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ABSTRACT

BEAUVILLE STRUCTURES IN p-GROUPS

Gül, Şükran

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Gülin Ercan

Co-Supervisor : Assoc. Prof. Dr. Gustavo Adolfo Fernández-Alcober

November 2016, 107 pages

Given a finite group G and two elements x, y ∈ G, we denote by Σ(x, y) the union
of all conjugates of the cyclic subgroups generated by x, y and xy. Then G is called
a Beauville group of unmixed type if the following conditions hold:

(i) G is a 2-generator group.

(ii) G has two generating sets {x1, y1} and {x2, y2} such that Σ(x1, y1)∩Σ(x2, y2) =

1.

In this case, {x1, y1} and {x2, y2} are said to form a Beauville structure for G.

The main purpose of this thesis is to extend the knowledge about Beauville p-groups.
We will first discuss the conditions under which a 2-generator p-group with a “nice
power structure” is a Beauville group. These conditions are similar to the conditions
for an abelian p-group to be a Beauville group. In particular, this result applies to
all known families of p-groups with a good behavior with respect to powers: regular
p-groups, powerful p-groups and more generally potent p-groups, and (generalized)
p-central p-groups.

Secondly, we investigate Beauville structures in metabelian thin p-groups and in p-
groups of maximal class which are either metabelian, or have a maximal subgroup of
class ≤ 2.
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We next determine which quotients of the Nottingham group over Fp for an odd prime
p are Beauville groups. As a result, we get the first known infinite family of 3-groups
admitting a Beauville structure.

Finally, we prove a conjecture of Boston: he conjectured that if p ≥ 5, all p-central
quotients of the free group on two generators and of the free product of two cyclic
groups of order p are Beauville groups.

Keywords: Beauville groups, finite p-groups, thin p-groups, Nottingham group, group
of maximal class, free group, free product
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ÖZ

p-GRUPLARINDA BEAUVİLLE YAPILAR

Gül, Şükran

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Gülin Ercan

Ortak Tez Yöneticisi : Doç. Dr. Gustavo Adolfo Fernández-Alcober

Kasım 2016 , 107 sayfa

Verilen bir sonlu grup G ve x, y ∈ G için, x, y ve xy tarafından üretilen devirli
alt grupların bütün eşleniklerinin birleşimini Σ(x, y) ile gösteriyoruz. Eğer aşağıdaki
şartlar sağlanırsa, G grubuna karışık türde olmayan Beauville grup denir:

(i) G 2-üreteçli grup.

(ii) G’nin öyle iki üreteç kümesi {x1, y1} ve {x2, y2} varki Σ(x1, y1)∩Σ(x2, y2) =

1.

Bu durumda, {x1, y1} ve {x2, y2}’ye G grubuna Beauville yapısı oluşturuyor denir.

Bu tezin asıl amacı Beauville p-grupları hakkındaki bilgiyi genişletmektir. İlk olarak
“iyi kuvvet yapılı” 2-üreteçli p-grubun Beauville grup olması için gerekli şartları tar-
tışacağız. Bu şartlar değişmeli bir p-grubun Beauville grup olabilmesi için gereken
şartlara benzemektedir. Aslında bu sonuç kuvvetlere göre iyi davranış sergileyen bü-
tün bilinen p-gruplar ailesine uygulanır: düzenli p-gruplar, kuvvetli p-gruplar ve daha
da geneli potent p-gruplar, ve (genellenmiş) p-merkezsel p-gruplar.

İkinci olarak, metabelian ince p-gruplarda, ve metabelian olan ya da üstel sıfır sınıfı
en fazla 2 olan bir azami alt grup içeren azami sınıflı gruplarda Beauville yapılarını
inceleyeceğiz.

Daha sonra tek asal sayı p için, Fp üzerindeki Nottingham grubun hangi bölüm
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gruplarının Beauville grup olduğunu belirleyeceğiz. Sonuç olarak Beauville yapısına
olanak sağlayan ilk bilinen sonsuz 3-gruplar ailesini elde etmiş olacağız.

Son olarak Boston’nın sanısını ispatlayacağız: eğer p ≥ 5 ise, iki üreteçli serbest
grubun ve derecesi p olan iki devirli grubun serbest çarpımının bütün p-merkezsel
bölüm grupları Beauville gruptur.

Anahtar Kelimeler: Beauville gruplar, sonlu p-gruplar, ince p-gruplar, Nottingham
grup, azami sınıflı gruplar, serbest grup, serbest çarpım
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CHAPTER 1

INTRODUCTION

Beauville groups were originally introduced in connection with a class of complex

surfaces, known as Beauville surfaces. Beauville surfaces were introduced by Catanese

in [13] generalizing the construction of Beauville in [6]. A Beauville surface S is a

compact complex surface isomorphic to (C1×C2)/G, where C1 and C2 are algebraic

curves of genera at least 2 and G is a finite group acting freely on C1 × C2 by holo-

morphic transformations, and ifG0 ≤ G is the subgroup of index at most 2 consisting

of the elements which preserve each of the factors, then G0 acts effectively on each

curve, in such a way that Ci/G0
∼= P1(C) and the covering map Ci → Ci/G0 is

ramified over three points for i = 1, 2.

A Beauville surface is said to be of mixed or unmixed type according to whether

|G : G0| = 2 orG = G0. ThenG is said to be Beauville group of mixed or unmixed

type, respectively. Clearly, any Beauville surface of mixed type S = (C1 × C2)/G

gives rise to a Beauville surface of unmixed type S0 = (C1 × C2)/G0.

The natural question that arises regarding Beauville surfaces is: which finite groups

are Beauville groups?

Bauer, Catanese and Grunewald [4,5] were able to characterize the groups appearing

in the minimal presentations of Beauville surfaces in terms of the existence of the so-

called Beauville structure. The group-theoretical reformulation of Beauville groups

is as follows. For a couple of elements x, y ∈ G, we define

Σ(x, y) =
⋃
g∈G

(
〈x〉g ∪ 〈y〉g ∪ 〈xy〉g

)
,

that is, the union of all subgroups of G which are conjugate to 〈x〉, to 〈y〉 or to 〈xy〉.
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Definition 1.0.1. Let G be a finite group. An unmixed Beauville structure for G is

a pair of generating sets {x1, y1} and {x2, y2} of G such that

(i) G = 〈x1, y1〉 = 〈x2, y2〉,

(ii) Σ(x1, y1) ∩ Σ(x2, y2) = 1.

We call {xi, yi, xiyi} the triple associated to {xi, yi} for i = 1, 2. The signature of a

triple is the tuple of orders of the elements in the triple.

Remark 1.0.2. 1. The correspondence between the geometrical data of an un-

mixed Beauville surface and the group-theoretical data of an unmixed Beauville

structure was given in [4, 5]. By this correspondence, a group G satisfying the

conditions in Definition 1.0.1 gives rise to an unmixed Beauville surface, that

it, G is an unmixed Beauville group.

2. Unmixed Beauville groups are 2-generator groups.

Definition 1.0.3. Let G be a finite group. A mixed Beauville structure for G is

a quadruple (G0, x, y, z) where G0 is a subgroup of G of index 2 and x, y ∈ G0,

z ∈ GrG0 are such that

(i) G0 = 〈x, y〉,

(ii) For all h ∈ G0, we have (zh)2 /∈ Σ(x, y),

(iii) Σ(x, y) ∩ Σ(xz, yz) = 1.

Remark 1.0.4. By [4,5], a groupG satisfying the conditions in Definition 1.0.3 gives

rise to a mixed Beauville surface, that is, G is a mixed Beauville group.

In this thesis we study the unmixed case and we will use the term Beauville group to

mean Beauville group of unmixed type.

Since 2000, many mathematicians such as Bauer, Catanese, Grunewald, Guralnick,

Lubotzky and Malle have been interested in determining Beauville groups. Research

in this regard has been carried out mostly for abelian groups and simple groups. How-

ever, in some sense most finite groups are p-groups [7, 8]. Therefore, it is natural to

consider which finite p-groups are Beauville.
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If p is a prime, the knowledge about Beauville p-groups is very scarce, and is re-

stricted to either groups of small order or with a very simple structure. In this thesis,

our main aim is to extend the knowledge about Beauville p-groups.

The thesis is organized as follows.

In Chapter 2, we first summarize some results on Beauville groups that we want to

emphasize. We give the most fundamental results regarding abelian groups, simple

groups and p-groups which admit Beauville structures. We next recall definitions

and general group-theoretical results which will be relevant throughout this thesis.

Further background material which is specific to a particular result or problem is

included only in the chapter where it is used.

In Chapter 3, we study the existence of Beauville structures in p-groups with a "nice

power structure". We provide a generalization of Catanese’s characterization of abelian

Beauville groups to these groups. The main result of this chapter is as follows:

Theorem 1.0.5. Let G be a 2-generator finite p-group of exponent pe such that one

of the following conditions holds:

(i) G is semi-pe−1-abelian, i.e. for every x, y ∈ G

xp
e−1

= yp
e−1

if and only if (xy−1)p
e−1

= 1.

(ii) G is a potent p-group.

Then G is a Beauville group if and only if p ≥ 5 and |Gpe−1| ≥ p2. If that is the case,

then every lift of a Beauville structure in G/Φ(G) yields a Beauville structure of G.

This result applies to all known families of p-groups with a good behavior with respect

to powers: regular p-groups, powerful p-groups and more generally potent p-groups,

and (generalized) p-central p-groups. As another application of the theorem, we give

the characterization of metacyclic Beauville p-groups. We also prove the following

proposition to determine the condition |Gpe−1| ≥ p2 easily.

Proposition 1.0.6. Let G = 〈a, b〉 be a finite p-group of exponent pe which is either

semi-pe−1-abelian or potent. Then |Gpe−1| ≥ p2 if and only if |〈ape−1
, bp

e−1〉| ≥ p2.
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As an application of the proposition, we determine the number of Beauville groups

of order p6 by using the Lazard Correspondence.

We next analyze the Beauville structures which are not inherited by the Frattini quo-

tients. In the last section, we give the characterization of regular Beauville groups

without induced Beauville structures.

In Chapter 4, we investigate Beauville structures in thin p-groups. More specifically,

we study metabelian thin p-groups and p-groups of maximal class which either are

metabelian, or have a maximal subgroup of class ≤ 2.

IfG is a p-group of order≤ pp, thenG is regular, and hence the existence of Beauville

structure can be determined by using Theorem 1.0.5. Thus we concentrate on p-

groups of maximal class of order ≥ pp+1. We prove the following main results.

Lemma 1.0.7. Let G be a p-group of maximal class of order ≥ pp+1. Suppose that G

satisfies one of the following:

(i) All elements of GrG1 are of order p2.

(ii) There exists s ∈ GrG1 such that o(s) = p and all elements outsideG1∪〈s,G′〉
are of order p2.

Then G is not a Beauville group.

Theorem 1.0.8. Let G be a p-group of maximal class of order pn ≥ pp+1, where p

is odd, such that either G is metabelian or cl(G1) ≤ 2. Suppose that G is not as in

Lemma 1.0.7. Then one of the following holds:

(i) All elements of GrG1 are of order p.

(ii) There exist a uniform element s and s1 ∈ G1 rG′ such that o(s) = o(ss1) = p

and all elements outside G1 ∪ 〈s,G′〉 ∪ 〈ss1, G
′〉 are of order p2.

Theorem 1.0.9. Let G be as in Theorem 1.0.8. Then G is a Beauville group if and

only if p ≥ 5 and one of the following two cases holds:

1. (i) holds.
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2. (ii) holds, and either n 6= k(p−1)+2 with k ≥ 1, or n = p+1 and expG1 = p.

If G is a metabelian thin p-group, then cl(G) ≤ p + 1. If cl(G) < p, then the group

is regular, and hence Theorem 1.0.5 can be used to determine Beauville structures.

Thus we focus on metabelian thin p-groups of class p or p + 1. The main results are

as follows.

Theorem 1.0.10. Let G be a metabelian thin p-group with cl(G) = p such that

|γp(G)| = p2, where p ≥ 5. Then G has a Beauville structure in which one of

the two triples has all elements of order p2.

Theorem 1.0.11. Let G be a metabelian thin p-group with cl(G) = p + 1, where

p ≥ 5. Then G has a Beauville structure.

We next analyze the case cl(G) = p and |γp(G)| = p. There are two possibilities:

(i) Gp = γp−1(G),

(ii) Gp = γp(G).

Theorem 1.0.12. Let G be a group in case (i). Then G has a Beauville structure.

Theorem 1.0.13. Let G be a group in case (ii). Then G has a Beauville structure if

and only if it has at least three maximal subgroups of exponent p.

In Chapter 5, we study Beauville structures in quotients of the Nottingham group over

Fp, for an odd prime p. As a consequence, we give the first explicit infinite family

of Beauville 3-groups, and we show that there are Beauville 3-groups of order 3n for

every n ≥ 5. The main result of this chapter is the following:

Theorem 1.0.14. Let N be the Nottingham group over Fp, where p is an odd prime,

and let W be a normal subgroup of N of index ≥ p2 or p5, according as p > 3 or

p = 3. Then N /W is a Beauville group if and only ifW 6= Nzm , 〈e,Nzm+1〉, where

e is the automorphism given by e(t) = t+ tzm for all m ≥ 1 or m ≥ 2, according as

p > 3 or p = 3 and zm = pm + pm−1 + · · ·+ p+ 2.

Finally, in Chapter 6, we prove a conjecture of Boston: he conjectured that if p ≥ 5,

all p-central quotients of the free group on two generators and of the free product of
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two cyclic groups of order p are Beauville groups. In the case of the free product, we

also deal with p = 3, and we get an infinite family of Beauville 3-groups which is

different from the one given in Chapter 5. The main results of this chapter as follow.

Theorem 1.0.15. Let F = 〈x, y〉 be the free group on two generators. Then a p-

central quotient F/λn(F ) is a Beauville group if and only if p ≥ 5 and n ≥ 2.

Let F = 〈x, y | xp, yp〉 be the free product of two cyclic groups of order p.

Theorem 1.0.16. If p ≥ 5 then the p-central quotient F/λn(F ) is a Beauville group

for every n ≥ 2.

Theorem 1.0.17. Let p = 3. Then the following hold.

(i) The p-central quotient F/λn(F ) is a Beauville group if and only if n ≥ 4.

(i) The series {λn(F )}n≥4 can be refined to a normal series of F such that two con-

secutive terms of the series have index p and for every term N of the series F/N

is a Beauville group.

Theorem 1.0.18. Let N 6= γ4(F ) be a normal subgroup of F such that F/N is

a Beauville group. Then F/N is not isomorphic to any quotient of N which is a

Beauville group. On the other hand, F/γ4(F ) is isomorphic to N /γ4(N ).

6



CHAPTER 2

BACKGROUND MATERIAL

2.1 Known results on Beauville groups

Research activity around Beauville groups has been very intense since the beginning

of this century; see, for example, the recent survey papers [9, 17, 34]. We briefly

mention some results that we want to highlight.

In 2000, Catanese proved a result regarding abelian groups.

Theorem 2.1.1. [13] A finite abelian group is a Beauville group if and only if it is

isomorphic to Cn × Cn, where n > 1 and gcd(n, 6) = 1.

The following is a corollary of Catanese’s criterion for abelian Beauville p-groups.

Corollary 2.1.2. There are no abelian Beauville 2-groups or 3-groups. Thus an

abelian p-group G is a Beauville group if and only if G ∼= Cpn × Cpn , where n ≥ 1

and p ≥ 5.

This result can be stated in a different way:

Corollary 2.1.3. Let p ≥ 5, and let G be an abelian 2-generator p-group. If the

exponent of G is pe then G is a Beauville group if and only if |Gpe−1| = p2.

The following groups also admit Beauville structures.

Theorem 2.1.4. [4, 5, 22]

(i) The alternating groups An are Beauville groups if and only if n ≥ 6,
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(ii) The symmetric groups Sn are Beauville groups if and only if n ≥ 5,

(iii) The groups SL(2, p) and PSL(2, p) are Beauville groups for every prime p 6=
2, 3, 5.

Part (i) was proven in [4, 5] for n large enough, and it was later generalized in [22].

Part (ii) was proven for n ≥ 7 in [5], and it was later improved in [22]. Part (iii)

appeared in [4].

In 2006, Bauer, Catanese, and Grunewald made the following conjecture.

Conjecture 2.1.5. [5, Conjecture 7.17] Every non-abelian finite simple group other

than A5 is a Beauville group.

By using probabilistic methods, Garion, Larsen, and Lubotzky [24] showed in 2012

that the conjecture is true if the order of the group is large enough. Soon afterwards,

Guralnick and Malle [28] gave a complete proof of the conjecture. Then Fairbairn,

Magaard and Parker proved that:

Theorem 2.1.6. [18, 19] All finite quasisimple groups other than A5 and SL(2, 5)

are Beauville groups.

Bauer, Catanese and Grunewald have showed the following result.

Theorem 2.1.7. [4, Lemma 3.7] Let G be a non-trivial finite quotient of the infinite

dihedral group D∞ = 〈x, y | x2, y2〉, that is, G is a finite dihedral group. Then G is

not a Beauville group.

After the abelian groups, the next most natural class of finite groups to consider are

the nilpotent groups. In [2], the following lemma was stated.

Lemma 2.1.8. [2, Lemma 3] Let G and G′ be Beauville groups and let {{x1, y1},
{x2, y2}} and {{x′1, y

′
1}, {x

′
2, y

′
2}} be their Beauville structures, respectively. Sup-

pose that for i = 1, 2

gcd(o(xi), o(x
′

i)) = gcd(o(yi), o(y
′

i)) = 1.

Then {(x1, x
′
1), (y1, y

′
1)}, {(x2, x

′
2), (y2, y

′
2)} is a Beauville structure for G×G′.

8



More generally we have the following lemma.

Lemma 2.1.9. Let G and G′ be 2-generator groups of coprime order. Then G × G′

is a Beauville group if and only if both G and G′ are Beauville groups.

Proof. If G and G′ are Beauville groups, then since they have coprime order, Lemma

2.1.8 implies that G×G′ is a Beauville group.

Conversely, assume that {(x1, x
′
1), (y1, y

′
1)}, {(x2, x

′
2), (y2, y

′
2)} is a Beauville struc-

ture for G× G′ . We will show that G is a Beauville group, and the same arguments

apply to G′.

Let A = {(x1, x
′
1), (y1, y

′
1), (x1y1, x

′
1y
′
1)} and B = {(x2, x

′
2), (y2, y

′
2), (x2y2, x

′
2y
′
2)}.

Then for every (a, a
′
) ∈ A and (b, b

′
) ∈ B we have

〈(a, a′)〉(g,g
′
) ∩ 〈(b, b′)〉(h,h

′
) = (1, 1), (2.1)

for all g, h ∈ G and g′ , h′ ∈ G′ . Let |G| = l and |G′| = m, where gcd(l,m) = 1.

Then by equation (2.1), we get

〈((am)g, 1)〉 ∩ 〈((bm)h, 1)〉 = (1, 1),

and hence 〈am〉g ∩ 〈bm〉h = 1. Since gcd(l,m) = 1, it then follows that 〈a〉g ∩ 〈b〉h =

1. Thus G is a Beauville group.

Since a finite group is nilpotent if and only if it is a direct product of its Sylow sub-

groups, by the above lemma, the study of nilpotent Beauville groups is reduced to the

study of Beauville p-groups.

Recently Stix and Vdovina [49] have constructed infinite series of Beauville p-groups.

In particular this gives the first examples of non-abelian Beauville p-groups of arbi-

trarily large order and any prime p ≥ 5. The existence of a non-abelian Beauville

p-group of order pn for every p ≥ 5 and every n ≥ 3 is also proved in [2]. On

the other hand, as a consequence of the main theorem in [3], there are Beauville 2-

groups of arbitrarily high order. The existence of infinitely many Beauville 3-groups

has been settled in the affirmative in [49] and [25]. In particular, Stix and Vdov-

ina [49, Theorem 2] have showed that there are quotients of the ordinary triangle
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group T = 〈x, y | x3 = y3 = (xy)9 = 1〉 which are Beauville 3-groups of every or-

der greater than or equal to 35. In all these groups, the signature of one of the triples

of the Beauville structure takes the constant value (3, 3, 9). They have also proved

the following theorem, which generalizes the reformulation of Catanese’s criterion

for abelian p-groups .

Theorem 2.1.10. [49, Theorem 3] A split metacyclic p-group G is a Beauville group

if and only if p ≥ 5 and G is a semidirect product of two cyclic groups of the same

order.

Barker, Boston and Fairbairn have determined the smallest non-abelian Beauville p-

group for all primes p. In the below presentations of these groups, we have omitted

all commutators between generators which are trivial.

Theorem 2.1.11. [2, Corollary 9]

(i) For p = 2, SmallGroup(27, 36), that is the group

〈x, y | x4 = y4 = [x, y]2 = [x, y2]
2

= [x2, y]2 = 1〉

of order 27.

(ii) For p = 3, SmallGroup(35, 3), that is the group

〈x, y, z, w, t | x3 = y3 = z3 = w3 = t3 = 1, [y, x] = z, [z, x] = w, [z, y] = t〉

of order 35.

(iii) For p ≥ 5, the group

〈x, y, z | xp = yp = zp = 1, [x, y] = z〉

of order p3.

Also, by using the computer algebra system MAGMA for p = 3, 5 and by giving the

direct proof for p ≥ 7, they have showed that:

Theorem 2.1.12. [2, pages 5,6,9]

(i) There is only one Beauville group of order 35, namely SmallGroup(35, 3).
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(ii) There are only three Beauville groups of order 36, namely SmallGroup(36, n)

for n = 34, 37, 40.

(iii) There is only one Beauville group of order p3 for p ≥ 5, namely the one given

in (iii) above.

In [2], they have also determined all Beauville p-groups of order at most p4, and have

found estimates for the number of Beauville groups of orders p5 and p6.

Theorem 2.1.13. [17, Theorem 4.6] Let G be a finite group of exponent n = pe > 1

for some prime p ≥ 5 such that the abelianization G/G′ ∼= Cn × Cn. Then G is a

Beauville group.

As a corollary of the above theorem, we have the following.

Corollary 2.1.14. [17, Corollary 4.7] Let G be a 2-generator finite p-group of expo-

nent p for some prime p ≥ 5. Then G is a Beauville group.

2.2 General group-theoretical results

In this section, we recall some results which will be required throughout this thesis.

These results will be used without reference in later chapters. Most of them are well

known results and the proofs can be seen in the given references.

Definition 2.2.1. Let G be a group. We define the commutator subgroup G′ to be

G′ = 〈[g, h] = g−1h−1gh | g, h ∈ G〉.

Lemma 2.2.2. [32, pages 113,114] Let G be a group and g, h, k ∈ G. Then the

following identities hold:

(i) [g, h][h, g] = 1.

(ii) [gh, k] = [g, k]h[h, k].

(iii) [g, hk] = [g, k][g, h]k.

Definition 2.2.3. Let G be a group and let H,K ≤ G be subgroups. Then the com-

mutator of H and K, denoted [H,K], is defined to be

[H,K] = 〈[h, k] | h ∈ H, k ∈ K〉.
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Since the generators of [H,K] are the inverses of the generators of [K,H], we have

[H,K] = [K,H].

Lemma 2.2.4. [32, Lemma 4.1] Let G be a group and H,K ≤ G be subgroups.

Then [H,K] E 〈H,K〉.

Lemma 2.2.5. LetG be a group and letN be a normal subgroup ofG such thatG/N

is cyclic. Then G′ = [G,N ].

Proof. Clearly [G,N ] ≤ G′. To prove the other inclusion, it is enough to show that

[g, h] ∈ [G,N ] for any g, h ∈ G. Let G/N = 〈aN〉 for some a ∈ G. Write g = ain1,

h = ajn2 for some n1, n2 ∈ N and for some integers i, j. Then

[g, h] = [ain1, a
jn2] =[ai, ajn2]n1 [n1, a

jn2]

=[ai, n2]n1 [n1, n2][n1, a
j]n2 ∈ [G,N ].

We can define higher commutators as follows.

Definition 2.2.6. Let G be a group and g1, g2, . . . , gn ∈ G. For n > 2, we define

[g1, g2, . . . , gn] = [[g1, g2, . . . , gn−1], gn].

Notation: For any group G and x, y ∈ G, we will use the notation [x,i y] to denote

the higher commutator [x, y, i. . ., y] for i ≥ 1.

Definition 2.2.7. Let G be a group. Let γ1(G) = G and define recursively γi+1(G) =

[γi(G), G] for all i ≥ 1. The chain of normal subgroups

G = γ1(G) ≥ γ2(G) = G′ ≥ γ3(G) ≥ . . .

is called the lower central series of G. If for some n ∈ N, we have γn+1(G) = 1, then

G is said to be nilpotent. The smallest such integer n is said to be nilpotency class of

G.

Theorem 2.2.8. [32, Theorem 4.11] For any group G, [γi(G), γj(G)] ≤ γi+j(G) for

all i, j ≥ 1.
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Theorem 2.2.9. [20, Theorem 1.11] Let G be a group and let N be a normal sub-

group of G. Then γi(G/N) = γi(G)N/N for all i ≥ 1.

Definition 2.2.10. Let G be a group. Let Z0(G) = 1 and Z1(G) = Z(G) and define

Zi(G) inductively as the unique subgroup such thatZi(G)/Zi−1(G) = Z(G/Zi−1(G)).

The chain of normal subgroups

1 = Z0(G) ≤ Z1(G) = Z(G) ≤ Z2(G) ≤ . . .

is called the upper central series of G.

Lemma 2.2.11. [20, Lemma 1.12] Let G be a nilpotent group of class n. Then

γn+1−i(G) ≤ Zi(G) for all 0 ≤ i ≤ n.

