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ABSTRACT

FUSION OF PUPIL DILATION AND FACIAL TEMPERATURE FEATURES
FOR DETECTION OF STRESS

Baltaci, Serdar
Ph.D., Department of Medical Informatics
Supervisor: Assist. Prof. Dr. Didem Gokgay

November 2016, 92 pages

Stress has several negative physiological/physical impacts in our lives. Hence, it is
important to recognize stress during daily activities. The relationship between stress and
physiological or physical signals has been studied for a long time. The aim of this
dissertation is to detect stress remotely using pupil diameter and facial temperature
analysis. For this purpose, we developed a stress triggering experiment in order to
generate physiological/physical effects. Our experiment consists of 2 parts which are
applied consecutively. The first part was used as a baseline for neutral emotion, in
which neutral pictures of International Affective Picture System (IAPS) were utilized. In
the second part, to generate stress, negative pictures of IAPS were used.

To detect emotional state of the participants, pupillary and facial thermal responses were
measured using a TOBII TX300 eye tracker and a FLIR SC620 thermal camera. Entropy
in a sliding window was used to accommodate the time differences in the physiological
rise and fall profiles of pupil and thermal data. Pupil and thermal features derived from
the measured signals and the entropy based values were fused at the feature level.
Finally, classification accuracy of stress was enhanced with machine learning
techniques. We were able to identify stressful responses from the participants with an
accuracy of 83.8% using AdaBoost and Bagging classification methods. Results also
show that the experimental protocol we suggested for stress detection is highly
applicable based on pupil diameter and facial temperature.

Keywords: Stress Detection, Pupil Dilation, Facial Thermal Changes, Feature Level
Fusion, Shannon Entropy



0z
GOZBEBEGI ACILIMI VE YUZE AIT SICAKLIK OZNITELIKLERININ
STRES TESPITI iCIN BIRLESTIRILMESI

Baltaci, Serdar
Doktora, Tip Bilisimi Bolimii
Tez Yoneticisi: Yrd. Dog. Dr. Didem Gokgay

Kasim 2016, 92 sayfa

Stres, giiniimiizde insanligin 6nemli sorunlarindan birisi olarak karsimiza ¢ikmakta olup
stresin hayatimiza etki eden birgok negatif fizyolojik/fiziksel etkileri bulunmaktadir.
Stres ile fizyolojik ya da fiziksel sinyaller arasindaki iligki, giinliik aktiviteler sirasinda
stresi fark etmenin 6neminden dolayr uzun zamandir irdelenmektedir. Bu tezin amaci
g6zbebegi cap1 ve yiizdeki sicaklik verisinin analiziyle stresi uzaktan tespit etmektir. Bu
amagla, fizyolojik/fiziksel etki olusturmak igin stresi tetikleyen ve arka arkaya
uygulanan iki boliimden olusan bir deney gelistirdik. Birinci boliim, notr duygu temeli
olusturmak i¢in kullanilmis olup, nétr Uluslararasi Duyussal Resim Sistemi (IAPS)
resimleri igermektedir. Ikinci boliimde ise, stres olusturmak igin, negatif IAPS resimleri
kullanilmistir.

Katilimcilarin duygusal durumunu tespit etmek amaciyla, gozbebegi ve yliz termal
tepkileri TOBII TX300 gozbebegi tarayicist ve FLIR SC620 termal kamera kullanilarak
Olclilmiistiir. Bu calismada, g6z bebegi ve termal verinin fizyolojik artis ve azalisindaki
zaman farkini birbirine uyumlu hale getirmek i¢in kayan pencere icerisinde entropi
yontemi kullanilmistir. Sinyal ve entropi degerlerinden elde edilen termal ve gdzbebegi
Ozniteliklerinin, Oznitelik  seviyesinde fiizyon edilmesi saglanmistir.  Stres
siiflandirmasinin  dogrulugu makine 06grenme teknikleri ile 1iyilestirilmistir. Bu
calismada, AdaBoost ve Bagging smiflandirma yontemleri kullanilarak 83.8%
dogrulukla katilimcilarin stres tepkileri tespit edilmistir. Arastirma sonuglari, gozbebegi
capini ve yiiz sicakligini kullanmaya dayali 6nerilen deneysel protokoliin stresin tespiti
i¢cin son derece uygulanabilir oldugunu gostermektedir.

Anahtar Sozciikler: Stres Tespiti, G6z Bebegi Biiyiimesi, Yiizdeki Termal Degisiklikler,
Oznitelik diizeyli fiizyon, Shannon Entropi
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CHAPTER 1

INTRODUCTION

Stress detection is an important issue in the human computer interaction (HCI) domain.
Detecting the stress level of a computer user could possibly improve the computers’
ability to respond intelligently and drive the user away from negative emotional
behaviors during HCI. In this way, the overall system performance can be enhanced and
users’/workers’ psychophysical states may become more suitable for performing the
task (Czaja & Sharit, 1993; Fujigaki & Mori, 1997). Furthermore, early diagnosis of
psychological disorders can be facilitated in clinical settings (Jaimes & Sebe, 2007).

Physiological signals are reliable indicators of emotional states of the subject (Zhai,
Barreto, Chin, & Li, 2005). Changes in physiological arousal during stressful conditions
are quantifiable through skin conductance (Lang, Greenwald, Bradley, & Hamm, 1993),
thermal camera recordings (Pavlidis, 2003; Pavlidis et al., 2007) and pupil dilation
(Bradley, Miccoli, Escrig, & Lang, 2008).

Stimuli with positive and negative arousal increase pupil diameter more compared to
neutral stimuli. According to Bradley et al. (2008), emotional pupil dilation responses
are detectable within 2-3 seconds. When comparing measurements of other
physiological signals, the measurement of pupil size has important advantages. One
advantage is that it is an unobtrusive method because sensors do not need to be attached
to the user. Another important advantage of pupil size measurement is that pupil size
variation is an involuntary response of the autonomic nervous system (ANS) (Partala &
Surakka, 2003). This means that pupil size variation cannot be controlled voluntarily;
therefore, it identifies actual spontaneous response. In contrast, emotions detected
through facial expressions are prone to visually observable changes that can be masked,
inhibited, exaggerated, and faked (Ekman, 1985; Ekman & Friesen, 1982; Partala &
Surakka, 2003; Surakka & Hietanen, 1998). Despite their advantage, pupil size
measurements are rarely used in arousal detection due to the interference effects related
to lighting conditions and cognitive effort (Bradley et al., 2008). Pupil diameter changes
can be utilized for various forms of stimuli, such as images and sounds. For instance,
visual (Bradley & Lang, 1994), auditory (Baltaci & Gokcay, 2012; Partala, Jokiniemi,
& Surakka, 2000; Partala & Surakka, 2003) and combined visual and auditory stimuli
(Morency, Mihalcea, & Doshi, 2011) can be used in order to detect emotion. Pupil data
can also be fused with other modalities such as electroencephalography (EEG) at the
decision level of classification models to increase the accuracy (Qian et al., 2009).



Thermography is an attractive modality, as it is completely non-contact and unlike
visible light imaging systems, unaffected by skin color or ambient lighting conditions.
Increase in an individual's stress level produces changes in facial skin temperature that
can be reliably detected using thermal imaging (Gane, Power, Kushki, & Chau, 2011).
Within the last decade, thermal cameras have been introduced to predict arousal as a
result of increased blood flow in the face (Shastri, Merla, Tsiamyrtzis, & Pavlidis, 2009;
Yun, Shastri, Pavlidis, & Deng, 2009). During emotion states with high arousal, the
blood flow in the supraorbital and periorbital vessels increases. Consequently, such
increases in blood flow raise the periorbital region temperature, which can be captured
through a highly sensitive thermal camera. A recent study (Nhan & Chau, 2010) found
that, emotional states induced by the viewing of images from IAPS (Lang, Bradley, &
Cuthbert, 2008), could be distinguished from a baseline (i.e. neutral) emotional state
using thermal video of the face with accuracies ranging from 70% to 80%.

The most commonly used methods of emotion detection involve skin conductance
response (SCR), electroencephalography (EEG). SCR shows the continuous variation in
the conductivity of a person’s skin. SCR is not so viable method since range is
subjective to participants. External factors such as temperature, humidity and internal
factors (e.g. medications) can change SCR measurements and lead to inconsistent
results with the same stimulus level. And also it is not comfortable for participants. On
the other hand, EEG measures electrical potentials of the brain. EEG is not feasible also
because it is intrusive and validation of signal is difficult. These two methods (SCR &
EEG) do not use remote sensors, hence they are not feasible. Among emotion detection
methods, pupil dilation and thermal recordings are non-invasive and non-intrusive,
besides they do not require direct contact with the participants. These methods are more
viable than the first two, but they have one downside which is “inevitable data loss”.
The main reasons for data loss are; head movements, environmental heat and light
conditions.

The Aim of the Thesis, Research Questions and Hypotheses

Recent advances in HCI have demonstrated significant stress detection capability with
thermal or pupil data separately. In order to increase the accuracy of stress detection
non-invasively in near real-time, new studies aiming to use pupillary and facial thermal
changes are needed. Our aim is to use pupil and facial thermal data in order to predict
stress remotely in a robust, non-invasive and subject independent way. The focus is to
provide a test bed using pupillary and thermal signals for this purpose.

As explained before, stress can be triggered by visual and behavioral stimuli. In this
thesis, we proposed a new system to separate stressful states of a participant from
his/her neutral states. In this system, we exploited the complementary natures of one
fast and one slow physiological signal, namely pupil dilation and skin temperature
respectively. In the experiment, IAPS pictures that vary in valence and arousal axes
were used as stimuli.

Research Question 1. Can visual and behavioral stimuli affect participants’ stress and
can this stress be measured by physiological changes?
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Hypothesis 1. Pupil size variation can be used in order to detect user’s stress. At
stressful times during our experiment, participants’ pupil diameter will increase in
comparison to other times.

Hypothesis 2. Stress can be evaluated by measuring thermal changes of the facial area.
At stressful times during our experiment, participants’ facial temperature will increase
in comparison to other times.

Research Question 2. Is it possible to increase the success of stress detection by fusion
of pupil, thermal data and entropy based features?

Hypothesis 3. Fusing pupil and thermal features will increase the success of stress
detection.

Hypothesis 4. Using features that capture the difference of the rise and fall profiles in
thermal and pupil signals will increase the success of stress detection.

In this thesis, the research questions presented above are handled through an experiment
we conducted. The first chapter is a general introduction of the study. Following the
introduction, this chapter is concluded by presenting the motivation, research questions
and hypotheses of the study. Second chapter gives an overview of the stress, emotions,
pupillary and facial thermal responses. This chapter comprises of a brief summary of
the pupillary and thermal response physiology, their significance on scientific research
and measurement techniques. Third chapter consists of the experimental setup and the
method that is executed to verify the hypothesis. Fourth chapter presents data
processing, proposed feature extraction and classification algorithms. Fifth chapter
consists of the results of the experiment. Analyses of these results and all statistical tests
are given in detail. Sixth chapter involves discussion about the results and the
hypotheses of the study. Seventh chapter includes possible implications and ideas as a
future work and conclusion that is provided as a summary of the findings.

Findings of this research was published in International Journal of Human Computer
Interactions with the title “Stress Detection in Human Computer Interaction: Fusion of
Pupil Dilation and Facial Temperature Features” in 2016 (Baltaci & Gokcay, 2016).






CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

This chapter comprises of four sections in which relevant aspects of the literature in
stress, pupillary response, thermal response and related works are presented. In the first
section, developmental, comparative and cognitive aspects of emotion and stress are
reviewed. In the second section, eye tracking is discussed specifically for pupillary
response. This section is followed by representation of studies focusing on thermal
responses and facial temperature changes. In the fourth section, related pupil and
thermal works in stress detection are discussed.

2.1. Stress and Emotions

Stress is defined as a temporarily-induced physiological or psychological imbalance
caused by an action or a situation (stressor) which can be regarded as a possible danger
or threat. An emotional (mental) stressor is one in which only information reaches the
brain with no direct physical impact on the body. This information may place demands
on either the cognitive systems (thought processes) or the emotional system (feeling
reactions, like anger or fear) in the brain (Yuen et al., 2009). A physical stressor is one
that there is a direct effect on the human body. This may be an external condition (heat,
cold and noise) or due to the internal physical/ physiological demands of the human
body (physical exercise).

Due to its impact on the quality of life, human stress analysis has received special
attention in the recent decades. Besides social factors, financial, economic, political,
chemical, biological and physical factors can be sources of stress. These factors can
lead to various disorders, diseases, low performance and depression (Sharawi, Shibli, &
Sharawi, 2008). In addition to negative effects on human health, stress plays a crucial
role in various cognitive tasks including rational decision making, perception and
learning (Jing Zhai et al., 2005).

