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ABSTRACT 

FUSION OF PUPIL DILATION AND FACIAL TEMPERATURE FEATURES 

FOR DETECTION OF STRESS 
 

 

Baltacı, Serdar 

Ph.D., Department of Medical Informatics 

Supervisor: Assist. Prof. Dr. Didem Gökçay 
 

November 2016, 92 pages 
 

Stress has several negative physiological/physical impacts in our lives. Hence, it is 

important to recognize stress during daily activities. The relationship between stress and 

physiological or physical signals has been studied for a long time. The aim of this 

dissertation is to detect stress remotely using pupil diameter and facial temperature 

analysis. For this purpose, we developed a stress triggering experiment in order to 

generate physiological/physical effects. Our experiment consists of 2 parts which are 

applied consecutively. The first part  was used as a baseline for neutral emotion, in 

which neutral pictures of International Affective Picture System (IAPS) were utilized. In 

the second part, to generate stress, negative pictures of IAPS were used. 

 

To detect emotional state of the participants, pupillary and facial thermal responses were 

measured using a TOBII TX300 eye tracker and a FLIR SC620 thermal camera. Entropy 

in a sliding window was used to accommodate the time differences in the physiological 

rise and fall profiles of pupil and thermal data. Pupil and thermal features derived from 

the measured signals and the entropy based values were fused at the feature level. 

Finally, classification accuracy of stress was enhanced with machine learning 

techniques. We were able to identify stressful responses from the participants with an 

accuracy of 83.8% using AdaBoost and Bagging classification methods. Results also 

show that the experimental protocol we suggested for stress detection is highly 

applicable based on pupil diameter and facial temperature.  
 

Keywords: Stress Detection, Pupil Dilation, Facial Thermal Changes, Feature Level 

Fusion, Shannon Entropy  
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ÖZ 

GÖZBEBEĞĠ AÇILIMI VE YÜZE AĠT SICAKLIK ÖZNĠTELĠKLERĠNĠN 

STRES TESPĠTĠ ĠÇĠN BĠRLEġTĠRĠLMESĠ 

 

Baltacı, Serdar 

Doktora, Tıp BiliĢimi Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Didem Gökçay 
 

Kasım 2016, 92 sayfa 

 

Stres, günümüzde insanlığın önemli sorunlarından birisi olarak karĢımıza çıkmakta olup 

stresin hayatımıza etki eden birçok negatif fizyolojik/fiziksel etkileri bulunmaktadır. 

Stres ile fizyolojik ya da fiziksel sinyaller arasındaki iliĢki, günlük aktiviteler sırasında 

stresi fark etmenin öneminden dolayı uzun zamandır irdelenmektedir. Bu tezin amacı 

gözbebeği çapı ve yüzdeki sıcaklık verisinin analiziyle stresi uzaktan tespit etmektir. Bu 

amaçla, fizyolojik/fiziksel etki oluĢturmak için stresi tetikleyen ve arka arkaya 

uygulanan iki bölümden oluĢan bir deney geliĢtirdik. Birinci bölüm, nötr duygu temeli 

oluĢturmak için kullanılmıĢ olup, nötr Uluslararası DuyuĢsal Resim Sistemi (IAPS) 

resimleri içermektedir. Ġkinci bölümde ise, stres oluĢturmak için, negatif IAPS resimleri 

kullanılmıĢtır.  

 

Katılımcıların duygusal durumunu tespit etmek amacıyla, gözbebeği ve yüz termal 

tepkileri TOBII TX300 gözbebeği tarayıcısı ve FLIR SC620 termal kamera kullanılarak 

ölçülmüĢtür. Bu çalıĢmada, göz bebeği ve termal verinin fizyolojik artıĢ ve azalıĢındaki 

zaman farkını birbirine uyumlu hale getirmek için kayan pencere içerisinde entropi 

yöntemi kullanılmıĢtır. Sinyal ve entropi değerlerinden elde edilen termal ve gözbebeği 

özniteliklerinin, öznitelik seviyesinde füzyon edilmesi sağlanmıĢtır. Stres 

sınıflandırmasının doğruluğu makine öğrenme teknikleri ile iyileĢtirilmiĢtir. Bu 

çalıĢmada, AdaBoost ve Bagging sınıflandırma yöntemleri kullanılarak 83.8% 

doğrulukla katılımcıların stres tepkileri tespit edilmiĢtir. AraĢtırma sonuçları, gözbebeği 

çapını ve yüz sıcaklığını kullanmaya dayalı önerilen deneysel protokolün stresin tespiti 

için son derece uygulanabilir olduğunu göstermektedir. 
 

Anahtar Sözcükler: Stres Tespiti, Göz Bebeği Büyümesi, Yüzdeki Termal DeğiĢiklikler, 

Öznitelik düzeyli füzyon, Shannon Entropi 
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CHAPTER 1 

 

 INTRODUCTION 

 

Stress detection is an important issue in the human computer interaction (HCI) domain. 

Detecting the stress level of a computer user could possibly improve the computers‟ 

ability to respond intelligently and drive the user away from negative emotional 

behaviors during HCI. In this way, the overall system performance can be enhanced and 

users‟/workers‟ psychophysical states may become more suitable for performing the 

task (Czaja & Sharit, 1993; Fujigaki & Mori, 1997). Furthermore, early diagnosis of 

psychological disorders can be facilitated in clinical settings (Jaimes & Sebe, 2007). 