Theorem 2.2.12. [20, Theorem 1.13] A group G is nilpotent of class n if and only if

Zn(G) = G and Zn−1(G) 6= G.

Corollary 2.2.13. [20, Corollary 1.14] Any finite p-group is nilpotent.

Definition 2.2.14. For a finite group G, the intersection of its maximal subgroups is

called the Frattini subgroup of G and is denoted by Φ(G).

Theorem 2.2.15. [20, Theorem 1.6] (Burnside’s Basis Theorem) Let G be a finite

p-group. Then

(i) G/Φ(G) is an elementary abelian p-group, and consequently it may be viewed

as a vector space over Fp.

(ii) The set {g1, g2, . . . , gd} is a minimal generating set of G if and only if {g1Φ(G),

. . . , gdΦ(G)} is a basis of G/Φ(G).

(iii) If d is the minimal number of generators of G, then |G : Φ(G)| = pd.

Definition 2.2.16. Let G be a p-group. For any i ≥ 0 we define

Ωi(G) = 〈x ∈ G | xpi = 1〉,

that is, the subgroup generated by the elements of G whose orders are ≤ pi, and

Gpi = 〈xpi | x ∈ G〉.
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It is clear that both Ωi(G) and Gpi are characteristic subgroups of G.

Definition 2.2.17. Let G be a finite group. The exponent of G, denoted by expG, is

the least common multiple of the orders of its elements. If G is a p-group, it is simply

the maximum of the orders of all elements of G.

If expG = pe then xpe = 1 for all x ∈ G, so that Ωe(G) = G and Gpe = 1. Thus we

have the following series :

1 = Ω0(G) ≤ Ω1(G) ≤ · · · ≤ Ωe−1(G) ≤ Ωe(G) = G,

and

G ≥ Gp ≥ · · · ≥ Gpe−1 ≥ Gpe = 1.

Theorem 2.2.18. [20, Theorem 2.4] Let G be a finite p-group and N D G. Then

(G/N)p
i

= GpiN/N for all i ≥ 0.

Theorem 2.2.19. [30, Theorem III.3.14] Let G be a p-group. Then

(i) Φ(G) is the smallest subgroup N of G such that G/N is elementary abelian.

(ii) Φ(G) = G′Gp.

(iii) If N E G then Φ(G/N) = Φ(G)N/N .

The following remarkable formula relates xnyn to (xy)n in any group by using com-

mutators in x and y.

Theorem 2.2.20. [30, Theorem III.9.4 ] (Hall-Petrescu Formula) Let G be a group

and x, y ∈ G. Then there exist elements ci = ci(x, y) ∈ γi(〈x, y〉) such that

xnyn = (xy)nc
(n
2)

2 c
(n
3)

3 . . . c
(n
n)
n

for all n ∈ N.

Under some particular conditions on the group, there is a more interesting formula

that gives an explicit expression for the elements ci(x, y) in the Hall-Petrescu formula.

Lemma 2.2.21. Let G be a group and let x, y ∈ G. Write H = 〈x, y〉 and assume

that 〈y,H ′〉 is abelian. Then for any n ∈ N

(xy)n = xnyn[y, x](
n
2)[y, x, x](

n
3) . . . [y, x, n−1. . . , x](

n
n).
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Proof. First of all, notice that

(xy)n = xnyx
n−1

yx
n−2

. . . yx
2

yxy.

Since yxi = y[y, xi] for any i ∈ N, and 〈y,H ′〉 is abelian, we deduce that

(xy)n = xnyn[y, xn−1][y, xn−2] . . . [y, x].

Next by using induction on i and by taking into account that 〈y,H ′〉 is abelian, it can

be seen that

[y, xi] = [y, x]i[y, x, x](
i
2)[y, x, x, x](

i
3) . . . [y, x, i. . ., x]. (2.2)

Then (2.2) and the relation
∑n−1

i=k

(
i
k

)
=
(
n
k+1

)
for binomial coefficients imply that

(xy)n = xnyn[y, x](
n
2)[y, x, x](

n
3) . . . [y, x, n−1. . . , x](

n
n).

We will use the following results in Chapter 5.

Theorem 2.2.22. [1, Theorem 5.25 ] (Wolstenholme’s Theorem) For any prime

p ≥ 5, we have
p−1∑
k=1

(p− 1)!

k
≡ 0 (mod p2).

Theorem 2.2.23. [16, Theorem 13.6] (Kummers’s Theorem) The power of a prime

p that divides the binomial coefficient
(
n
m

)
is given by the number of "carries" when

we add m and n−m in base p.

We have the following corollary of Kummer’s Theorem.

Corollary 2.2.24. If 1 ≤ i ≤ pl is such that pr ≤ i < pr+1, then the binomial

coefficient
(
pl

i

)
is divisible by pl−r.

We next give the results regarding extensions with cyclic factor group and with abelian

factor group.

Theorem 2.2.25. [54, pages 128,129] (Extension with cyclic factor group) LetN be

a group and let σ : N −→ N be an automorphism of N with the following property:
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(i) There exists a ∈ N such that σ(a) = a and σn(x) = a−1xa for all x ∈ N and

for some n ∈ N.

Then there exists one and only one extension group G of N such that G/N = 〈gN〉
is cyclic of order n, gn = a, and σ(x) = g−1xg for all x ∈ N .

We next state a special case of extensions with abelian factor group.

Theorem 2.2.26. [54, pages 130,133] (Extension with abelian factor group) Let N

be an abelian group. Let ai, ai,k (i, k = 1, 2 . . . r; i 6= k) be elements of N and let σi

be automorphisms of N with the following properties:

(i) σni
i (a) = a for all a ∈ N ,

(ii) σiσk(a) = σkσi(a) for all a ∈ N ,

and ai,kak,i = 1 ,

(iii) (σi − 1)(ak) = (1 + σk + σ2
k + · · ·+ σnk−1

k )(ai,k),

(iv) (σl − 1)(ai,k)(σi − 1)(ak,l)(σk − 1)(al,i) = 1 for i < k < l.

Then there exists an extensionG ofN such thatG/N = 〈s1N〉×〈s2N〉×· · ·×〈srN〉,
where o(siN) = ni and the following relations hold:

1. σi(a) = s−1
i asi for all a ∈ N ,

2. sni
i = ai,

3. [si, sk] = ai,k.

2.3 Some useful lemmas

In this section, we shall give some lemmas which will be used in the proof of the

main theorems.

Lemma 2.3.1. LetG = 〈a, b〉 be a 2-generator p-group and o(a) = p, for some prime

p. Then ( ⋃
g∈G

〈a〉g
)⋂( ⋃

g∈G

〈b〉g
)

= 1.

16



Proof. Let x be an arbitrary element of this intersection such that x = (ai)g = (bj)h

for some g, h ∈ G and i, j ∈ Z. Then in the quotient G = G/Φ(G) = 〈a〉 × 〈b〉, we

have x ∈ 〈a〉 ∩ 〈b〉 = 1 implying that x ∈ Φ(G). On the other hand, x ∈ 〈ag〉, where

ag is of order p and ag /∈ Φ(G). It then follows that x = 1.

Lemma 2.3.2. LetG be a finite p-group and let x ∈ GrΦ(G) be an element of order

p. If t ∈ Φ(G)r {[x, g] | g ∈ G} then( ⋃
g∈G

〈x〉g
)⋂( ⋃

g∈G

〈xt〉g
)

= 1.

Proof. Let h be an arbitrary element of this intersection, that is h = (xi)g1 = ((xt)j)g2

for some g1, g2 ∈ G and i, j ∈ Z. In the quotientG = G/Φ(G), we have h = xi = xj

as t ∈ Φ(G), and so i ≡ j (mod p). Then (xj)g1 = ((xt)j)g2 since o(x) = p.

If p|j, then we are done. Thus we assume that p - j. Since G is a finite p-group,

we have gcd(o(xt), j) = 1, and by Bézout’s identity, there exist some integers k, l

such that o(xt)l + jk = 1. Then (xjk)g1 = ((xt)jk)g2 , that is xg1 = (xt)g2 . Hence

t = [x, g1g2
−1], which is a contradiction.

Lemma 2.3.3. Let G be a group and g ∈ G. Then the set

Z = {[g, x] | x ∈ G} ∩ Z(G)

is a subgroup of G.

Proof. Let [g, x1], [g, x2] ∈ Z for some x1, x2 ∈ G. Then [g, x2x1] = [g, x1][g, x2]x1 =

[g, x1][g, x2] ∈ Z and [g, x1]−1 = [g, x−1
1 ] ∈ Z. Hence Z is a subgroup of G.

Lemma 2.3.4. [23, Lemma 4.2] LetG be a finite group and let {x1, y1} and {x2, y2}
be two sets of generators of G. Assume that, for a given N E G, the following hold:

(i) {x1N, y1N} and {x2N, y2N} is a Beauville structure for G/N ,

(ii) o(u) = o(uN) for every u ∈ {x1, y1, x1y1}.

Then {x1, y1} and {x2, y2} is a Beauville structure for G.
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Proof. Let 1 6= x ∈
(⋃

g∈G 〈u〉
g)⋂ (⋃

g∈G 〈v〉
g), where u ∈ {x1, y1, x1y1} and

v ∈ {x2, y2, x2y2}. Then x = (ui)g1 = (vj)g2 for some g1, g2 ∈ G and 1 ≤ i <

o(u), 1 ≤ j < o(v).

In the quotient G/N , we have xN ∈ 〈uN〉g1N ∩ 〈vN〉g2N . Since {x1N, y1N} and

{x2N, y2N} is a Beauville stucture for G/N , it follows that xN = N , that is x ∈ N .

On the other hand, x = (ui)g1 implies that xg
−1
1 = ui ∈ N ,which contradicts our

assumption that o(u) = o(uN), and hence x = 1. Thus {x1, y1} and {x2, y2} form a

Beauville structure for G.

Recall that by Corollary 2.1.14, a 2-generator finite p-group of exponent p for some

prime p ≥ 5 is a Beauville group. Indeed, we can give a more general result.

Lemma 2.3.5. Let p ≥ 5, and let G be a 2-generator finite p-group such that it has

at least three maximal subgroups of exponent p. Then G has a Beauville structure.

Proof. First of all, our aim is to find a triple so that every element in the triple is of

order p. Let Mi be maximal subgroups of G of exponent p for i = 1, 2, 3. Choose

x ∈ M1 r Φ(G) and y ∈ M2 r Φ(G). Since each element in the set {xyj | 1 ≤ j ≤
p − 1} falls into different maximal subgroups, there exists 1 ≤ j ≤ p − 1 such that

xyj ∈ M3 r Φ(G). Thus if we put x1 = x and y1 = yj , then every element in the

triple {x1, y1, x1y1} is of order p. We choose {x1, y1} as one of the generating sets of

G.

Now let {z, t} be another set of generators of G such that z, t /∈ Mi for i = 1, 2, 3.

Again as in the previous paragraph each element in the set {ztk | 1 ≤ k ≤ p − 1}
falls into different maximal subgroups. Since p ≥ 5, we have p + 1 ≥ 6 maximal

subgroups, and hence there exists 1 ≤ k ≤ p − 1 such that ztk /∈ Mi for i = 1, 2, 3.

Then if we put x2 = z and y2 = tk, then each pair of elements in the set {xi, yi, xiyi |
i = 1, 2} is linearly independent modulo Φ(G).

We claim that {x1, y1} and {x2, y2} form a Beauville structure for G. Set A =

{x1, y1, x1y1} and B = {x2, y2, x2y2}. Since o(a) = p for all a ∈ A, and G = 〈a, b〉
for all b ∈ B, Lemma 2.3.1 implies that 〈ag〉 ∩ 〈bh〉 = 1, for all g, h ∈ G.

We close this section by a remark regarding the order of generators ofG in a Beauville
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structure.

Remark 2.3.6. If {x1, y1} and {x2, y2} form a Beauville structure for G, then the

order of x1 and y1 (similarly the order of x2 and y2) is irrelevant, that is, {y1, x1}
and {x2, y2} also form a Beauville structure for G. Since 〈x1y1〉g ∩ 〈a〉 = 1 for all

a ∈ {x2, y2, x2y2} and y1x1 = x1y
x1
1 , it follows that 〈x1y

x1
1 〉x

−1
1 g ∩ 〈a〉 = 1 for all

g ∈ G.
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CHAPTER 3

p-GROUPS WITH A NICE POWER STRUCTURE

In this chapter, we extend Catanese’s criterion for abelian Beauville groups to finite p-

groups satisfying certain conditions which are much weaker than commutativity. This

result applies to all known families of p-groups with a good behaviour with respect

to powers: regular p-groups, powerful p-groups and more generally potent p-groups,

and (generalized) p-central p-groups. Then we give some applications of the result.

We next focus on Beauville structures of those groups which are not inherited by the

Frattini quotients. In the last section, we give the characterization of regular Beauville

groups without induced Beauville structures.

3.1 Preliminaries

In this section, we present some preliminaries for p-groups with a "nice power struc-

ture". The results can be found with detailed proofs in the given references. Where

results may not be found, the author provides a proof.

Definition 3.1.1. Let G be a finite p-group. We call G a regular p-group if xpyp ≡
(xy)p (mod (〈x, y〉

′
)p) for every x, y ∈ G.

Theorem 3.1.2. [50, Lemma 3.13]

(i) Any p-group of class less than p is regular. In particular, any p-group of order

≤ pp is regular.

(ii) Let G be a p-group. If γp−1(G) is cyclic, then G is regular. Hence if p > 2 and

G′ is cyclic, then G is regular.
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(iii) A regular 2-group is abelian.

The elementary properties of regular p-groups are collected in the following theorem.

Theorem 3.1.3. [50, Theorem 3.14] Let G be a regular p-group. Then the following

properties hold for any i ≥ 0 :

(i) For any x, y ∈ G, we have xp
i

= yp
i

if and only if (x−1y)p
i

= 1.

(ii) Ωi(G) = {x ∈ G | xpi = 1}.

(iii) Gpi = {xpi | x ∈ G}.

(iv) |G : Ωi(G)| = |Gpi |, and consequently also |G : Gpi | = |Ωi(G)|.

Corollary 3.1.4. [20, Corollary 2.11] If a regular p-group is generated by elements

of order pe, then expG ≤ pe.

Another family of p-groups with a nice power structure is powerful p-groups.

Definition 3.1.5. A finite p-group G is called powerful if G′ ≤ Gp for odd prime p,

or if G′ ≤ G4 for p = 2.

Theorem 3.1.6. [ [35], Theorem 11.10, [21], Theorem 1 and Theorem 4] Let G be a

powerful p-group. Then the following properties hold for any i ≥ 0:

(i) Gpi = {xpi | x ∈ G}.

(ii) If p is odd, then Ωi(G) = {x ∈ G | xpi = 1}.

(iii) |G : Gpi | = |Ω{i}(G)|.

Lemma 3.1.7. [21, Lemma 3] Let G be a powerful p-group of exponent pe. Then for

every 0 ≤ i ≤ e− 1, and every x ∈ G, y ∈ Gpe−i−1
, we have (xy)p

i
= xp

i
yp

i
.

If G is a powerful p-group of exponent pe, then Lemma 3.1.7 implies that for any

x, y ∈ G, xpe−1
= yp

e−1 if and only if (x−1y)p
e−1

= 1.

Theorem 3.1.8. [40, Corollary 1.9] Let G = 〈g1, g2, . . . , gn〉 be a powerful p-group.

Then for any i ≥ 1, we have Gpi = 〈gp
i

1 , g
pi

2 , . . . , g
pi

n 〉.
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We next define a family of finite p-groups which are in many respect dual to powerful

p-groups.

Definition 3.1.9. Let G be a finite p-group. We call G p-central if Ω1(G) ≤ Z(G)

for odd prime p, or if Ω2(G) ≤ Z(G) for p = 2.

It is clear that the property of being p-central or regular is hereditary for subgroups.

On the other hand, subgroups of a powerful p-group need not be powerful. The

property of being regular or powerful is clearly inherited by quotients, but quotients

of a p-central p-group are not necessarily p-central.

Next we consider a family of p-groups which are generalizations of p-central p-

groups.

Definition 3.1.10. Let G be a finite p-group. We call G generalized p-central if

Ω1(G) ≤ Zp−2(G) for odd prime p, or if Ω2(G) ≤ Z(G) for p = 2.

Clearly, every subgroup of a generalized p-central p-group is generalized p-central.

Theorem 3.1.11. [27, Theorem B] Let G be a generalized p-central p-group. Then

for all i ≥ 1

(i) Ωi(G) = {x ∈ G | xpi = 1}.

(ii) G/Ωi(G) is also a generalized p-central p-group.

Definition 3.1.12. Let i be any positive integer. We call a finite p-group G semi-pi-

abelian if for any x, y ∈ G, xp
i

= yp
i

if and only if (x−1y)p
i

= 1.

Definition 3.1.13. We call a finite p-group G strongly semi-p-abelian, if G is semi-

pi-abelian for every positive integer i.

The following lemma contains some elementary properties of semi-pi-abelian p-groups.

Lemma 3.1.14. [52, Lemma 1] Let G be a finite semi-pi-abelian p-group. Then the

following properties hold:

(i) Ωi(G) = {x ∈ G | xpi = 1}.
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(ii) [x, y]p
i

= 1 if and only if [xp
i
, y] = 1 if and only if [x, yp

i
] = 1.

(iii) |G : Ωi(G)| = |{xpi | x ∈ G}|.

By Theorem 3.1.3, regular p-groups are strongly semi-p-abelian. On the other hand,

as a consequence of Lemma 3.1.7, a powerful p-group of exponent pe is semi-pe−1-

abelian, and note that it need not be strongly semi-p-abelian. We next show that a

generalized p-central p-group G is strongly semi-p-abelian. This applies in particular

to p-central p-groups. We start by proving that G is semi-p-abelian.

Theorem 3.1.15. A generalized p-central p-group is semi-p-abelian.

Proof. We prove the theorem by induction on |G|. We assume that the conclusion

holds for any p-group of order less than |G|.

Claim 1: If a, b ∈ G and ap = bp, then (a−1b)p = 1.

Set H = 〈a, b〉. If H < G then by induction hypothesis, H is semi-p-abelian, and

hence we are done. Thus we assume that G = 〈a, b〉. Since ap = bp, we have

[ap, b] = 1, that is ap = (b−1ab)p. If we set K = 〈a, b−1ab〉, then K is a proper

subgroup of G. The induction hypothesis implies that K is semi-p-abelian, so we get

(a−1b−1ab)p = [a, b]p = 1. Since G is a 2-generator p-group generated by a and b, we

have G′ = 〈[a, b]g | g ∈ G〉, where all generators of G′ are of order p. It then follows

that G′ ≤ Ω1(G). If p is odd, then G′ ≤ Zp−2(G), and γp(G) = [G′, G, p−2. . ., G] = 1.

Thus G is regular, by Theorem 3.1.2, and hence (a−1b)p = 1. If p = 2 then, since

a2 = b2, we have G/G′ = C/G′ ×D/G′ with C/G′ and D/G′ cyclic, and D/G′ ∼=
C2. Then D ≤ Ω2(G) ≤ Z(G) and G/Z(G) is cyclic. Thus G is abelian and the

result is valid also in this case.

Claim 2: If a, b ∈ G and (a−1b)p = 1, then ap = bp.

We may assume that G = 〈a, b〉. Since (a−1b)p = 1, we have [(a−1b)p, a] = 1, that

is (a−1b)p = ((a−1b)p)a = ((a−1b)a)p = (a−2ba)p. By Claim 1, we get [b, a]p = 1.

Consequently again G′ ≤ Ω1(G) and then, as above, G is regular if p is odd, or

abelian if p = 2. Then the result holds.

Theorem 3.1.16. A generalized p-central p-group is strongly semi-p-abelian.
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Proof. Given a, b ∈ G, we prove that api = bp
i if and only if (ab−1)p

i
= 1 by

induction on i ≥ 1. By Theorem 3.1.15, the results holds for i = 1. Thus we con-

sider the case i > 1. Since G is semi-p-abelian, we have api = bp
i if and only if

(ap
i−1
b−p

i−1
)p = 1 which is in turn equivalent to api−1

Ω1(G) = bp
i−1

Ω1(G). Now,

G/Ω1(G) is again a generalized p-central p-group, by Theorem 3.1.11. By the induc-

tion hypothesis, the last equality is equivalent to (ab−1)p
i−1 ∈ Ω1(G), and this means

exactly that (ab−1)p
i

= 1, since Ω1(G) = {x ∈ G | xp = 1}.

Finally, we define a class of p-groups which are generalizations of powerful p-groups.

Definition 3.1.17. Let G be a finite p-group. We call G potent if γp−1(G) ≤ Gp for

p > 2, or G′ ≤ G4 for p = 2.

Potent p-groups can be seen as the dual analogue of generalized p-central p-groups.

Also, the property of being potent is clearly inherited by quotients. Note also that if

p = 2 or 3, then a potent p-group is a powerful p-group.

Definition 3.1.18. Let G be a finite p-group. We call G power abelian if it satisfies

the following three properties for any i ≥ 0:

(i) Ωi(G) = {x ∈ G | xpi = 1}.

(ii) Gpi = {xpi | x ∈ G}.

(iii) |Gpi| = |G : Ωi(G)|.

Theorem 3.1.19. [26, Theorem 1.1] Let p be odd, and let G be a potent p-group. If

N E G then N is power abelian.

Potent p-groups are not in general strongly semi-p-abelian. Indeed, they need not be

even semi-pe−1-abelian as powerful p-groups, given that expG = pe.

Example 3.1.20. Let p > 3 be a prime and let

A = 〈a1〉 × 〈a2〉 × · · · × 〈ap〉 ∼= Cp × p−2. . . × Cp × Cp2 × Cp2 .

be an abelian group.
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We define an automorphism α of A by means of

α(ai) = aiai+1, for i = 1, . . . , p− 3,

α(ap−2) = ap−2a
p
p−1,

α(ap−1) = ap−1ap,

α(ap) = ap.

If we set xi = ai for i = 1, . . . , p − 2, xp−1 = app−1, xp = app and xi = 1 for i > p,

then we have α(xi) = xixi+1. Since every xi is of order at most p, we get

αp(xi) = xix
(p
1)
i+1x

(p
2)
i+2 . . . x

( p
p−1)
i+p−1xi+p = xi

for all i ≥ 1. Also,

αp(ap−1) = ap−1a
p
p.

It then follows that αp2(ap−1) = ap−1. Thus α is an automorphism of A of order p2.

Let G = A o 〈b〉, where b is of order p2 and acts on A via α. Then we have G′ =

〈a2, a3, . . . , ap−2, a
p
p−1, ap〉, and γi(G) = 〈ai, ai+1, . . . , ap−2, a

p
p−1, a

p
p〉 for 3 ≤ i ≤

p− 2. Thus γp−1(G) = 〈app−1, a
p
p〉 ≤ Gp, and hence G is potent. Furthermore, it is a

3-generator potent p-group as G = 〈b, A〉 = 〈b, a1, . . . , ap−1, ap〉 = 〈b, a1, ap−1〉.

We will show that expG = p2. If we set N = 〈bp, a1, . . . , ap−2, a
p
p−1, a

p
p〉 ≤ G, then

we see that N is an abelian normal subgroup of exponent p. Since αp(xi) = xi for all

i ≥ 1, bp commutes with all xi, and hence N is abelian. Then we have expN = p,

since N is abelian and each generator of N is of order p. To show N E G, we only

need to show that [bp, a] ∈ N for all a ∈ A. Now

[bp, ai] = ai, for i = 1, . . . , p− 2,

[bp, ap−1] = app, [bp, ap] = 1.

Hence we conclude that N is normal in G. We next consider the quotient group

G = G/N = 〈b, ap−1〉. Since [b, ap−1] = ap ∈ Z(G), this implies that G is of class

2 < p. Thus by Theorem 3.1.2, G is a regular p-group in which each generator is

of order p. Then according to Corollary 3.1.4, expG = p, and this, together with

expN = p, yields that expG = p2.

26



We next show that G is not semi-p-abelian. Observe that 〈a1, G
′〉 is abelian. Then by

Lemma 2.2.21, we have

(ba1)p = bpap1[a1, b]
(p
2)[a1, b, b]

(p
3) . . . [a1, b, p−1. . ., b](

p
p)

= bpapp = (bap)
p.

The last equality is due to the fact that ap ∈ Z(G). On the other hand, (a−1
p b−1ba1)p =

(a−1
p a1)p = a−pp 6= 1.

Hence G is a 3-generator potent p-group of exponent p2 which is not semi-p-abelian.

3.2 Main result

Recall that Catanese’s criterion for abelian Beauville groups implies that a 2-generator

abelian p-group of exponent pe is a Beauville group if and only if p ≥ 5 and |Gpe−1| =
p2. In this section, we give a generalization of this result to a wide class of finite p-

groups with a nice power structure. Then we will give a number of application of this

result.

We start with a proposition that can be used to prove the non-existence of Beauville

structures.

Proposition 3.2.1. Let G be a 2-generator finite p-group of exponent pe, and suppose

that:

(i) Ω{e−1}(G) is contained in the union of two maximal subgroups of G.

(ii) |Gpe−1 | = p.

Then G is not a Beauville group.

Proof. We argue by way of contradiction. Suppose {x1, y1} and {x2, y2} are two

systems of generators of G such that Σ(x1, y1) ∩ Σ(x2, y2) = 1. Since no two of the

elements x1, y1 and x1y1 can lie in the same maximal subgroup of G, it follows from

(i) that one of these elements, say x1, is of order pe. Similarly, we may assume that the

order of x2 is also pe. Since Gpe−1 is of order p, we conclude that 〈xp
e−1

1 〉 = 〈xp
e−1

2 〉,
which is a contradiction.
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We will see later in Chapter 5 that we cannot relax condition (i) in Proposition 3.2.1,

since there are examples of groups G in which Ω{e−1}(G) is contained in the union of

three maximal subgroups, and which are Beauville groups even if Gpe−1 is of order p.