Detection and characterization of human stress by computers are ongoing research areas
in the field of HCI that are still attracting a lot of attention due to their importance in our
daily lives. HCI involves a two-way exchange where each participant should be aware
of the other party. Therefore, to make machines be aware of the stress level of the user
would result in a more natural HCI (Jing Zhai et al., 2005).



Emotion can be described as a response to an environmental event that is considered as
purposeful behavior in the adaptation of the organism to dynamic environmental
demands (Gokcay & Yildirim, 2011). Cognitive, affective, behavioral, and autonomic
sub-systems are involved in this response. When emotional stressor is in charge, only
information reaches the brain with no direct physical impact on the body. Cognitive
systems (thought processes) or the emotional systems (feeling responses, such as anger
or fear) in the brain may be triggered by this information (Yuen et al., 2009). Our
research attempts to visualize and evaluate the emotional state identified as ’stress’ of
the computer user.

Subjective experience, emotional expression, and physical sensation are three distinct
but complementary components of emotions (Erdem & Karaismailoglu, 2010). While
subjective experience or in other words, personal feelings of current emotions are hard
to investigate, emotional expression can be studied instead through facial expressions.
The third component, physical sensation is manifested through the autonomous nervous
system, which in turn modifies physiological arousal. Changes in physiological arousal
are quantifiable through pupil dilation or thermal camera recordings (Gokcay, Baltaci,
Karahan, & Turkay, 2011).

Once captured, emotions can be categorized or quantized in two different ways:

» Using distinct emotional classes such as happy, angry, fearful, surprised
(Circumplex model)

» Through continuous values along two orthogonal axes, valence and arousal
(Dimensional model)

In order to account for emotional states, most recently, the dimensional model has
gained impetus. According to this model, emotions consist of two measures: valence
(refers to how positive or negative an event is), and arousal (reflects whether an event
is exciting/agitating or calming/soothing). While arousal can be predicted from
physiological features such as perspiration or blood flow, valence can be predicted from
facial expressions or gestures.

Valence dimension ranges from highly negative to highly positive on a scale of 9.
Moreover, arousal dimension ranges from calming to exciting on a scale of 9 (Figure 1).
Therefore, stimuli can be highly positive and exciting (e.g. miracle), highly positive and
calming (e.g. relaxed), highly negative and exciting (e.g. slaughter), highly negative and
calming (e.g. fatigued).

Happiness, sadness, anger, fear, disgust, and surprise are six basic emotions that are
widely accepted. These basic emotions are intuitive and innate. Independent from
cultures, they are composed of organized automatic and stereotypical behaviors and
they are necessary for survival. Aforementioned emotions can be divided into two main
categories which are pleasant (happiness, surprise) and unpleasant (sadness, anger, fear,
disgust). The pleasant ones result in positive affect while unpleasant ones comprise



negative affect (Gokgay, 2011; Izard, 2009). Among these categories, neutral and
stressful (unpleasant emotion) stimuli fall within the scope of this thesis.

High arousal (exciting, agitating)

/ [~
“miracle”

“slanghter”

Low valence "~ | High valence
(negative) death “shadow™ “comfort™ (positive)

/

“fatigued”

Low arousal (soothing, calming)

Figure 1. Two dimensions of Emotional Model (Kensinger, 2004)

Emotion recognition techniques can be systematized according to the modalities or
channels such as face, voice and text. In terms of feasibility each modality has
advantages and disadvantages and there are several factors that affect significance of
every modality (Calvo & D’Mello, 2010). Some of these factors can be found below.

e Signal validity as a natural strategy for recognizing an affective state

e Signal reliability in real world environments,

e Signal time resolution as it relates to the specific needs of the application,
e Intrusiveness and cost for the user

The current thesis focuses mainly on two affective input signals: pupil diameter and
facial temperature changes. The main contribution of this study is the design of an
affect estimator in order to estimate negative arousal (stress) and neutral states robustly
using these signals. Suppressing such emotions or social masking of these physiological
signals is impossible (Jonghwa Kim & Andre, 2008; Kim, Bang, & Kim, 2004) as these
emotions originate from the activity of the ANS, hence they cannot be triggered by any
conscious or intentional control.

Subjective and complex nature of physiological signals, the inability to visually
perceive emotions and sensitivity to movement artefacts from the data make it difficult
for annotating and obtaining the ground truth from the raw physiological data (Kim et
al., 2004). In order to achieve high classification rate for the a system, despite individual
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variability brought on by the users, efficient emotion induction method(s), larger data
samples and intelligent signal processing techniques are essential (Jerritta, Murugappan,
Nagarajan, & Wan, 2011).

—
EEG :
3 Pupil
Eye Gaze Diameter — Facial Movement

Voice

HRV
EMG

”. 0. 21t L Be 57 3
Hand & Finger >—(:< sture, Interaction & Behaviour

BVP
Movements

GSR

Legend

@ Physical Measure

=" S Physiological Measure

Figure 2. Physical and physiological signals that were investigated in stress detection (Sharma & Gedeon,
2012)

Physical features are properties that can be seen without the need for equipment and
tools, but tools are necessary in order to detect physiological features. Figure 2 shows
signals that can be investigated for the stress detection. While EMG, EEG, BVP, GSR
are physiological signals, facial expression, eye gaze, blinks, pupil dilation, and voice
are physical signals that are sensitive to stress (Sharma & Gedeon, 2012).

2.2. Pupil Size Variation

The pupil is a hole located in the center of the eye’s iris that allows light to enter
the retina. Iris has sphincter pupillae (circular) and dilator pupillae (radial) muscles to
control the constriction (miosis) and the dilation (mydriasis) of the pupil, respectively
(Figure 3). It is known that all sensory stimuli (visual, tactile, auditory, gustatory,
olfactory) may result in pupillary responses (Beatty & Lucero-Wagoner, 2000).


https://en.wikipedia.org/wiki/Human_eye
https://en.wikipedia.org/wiki/Retina
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Figure 3. Muscles of the iris, pupil constriction and dilation (2013 Pearson Education Inc.)

Pupillary response is a physiological response that varies the size of the pupil, via the
optic and oculomotor cranial nerve. Both sympathetic and parasympathetic pathways of
ANS control pupillary responses. Thus, pupil dilation is caused by not only sympathetic
system but also parasympathetic system. When sympathetic activity increases, dilator
muscles’ activity also increases. Alternatingly, inhibition of parasympathetic system
minimizes the activity in sphincter muscle and causes dilation. In other words, response
to the changes in both divisions of ANS may lead to changes in pupil diameter.

Under normal conditions, light and accommodation reflexes result in pupil constriction
and dilation (Andreassi, 2006). Pupils constrict in intense light whereas they dilate in
dim light. Pupil diameter of human ranges between 1.5 mm and 8-9 mm and pupils’
initial reaction to light and stimuli occurs in 1-1.5 seconds and peaks around 2 seconds
(Beatty & Lucero-Wagoner, 2000).

Moreover, in stable lighting conditions, if pupil dilation is less than 0.5 mm it can be an
indicator of cognitive processing (Beatty, 1982; Beatty & Lucero-Wagoner, 2000) and
named as task-evoked pupillary response (TEPR). In terms of cognitive load, arousal
and interest indication change in the pupil size is a reliable measure for some tasks
which involve attention, memory, problem solving and decision-making (Beatty, 1982;
Beatty & Lucero-Wagoner, 2000).
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Figure 4. Pupillary response when viewing IAPS Images (Bradley et al., 2008)

During a task, latencies and peaks of pupillary responses depend on the task type. For
example, during viewing visual and emotional stimuli such as a laughing man and a
crying baby, dilation occurs after 2-7 seconds. While listening to auditory and
emotional stimuli (laughing, crying sounds, etc.) dilation occurs after only 2-3 seconds
(Bradley et al., 2008; Partala & Surakka, 2003). According to Bradley, pupillary
variations were greater when viewing emotional pictures (see Figure 4).

Measurement Techniques

For reading researches, eye tracking technology is demonstrated over 100 years ago
(Rayner, K., Pollatsek, A., Ashby, J., & Clifton, 2011). Electro-oculography (EOG),
scleral search coils, photo-video oculography (POG-VOG) and pupil/corneal reflections
(dual-Purkinje method) are some of the techniques to track eye movements.
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Figure 5. Eye Tracking System (TOBII TX300)
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Pupil/corneal reflections (dual-Purkinje) is one of the most recently utilized eye
tracking method which comprises of a desktop computer with an infrared camera under
the monitor and dedicated software (Figure 5). In this method, to create reflections,
camera emits infrared light to the eye. Light enters the retina and great amount of the
light is reflected back and results in bright pupil effect for detection. As a small glint,
infrared light generates the corneal reflection. When eye tracking software recognizes
the center of the pupil and the corneal reflection, then the distance between them is
measured and point of fixation can be found (Duchowski, 2007).

Eye trackers can measure pupillary responses; furthermore, fixations and eye
movements. By the help of latest eye trackers like TOBII TX300, pupillary activity can
be measured by a particular pixel counting method in which, pupil size is measured by
counting the number of pixels in the pupillary area.

Calibration process is required in all video-based eye trackers, including pupil/corneal
reflection method. In the calibration process, dots at different locations on the screen are
presented to participants upon which participants have to fixate repeatedly several times
in order to excess a limited threshold (Wang, 2011). TOBII software development kit
(SDK) includes interfaces and a platform for designing experiments.

2.3.Facial Temperature Change

Under conditions of stress or physical activity, the body is prepared for a rapid defense
reaction by the sympathetic division of ANS. Because of stimuli that involves
emotional excitement, injury, stress, or exercise, hypothalamus stimulates the adrenal
medulla for an increase of epinephrine and norepinephrine secretion. These hormones
enable “fight or flight” response in target tissue and they arrive at their target tissue by
cardiovascular system. Increased heart rate and contractile force, dilation of blood
vessels in skeletal and cardiac muscles, and constriction of blood vessels in internal
organs are major responses that are triggered by these hormones. These responses
energize the muscles, brain, and heart for physical activity but conserve energy by
slowing the functions of internal organs and the gastro-intestinal system(Seeley et al.,
2008)

The core body temperature rises above the constant homeostatic range, as the metabolic
activity of skeletal muscles increases. In order to promote methods of heat loss, the
hypothalamus receives input from thermoreceptors. Heat is transferred from the body
core to its surface by dilation of the blood vessels in the skin, and then heat is released
to environment with three types of heat transfer. First, conduction from the blood to
skin transfers heat. Second, convection as air passes over or sweat evaporates from the
skin transfers heat. Third, heat can be transferred from the skin to the environment by
radiation. (Cross, 2013)

Measurement Techniques

In old times physicians measured body temperature by just touching to patients with
bare hands in order to assess patients’ physical conditions. In early 18" century,
guantitative measurement of body temperature was made possible. Nowadays, several
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advanced and easy body temperature measurement methods are available. For example,
mercury in glass, sterile thermocouples, radiometers and liquid crystal can be used for
body temperature measurements. They are cheap, precise and easy to use but they need
direct contact with target. However, detection and quantification of natural radiation is
the only method known today for non-contact body temperature measurement. Modern
thermal infrared imaging methods depend on the radiation measurement techniques.
(Khan, Ward, & Ingleby, 2006; Ring, 1998)

Because of its composition and structure, the human body surface is an efficient
radiator. By using some of the well-known non-invasive radiation detection methods, it
is easy to measure infrared emissions from the skin surface (Khan et al., 2006; Ring,
1998). In addition, sophisticated infrared cameras which are generally inexpensive are
widely used for analysis of patterns of skin temperature variations (Fujimas, 1998;
Khan et al., 2006).
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Figure 6. Electromagnetic Spectrum (Sapling Learning)

Thermal sensitivity, or Noise-Equivalent Temperature Difference (NETD), measures
the smallest temperature difference that a thermal imaging camera can detect in the
presence of electronic circuit noise. Cameras with a low NETD will detect smaller
temperature differences and provide higher resolution images with increased accuracy.
MiliKelvins (mK) is the measurement for thermal sensitivity.
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Figure 7. Sample FLIR SC620 IR Image

In our experiment, IR images were captured by a model SC620 FLIR thermal camera. A
sample IR image taken by this camera is shown in Figure 7. SC620 FLIR thermal
camera has sensitivity of less than 0.04 °C range (40mK) and captures standard —40°C
to 500°C. In Figure 8, vascular representation of major vessels affecting the temperature
of the face and thermal representation is presented. According to reaction to stimulus,
temperature increases and decreases (Berkovitz, Kirsch, Moxham, Alusi, & Cheesman,

2013).
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Figure 8. Vascular representation of major vessels affecting the temperature of the face and thermal
representation (Berkovitz, Kirsch, Moxham, Alusi, & Cheesman, 2013)

13



2.4.Related Works in Stress Detection

Stress, emotion, pupil dilation and thermal imaging concepts were discussed in previous
sections. The following literature survey in this section provide a brief view of relation
between emotion/stress and physical/physiological signals.