Physiological signals are reliable indicators of emotional states of the subject (Zhai, 

Barreto, Chin, & Li, 2005). Changes in physiological arousal during stressful conditions 

are quantifiable through skin conductance (Lang, Greenwald, Bradley, & Hamm, 1993), 

thermal camera recordings (Pavlidis, 2003; Pavlidis et al., 2007) and pupil dilation 

(Bradley, Miccoli, Escrig, & Lang, 2008).  

Stimuli with positive and negative arousal increase pupil diameter more compared to 

neutral stimuli. According to Bradley et al. (2008), emotional pupil dilation responses 

are detectable within 2-3 seconds. When comparing measurements of other 

physiological signals, the measurement of pupil size has important advantages. One 

advantage is that it is an unobtrusive method because sensors do not need to be attached 

to the user. Another important advantage of pupil size measurement is that pupil size 

variation is an involuntary response of the autonomic nervous system (ANS) (Partala & 

Surakka, 2003). This means that pupil size variation cannot be controlled voluntarily; 

therefore, it identifies actual spontaneous response. In contrast, emotions detected 

through facial expressions are prone to visually observable changes that can be masked, 

inhibited, exaggerated, and faked (Ekman, 1985; Ekman & Friesen, 1982; Partala & 

Surakka, 2003; Surakka & Hietanen, 1998). Despite their advantage, pupil size 

measurements are rarely used in arousal detection due to the interference effects related 

to lighting conditions and cognitive effort (Bradley et al., 2008). Pupil diameter changes 

can be utilized for various forms of stimuli, such as images and sounds. For instance, 

visual (Bradley & Lang, 1994), auditory (Baltaci & Gokcay, 2012; Partala, Jokiniemi, 

& Surakka, 2000; Partala & Surakka, 2003) and combined visual and auditory stimuli 

(Morency, Mihalcea, & Doshi, 2011) can be used in order to detect emotion. Pupil data 

can also be fused with other modalities such as electroencephalography (EEG) at the 

decision level of classification models to increase the accuracy (Qian et al., 2009).  
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Thermography is an attractive modality, as it is completely non-contact and unlike 

visible light imaging systems, unaffected by skin color or ambient lighting conditions. 

Increase in an individual's stress level produces changes in facial skin temperature that 

can be reliably detected using thermal imaging (Gane, Power, Kushki, & Chau, 2011). 

Within the last decade, thermal cameras have been introduced to predict arousal as a 

result of increased blood flow in the face (Shastri, Merla, Tsiamyrtzis, & Pavlidis, 2009; 

Yun, Shastri, Pavlidis, & Deng, 2009). During emotion states with high arousal, the 

blood flow in the supraorbital and periorbital vessels increases. Consequently, such 

increases in blood flow raise the periorbital region temperature, which can be captured 

through a highly sensitive thermal camera. A recent study (Nhan & Chau, 2010) found 

that, emotional states induced by the viewing of images from IAPS (Lang, Bradley, & 

Cuthbert, 2008), could be distinguished from a baseline (i.e. neutral) emotional state 

using thermal video of the face with accuracies ranging from 70% to 80%.  

The most commonly used methods of emotion detection involve skin conductance 

response (SCR), electroencephalography (EEG). SCR shows the continuous variation in 

the conductivity of a person‟s skin. SCR is not so viable method since range is 

subjective to participants. External factors such as temperature, humidity and internal 

factors (e.g. medications) can change SCR measurements and lead to inconsistent 

results with the same stimulus level. And also it is not comfortable for participants. On 

the other hand, EEG measures electrical potentials of the brain. EEG is not feasible also 

because it is intrusive and validation of signal is difficult. These two methods (SCR & 

EEG) do not use remote sensors, hence they are not feasible. Among emotion detection 

methods, pupil dilation and thermal recordings are non-invasive and non-intrusive, 

besides they do not require direct contact with the participants. These methods are more 

viable than the first two, but they have one downside which is “inevitable data loss”. 

The main reasons for data loss are; head movements, environmental heat and light 

conditions.  

The Aim of the Thesis, Research Questions and Hypotheses 

Recent advances in HCI have demonstrated significant stress detection capability with 

thermal or pupil data separately. In order to increase the accuracy of stress detection 

non-invasively in near real-time, new studies aiming to use pupillary and facial thermal 

changes are needed. Our aim is to use pupil and facial thermal data in order to predict 

stress remotely in a robust, non-invasive and subject independent way. The focus is to 

provide a test bed using pupillary and thermal signals for this purpose.  

As explained before, stress can be triggered by visual and behavioral stimuli. In this 

thesis, we proposed a new system to separate stressful states of a participant from 

his/her neutral states. In this system, we exploited the complementary natures of one 

fast and one slow physiological signal, namely pupil dilation and skin temperature 

respectively. In the experiment, IAPS pictures that vary in valence and arousal axes 

were used as stimuli.  

Research Question 1. Can visual and behavioral stimuli affect participants‟ stress and 

can this stress be measured by physiological changes? 
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Hypothesis 1. Pupil size variation can be used in order to detect user‟s stress. At 

stressful times during our experiment, participants‟ pupil diameter will increase in 

comparison to other times. 