We next give the main result of this chapter which can be applied to all classes of

finite p-groups given in Section 3.1.

Theorem 3.2.2. Let G be a 2-generator finite p-group of exponent pe such that one

of the following conditions holds:

(i) G is semi-pe−1-abelian, i.e. for every x, y ∈ G

xp
e−1

= yp
e−1

if and only if (xy−1)p
e−1

= 1. (3.1)

(ii) G is a potent p-group.

Then G is a Beauville group if and only if p ≥ 5 and |Gpe−1| ≥ p2. If that is the case,

then every lift of a Beauville structure in G/Φ(G) yields a Beauville structure of G.

Proof. First of all, notice that if (3.1) holds in G, then according to Lemma 3.1.14,

Ωe−1(G) = {g ∈ G | gpe−1
= 1}. It then follows from (3.1) that xpe−1

= yp
e−1 if and

only if Ωe−1(G)x = Ωe−1(G)y, and therefore the cardinality of the set

X = {gpe−1 | g ∈ G}

coincides with the index |G : Ωe−1(G)|.

Let us first show that G is a Beauville group if p ≥ 5 and |Gpe−1| ≥ p2. We claim that

Ωe−1(G) is contained in Φ(G). Since Φ(G) = G′Gp ⊆ G′Ωe−1(G), we have

|G/Ωe−1(G) : (G/Ωe−1(G))′| = |G : G′Ωe−1(G)|

= |G : Φ(G)Ωe−1(G)| ≤ |G : Φ(G)| = p2.
(3.2)

If |G/Ωe−1(G) : (G/Ωe−1(G))′| ≤ p, then the quotient G/Ωe−1(G) is cyclic, and so

it has order at most p. If (3.1) holds in G, then by the first paragraph of the proof, we

have |X| ≤ p, and then the subgroup Gpe−1 coincides with X . If G is potent, then by

Theorem 3.1.19, it is power abelian, and hence |G : Ωe−1(G)| = |Gpe−1 |, and Gpe−1

coincides with X . Thus in both cases |Gpe−1| ≤ p, contrary to our assumption. Thus
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we have |G/Ωe−1(G) : (G/Ωe−1(G))′| ≥ p2, and this, together with (3.2), yields that

Φ(G)Ωe−1(G) = Φ(G), i.e. that Ωe−1(G) ⊆ Φ(G). This proves the claim.

Since p ≥ 5, the elementary abelian group G/Φ(G) is a Beauville group. Let us

see that every Beauville structure of G/Φ(G) lifts to a Beauville structure of G. If

we use the bar notation in G/Φ(G), it suffices to show that, given two elements

x, y ∈ G r Φ(G), the condition 〈x〉 ∩ 〈y〉 = 1 implies that 〈x〉 ∩ 〈y〉 = 1. Observe

that x and y are of order pe, since Ωe−1(G) ⊆ Φ(G).

Case 1: We first assume that (3.1) holds inG. If 〈x〉∩〈y〉 6= 1 then 〈xpe−1〉 = 〈ype−1〉,
and consequently xpe−1

= yip
e−1 for some integer i not divisible by p. According to

(3.1), we have xy−i ∈ Ωe−1(G) and consequently 〈x〉 = 〈y〉, which is a contradiction.

Case 2: We next assume that G is potent. Notice that a maximal subgroup M of G is

power abelian, according to Theorem 3.1.19, and hence |M : Mpe−1| = |Ωe−1(M)|.
Also, Ωe−1(G) ≤ Φ(G) ≤ M implies that Ωe−1(M) = Ωe−1(G). Thus we have

|G : Gpe−1| = |M : Mpe−1|, and so |Gpe−1
: Mpe−1| = p. Let us see that for every

g ∈ G rM , we have gpe−1 ∈ Gpe−1 rMpe−1 . If gpe−1 ∈ Mpe−1 then in the quotient

G = G/Mpe−1 , we have g ∈ Ωe−1(G), and this, together with M ≤ Ωe−1(G), yields

that G = 〈g,M〉 ≤ Ωe−1(G). Since G is also potent, the exponent of Ωe−1(G) is at

most pe−1, and henceG
pe−1

= 1, that isGpe−1 ≤Mpe−1 . This contradicts the property

that |Gpe−1
: Mpe−1| = p.

Let x ∈ M for some maximal subgroup M of G. If 〈x〉 ∩ 〈y〉 6= 1 then 〈xpe−1〉 =

〈ype−1〉, and so xipe−1
= yp

e−1 for some i not divisible by p. This implies that ype−1 ∈
Mpe−1 , which is a contradiction, since 〈x〉 ∩ 〈y〉 = 1 in G/Φ(G), we have y /∈M .

Thus we complete the proof of the first implication in the statement of the theorem.

Let us now prove the converse. Since Ω{e−1}(G) is a subgroup of G and expG = pe,

it follows from Proposition 3.2.1 that we only need to prove that G has no Beauville

structure if p = 2 or 3, provided that |Gpe−1| ≥ p2. Observe that since we assume

that |Gpe−1 | ≥ p2, we have Ωe−1(G) ⊆ Φ(G), as shown above. Hence all elements

of G r Φ(G) are of order pe. Also note that if G is potent and p = 2 or 3, then G

is powerful p-group and consequently satisfies the condition (3.1). Thus it suffices to

prove the result in case (i). We are going to show that if (3.1) holds in G, a Beauville
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structure of G induces, by passing to the quotient, a Beauville structure in G/Gp.

However, if p = 2 then G/G2 is abelian of order 4, and if p = 3 then G/G3 is of

order at most 33 by [47, 14.2.3]. Since there is no abelian Beauville 2-group and the

smallest Beauville 3-group is of order 35, G/Gp does not have a Beauville structure

in both cases.

So let us see that if (3.1) holds in G, then a Beauville structure of G is inherited by

G/Gp. To this purpose, we see that, given x, y ∈ G r Φ(G), the condition 〈x〉 ∩
〈y〉 = 1 implies that 〈x〉 ∩ 〈y〉 = 1 in G/Gp. Otherwise, we have 〈x〉 = 〈y〉, and

consequently xy−i ∈ Gp for some i not divisible by p. Since Gp is generated by

{gp | g ∈ G} ⊆ Ω{e−1}(G), it follows that (xy−i)p
e−1

= 1. By (3.1), we have

xp
e−1

= yip
e−1 . Since x and y are of order pe, this implies that 〈x〉 ∩ 〈y〉 6= 1, which

is a contradiction.

The following corollary is an immediate consequence of Theorem 3.2.2.

Corollary 3.2.3. Let G be a finite p-group, and suppose that G belongs to one of the

following families:

(i) Regular p-groups, and in particular groups of order at most pp.

(ii) Potent p-groups, and in particular powerful p-groups.

(iii) Generalized p-central p-groups, and in particular p-central p-groups.

ThenG is a Beauville group if and only if p ≥ 5 and |Gpe−1| ≥ p2, where expG = pe.

The next result shows that, under the hypothesis of Theorem 3.2.2, the condition

|Gpe−1| ≥ p2 can be easily determined if G has a reasonably good presentation.

Proposition 3.2.4. Let G = 〈a, b〉 be a finite p-group of exponent pe which is either

semi-pe−1-abelian or potent. Then |Gpe−1| ≥ p2 if and only if |〈ape−1
, bp

e−1〉| ≥ p2.

Proof. First of all, notice that at least one of a or b is of order pe. Otherwise, a, b ∈
Ωe−1(G) = {g ∈ G | gpe−1

= 1}. This implies that G ≤ Ωe−1(G), and hence

expG ≤ pe−1, which is a contradiction.
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It is clear that the condition |〈ape−1
, bp

e−1〉| ≥ p2 implies |Gpe−1| ≥ p2. To prove the

converse, suppose, to the contrary, that |〈ape−1
, bp

e−1〉| = p. Then we have one of the

following cases:

(i) ape−1
= 1 or bpe−1

= 1.

(ii) ape−1 6= 1 and bpe−1 6= 1.

If (ii) holds, then bpe−1
= aip

e−1 for some integer i not divisible by p. If G is semi-

pe−1-abelian, then it follows that (ba−i)p
e−1

= 1, and hence ba−i can play the role

of b in (i). If G is potent, then as in the proof of Theorem 3.2.2, the condition

bp
e−1

= aip
e−1 implies that a and b lie in the same maximal subgroups, which is a

contradiction. Thus in both cases, we may assume that ape−1 6= 1 and bpe−1
= 1.

We next show that Φ(G) ≤ Ωe−1(G). Recall that Φ(G) = G′Gp and Gp ≤ Ωe−1(G).

Thus we only need to see that G′ = 〈[a, b]g | g ∈ G〉 ≤ Ωe−1(G). Since [a, b] =

(b−1)ab ∈ Ωe−1(G) and Ωe−1(G) E G, we have G′ ≤ Ωe−1(G), and hence Φ(G) ≤
Ωe−1(G). Indeed, Φ(G) is a proper subgroup of Ωe−1(G), since b ∈ Ωe−1(G)rΦ(G).

Thus we have |G : Ωe−1(G)| = |{gpe−1 | g ∈ G}| = p. This implies that the subgroup

Gpe−1 coincides with the set {gpe−1 | g ∈ G}, and consequently |Gpe−1| = p, contrary

to our assumption that |Gpe−1| ≥ p2.

Observe that the condition |〈ape−1
, bp

e−1〉| ≥ p2 is tantamount to the fact that the two

subgroups 〈ape−1〉 and 〈bpe−1〉 are different and non-trivial.

In [2], it was proved that if p > 3 then there are at least p+8 Beauville groups of order

p5. Then the authors conjecture that the two non-isomorphic groups of order p5 under

the names H3 and H4 in that paper are Beauville for p ≥ 5 and, as a consequence,

that there are exactly p + 10 Beauville groups of order p5 for p ≥ 5. This can be

shown easily by using Proposition 3.2.4. Indeed, both H3 and H4 can be described in

the form

G = 〈a, b, c | ap2 = bp
2

= cp = [b, c] = 1, [a, b] = c, [a, c] = brp〉,

where r is not divisible by p. Observe that G = 〈a, b〉. Since expG = p2 and

〈ap〉 6= 〈bp〉 are non-trivial, and consequently G is a Beauville group.
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For groups of class less than p (so in particular for groups of order at most pp), we can

further simplify the determination of whether the group is Beauville or not by using

the Lazard Correspondence. Recall that the Lazard Correspondence uses the Baker-

Campbell-Hausdorff formula to establish a one-to-one correspondence between finite

p-groups of class less than p and nilpotent Lie rings of p-power order of class less

than p (see [35, Section 10.2]). The underlying set for both the group and the Lie ring

is the same, and it turns out that the nth power of an element in the group coincides

with its nth multiple in the Lie ring. Thus if G = 〈a, b〉, we can check the conditions

in Proposition 3.2.4 by working in the Lie ring instead of in the group, i.e. we have to

check whether 〈pe−1a〉 and 〈pe−1b〉 are different and non-trivial. This is particularly

interesting for p-groups of small order, since their classification relies in classifying

first nilpotent Lie rings of the same order and then applying the Lazard correspon-

dence. For example, this is the procedure followed in [45] and [46] to determine all

groups of orders p6 and p7 for p ≥ 7. By using the presentations of the nilpotent

Lie rings of order p6 provided in [51], we have obtained that the number of Beauville

groups of order p6 is

4p+ 20 + 4 gcd(p− 1, 3) + gcd(p− 1, 4)

for p ≥ 7. Since the total number of 2-generator groups of order p6 is

10p+ 62 + 14 gcd(p− 1, 3) + 7 gcd(p− 1, 4) + 2 gcd(p− 1, 5),

it follows that the ratio between the number of Beauville groups and the number of

all 2-generator groups of order p6 tends to 2/5 as p → ∞. Note that in [2], the

authors could only say that this limit is smaller than 1, by finding p−1 non-Beauville

2-generator groups of order p6.

As an illustration of our method, let us consider the following two nilpotent Lie rings

of order p6 taken from [51]:

L1 = 〈a, b | p2a, pb− [b, a, a], p-class 3〉

and

L2 = 〈a, b | pa− [b, a, a, a], pb− [b, a, a, a], [b, a, a, b],

[b, a, b, b] + [b, a, a, a], p-class 4〉.
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Clearly, in both L1 and L2, the elements a and b are of order p2, which is the exponent

of the additive group of the Lie ring. In the first case, 〈pa〉 and 〈pb〉 are different

subgroups, while in the second case they are equal. Thus L1 gives rise to a Beauville

group under the Lazard correspondence, while L2 does not.

It would be equally possible to calculate the exact number of Beauville groups of

order p7, for p ≥ 7, but we have not pursued that task.

As a final application of Theorem 3.2.2, we extend the characterization given in [49,

Theorem 4] of split metacyclic Beauville p-groups to all metacyclic p-groups.

Corollary 3.2.5. A metacyclic p-group G is a Beauville group if and only if p ≥ 5

and G is a semidirect product of two cyclic groups of the same order.

Proof. Let G = 〈a, b〉 with 〈a〉 E G. Assume first that p is odd, and let expG = pe.

Then G′ is cyclic and G is regular by Theorem 3.1.2. Thus G is semi-pe−1-abelian

and then, by Proposition 3.2.4, G is a Beauville group if and only if p ≥ 5 and the

subgroups 〈ape−1〉 and 〈bpe−1〉 are non-trivial and different. This means that G =

〈b〉n 〈a〉 is a semidirect product with a and b of the same order.

Now we consider the case p = 2. We have to prove that G is not a Beauville group.

If G′ ≤ G4 then G is powerful, and the result follows from Corollary 3.2.3. Thus we

assume that G′ is not contained in G4, i.e. that G′ = 〈a2〉. We claim that, for every set

{x, y} of generators, we have bG′ ⊆ Σ(x, y). This proves that G is not a Beauville

group also in this case. Since G has only three maximal subgroups, we may assume

that x ∈ 〈b〉G2 r G2. Since G2 = 〈b2〉G′, we can write x = biw with i odd and

w ∈ G′. Then there is a power of x of the form x∗ = bw∗, for some w∗ ∈ G′. Now

observe that

G′ = 〈[x∗, a]〉 = {[x∗, a]i | i ∈ N} = {[x∗, ai] | i ∈ N},

and consequently the conjugacy class of x∗ equals x∗G′ = bG′. This proves that bG′

is contained in Σ(x, y), as desired.

We next show that the assumptions (i) or (ii) are essential in Theorem 3.2.2. Indeed,

for a general finite p-group G, the condition that |Gpe−1 | ≥ p2 is neither sufficient nor
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necessary for G to be a Beauville group. We show this in Corollary 3.2.7, by using

quotients of some infinite pro-p groups that we define now.

Let k ≥ 1 be a fixed integer, and consider the ring of integers R of the cyclotomic

field Qp(ζ), where Qp is the field of p-adic numbers and ζ is a primitive pkth root

of unity. Then R = Zp[ζ] is a discrete valuation ring and a free Zp-module of rank

pk−1(p− 1). Also, the element ζ − 1 is a uniformizer, and we have

(p) = (ζ − 1)p
k−1(p−1). (3.3)

Multiplication by ζ defines an automorphism of order pk of the additive group of R,

which can be used to construct a split extension ofR by Cpk . In order to avoid mixing

additive and multiplicative notation, we consider a multiplicative copy A of R, via an

isomorphism ϕ : A → R. If C = 〈t〉 is a cyclic group of order pk, then we define

Pk = C n A, where the action of t on A corresponds under ϕ to multiplication by ζ ,

that is, ϕ(at) = ζϕ(a) for all a ∈ A. Observe that Pk is a 2-generator pro-p group,

topologically generated by t and by a1 = ϕ−1(1). Also, we have P ′k = [A, t], which

corresponds to the ideal (ζ−1) ofR under ϕ. More generally, the lower central series

of Pk consists of the subgroups [A, t, . . . , t], and the action of C on A is uniserial. In

particular, if k = 1 then we get the only infinite pro-p group of maximal class.

As we next see, the pro-p groups Pk are a source of infinitely many Beauville p-

groups.

Theorem 3.2.6. Let p ≥ 5 be a prime and let k ≥ 1 be an integer. If N is a normal

subgroup of Pk of finite index andN ≤ Ap, then the factor group Pk/N is a Beauville

group.

Proof. By [14, Theorem 1.17], N is open in Pk, and consequently, Pk/N is a 2-

generator p-group. For every a ∈ A, we have

(ta)p
k

= tp
k

a
∑pk−1

i=0 ti . (3.4)

Since ζ is a primitive pkth root of unity and tpk = 1, it follows that (ta)p
k

= 1. Now

the image of ta in Pk/A is of order pk, and consequently taN is of order pk in Pk/N

as well.
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Let a, b ∈ A and assume that the subgroups generated by taN and tbN have non-

trivial intersection. Then these subgroups have the same pk−1st power, and it readily

follows that (taN)p
k−1

= (tbN)p
k−1 . By a calculation similar to (3.4), we get

a
∑pk−1−1

i=0 ti ≡ b
∑pk−1−1

i=0 ti (mod N),

and then the same congruence holds modulo Ap. It follows that

( pk−1−1∑
i=0

ζ i
)

(ϕ(a)− ϕ(b)) ≡ 0 (mod p) (3.5)

in R. Now in the polynomial ring Fp[X] we have

pk−1−1∑
i=0

X i = (X − 1)p
k−1−1,

and consequently
pk−1−1∑
i=0

ζ i ≡ (ζ − 1)p
k−1−1 (mod p).

If we replace this into (3.5) and use (3.3), we get

ϕ(a)− ϕ(b) ∈ (ζ − 1)p
k−2pk−1+1.

In particular, ϕ(a)− ϕ(b) ∈ (ζ − 1) or, what is the same, a ≡ b (mod P ′k).

Now, by the previous paragraph, if x, y ∈ {t, ta1, . . . , ta
p−1
1 } and x 6= y, then 〈xN〉∩

〈yN〉 = 1. Since xN and yN are generators of Pk/N and p ≥ 5, we conclude that

Pk/N is a Beauville group.

Corollary 3.2.7. Let p ≥ 5 be a prime. Then, for each of the implications in the

criterion for Beauville groups given in Theorem 3.2.2, there exist infinitely many 2-

generator p-groups (and even infinitely many p-groups of maximal class) for which

the implication fails.

Proof. Consider arbitrary integers e > k ≥ 1, and let N be a normal subgroup of Pk

such that |Ape−1
: N | = p. By Theorem 3.2.6, G = Pk/N is a Beauville group. In

the proof of that theorem, we have seen that all elements of the form taN with a ∈ A
are of order pk. It readily follows that every element of Pk r A is of order at most pk

when passing to G. Thus expG = pe and Gpe−1
= Ap

e−1
/N is of order p. This shows

that the ‘only if’ part of Theorem 3.2.2 fails for G.
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Let us construct a family of groups for which the ‘if’ part fails. Take again e > k ≥ 1,

and consider now N E Pk lying between Ape−1 and Ape , and such that |Ape−1
: N | =

pm ≥ p2. Let L E Pk be an intermediate subgroup between N and Ape−1 such that

|L : N | = p. Thus L/N ≤ Z(Pk/N). Let us write H = A/N and Z = L/N .

By using the theory of cyclic extensions [54, Section 3.7], we can get a new group

G = 〈u,H〉, where the action of u onH is again the one induced by multiplication by

ζ , but upk ∈ Z r 1. Observe that G is a 2-generator group. A calculation as in (3.4)

shows that every x ∈ uH is now of order pk+1, and 〈xpk〉 = Z. Also, all elements

of G rH are of order at most pk+1. Then expG = pe and |Gpe−1| = pm. Now, any

set {x, y} of generators of G must contain an element, say x, outside the maximal

subgroup 〈up〉H , and then a power of x will be in uH . Consequently, Z ⊆ Σ(x, y)

and G cannot be a Beauville group.

We end this section by showing that it is not possible to find a variation of Theorem

3.2.2 which ensures the existence of Beauville structures in an arbitrary finite p-group,

even if we strengthen the requirement on the size ofGpe−1 . Indeed, for every power of

p there are non-Beauville p-groups for which the order of Gpe−1 is exactly that power.

Corollary 3.2.8. For every prime p ≥ 5, and positive integer m, there exists a 2-

generator p-group G such that:

1. If expG = pe then |Gpe−1 | = pm.

2. G is not a Beauville p-group.

Proof. LetG = Pk/N be as in the second part of the proof of the last corollary. Since

logp |Ap
e−1

: Ap
e| = pk−1(p − 1), we can make |Ape−1

: N | as large as we want by

taking k big enough. This gives the desired groups.

3.3 Beauville structures which are not inherited by the Frattini quotient

In the previous section, by Theorem 3.2.2, we prove that if G is a 2-generator finite

p-group of exponent pe satisfying condition (3.1) for every x, y ∈ G, then G is a
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Beauville group if and only if p ≥ 5 and |Gpe−1| ≥ p2. Indeed, every lift of a

Beauville structure in G/Φ(G) yields a Beauville structure of G.

In this section, we want to determine if there is a Beauville structure of G which does

not reduce to a Beauville structure of G/Φ(G). To this purpose, we will concentrate

on the index |G : Ωe−1(G)|.

Lemma 3.3.1. LetG be a Beauville p-group of exponent pe satisfying condition (3.1).

If |G : Ωe−1(G)| ≤ p3, then every Beauville structure of G is inherited by G/Φ(G).

Proof. First of all, notice that the conditions |Gpe−1| ≥ p2 and (3.1) imply that

Ωe−1(G) ≤ Φ(G), as shown in the proof of Theorem 3.2.2. Thus we have |G :

Ωe−1(G)| = p2 or p3.

We will see that every Beauville structure of G can be inherited by the quotient

group G/Ωe−1(G). To this purpose, we need to show that, given two elements

x, y ∈ GrΦ(G), the condition 〈x〉∩〈y〉 = 1 implies that 〈x〉∩〈y〉 = 1 inG/Ωe−1(G).

Otherwise, we have 〈x〉 = 〈y〉 in G/Ωe−1(G), since expG/Ωe−1(G) = p. This im-

plies that xy−i ∈ Ωe−1(G) for some i not divisible by p, and hence (xy−i)p
e−1

= 1.

Then it follows from (3.1) that xpe−1
= yip

e−1 . Since x and y are of order pe, we have

〈x〉 ∩ 〈y〉 6= 1, which is a contradiction.

If |G/Ωe−1(G)| = p2 then Ωe−1(G) coincides with Φ(G), and by the previous para-

graph, we are done. If |G/Ωe−1(G)| = p3 then the quotient group G/Ωe−1(G) is

extraspecial, since it is non-abelian. Recall that a p-group P is said to be extraspecial

if Φ(P ) = P ′ = Z(P ) and |Z(P )| = p. If x ∈ PrΦ(P ) then there exists g ∈ P such

that [x, g] 6= 1, and hence P ′ = 〈[x, g]〉 = {[x, gi] | i = 0, 1, . . . , p − 1}. Thus, the

derived subgroup of an extraspecial group is covered by commutators of any element

outside the Frattini subgroup.

Let {x1, y1} and {x2, y2} form a Beauville structure for G = G/Ωe−1(G). If we set

A = {x1, y1, x1y1} and B = {x2, y2, x2y2}, then the previous paragraph, together

with p ≥ 5, implies that a and b are linearly independent modulo Φ(G) for every

a ∈ A and b ∈ B. Thus, every Beauville structure of G/Ωe−1(G) is inherited by the

Frattini quotient G/Ωe−1(G)
/

Φ(G/Ωe−1(G)) ∼= G/Φ(G).
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In order to prove Theorem 3.3.3, we need the following lemma.

Lemma 3.3.2. Let G be a 2-generator p-group of order pn ≥ p4. Then there exist

x ∈ Gr Φ(G) and u ∈ Φ(G)r {[x, g] | g ∈ G}.

Proof. Note that a p-group has maximal class if and only if it has an element with

centralizer of order p2 (see [30, III.14.23]). Thus if G is not a group of maximal

class, then for any x ∈ G r Φ(G) we have |CG(x)| ≥ p3. On the other hand, if G

is a group of maximal class and we write Gi = γi(G) for i ≥ 2, then the subgroup

G1 = CG(G2/G4) is a maximal subgroup of G. In this case, for any x ∈ G1rΦ(G),

we have |CG(x)| ≥ p3. Thus in both cases we get

|{[x, g] | g ∈ G}| = |ClG(x)| = |G : CG(x)| ≤ pn−3.

Since |Φ(G)| = pn−2, there exists u ∈ Φ(G) such that u /∈ {[x, g] | g ∈ G}.

Theorem 3.3.3. Let G be a Beauville p-group of exponent pe satisfying condition

(3.1). Then G has a Beauville structure which is not inherited by G/Φ(G) if and only

if |G : Ωe−1(G)| ≥ p4.

Proof. One of the implications in the statement of the theorem follows directly from

Lemma 3.3.1.

Let us now prove the converse. If we use the bar notation in G/Ωe−1(G), then by

Lemma 3.3.2, there exist x ∈ G r Φ(G) and u ∈ Φ(G) r {[x, g] | g ∈ G}. Choose

y ∈ G such that G = 〈x, y〉. We claim that {x, y} and {xu, xy3} form a Beauville

structure forG. Clearly this Beauville structure cannot be inherited byG/Φ(G), since

〈x〉 = 〈xu〉 in G/Φ(G).