Pedrotti et al. (2014) proposed a method to detect psychological stress from pupillary
behavior. In their method, pupil diameter and electrodermal activity were recorded
during a simulated driving task. The experiment consisted of one baseline run and three
stress runs where subjects performed the driving task along with sound alerts.
According to Pedrotti, pupil diameter indexed stress manipulation. In the study, a neural
network algorithm was used as a classification method.

In the study of Pavlidis (et al., 2007), a system that incorporates physiological
monitoring as a part of HCI was proposed. According to their bio-heat modelling of
facial imagery, localized blood flow, cardiac pulse and breath rate could be extracted. In
the study, in order to monitor stress, heartbeat irregularities, sleep apnea, localized
blood flow, cardiac pulse, and breath rate signals were used. Experiment in the study
showed that instantaneous stress brings an increase in the periorbital blood flow.

Effects of adrenaline in the body which is induced from stress cannot be suppressed by
training. Dilation of pupil and increased feed of blood to muscles are examples for the
adrenaline effects. A system for detection of stress (emotional or physical) remotely
was developed by Yuen et al.(2009) based on Electro-Optics (EO) technologies such as
thermal and hyperspectral imaging. Their results showed that areas such as periorbital
areas, forehead, neck and cheek exhibited alleviated skin temperatures dependent on the
types of stressors which were emotional or physical.

In the study of Zhai & Barreto (2006), a stress detection system was developed based on
the physiological signals (Galvanic Skin Response (GSR), Blood VVolume Pulse (BVP),
Pupil Diameter (PD) and Skin Temperature (ST)) which were non-invasive and non-
intrusive. These signals were monitored, analyzed and fused to detect emotional states
between “stress” and “relaxed”. Their experiment system involved three stages. First
one was an experiment setup for physiological sensing. Second was a signal pre-
processing module for the extraction of affective features. Third was an affective
classification (SVM method used) procedure. Correlation with monitored physiological
signals and emotional state of their experimental subjects were noted. Moreover, pupil
diameter was identified as the most significant emotional indicator.

De Santos Sierra (Sanchez Avila, Guerra Casanova, & Bailador Del Pozo, 2011)
proposed a stress detection system based on physiological signals which were GSR and
HR. A specific psychological experiment on subjects was generated to acquire a
database for training, validating, and testing the proposed system. The system was
based on fuzzy logic and described the behavior of an individual under stressing stimuli
in terms of HR and GSR.
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Physiological responses caused by mental stress can be masked by variations due to
physical activity. An activity-aware mental stress detection scheme was proposed by
Sun et al. (2012). ECG, GSR, and accelerometer data were gathered from participants
across three activities: sitting, standing, and walking. For each activity, physiological
baseline was gathered while users were subjected to mental stressors.

High-resolution electro-optical and mid-wave infrared (MWIR) cameras and
millimeter-wave radar systems can also be incorporated to identify stressed individuals.

In the study by Carl B. Cross (Skipper, & Petkie, 2013), a multimodal sensor platform
was developed. In their experiment, while subjects were performing mental and
physical tasks, registered image and sensor data were collected. Face was segmented
into 29 non-overlapping segments based on fiducial points automatically in the images
outputted by facial feature tracker. Chest displacement which was extracted from the
radar signal and temperature fluctuations at the nose tip and regions near superficial
arteries detected respiration and heart rates, respectively extracted from the MWIR
image. All these extracted signals were fused in order to detect stress.

Psychological stress detection is also possible using subject-dependent bio signal
features. According to Giakoumis (Tzovaras, & Hassapis, 2013), SC and ECG signals
were analyzed and “rest signatures” were calculated from each subject's baseline
recordings. These signatures were bio signal transformations capable to express each
individual's baseline deviation from signal templates. According to Giakoumis,
automatic stress detection accuracy was increased by their subject-dependent features
extracted from SC and ECG signals.

In Sharma (Gedeon, 2014)’s work, an individual’s response to real-life events was
investigated. A computational model was developed to recognize observer stress using
physiological and physical response sensor signals in real-life settings. Individual-
independent SVM based model classifier was used to recognize stress patterns from
observer response signals.

Use of non-invasive and unobtrusive sensors to measure and model stress is very
common. According to Sharma (Gedeon, 2012), similar techniques for modelling stress
were discussed. Sensors which could be usable in everyday activities were the focus of
the study. Computational methods have the capability to determine optimal fusion and
automate data analysis for stress recognition and classification. Several technigues have
been developed to model stress based on Bayesian networks, artificial neural networks,
and SVMs.

The studies discussed in this section, are summarized in Table 1. After we introduce

the proposed method in the following chapters, we will compare these methods with our
method in the discussion chapter.
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Table 1. Emotion & stress detection studies.

Reference Stimulus Measurements
(Citation)

(Ren, Barreto, Gao, & Stroop Color Word Test (Mental Stress) | PD, GSR

Adjouadi, 2013)

(Zhai & Barreto, 2006) Paced Stroop Test (Mental Stress) PD, BVP,

GSR, ST

(Pedrotti et al., 2014) Simple Driving Test with external PD, EDA
stressful stimuli added (Psychological
Stress)

(Nhan & Chau, 2010) Visual stimuli (IAPS) with varying ST (facial)
arousal and valence content
(Psychological Stress)

(Yuen et al., 2009) running exercise (physical stress) ST (Facial)
and Quiz (emotional stress)

(Giakoumis et al., 2013) Video-game competition, arithmetic GSR, ECG
questions (Psychological Stress)

(Carl B. Cross et al., Computerized version of the Stroop ST and EO

2013) Color-Word Interference Test (Mental
Stress),pedaling a recumbent exercise
bicycle (Physical Stress)

(Sharma & Gedeon, 2014) | Interview experiment & Meditation EEG, GSR
experiment (Observer Stress for an and ST

observer of a real-life environment)
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CHAPTER 3

DATA COLLECTION METHOD AND EXPERIMENT

Stimulus generation steps and experiments are covered in this chapter. During the
experiment, specialized IAPS pictures are displayed to participants for generating stress
on them. The experiment has two parts, consisting of showing neutral and negative
IAPS images respectively. While running first and second parts of the experiment, eye-
tracker and infrared thermal camera recorded participant’s pupillary and temperature
data. Between the parts, Positive and Negative Affect Scale test (Appendix C) is
administered. For the last part of the experiment, Debriefing Form (Appendix E) is
filled out.

3.1 Signal Acquisition

In this study, pupil and thermal signals were collected using a TOBII TX300 Eye-
Tracker and a FLIR SC620 IR Camera.

3.1.1. Hardware Setup: The complete instrumental setup of our experiment is shown
in Figure 9. A TOBII TX300 eye tracker embedded in a 19" screen and a FLIR 620 IR
Camera were used in the experiment. Each participant sat at 0.65 m distance from the
TOBII screen and 1.15 m distance from the FLIR camera. Pupil dilation and facial
thermal signals were recorded at a rate of 60 Hz and 30 Hz respectively.

Our experiment did not require a head restraint because real time gaze tracking (TOBII
Technology, 2010) was available for pupil data and an in-house developed ROI (Region
of Interest) tracker was employed during thermal data collection®.

3.1.2. Software Setup: The experiment was controlled by an in-house desktop
application. Multiple threads were generated for rapid data collection. After the
experiment, all continuously recorded pupil and thermal values were saved into text
files respectively. Our application analyzed the data using the steps illustrated in Figure
14.

! Thanks to Dogus Tiirkay for the ROI tracker software.
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3.2 Participants

Participants can be chosen in many ways from the population. Our participants were
selected from the circle of our acquaintances (school, work) randomly. Furthermore,
individuals’ availability and time constraints effected number of participants to be
tested feasibly.

Eleven healthy subjects consented to participate in the experiment (age range: 29-40,
33+3.464, 2 females, and 9 males). The subjects had no pathological condition with
their eyes or faces.

Informed consent was read and signed by the participants (Appendix F). The study was
approved by the METU Ethics Committee (Appendix G) in conjunction with another
data collection project which is an extended version of this thesis.

3.3 Experimental Procedure

Environment: Pupil size was taken in the stable light conditions to provide an accurate
measurement. Moreover, for the thermal infrared image acquisition, room temperature
was set to 19-22 °C. There were humidity controller and an air recycling system in the
building which experiment took place.

Experiment: The experimental design consisted of two parts. The first part was
constructed as a baseline to measure neutral sentiment while the second part was
designed to generate stress. Total number of trials was 20 for each part. Each trial
consisted of a rest period of 12 seconds and a stimulus display of 6 seconds as
illustrated in Figure 10.
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Figure 10. Experiment Flow

Part-1: Twelve neutral IAPS pictures were selected with low arousal values
(2.77+£1.896) and neutral valence values (4.949+1.185). Each stimulus consisted of a
3x3 grid of images randomly arranged from these set of 12 neutral images. Arrow
symbols were embedded into some of the images in the grid randomly. Every stimulus
was edited to contain a total of 3-6 arrows arbitrarily. Subjects were asked to identify
the total number of arrows in the given display. Verbal responses were collected from
the subjects during the rest period, which followed the picture display. The subjects
were given immediate feedback for their response. If their prediction was correct, the
experimenter said "Correct”, otherwise "Wrong, the number of arrows is x". Sample
stimulus image from Part | can be seen in Figure 11. All neutral stimuli including IAPS
pictures are given in Appendix A.

Part-11: The experimental procedure was similar to Part I, except for arousal/valence of
IAPS pictures, number of arrows, and verbal feedback. The chosen IAPS pictures had
high arousal (6.12+2.02) and negative valence values (2.87+1.74). The number of
arrows inserted in the display varied in the range of 6-9. The verbal feedback provided
to the subject was misleading at a rate of 30%. On some of the trials where the subject’s
prediction was correct, the subject was deliberately told "Wrong, the number of arrows
is x", as if the subject’s response was not correct. Sample stimulus image from Part II
can be seen in Figure 12. All negative stimuli including IAPS pictures are given in
Appendix B.

20



Figure 12. Sample Stimulus Image from Experiment (Part I1)

Sensitivity of the method with respect to the size of the IAPS pictures and grid size
were also investigated in our study. Only one IAPS picture, versus 3x3, 4x4, 5x5 grids
of IAPS images were tested separately as stimuli. Results of pupil and thermal data for
4x4 and 5x5 grid of images were not meaningful across part 1 and part 2 of the
experiment. Subjects’ comments on the experiment also showed that 4x4 and 5x5 grid
of images did not affect participants’ emotion. On the other hand, only one IAPS picture
as a stimulus affected emotions much less than expected. When the 3x3 grid was
administered, the debriefing reports indicated that the subjects felt stress during the
second part of the experiment. Therefore a 3x3 grid is chosen.
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Before the initiation of the experiment, 9-dot calibration was applied. During the first
phase, participants were shown 20 images on the center of grey background with 15°
visual angle (see Appendix H for visual angle computation). Specifications of the
TOBII eye tracker are summarized below.

Table 2. Specifications for Tobii TX300 eye tracker

Type Values

Accuracy 0.4~ At ideal conditions, binocular

Accuracy, Large angle 0.5° At 30 - gaze angle, binocular

Precision 0.07 - Without filter, binocular

Sample rate 300, 250, 120, 60 Hz

Sample rate variability 0.3%

Total system latency <10 ms

Head movement 37 x 17 cm. Freedom of head movement at
a distance of 65 cm

Operation distance 50-80 cm

Max gaze angle 350

Many commercial eye trackers state an accuracy of about 0.5 degree, for example the
eye tracker used in this thesis, Tobii TX300, has a majority of participants with an
accuracy distribution of 0.4 degree during ideal conditions. Binocular data is the
average of the two eyes. Ideal conditions for the system are when the users head stays in
the middle of the eye-tracker, at a distance of 65 cm from Tobii and with an
illumination of 300 lux in the room. Precision is stated to be 0.07¢ for binocular data
without any filter. Precision is calculated as root mean square of successive samples.