Hypothesis 2. Stress can be evaluated by measuring thermal changes of the facial area. 

At stressful times during our experiment, participants‟ facial temperature will increase 

in comparison to other times. 

 

Research Question 2. Is it possible to increase the success of stress detection by fusion 

of pupil, thermal data and entropy based features?  

 

Hypothesis 3. Fusing pupil and thermal features will increase the success of stress 

detection. 

Hypothesis 4. Using features that capture the difference of the rise and fall profiles in 

thermal and pupil signals will increase the success of stress detection. 

In this thesis, the research questions presented above are handled through an experiment 

we conducted. The first chapter is a general introduction of the study. Following the 

introduction, this chapter is concluded by presenting the motivation, research questions 

and hypotheses of the study. Second chapter gives an overview of the stress, emotions, 

pupillary and facial thermal responses. This chapter comprises of a brief summary of 

the pupillary and thermal response physiology, their significance on scientific research 

and measurement techniques. Third chapter consists of the experimental setup and the 

method that is executed to verify the hypothesis. Fourth chapter presents data 

processing, proposed feature extraction and classification algorithms. Fifth chapter 

consists of the results of the experiment. Analyses of these results and all statistical tests 

are given in detail. Sixth chapter involves discussion about the results and the 

hypotheses of the study. Seventh chapter includes possible implications and ideas as a 

future work and conclusion that is provided as a summary of the findings. 

Findings of this research was published in International Journal of Human Computer 

Interactions with the title “Stress Detection in Human Computer Interaction: Fusion of 

Pupil Dilation and Facial Temperature Features” in 2016 (Baltaci & Gokcay, 2016). 
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CHAPTER 2 

 

 LITERATURE REVIEW AND BACKGROUND 

 

This chapter comprises of four sections in which relevant aspects of the literature in 

stress, pupillary response, thermal response and related works are presented. In the first 

section, developmental, comparative and cognitive aspects of emotion and stress are 

reviewed. In the second section, eye tracking is discussed specifically for pupillary 

response. This section is followed by representation of studies focusing on thermal 

responses and facial temperature changes. In the fourth section, related pupil and 

thermal works in stress detection are discussed. 

2.1. Stress and Emotions 

Stress is defined as a temporarily-induced physiological or psychological imbalance 

caused by an action or a situation (stressor) which can be regarded as a possible danger 

or threat. An emotional (mental) stressor is one in which only information reaches the 

brain with no direct physical impact on the body. This information may place demands 

on either the cognitive systems (thought processes) or the emotional system (feeling 

reactions, like anger or fear) in the brain (Yuen et al., 2009). A physical stressor is one 

that there is a direct effect on the human body. This may be an external condition (heat, 

cold and noise) or due to the internal physical/ physiological demands of the human 

body (physical exercise). 

Due to its impact on the quality of life, human stress analysis has received special 

attention in the recent decades. Besides social factors, financial, economic, political, 

chemical, biological and physical factors can be sources of stress. These factors can 

lead to various disorders, diseases, low performance and depression (Sharawi, Shibli, & 

Sharawi, 2008). In addition to negative effects on human health, stress plays a crucial 

role in various cognitive tasks including rational decision making, perception and 

learning (Jing Zhai et al., 2005). 

Detection and characterization of human stress by computers are ongoing research areas 

in the field of HCI that are still attracting a lot of attention due to their importance in our 

daily lives. HCI involves a two-way exchange where each participant should be aware 

of the other party. Therefore, to make machines be aware of the stress level of the user 

would result in a more natural HCI (Jing Zhai et al., 2005). 
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Emotion can be described as a response to an environmental event that is considered as 

purposeful behavior in the adaptation of the organism to dynamic environmental 

demands  (Gokcay & Yildirim, 2011). Cognitive, affective, behavioral, and autonomic 

sub-systems are involved in this response. When emotional stressor is in charge, only 

information reaches the brain with no direct physical impact on the body. Cognitive 

systems (thought processes) or the emotional systems (feeling responses, such as anger 

or fear) in the brain may be triggered by this information (Yuen et al., 2009). Our 

research attempts to visualize and evaluate the emotional state identified as ‟stress‟ of 

the computer user. 

Subjective experience, emotional expression, and physical sensation are three distinct 

but complementary components of emotions (Erdem & Karaismailoglu, 2010). While 

subjective experience or in other words, personal feelings of current emotions are hard 

to investigate, emotional expression can be studied instead through facial expressions. 

The third component, physical sensation is manifested through the autonomous nervous 

system, which in turn modifies physiological arousal. Changes in physiological arousal 

are quantifiable through pupil dilation or thermal camera recordings (Gokcay, Baltaci, 

Karahan, & Turkay, 2011). 

Once captured, emotions can be categorized or quantized in two different ways: 

 Using distinct emotional classes such as happy, angry, fearful, surprised 

(Circumplex model) 

 Through continuous values along two orthogonal axes, valence and arousal 

(Dimensional model) 

In order to account for emotional states, most recently, the dimensional model has 

gained impetus. According to this model, emotions consist of two measures: valence 

(refers to how positive or negative an event is), and arousal (reflects whether an event 

is exciting/agitating or calming/soothing). While arousal can be predicted from 

physiological features such as perspiration or blood flow, valence can be predicted from 

facial expressions or gestures. 