Note that since G is a Beauville group satisfying (3.1), we have p ≥ 5 and |Gpe−1| ≥
p2. Also by the proof of Theorem 3.2.2, we have Ωe−1(G) ≤ Φ(G). Let A =

{x, y, xy} andB = {xu, xy3, xuxy3}. If a = x and b = xy3 or xuxy3 then 〈a〉∩〈b〉 =

1 in the quotientG/Φ(G), since x and y are linearly independent modulo Φ(G). Thus

if 〈ag〉 ∩ 〈bh〉 6= 1 for some g, h ∈ G, then we have 〈(ag)pe−1〉 = 〈(bh)pe−1〉, and

consequently (ag)p
e−1

= (bh)jp
e−1 for some integer j not divisible by p. According

to (3.1), we have (ag(bh)−j)p
e−1

= 1, that is ag(bh)−j ∈ Ωe−1(G). This implies that
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〈a〉 = 〈b〉 in the quotient G/Φ(G), which is a contradiction. The same argument

applies when a = xy and b ∈ B. In the case a = y and b ∈ B, again we have

〈a〉 ∩ 〈b〉 = 1 in the quotient G/Φ(G), since x and y are linearly independent modulo

Φ(G) and p ≥ 3. Therefore, 〈ag〉 ∩ 〈bh〉 = 1 for every g, h ∈ G, as shown above.

Thus we are only left with the case a = x and b = xu. We need to prove that

〈x〉g ∩〈xu〉 = 1 for any g ∈ G. If 〈x〉g ∩〈xu〉 6= 1 for some g ∈ G, then 〈(xg)pe−1〉 =

〈(xu)p
e−1〉, and consequently (xg)jp

e−1
= (xu)p

e−1 for some integer j not divisible

by p. According to (3.1), we have (u−1x−1(xg)j)p
e−1

= 1 and hence xu = (xg)j in

G/Ωe−1(G) , which is a contradiction. Indeed, since G = G/Ωe−1(G) is a p-group,

x is of order p and u ∈ Φ(G) r {[x, g] | g ∈ G}, it follows from Lemma 2.3.2 that

〈x〉g ∩ 〈xu〉 = 1 for any g ∈ G.

3.4 Characterization of regular Beauville groups without induced Beauville

structures

Recall that, by Lemma 2.3.4, if G is a finite group and G/N has a Beauville structure

with one of the generating sets satisfying o(x) = o(xN), o(y) = o(yN) and o(xy) =

o(xyN), then we can lift this Beauville structure in G/N to a Beauville structure of

G. In this section, our aim is to characterize regular Beauville p-groups in which no

Beauville structure of G can be obtained by using the property above.

First of all, we see that in such a group we have |Gpe−1 | = p2. If we take a normal

subgroup N ≤ Gpe−1 of order p, then expG/N = pe. Also, since a quotient of

a regular p-group is also regular, G/N is regular. If |Gpe−1 | > p2 then we have

|(G/N)p
e−1| = |Gpe−1

/N | ≥ p2, and consequently G/N has a Beauville structure,

by Theorem 3.2.2. Let {x1, y1} and {x2, y2} form a Beauville structure for G/N .

Since N ≤ Gpe−1 ≤ Φ(G), this implies that G = 〈x1, y1〉 = 〈x2, y2〉. Notice that

any element outside the Frattini subgroup has order pe in both G and G/N . It then

follows from Lemma 2.3.4 that {x1, y1} and {x2, y2} form a Beauville structure for

G.

Thus the condition |Gpe−1| = p2 is necessary to guarantee that G has no Beauville

structure with a triple such that o(x) = o(xN), o(y) = o(yN) and o(xy) = o(xyN),
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but it is not a sufficient condition. We have the following example.

Example 3.4.1. Let G be a p-group splitting over A, i.e. G = 〈b〉 n A, where A =

〈a1〉 × 〈a2〉 ∼= Cp2 × Cp and the action of 〈b〉 ∼= Cp2 on A is given by ab1 = a1a2

and ab2 = a2. Then G = 〈a1, b〉 is of exponent p2. Since G′ = 〈[a1, b]
g | g ∈ G〉

and [a1, b] = a2 ∈ Z(G), this implies that G has class 2 < p, and hence G is regular,

by Theorem 3.1.2. Observe that since G is of class 2, for any two elements x, y ∈ G
we have (xy)p = xpyp[y, x](

p
2) by Lemma 2.2.21. In our case, since expG′ = p, we

have (xy)p = xpyp, and it follows that Gp = 〈ap1, bp〉. Note that ap1 and bp commute,

and consequently |Gp| = p2. If p ≥ 5 then by Proposition 3.2.4, G has a Beauville

structure .

We now consider the quotient G/〈a2〉 which is of exponent p2. Since G/〈a2〉 is

abelian and |(G/〈a2〉)p| = p2, G/〈a2〉 is a Beauville group with a Beauville structure

{a1, b} and {a2
1b, a

4
1b} if p ≥ 5. Notice that any element outside the Frattini subgroup

has order p2 in both G and G/〈a2〉. Then by Lemma 2.3.4, the Beauville structure of

G/〈a2〉 with {a1, b} as one of the generating sets can be lifted to a Beauville structure

for G.

Theorem 3.4.2. Let G be a regular Beauville p-group of exponent pe. Then G has

no Beauville structure obtained from a Beauville structure of a proper quotient G/N

with one of the generating set satisfying o(x) = o(xN), o(y) = o(yN) and o(xy) =

o(xyN) if and only if |Gpe−1| = p2 and Ω1(Z(G)) ≤ Gpe−1
.

Proof. We already showed that in such a group we have |Gpe−1| = p2. We next

show that the condition Ω1(Z(G)) ≤ Gpe−1 is also necessary. Otherwise, there exists

g ∈ Ω1(Z(G)) r Gpe−1 . We now consider the normal subgroup N = 〈g〉 of order p.

Since G/N is a regular p-group of exponent pe and |(G/N)p
e−1| = p2, this implies

that G/N is a Beauville group. Let {x1, y1} and {x2, y2} form a Beauville structure

for G/N where G = 〈x1, y1〉 = 〈x2, y2〉. Then by Lemma 2.3.4, this Beauville

structure ofG/N can be lifted to a Beauville structure forG, which is a contradiction.

Thus we complete the proof of one of the implications in the statement of the theorem.

To prove the converse, we assume that |Gpe−1| = p2 and Ω1(Z(G)) ≤ Gpe−1 . Sup-

pose, on the contrary, that G has a Beauville structure which is obtained from a

40



Beauville structure of G/N with one of the generating sets satisfying o(x) = o(xN),

o(y) = o(yN) and o(xy) = o(xyN). It follows that the exponent of both G and G/N

is pe. Since G/N is a Beauville group, we have |(G/N)p
e−1| ≥ p2, where

|(G/N)p
e−1| = |Gpe−1

N/N | = |Gpe−1|
|Gpe−1 ∩N |

=
p2

|Gpe−1 ∩N |
.

Thus we have Gpe−1 ∩N = 1, and this, together with Ω1(Z(G)) ≤ Gpe−1 , yields that

Ω1(Z(G)) ∩N = 1. Since N is a normal subgroup, there exists an element of order

p inside Z(G) ∩N , and hence Ω1(Z(G)) ∩N 6= 1, which is a contradiction.
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CHAPTER 4

THIN p-GROUPS

This chapter is devoted to Beauville structures in thin p-groups. More precisely, we

first focus on p-groups of maximal class in Section 4.2. We restrict ourselves to p-

groups of maximal class that either are metabelian, or have a maximal subgroup of

class ≤ 2. We next turn our attention to metabelian thin p-groups of class at least p in

Section 4.3.

4.1 Preliminaries

In this section, we present some preliminaries for p-groups of maximal class and thin

p-groups. The results can be found with detailed proofs in the given references. No

originality is claimed in this section.

Definition 4.1.1. LetG be a p-group of order pn ≥ p2. ThenG is said to be a p-group

of maximal class if it has nilpotency class n− 1.

Theorem 4.1.2. [20, Theorem 3.5] Let G be a p-group of maximal class of order

pn. Then

(i) We have |G : G′| = p2 and |γi(G) : γi+1(G)| = p for 2 ≤ i ≤ n − 1. Hence

|G : γi(G)| = pi for 2 ≤ i ≤ n.

(ii) Unless G is cyclic of order p2, we have Φ(G) = G′ and d(G) = 2.

(iii) The only normal subgroups of G are the γi(G) and the maximal subgroups of

G.
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(iv) If N E G and |G : N | ≥ p2, then G/N is also a group of maximal class.

(v) Zi(G) = γn−i(G) for 0 ≤ i ≤ n− 1.

Theorem 4.1.3. [30, Theorem III.11.9] Let G be a non-abelian 2-group. Then the

following are equivalent:

(i) G has maximal class.

(ii) |G/G′| = 4.

(iii) G is a dihedral group or semidihedral group or generalized quaternion group.

Theorem 4.1.4. [30, Theorem III.14.23] Let G be a p-group with |G| = pn ≥ p2.

Then G has maximal class if and only if there exists an element x ∈ G such that

|{xg | g ∈ G}| = |G : CG(x)| = pn−2.

Since p-groups of order≤ p3 are well-known, there is no loss of generality if we only

deal with p-groups of maximal class of order ≥ p4.

Definition 4.1.5. Let G be a p-group of maximal class of order ≥ p4. We define the

characteristic subgroup G1 of G by

G1 = CG(G′/γ4(G)).

In other words, G1 is composed of the elements x ∈ G such that [x,G′] ≤ G4.

Notation: For 2 ≤ i ≤ n we will write Gi = γi(G).

Theorem 4.1.6. [30, Lemma III.14.4] Let G be a p-group of maximal class. Then

G1 is a maximal subgroup of G.

Definition 4.1.7. Let G be a p-group of maximal class of order pn. Then we define

the two-step centralizers CG(Gi/Gi+2) for 1 ≤ i ≤ n− 2.

As happened with G1, all two-step centralizers are characteristic and maximal in G.

Since G1/G2 is cyclic, Lemma 2.2.5 implies that [G1, G1] = [G1, G2] ≤ G4. There-

fore, we have that CG(G1/G3) = G1, and thus it is enough to consider the two-step

centralizers for 2 ≤ i ≤ n− 2.
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Theorem 4.1.8. [30, Theorem III.14.6] LetG be a p-group of maximal class of order

pn ≥ p5. Then G1 = CG(Gi/Gi+2) for 2 ≤ i ≤ n− 3.

Thus from the above theorem, there are at most two different two-step centralizers,

namely G1 and CG(Gn−2).

Definition 4.1.9. Let G be a p-group of maximal class of order pn. Then G is said to

be exceptional if G1 6= CG(Gn−2).

Theorem 4.1.10. [30, Theorem III.14.6] If a p-group G of maximal class of order

pn is exceptional, then p ≥ 5, n is even and 6 ≤ n ≤ p+ 1.

Thus if |G| = pn ≥ pp+2 then G is not exceptional and hence G1 = CG(Gn−2).

Definition 4.1.11. Let G be a p-group of maximal class of order pn. An element

s ∈ G is called uniform if s /∈ G1 ∪ CG(Gn−2).

Notice that all p-groups of maximal class have uniform elements, since a group cannot

be the union of two proper subgroups.

Theorem 4.1.12. [30, Theorem III.14.13] Let G be a p-group of maximal class and

let s be a uniform element of G. Then the following properties hold:

(i) CG(s) = 〈s〉Z(G).

(ii) sp ∈ Z(G) and consequently o(s) ≤ p2.

(iii) |CG(s)| = p2 and the conjugates of s are exactly the elements in the coset sG′.

Lemma 4.1.13. [20, Lemma 3.14] Let G be p-group of maximal class of order

pn, and let s be a uniform element. If 1 ≤ i ≤ n − 2 and x ∈ Gi r Gi+1, then

[s, x] ∈ Gi+1 rGi+2.

LetG be a p-group of maximal class, and let s be a uniform element and s1 ∈ G1rG2.

We can define recursively si = [si−1, s] for i ≥ 2. It then follows from the above

lemma that si ∈ Gi rGi+1, and hence Gi = 〈si, Gi+1〉 for all 1 ≤ i ≤ n− 1.

We next give the results regarding the power structure of a p-group of maximal class.
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Theorem 4.1.14. [30, Theorem III.14.14] Let G be a p-group of maximal class of

order pn ≤ pp+1. Then expG/Z(G) = expG′ = p.

Theorem 4.1.15. [20, Theorem 4.9] Let G be a p-group of maximal class of order

pn ≥ pp+2. If 1 ≤ i ≤ n− p and x ∈ Gi rGi+1, then xp ∈ Gi+p−1 rGi+p.

We now state the basic properties of thin p-groups which will be used in the proofs of

the main results in Section 4.3.

Definition 4.1.16. A non-cyclic p-group is said to be thin if every anti-chain in the

lattice of its normal subgroups contains at most p + 1 elements. An anti-chain is a

subset of the lattice such that any two elements in the subset are incomparable.

An alternative definition of a thin p-group is as follows.

Definition 4.1.17. A p-group G is thin if the following two conditions holds:

(i) For every normal subgroup N of G, we have γi+1(G) ≤ N ≤ γi(G) for some i.

(ii) |γi(G) : γi+1(G)| ≤ p2 for all i.

Clearly, if the two conditions in Definition 4.1.17 hold, then Definition 4.1.16 follows.

Conversely, note that the only abelian thin p-groups are cyclic or elementary abelian

of order p2. Thus if G is not cyclic, then G/G′ must be elementary abelian of order

p2 and of exponent p, and then the remaining factors of the lower central series are of

order p or p2. Hence the conditions (ii) holds. By the result in [12, page 281], every

normal subgroup of a thin p-group is between two consecutive terms of the lower

central series, and thus the condition (i) holds.

The lattice of normal subgroups of the non-cyclic abelian thin group is referred to as a

diamond. Note that if G is a non-cyclic thin group, then G/G′ is elementary abelian

of order p2, and this implies that G is 2-generator.

It is clear from Theorem 4.1.2 that p-groups of maximal class are thin. In the sequel,

we will exclude p-groups of maximal class from our consideration of thin groups.

Thus we assume p > 2, since |G : G′| = 4 implies that G is of maximal class by

Theorem 4.1.3.
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Lemma 4.1.18. [10, Lemma 2.1] Let G be a thin p-group and g ∈ γi(G)rγi+1(G).

Then γi+1(G) = [g,G]γi+2(G).

Lemma 4.1.19. [10, Corollary 2.2] The lower and upper central series of a thin

p-group coincide.

Lemma 4.1.20. [10, Lemma 1.3] Let G be a finite p-group, p an odd prime. Then

(i) If G is a metabelian thin group, then γ3(G)/γ4(G) is non-cyclic.

(ii) If G is thin, then |G| ≥ p5, cl(G) > 2, and G/γ3(G) is of exponent p.

Theorem 4.1.21. [10, Theorem A, Theorem 3.4] LetG be a metabelian thin p-group.

Then

(i) γp+1(G) is cyclic and γp+2(G) = 1, and hence cl(G) ≤ p+ 1.

(ii) The lattice of normal subgroups of G consists of a diamond on top, followed

by a chain of length 1, at most p − 2 diamonds, plus possibly another chain of

length 1. Hence |G| ≤ p2p.

(iii) exp(G) ≤ p2.

We next recall a commutator relation between the generators of G.

Theorem 4.1.22. [10, Theorem B] Let G be a metabelian thin p-group. Then for

every x ∈ GrG′ there corresponds an element y such that G = 〈x, y〉 and

[y, x, x, x] ≡ [y, x, y, y]h (mod γ5(G)). (4.1)

where h is a quadratic non-residue modulo p.

The following two lemmas are more general results on p-groups.

Lemma 4.1.23. [42, Theorem 3] (Meier-Wunderli) IfG is a metabelian 2-generator

p-group, then Gp ≥ γp(G).

Lemma 4.1.24. [10, Lemma 1.2] Let G be a p-group. If G/γi+1(G) has exponent

p, for 1 ≤ i ≤ p− 1, then γj(G)/γj+i(G) has exponent p.

47



We now recall the power structure of a metabelian thin p-group.

Lemma 4.1.25. [10, Lemma 3.3] Let G be a metabelian thin p-group, and let g ∈
Gr γ2(G). Assume that gp ∈ γi(G)r γi+1(G). Then γi+1(G) is cyclic, and cl(G) ≤
i+ 1.

Lemma 4.1.26. Let G be a metabelian thin p-group, and l be the largest integer such

that Gp ≤ γl(G). Then 3 ≤ l ≤ p, γl+1(G) is cyclic, γl+2(G) = 1 and γ2(G)p ≤
γl+1(G).

Proof. By Lemma 4.1.20, l ≥ 3. Moreover, if Gp ≤ γp(G), then by Lemma 4.1.23,

we haveGp = γp(G), and hence l ≤ p. We now apply Lemma 4.1.24 to get γ2(G)p ≤
γl+1(G). Then there is an element g ∈ G r γ2(G) with gp ∈ γl(G) r γl+1(G), and

by Lemma 4.1.25, γl+1(G) is cyclic, and this implies that γl+2(G) = 1.

The following corollary follows directly from Lemma 4.1.26.

Corollary 4.1.27. Let G be a metabelian thin p-group. Then |Gp| ≤ p3.

Lemma 4.1.28. Let G be a metabelian thin p-group such that its lattice of normal

subgroups ends with a chain. Then the order of Gp cannot be p2.

Proof. If G is of class p + 1, then Gp = γp(G), and hence |Gp| = p3. Thus we

assume that cl(G) = c ≤ p. We claim that if M is a maximal subgroup of G, then it

is regular. Since |M : G′| = p, we have M ′ = [M,G′] ≤ γ3(G), and this implies that

γc(M) ≤ γc+1(G) = 1. Thus cl(M) < c ≤ p, and so M is regular.

Suppose, on the contrary, that |Gp| = p2. Now consider the quotient group G =

G/γc(G), which is regular. Then |Gp| = p, and hence |G : Ω1(G)| = p. Write

Ω1(G) = M/γc(G) for some maximal subgroupM ofG. SinceG is regular, exp Ω1(G) =

p. This implies that Mp ≤ γc(G), and so |Mp| ≤ p. Then |M : Ω1(M)| ≤ p as M

is regular. Since Ω1(M) E G and |G : Ω1(M)| ≤ p2, we get G′ ≤ Ω1(M), where

exp Ω1(M) = p. Thus exp G′ = p.

On the other hand, if M is an arbitrary maximal subgroup of G, we have G′ ≤M and

since expG′ = p, we get G′ ≤ Ω1(M) ≤M . Then |Mp| = |M : Ω1(M)| ≤ p. Since

G is thin, this implies that Mp ≤ γc(G) for any maximal subgroup M . But Gp =

〈Mp |M maximal in G〉 ≤ γc(G), and hence |Gp| ≤ p, which is a contradiction.
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4.2 p-Groups of maximal class

In this section, our aim is to determine Beauville structures in p-groups of maximal

class which either are metabelian or satisfy cl(G1) ≤ 2.

We begin with a lemma concerning p-groups of maximal class of order ≤ pp.

Lemma 4.2.1. Let G be a p-group of maximal class of order at most pp. Then G is a

Beauville group if and only if p ≥ 5 and expG = p.

Proof. By Theorem 4.1.14, we have expG/Z(G) = p. Thus |Gp| ≤ p and expG = p

or p2. Since |G| ≤ pp, it then follows from Theorem 3.1.2 that G is regular. Then

Corollary 3.2.3 implies that G is a Beauville group if and only if p ≥ 5 and expG =

p.

Theorem 4.2.2. If p = 2 or 3, then no p-group of maximal class is a Beauville group.

Proof. Let G be a p-group of maximal class for p = 2 or 3. Since p < 5, G is

not exceptional by Theorem 4.1.10. Thus all elements of G r G1 are uniform. By

way of contradiction, suppose that {x1, y1} and {x2, y2} form a Beauville structure

for G. Since G has p + 1 ≤ 4 maximal subgroups, at least one of the elements in

both triples {x1, y1, x1y1} and {x2, y2, x2y2}, say x1 and x2, fall in the same maximal

subgroup different from G1. Hence x2 = xi1g for some g ∈ G′ and for some integer i

not divisible by p. Since xi1 is uniform, this implies that x2 and xi1 are conjugate, by

Theorem 4.1.12, and this is a contradiction.

Theorem 4.2.3. Let G be a p-group of maximal class, and let M be a maximal sub-

group of G. Then all elements in M rG′ have the same order.

Proof. We deal separately with the cases |G| = pn ≥ pp+2 and≤ pp+1. If |G| ≥ pp+2

then all elements in GrG1 are uniform elements. Thus if M 6= G1 then all elements

in M rG′ are conjugate to powers of a fixed element in M rG′, and hence they have

the same order. If M = G1 then by Theorem 4.1.15, all elements in G1 r G′ have

order pd
n−1
p−1
e.
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Thus we assume that |G| ≤ pp+1. Let x ∈ M r G′ and y ∈ G′. Then by the

Hall-Petrescu formula, we have

(xy)p = xpypc
(p
2)

2 c
(p
3)

3 . . . cp,

where ci ∈ γi(〈x, y〉) ≤ γi+1(G) for 2 ≤ i ≤ p. By Theorem 4.1.14, expG′ = p, and

this, together with γp+1(G) = 1, implies that (xy)p = xp.

In the sequel, we assume that G has order pn ≥ pp+1. We choose an element s1 ∈
G1 r G′ and a uniform element s. Since G/G′ ∼= Cp × Cp, each pair of elements in

S = {s1, ss
i
1 | 0 ≤ i ≤ p − 1} are linearly independent modulo G′. Also, note that

all elements of 〈ssi1〉G′ rG′ have the same order, by Theorem 4.2.3.

In order to determine Beauville structures inG, it is fundamental to control the orders

of elements outside G1. To this purpose, we need to know the order of each ssi1 for

0 ≤ i ≤ p−1. However, it is not always easy to determine these orders in an arbitrary

p-group of maximal class. Thus we will restrict our attention to a p-group of maximal

class G such that either G′ is abelian, that is G is metabelian, or cl(G1) ≤ 2. Note

that a large number of p-groups of maximal class have one of these two properties, as

follows from the construction procedures describe in [43] for metabelian groups and

in [38] for the groups with G1 of class 2.

Lemma 4.2.4. Let G be a p-group of maximal class of order ≥ pp+1. Suppose that G

satisfies one of the following:

(i) All elements of GrG1 are of order p2.

(ii) There exists s ∈ GrG1 such that o(s) = p and all elements outsideG1∪〈s,G′〉
are of order p2.

Then G is not a Beauville group.

Proof. Suppose that, on the contrary, {x1, y1} and {x2, y2} form a Beauville structure

for G. Then without loss of generality, we can assume that x1 and x2 are of order p2.

It then follows that 〈xp1〉 = 〈xp2〉 = Z(G), which is a contradiction.
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As a consequence of Lemma 4.2.4, if we want G to be a Beauville group, it is neces-

sary forG to have at least two maximal subgroups other thanG1 such that all elements

in those maximal subgroups outside G′ have order p.

We proceed to determine pth powers of ssi1. We deal separately with two cases: G is

metabelian, or cl(G1) ≤ 2. We begin by analyzing metabelian p-groups of maximal

class. In this case, we rely on the following result of Miech.

Lemma 4.2.5. [43, Lemma 8] Let G be a metabelian p-group of maximal class

of order pn ≥ pp+1, where p is odd, and let s be a uniform element. Suppose that

[G1, G2] = Gn−k and [s1, s2] = s
a(n−k)
n−k . . . s

a(n−1)
n−1 . Then for 0 ≤ i ≤ p− 1

(ssi1)p = sp
(
sp1s

(p
2)

2 . . . s
(p
p)
p

)i
sψi

2

n−1,

where

ψ =

a(n− k) if k = p− 2,

0 if k ≤ p− 3.

Lemma 4.2.6. Let G be a metabelian p-group of maximal class of order pn ≥ pp+1,

where p is odd, and let s be a uniform element and s1 be an element in G1 r G′.

Suppose that o(s) = o(ss1) = p and (ss2
1)p = sλn−1. Then for 1 ≤ i ≤ p− 1

(ssi1)p = s
λ(i

2)
n−1 .

Proof. For the proof, we use Lemma 4.2.5. If we call a = sp1s
(p
2)

2 . . . s
(p
p)
p and b =

sψn−1, then

(ssi1)p = aibi
2

for 1 ≤ i ≤ p− 1.

Since a, b ∈ Z(G), we have (ss2
1)p = (ab)2b2 = (ss1)2pb2 = b2. Note that (ss1)p = 1

implies a = b−1, and thus (ssi1)p = bi
2−i = (b2)(

i
2) = s

λ(i
2)

n−1 .

We next deal with the case cl(G1) ≤ 2. For this purpose we need another result of

Miech.

Theorem 4.2.7. [44, Theorem 4] Let G be a group generated by x and y, G2 = G′,

and G1 = 〈y,G2〉. Let σ0 = y and σi+1 = [σi, x] for i ≥ 0. Then for any nonnegative

integer n

(xy)n ≡ xpypσ
(n
2)

1 . . . σ
(n
n)
n−1Qn (mod γ3(G1)),
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where

Qn =
n−1∏
k=1

k−1∏
l=0

[σk, σk]
B(n,k,l), (4.2)

for a nonnegative integer B(n, k, l) depending on n, k and l.

Lemma 4.2.8. Let G be a p-group of maximal class such that cl(G1) ≤ 2, where

p is odd, and let s be a uniform element. Suppose that o(s) = o(ss1) = p and

(ss2
1)p = sλn−1. Then for 1 ≤ i ≤ p− 1

(ssi1)p = s
λ(i

2)
n−1 .

Proof. To prove the lemma, we will apply Theorem 4.2.7. We set σi,0 = si1 and

σi,k = [si1, s,
k. . ., s] for k ≥ 1. Set Qi,p =

∏p−1
k=1

∏k−1
l=0 [σi,k, σi,l]

B(p,k,l).