Table 3. Specifications for FLIR SC620 Camera

Type Values

IR resolution 640%480 pixels
Thermal sensitivity/NETD <40mK @ +30°C
Field of View (FOV) 24° x 18°
Minimum focus distance 0.3m

Focal Length 38mm

Spatial resolution (IFOV) 0.65 mrad

Image frequency 30 Hz

Spectral range 7.5-13 um
Detector pitch 25 um

Object temperature range —40°C to +500°C
Accuracy +2°C or £2%

The FLIR camera was located 115 cm above floor was placed 100 cm away from the
subject. In order to capture only the frontal views of face, the height of the camera was
adjusted accordingly. Automatic focus of camera was always employed to during image
recording. The IR images are 640x480 pixels and recorded on a laptop with the
ThermoVision SDK at 30 frames per second. Images acquired with a FLIR SC620
thermal imager had resolution of 640x480 and NETD <40mK. The accuracy of SC620
is quoted as £2°C or £2% (whichever is the largest) where within the temperature range
of 15-30°C. In Table 2, some of the system specifications are listed.
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Changes in the experiment were made to assure that during the regular flow of the
experiment, the subjects’ stress would increase. This stress could have been due to the
content of the IAPS pictures, the inability to count more arrows or the subjective belief
that performance was low. All 1APS pictures in Part | and Il were normalized for
intensity values (96.66+0.279 out of 255) using Adobe Photoshop (Adobe Systems Inc.,
San Jose, CA; version CS3) software in order to avoid luminosity effects on eyes.
Valence and arousal distribution of the pictures for each stimulus are shown in Figure
13 and Table 4.
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Figure 13. Average arousal and valence values of the IAPS Pictures used as stimuli

Table 4. IAPS Pictures’ arousal and valence average values in Arousal & Valence Axes

PART 1 (Neutral)

PART 2 (Negative)

Valence Arousal Valence
# of Stimulus | Arousal Average Average Arrow Average Average Arrow
1 2.988 5.122 6 6.008 2.606 7
2 2.788 4.944 3 5.916 3.015 8
3 2.924 5.064 3 5.864 3.073 6
4 2.986 5.065 5 6.064 2.65 8
5 2.892 5.037 6 5.954 2.676 9
6 2.993 5.061 4 6.296 2.981 8
7 3.037 5.076 5 6.215 2.883 6
8 2.924 5.064 3 5.942 2.791 8
9 2.815 5.026 3 6.067 2.895 9
10 2.856 5.066 5 6.251 2.898 8
11 2.921 4.986 5 5.891 2.865 7
12 2.807 4.963 4 6.286 2.945 6
13 2.927 5.066 5 5.842 2.618 8
14 2.824 4.973 4 6.232 2.848 9
15 2.943 5.084 6 5.955 2.712 7
16 2.965 5.105 6 6.187 2.908 9
17 2.763 4.947 3 5.776 2.792 8
18 2.932 5.041 3 6.12 2.837 9
19 2.897 5.054 4 6.024 2.972 8
20 2.922 5.084 5 5.923 2.783 7
Averages 2.905 5.041 4.4 6.041 2.837 7.75
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3.4 Procedure for Collecting Data

A survey (Appendix D) was conducted to get participants’ personal information such as
age, gender, education, health conditions, marital status, and eye glass status before the
study. Especially who had health conditions like flu or cold which could affect the
experiment were not allowed to take the experiment.

Between Part | and Part Il of the experiment, subjects were provided with a chance to
rest for a few minutes. During this period, they completed PANAS test” (Appendix C)
in order to detect and exclude outlier subjects based on their current mood state. In the
PANAS test, subjects read each item and then list how they feel by indicating the
number on the scale next to each word. This scale consists of a number of words that
describe different feelings and emotions.

One last survey (see Appendix E) was conducted to get participants’ opinions about the
experiment and to compare declared mental status of the participants with the measured
values. Survey questions were designed for evaluating mental status of participants after
being exposed to stressors (negative images, plenty of arrows and misguidance of
participants)

Volunteering participants were taken one-by-one into the experiment room. The
informed consent form (Appendix F) describing the kinds of tasks they would complete
during sessions was filled out initially. Subjects were not informed about subsequent
testing to prevent intentional learning. In the consent form, no mention was made of any
forthcoming stress test. Instead, the subjects were informed about our investigation on
positive and negative IAPS pictures.

“The Positive and Negative Affect Schedule (PANAS) test (Watson et al., 1988)

24



CHAPTER 4

DATA PROCESSING, FEATURE EXTRACTION AND CLASSIFICATION

There are three sections in this chapter. In the first section, data processing is explained.
In the second section, feature extraction, feature definitions and feature selection
procedures are covered. Third section is about the classification algorithms. Decision
Tree, AdaBoost, Bagging and Random Forest classification methods are explained.

4.1. Signal Processing

We concatenated on the stimulus period and the rest period following immediately
thereafter to assemble the response of each trial. Individual trials, consisting of 6
seconds stimulus and 12 seconds rest are referred in the following as one ‘record’.
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(Right Pupil) (Thermaly
Interpolation for Interpolation for
Missing Points Missing Points

Merge Pupil Signals
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Fusion of
Features
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Figure 14. Pre-processing and Data Analysis Steps
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In a record, pupil data is collected from the left and right eyes as d =l;, I»,... lk,..., Ik
and dgr=ry, ra,....I..., rk respectively, where k=1...K and K = 18 * 60. Thermal data is
collected from the periorbital area as t=ty, ty,...,tm,...,tm Where m=1..M and M = 18 *
30. Total number of records is 20 for each part of the experiment. The pre-processing
steps are presented in Figure 14

Pupil Data Processing: Due to eye blinks or insufficient tracking when the subject
looks away, the gaze is lost. Therefore, there may be missing data points in pupil
measurements. These data are marked as -1 by TOBII Eyetracker. An in-house
extrapolation algorithm is used to compensate for such data loss. When there is missing
data for only one eye, pupil data from the other eye is used for interpolation; otherwise,
linear interpolation is done using the average of the last five samples before the lost data
and the average of the three samples after the lost data.

At the very end, pupil diameter measurements are merged after testing whether left and
right pupil diameters are highly correlated. For this purpose, the average of left and
right pupils are computed and a single pupil data stream, pi, P2, ..., Pks ..., PK IS
obtained. Finally, moving average filter (Witten & Frank, 2005) is used for data
denoising. In this filter, small window size is specified and moved from the beginning
to the end of a record. A window size of 20 sample points is found to be optimal as
explained in chapter 5 and Figure 27. A sample result of this method can be seen in
Figure 15.
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Figure 15. A. Pupil record before pre-processing, dL (blue) and dR (red) B. Pupil record after pre-
processing, Interpolated and Merged Pupil Record
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Thermal Data Processing: Each thermal data point is obtained from the mean
temperature of the 10% hottest pixels within a pre-specified ROI. As suggested by
(Pavlidis et al., 2007), before starting the experiment, for each subject we select the
periorbital area that includes the vessels between the eyes (see Figure 16A). A tracking
algorithm utilizing template matching registers this ROI throughout the course of
experiment. Despite subject motion, 10% of the hottest pixels (Pavlidis et al., 2007)
within this region are extracted for each frame. Hottest pixels’ temperature values are
averaged in order to get a single result, depicted by t, which is used in feature
extraction later. In rare events such as large motion, the thermal record is affected
because tracking is lost. Hence interpolation is done to recover lost data. The same
algorithm described for pupil diameter samples is used for interpolation of the thermal
data as well. However, the moving average filter may become insufficient. Hence, to
make a more robust estimate of the trend, simple moving median (SMM) is preferred
for noise removal. In this method, the median is found by sorting the values inside a
window and selecting the value in the middle. A window size of 15 points is found to be
optimal as explained in chapter 5 and Figure 27. A sample record after preprocessing is
seen in Figure 16.

(A)

Temperature (oC)
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G)

Temperature (oC)

Figure 16. Thermal record after pre-processing

A. Sample Thermal ROI B. Thermal Data C. Processed Thermal Data
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Afterwards, a standard outlier removal algorithm with median (Grubbs, 1969) is used in
order to delete inappropriate data points. Especially in thermal signal acquisition,
thermal tracking could be affected because of subject’s abrupt movement. Omitting
unwanted data and computing average before and after the outlier part is very important
for classification at later steps. If ratio of missing values is higher than 30% in a record
in both thermal and pupil data, this record is entirely omitted.

4.2. Feature Extraction

Original data is normalized before feature determination in order to get rid of signal
variability between subjects. The signal values in each record are shifted to force all
records to start with a value of 0. Overall averages of all records for all subjects are
presented in Figure 17A and Figure 17B for pupil and thermal data.
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Figure 17. Pupil dilation and temperature record profiles (Blue:phase I; Red:phase I1)

A. Average pupil diameters across all records of all subjects

B. Average temperature values across all records of all subjects

In order to generate an entropy-based representation of the pupil dilation or thermal
signal in each record, Shannon entropy value is computed in a window of size W, which
slides along the pupil and thermal data samples px and t, (de Araujo et al., 2003). To
calculate the Shannon entropy of such a signal, px and ty, are first discretized into N
signal amplitude levels. Let j be the sliding offset of the window W, Shannon entropy of

each window is then calculated by (Cover & Thomas, 2006): H =-3 s, log (s,) (1)

where j is an index, 1,2,..j,..J, through the entire record and s, indicates the probability
of each discretized signal level n, within the window W. J is different for pupil and
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thermal records, since their sampling rates are different®. After calculating and
combining entropy values, entropy series are created for every record. Sample pupil and
thermal records with sliding window and entropy graphs are presented in Figure 18.
Note that only the initial 6 seconds of the pupil measurement is extracted for the rest of
the analysis. This choice is empirical, after observing that the initial 6 seconds of the
pupil record is representative of neutral and stress class differences. This choice is in
agreement with Bradley et al. (2008). The entropy graphs run shorter than the original
records because of the window application. The amount that is truncated from the end is
exactly the size of the chosen window, W.
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C. Entropy graph of the pupil record. D. Entropy graph of the thermal record.

Figure 18. Shannon Entropy graphs of pupil and thermal records

When the window is positioned on an area, which contains a transition between neutral
and stressed measurements, the entropy computed within the window will be high. On
the contrary, when the window is positioned on an area, which embodies exclusively
neutral signals or stressed signals, the entropy in this window will be low. Needless to
say, the choice of the window size is crucial for emotion detection. In order to
determine whether the transition detected by the entropy value is due to a change from a
neutral state to stress or from a stressed state to neutral, the absolute values of the
signals should also be considered.

Using the actual measurements and entropy calculations, several features were defined
for each record. These features and their explanations are listed in Table 5.

*For pupil record, J is K minus length of W, for thermal record, J is M minus length of W
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Table 5. List of features

B

Feature Name

Explanation

Entropy
(E)

Absolute
(A)

Selected
Features

Pupil | Thermal

Min

Minimum value of the record

- (E)

Max

Maximum value of the record

- (E)

Mean

Mean value of the record

(E) -

Median

Median value of the record

(E) -

SD

Standard deviation value of the record

(A) (A)

Kurt

Kurtosis value of the record

Skew

Skewness value of the record

IR ERARNIENEARNERN

Q| N| O O B W[ N| =

KLD1

Every record was split into 2 pieces. The
Kullback-Leibler distance was computed in
the first piece as KLD1

NIV AENIENERNERN RN

KLD2

Every record was split into 2 pieces. The
Kullback-Leibler distance was computed in
the second piece as KLD2

10

Slope 1

Every record was split into 2 pieces. Slope
of the linear regressor in the first piece was
computed as Slope 1.

11

Slope 2

Every record was split into 2 pieces. Slope
of the linear regressor in the second piece
was computed as Slope 2.

QY (A)

12

CurveCorrelationl

Timeseries of records from phase 1 were
used to make one generic mean curve to
represent all phase 1 signals.

Correlation between each record and the
generic phase 1 curve was computed as
Curvecorrelationl.

13

CurveCorrelation2

Timeseries of records from phase 2 were
used to make one generic mean curve to
represent all phase2 signals.

Correlation between each record and the
generic phase2 curve was computed as
Curvecorrelation2.

(A) -

14

CurveCorrelationDif

Difference between CurveCorrelationl and
CurveCorrelation2 features of the record.

This feature was expected to be positive for
phase 1 records, negative for phase 2.

(A) -

Minimum, maximum, mean, median, SD, kurtosis, skewness are self-explanatory
features. KLD, Slope, Curvecorrelation features will be explained in detail.
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The Kullback Leibler Distance (KLD) is a natural distance function from a "true"
probability distribution, P(i), to a "target™ probability distribution, Q(i). In Figure 19, a
sample pupil record is split into 2 pieces (X; and Xp).
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Figure 19. KLD feature of sample pupil record

P(i) indicates the probability of each discretized signal level n in X; and Q(i) indicates
the probability of each discretized signal level n in X,. The KLD was computed as;

n

. PQ)
KLD = Z P(l)logm @)

i=1

Slope is another important feature. In Figure 20, a sample pupil record is split into 2
pieces (X;and X5). Slope of the linear regressor (in the first piece) is computed as;

Slope =y, /x, 3)

« Mode

= Predicted

Value

Pupil Size (mm)
i

Time (s)

X X,

Figure 20. Slope and CurveCorrelation features of sample pupil record

Curvecorrelation is also an important feature. In Figure 20, sample pupil record is
shown as green curve (observed data). Timeseries of pupil records from phase 1 are
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used to make one generic mean curve to represent all phase 1 signals with
Autocorrelation. This generic phasel curve is shown as blue curve (predicted data) in
Figure 20. Correlation values between a record and the generic phasel curve are
computed as Curvecorrelationl. D; is the Euclidean Distance between first observed
data and first predicted data.