Valence dimension ranges from highly negative to highly positive on a scale of 9. 

Moreover, arousal dimension ranges from calming to exciting on a scale of 9 (Figure 1). 

Therefore, stimuli can be highly positive and exciting (e.g. miracle), highly positive and 

calming (e.g. relaxed), highly negative and exciting (e.g. slaughter), highly negative and 

calming (e.g. fatigued). 

Happiness, sadness, anger, fear, disgust, and surprise are six basic emotions that are 

widely accepted. These basic emotions are intuitive and innate. Independent from 

cultures, they are composed of organized automatic and stereotypical behaviors and 

they are necessary for survival. Aforementioned emotions can be divided into two main 

categories which are pleasant (happiness, surprise) and unpleasant (sadness, anger, fear, 

disgust). The pleasant ones result in positive affect while unpleasant ones comprise 
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negative affect (Gökçay, 2011; Izard, 2009). Among these categories, neutral and 

stressful (unpleasant emotion) stimuli fall within the scope of this thesis. 

 
Figure 1. Two dimensions of Emotional Model (Kensinger, 2004) 

Emotion recognition techniques can be systematized according to the modalities or 

channels such as face, voice and text. In terms of feasibility each modality has 

advantages and disadvantages and there are several factors that affect significance of 

every modality (Calvo & D‟Mello, 2010). Some of these factors can be found below. 

 Signal validity as a natural strategy for recognizing an affective state 

 Signal reliability in real world environments, 

 Signal time resolution as it relates to the specific needs of the application, 

 Intrusiveness and cost for the user 

The current thesis focuses mainly on two affective input signals: pupil diameter and 

facial temperature changes. The main contribution of this study is the design of an 

affect estimator in order to estimate negative arousal (stress) and neutral states robustly 

using these signals. Suppressing such emotions or social masking of these physiological 

signals is impossible (Jonghwa Kim & Andre, 2008; Kim, Bang, & Kim, 2004) as these 

emotions originate from the activity of the ANS, hence they cannot be triggered by any 

conscious or intentional control. 

Subjective and complex nature of physiological signals, the inability to visually 

perceive emotions and sensitivity to movement artefacts from the data make it difficult 

for annotating and obtaining the ground truth from the raw physiological data (Kim et 

al., 2004). In order to achieve high classification rate for the a system, despite individual 
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variability brought on by the users, efficient emotion induction method(s), larger data 

samples and intelligent signal processing techniques are essential (Jerritta, Murugappan, 

Nagarajan, & Wan, 2011). 

 

 
Figure 2. Physical and physiological signals that were investigated in stress detection (Sharma & Gedeon, 

2012) 

Physical features are properties that can be seen without the need for equipment and 

tools, but tools are necessary in order to detect physiological features. Figure 2 shows 

signals that can be investigated for the stress detection. While EMG, EEG, BVP, GSR 

are physiological signals, facial expression, eye gaze, blinks, pupil dilation, and voice 

are physical signals that are sensitive to stress (Sharma & Gedeon, 2012). 

2.2. Pupil Size Variation 

The pupil is a hole located in the center of the eye‟s iris that allows light to enter 

the retina. Iris has sphincter pupillae (circular) and dilator pupillae (radial) muscles to 

control the constriction (miosis) and the dilation (mydriasis) of the pupil, respectively 

(Figure 3). It is known that all sensory stimuli (visual, tactile, auditory, gustatory, 

olfactory) may result in pupillary responses (Beatty & Lucero-Wagoner, 2000). 

https://en.wikipedia.org/wiki/Human_eye
https://en.wikipedia.org/wiki/Retina
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Figure 3. Muscles of the iris, pupil constriction and dilation (2013 Pearson Education Inc.) 

Pupillary response is a physiological response that varies the size of the pupil, via the 

optic and oculomotor cranial nerve. Both sympathetic and parasympathetic pathways of 

ANS control pupillary responses. Thus, pupil dilation is caused by not only sympathetic 

system but also parasympathetic system. When sympathetic activity increases, dilator 

muscles‟ activity also increases. Alternatingly, inhibition of parasympathetic system 

minimizes the activity in sphincter muscle and causes dilation. In other words, response 

to the changes in both divisions of ANS may lead to changes in pupil diameter. 

Under normal conditions, light and accommodation reflexes result in pupil constriction 

and dilation (Andreassi, 2006). Pupils constrict in intense light whereas they dilate in 

dim light. Pupil diameter of human ranges between 1.5 mm and 8-9 mm and pupils‟ 

initial reaction to light and stimuli occurs in 1-1.5 seconds and peaks around 2 seconds 

(Beatty & Lucero-Wagoner, 2000). 

Moreover, in stable lighting conditions, if pupil dilation is less than 0.5 mm it can be an 

indicator of cognitive processing (Beatty, 1982; Beatty & Lucero-Wagoner, 2000) and 

named as task-evoked pupillary response (TEPR). In terms of cognitive load, arousal 

and interest indication change in the pupil size is a reliable measure for some tasks 

which involve attention, memory, problem solving and decision-making (Beatty, 1982; 

Beatty & Lucero-Wagoner, 2000). 
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Figure 4. Pupillary response when viewing IAPS Images (Bradley et al., 2008) 

During a task, latencies and peaks of pupillary responses depend on the task type. For 

example, during viewing visual and emotional stimuli such as a laughing man and a 

crying baby, dilation occurs after 2-7 seconds. While listening to auditory and 

emotional stimuli (laughing, crying sounds, etc.) dilation occurs after only 2-3 seconds 

(Bradley et al., 2008; Partala & Surakka, 2003). According to Bradley, pupillary 

variations were greater when viewing emotional pictures (see Figure 4).  