First of all, by using induction on k, we will show that σi,k = sik+1t
(i
2)
k for some tk ∈

[G1, G1]. Now σi,1 = [si1, s] = s−i1 (ssi )
i = s−i1 (s1s2)i, and since cl(G1) ≤ 2 we have

(s1s2)i = si1s
i
2[s2, s1](

i
2), thus σi,1 = si2[s2, s1](

i
2). We assume that for k ≥ 2, σi,k−1 =

sikt
(i
2)
k−1. Then we have σi,k = [sik, s][t

(i
2)
k−1, s]. Notice that for any x ∈ [G1, G1] ≤

Z(G1), [xn, s] = [x, s]n for n ∈ Z. It then follows that σi,k = [sik, s][tk−1, s]
(i
2).

Now [sik, s] = s−ik (ssk)
i = s−ik (sksk+1)i. Again since cl(G1) ≤ 2, this implies that

(sksk+1)i = siks
i
k+1[sk+1, sk]

(i
2), and thus σi,k = sik+1([sk+1, sk][tk−1, s])

(i
2). We call

tk = [sk+1, sk][tk−1, s] ∈ [G1, G1], and the induction is complete.

Since tk ∈ Z(G1), by Theorem 4.2.7, we get

(ssi1)p = sip1 s
i(p

2)
2 . . . sip

(
t
(p
2)

1 t
(p
3)

2 . . . t
(p
p)
p−1

)(i
2)Qi,p.

Also, note that since cl(G1) ≤ 2, for any x, y ∈ G1 and m,n ∈ Z we have [xm, yn] =

[x, y]mn, and this, together with xiyi = (xy)i[x, y](
i
2) yields that

(ssi1)p =
(
sp1s

(p
2)

2 . . . sp
)i( p−1∏

j=1

p∏
k=j+1

[sj, sk]
(p
j)(

p
k)
(
t
(p
2)

1 t
(p
3)

2 . . . t
(p
p)
p−1

))(i
2)
Qi,p.

On the other hand, [σi,k, σi,l] = [sik+1t
(i
2)
k , sil+1t

(i
2)
l ] = [sik+1, s

i
l+1] = [sk+1, sl+1]i

2 , and

this implies that Qi,p = Qi2

1,p, by (4.2). If we call µ = −|G|+1
2

and

A =

p−1∏
j=1

p∏
k=j+1

[sj, sk]
(p
j)(

p
k)
(
t
(p
2)

1 t
(p
3)

2 . . . t
(p
p)
p−1

)
,
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then

(ssi1)p =
(
sp1s

(p
2)

2 . . . sp
)i
Aµ(i2−i)Qi2

1,p

=
(
sp1s

(p
2)

2 . . . spA
−µ)i(AµQ1,p

)i2
,

where the last equality follows from the fact that A ∈ [G1, G1] ≤ Z(G1).

For simplicity, let us call a = sp1s
(p
2)

2 . . . spA
−µ and b = AµQ1,p. Then (ssi1)p = aibi

2

for 1 ≤ i ≤ p− 1. Since b ∈ [G1, G1], a and b commute, and thus we have (ss2
1)p =

(ab)2b2 = (ss1)2pb2 = b2. Consequently, by using the same argument as in the proof

of Lemma 4.2.6, we get

(ssi1)p = s
λ(i

2)
n−1 for 1 ≤ i ≤ p− 1,

as desired.

We are now ready to state the main results of this section.

Theorem 4.2.9. Let G be a p-group of maximal class of order pn ≥ pp+1, where p

is odd, such that either G is metabelian or cl(G1) ≤ 2. Suppose that G is not as in

Lemma 4.2.4. Then one of the following holds:

(i) All elements of GrG1 are of order p.

(ii) There exist a uniform element s and s1 ∈ G1 rG′ such that o(s) = o(ss1) = p

and all elements outside G1 ∪ 〈s,G′〉 ∪ 〈ss1, G
′〉 are of order p2.

Proof. Since G does not satisfy the conditions in Lemma 4.2.4, there exist a uniform

element s and an element s1 ∈ G1 r G2 such that o(s) = o(ss1) = p. Then by

Lemma 4.2.6 and Lemma 4.2.8, we have

(ssi1)p = s
λ(i

2)
n−1 for 1 ≤ i ≤ p− 1,

where (ss2
1)p = sλn−1.

Observe that o(ssi1) = p if and only if

λ(i− 1) ≡ 0 (mod p). (4.3)
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If λ ≡ 0 (mod p) then (4.3) holds for all i, that is o(ssi1) = p for 1 ≤ i ≤ p− 1, and

hence we get (i). Otherwise, i = 1 is the unique solution for (4.3), and thus (ii) holds.

This completes the proof.

We are now ready to determine Beauville structures in G.

Theorem 4.2.10. Let G be as in Theorem 4.2.9. Then G is a Beauville group if and

only if p ≥ 5 and one of the following two cases holds:

1. (i) holds.

2. (ii) holds, and either n 6= k(p−1)+2 with k ≥ 1, or n = p+1 and expG1 = p.

Proof. By Theorem 4.2.2, G can only be a Beauville group if p ≥ 5. Let us first show

that if p ≥ 5 and (i) holds, then G is a Beauville group. Since p ≥ 5, G/Φ(G) ∼=
Cp × Cp is a Beauville group. We will see that every Beauville structure of G/Φ(G)

lifts to a Beauville structure of G. To this purpose, it suffices to show that, given

x, y ∈ Gr Φ(G), the condition 〈x〉 ∩ 〈y〉 = 1 implies that 〈x〉 ∩ 〈y〉 = 1, where we

use the bar notation in G/Φ(G). Observe that since 〈x〉 ∩ 〈y〉 = 1, at least one of x

and y, say x, is of order p. Thus if 〈x〉 ∩ 〈y〉 6= 1 then 〈x〉 ⊆ 〈y〉 and this implies that

〈x〉 = 〈y〉, which is a contradiction.

We next show that if p ≥ 5, (ii) holds and |G| = pn ≥ pp+2 with n 6= k(p − 1) + 2

for k ≥ 1, then G is a Beauville group. We claim that {s, s1} and {ss2
1, ss

4
1} form a

Beauville structure for G.

Let X = {s, s1, ss1} and Y = {ss2
1, ss

4
1, ss

2
1ss

4
1}, where each y ∈ Y is of order p2.

We need to show that

〈xg〉 ∩ 〈yh〉 = 1, (4.4)

for all x ∈ X , y ∈ Y and g, h ∈ G. Observe that xg and yh lie in different maximal

subgroups of G in every case, since s and s1 are linearly independent modulo Φ(G)

and p ≥ 5. Assume first that x = s or ss1, which are of order p. If (4.4) does not hold,

then 〈xg〉 ⊆ 〈yh〉, and consequently 〈xΦ(G)〉 = 〈yΦ(G)〉, which is a contradiction.

Thus we assume that x = s1. By Theorem 4.1.15, we have o(s1) = pe for some e ≥ 2.

If (4.4) does not hold, then 〈(xpe−1
)g〉 = 〈(yp)h〉, and consequently 〈xpe−1〉 = Gn−1,
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which is a contradiction. Indeed, since n 6= k(p − 1) + 2, xpe−1 can not lie in Gn−1,

by Theorem 4.1.15.

Now we assume that (ii) holds, |G| = pp+1 and expG1 = p. We claim that {s, s1}
and {ss2

1, ss
4
1} form a Beauville structure for G. If X = {s, s1, ss1} and Y =

{ss2
1, ss

4
1, ss

2
1ss

4
1} then all elements in X are of order p. Then clearly for all x ∈ X ,

y ∈ Y , and g, h ∈ G we have 〈xg〉 ∩ 〈yh〉 = 1. Otherwise, 〈xΦ(G)〉 = 〈yΦ(G)〉,
which is a contradiction.

Thus we complete the proof of one implication of the theorem. For the converse, let

us first see that if (ii) holds and n = k(p− 1) + 2 for some k ≥ 2, then G cannot be a

Beauville group. Suppose that, on the contrary, {x1, y1} and {x2, y2} form a Beauville

structure for G. Let A = {x1, y1, x1y1} and B = {x2, y2, x2y2}. If there exist a ∈ A
and b ∈ B which are uniform elements of order p2, then 〈ap〉 = 〈bp〉 = Z(G). Thus

we may assume that x1 ∈ G1 and y1 and x1y1 are uniform elements of order p. It then

follows from Theorem 4.1.15 that xp
k

1 ∈ Gk(p−1)+1rGk(p−1)+2, i.e. 1 6= xp
k

1 ∈ Z(G).

On the other hand, since the conjugates of any uniform element s are exactly the

elements in the coset sG′, there cannot be a uniform element of order p in B. Thus

there exists b ∈ B which is uniform of order p2, and hence 〈bp〉 = 〈xp
k

1 〉 = Z(G),

which is a contradiction.

Finally, we need to show that if (ii) holds, |G| = pp+1 and expG1 = p2, then G has

no Beauville structure. The proof is quite similar to the proof of Lemma 4.2.4, thus

we skip the proof.

4.3 Metabelian thin p-groups

In this section, we study Beauville structures in metabelian thin p-groups. By Theo-

rem 4.1.21, we know that metabelian thin p-groups have class at most p + 1. If the

class is less than p, then by Theorem 3.1.2, the group is regular, and hence Theorem

3.2.2 can be used to determine Beauville structures. Thus we focus on metabelian

thin p-groups of class p or p+ 1.

We start with determining which metabelian thin 3-groups are Beauville groups.
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Remark 4.3.1. Recall that the computer algebra system GAP has a library called

SmallGroup. This library gives access to all groups of certain "small" orders. The

groups are sorted by their orders and they are listed up to isomorphism.

Theorem 4.3.2. Let G be a metabelian thin 3-group. Then G is a Beauville group

if and only if it is isomorphic to one of SmallGroup(35, 3), SmallGroup(36, 34),

or SmallGroup(36, 37).

Proof. Since |G| ≤ 36 by Theorem 4.1.21 and the smallest Beauville 3-group is of

order 35, the order of G can only be 35 or 36. Let us first assume that |G| = 35. We

know that the only Beauville 3-group of order 35 is S = SmallGroup(35, 3), and

hence G is a Beauville group if and only if G ∼= S. We will see in Theorem 5.2.8 that

S is isomorphic to the quotient group N /N6 of the Nottingham group over F3 and

this quotient group is a metabelian thin p-group.

We next assume that |G| = 36. It has been shown in [2] that there are only three

Beauville 3-groups of order 36, namely S = SmallGroup(36, n) for n = 34, 37, 40.

However, if n = 40 then |Z(S)| = 9 and |γ4(S)| = 3. This implies that Z(S) 6=
γ4(S), and thus S is not thin. On the other hand, if n = 34 or 37 then by using the

computer algebra system GAP, we can see that every normal subgroup of S lies be-

tween two consecutive terms of the lower central series of S and |γi(S) : γi+1(S)| ≤
32 for all 1 ≤ i ≤ 4, and S ′ is abelian. Thus S is a metabelian thin 3-group. Conse-

quently, G is a Beauville group if and only if G ∼= S for n = 34 or 37.

Thus we assume that p ≥ 5. Let G be a metabelian thin p-group with cl(G) = p or

p+ 1. Then we have three cases:

(i) cl(G) = p+ 1.

(ii) cl(G) = p and |γp(G)| = p2.

(iii) cl(G) = p and |γp(G)| = p.

In the first two cases, we have Gp ≤ γp(G), by Lemma 4.1.26. It then follows from

Lemma 4.1.23 that Gp = γp(G). Also we have γ2(G)p ≤ γp+1(G). On the other
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hand, in the last case if l is the largest integer satisfying Gp ≤ γl(G), then l = p − 1

or p and hence γp(G) ≤ Gp ≤ γp−1(G).

Our first step is to calculate the pth powers of xty modulo γp+1(G) for all 0 ≤ t ≤
p − 1 if G = 〈x, y〉 and γ2(G)p ≤ γp+1(G). To this purpose, we need the following

lemma.

Lemma 4.3.3. [43, Lemma 6] Let G be a metabelian p-group and x, y ∈ G. Set

σ1 = y and σi = [σi−1, x] for i ≥ 2. Then

(xy)p = xpypσ
(p
2)

2 . . . σ
(p
p)
p z,

where

z =

p−1∏
i=1

p−1∏
j=1

[σi+1, σ1, j. . .σ1]C(i,j),

and

C(i, j) =

p−1∑
k=1

(
k

i

)(
k

j

)
.

Lemma 4.3.4. Let G be a metabelian thin p-group such that γ2(G)p ≤ γp+1(G). If x

and y are the generators of G satisfying (4.1), then for all 0 ≤ t ≤ p− 1

(xty)p ≡ (xp)typ[y, x,p−2 y]
−2t

1−ht2 [y, x,p−3 y, x]
2t2

1−ht2 (mod γp+1(G)). (4.5)

Proof. By Lemma 4.3.3, we have

(xty)p = (xp)typ[y, xt](
p
2) . . . [y,p−1 x

t](
p
p)
p−1∏
i=1

p−1∏
j=1

[y,i x
t,j y]C(i,j).

Since γ2(G)p ≤ γp+1(G), it then follows that

(xty)p ≡ (xp)typ[y,p−1 x
t]

∏
1≤i,j

i+j≤p−1

[y,i x
t,j y]C(i,j) (mod γp+1(G)).

Note that for i + j > 0, C(i, j) is the coefficient of uivj in
∑p−1

k=0(1 + u)k(1 + v)k,

where
p−1∑
k=0

(1 + u)k(1 + v)k =

p−1∑
k=0

((1 + u)(1 + v))k =
(1 + u+ v + uv)p − 1

u+ v + uv

≡ (1 + u+ v + uv − 1)p

u+ v + uv
(mod p)

≡
(
(u+ v) + uv

)p−1
(mod p).
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In the previous expression the monomials of total degree less than p appear only in

(u+ v)p−1 ≡
∑p−1

r=0(−1)rurvp−r−1 (mod p), and hence

C(i, j) ≡

0 (mod p) if i+ j < p− 1,

(−1)i (mod p) if i+ j = p− 1.

Thus the condition γ2(G)p ≤ γp+1(G) implies that

(xty)p ≡ (xp)typ
p−1∏
i=1

[y,i x
t,p−i−1 y](−1)i (mod γp+1(G)).

On the other hand, notice that for 1 ≤ t ≤ p− 1

[y, xt, xt, xt] ≡ [y, x, x, x]t
3

(mod γ5(G)),

since commutators of length 4 are multilinear modulo γ5(G). Then by (4.1), we have

[y, x, x, x]t
3 ≡ [y, x, y, y]ht

3

(mod γ5(G)).

Again by multilinearity of commutators, we get

[y, x, y, y]ht
3 ≡ [y, xt, y, y]ht

2

(mod γ5(G)),

and hence

[y, xt, xt, xt] ≡ [y, xt, y, y]ht
2

(mod γ5(G)). (4.6)

Since G is metabelian, for every a, b ∈ G and c ∈ G′ we have [c, a, b] = [c, b, a].

Thus we have [y, xt, xt, y] = [y, xt, y, xt]. Then this equality, together with (4.6),

yields that

[y,i x
t,p−i−1 y](−1)i ≡

[y, xt,p−2 y]−(ht2)s−1
(mod γp+1(G)) if i = 2s− 1 ,

[y, xt,p−3 y, x
t](ht

2)s−1
(mod γp+1(G)) if i = 2s ,

and hence

(xty)p ≡ (xp)typ
(

[y, x,p−2 y]−t[y, x,p−3 y, x]t
2
)∑(p−1)/2

s=1 (ht2)s−1

(mod γp+1(G)).

Note that since h is a quadratic non-residue, we have h
p−1
2 = −1. Thus

(p−1)/2∑
s=1

(ht2)s−1 =
1− (ht2)

p−1
2

1− ht2
=

2

1− ht2
.
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Consequently, we get

(xty)p ≡ (xp)typ[y, x,p−2 y]
−2t

1−ht2 [y, x,p−3 y, x]
2t2

1−ht2 (mod γp+1(G)),

for 0 ≤ t ≤ p− 1, as desired.

Lemma 4.3.5. Let G be a metabelian thin p-group such that |γp(G)| ≥ p2 and let x

and y be the generators of G satisfying (4.1). Then for every t0 ∈ {0, 1 . . . , p − 1}
there exist at most three distinct t ∈ {0, 1 . . . , p− 1} such that

〈(xt0y)p〉 ≡ 〈(xty)p〉 (mod γp+1(G)). (4.7)

Proof. Since |γp(G)| ≥ p2, we have Gp = γp(G), by Lemma 4.1.26, this implies

γ2(G)p ≤ γp+1(G). Also |γp(G) : γp+1(G)| = p2. Notice that, as a consequence

of Lemma 4.1.18, l = [y, x,p−2 y] and m = [y, x,p−3 y, x] are linearly independent

modulo γp+1(G), and hence (l,m) is a basis of γp(G) modulo γp+1(G). If we set

xp ≡ lαmβ (mod γp+1(G)) and yp ≡ lγmδ (mod γp+1(G)) for some α, β, γ, δ ∈
Fp, then by (4.5), we have

(xty)p ≡ l
γ+αt− 2t

1−ht2 m
δ+βt+ 2t2

1−ht2 (mod γp+1(G)). (4.8)

Observe that as rational functions in t, neither f(t) = γ + αt − 2t
1−ht2 nor g(t) =

δ + βt+ 2t2

1−ht2 are zero.

We now fix t0 ∈ {0, 1 . . . , p− 1}. Then (4.7) holds if and only if there exists λ ∈ F∗p
such that

f(t) = λf(t0) and g(t) = λg(t0).

If f(t0) = 0 or g(t0) = 0, then we have f(t) = 0 or g(t) = 0, that is (1 − ht2)(γ +

αt)− 2t = 0 or (1− ht2)(δ + βt) + 2t2 = 0. Otherwise, we have f(t)
f(t0)

= g(t)
g(t0)

. Then

g(t0)f(t)− f(t0)g(t) = 0, that is

g(t0)
(
(1− ht2)(γ + αt)− 2t

)
− f(t0)

(
(1− ht2)(δ + βt) + 2t2

)
= 0,

which is a polynomial in t of degree ≤ 3. Thus in every case, there are at most three

distinct t ∈ {0, 1 . . . , p− 1} such that 〈(xt0y)p〉 ≡ 〈(xty)p〉 (mod γp+1(G)).

Lemma 4.3.6. Let G be a metabelian thin p-group such that γ2(G)p ≤ γp+1(G). If

M is a maximal subgroup ofG and a, b ∈MrG′, then 〈a〉p ≡ 〈b〉p (mod γp+1(G)).
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Proof. If we write b = aic for some c ∈ G′ and for some integer i not divisible by p,

then by the Hall-Petrescu collection formula, Theorem 2.2.20, we have

(aic)p = apicpc
(p
2)

2 c
(p
3)

3 . . . c
(p
p)
p ,

where cj ∈ γj(〈a, c〉) ≤ γj+1(G). Thus (aic)p ≡ api (mod γp+1(G)), and hence

〈a〉p ≡ 〈b〉p (mod γp+1(G)).

Remark 4.3.7. If we replace x with x∗, where x∗ ∈ G r G′ is not a power of x,

there exists a corresponding y∗ satisfying (4.1). Then x ∈ 〈(x∗)t0y∗, G′〉 r G′ for

some 0 ≤ t0 ≤ p − 1, and according to Lemma 4.3.6, we have 〈xp〉 ≡ 〈((x∗)t0y∗)p〉
(mod γp+1(G)). It then follows from Lemma 4.3.5 that there exist at most three

distinct t ∈ {0, 1 . . . , p− 1} such that 〈xp〉 ≡ 〈(xty)p〉 (mod γp+1(G)).

The following corollary is an immediate consequence of Lemma 4.3.5 and Lemma

4.3.6.

Corollary 4.3.8. Let G be a metabelian thin p-group such that |γp(G)| ≥ p2. If M

is a maximal subgroup of G, then there exist at most two maximal subgroups M1, M2

different from M such that Mp ≡Mp
1 ≡Mp

2 (mod γp+1(G)).

Before we present the main results, we need the following two remarks.

Remark 4.3.9. Let G be a finite 2-generator p-group. Then we can always find el-

ements x, y ∈ G r Φ(G) such that x, y and xy fall into the given three maximal

subgroups of G. Let M1, M2 and M3 be three maximal subgroups of G. Choose

x ∈ M1 r Φ(G) and y ∈ M2 r Φ(G). Since each element in the set {xyj | 1 ≤ j ≤
p − 1} falls into different maximal subgroups, there exists 1 ≤ j ≤ p − 1 such that

xyj ∈ M3 r Φ(G). Thus if we put x∗ = x and y∗ = yj , then elements in the triple

{x∗, y∗, x∗y∗} fall into the given three maximal subgroups.

Remark 4.3.10. At the end of this section we give a method to construct metabelian

thin p-groups. By using this construction and the computer algebra system GAP, we

can see that there is no metabelian thin 5-group of class 5 such that |γ5(G)| = 52 and

5th powers of maximal subgroups coincide in pairs.

We are now ready to give the main results of this section.
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Theorem 4.3.11. Let G be a metabelian thin p-group with cl(G) = p such that

|γp(G)| = p2, where p ≥ 5. Then G has a Beauville structure in which one of

the two triples has all elements of order p2.

Proof. We divide our proof into three cases depending on the number of maximal

subgroups whose pth powers coincide, and in every case, we take into account Corol-

lary 4.3.8 and Remark 4.3.9.

Case 1: Assume that there is a 1-1 correspondence between maximal subgroupsMi of

exponent p2 and Mp
i . Choose a set of generators {x1, y1} such that o(x1) = o(y1) =

o(x1y1) = p2.

Case 2: Assume that there exist three maximal subgroups of exponent p2 such that

their pth power subgroups coincide. Then choose a set of generators {x1, y1} such

that x1, y1 and x1y1 fall into those maximal subgroups.

In both Case 1 and 2, since p ≥ 5, we can choose another set of generators {x2, y2} so

that each pair of elements in {xi, yi, xiyi | i = 1, 2} is linearly independent modulo

G′ by Remark 4.3.9.

Case 3: Assume that we are not in the first two cases. Then there exist two maximal

subgroups M1, M2 of exponent p2 such that Mp
1 = Mp

2 and Mp 6= Mp
1 for all other

maximal subgroups M .

Let us first deal with p ≥ 7. We start by choosing a set of generators {x1, y1} where

x1 ∈ M1 and y1 ∈ M2 are such that o(x1y1) = p2, say x1y1 ∈ M3. Then there might

be a maximal subgroup M4 such that Mp
3 = Mp

4 (note that there is no other i 6= 3, 4

satisfying Mp
i = Mp

3 , otherwise we are in Case 2). Since p ≥ 7, we can choose

another set of generators {x2, y2} so that x2, y2, x2y2 /∈M4 and each pair of elements

in {xi, yi, xiyi | i = 1, 2} is linearly independent modulo G′, by Remark 4.3.9.

If p = 5 then by Remark 4.3.10, 5th powers of maximal subgroups do not coincide

in pairs. Thus in Case 3, there exists a maximal subgroup, say M3, of exponent 52,

where all other M5 are different from M5
3 . Then choose sets of generators {x1, y1}

and {x2, y2} so that x1 ∈ M1 , y1 ∈ M2 and x1y1 ∈ M3 and each pair of elements in

{xi, yi, xiyi | i = 1, 2} is linearly independent modulo G′.
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We claim that, in every case, {x1, y1} and {x2, y2} form a Beauville structure for G.

If A = {x1, y1, x1y1} and B = {x2, y2, x2y2}, then we need to show that

〈ag〉 ∩ 〈bh〉 = 1, (4.9)

for all a ∈ A, b ∈ B and g, h ∈ G. Note that o(a) = p2 for every a ∈ A. Assume

first that o(b) = p. If 〈ag〉 ∩ 〈bh〉 6= 1 for some g, h ∈ G, then 〈bh〉 ⊆ 〈ag〉, and

hence 〈aG′〉 = 〈bG′〉, which is a contradiction, since a and b are linearly independent

modulo G′. Thus we assume that o(b) = p2. If (4.9) does not hold, then 〈(ag)p〉 =

〈(bh)p〉, which contradicts the choice of b.

We next deal with the case cl(G) = p+ 1.

Theorem 4.3.12. Let G be a metabelian thin p-group with cl(G) = p + 1, where

p ≥ 5. Then G has a Beauville structure.

Proof. By Theorem 4.3.11, G = G/γp+1(G) has a Beauville structure in which one

of the two triples has all elements of order p2, i.e. they have the same order in both G

and G. Then we can apply Lemma 2.3.4 and thus G is a Beauville group.

We next analyze the case cl(G) = p and |γp(G)| = p. Observe that in this case p ≥ 5,

otherwise G is of maximal class. Recall that we have γp(G) ≤ Gp ≤ γp−1(G), and

thus there are two possibilities:

(i) Gp = γp−1(G),

(ii) Gp = γp(G).

Observe that Gp cannot be a proper subgroup of γp−1(G) of order p2, by Lemma

4.1.28.

Theorem 4.3.13. Let G be a group in case (i). Then G has a Beauville structure .

Proof. First of all, notice that there exists a pair of generators a and b of G such that

ap and bp are linearly independent modulo γp(G). By the Hall-Petrescu formula, we

have

(atb)p = atpbpc
(p
2)

2 . . . c
(p
p)
p ,
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where cj ∈ γj(〈at, b〉). Since γ2(G)p ≤ γp(G), by Lemma 4.1.26, we get

(atb)p ≡ atpbp (mod γp(G))

for 1 ≤ t ≤ p − 1. Observe that, similarly to Lemma 4.3.6, for every maximal

subgroup M , m ∈ M and c ∈ G′ , we have (mc)p ≡ mp (mod γp(G)). It then

follows that the power subgroups Mp are all different modulo γp(G).