CurveCorrelation;=D;+D,+... +D,, 4)

Correlation values between a record and the generic phase 2 curve are computed as
Curvecorrelation2.

To reduce dimensionality of the large number of features, to remove noisy features and
select significant ones, the embedded feature selection (CfsSubsetEval evaluator with
BestFirst search) method in Weka* (Witten & Frank, 2005) is used. As explained in
Weka, 'CfsSubsetEval' evaluates the worth of a subset of features by considering the
individual predictive ability of each feature along with the degree of redundancy among
the chosen subset. 'BestFirst' searches the space of attribute subsets by greedy hill
climbing augmented with a backtracking facility. Using this feature selection technique,
we distinguish features that were best suited for separating the two classes (i.e. neutral
and stressed) and removed all other features that are unproductive for the targeted
classification. Ten best features are identified at the “Selected Features” Column for
‘Pupil’ and ‘Thermal’ sensors in Table 5. Features are later merged with Weka software
to obtain feature level fusion.

4.3. Classification Algorithms

For classification of phase | versus phase Il records, C4.5 (Decision Tree), AdaBoost
with Random Forest, Bagging and Random Forest classification methods are used
which are available in WEKA software®. WEKA is a comprehensive suite of Java class
libraries that provides implementations of numerous classification, pre-processing,
feature selection and prediction algorithms (Witten & Frank, 2005). For each
classification algorithm the default parameters are used, as specified in Weka.

Decision trees are predictive models which map input attributes to a target value using
simple conditional rules. The most notable and classical examples to decision tree
learning are the algorithms ID3 (J. R. Quinlan, 1986) and the C4.5 (Quinlan, 1993).
C4.5 constructs a decision tree from a set of data by dividing up the data according to
the information gain, IG. It recursively splits the tree by the attribute with the highest 1G
in the training, yielding a decision tree that can be reused for classification (Quinlan,
1996). J48 method (Weka implementation of C4.5) has been used.

* The Waikato Environment for Knowledge Analysis (WEKA) Software

® Web Site: http://www.cs.waikato.ac.nz/ml/weka version 3.6
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Random Forest is one of the most successful ensemble learning techniques (Breiman,
2001) which have been proven to be very popular and powerful in pattern recognition
for high-dimensional classification (Meinshausen, 2006) and skewed problems.
Random forest is a very useful method for categorical datasets. In random forest, there
is a bunch of decision trees which create a forest structure. Each decision tree in the
forest has got a maximum depth and nodes which contain split features. In training part
of random forest, each split feature is picked from a random subset of the features.
Instead of using the most discriminative thresholds, a random subset of features is used.
Because of this randomness, the bias of the forest increases (Breiman, 2001).

AdaBoost is another popular ensemble method. It is used for prediction in classification
tasks and reported to present self-rated confidence scores by estimating the reliability of
their predictions (Witten & Frank, 2005). It is a learning algorithm used to generate
multiple classifiers from which the best classifier is selected (Efron & Tibshirani, 1993).
For the combination of AdaBoost with random forest (ABRF) technique, random forest
utilized as a weak learner to generate the prediction models with less error rate.

Bagging (Bootstrap Aggregating) is also machine learning ensemble algorithm that is
designed to improve stability and accuracy of algorithms used in statistical
classification and regression. It helps to avoid over-fitting and reduces variance.
Bagging is special case of the model averaging approach. Improvement in the accuracy
of one model by using its multiple copies is goal of bagging method. Besides, average
of misclassification errors on different data splits gives a better estimate of the
predictive ability of a learning method.

In our classification approach, we used binary classifiers in order to discriminate the
stress levels in the experiment. Every subject’s data (phase | and Il) are preprocessed
and labeled as either in class 1 (neutral) or in class 2 (stressed). In order to obtain a
more accurate and realistic assessment of the classifiers, a 10-fold cross validation
method (Efron & Tibshirani, 1993) was used. First, the given data sets are separated
into two parts: the training set and a test set, where the labels of the test set are
considered unknown (Kohavi, 1995; Witten & Frank, 2005). In our study, the original
data were first divided into 10 equal subsets, and one subset was tested using the
classifier trained on the remaining nine subsets. This procedure was repeated until every
subset had been used once for testing. The overall accuracy for the classifier is based on
the average performance over the ten classification runs.
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CHAPTER 5

RESULTS

In this chapter, analyses and classification results are reported. This chapter comprises
of eight sections. In the first and second sections, statistical and classification results are
presented. In the third, ROC results are reviewed. In the fourth section, parameter
effects on accuracy, in the fifth section, experimental results are discussed. In the sixth
section, similarity results of IAPS pictures’ arousal/valence values and features (pupil
and thermal) are presented. In the seventh section, analysis of significant features are
reviewed and in the last section debriefing results are examined.

Analysis of data focused on the hypotheses which are expressed in the first chapter of
study:

Hypothesis 1. Pupil size variation can be used in order to understand user’s stress. At
stressful times during our experiment, participants’ pupil will dilate in comparison to
other times.

Hypothesis 2. Stress can be evaluated by measuring thermal changes of facial area. At
stressful times during our experiment, participants’ thermal measurement will increase
in comparison to other times.

Hypothesis 3. Fusing pupil and thermal features will increase success of stress
detection.

Hypothesis 4. Using features that capture the difference of the rise and fall profiles in
thermal and pupil signals will increase success of stress detection.

We assume that there exist emotional/stressful states of participants in our experimental
setup which can be detected. Hence, the purpose of the data analysis was primarily to
identify such states.

5.1. Statistical Results

The statistical analysis of pupil and thermal features in Table 6 was performed in SPSS
Software. The first step for pupil and thermal datasets included tests for normality
(Kolmogorov-Smirnov Test) to specify what type of statistical methods (parametric or
nonparametric) should be used. These tests were completed for each stimulus of Part |
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(neutral) and Part Il (stress) on each dependent measure shown earlier in Table 5. The
majority of features were non-normally distributed as shown in Table 7.

Table 6. Normality Results (bold and underlined features are normally distributed)

Normal Parameters

Std. Test Asymp. Sig.
FEATURES Mean Deviation Statistic (2-tailed)
Pu_Ent_Min 5.050 0.449 .055 .010
Pu Ent Max 5.940 0.383 .036 .200
Pu_Ent_Mean 5.528 0.395 .061 .003
Pu Ent Median 5.552 0.413 .042 :200
Pu_Ent_Std 0.263 0.123 078 .000
Pu_Ent_Kurt -0.755 0.824 129 .000
Pu Ent Skew -0.189 0.543 .030 .200
Pu_Abs Max 0.285 0.181 .047 .055
Pu_Abs_Std 0.138 0.046 .053 .016
Pu_Abs_Kurt -0.744 0.699 136 .000
Pu_Abs Skew -0.107 0.512 037 :200
Pu_Abs_Crossl 1.652 1.912 .095 .000
Pu_Abs_Cross2 21.655 27.349 210 .000
Pu_Abs_Slopel -0.002 0.003 072 .000
Pu_Abs Slope2 0.001 0.001 .039 .200
Pu_KLD1 0.716 0.285 202 .000
Pu_KLD2 0.729 0.273 189 .000
PuKLD 1 2 -0.014 0.057 .040 :200
Th_Ent_Min 3.613 1.189 143 .000
Th_Ent_Max 4.260 1.104 153 .000
Th_Ent_Mean 3.952 1.139 158 .000
Th_Ent_Median 3.962 1.140 162 .000
Th_Ent_Std 0.182 0.108 131 .000
Th_Ent_Kurt -0.557 0.934 162 .000
Th_Ent_Skew -0.100 0.655 .046 .064
Th_Abs_Max 0.255 0.341 251 .000
Th_Abs_Std 0.136 0.472 .396 .000
Th_Abs_Kurt 0.225 1.806 212 .000
Th_Abs_Skew 0.018 0.751 .070 .000
Th_Abs_Crossl -2.522 1.051 .058 .006
Th Abs Cross2 | 161.008 52.900 033 -200
Th_Abs_Slopel 0.000 0.001 208 .000
Th_Abs_Slope2 0.002 0.042 446 .000
Th_KLD1 0.198 0.223 .052 022
Th_KLD2 0.257 0.338 .080 .000
Th_ KLD 1 2 -0.059 0.350 .049 .035

Since the features had non-normal distributions, we analyzed the data using non-
parametric statistics. Using the nonparametric Mann—-Whitney U test, for each feature
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we compared difference between neutral versus stress data. Differences with the
probability a <0.05 were regarded as significant.

Table 7. Mann-Whitney U test Results (bold and underlined features are significant)

Mann- Z Asymp. Sig.
Features Whitney U (2-tailed)
Pu Ent Min 12531.000 -3.640 .000
Pu Ent Max 11386.000 -4.805 .000
Pu Ent Mean 11528.000 -4.660 .000
Pu_Ent Median 11362.000 -4.829 .000
Pu_Ent_Std 15885.000 -.229 819
Pu_Ent_Kurt 14813.000 -1.319 187
Pu_Ent_Skew 15058.000 -1.070 .285
Pu_Abs_Max 15406.000 -.716 474
Pu_Abs Std 13185.000 -2.975 .003
Pu Abs Kurt 13942.000 -2.205 027
Pu_Abs_Skew 15518.000 -.602 547
Pu_Abs Crossl 13589.000 -2.564 .010
Pu Abs Cross2 13437.000 -2.719 .007
Pu_Abs_Slopel 15634.000 -.484 .628
Pu_Abs Slope2 9969.000 -6.246 .000
Pu KLD1 13858.000 -2.291 022
Pu KLD2 12611.000 -3.559 .000
Pu KLD 1 2 12051.000 -4.129 .000
Th_Ent_Min 15555.000 -.565 572
Th_Ent_Max 15704.000 -413 .680
Th_Ent_Mean 15722.000 -.395 .693
Th_Ent_Median 15750.000 -.366 714
Th_Ent_Std 14438.000 -1.701 .089
Th_Ent_Kurt 15752.000 -.364 716
Th_Ent_Skew 15465.000 -.656 512
Th_Abs Max 12997.500 -3.166 .002
Th Abs Std 11823.000 -4.360 .000
Th_Abs_Kurt 16097.000 -.013 .989
Th_Abs_Skew 16025.000 -.086 931
Th_Abs_Crossl 15557.000 -.562 574
Th_Abs_Cross2 16072.000 -.039 .969
Th_Abs_Slopel 16101.000 -.009 993
Th_Abs_Slope2 14398.000 -1.741 .082
Th_KLD1 15303.000 -.821 412
Th_KLD2 16049.000 -.062 951
Th KLD 1 2 15622.000 -.496 .620

Sample description (n=359) and as p value less than 0.05, concluded that the underlined
features provided statistically significant evidence of a difference between Part | and
Part Il. Because the data is normalized across the participants, we pooled all data from
all participants together in this analysis. As shown in Table 7, some pupil and thermal
features were obtained as a significant descriptor. With respect to this result, we
concluded that the Hypothesis 1 and Hypothesis 2 were once again verified.
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5.2. Classification Results

Common evaluation measures in classification problems are defined from a matrix with
the numbers of examples correctly and incorrectly classified for each class, named
confusion matrix. The confusion matrix for a binary classification problem (which has
only two classes — positive and negative), is shown in Table 8. Performance of
classifiers can be evaluated with the number of True Positives (TP), False Positives
(FP), True Negatives (TN), and False Negatives (FN).

Table 8. Confusion Matrix

Predicted Class
True Class Stress (Part 11) Neutral (Part 1)
Stress (Part 1) TP FN
Neutral (Part 1) FP TN

Sensitivity is the percentage chance that the test will correctly identify Part 11 (stress)
records which actually belong to part II.

TP
Sensitivity = TP+ FN x 100%

Specificity is the percentage chance that the test will correctly identify Part I (neutral)
records which the test will identify Part I (neutral)

TN
Specificity = m X 100%

A - TP+ TN x 100%
CCUracy = Tp Y FN + TN + FP 0

Receiver Operating Characteristic (ROC) curve can be used for evaluating
performances of classifiers. All sensitivity namely TP values are shown by a ROC
curve. Equivalent values which are (1-Specificity) thresholds are on the y axis. Area
Under Curve (AUC) which is the area under the ROC curve is generally thought as a
key performance because a single quantity of overall accuracy is provided with this
metric (Witten & Frank, 2005).

