risk (objective value) which our portfolio
faced and the distribution of our asset allocation (the decision vector).

4.4 RCVaR Application

Since our main aim is robust portfolio allocation, we used our optimization model
on the real–time data. Herewith, by using Equation (3.17), we obtained our robust
solutions.

Table 4.3: Robust portfolio weights and CVaR results.

Intel (Asset 1) Aaon (Asset 2) Microsoft (Asset 3) CVaR
Nominal 0.1991 0.5030 0.2979 0.1717
Robust 0,1482 0,4650 0,3868 0,1683

From the results in Table 4.3, while our portfolio risk minimized as we aimed, asset
weights are allocated differently than nominal case.

4.5 Stability Measuring by Monte–Carlo (MC) Simulation

After we achieved nominal and RO–supported portfolio optimization by using CVaR
and RCVaR, in this section, we compared CVaR and RCVaR algorithms using dif-
ferent price datasets generated by MC simulation based on our real data’s descriptive
statistics. The comparison based on statistical properties (variance) of obtained results,
i.e., risk values. Moreover, we generated 3 different asset prices for 199 months be-
tween March 2000, and September 2016. We generated our random asset prices under
uniform distribution.

MC simulation provides uncertain model scenarios and allows to use them for our
purpose. Since the perturbed prices by MC simulation are generated under specific
probability distribution, they include uncertainty. This situation permits us to use our
RO technique on new data sets.

In this context, 199 uniformly distributed asset prices were generated under 40 dif-
ferent price scenarios. We made a portfolio optimization with a Robust Portfolio Op-
timization to each price scenario. Optimal asset weights and CVaR results for each
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scenario are presented in Figure 4.3, respectively. The algorithm of this scenario ap-
plication is based upon [50].

These results explain us the variations of weights among similar portfolio prices and
their returns. Here, Robust Optimization aims to reduce these variations to obtain a
more robust objective result.
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Figure 4.3: Nominal simulation results.

For our simulation study of RCVaR, we obtained 40 different interval values under
Parallelpipe Uncertainty. According to those intervals, 40 different uncertainty sce-
narios were generated. Hereby, the weights of all the generated uniformly distributed
portfolios are shown in Figure 4.4a. Furthermore, the RCVaR results are displayed in
Figure 4.4b. All these calculations and optimization codes have been constructed by
MATLAB Software.
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Figure 4.4: Robust simulation results.

The model in Equation (3.17) aimed to reduce the risk in the portfolio and to obtained
a robust portfolio allocation. From Figure 4.4b, we may claim that while our portfolio
risk is minimizing, asset weights of the portfolio converged to their robust values based
on our Parallelpipe Uncertainty set.

From Figures 4.3 and Figures 4.4 we observed that the variability of the portfolio
weights has decreased. Moreover, sample of 40 nominal and robust simulated portfolio
optimization results are given in Table 4.4.
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Table 4.4: Sample of simulation results for nominal and robust models.

Portfolio Nominal Weights CVaR Robust Weights RCVaR
1 0.5554 0.1034 0.3411 0.1494 0.1479 0.4643 0.3878 0.1683
2 0.3691 0 0.6308 0.1885 0.1475 0.4645 0.3881 0.1683
3 0.5509 0.0097 0.4392 0.1988 0.1482 0.4650 0.3868 0.1683
4 0.4948 0.0096 0.4954 0.1890 0.1482 0.4650 0.3868 0.1683
5 0.5052 0.0266 0.4681 0.1876 0.1480 0.4644 0.3876 0.1715
6 0.5935 0 0.4064 0.1768 0.1477 0.4645 0.3878 0.1706
7 0.4170 0.1443 0.4386 0.1742 0.1477 0.4643 0.3879 0.1699
8 0.2681 0.3015 0.4304 0.1928 0.1476 0.4645 0.3879 0.1687
9 0.2484 0.0701 0.6815 0.1967 0.1477 0.4644 0.3879 0.1685

10 0.4341 0.0562 0.5097 0.2045 0.1477 0.4643 0.3879 0.1730

For more clear visualizations, nominal and robust portfolio optimization weights ac-
cording to 40 simulations are presented in Figure 4.5, related to our numerical results,
respectively.
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Figure 4.5: Area plots of nominal and robust portfolio weights.

One can understand that the portfolio optimization with RCVaR under Parallelpipe
Uncertainty provides a stable portfolio asset allocation and reduced risk level. This
result is a good explanation for a risk management and portfolio optimization without
an initial wealth assumption as we discussed before.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The trade–off between maximizing expected return and minimizing the risk under un-
certainty is great challenge to the decision making process for all quantitative investors.
In financial and energy markets, deciding on an investment is difficult without suffi-
cient and proper information. Uncertainty in the given information as given, i.e., by the
data, affects the amount, variety, risk, and return on investments. In this research, we
prepared and conducted a robust decision making model algorithm and methodology
applied on given real–time data. Our aim was to find the robust portfolio optimiza-
tion results (the selected quantities of assets) by using a well–developed mathematical
approach.

Our mathematical tools are RO, CVaR, and Parallelpipe Uncertainty sets. By consid-
ering the robust optimization framework at the literature, we invented RCVaR method-
ology under Parallelpipe Uncertainty sets. In that respect, by taking into account the
amount of uncertainty in the real–world data from a stock market, we created uncer-
tainty intervals with perturbation terms. These uncertainty intervals are employed to
obtain Parallelpipe Uncertainty sets, and we implemented them into the model or de-
sign matrix of the optimization problem of CVaR. We aimed to minimize the CVaR
value of our portfolio, and at the same time, we calculated meaningful value of port-
folio weights. We used our new RCVaR methodology on real–data. Moreover, for
comparison, we generated new portfolios by MC simulation on those data for using
CVaR and compared them with the portfolio given the same number of different RC-
VaR scenarios. Both the variety of portfolio weights and the risk values were compared
among two approaches.

As a result, our RCVaR methodology under Parallelpipe Uncertainty provided us more
stable portfolio weights and reduced our portfolio risk. By considering Parallelpipe
Uncertainty, we traced back our robustified LP problem to an ordinary LP problem,
exploiting the linearity of the robust program and the interval foundation of its uncer-
tainty set. We canonically referred to the vertex points of the uncertainty set; then, we
obtained a lower risk level in simulation and real–world applications. Our advances
on Robust Portfolio Optimization illustrated that during the optimization processes, if
the data uncertainty is addressed carefully, robust optimal results could be achieved.
Improvements in the asset allocation reduced the risk level of the portfolio. In a more
clear way, RCVaR methodology illustrated us the importance of robust portfolio allo-
cation.

49



For our future work on this new model and methodology, robust portfolio optimiza-
tion in multi–periods with given initial and, then, gradually rebalanced and reallocated
wealth (rather than equating the budget constraint to one) could become beneficial for
the practice of risk management and for the optimization literature. Since there might
be possible correlations between random variables, as an extension, Correlated Par-
allelpipe Uncertainty set could be possible to taking into account. Additionally, time
consistency is a rising topic in the optimization field of mathematics. Herewith, time
consistent robustly optimized portfolios should be an interesting research topic in the
near future.
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[33] A. Özmen and G. W. Weber, Robust conic generalized partial linear models us-
ing rcmars method - a robustification of CGPLM, AIP Conference Proceedings,
1499(1), 2012.
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