On the other hand, since G = G/γp(G) is of class p− 1, it is a regular p-group such

that |Gp| = p2. According to Theorem 3.2.2, G is a Beauville group since p ≥ 5.

From the observation above, all elements outside G′ are of order p2 in both G and G.

Then we can apply Lemma 2.3.4 to conclude that G is a Beauville group.

Theorem 4.3.14. Let G be a group in case (ii). Then G has a Beauville structure if

and only if it has at least three maximal subgroups of exponent p.

Proof. If the number of maximal subgroups of exponent p is less than three, then

Ω1(G) is contained in the union of at most two maximal subgroups. Since |Gp| = p,

it then follows from Proposition 3.2.1 that G has no Beauville structure.

On the other hand, if at least three maximal subgroups have exponent p, then accord-

ing to Lemma 2.3.5, G is a Beauville group.

We continue this section with the construction of metabelian thin p-groups. As a

consequence, we will see that if cl(G) = p and |γp(G)| = p, then both cases (i) and

(ii) are possible.

A partial ordering can be introduced on the set of non-cyclic metabelian thin p-groups

by saying that G strictly dominates H if H is isomorphic to a proper quotient of G.

Then in this poset, G is said to be an ancestor if it is not strictly dominated by any

thin group. This means that all metabelian thin p-groups are quotients of ancestors.

We will give the construction of all ancestors of order at least p7 for p > 3, which is

given in [10].

Construction 4.3.15. Let M = 〈c0, cl−1, ui, vi, 1 ≤ i ≤ l − 2〉 be an additively

written abelian group where l ≤ p, with relations

pcl−1 = pui = pvi = 0, pc0 = λcl−1,
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for some λ. Here cl−1 is allowed to be zero, and in this case, M is elementary abelian

of order p2l−3. Otherwise, M has order p2l−2, and is elementary abelian for λ = 0

and of type (p2, p, . . . , p) otherwise.

We next define two endomorphisms Y and X of M by

Y (c0) = v1, Y (cl−1) = 0,

Y (ui) = ui+1, Y (vi) = vi+1, for i < l − 2,

Y (ul−2) = µcl−1, Y (vl−2) = νcl−1,

for some µ and ν, that can be both zero only for cl−1 = 0, and

X(c0) = u1, X(cl−1) = 0,

X(ui) = kvi+1 + Y i−1(w), X(vi) = ui+1, for i < l − 2,

X(ul−2) = kνcl−1, X(vl−2) = µcl−1,

where k is a non-square modulo p, and w is a fixed element in

〈u3, v3, . . . , ul−2, vl−2, cl−1〉.

Then it is easy to see that X and Y commute, and X l = Y l = 0. Thus x = 1+X and

y = 1 + Y are commuting automorphisms of M , and since l ≤ p, they have order p.

Let A be the commutative ring of endomorphisms of M generated by x and y, and let

I be the ideal of A generated by X and Y . Then M is a cyclic A-module, generated

by c0. By checking the action on c0, it is easy to see that

X2 = kY 2 + ϕ, for some ϕ ∈ I3,

µXY l−2 = νY l−1,

where w = ϕ(c0).

Let α, β, γ and δ be integers so that the endomorphisms

φ ≡ αXY l−3 + βY l−2 (mod I l−1) and

ψ ≡ γXY l−3 + δY l−2 (mod I l−1)

satisfy the following relations:

Xφ = 0, Y ψ = 0, −Xψ = N(y), Y φ = N(x),
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where the norm N(z) of an element of A is defined as

N(z) = 1 + z + · · ·+ zp−1

= p+

(
p

2

)
(z − 1) + · · ·+

(
p

i

)
(z − 1)i−1 + · · ·+ (z − 1)p−1.

We can now construct a metabelian thin p-group. Note that M is abelian, and x and

y are commuting automorphisms of M of order p. Set

m1 = αul−2 + βvl−2,

m2 = γul−2 + δvl−2,

m1,2 = −c0, and m2,1 = c0.

Then we have

(y − 1)(m1) = Y (m1) = (αµ+ βν)cl−1,

and

(1 + x+ · · ·+ xp−1)(m2,1) = N(x)(c0) = Y φ(c0) = (αµ+ βν)cl−1.

Also

(x− 1)(m2) = X(m2) = (γkν + δµ)cl−1,

and

(1 + y + · · ·+ yp−1)(m1,2) = N(y)(−c0) = Xψ(c0) = (γkν + δµ)cl−1.

Thus by using Theorem 2.2.26, we can construct a metabelian p-group G = 〈a, b〉 as

an extension of M by an elementary abelian group of order p2 where

[a, b] = c0,

ma = x(m), mb = y(m) for all m ∈M,

ap = φ(c0), bp = ψ(c0).

By [10, pages 170,171], such a group G will be thin. Then according to Theorem 4.1

in [10], the resulting group G has exponent p2 and we have the following:

1. If we want G to have order p2l−1 and cl(G) = l, then we can choose freely α,

β, γ and δ which are not all zero unless l = p. In this case, we have expG′ = p.
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2. For l < p, if we want G to have order p2l and cl(G) = l + 1, then

α = s, β = kt, γ = −t, δ = −s,

for s, t not both zero. In this case, we have

λ = s2 − kt2, µ = s, ν = −t,

and expG′ = p2.

We next use the construction to show that there exists a group as in case (i) in page

62 , that is, cl(G) = p, |γp(G)| = p and Gp = γp−1(G). Let us take l = p− 1, t = 0

and s = 1, then by the construction, we have λ = 1, µ = 1, ν = 0 and

φ ≡ XY p−4 (mod Ip−2)

ψ ≡ −Y p−3 (mod Ip−2).

Hence ap = [a, b, a, b, p−4. . ., b] and bp = [a, b, p−2. . ., b]. By Lemma 4.1.18, ap and bp are

linearly independent modulo γp(G). Then γp−1(G) = 〈ap, bp〉γp(G) = 〈ap, bp, cp0〉 ≤
Gp. Thus Gp = γp−1(G).

We continue this section by showing groups as in Theorem 4.3.14 exist. We first

observe that there is a metabelian thin p-group G of class p and γp(G) ∼= Cp × Cp in

which there are three maximal subgroups whose pth powers coincide in a non-trivial

subgroup and all maximal subgroups have exponent p2.

Recall that by the proof of Lemma 4.3.5, we have

(xty)p ≡ l
γ+αt− 2t

1−ht2 m
δ+βt+ 2t2

1−ht2 (mod γp+1(G)),

where (l,m) is a basis of γp(G) modulo γp+1(G). By the construction, we can freely

choose α, β, γ and δ. Our aim is to choose γ and α so that γ + αt − 2t
1−ht2 = 0 has

three different solutions. Now γ + αt− 2t
1−ht2 = 0 if and only if

−αht3 − γht2 + (α− 2)t+ γ = 0. (4.10)

If we take γ = 0, then (4.10) holds if and only if either t = 0 or−αht2 +(α−2) = 0,

that is t2 = α−2
α
h−1.
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Notice that the map

Fp r {0} −→ Fp r {1}

α 7−→ 1− 2

α

is a bijection. Let us take a quadratic non-residue j ∈ Fp r {1}, then there exists

α ∈ Fp r {0} such that j = 1 − 2
α

. Thus we have t2 = jh−1, for some t 6= 0, since

jh−1 is a non-zero quadratic residue. Therefore, there are two different non-zero

solutions of (4.10), say t1 and t2, and consequently yp, (xt1y)p, (xt2y)p ∈ 〈m〉.

We next choose β and δ so that all maximal subgroups have exponent p2. Observe

that

δ + βt+
2t2

1− ht2
= 0 if and only if − βht3 + (2− δh)t2 + βt+ δ = 0.

If we choose β = 0 and δ = 2h−1, then since 2h−1 6= 0, we have no solution in t.

Thus, if γ = β = 0, δ = 2h−1 and α ∈ Fpr {0} is such that j = 1− 2
α

is a quadratic

non-residue, then by (4.8) and Lemma 4.3.6, all maximal subgroups have exponent

p2 and there are three maximal subgroups whose pth powers coincide.

Set G = G/〈m〉, then G is a group as in case (ii) with three maximal subgroups of

exponent p.

On the other hand, since γp(G) has p+ 1 maximal subgroups and 〈yp〉 = 〈(xt1y)p〉 =

〈(xt2y)p〉, there exists a maximal subgroup N of γp(G) which does not coincide with

the pth power of any maximal subgroup of G. Hence G = G/N is a group as in case

(ii) in which all maximal subgroups are of exponent p2.
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CHAPTER 5

QUOTIENTS OF THE NOTTINGHAM GROUP

In this chapter, we state the main result on quotients of the Nottingham group. We

determine which quotients of the Nottingham group over Fp are Beauville groups,

for an odd prime p. As a consequence, we give the first explicit infinite family of

Beauville 3-groups, and we show that there are Beauville 3-groups of order 3n for

every n ≥ 5. Before moving on to the results we give the definition of the Nottingham

group and some properties in Section 5.1. These properties play a significant role in

proving the main theorems of this chapter.

5.1 Preliminaries

In this section, we present some preliminaries for the Nottingham group. The proof

of the results can be found in the given references.

The Nottingham group was first introduced by D. Johnson [33] as a group of formal

power series under substitution.

Definition 5.1.1. Let Fq be a finite field. The Nottingham group over Fq, denoted by

N (Fq), is defined to be the group of formal power series of the form

f = t(1 +
∞∑
k=1

αkt
k) ∈ Fq[[t]]

under formal substitution: given g ∈ N (Fq), set fg = g(1 +
∑∞

k=1 αkg
k).

Equivalently, the Nottingham group may be described as follows:
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Definition 5.1.2. The Nottingham group over Fq is the topological group of normal-

ized automorphisms of the ring Fq[[t]] of formal power series :

N (Fq) = {f ∈ Aut(Fq[[t]]) | f(t) = t+
∑
i≥2

αit
i}.

The group operation is composition and given g ∈ N (Fq), we set fg = f ◦ g.

Throughout this chapter, we shall write N for N (Fq) and the elements of N will be

thought of as automorphisms of Fq[[t]].

We next define a chain of subgroups Nk (k ≥ 1) of N by

Nk = {f ∈ Aut(Fq[[t]]) | f(t) = t+
∑
i≥k+1

αit
i}.

Each Nk is an open normal subgroup of N and |Nk : Nk+1| = q. It can be seen that

N ∼= lim←−(N /Nk). Thus if q is a power of p, then N is a pro-p group. Indeed, it is a

finitely generated pro-p group.

We now state some results regarding the generators of the Nottingham group. For this

purpose, we introduce the following specific elements.

Definition 5.1.3. For i ∈ N with i 6≡ 0 (mod p) and λ ∈ Fq, we define fi[λ] ∈ N by

fi[λ] : t 7−→ t(1− λti)−1/i.

Then fi[λ] ∈ Ni (see [36], page 41).

Proposition 5.1.4. [36, Proposition 1.2] The set {fi[λ] | i ∈ N with i 6≡ 0

(mod p), λ ∈ F∗q} is a complete set of representatives for the conjugacy classes of

the elements of order p in N .

Definition 5.1.5. For i ≥ 1 and λ ∈ Fq, we define ei[λ] ∈ Ni by

ei[λ] : t 7−→ t(1 + λti).

Let Fq be a field with odd characteristic. If Fq is additively generated by {λ1, λ2, . . . , λe},
then N is topologically generated by 2e elements, that is

N = 〈e1[λj], e2[λj] | 1 ≤ j ≤ e〉.
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Lemma 5.1.6. [11, Remark 3(ii)] Let N be the Nottingham group over Fp, for an

odd prime p. Then N can be generated by two elements of order p, namely f1[1] and

f2[1].

Definition 5.1.7. If 1 6= f ∈ N then there is an integer k ≥ 1 such that f ∈
Nk \Nk+1. We call k the depth of f and denote it by D(f). Also, we define the depth

of the identity to be∞.

Proposition 5.1.8. [11, Proposition 1] Let f , g ∈ N with D(f) = k and D(g) = `.

Then

D([f, g]) = k + ` if k 6≡ ` (mod p),

D([f, g]) > k + ` if k ≡ ` (mod p).

Theorem 5.1.9. [11, Theorem 2] For p 6= 2,

[Nk,N`] =

Nk+`, if k 6≡ ` (mod p),

Nk+`+1, if k ≡ ` (mod p).

The following can be easily deduced from Theorem 5.1.9 for p 6= 2.

(i) The derived series ofN is given byN (i) = N2i+1−1 for i ≥ 0, and |N : N (i)| =
q2i+1−2.

(ii) The lower central series of N is given by γi(N ) = Nri , where ri = i + 1 +

b i−2
p−1
c.

Thus if N is the Nottingham group over Fp, for an odd prime p, then |γi(N ) :

γi+1(N )| ≤ p2 and the equality holds if and only if i = k(p − 1) + 1 for some

k ≥ 0. In other words, we have ‘diamonds’ of order p2 in the lower central series

which correspond to the quotients Nkp+1/Nkp+3.

Theorem 5.1.10. [37, Theorem 1.3] Let N be the Nottingham group over Fq of

characteristic p 6= 2. Then for every 1 6= W E N , there exists k ∈ N such that one

of the following holds:

(i) Nk+1 ≤ W ≤ Nk where k 6≡ 1 (mod p).

(ii) Nk+2 ≤ W ≤ Nk where k ≡ 1 (mod p).
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Thus every non-trivial normal subgroup of N is of finite index.

In particular, if N is the Nottingham group over Fp, for an odd prime p, then every

non-trivial normal subgroup of N is either a term of the chain {Nk} or one of the

p+ 1 intermediate subgroups in a diamond corresponding toNkp+1/Nkp+3. Thus the

Nottingham group over Fp is an example of thin infinite pro-p group.

Lemma 5.1.11. [11, Lemma 1] If D(f) = k then

D(fp) = kp if k ≡ 0 (mod p),

D(fp) > kp if k 6≡ 0 (mod p).

Theorem 5.1.12. [11, Theorem 6] If p 6= 2 then

N p
k = N p

k = Nkp+k,

where k ≡ k (mod p) and 0 ≤ k ≤ p− 1.

Notation: We write zm for the number pm + pm−1 + · · ·+ p+ 2 for every m ≥ 1 and

we put z0 = 2.

The following theorem implies that pmth powers of elements of the Nottingham group

are contained in Nzm−1.

Theorem 5.1.13. [53, Theorem 6] Let zm be as defined above and p 6= 2. Then for

every m ≥ 1 and k < zm, the exponent of N /Nk is at most pm.

We next mention how we can calculate the pmth powers of elements of the Notting-

ham group. For any f ∈ N , we can form a matrix M where Mi,j is the coefficient

of tj in the power series f(ti), which is the image of ti under f . Then we have the

following lemma.

Lemma 5.1.14. [53, Lemma 5] Let f ∈ N , and let M be the matrix associated to

f . Then for every r ≥ 1, the coefficient of tn in the series fp
r
(t) is∑

i=(i0,...,i`)

Mi0,i1Mi1,i2 . . .Mi`−1,i` , (5.1)

where ` = pr and the tuples i = (i0, . . . , i`) in the sum are taken so that 1 = i0 <

i1 < i2 < · · · < i`−1 < i` = n.
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We finally state a result regarding the centralizers of elements of order p with depth k

of the Nottingham group.

Theorem 5.1.15. [36, page 42] Let f be an element ofN of order p with D(f) = k.

Then for every ` ∈ k + 1 + pN we have

CN/N`
(fN`) = CN (f)N`−k/N`.

5.2 Main result

In this section, we analyse quotients of the Nottingham group over the field Fp, for an

odd prime p. Before proving the main result, we require Theorems 5.2.6 and 5.2.8. It

should be noted that Lemma 5.2.2 is crucial to determine Beauville structures in the

quotients of the Nottingham group.

Before proving the following two lemmas, we first observe that for every k ≥ 1, we

have

f ≡ g (mod Nk) if and only if f(t) ≡ g(t) (mod tk+1). (5.2)

Indeed, f ≡ g (mod Nk) implies that there exists h ∈ Nk such that f = hg. Let h

be given by h(t) = t+
∑

i≥k+1 ait
i. Then

f(t) = h(g(t)) = g(t) +
∑
i≥k+1

aig(t)i ≡ g(t) (mod tk+1).

Conversely, let us assume that f(t) ≡ g(t) (mod tk+1), that is f(t) = g(t) +∑
i≥k+1 ait

i. Since g ∈ N , there exists g−1 ∈ N such that g−1(g(t)) = t. Let h

be given by h(t) = t +
∑

i≥k+1 aig
−1(t)i. Then h ∈ Nk, and h(g(t)) = g(t) +∑

i≥k+1 aig
−1(g(t))i = g(t) +

∑
i≥k+1 ait

i = f(t). Thus f = hg, and hence f ≡ g

(mod Nk).

Our approach to prove the main result is based on the analysis of the quotients of

the form N /Nzm+1 for every m ≥ 1. To this purpose, the important point is to con-

trol the pmth powers of elements outside N ′ modulo Nzm+1 since they are potential

generators of that quotient group.

Lemma 5.2.1. Let f ∈ Nzk−1 and g ∈ Nzk+1, where k ≥ 0. Then, for every ` ≥ 1

we have

(fg)p
` ≡ fp

`

(mod Nzk+`+1).
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Proof. According to Theorem 2.2.20, we have

(fg)p
`

= fp
`

gp
`

c
(p`

2 )
2 c

(p`

3 )
3 . . . c

( p`

p−1)
p−1 . . . cp` , (5.3)

where ci ∈ γi(〈f, g〉) for every 2 ≤ i ≤ p`. Since g ∈ Nzk+1, it then follows from

Theorem 5.1.12 that

gp
` ∈ N p`

zk+1 ≤ Np`(zk+1) ≤ Nzk+`+1.

On the other hand, let 1 ≤ i ≤ p`, and choose r such that pr ≤ i < pr+1. Then the

binomial coefficient
(
p`

i

)
is divisible by p`−r, by Corollary 2.2.24. Since pr ≤ i <

pr+1, we have ci ∈ γpr(〈f, g〉), where

γpr(〈f, g〉) ≤ [Nzk+1,Nzk−1, p
r−1. . . ,Nzk−1] = N2+pr(zk−1)+ pr−1

p−1
.

The equality follows immediately from Theorem 5.1.9. Since

2 + pr(zk − 1) +
pr − 1

p− 1
= zr+k + 1,

we get

c
(p`

i )
i ∈ N p`−r

zr+k+1 ≤ Np`−r(zr+k+1) ≤ Nzk+`+1,

by using Theorem 5.1.12. Thus we conclude from (5.3) that (fg)p
` ≡ fp

`
(mod Nzk+`+1).

As a consequence of Lemma 5.2.1, if we want to know pmth powers of all elements

outside N ′ in the quotient N /Nzm+1, it is enough to calculate the pmth power of one

element inMrN ′ for every maximal subgroupM of N .

We note that Φ(N ) = N3, by Remark 3 in [11] and hence N /Φ(N ) ∼= Cp × Cp.

Thus N has p + 1 maximal subgroups. These maximal subgroups are N2, together

with the subgroupsMλ = 〈fλ,N ′〉 for all λ ∈ Fp, where the element fλ is given by

fλ(t) = t+ t2 + λt3.

We recall from Proposition 5.1.4 that the elements a and b given by a(t) = t(1− t)−1

and b(t) = t(1−2t)−1/2 are both of order p. Indeed, a(t) = t(1−t)−1 = t(
∑∞

i=0 t
i) ≡

t+ t2 + t3 (mod t4). Then by (5.2) we have a ≡ f1 (mod N3). ThusM1 = 〈a,N ′〉.
AlsoN2 = 〈b,N ′〉. By Lemma 5.2.1, we conclude that all elements inM1rN ′ and

N2 rN ′ have order at most pm in the quotient group N /Nzm+1. On the other hand,
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we will see that all elements inMλ rN ′ with λ 6= 1 have order pm+1 in N /Nzm+1.

To this purpose, we need to calculate fp
m

λ modulo Nzm+1. The following lemma is

crucial for the calculation of fp
m

λ .

Lemma 5.2.2. Let f ∈ N be defined via

f(t) ≡ t+ λtzm−1 + µtzm−1+1 (mod tzm−1+2),

where m ≥ 1. Then

fp(t) ≡

t+ λp−1(λ2 − µ)tz1 − λp−2(λ2 − µ)2tz1+1 (mod tz1+2), if m = 1,

t− λp−1µtzm − λp−2µ2tzm+1 (mod tzm+2), if m > 1.

(5.4)

Proof. By Lemma 5.2.1 and (5.2), we may assume that f(t) = t+λtzm−1 +µtzm−1+1.

Since f ∈ Nzm−1−1, it follows from Theorem 5.1.12 that fp ∈ N p
zm−1−1 = Nzm−1.

Thus for every 2 ≤ i ≤ zm − 1, the coefficient of ti in fp(t) is zero. For the proof we

rely on Lemma 5.1.14. According to the definition of the matrix M , we have

f(ti) = ti +
∑
j≥1

Mi,i+jt
i+j.

By expanding the ith power in

f(ti) = f(t)i = (t+ tzm−1(λ+ µt))i =
i∑

s=0

(
i

s

)
ti−s(tzm−1(λ+ µt))s, (5.5)

we obtain the following values of Mi,i+j for 1 ≤ j ≤ zm−1 + 1: if m > 1 we have

Mi,i+j =


λi, if j = zm−1 − 1,

µi, if j = zm−1,

0, if 1 ≤ j < zm−1 − 1 or j = zm−1 + 1,

(5.6)

and if m = 1 then

Mi,i+j =


λi, if j = 1,

λ2
(
i
2

)
+ µi, if j = 2,

2λµ
(
i
2

)
+ λ3

(
i
3

)
, if j = 3.

(5.7)

We deduce from (5.6) that if there is a non-zero term in the sum (5.1) corresponding

to a tuple i = (i0, . . . , ip), then we must have ij+1 ≥ ij + zm−1 − 1 for every j =

0, . . . , p− 1. Thus ij ≥ j(zm−1 − 1) + 1 for every j = 0, . . . , p.
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Let us first assume that m > 1. We start by calculating the coefficient α of tzm in

fp(t). Since ip = zm = p(zm−1 − 1) + 2, for some k ∈ {1, . . . , p} we must have

ij = j(zm−1− 1) + 1 for j = 0, . . . , k− 1 and ij = j(zm−1− 1) + 2 for j = k, . . . , p.

For simplicity we write qj = j(zm−1 − 1) + 1. Then

α =

p∑
k=1

αk,

where

αk =
( k−1∏
i=1

Mqi−1,qi

)
Mqk−1,qk+1

( p∏
i=k+1

Mqi−1+1,qi+1

)
.

By (5.6) we have

Mqj−1,qj = λqj−1 = λj, for j = 1, . . . , k − 1,

Mqk−1,qk+1 = µqk−1 = µk,

and

Mqj−1+1,qj+1 = λ(qj−1 + 1) = λ(j + 1), for j = k + 1, . . . , p.

Thus

αk = λp−1µ k!(k + 2) . . . (p+ 1).

Since αk contains the factor p unless k = p− 1, we get

α = λp−1µ(p− 1)! = −λp−1µ.

We next calculate the coefficient β of tzm+1 in f(tp). Since ip = zm + 1 = p(zm−1 −
1)+3, β must be a product of factors of the formMij−1,ij , where ij− ij−1 = zm−1−1

except for two values k and ` for which ik − ik−1 = i` − i`−1 = zm−1, or one

value r for which ir − ir−1 = zm−1 + 1. The latter case gives a zero product, since

Mi,i+zm−1+1 = 0 by (5.6), and hence

β =
∑

1≤k<`≤p

βk,`,

where

βk,l =
( k−1∏
i=1

Mqi−1,qi

)
Mqk−1,qk+1

( `−1∏
i=k+1

Mqi−1+1,qi+1

)
Mq`−1+1,q`+2

( p∏
i=`+1

Mqi−1+2,qi+2

)
.
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By (5.6), we have

βk,` = λp−2µ2

p+2∏
i=1

i 6=k+1, `+2

i,

which is 0 unless k = p−1 and ` = p, or 1 ≤ k ≤ p−3 and ` = p−2. Consequently

β = λp−2µ2
(

(p− 1)!(p+ 1) +

p−3∑
k=1

(p− 1)!(p+ 1)(p+ 2)

k + 1

)
= −λp−2µ2,

where the last equality follows from Theorem 2.2.22. This completes the proof when

m > 1.

Let us now assume that m = 1. We first calculate the coefficient α of tz1 in fp(t).

Similar to the case m > 1, we have

α =

p∑
k=1

αk,

where

αk =
( k−1∏
i=1

Mqi−1,qi

)
Mqk−1,qk+1

( p∏
i=k+1

Mqi−1+1,qi+1

)
.

Then by (5.7),

αk = λp−1
(
λ2

(
k

2

)
+ µk

)
(k − 1)!(k + 2) . . . (p+ 1).

Since αk is 0 unless k = p− 1, we finally get

α = λp−1(−λ2 + µ)(p− 1)!(p+ 1) = λp−1(λ2 − µ).

The coefficient β of tz1+1 in fp(t) can be obtained in a similar way. In that case, we

have

β =
∑

1≤k<`≤p

βk,` +

p∑
r=1

βr

where βk,` is as defined above, and

βr =
( r−1∏
i=1

Mqi−1,qi

)
Mqr−1,qr+2

( p∏
i=r+1

Mqi−1+2,qi+2

)
.