Measurement Techniques 

For reading researches, eye tracking technology is demonstrated over 100 years ago 

(Rayner, K., Pollatsek, A., Ashby, J., & Clifton, 2011). Electro-oculography (EOG), 

scleral search coils, photo-video oculography (POG-VOG) and pupil/corneal reflections 

(dual-Purkinje method) are some of the techniques to track eye movements.  

 

 
Figure 5. Eye Tracking System (TOBII TX300) 
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Pupil/corneal reflections (dual-Purkinje) is one of the most recently utilized eye 

tracking method which comprises of a desktop computer with an infrared camera under 

the monitor and dedicated software (Figure 5). In this method, to create reflections, 

camera emits infrared light to the eye. Light enters the retina and great amount of the 

light is reflected back and results in bright pupil effect for detection. As a small glint, 

infrared light generates the corneal reflection. When eye tracking software recognizes 

the center of the pupil and the corneal reflection, then the distance between them is 

measured and point of fixation can be found (Duchowski, 2007). 

Eye trackers can measure pupillary responses; furthermore, fixations and eye 

movements. By the help of latest eye trackers like TOBII TX300, pupillary activity can 

be measured by a particular pixel counting method in which, pupil size is measured by 

counting the number of pixels in the pupillary area.  

Calibration process is required in all video-based eye trackers, including pupil/corneal 

reflection method. In the calibration process, dots at different locations on the screen are 

presented to participants upon which participants have to fixate repeatedly several times 

in order to excess a limited threshold (Wang, 2011). TOBII software development kit 

(SDK) includes interfaces and a platform for designing experiments.  

2.3.Facial Temperature Change 

Under conditions of stress or physical activity, the body is prepared for a rapid defense 

reaction by the sympathetic division of ANS. Because of stimuli that involves 

emotional excitement, injury, stress, or exercise, hypothalamus stimulates the adrenal 

medulla for an increase of epinephrine and norepinephrine secretion. These hormones 

enable “fight or flight” response in target tissue and they arrive at their target tissue by 

cardiovascular system. Increased heart rate and contractile force, dilation of blood 

vessels in skeletal and cardiac muscles, and constriction of blood vessels in internal 

organs are major responses that are triggered by these hormones. These responses 

energize the muscles, brain, and heart for physical activity but conserve energy by 

slowing the functions of internal organs and the gastro-intestinal system(Seeley et al., 

2008) 

The core body temperature rises above the constant homeostatic range, as the metabolic 

activity of skeletal muscles increases. In order to promote methods of heat loss, the 

hypothalamus receives input from thermoreceptors. Heat is transferred from the body 

core to its surface by dilation of the blood vessels in the skin, and then heat is released 

to environment with three types of heat transfer. First, conduction from the blood to 

skin transfers heat. Second, convection as air passes over or sweat evaporates from the 

skin transfers heat. Third, heat can be transferred from the skin to the environment by 

radiation. (Cross, 2013) 

Measurement Techniques 

In old times physicians measured body temperature by just touching to patients with 

bare hands in order to assess patients‟ physical conditions. In early 18
th

 century, 

quantitative measurement of body temperature was made possible.  Nowadays, several 
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advanced and easy body temperature measurement methods are available. For example, 

mercury in glass, sterile thermocouples, radiometers and liquid crystal can be used for 

body temperature measurements. They are cheap, precise and easy to use but they need 

direct contact with target. However, detection and quantification of natural radiation is 

the only method known today for non-contact body temperature measurement. Modern 

thermal infrared imaging methods depend on the radiation measurement techniques. 

(Khan, Ward, & Ingleby, 2006; Ring, 1998) 

Because of its composition and structure, the human body surface is an efficient 

radiator. By using some of the well-known non-invasive radiation detection methods, it 

is easy to measure infrared emissions from the skin surface (Khan et al., 2006; Ring, 

1998). In addition, sophisticated infrared cameras which are generally inexpensive are 

widely used for analysis of patterns of skin temperature variations (Fujimas, 1998; 

Khan et al., 2006). 

 
Figure 6. Electromagnetic Spectrum (Sapling Learning) 

Thermal sensitivity, or Noise-Equivalent Temperature Difference (NETD), measures 

the smallest temperature difference that a thermal imaging camera can detect in the 

presence of electronic circuit noise. Cameras with a low NETD will detect smaller 

temperature differences and provide higher resolution images with increased accuracy. 

MiliKelvins (mK) is the measurement for thermal sensitivity.  
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Figure 7. Sample FLIR SC620 IR Image 

In our experiment, IR images were captured by a model SC620 FLIR thermal camera. A 

sample IR image taken by this camera is shown in Figure 7. SC620 FLIR thermal 

camera has sensitivity of less than 0.04 °C range (40mK) and captures standard −40°C 

to 500°C. In Figure 8, vascular representation of major vessels affecting the temperature 

of the face and thermal representation is presented. According to reaction to stimulus, 

temperature increases and decreases (Berkovitz, Kirsch, Moxham, Alusi, & Cheesman, 

2013). 