Several classification tests were conducted to investigate performances with respect to
input data type (absolute signal value or entropy), or physiological/physical
measurements (pupil or thermal). The outcomes of the classification, which are
illustrated in Table 9, Table 10 and Table 11, show that on the average, the fusion of
pupil and thermal features produce 10% increase in classification accuracy. Accuracy of
72.7% was reached using only pupil data features, 76.3% was reached using only
thermal features and 83.8% was obtained using both pupil and thermal record features.
Sensitivity and specificity values were highest (83.9% and 83.8%) with ABRF method
using pupil and thermal data.
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In Table 9, Table 10 and Table 11, all types of data results are shown according to
classification methods. In these tables, SF labels are used in order to point Weka feature
selection algorithm is processed before classification step. Best results are obtained via
fusing pupil and thermal data features which are selected according to feature selection
algorithm.

With respect to these results, pupil size variations and thermal changes were prominent
separator for stress and neutral states considering Table 9 and Table 10. Stress detection
is successful (accuracy higher than 70%) only as long as adequate features that reflect
pupil or thermal data are included. As a result, we concluded that the Hypothesis 1 and
Hypothesis 2 were verified.

Table 9. Thermal Data Classification Results, SF: Selected Features

Decision Random Forest ABRF Bagging
Tree
Absolute Data Sensitivity 0.35 0.589 0.594 0.606
Entropy Data Sensitivity 0.35 0.517 0.511 0.533
Absolute & Entropy Sensitivity 0.656 0.644 0.717 0.689
Absolute & Entropy (SF) Sensitivity 0.528 0.744 0.772 0.756
Absolute Data Specificity 0.877 0.682 0.648 0.648
Entropy Data Specificity 0.737 0.553 0.542 0.559
Absolute & Entropy Specificity 0.709 0.799 0.754 0.743
Absolute & Entropy (SF) Specificity 0.81 0.754 0.754 0.754
Absolute Data Accuracy 0.612 0.635 0.621 0.626
Entropy Data Accuracy 0.543 0.534 0.526 0.545
Absolute & Entropy Accuracy 0.682 0.721 0.735 0.715
Absolute & Entropy (SF) Accuracy 0.668 0.749 0.763 0.754

Table 10. Pupil Data Classification Results, SF: Selected Features

Decision Random Forest ABRF Bagging
Tree
Absolute Data Sensitivity 0.806 0.683 0.694 0.711
Entropy Data Sensitivity 0.683 0.594 0.617 0.611
Absolute & Entropy Sensitivity 0.844 0.728 0.772 0.756
Absolute & Entropy (SF) Sensitivity 0.817 0.744 0.744 0.761
Absolute Data Specificity 0.436 0.67 0.693 0.642
Entropy Data Specificity 0.413 0.536 0.553 0.564
Absolute & Entropy Specificity 0.436 0.631 0.626 0.581
Absolute & Entropy (SF) Specificity 0.48 0.687 0.709 0.67
Absolute Data Accuracy 0.621 0.676 0.693 0.676
Entropy Data Accuracy 0.548 0.565 0.584 0.587
Absolute & Entropy Accuracy 0.640 0.679 0.699 0.668
Absolute & Entropy (SF) Accuracy 0.649 0.715 0.727 0.715
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Following Hypothesis 3, which stated that fusing pupil and thermal features could
increase success of stress detection, we further checked whether the fusion of pupil size
and facial thermal changes were descriptive of stress. In Table 11, best classification
results (accuracy is higher 83%) was obtained by ABRF, Decision Tree, Bagging and
Random Forest methods with fusing pupil and thermal features. With respect to this
result, we concluded that the Hypothesis 3 was verified.

Following Hypothesis 4, which stated that using absolute signal and entropy based
features could increase success of stress detection, we further checked whether absolute
signal and entropy based features were descriptive of stress. In Table 11, best
classification result was obtained by ABRF method (accuracy is higher 83%) with
absolute signal and entropy based features. With respect to this result, we concluded
that the Hypothesis 4 was also verified.

Table 11. Pupil & Thermal Data (Fusion) Classification Results, SF: Selected Features

Decision Random Forest AdaBoost | Bagging
Tree
Absolute Data Sensitivity 0.728 0.711 0.75 0.756
Entropy Data Sensitivity 0.639 0.594 0.644 0.628
Absolute & Entropy Sensitivity 0.778 0.806 0.839 0.822
Absolute & Entropy (SF) Sensitivity 0.694 0.817 0.839 0.839
Absolute Data Specificity 0.609 0.715 0.721 0.676
Entropy Data Specificity 0.531 0.598 0.564 0.575
Absolute & Entropy Specificity 0.782 0.793 0.793 0.737
Absolute & Entropy (SF) Specificity 0.771 0.832 0.838 0.81
Absolute Data Accuracy 0.668 0.713 0.735 0.715
Entropy Data Accuracy 0.584 0.596 0.604 0.601
Absolute & Entropy Accuracy 0.779 0.799 0.816 0.779
Absolute & Entropy (SF) Accuracy 0.732 0.824 0.838 0.824

According to the sensitivity results graph (see Figure 22), when ABRF and Random
Forest algorithms were used for thermal and pupillary data with absolute and entropy
based features, sensitivity greater than 80% was achieved. Moreover, when Decision
Tree algorithm was used for pupillary data with absolute and entropy based features,
more than 80% sensitivity was also reached. Moreover, using absolute and entropy
based features together has higher sensitivity than using these features separately. In
comparison with pupillary and thermal data, pupillary data has higher sensitivity.
Besides, fusing pupil and thermal data improves sensitivity 5 percent considering
ABRF, Bagging and Random Forest.

Specificity results graph (see Figure 23) shows that, using ABRF, Bagging and Random
Forest algorithms on thermal and pupillary data with absolute signal and entropy based
features (after feature selection), more than 80% specificity was reached. Furthermore,
when Decision Tree algorithm was used for thermal data with absolute signal based
features, more than 80% success was also achieved. In comparison with pupillary and
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thermal data, thermal data has higher specificity. Besides, fusing pupil and thermal data
improves specificity 5-10 percent considering ABRF, Bagging and Random Forest.

According to the accuracy results graph (Figure 24), using ABRF, Bagging and
Random Forest algorithms on thermal and pupillary data with absolute and entropy
based features (after feature selection) more than 80% success was achieved. As a
result, ABRF performed best accuracy among other methods. Using absolute signal and
entropy based features together increases accuracy (5%) more than using these features
separately. In comparison with pupillary and thermal data, pupillary data has higher
accuracy. Besides, fusing pupillary and thermal data improves accuracy (10-15%)
significantly.

Feature selection algorithm increases accuracy 5 percent, sensitivity 2-3 percent among
ABRF, Bagging and Random Forest algorithms. Unfortunately, feature selection had
bad effect on Decision Tree method considering sensitivity, specificity and accuracy
results. This warrants further investigation.
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Figure 21. Classification Algorithm’s Accuracy Results

In comparison with classification methods, Figure 21 shows best and worst
classification results of ABRF, Bagging, Random Forest and Decision tree algorithms.
ABRF and Bagging results are very close but best accuracy is reached with ABRF.
Random Forest method has also high accuracy results but its variation is greater than
other methods. In addition, Decision Tree algorithm has 10-15% worse accuracy than
other algorithms.

Ensemble learning methods (ABRF, Bagging, Random Forest), combine predictions of
multiple learning algorithms that is why they often lead to a better predictive
performance than a single learner (Decision Tree). They are well-suited when small
differences in the training data produce very different classifiers. Main drawbacks are
computation time and lower interpretability.
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5.3. Receiver Operating Characteristic (ROC) Curve Results

Classifiers performances can be evaluated in terms of the area under the Receiver
Operating Characteristic (ROC) curves (graphical plots of correct detection rate
versus false alarm rate for a binary classifier system as its discrimination threshold is
varied).

Figure 25 illustrates the predictive performance of the four classifiers, ABRF,
Bagging, Random Forest and Decision Tree with pupil and thermal features. The
results show that ABRF, Bagging and Random Forest method performs relatively
well compared to Decision Tree method in terms of ROC curve.

i T e
X RandomForest (class: Negative)
+ J48 (class: Negative)
© Bagging (class: Negative)
4 AdaBoostM1 (class: Negative)

0.5

True positive rate

05
False positive rate

Figure 25. ROC of classification methods for all features

The AUC is an effective and combined measure of sensitivity and specificity. AUC
scores of our study can be seen in Figure 26. The best score was obtained using the
Pupil and Thermal Features (Weka feature selected) with Random Forest and ABRF
classification methods. Fusing pupil and thermal features increased ROC AUC for
our classification methods. And also feature selection method increased ROC AUC
except Decision Tree algorithm. Perhaps, Weka’s feature selection methods were not
good/compatible with the way Decision Tree works.
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Figure 26. Area under curve scores
5.4. Effects of Parameters on Accuracy

Classification performance scores were reached after separate investigation of three
parameters for pupil and thermal records in classification success: entropy window
size (Wentropy), Slope window size (Wsiope), moving average filter window size
(Wmoving)- Because of the different physiological windows of pupil dilation and facial
temperature, different optimum parameters were determined and used for
classifications. In Figure 27, accuracy results are shown when two parameters are
fixed but one parameter is manipulated for pupil and thermal data. After careful
inspection of Figure 27, we preferred the following parameters in our classifications:
Wiaiope: 120 time points for the pupil and 200 time points for the thermal
signal,Wentropy:200 time points for the pupil and 160 time points for the thermal
signal, Woving: 20 time points for the pupil and 15 time points for the thermal signal.
In Figure 27, darker areas indicate higher accuracy and lighter areas indicate lower
accuracy in classification results. It is important to note that when all variables are
varied at the same time, optimum results may differ. Furthermore, the choice of
Wiiope and Wentropy affected the accuracy only around 4%, but the choice of the
Winoving Was more important, because this changed the performance around 20%.
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5.5. Experimental Results

A total of 11 subjects participated, but 2 of them were excluded because more than
30% of their records were missing due to eye-blinks. All participants had completed
the experiment once. Acceptable values of PANAS (Watson, Clark, & Tellegen,
1988) scores are such that, for a positive mood the mean was 29.7 (SD: 7.9), for a
negative mood the mean was 14.8 (SD: 5.4). Our average positive score was 29.85
and negative score was 15.14, which were in the acceptable ranges for all healthy
subjects. Correlation between the right and left pupil diameter samples was r =0.876,
p < 0.01 therefore merging right and left eyes into a single record was justified.
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83,00%
82,11%
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79,00%
77,71%

Accuracy

77,00%
75,00%

73,00%
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

# of Stimulus Excluded

19 Stimuli

Figure 28. Stimulus Effects on Accuracy Results, number of stimulus (one at a time) was excluded.
(In comparison when all (20) stimuli used, accuracy is % 83.8)

The classification results are investigated with respect to effects introduced by
individual stimuli and participants’ in order to analyze the homogeneity of findings.
In Figure 28, for a particular method (weka feature selection and ABRF
classification) the effect of stimulus on thermal and pupil data is demonstated by
excluding one stimulus at a time. Accuracy results varied between 77.71% and
82.11%. In this figure, best result was obtained with all stimuli included, but twelfth
stimulus excluded. Twelfth stimulus had the minimum effect on overall accuracy and
eighth stimulus had the maximum effect. Every stimulus was useful for overall
accuracy (83.85%) so we concluded that every stimulus was not necessary for our
experiment. On the basis of each subject, the results are presented in figure 33, at the
end of this chapter. Third participant had the worst stress detection accuracy. Third
participant was the oldest subject in our group.
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5.6. Similarity Results

All features in Table 5 were tested for validity by running cosine similarity method
in SPSS Software (Statistical Package for the Social Sciences, Version 20; IBM
statistic tool, NY, USA) as follows. In each stimulus, the 9 IAPS pictures’
arousal/valence values were averaged in order to produce a single arousal/valence
value. Then the entire pupil data was pulled together for each feature. The cosine
similarity between this value and the average arousal/valence value were computed.
This process was repeated for thermal data and thermal features. Some of the
features had high similarity values (>0.6) as shown in Figure 29. For the pupil
measurements, the features that had high similarity values (>0.6) to IAPS ratings
were: Mean (Entropy), Median (Entropy), SD (Absolute), Slope2 (Absolute) and
CurveCorrelation2 (Absolute). For the thermal measurements, the features that had
high similarity values (>0.6) to IAPS ratings were: Min (Entropy) and Max
(Entropy). As seen from Figure 29, among the ten best features selected by Weka,
only three features had low cosine similarity values.
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Figure 29. Verification of validity of selected pupil and thermal features with IAPS valence and
arousal values (X-axis contains reference numbers of features from Table 5). Cosine Similarity
between stimulus average arousal/valence values and selected pupil (A) and thermal (B) features
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5.7. Analysis of significant features and classification results

Significant features (from Table 7) and selected features (from Table 5) are
illustrated in Table 12. Features that are common (painted) were studied in detail and
some of these common features were plotted (Figure 30, Figure 31 and Figure 32).