By (5.7), we have

βk,` = λp−2
(
λ2

(
k

2

)
+ µk

)(
λ2

(
`+ 1

2

)
+ µ(`+ 1)

) p+2∏
i=1

i 6=k, k+1, `+1, `+2

i,
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which is 0 unless k = p− 1 and ` = p, or 1 ≤ k ≤ p− 3 and ` = p− 2. Thus∑
1≤k<`≤p

βk,` = λp−2µ(−λ2 + µ)(p− 1)!(p+ 1)

+ λp−2(λ2 − µ)

p−3∑
k=1

(p− 1)!(p+ 1)(p+ 2)
(
λ2
(
k
2

)
+ µk

)
k(k + 1)

= λp−2(λ2 − µ)(−3λ2 + µ),

where the last equality follows from Theorem 2.2.22. On the other hand,

βr = λp−1
(

2λµ

(
r

2

)
+ λ3

(
r

3

))
(r − 1)!(r + 3) . . . (p+ 2).

We now consider separately p = 3 and p ≥ 5. Let us first assume that p ≥ 5. Then

βr is 0 unless r = p− 1 or p− 2. Thus
p∑
r=1

βr = λp−1
(

2λµ

(
p− 1

2

)
+ λ3

(
p− 1

3

))
(p− 2)!(p+ 2)

+ λp−1
(

2λµ

(
p− 2

2

)
+ λ3

(
p− 2

3

))
(p− 3)!(p+ 1)(p+ 2)

= 2λp−1(2λµ− λ3)− λp−1(6λµ− 4λ3)

= 2λp(λ2 − µ).

If p = 3 then

3∑
r=1

βr = β2 + β3 = 10λ3µ+ 2λ5 = 2λ3(λ2 − µ).

Thus in both cases we get the same result, namely
∑p

r=1 βr = 2λp(λ2 − µ). Conse-

quently

β = λp−2(λ2 − µ)(−3λ2 + µ) + 2λp(λ2 − µ) = −λp−2(λ2 − µ)2,

as desired. This completes the proof.

Corollary 5.2.3. For every λ ∈ Fp and m ≥ 1, we have

fp
m

λ (t) ≡ t+ (1− λ)mtzm − (1− λ)m+1tzm+1 (mod tzm+2).

Proof. To prove the corollary, we use induction on m. By Lemma 5.2.2, we have

fpλ(t) ≡ t+ (1− λ)tz1 − (1− λ)2tz1+1 (mod tz1+2).
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We now assume that the result holds for m− 1 for some m ≥ 2. That is,

fp
m−1

λ (t) ≡ t+ (1− λ)m−1tzm−1 − (1− λ)mtzm−1+1 (mod tzm−1+2).

Then Lemma 5.2.2 implies that the coefficient of tzm in fp
m

λ (t) is

(1− λ)(p−1)(m−1)(1− λ)m = (1− λ)p(m−1)+1 = (1− λ)m,

and the coefficient of tzm+1 in fp
m

λ (t) is

−(1− λ)(p−2)(m−1)(1− λ)2m = −(1− λ)p(m−1)+2 = −(1− λ)m+1.

The last equalities follow from the fact that for every λ ∈ Fp, λp = λ. This completes

the proof.

We next consider a quotientG = N /Nzm+1 of the Nottingham group, for a fixedm ≥
1. We will use the following notation: for every 1 ≤ k ≤ zm + 1, Nk = Nk/Nzm+1,

and for every λ ∈ Fp, Mλ =Mλ/Nzm+1.

Corollary 5.2.4. If G = N /Nzm+1 then for λ ∈ Fp, λ 6= 1, the power subgroups

Mpm

λ are all different and of order p, contained in Nzm−1. In particular, all elements

of Mλ rG′ are of order pm+1 for λ 6= 1.

Proof. We know that Mpm

λ is the image ofMpm

λ in G. Lemma 5.2.1 yields that for

every λ ∈ Fp, λ 6= 1, Mpm

λ is equal to the image of 〈fp
m

λ 〉 in G, and hence by

Corollary 5.2.3, Mpm

λ is of order p. Thus for every λ 6= 1, we have 1 = Nzm+1 <

Mpm

λ < Nzm−1. Furthermore, since fλ is of order pm+1 in G for λ 6= 1, it follows

from Lemma 5.2.1 that all elements of Mλ rG′ are of order pm+1 for λ 6= 1.

It remains to show that Mpm

λ are all different for λ 6= 1. If Mpm

λ1
= Mpm

λ2
for some

λ1, λ2 ∈ Fp, λ1, λ2 6= 1, then 〈fp
m

λ1
〉 ≡ 〈fp

m

λ2
〉 (mod Nzm+1). Then (5.2) implies that

f ip
m

λ1
(t) ≡ fp

m

λ2
(t) (mod tzm+2) for some integer i not divisible by p. Observe that

since fp
m

λ1
(t) ≡ t + (1 − λ1)mtzm − (1 − λ1)m+1tzm+1 (mod tzm+2), by Corollary

5.2.3, we have

f 2pm

λ1
(t) = (fp

m

λ1
◦ fp

m

λ1
)(t) ≡ t+ 2(1−λ1)mtzm − 2(1−λ1)m+1tzm+1 (mod tzm+2).

Then inductively we get

f ip
m

λ1
(t) ≡ t+ i(1− λ1)mtzm − i(1− λ1)m+1tzm+1 (mod tzm+2).
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Hence 〈fp
m

λ1
〉 ≡ 〈fp

m

λ2
〉 (mod Nzm+1) if and only if

i(1− λ1)m = (1− λ2)m, and i(1− λ1)m+1 = (1− λ2)m+1.

This clearly forces λ1 = λ2. Thus Mpm

λ are all different for every λ ∈ Fp, λ 6= 1.

We now begin to determine which quotients of the Nottingham group are Beauville

groups. We first consider the quotients of the form N /Nk. We deal separately with

the cases p > 3 and p = 3. On the other hand, the following lemma holds in both

cases p > 3 and p = 3.

Lemma 5.2.5. N /Nzm is not a Beauville group for every m ≥ 1.

Proof. By Lemma 5.2.1 and by Corollary 5.2.3, all elements inMλ/Nzm rN ′/Nzm
are of order pm+1 for λ 6= 1. Since expN /Nzm = pm+1, it then follows that con-

dition (i) of Proposition 3.2.1 is fulfilled. On the other hand, by Theorem 5.1.12,

we have N pm ≤ Nzm−1, and so (N /Nzm)p
m ≤ Nzm−1/Nzm . This, togehter with

|Nzm−1/Nzm| = p, yields that (N /Nzm)p
m has order p. Thus also condition (ii) of

Proposition 3.2.1 holds, and we conclude that N /Nzm is not a Beauville group.

Theorem 5.2.6. If p ≥ 5 then a quotient N /Nk is a Beauville group if and only if

k ≥ 3 and k 6= zm for all m ≥ 1.

Proof. First of all, note that by Lemma 5.2.5, N /Nzm is not a Beauville group for

m ≥ 1. On the other hand, if k = 2 thenN /N2
∼= Cp which is not a Beauville group.

This completes the proof of one implication in the statement of the theorem.

Let us now prove the converse. We begin by proving that G = N /Nzm+1 is a

Beauville group for all m ≥ 1. Let u and v be the images in G of the automor-

phisms a and b which were defined after Lemma 5.2.1. Then {u, v} and {uv2, uv4}
are both systems of generators ofG, and we claim that they yield a Beauville structure

for G. If X = {u, v, uv} and Y = {uv2, uv4, uv2uv4}, we have to see that

〈xg〉 ∩ 〈yh〉 = 1 (5.8)

for all x ∈ X , y ∈ Y , and g, h ∈ G. Observe that 〈xΦ(G)〉 and 〈yΦ(G)〉 have

trivial intersection for every x ∈ X and y ∈ Y , since a and b are linearly independent
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modulo Φ(G) and p ≥ 5. As a consequence, xg and yh lie in different maximal

subgroups of G in every case.

Assume first that x = u or v, which are elements of order p. It then follows from

Lemma 2.3.1 that ( ⋃
g∈G

〈x〉g
)⋂( ⋃

g∈G

〈y〉g
)

= 1,

for every y ∈ Y .

We next assume that x = uv. Now, uv and all elements y ∈ Y lie in Mλ r G′ for

some λ ∈ Fp, λ 6= 1, and so they are all of order pm+1, by Corollary 5.2.4. If (5.8)

does not hold, then

〈(xg)pm〉 = 〈(yh)pm〉

and, again by Corollary 5.2.4, xg, yh ∈ Mλ for some λ. This is a contradiction, and

we thus complete the proof that G is a Beauville group.

Let us now consider a general quotient N /Nk with k ≥ 3 and k 6= zm for all m ≥ 1.

Then either 3 ≤ k ≤ p+ 1 or zm + 1 ≤ k ≤ zm+1− 1 for some m ≥ 1. In the former

case, expN /Nk = p. Since p ≥ 5, it implies that N /Nk is a Beauville group by

Corollary 2.1.14. In the latter case, we claim that the Beauville structure ofN /Nzm+1

shown in the previous paragraph can be inherited by a quotient N /Nk for zm + 1 ≤
k ≤ zm+1 − 1. One of the generating sets in the Beauville structure of N /Nzm+1

is {aNzm+1, bNzm+1}. By Corollary 5.2.4, we have (ab)p
m ∈ Nzm−1 r Nzm+1 and

(ab)p
m+1 ∈ Nzm+1−1 ≤ Nk, thus o(abNk) = pm+1. Since also o(aNk) = o(bNk) = p,

we can apply Lemma 2.3.4, and hence N /Nk is a Beauville group.

Next we show a similar result for p = 3. To this purpose, we need the following

lemma.

Lemma 5.2.7. Let p = 3 and m ≥ 1, and put G = N /Nzm+1 and Nk = Nk/Nzm+1

for all k ≥ 1. If u and v are the images of a and b in G, respectively, then

{[u, g] | g ∈ G} ∩Nzm−1 = [u,Nzm−2],

{[v, g] | g ∈ G} ∩Nzm−1 = Nzm ,
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and both of order p.

Proof. By Theorem 5.1.9, G is a finite nilpotent group of class 2zm−1 − 1 since

γ2zm−1(G) = Nzm+1 = 1 and γ2zm−1−1(G) = Nzm−1 6= 1. Let Nzm−2/Nzm−1 = 〈w〉,
for some w ∈ Nzm−2. Then

γ2zm−1−1(G) = Nzm−1 = 〈[u,w], [v, w]〉 = 〈[u,w]〉 × 〈[v, w]〉

= [u,Nzm−2]× [v,Nzm−2] = [u,Nzm−2]×Nzm .

Observe that [v,Nzm−2] = Nzm , because b ∈ N2 rN3 and [N2,Nzm−2] = Nzm .

Then [u,Nzm−2] has order p. We first show that {[u, g] | g ∈ G} ∩ Nzm−1 =

[u,Nzm−2]. By Lemma 2.3.3, we have {[u, g] | g ∈ G} ∩ Nzm−1 is a subgroup of

Nzm−1 since Nzm−1 ≤ Z(G). It is clear that [u,Nzm−2] ≤ {[u, g] | g ∈ G} ∩Nzm−1.

We argue by contradiction, and suppose that [u,Nzm−2] is proper, that is

[u,Nzm−2] � {[u, g] | g ∈ G} ∩Nzm−1 ≤ Nzm−1.

Then, since Nzm−1 is of order p2, we get {[u, g] | g ∈ G} ∩ Nzm−1 = Nzm−1. Thus

there exists g ∈ G such that 1 6= [u, g] ∈ Nzm . Since a ∈ N1 r N2 is of order p,

Theorem 5.1.15 yields

CN/Nzm
(aNzm) = CN (a)Nzm−1/Nzm .

Thus we can write g = ch, with [u, c] = 1 and h ∈ Nzm−1. It follows that [u, g] =

[u, ch] = [u, h][u, c]h = [u, h] ∈ [G,Nzm−1] = 1, since Nzm−1 is central in G, which

is a contradiction.

We next prove the result for the element v. Let [v, g] ∈ Nzm−1 for some g ∈ G. Since

b ∈ N2 rN3 is of order p, again by Theorem 5.1.15, we have

CN/Nzm−2(bNzm−2) = CN (b)Nzm−4/Nzm−2.

Thus we can write g = ch with [v, c] = 1 and h ∈ Nzm−4, and consequently [v, g] =

[v, ch] = [v, h][v, c]h = [v, h]. Now, if D(h) = zm − 4, then by Proposition 5.1.8

D([v, h]) = zm−2, that is [v, h] ∈ Nzm−2rNzm−1, which is not true. Thus h ∈ Nzm−3
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and hence we conclude that [v, g] ∈ [N2, Nzm−3] = Nzm . Since Nzm has order p, we

get {[v, g] | g ∈ G} ∩Nzm−1 = Nzm , as desired.

Theorem 5.2.8. If p = 3 then a quotient N /Nk is a Beauville group if and only if

k ≥ 6 and k 6= zm for all m ≥ 1.

Proof. Since the smallest Beauville 3-group is of order 35, the quotient N /Nk can

only be a Beauville 3-group if k ≥ 6; note that 6 is the same as z1+1 in this case. Now,

by arguing as in the proof of Theorem 5.2.6, it suffices to see that G = N /Nzm+1 is

a Beauville group for every m ≥ 1.

Let u and v be the images of a and b in G, respectively. By Lemma 5.2.7, there

exist w, z ∈ Nzm−1 such that w 6∈ {[u, g] | g ∈ G} and z 6∈ {[v, g] | g ∈ G}.
Observe that w and z are central elements of order p in G. We claim that {u, v}
and {(uw)−1, vz} form a Beauville structure in G. Let X = {u, v, uv} and Y =

{(uw)−1, vz, u−1vw−1z}. Assume first that x ∈ X is of order p, and let y ∈ Y .

If 〈xΦ(G)〉 6= 〈yΦ(G)〉 in G/Φ(G), then by Lemma 2.3.1, 〈x〉g ∩ 〈y〉h = 1 for

every g, h ∈ G. Otherwise, we are in one of the following two cases: x = u and

y = (uw)−1, or x = v and y = vz. Then the condition 〈x〉g ∩ 〈y〉h = 1 follows by

Lemma 2.3.2.

We now assume that x = uv. Again applying Lemma 2.3.1, we get 〈x〉g ∩ 〈y〉h = 1

where y = (uw)−1 or y = vz, which is of order p. Thus we are only left with the

case when x = uv and y = u−1vw−1z. Now x and y lie in two different maximal

subgroups which are different from M1 and N2. By Corollary 5.2.4, both x and y

are of order pm+1 and 〈xpm〉 6= 〈ypm〉. Since xpm , ypm ∈ Nzm−1 are central in G, it

follows that 〈x〉g ∩ 〈y〉h = 1 for all g, h ∈ G also in this case. This completes the

proof that G is a Beauville group.

By Theorems 5.2.6 and 5.2.8, we determine which quotients of the Nottingham group

of the formN /Nk are Beauville groups. We next analyse the case of quotients of the

form N /W , whereW is an intermediate subgroup in a diamond Nkp+1/Nkp+3.

It is clear that Nzm−1/Nzm+1 is a diamond for all m ≥ 0. We refer to these as
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distinguished diamonds.

Theorem 5.2.9. LetW be an intermediate subgroup in a diamond of the Nottingham

group which is not distinguished. Then N /W is a Beauville group.

Proof. Let Nkp+3 < W < Nkp+1, where Nkp+1/Nkp+3 is not distinguished. We

choose m such that zm + 1 < kp + 3 < zm+1 + 1. By Theorems 5.2.6 and 5.2.8,

N /Nzm+1 has a Beauville structure whose first set of generators is {aNzm+1, bNzm+1}.
Now a and b are both of order p modulo W and modulo Nzm+1. Since (ab)p

m ∈
Nzm−1 r Nzm and (ab)p

m+1 ∈ Nzm+1−1 by Corollary 5.2.4, ab has the same order

moduloW and Nzm+1, namely pm+1. Hence N /W is a Beauville group by Lemma

2.3.4.

Theorem 5.2.10. (Main Theorem) Let N be the Nottingham group over Fp, where

p is an odd prime, and let W be a normal subgroup of N of index ≥ p2 or p5,

according as p > 3 or p = 3. Then N /W is a Beauville group if and only ifW 6=
Nzm , 〈e,Nzm+1〉, where e is the automorphism given by e(t) = t+ tzm for all m ≥ 1

or m ≥ 2, according as p > 3 or p = 3.

Proof. It remains to deal with the case of quotients of the form N /W , where W is

an intermediate subgroup in a distinguished diamondNzm−1/Nzm+1 for some m ≥ 1

or m ≥ 2, according as p > 3 or p = 3. The p + 1 intermediate subgroups between

Nzm+1 andNzm−1 areNzm and the subgroupsWα = 〈eα,Nzm+1〉, where α ∈ Fp and

eα(t) = t+ tzm + αtzm+1.

We already know that N /Nzm is not a Beauville group by Lemma 5.2.5. By using

the same argument we show that neither N /W0 is a Beauville group. By Corollary

5.2.4, we know that all elements inMλ/W0 rN ′/W0 are of order pm+1 for λ 6= 1,

and hence expN /W0 = pm+1. Then Ω{m}(N /W0) is contained in two maximal

subgroups, which areM1/W0 and N2/W0. On the other hand, since N pm ≤ Nzm−1

we have (N /W0)p
m

= N pmW0/W0 ≤ Nzm−1/W0, and so (N /W0)p
m is of order p.

Thus N /W0 is not a Beauville group by Proposition 3.2.1.

Thus we may assume that W = Wα for some α 6= 0. If we define fλ as above by
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means of fλ(t) = t+ t2 + λt3, then by Corollary 5.2.3 we have

fp
m

1+α(t) ≡ t+ (−α)mtzm − (−α)m+1tzm+1 (mod tzm+2),

and hence

fp
m

1+α ≡ e(−α)m

α (mod Nzm+1).

Consequently, Wα = 〈fp
m

1+α,Nzm+1〉. We next observe that f1+α ≡ abα (mod N3).

Since a(t) ≡ t + t2 + t3 (mod t4), and b(t) ≡ t + t3 (mod t4), we have abα(t) ≡
t + t2 + (1 + α)t3 (mod t4), and (5.2) implies that f1+α ≡ abα (mod N3). Then

Lemma 5.2.1 yields that

fp
m

1+α ≡ (abα)p
m

(mod Nzm+1).

HenceWα = 〈(abα)p
m
,Nzm+1〉. In particular, the order of abα moduloWα is pm.

Now, since m ≥ 1 if p > 3 and m ≥ 2 if p = 3, N /Nzm−1+1 has a Beauville

structure with {aNzm−1+1, bNzm−1+1} as one of the generating sets. In a similar way,

we can prove that N /Nzm−1+1 has a Beauville structure whose first set of generators

is {aNzm−1+1, b
αNzm−1+1}.

Let u and v be the images of a and b in G = N /Nzm−1+1, respectively. If p = 3, then

{u, v2} and {uw, vz} also form a Beauville structure for G. The proof is essentially

the same as the proof of Theorem 5.2.8.

If p > 3, then for 1 ≤ α ≤ p − 3 the set of generators {u, vα} and {uv1+α, uvp−1}
form a Beauville structure for G. If α = p − 2, then {u, vα} and {uv2, uvp−4} form

a Beauville structure for G, and finally if α = p − 1, then {u, vα} and {uv, uv3}
form a Beauville structure for G. The proofs are essentially the same as the proof of

Theorem 5.2.6.

Then we have o(aNzm−1+1) = o(aWα) = p, o(bNzm−1+1) = o(bWα) = p and

o(abαNzm−1+1) = o(abαWα) = pm, and consequently we can apply Lemma 2.3.4 to

conclude that N /Wα has a Beauville structure.

We close the chapter by showing that condition (i) in Proposition 3.2.1 cannot be re-

laxed. More specifically, given a 2-generator finite p-groupG of exponent pe in which

Ω{e−1}(G) is contained in the union of three maximal subgroups and |Gpe−1| = p, it
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may well happen that G is a Beauville group. To this end, consider an intermedi-

ate subgroup Nzm+1 < W < Nzm−1 in a distinguished diamond of the Nottingham

group, wherem ≥ 1 orm ≥ 2, according as p > 3 or p = 3. IfW 6= Nzm , 〈e,Nzm+1〉
then G = N /W is a Beauville group by Theorem 5.2.10. Also, as indicated in the

proof of that theorem, we haveW = 〈(abα)p
m
,Nzm+1〉 for some α 6= 0 in Fp. It then

follows from Corollary 5.2.4 that expG = pm+1 and that Ω{m}(G) is contained in the

three maximal subgroups of G that contain the images of a, b and abα.
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CHAPTER 6

p-CENTRAL QUOTIENTS OF FREE GROUPS AND FREE

PRODUCTS

In this chapter, we prove a conjecture of Boston that if p ≥ 5, all p-central quotients of

the free group on two generators and of the free product of two cyclic groups of order

p are Beauville groups. In the case of the free product, we also determine Beauville

structures in p-central quotients when p = 3. As a consequence, we give an infinite

family of Beauville 3-groups. We next compare these examples with the Beauville

quotients of the Nottingham group over F3 given in Chapter 5, and we show that the

two infinite families only coincide at the group of order 35.

6.1 Preliminaries

In this section, we briefly recall the definition and some properties of p-central quo-

tients. Also we present some preliminaries regarding free groups and free products of

groups.

Definition 6.1.1. For any group G, the normal series

G = λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) ≥ . . .

given by λn(G) = [λn−1(G), G]λn−1(G)p for n > 1 is called the p-central series of

G. Then a quotient group G/λn(G) is said to be a p-central quotient of G.

Theorem 6.1.2. [31, Definition 1.4, Theorem 1.5] Let G be a group. Then

(i) λn(G) = γ1(G)p
n−1
γ2(G)p

n−2
. . . γn−1(G)pγn(G).
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(ii) [λm(G), λn(G)] ≤ λm+n(G).

(iii) λn(G)p
i ≤ λn+i(G).

Theorem 6.1.3. [29, Theorem 9.14] If G is a d-generator group, then G/λ2(G) is

elementary abelian of order at most pd. If G is a finite p-group, then λ2(G) = Φ(G).

Lemma 6.1.4. [29, Lemma 9.15] If θ is a homomorphism of G, then θ(λi(G)) =

λi(θ(G)). Consequently, each term of the p-central series is a characteristic subgroup

of G. Also, if N E G then λi(G/N) = λi(G)N/N .

Theorem 6.1.5. [29, Lemma 9.20] If G/λ2(G) is generated by the images of g1, g2,

. . . , gn, then λ2(G)/λ3(G) is generated by the images of gpi for 1 ≤ i ≤ d and

[gi, gj] for 1 ≤ i < j ≤ d. More generally, for k > 1, let S be a subset of G

which generates G modulo λ2(G), and let T generate λk(G) modulo λk+1(G). Then

λk+1(G) is generated modulo λk+2(G) by [s, t] for s ∈ S, t ∈ T and tp for t ∈ T .

Theorem 6.1.6. [31, Theorem 1.8] Let G be a group. Then any element of λn(G)

can be written in the form

ap
n−1

1 ap
n−2

2 . . . an for some ai ∈ γi(G).

The following lemma states a special case of the Hall-Petrescu formula.

Lemma 6.1.7. [31, Lemma 1.1] Let G be a group, x, y ∈ G and let p be an odd

prime. Then for n ≥ 3

(xy)p
n−2 ≡ xp

n−2

yp
n−2

(mod γ2(G)p
n−2

n−2∏
r=1

γpr(G)p
n−2−r

).

Lemma 6.1.8. Let G be a group and x, y ∈ G. For n ≥ 2, we have

(xy)p
n−2 ≡ xp

n−2

yp
n−2

(mod λn(G)).

Proof. By Lemma 6.1.7, we have

(xy)p
n−2 ≡ xp

n−2

yp
n−2

(mod γ2(G)p
n−2

n−2∏
r=1

γpr(G)p
n−2−r

). (6.1)

Now the result follows, since by Theorem 6.1.2, γ2(G)p
n−2 ≤ λn(G) and for 1 ≤ r ≤

n− 2 we have

γpr(G)p
n−2−r ≤ λpr+n−2−r(G) ≤ λn(G).

Note that the last inclusion holds, since p is odd.
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Note that if y ∈ λ2(G) in Lemma 6.1.8, then

(xy)p
n−2 ≡ xp

n−2

(mod λn(G)). (6.2)

Lemma 6.1.9. Let G be a group such that expG/G′ = p. Then for all n > 1,

λn(G) = γn(G).

Proof. Since expG/G′ = p, we have Gp ≤ G′, and hence λ2(G) = G′. Now

assume that the result holds for n ≥ 2, that is, λn(G) = γn(G). Then λn+1(G) =

γn+1(G)γn(G)p. Since exp γi(G)/γi+1(G) | expG/G′ = p for all i ≥ 1, this implies

that γn(G)p ≤ γn+1(G), and hence λn(G) = γn(G).

We next give the definition of free groups.

Definition 6.1.10. (Universal property of the free groups) A group F is said to be

free on a nonempty set S if there is a function φ : S −→ F such that if G is any

group and θ : S −→ G is any function, then there exists a unique homomorphism

f : F −→ G such that θ = f ◦ φ.

Theorem 6.1.11. [47, Theorem 2.1.5] If G is any group and S is a subset of G that

generates G, then G is a homomorphic image of the free group on the set S.

Definition 6.1.12. Let S be an arbitary set. A word in S is a finite sequence of

elements which we write as w = y1y2 . . . yn, where yi ∈ S. Consider S−1 = {s−1 |
s ∈ S} where s−1 is just a formal expression, and set S±1 = S ∪ S−1. An expression

of the type w = sε1i1 . . . s
εn
in

(sij ∈ S, εj ∈ {1,−1}) is called group word in S. A group

word w = y1 . . . yn is called reduced if w does not contain a subword of the type yy−1

for y ∈ S±1.