 
Figure 8. Vascular representation of major vessels affecting the temperature of the face and thermal 

representation (Berkovitz, Kirsch, Moxham, Alusi, & Cheesman, 2013)  
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2.4.Related Works in Stress Detection 

Stress, emotion, pupil dilation and thermal imaging concepts were discussed in previous 

sections. The following literature survey in this section provide a brief view of relation 

between emotion/stress and physical/physiological signals. 

Pedrotti et al. (2014) proposed a method to detect psychological stress from pupillary 

behavior. In their method, pupil diameter and electrodermal activity were recorded 

during a simulated driving task. The experiment consisted of one baseline run and three 

stress runs where subjects performed the driving task along with sound alerts. 

According to Pedrotti, pupil diameter indexed stress manipulation. In the study, a neural 

network algorithm was used as a classification method. 

In the study of Pavlidis (et al., 2007),  a system that incorporates physiological 

monitoring as a part of HCI was proposed. According to their bio-heat modelling of 

facial imagery, localized blood flow, cardiac pulse and breath rate could be extracted. In 

the study, in order to monitor stress, heartbeat irregularities, sleep apnea, localized 

blood flow, cardiac pulse, and breath rate signals were used. Experiment in the study 

showed that instantaneous stress brings an increase in the periorbital blood flow.  

Effects of adrenaline in the body which is induced from stress cannot be suppressed by 

training. Dilation of pupil and increased feed of blood to muscles are examples for the 

adrenaline effects. A system for detection of stress (emotional or physical) remotely 

was developed by Yuen et al.(2009) based on Electro-Optics (EO) technologies such as 

thermal and hyperspectral imaging. Their results showed that areas such as periorbital 

areas, forehead, neck and cheek exhibited alleviated skin temperatures dependent on the 

types of stressors which were emotional or physical. 

In the study of Zhai & Barreto (2006), a stress detection system was developed based on 

the physiological signals (Galvanic Skin Response (GSR), Blood Volume Pulse (BVP), 

Pupil Diameter (PD) and Skin Temperature (ST)) which were non-invasive and non-

intrusive. These signals were monitored, analyzed and fused to detect emotional states 

between “stress” and “relaxed”. Their experiment system involved three stages. First 

one was an experiment setup for physiological sensing. Second was a signal pre-

processing module for the extraction of affective features. Third was an affective 

classification (SVM method used) procedure. Correlation with monitored physiological 

signals and emotional state of their experimental subjects were noted. Moreover, pupil 

diameter was identified as the most significant emotional indicator. 

De Santos Sierra (Sánchez Ávila, Guerra Casanova, & Bailador Del Pozo, 2011) 

proposed a stress detection system based on physiological signals which were GSR and 

HR. A specific psychological experiment on subjects was generated to acquire a 

database for training, validating, and testing the proposed system. The system was 

based on fuzzy logic and described the behavior of an individual under stressing stimuli 

in terms of HR and GSR.  
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Physiological responses caused by mental stress can be masked by variations due to 

physical activity. An activity-aware mental stress detection scheme was proposed by 

Sun et al. (2012). ECG, GSR, and accelerometer data were gathered from participants 

across three activities: sitting, standing, and walking. For each activity, physiological 

baseline was gathered while users were subjected to mental stressors. 

High-resolution electro-optical and mid-wave infrared (MWIR) cameras and 

millimeter-wave radar systems can also be incorporated to identify stressed individuals.  

In the study by Carl B. Cross (Skipper, & Petkie, 2013), a multimodal sensor platform 

was developed. In their experiment, while subjects were performing mental and 

physical tasks, registered image and sensor data were collected. Face was segmented 

into 29 non-overlapping segments based on fiducial points automatically in the images 

outputted by facial feature tracker. Chest displacement which was extracted from the 

radar signal and temperature fluctuations at the nose tip and regions near superficial 

arteries detected respiration and heart rates, respectively extracted from the MWIR 

image. All these extracted signals were fused in order to detect stress. 

Psychological stress detection is also possible using subject-dependent bio signal 

features. According to Giakoumis (Tzovaras, & Hassapis, 2013), SC and ECG signals 

were analyzed and “rest signatures” were calculated from each subject's baseline 

recordings. These signatures were bio signal transformations capable to express each 

individual's baseline deviation from signal templates. According to Giakoumis, 

automatic stress detection accuracy was increased by their subject-dependent features 

extracted from SC and ECG signals.  

In Sharma (Gedeon, 2014)‟s work, an individual‟s response to real-life events was 

investigated. A computational model was developed to recognize observer stress using 

physiological and physical response sensor signals in real-life settings. Individual-

independent SVM based model classifier was used to recognize stress patterns from 

observer response signals.  

Use of non-invasive and unobtrusive sensors to measure and model stress is very 

common. According to Sharma (Gedeon, 2012), similar techniques for modelling stress 

were discussed. Sensors which could be usable in everyday activities were the focus of 

the study. Computational methods have the capability to determine optimal fusion and 

automate data analysis for stress recognition and classification. Several techniques have 

been developed to model stress based on Bayesian networks, artificial neural networks, 

and SVMs. 