Table 12. Comparison of Selected Features and Significant features

Pupil Features

Thermal Features

ID.| Feature Name Selected | Significant | Selected | Significant
# (Weka) | (SPSS) | (Weka) | (SPSS)
1 | Min - (E) (E) -

2 | Max - (E) (E) (A
3 | Mean (E) (E) - -

4 | Median (E) (E) - -

5 | SD (A (A) (A) (A

6 | Kurt - (A) - -

7 | Skew - -

8 | KLD1 - (A)

9 | KLD2 - (A)

10 | Slope 1 - - -

11 | Slope 2 (A) (A) (A)

12 | CurveCorrelationl - (A) -

13 | CurveCorrelation2 (A) (A)

14 | CurveCorrelationDif (A) (A)

According to Figure 30, Figure 31 and Figure 32, “pu_ent_median”, “pu_ent_mean”
and “pu_abs_slope2” features in Part I (green) clearly differed from Part Il (blue).
However, for the third and twelfth stimuli, discrimination of Part | and Part 1l was

not clearly possible according to these three features.

Mean Pu_Ent_Median

6500000000~

5500000000

4 500000000

T T T T T
9 0 M 1213

Stimulus

Error Bars: 95% CI

T T T T T
14 15 18 17 18

T T
19 20

Class

I Negative
I Meutral

Figure 30. Part | and Part 11 feature (Pupil Median) difference for all participants
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Figure 32. Part | and Part 11 feature (Pupil Slope2) difference for all participants
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5.8. Debriefing Results

Each participant was interviewed and debriefed on the true purpose of the study.
According to participants’ Debriefing Form (Appendix E), second part (negative) of
our experiment was found more stressful and disturbing than the first part. Moreover,
viewing negative images resulted in loss of concentration and inability to find and
count arrows correctly in time. In Figure 33, participant’s data was analyzed with
ABRF method. Except for subject 33, the classification of each participant was
higher than 77%.
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Figure 33. Participant’s Effect on Accuracy Result.
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CHAPTER 6

DISCUSSION

In the literature, the success rates of the stress detection through pupil dilation and
facial thermal signals are contingent upon cumbersome offline data processing.
When pupil dilation is concerned, according to Ren (Barreto, Gao, & Adjouadi,
2013) the best average accuracy of “relaxation” versus “stress” states of the
computer user, through the monitoring and processing of the pupil signal is 83%. In
their study, several pre-processing steps such as Kalman filtering, Wavelet
denoising, Walsh transform were required which prevented real-time dynamic pupil
analysis. On the other hand, our methods are applicable to real-time analysis with
little effort.

Pedrotti et al. (2014) proposed a method for relating pupillary behavior to
psychological stress. During a simulated driving task, pupil diameter and
electrodermal activities were recorded. In that study, Neural Network classifier was
able to reach 79.2% precision whereas our precision result was 83.9% considering
pupil and thermal data.

According to Zhai et al. (2005), in order to monitor the stress state of computer users
based on Blood Volume Pulse, Galvanic Skin Response and Pupil Diameter signals,
80% accuracy was reached with SVM method. Zhai & Barreto (2006) also implied
that, non-invasive, non-intrusive real-time assessment of the affective state of a
computer user could be achievable and by using four physiological signals: BVP,
GSR, PD and ST, acceptable levels (up to 90.10%) of differentiation between
“relaxed” and “stressed” states could be observed. Proposed system was unsuitable
for real-time and remote sensing.

Researches show that, electrodermal activity signal has less discriminating power
compared to pupil signals for stress classification (Pedrotti et al., 2014; Ren et al.,
2013; Zhai & Barreto, 2006).

When facial thermal signal is concerned, classification accuracy of nearly 80% was
achieved with thermal facial imaging while classifying baseline versus high arousal
and valence levels (Nhan & Chau, 2010). In that study, five ROIs were tracked so
classification required extra work. In another study (Khan et al., 2006), infrared
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thermal sensing of positive and negative affective states was achieved with manual
specification of facial thermal feature points (FTFP) resulting in 66.3-83.8%
accuracy rates. FTFP required human intervention, so its use seemed to be limited.

In Yuen et al. (2009)’s study, to classify physical and emotional stress based on
facial ST, elevation of temperatures in the facial region, particularly in the forehead,
periorbital, eardrum and cheek regions were used. Remarkable increase of skin
temperature in the prefrontal region was seen at the onset of emotional stress, while
increased number of hot pixels in the periorbital region was monitored under
physical stress. Our study was similarly based on thermal imaging in periorbital
region. Quantitative assessment techniques were not implemented by Yuen et al.
(2009) which made this study subjective and its results incomparable.

According to Cross et al. (2013)’s study, mental and physical stresses were remotely
detected using ST and EO. Accurate heart and respiration rates could also be sensed
from both thermal and radar signatures. Because of processing so many complex
thermal facial tracking methods and real-time detection objective, linear
classification method (LDA) was preferred. On the other hand, Cross et al. (2013)
also claimed that classification of physical and psychological stressor was greater
than 90%.

Giakoumis et al., (2013) proposed a subject-dependent emotion recognition system
to detect psychological stress via GSR and ECG. In this work, video game
competition was the stimulus and LDA classifier with sequential backward search
(SBS) feature selection method was used and 95% accuracy was reached. Major
disadvantages of this work were using subject dependent experiment and their
system didn’t work real-time and remotely. However, our system works remotely
and near real-time.

Observer stress for an observer of a real-life environment is a new concept created by
Sharma & Gedeon, (2014). Observer stress was detected based on EEG, GSR and
ST. Genetic algorithm was used for feature selection to build a SVM classifier and
observer stress was recognized with an accuracy of 98%. The outcome of this
research was to predict human stress response to real-life environments. Proposed
system was unsuitable for real-time, remote sensing and did not identify actual stress.

In comparison with these studies (see Table 13), our method has the advantage to
classify data in near real time®, once training is accomplished offline. Obviously, in a
real time scenario, the pre-processing steps as well as the classification procedure
introduces a lag. In certain situations, where the entire thermal record is necessary,
this lag can be as high as 18 seconds, but generally, we estimate that classification on
the fly can be achieved with a lag of 10-15 seconds. However, the eye tracker and

®Real-time processing may sometimes jeopardize the data capturing process. Therefore, thread

management should be optimized accordingly.
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thermal camera we used, are sensitive, sophisticated and a little bit expensive
measurement devices that applications may have difficulty in providing.

In accordance to our hypotheses, we found that stress could solely be predicted using
either pupil diameter or facial temperature over 70% accuracy. With respect to the
Hypothesis 1, when we categorized our participants' results into two parts, namely
neutral and stress, pupillary responses allowed us to classify emotion (stress). That is
why we can easily say that pupillary response differs with respect to the emotional
state the subject is currently in. Relation between IAPS pictures arousal, valence
values and pupillary responses was demonstrated using cosine similarity method.

With respect to the Hypothesis 2, participants’ stress was evaluated over 70%
accuracy based on the variations in facial temperatures. At stressful times during our
experiment, participants’ facial temperatures raised in comparison to other times.
Our results show us that stress can be evaluated by measuring thermal changes of
facial area. As a result, facial thermal variations could also be an indicator of the
stress.

Our analysis further showed that when applying fusion techniques on thermal and
pupil features, stress classification accuracy was enhanced over 83.8%. The success
rate of our method is on the high end in comparison to other methods in the
literature. The accuracy rates we have obtained show the complementary potential of
the of pupil and facial thermal recordings

This result supported Hypothesis 3, expressing that using pupil and thermal features
together will increase success of stress detection. Moreover, when using entropy
based features stress classification accuracy was 60% while using absolute signal
features made accuracy 73.53%. Fusing entropy based and absolute signal features
enhanced stress detection accuracy over 83.84%. This result supported Hypothesis
4, using features that capture the difference of the rise and fall profiles in thermal and
pupil signals will increase success of stress detection.

Furthermore, all participants declared that in the second part of our experiment, they
were more affected and disturbed from negative IAPS pictures which made the
subject miscount the arrows in pictures. Therefore we can say that we have
behavioural evidence regarding the success of our method, both in stress induction
and stress detection.
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Table 13. Review of emotion & stress detection studies.

Reference Stimulus Measurements | Classification Methods | Reported Disadvantage
(Citation) Accuracy
Our Study Visual stimuli (IAPS) with varying PD, ST (facial) ABRF % 83.8 Doesn’t work real time.
arousal and valence content Bagging % 82.8
(Psychological Stress) Random Forest % 81.0
Decision tree % 74.2
(Renetal., Stroop Color Word Test PD, GSR Multilayer Perceptron and % 84.21 Doesn’t work real time and remotely
2013) (Mental Stress) Naive Bayes classifier accuracy
So many pre-processing steps such as
Kalman filtering, Wavelet denoising,
Walsh transform are needed.
(Zhai & Paced Stroop Test PD, BVP, SVM % 90.10 Doesn’t work real time and remotely
Barreto, (Mental Stress) GSR, ST(finger) Decision tree % 88.02
2006) Naive Bayesian network % 78.65
(Pedrotti et Simple Driving Test with external PD, EDA wavelet transform and neural | % 79.2 EDA doesn’t correlate with self-
al., 2014) stressful stimuli networks (precision) reports
(Psychological Stress)
Doesn’t work real time and remotely
(Nhan & Visual stimuli (IAPS) with varying ST (facial) Fisher LDA classifier with % 66.3- 83.8 | human intervention needed (Manual
Chau, 2010) arousal and valence content Genetic Algorithm specification of thermal feature

(Psychological Stress)

points)

many medications (analgesics,
antidepressants, antihypertensives,
antispasmatics, melotonin, and
niasin), motion artefacts and loss of
focus can affect thermal results




LS

(Yuen et al., | Running exercise (physical stress) ST (Facial) None None No quantitative assessment.
2009) and Quiz (emotional stress)
Subjective results.

(Giakoumis et | Video-game competition, arithmetic GSR, ECG LDA-based classifier and 95% Doesn’t work real time and remotely
al., 2013) questions were also asked sequential backward search

(Psychological Stress) (SBS) feature selection. Subject dependent
(Carl B. Cross | Computerized version of the Stroop ST and EO LDA 100% Sensitive to individual movements
etal., 2013) Color-Word Interference Test, ANN and SVM 90%

(Mental Stress) Doesn’t measure emotional stress

Pedaling a recumbent exercise bicycle

(Physical Stress)
(Sharma & Interview experiment & Meditation EEG, GSR and ST | Individual-independent SVM | 98% Doesn’t work real time and remotely
Gedeon, experiment
2014) Genetic algorithm for feature Doesn’t identify actual stress.

(Observer Stress for an observer of a
real-life environment.)

selection

Identify only environmental stress
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CHAPTER 7

CONCLUSION

In the scope of this thesis, we conducted an experimental study on detecting stress
via measurement of the physiological responses, pupil dilation and facial thermal
changes. In the experiment we designed, IAPS pictures that varied in pleasure and
arousal axes were used as stimuli. Our results showed that negative contents reliably
evoke greater pupillary response and facial temperature compared to neutral pictures.

The most important contribution of our study is increased stress detection
performance by feature-based fusion of pupil dilation and facial thermal changes.
The results of the research outlined show a promising relation between the stressful
state of stimulus and the physiological signals monitored. An important characteristic
of the stress detection method suggested here is that, it is generic for capturing
physiological signals with variable rise and fall profiles. This advantage is attained
through the use of entropy which is robust for all kinds of physiological sensors.

Overall, the best results were obtained by the fusion of both pupil and thermal data
features. Furthermore, classification with ABRF method outperformed classification
with other methods. By using ABRF with both absolute and entropy-based features,
classifications’ rates in the range of 80-84 percent accuracy were reached.

Considering that the measurement of pupil and periorbital temperature can be made
unobtrusively, the method proposed herein for stress detection stands out with its
feasibility and speed. The pre-processing, feature extraction and classification
methods implemented in this thesis are fast, robust and can be applied to real-time
emotion classification.