The following is an alternative definition of free groups that uses reduced words.

Definition 6.1.13. A group F is called a free group if there exits a generating set S of

F such that every non-empty reduced group word in S defines a non-trivial element

of F . If this is the case, F is said to be freely generated by S, and the generating set

S is called a basis for F .

The following theorem will be essential in Section 6.2.
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Theorem 6.1.14. [41, Problem 2, Section 2.2] Let F = 〈x, y〉 be the free group on

two generators. Then an elementw = xn1ym1 . . . xnkymk for ni,mi ∈ Z belongs to F ′

if and only if the exponent sum of both letters is zero, that is
∑k

i=1 ni =
∑k

i=1mi = 0.

Proof. Consider the abelianization F/F ′ of the free group F . This is the free abelian

group on {x, y}. Thenw = xn1ym1 . . . xnkymk ∈ F ′ if and only if it is the empty word

in the free abelian group, and this happen if and only if
∑k

i=1 ni =
∑k

i=1mi = 0.

We now present some results regarding the free product of groups. Also, we will see

later that free groups are free products of inifinite cyclic groups.

Definition 6.1.15. A group G is said to be free product of its subgroups Gα if the

subgroups Gα generate G, that is if every element g of G is the product of a finite

number of elements of Gα

g = g1g2 . . . gn gi ∈ Gαi
, i = 1, 2 . . . , n, (6.3)

and if every 1 6= g ∈ G has a unique representation in the form 6.3 subject to the

condition that gi 6= 1 and no two adjacent elements are in the same subgroup Gα.

We can also speak of a free product of an arbitrary collection of groups.

Let an arbitrary set of groups {Gα}α∈Λ be given. A word is an ordered system of

elements w = g1g2 . . . gn, where n ≥ 1, every gi is an element other than the identity

element ofGαi
, and two adjacent elements gi and gi+1 belong to different groupsGαi

.

The case n = 0 corresponds to the empty word.

If w′ = g′1g
′
2 . . . g

′
m is another word, then we can define the product of w and w′ in the

following way:

Let g′1 = g−1
n , g′2 = g−1

n−1, . . . , g
′
i = g−1

n−i+1 for 0 ≤ i ≤ min(m,n), but g′i+1 6= g−1
n−i.

If the elements g′i+1 and gn−i belong to different groups Gα, then

ww′ = g1g2 . . . gn−ig
′
i+1g

′
i+2 . . . g

′
m,

but if g′i+1 and gn−i lie in the same group Gα and gn−ig′i+1 = h, then

ww′ = g1g2 . . . gn−i−1hg
′
i+2 . . . g

′
m.
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In other words, to obtain the product of w by w′ we write down w and w′ in juxtapo-

sition and then carry out the necessary cancellations and contractions.

The empty world plays the role of the unit element in the multiplication of words.

Thus the inverse of w is

w−1 = g−1
n g−1

n−1 . . . g
−1
2 g−1

1 .

Then the set of all the words defined above form a group G, and this group is the free

product of its subgroups Gα, where Gα are isomorphic to the given groups Gα.

Definition 6.1.16. If G is a free product of the set of groups {Gα}α∈Λ, then the Gα

are called the free factors of G.

The free productG will be writtenG = Frα∈ΛGα. If Λ is a finite set {α1, α2, . . . , αn},
then the free product G is written G = Gα1 ∗Gα2 ∗ · · · ∗Gαn .

Remark 6.1.17. [48, Theorem 11.52] Every non-trivial element of the free product

G = Frα∈ΛGα can be written uniquely in the form

g = g1g2 . . . gn,

where each gi is a non-trivial element of some Gαi
, and consecutive terms lie in

different groups. This is called the normal form of g.

The definition of a free product can also be put into another form that uses generators

and relations.

Theorem 6.1.18. [48, Theorem 11.53] Let {Gα | α ∈ Λ} be the nonempty set of

groups. Suppose that Gα = 〈Sα | Rα〉 are the presentations for Gα, where Sα is a set

of generators and Rα is a set of defining relations in these generators. Then

Frα∈ΛGα = 〈∪α∈ΛSα | ∪α∈ΛRα〉.

The following is another approach to the concept of a free product.

Definition 6.1.19. [47, page 167] Let {Gα | α ∈ Λ} be a nonempty set of groups.

The free product of the Gα is a group G for which there exist homomorphisms ια :

Gα −→ G with the property that for any group H and any family of homomorphisms

ψα : Gα −→ H there exists a unique homomorphism ψ : G −→ H such that

ψα = ψ ◦ ια.
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Lemma 6.1.20. [48, Lemma 11.49] If G is a free product of {Gα | α ∈ Λ}, then the

homomorphisms ια are injections.

Theorem 6.1.21. [47, Theorem 6.2.2] For every nonempty set of groups {Gα | α ∈
Λ} there corresponds a free product.

The following theorem shows the uniqueness of the free product.

Theorem 6.1.22. [48, Theorem 11.50] Let {Gα | α ∈ Λ} be a set of groups. If each

G1 and G2 are the free product of the Gα, then G1
∼= G2.

Lemma 6.1.23. [48, Example 11.9] A free group F is a free product of infinite cyclic

groups.

Proof. IfX is a basis of F , then 〈x〉 is infinite cyclic group for each x ∈ X . We define

ιx : 〈x〉 −→ F to be the inclusion. If H is a group, then a function f : X −→ H

determines a family of homomorphisms ψx : 〈x〉 −→ H , namely xn 7→ f(x)n.

And the unique homomorphism ψ : F −→ H which extends the function f clearly

extends each of the homomorphisms ψx, that is ψ ◦ ιx = ψx for all x ∈ X .

We will need the following lemma in Section 6.2.

Lemma 6.1.24. [47, Example 6.2.II] The free product of two groups of order 2 is an

infinite dihedral group.

Proof. Let G = 〈a〉 ∗ 〈b〉 where o(a) = o(b) = 2. Write c = ab. Then we have G =

〈a, c〉 and ca = c−1. Thus G is an image of an infinite dihedral group D∞. Observe

that c has infinite order, since c, c2, c3, . . . are distinct elements by uniqueness of the

normal form. On the other hand, since a proper image of D∞ is finite, we have

G ∼= D∞.

6.2 Main results

In this section, we give the main results of this chapter, namely we prove Boston’s

conjectures about Beauville structures in p-central quotients of the free group on two
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generators and of the free product of two cyclic groups of order p. We first deal with

the free group case.

Let F = 〈x, y〉 be the free group on two generators. Notice that Φ(F/λn(F )) for

n ≥ 2 coincides with λ2(F )/λn(F ), and thus elements outside λ2(F ) are potential

generators in F/λn(F ). In order to determine Beauville structures in the quotients

F/λn(F ), it is fundamental to control pn−2nd powers of elements outside λ2(F ) in

these quotients groups.

Before we proceed to prove the main result for the free group we need to introduce

two lemmas.

Lemma 6.2.1. Let F = 〈x, y〉 be the free group on two generators. Then xp
n−2

and

yp
n−2

are linearly independent modulo λn(F ) for n ≥ 2.

Proof. We argue by way of contradiction. Suppose that yipn−2 ≡ xp
n−2

(mod λn(F )).

It follows from Theorem 6.1.6 that x−pn−2
yip

n−2
= ap

n−1

1 ap
n−2

2 . . . an for some aj ∈
γj(F ), and then we have y−ipn−2

xp
n−2
ap

n−1

1 ∈ γ2(F ). Write a1 = xkylz for some

z ∈ γ2(F ) and some k, l ∈ Z. Then

ap
n−1

1 = (xkylz)p
n−1 ≡ xkp

n−1

ylp
n−1

(mod γ2(F )).

Thus y−ipn−2
xp

n−2
ap

n−1

1 ∈ γ2(F ) if and only if y−ipn−2
xp

n−2(1+kp)ylp
n−1 ∈ γ2(F ), and

this happens if and only if ypn−2(lp−i)xp
n−2(1+kp) ∈ γ2(F ). On the other hand, by

Theorem 6.1.14, an element of the free group F belongs to γ2(F ) if and only if the

exponent sum of both generators is zero. Hence we get pn−2(1 + kp) = 0, which is a

contradiction.

As a consequence of Lemma 6.2.1, x and y have order pn−1 modulo λn(F ).

By (6.2), if we want to know pn−2nd powers of all elements outside λ2(F ) inF/λn(F ),

it is enough to know the power of each element in the set {y, xyi | 0 ≤ i ≤ p − 1}.
Also, by Lemma 6.1.8, we have

(xyi)p
n−2 ≡ xp

n−2

yip
n−2

(mod λn(F )) for 1 ≤ i ≤ p− 1,

and since xpn−2 and ypn−2 are linearly independent modulo λn(F ) by Lemma 6.2.1,

the following lemma is straightforward.
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Lemma 6.2.2. If G = F/λn(F ), the power subgroups Mpn−2
are all different and of

order p in λn−1(F )/λn(F ), as M runs over the p + 1 maximal subgroups of G. In

particular, all elements in Gr Φ(G) are of order pn−1.

We are now ready to prove the main result regarding the free group on two generators.

Theorem 6.2.3. A p-central quotient F/λn(F ) is a Beauville group if and only if

p ≥ 5 and n ≥ 2.

Proof. For simplicity let us call G the quotient group F/λn(F ). We first show that

if p = 2 or 3, then G is not a Beauville group. By way of contradiction, suppose

that {u1, v1} and {u2, v2} form a Beauville structure for G. Since G has p + 1 ≤ 4

maximal subgroups, and there are 6 elements in the union of two triples {u1, v1, u1v1}
and {u2, v2, u2v2} we may assume that u1 and u2 are in the same maximal subgroup.

Then by (6.2), we have 〈up
n−2

1 〉 = 〈up
n−2

2 〉, which is a contradiction.

Thus we assume that p ≥ 5. First of all, notice that if n = 2, G ∼= Cp × Cp is a

Beauville group, by Catanese’s criterion. So we will deal with the case n ≥ 3. Let u

and v be the images inG of x and y, respectively. We claim that {u, v} and {uv2, uv4}
form a Beauville structure for G. If A = {u, v, uv} and B = {uv2, uv4, uv2uv4}, we

need to show that

〈ag〉 ∩ 〈bh〉 = 1, (6.4)

for all a ∈ A, b ∈ B, and g, h ∈ G. Observe that ag and bh lie in different maximal

subgroups of G in every case, since u and v are linearly independent modulo Φ(G)

and p ≥ 5.

Now, all elements a ∈ A and b ∈ B are of order pn−1, by Lemma 6.2.2. If (6.4) does

not hold, then

〈(ag)pn−2〉 = 〈(bh)pn−2〉,

and again by Lemma 6.2.2, ag and bh lie in the same maximal subgroup of G, which

is a contradiction. We thus complete the proof that G is a Beauville group.

We next turn our attention to the free product of two cyclic groups of order p.
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Let F = 〈x, y | xp, yp〉 be the free product of two cyclic groups of order p. Notice

that since F/F ′ has exponent p, we have λn(F ) = γn(F ) for all n ≥ 1, by Lemma

6.1.9.

We start with a general lemma.

Lemma 6.2.4. Let ψ : G1 → G2 be a group homomorphism, let x1, y1 ∈ G1 and

x2 = ψ(x1), y2 = ψ(y1). If o(x1) = o(x2) then the condition 〈xψ(g)
2 〉 ∩ 〈yψ(h)

2 〉 = 1

implies that 〈xg1〉 ∩ 〈yh1 〉 = 1 for g, h ∈ G1.

Proof. We argue by way of contradiction. Suppose that 1 6= z1 ∈ 〈xg1〉 ∩ 〈yh1 〉. Then

ψ(z1) ∈ 〈xψ(g)
2 〉 ∩ 〈yψ(h)

2 〉 = 1, and hence z1 ∈ Kerψ. Since o(x1) = o(ψ(x1)), it

follows that 〈xg1〉 ∩Kerψ = 1, thus z1 = 1, a contradiction.

Recall that if a p-group G is regular, then Ωi(G) = {x ∈ G | xpi = 1}, by Theorem

3.1.3. Thus any p-group G of class < p satisfies exp Ωi(G) ≤ pi, since it is regular.

On the other hand, if a group G is not regular, we cannot guarantee that exp Ωi(G) ≤
pi. However, we can still find a bound for the exponent of Ωi(G), which is related

with the class of G.

Lemma 6.2.5. [15, Theorem A] Let G be a p-group. Then for every i, k ≥ 1, the

condition γk(p−1)+1(G) = 1 implies that

exp Ωi(G) ≤ pi+k−1.

A key ingredient of the proof of the main theorem will be based on p-groups of

maximal class with some specific properties. Let G = 〈s〉 n A where s is of order p

and A ∼= Zp−1
p . The action of s on A is via θ, where θ is defined by the companion

matrix of the pth cyclotomic polynomial xp−1+· · ·+x+1. ThenG is the only infinite

pro-p group of maximal class. Since sp = 1 and θp−1 + · · ·+ θ+ 1 annihilates A, this

implies that for every a ∈ A,

(sa)p = spas
p−1+···+s+1 = 1.

Thus all elements in G r A are of order p. An alternative construction of G can be

given by using the ring of cyclotomic integers (see Example 7.4.14 [39]).

95



Let P be a finite quotient of G of order pn for n ≥ 3. Let us call P1 the abelian

maximal subgroup of P and Pi = [P1, P, i−1. . ., P ] = γi(P ) for i ≥ 2. Then by Lemma

6.1.9, we have λi(P ) = γi(P ) for all 1 ≤ i ≤ n. Also we have the following.

Lemma 6.2.6. Let P be as given above. Then every element in Pi r Pi+1 is of order

pd
n−i
p−1e, and hence expPi = pd

n−i
p−1e.

Proof. Let x be an element in Pi r Pi+1. We will use reverse induction on i to show

that o(x) = pd
n−i
p−1e. If i = n− 1 then o(x) = pd

n−(n−1)
p−1 e. Now assume that the result

holds for all j ≥ i+1. Let us take a uniform element s in P . Then (sx)p = 1 because

every element outside P1 is of order p. Since P1 is abelian, we have

1 = (sx)p = spxp[x, s](
p
2)[x, s, s](

p
3) . . . [x, s, p−1. . ., s](

p
p).

As sp = 1, we get

xp = ([x, s](
p
2)[x, s, s](

p
3) . . . [x, s, p−1. . ., s](

p
p))−1.

Then by Lemma 4.1.13, [x, s, k. . ., s] ∈ Pi+k r Pi+k+1 for all 1 ≤ k ≤ p − 1. By the

reverse induction, we know that P p
j ≤ Pj+p−1 for all j ≥ i+ 1. This implies that

xp ∈ Pi+p−1 r Pi+p. (6.5)

Then again by the reverse induction, o(xp) = pd
n−i−p+1

p−1 e and thus o(x) = pd
n−i
p−1e, as

desired.

Now we can begin to determine which p-central quotients of F are Beauville groups.

We first assume that p = 2.

Lemma 6.2.7. Let F be the free product of two groups of order 2. Then no p-central

quotient of F is a Beauville group.

Proof. The free product F of two cyclic groups of order 2 is the infinite dihedral

group D∞ by Lemma 6.1.24. Then by Theorem 2.1.7, no finite quotient of F is a

Beauville group.

In the remainder, we consider the case where p is an odd prime.
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Lemma 6.2.8. Let G = F/λn(F ) for n ≥ 2. If u and v are the images of x and y

in G, then for any i, j 6≡ 0 (mod p) all elements in the coset uivjΦ(G) have order

pd
n−1
p−1e.

Proof. Let P be the p-group of maximal class of order pn which is mentioned above

and let s ∈ P r P1 and s1 ∈ P1 r P ′. Note that all elements in P r P1 are of order

p. Then by the universal property of the free product and since i, j 6≡ 0 (mod p), we

can define a homomorphism ψ : F −→ P such that ψ(xi) = s−1 and ψ(yj) = ss1.

Since λn(P ) = 1, if we call u and v the images of x and y in G, respectively, then the

map

ψ : G −→ P

ui 7−→ s−1

vj 7−→ ss1,

is well-defined and an epimorphism. Set k =
⌈
n−1
p−1

⌉
. Since ψ is an epimorphism,

we have ψ(uivjΦ(G)) = ψ(uivj)Φ(P ) = s1Φ(P ), where every element in the coset

s1Φ(P ) has the same order as s1, namely pk. Then for every g ∈ uivjΦ(G), we have

o(g) ≥ o(s1) = pk. On the other hand, γk(p−1)+1(G) ≤ γn(G) = 1. Then by Lemma

6.2.5, together with Ω1(G) = G, we get expG ≤ pk. Consequently o(g) = pk.

We deal separately with the cases p ≥ 5 and p = 3.

Theorem 6.2.9. If p ≥ 5 then the p-central quotient F/λn(F ) is a Beauville group

for every n ≥ 2.

Proof. For simplicity let us call G the quotient group F/λn(F ). If n = 2 then G ∼=
Cp × Cp is a Beauville group, by Catanese’s criterion. Thus we assume that n ≥ 3.

Let u and v be the images of x and y in G, respectively. We claim that {u, v}
and {uv2, uv4} form a Beauville structure for G. Let A = {u, v, uv} and B =

{uv2, uv4, uv2uv4}. Assume first that a = u or v, which are elements of order p,

and b ∈ B. If 〈ag〉 ∩ 〈bh〉 6= 1 for some g, h ∈ G, then 〈ag〉 ⊆ 〈bh〉, and hence

〈aΦ(G)〉 = 〈bΦ(G)〉, which is a contradiction since p ≥ 5. Next we assume that

a = uv. Let ψ be the homomorphism in the proof of Lemma 6.2.8. Since p ≥ 5,
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for every b ∈ B we have ψ(b) ∈ P r P1, which is of order p. Thus for all g, h ∈ G
we have 〈sψ(g)

1 〉 ∩ 〈ψ(b)ψ(h)〉 = 1. Since o(uv) = o(s1), it then follows from Lemma

6.2.4 that 〈ag〉 ∩ 〈bh〉 = 1. This completes the proof.

In order to deal with the prime 3, we need Lemma 2.3.2 and the following lemma.

Lemma 6.2.10. LetG be a p-group which is not of maximal class such that d(G) = 2.

Then for every x ∈ G there exists t ∈ Φ(G)r {[x, g] | g ∈ G}.

Proof. Note that a p-group has maximal class if and only if it has an element with

centralizer of order p2, by Theorem 4.1.4. Thus for every x ∈ G we have |CG(x)| ≥
p3, and hence

|{[x, g] | g ∈ G}| = |ClG(x)| = |G : CG(x)| ≤ pn−3.

Since d(G) = 2, we have |Φ(G)| = pn−2. Then there exists t ∈ Φ(G) such that

t /∈ {[x, g] | g ∈ G}.

Theorem 6.2.11. Let p = 3. Then the following hold.

(i) The p-central quotient F/λn(F ) is a Beauville group if and only if n ≥ 4.

(ii) The series {λn(F )}n≥4 can be refined to a normal series of F such that two

consecutive terms of the series have index p and for every term N of the series

F/N is a Beauville group.

Proof. Since the smallest Beauville 3-group is of order 35, the quotient F/λn(F ) can

only be a Beauville group if n ≥ 4. We first assume that n = 4. Now consider the

group

H = 〈a, b, c, d, e | a3 = b3 = c3 = d3 = e3 = 1, [b, a] = c, [c, a] = d, [c, b] = e〉,

where we have omitted all commutators between generators which are trivial. This

is the smallest Beauville 3-group. Since λ4(H) = 1, F/λ4(F ) maps onto H . On the

other hand, since λi(F ) = γi(F ) for all i ≥ 1 and |γ2(F ) : γ3(F )| = 3, it is clear

that |F/λ4(F )| ≤ 35 and so F/λ4(F ) ∼= H . Consequently, F/λ4(F ) is a Beauville

group. Thus we assume that n ≥ 5.
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Now let us call G the quotient group F/λn(F ). Consider the map ψ : G −→ P

defined in the proof of Lemma 6.2.8. Since ψ is an epimorphism, ψ(λn−1(G)) =

λn−1(P ). As a consequence, the subgroup Kerψ ∩ λn−1(G) has index 3 in λn−1(G),

since λn−1(P ) is of order 3 . Choose an arbitrary normal subgroup N of F such that

λn(F ) ≤ N < λn−1(F ) and N/λn(F ) ≤ Kerψ. Then ψ induces an epimorphism ψ̃

from F/N to P .

We will see that L = F/N is a Beauville group, which simultaneously proves (i)

and (ii). Let u and v be the images of x and y in L, respectively. Set k =
⌈
n−1

2

⌉
.

Then o(uv) ≤ o(xyλn(F )) = 3k. On the other hand, since ψ̃(uv) = s1, we have

o(uv) ≥ o(s1) = 3k, and consequently we get o(uv) = 3k in L. Since F/λ4(F ) ∼= H

is not of maximal class, L is not of maximal class. Thus, by Lemma 6.2.10, there

exist z, t ∈ Φ(L) such that z /∈ {[u, l] | l ∈ L} and t /∈ {[v, l] | l ∈ L}. We claim

that {u, v} and {(uz)−1, vt} form a Beauville structure for L. Let A = {u, v, uv} and

B = {(uz)−1, vt, (uz)−1vt}.

If a = u, which is of order 3, and b = vt or (uz)−1vt, then we get 〈ag〉 ∩ 〈bh〉 = 1

for every g, h ∈ L, as in the proof of Theorem 6.2.9. When a = v and b = (uz)−1 or

(uz)−1vt, the same argument applies. If we are in one of the following cases: a = u

and b = (uz)−1, or a = v and b = vt, then the condition 〈ag〉∩ 〈bh〉 = 1 follows from

Lemma 2.3.2.

It remains to check the case when a = uv and b ∈ B. For every b ∈ B, we have

ψ̃(b) ∈ PrP1, which has order 3. Since o(uv) = o(s1), the condition 〈ag〉∩〈bh〉 = 1

follows from Lemma 6.2.4, as in the proof of Theorem 6.2.9. This completes the

proof.

Thus the quotients in Theorem 6.2.11 constitute an infinite family of Beauville 3-

groups of order 3n for all n ≥ 5.

Observe that if p = 3 then o(uv) = o((uz)−1vt) = pk, where k =
⌈
n−1
p−1

⌉
, by Lemma

6.2.8. Also if p ≥ 5 then every element b ∈ B in the proof of Theorem 6.2.9 has

order pk. Thus the signatures of the triples in the Beauville structures arising from

Theorems 6.2.9 and 6.2.11 are unbounded as n goes to infinity. Consequently these

examples are different from those of Stix and Vdovina given in page 9 , since in their
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examples the signatures of one of the triples of the Beauville structures take a constant

value.

We finish this section by comparing the infinite family of Beauville 3-groups in The-

orem 6.2.11 with the ones given in Chapter 5 by considering quotients of the Not-

tingham group over F3. Recall that by Theorem 5.2.8, N /Nk is a Beauville group

if and only if k ≥ 6 and k 6= zm for all m ≥ 1. Furthermore, by Theorems 5.2.9

and 5.2.10, for i ≥ 1 there exists a normal subgroup W between Nip+3 and Nip+1

such that N /W is a Beauville group. This gives quotients of N which are Beauville

groups of every order 3n with n ≥ 5.

We will show that these two infinite families of Beauville 3-groups only coincide at

the group of order 35.

Theorem 6.2.12. Let N 6= γ4(F ) be a normal subgroup of F such that F/N is

a Beauville group. Then F/N is not isomorphic to any quotient of N which is a

Beauville group. On the other hand, F/γ4(F ) is isomorphic to N /γ4(N ).

Proof. Since there is only one Beauville group of order 35, F/γ4(F ) is necessarily

isomorphic to N /γ4(N ). Now suppose that F/N ∼= N /W where γn(F ) ≤ N <

γn−1(F ) for n ≥ 5 and F/N is a Beauville group. Since F/N is of class n − 1 and

W lies between two consecutive terms of the lower central series, we have γn(N ) ≤
W < γn−1(N ). Note that if n = 5 then γ5(N ) ≤ W < γ4(N ), where γ5(N ) = N7

and γ4(N ) = N6, by Theorem 5.1.9. Thus in this case, we have W = γ5(N ). If

n > 5 thenW ≤ γ5(N ). Consequently the isomorphism F/N ∼= N /W implies that

F/γ5(F )N ∼= N /γ5(N ). We next show that this is not possible.

Recall that γ2(N ) = N3 and by Theorem 5.1.12, N 3
3 = N9 . Then exponent of

γ2(N /γ5(N )) is 3. On the other hand, as in the proof of Theorem 6.2.11, there is

an epimorphism from F/γ5(F )N to a p-group of maximal class P of order 35 with

expP ′ = 32. Thus N /γ5(N ) cannot be isomorphic to F/γ5(F )N .
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The visits were supported by TÜBİTAK, the Spanish Government, grant MTM2014-

53810-C2-2-P, the Basque Government, grant IT974-16, and ERC Grant PCG-336983.

POSTER PRESENTATIONS

• Beauville structures in finite p-groups, April 2016, 4th Cemal Koç Algebra

Days, Ankara, Turkey

• Beauville structures in p-central quotients, March 2016, Ischia Group Theory,

Naples, Italy

CONFERENCE TALKS

• Beauville structures in finite p-groups, September 2016, XI Encuentro en Teoría

de Grupos, Barcelona, Spain

• New results on Beauville p-groups, June 2015, Groups and Their Actions,

Bedlewo, Poland

• Beauville structures in powerful p-groups and regular p-groups, July 2014, First

Joint International Meeting RSME-SCM-SEMA-SIMAI-UM, Bilbao, Spain

106



PUBLICATIONS
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