The studies discussed in this section, are summarized in Table 1. After we introduce   

the proposed method in the following chapters, we will compare these methods with our 

method in the discussion chapter.    
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Table 1. Emotion & stress detection studies. 

Reference 

(Citation) 

Stimulus Measurements 

(Ren, Barreto, Gao, & 

Adjouadi, 2013) 

Stroop Color Word Test  (Mental Stress)  PD, GSR 

(Zhai & Barreto, 2006) Paced Stroop Test (Mental Stress) PD, BVP,  

GSR, ST 

(Pedrotti et al., 2014) Simple Driving Test with external 

stressful stimuli added (Psychological 

Stress) 

PD, EDA 

(Nhan & Chau, 2010) Visual stimuli (IAPS) with varying 

arousal and valence content 

(Psychological Stress) 

ST (facial)  

(Yuen et al., 2009) running exercise (physical stress)  

and Quiz (emotional stress) 

ST (Facial) 

(Giakoumis et al., 2013) Video-game competition, arithmetic 

questions (Psychological Stress) 

GSR, ECG  

 

(Carl B. Cross et al., 

2013) 

Computerized version of the Stroop 

Color-Word Interference Test (Mental 

Stress),pedaling a recumbent exercise 

bicycle (Physical Stress) 

ST and EO 

(Sharma & Gedeon, 2014) Interview experiment & Meditation 

experiment (Observer Stress for an 

observer of a real-life environment) 

EEG, GSR  

and ST 
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CHAPTER 3 

 

 DATA COLLECTION METHOD AND EXPERIMENT 

 

Stimulus generation steps and experiments are covered in this chapter. During the 

experiment, specialized IAPS pictures are displayed to participants for generating stress 

on them. The experiment has two parts, consisting of showing neutral and negative 

IAPS images respectively. While running first and second parts of the experiment, eye-

tracker and infrared thermal camera recorded participant‟s pupillary and temperature 

data. Between the parts, Positive and Negative Affect Scale test (Appendix C) is 

administered. For the last part of the experiment, Debriefing Form (Appendix E) is 

filled out. 

3.1 Signal Acquisition 

In this study, pupil and thermal signals were collected using a TOBII TX300 Eye-

Tracker and a FLIR SC620 IR Camera. 

3.1.1. Hardware Setup: The complete instrumental setup of our experiment is shown 

in Figure 9. A TOBII TX300 eye tracker embedded in a 19" screen and a FLIR 620 IR 

Camera were used in the experiment. Each participant sat at 0.65 m distance from the 

TOBII screen and 1.15 m distance from the FLIR camera. Pupil dilation and facial 

thermal signals were recorded at a rate of 60 Hz and 30 Hz respectively. 

Our experiment did not require a head restraint because real time gaze tracking (TOBII 

Technology, 2010) was available for pupil data and an in-house developed ROI (Region 

of Interest) tracker was employed during thermal data collection
1
. 

3.1.2. Software Setup: The experiment was controlled by an in-house desktop 

application. Multiple threads were generated for rapid data collection. After the 

experiment, all continuously recorded pupil and thermal values were saved into text 

files respectively. Our application analyzed the data using the steps illustrated in Figure 

14.  

 
1
 Thanks to DoğuĢ Türkay for the ROI tracker software. 



1
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Figure 9. Experimental Setup
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3.2 Participants 

Participants can be chosen in many ways from the population. Our participants were 

selected from the circle of our acquaintances (school, work) randomly. Furthermore, 

individuals‟ availability and time constraints effected number of participants to be 

tested feasibly.  

Eleven healthy subjects consented to participate in the experiment (age range: 29-40, 

33±3.464, 2 females, and 9 males). The subjects had no pathological condition with 

their eyes or faces. 

Informed consent was read and signed by the participants (Appendix F). The study was 

approved by the METU Ethics Committee (Appendix G) in conjunction with another 

data collection project which is an extended version of this thesis. 

3.3 Experimental Procedure 

Environment: Pupil size was taken in the stable light conditions to provide an accurate 

measurement. Moreover, for the thermal infrared image acquisition, room temperature 

was set to 19-22 ºC.  There were humidity controller and an air recycling system in the 

building which experiment took place. 

Experiment: The experimental design consisted of two parts. The first part was 

constructed as a baseline to measure neutral sentiment while the second part was 

designed to generate stress. Total number of trials was 20 for each part. Each trial 

consisted of a rest period of 12 seconds and a stimulus display of 6 seconds as 

illustrated in Figure 10. 
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Figure 10. Experiment Flow 

Part-I: Twelve neutral IAPS pictures were selected with low arousal values 

(2.77±1.896) and neutral valence values (4.949±1.185). Each stimulus consisted of a 

3x3 grid of images randomly arranged from these set of 12 neutral images. Arrow 

symbols were embedded into some of the images in the grid randomly. Every stimulus 

was edited to contain a total of 3-6 arrows arbitrarily. Subjects were asked to identify 

the total number of arrows in the given display. Verbal responses were collected from 

the subjects during the rest period, which followed the picture display. The subjects 

were given immediate feedback for their response. If their prediction was correct, the 

experimenter said "Correct", otherwise "Wrong, the number of arrows is x". Sample 

stimulus image from Part I can be seen in Figure 11. All neutral stimuli including IAPS 

pictures are given in Appendix A. 