7.1. Future Work

In this study, the experiment takes place in near real time. Making all process in real
time will be our future work. Besides, using deep learning technique can increase the
accuracy of the stress detection and can be seen another next goal.

In our experiment, IAPS pictures with high arousal values were used after neutral
ones. In real time scenarios, this is not possible. Because real time stimuli evolve
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dynamically. Feature extraction and classification for dynamic stimuli would make
the framework presented in this study more applicable.

An experimental limitation of the procedure mentioned in this thesis was that we
used a template matching algorithm in order to track the head. Advanced tracking
methods like particle filtering might help us to acquire more sensitive and robust data
from thermal camera that can increase accuracy of classification.

A future direction is to involve the Emotional Quotient Test results of the
participants in emotion detection. The utility of this test for increasing the
performance is stress detection remains to be investigated.

Other classification methods should also be examined and their potential to achieve
even a higher accuracy in the detection of stress must be evaluated. One of the most
common methods of classifying data, SVM remains to be explored. Additionally,
larger collections of experimental data need to be gathered, to allow for the
development of a stronger classifier.

The experiment we have designed reveals a limited emotional palette compared to a
dynamic multi-media experience with unpredictable shifts between neutral and
negative emotions. Testing the promise of the chosen features for a dynamic
emotional environment is necessary to identify the actual real-life performance in
stress detection.

Overall we have presented a successful stress classification scheme in a lab
environment. Our method is unobtrusive and fast. The promise of this method using
dynamic stimuli along with other classification techniques is a new investigation area
brought along with our findings.
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APPENDIX A : STIMULI FROM PART I

# of
Stimulus

Grid of IAPS Images

IAPS #

1

7090
7235
7001
7179
7006
7190
7032
7057
7185

7006
7032
7057
7185
7224
7217
7090
7179
7235
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7179
7217
7057
7001
7235
7190
7090
7006
7224

7001
7006
7090
7057
7224
7179
7185
7032
7190

7179
7090
7057
7185
7224
7041
7235
7217
7190
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7224
7090
7032
7217
7041
7057
7179
7190
7001

7032
7190
7041
7235
7057
7001
7224
7090
7179

7224
7001
7217
7179
7090
7190
7006
7057
7235
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10

11

7041
7090
7235
7190
7032
7185
7217
7179
7006

7041
7090
7185
7001
7032
7190
7006
7217
7179

7006
7217
7179
7032
7057
7190
7235
7224
7041
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12

13

14

7041
7185
7006
7224
7179
7235
7090
7032
7057

7057
7041
7090
7001
7235
7224
7190
7217
7185

7235
7057
7006
7185
7217
7224
7090
7032
7001
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15

16

17

7041
7001
7006
7032
7185
7217
7190
7057
7179

7032
7190
7217
7006
7235
7057
7001
7179
7090

7041
7006
7224
7179
7032
7090
7057
7217
7185
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18

19

20

7057
7006
7217
7001
7032
7190
7224
7090
7041

7190
7185
7224
7235
7006
7001
7057
7090
7217

7057
7001
7185
7224
7090
7190
7006
7179
7041
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APPENDIX B :STIMULI FROM PART Il

# of
Stimulus

Grid of IAPS Images

1

IAPS #

8230
2900
3030
3103
9332
9423
6550
3213
6940

9423
6940
9925
2900
9584
1120
3103
1300
3213
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9332
1300
1120
6940
9925
9584
8230
2900
3213

3213
9925
3030
6550
8230
9332
9423
6940
3103

6550
9584
3103
3030
9925
9332
1300
2900
8230
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3213
6940
3103
8230
1120
1300
6550
3030
9584

3213
6550
3103
9423
1300
9925
1120
2900
8230

9584
9423
3030
9332
8230
9925
6550
3213
6940
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10

11

6940
9332
9584
3213
6550
3030
9925
8230
1300

3213
8230
1120
6550
9332
9584
9423
1300
3030

6550
9332
8230
9584
1120
3030
6940
2900
9925
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12

13

14

3213
8230
6940
6550
3030
1300
9332
1120
9925

6940
9332
3030
3103
3213
8230
9423
2900
9925

1120
3030
3103
1300
9925
3213
6550
9584
2900
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15

16

17

9925
3030
3213
2900
9423
9332
3103
6940
1120

3213
1120
9584
9925
1300
9423
3030
6550
2900

1120
3030
9925
9584
6940
3103
2900
8230
9332
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18

19

20

3103
3213
1300
9423
6940
6550
9925
9584
3030

6550
6940
9423
3030
2900
9925
1300
9584
1120

9332
8230
3213
9925
9423
2900
1300
3030
6940
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APPENDIX C: PANAS TEST

Bu 6l¢ek farkli duygulart tanimlayan bir takim sozciikler igermektedir. Son iki hafta
nasil hissettiginizi diisliniip her maddeyi okuyun. Uygun cevab1 her maddenin

yaninda ayrilan yere (puanlari1 X ekleyerek) isaretleyin.

Cok az Biraz Ortalama Olduke¢a Cok fazla
(hi¢)

1 | Ngili
2 Sikintilt
3 | Heyecanl
4 | Mutsuz
5 | Giigli
6 Suclu
7 | Urkmiis
8 | Diismanca
9 | Hevesli
10 | Gururlu
11 | Asabi
12 | Uyanik
13 | Utanmis
14 | ilhamh
15 | Sinirli
16 | Kararh
17 | Dikkatli
18 | Tedirgin
19 | Aktif
20 | Korkmus
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APPENDIX D: DEMOGRAPHIC INFORMATION FORM

Kisisel Bilgiler:
Adi1 Soyadz: Uygulama Tarihi:
A A

Cinsiyeti: Kadin () Erkek ()
Dogum Tarihi: .../ .../ ...
Yast: ...
Medeni Hali: Evli () Bekar () Dul () Bosanmis ()
Meslegi: .....ooovviiiiiiiiiiiinnnn.
El Tercihi: Sag () Sol ()
Egitim Durumu: Tkokul (0-5 y1l) ()
Ortaokul (6-8 y1l) ()
Lise (9-12 y1l) ()
Universite (12+) ()

Saghk Durumuna Tliskin Bilgiler:
Isitme Bozuklugu: Var () Yok ()

Varsa diizeltilmis mi? ...........................

Gorme Bozuklugu var m1? Var () Yok ()

Varsa hangisi? Miyop () Astigmat () Hipermetrop ()
Varsa diizeltilmis mi? ...........................

Renk Korliigti: Var () Yok ()

Fiziksel Oziir: Var () Yok ()

Varsa tirll: ....ooovvviniiiiiiean..

Gegirdigi Onemli Rahatsizhiklar (Psikiyatrik, Norolojik veya Psikolojik):
Halen Kullanmakta Oldugu Ilag: Var () Yok ()

Varsa ilacin/ilaglarin adi: ..o
Uzun Siire Kullanip Biraktig1 Tlag: Var () Yok ()
Varsa ilacin/ilaglarn adi: ...................... ...

Varsa kullanim stGresi: .........oovveveeeeennn....
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APPENDIX E: DEBRIEFING FORM

. Deneyimizi nasil buldunuz?

. Kendi performansinizi nasil degerlendiriyorsunuz?

. Oklart tutarli olarak sayabildiginizi diisiiniiyor musunuz?

. Birinci kisim ile ikinci kisim arasinda ne gibi bir fark hissettiniz?

. Birinci kisim ile ikinci kisim arasinda heyacanlanmanizda degisiklik oldu mu?

. Resimlerin icerikleri hakkinda ne diisiinliyorsunuz?

. Eklemek istediginiz bagka seyler var m1?
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APPENDIX F: INFORMED CONSENT FORM

ARASTIRMAYA GONULLU KATILIM FORMU

Bu arastirma, Enformatik Enstitiisii Saglik Bilisimi Boliimii 6gretim {iyelerinden Y.
Dog¢. Dr. Didem Gokegay tarafindan yiiriitiilmekte olup Saglik Bilisimi Doktora
Programi 6grencisi Serdar Baltaci’nin doktora tez calismasinin bir geregi olarak
yapilmaktadir. Bu form sizi aragtirma kosullar1 hakkinda bilgilendirmek i¢indir.

Calismanin Amaci
Gilnliik hayatimizda olumluluk acisindan farkli igeriklere sahip bir¢cok gorsel
uyaranla karsilagmaktayiz. Bu uyaranlarin ayni1 zamanda heyecan verici olma, stres
yaratma gibi Ozellikleri de bulunabilir. Bu aragtirmanin amaci, tim bu maruz
kaldigimiz uyaranlarin duygusal ve bilissel siireglerde davraniglarimiz iizerindeki
etkilerini incelemek ve viicut fizyolojimizde ne gibi degisimler yarattigini
gbzlemlemektir.

Bize Nasil Yardimci Olmanizi isteyecegiz?

Calisma sirasinda sizden 2 deneye katilmaniz ve her birinde 20’ser resmi
degerlendirmeniz istenmektedir. Degerlendirme sirasinda gorsel uyaranin tizerindeki
oklar1 saymaniz ve ‘+° seklindeki odaklanma isaretini gordiigliniiz sirada ok sayisini
sesli bir sekilde belirtmeniz beklenmektedir. Daha sonra size soylediginiz ok
sayisinin dogru ya da yanhis oldugu belirtilecektir. Caligmaya katilmayr kabul
ettiginiz takdirde, doldurmaniz gereken anketler hakkinda bilgilendirileceksiniz.
Caligma siiresi toplam yarim saat olarak planlanmistir.

Sizden Topladigimiz Bilgileri Nasil Kullanacagiz?
Arastirmaya katiliminiz tamamen goniilliilik temelinde olmalidir. Caligmada sizden
kimlik veya ¢alistiginiz kurum/boliim/birim belirleyici higbir bilgi istenmemektedir.
Cevaplariniz ve sizden alinan veriler tamamiyla gizli tutulacak, sadece arastirmacilar
tarafindan degerlendirilecektir. Katilimcilardan elde edilecek bilgiler toplu halde
degerlendirilecek ve bilimsel yayimlarda kullanilacaktir. Sagladiginiz veriler goniillii
katilim formlarinda toplanan kimlik bilgileri ile eslestirilmeyecektir.

Katiliminizla ilgili bilmeniz gerekenler:
Bu caligmada gbzbebegi biiyiimesini ve hareketlerini takip edip kayit altina almak
icin bir goz izleme cihazi kullanilmaktadir. Bilgisayar ekranmin arkasinda bir
kamera fark edebilirsiniz, o kamera ile de yiiz bolgenizin sicaklig1 saptanmaktadir.
Bu cihazlar insan sagligi ya da ruhsal durumu agisindan en ufak bir risk teskil
etmemektedir.
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Arastirmayla ilgili daha fazla bilgi almak isterseniz:

Bu c¢alismaya katildiginiz i¢in simdiden tesekkiir ederiz. Calisma hakkinda
daha fazla bilgi almak i¢in ODTU &gretim iiyelerinden Y. Dog. Dr. Didem Gokgay
(ODTU Enformatik Enstitiisii, A-216, (0 312) 210 3750, E-posta:
dgokcay@metu.edu.tr) ile iletisim kurabilirsiniz.

Yukaridaki bilgileri okudum ve bu ¢alismaya tamamen géniillii olarak katiliyorum.

(Formu doldurup imzaladiktan sonra uygulayiciya geri veriniz).

isim Soyad Tarih imza

T ety B
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APPENDIX G: APPROVED CONSENT FORM

(By METU Ethics Committee)

- o _ i
UYDURAMALS ETIK ARASTIIMA MERKEZI . ORTA DOCU TEKNIK UNIVE?SITES
APPLIED STHICS RESEARCH CENTER / MIDDLE EAST TECHNICAL UNIVERSITY

19 EXiM 2016

Sayt: 28620816 / L4 |
Konuy: Degerlendirme Sonucu
Gonderllen; Yrd.Dog.Or, Didem GOKCAY
Saghk Bilisimi,
Gonderen: ODTU Insan Aragtirmalan Etik Kuruly (IAEK)

igi: insan Aragtirmalan Etik Kuruls Basvurusu

Saymn : Yrd.Dog.Dr. Didem GOKCAY;

Danigmanligin yaptgimz Serdar BALTACInin “Insan-bilgsayar etkilesiminde stresin ve duygusal
degisimlerin fizyolojik Gigimlerle incelenmes™ bashkk arastrmas insan Arastirmalan  Kuruly
tarafindan uygun gorilerek gerekli onay 2016-FEN-052 protokol numaras: ve 19.10.2016-02.10.2017
tarihleri arasinda gegerli olmak Gzere veriimigtir

Bilgilerinize saygilanmizia sunarz,

88



APPENDIX H: VISUAL ANGLE COMPUTATION
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tan(15°)= X/65

X=17.11cm
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