Part-II: The experimental procedure was similar to Part I, except for arousal/valence of 

IAPS pictures, number of arrows, and verbal feedback. The chosen IAPS pictures had 

high arousal (6.12±2.02) and negative valence values (2.87±1.74). The number of 

arrows inserted in the display varied in the range of 6-9. The verbal feedback provided 

to the subject was misleading at a rate of 30%. On some of the trials where the subject‟s 

prediction was correct, the subject was deliberately told "Wrong, the number of arrows 

is x", as if the subject‟s response was not correct. Sample stimulus image from Part II 

can be seen in Figure 12. All negative stimuli including IAPS pictures are given in 

Appendix B. 
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Figure 11. Sample Stimulus Image from Experiment (Part I) 

 

 
Figure 12. Sample Stimulus Image from Experiment (Part II) 

Sensitivity of the method with respect to the size of the IAPS pictures and grid size 

were also investigated in our study. Only one IAPS picture, versus 3x3, 4x4, 5x5 grids 

of IAPS images were tested separately as stimuli. Results of pupil and thermal data for 

4x4 and 5x5 grid of images were not meaningful across part 1 and part 2 of the 

experiment. Subjects‟ comments on the experiment also showed that 4x4 and 5x5 grid 

of images did not affect participants‟ emotion. On the other hand, only one IAPS picture 

as a stimulus affected emotions much less than expected. When the 3x3 grid was 

administered, the debriefing reports indicated that the subjects felt stress during the 

second part of the experiment. Therefore a 3x3 grid is chosen. 
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Before the initiation of the experiment, 9-dot calibration was applied. During the first 

phase, participants were shown 20 images on the center of grey background with 15 

visual angle (see Appendix H for visual angle computation). Specifications of the 

TOBII eye tracker are summarized below. 

Table 2. Specifications for Tobii TX300 eye tracker 

Type Values 

Accuracy 0.4◦ At ideal conditions, binocular 

Accuracy, Large angle 0.5◦ At 30 ◦ gaze angle, binocular 

Precision 0.07 ◦ Without filter, binocular 

Sample rate 300, 250, 120, 60 Hz 

Sample rate variability  0.3% 

Total system latency  <10 ms 

Head movement  

 

Operation distance 

37 x 17 cm. Freedom of head movement at 

a distance of 65 cm 

50-80 cm 

Max gaze angle 35 ◦ 

 

Many commercial eye trackers state an accuracy of about 0.5 degree, for example the 

eye tracker used in this thesis, Tobii TX300, has a majority of participants with an 

accuracy distribution of 0.4 degree during ideal conditions. Binocular data is the 

average of the two eyes. Ideal conditions for the system are when the users head stays in 

the middle of the eye-tracker, at a distance of 65 cm from Tobii and with an 

illumination of 300 lux in the room. Precision is stated to be 0.07◦ for binocular data 

without any filter. Precision is calculated as root mean square of successive samples. 

Table 3. Specifications for FLIR SC620 Camera   

Type Values 

IR resolution 640×480 pixels 

Thermal sensitivity/NETD <40mK @ +30°C 

Field of View (FOV) 24° × 18° 

Minimum focus distance 0.3 m 

Focal Length  38mm 

Spatial resolution (IFOV) 0.65 mrad 

Image frequency 30 Hz 

Spectral range 7.5–13 μm 

Detector pitch 25 μm 

Object temperature range –40°C to +500°C 

Accuracy ±2°C or ±2% 

The FLIR camera was located 115 cm above floor was placed 100 cm away from the 

subject. In order to capture only the frontal views of face, the height of the camera was 

adjusted accordingly. Automatic focus of camera was always employed to during image 

recording. The IR images are 640x480 pixels and recorded on a laptop with the 

ThermoVision SDK at 30 frames per second. Images acquired with a FLIR SC620 

thermal imager had resolution of 640x480 and NETD <40mK. The accuracy of SC620 

is quoted as ±2°C or ±2% (whichever is the largest) where within the temperature range 

of 15-30°C. In Table 2, some of the system specifications are listed. 
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Changes in the experiment were made to assure that during the regular flow of the 

experiment, the subjects‟ stress would increase. This stress could have been due to the 

content of the IAPS pictures, the inability to count more arrows or the subjective belief 

that performance was low. All IAPS pictures in Part I and II were normalized for 

intensity values (96.66±0.279 out of 255) using Adobe Photoshop (Adobe Systems Inc., 

San Jose, CA; version CS3) software in order to avoid luminosity effects on eyes. 

Valence and arousal distribution of the pictures for each stimulus are shown in Figure 

13 and Table 4. 

 
Figure 13. Average arousal and valence values of the IAPS Pictures used as stimuli 

Table 4. IAPS Pictures‟ arousal and valence average values in Arousal & Valence Axes 

 

PART 1 (Neutral) PART 2 (Negative) 

# of  Stimulus Arousal Average 

Valence 

Average Arrow 

Arousal 

Average 

Valence 

Average Arrow 

1 2.988 5.122 6 6.008 2.606 7 

2 2.788 4.944 3 5.916 3.015 8 

3 2.924 5.064 3 5.864 3.073 6 

4 2.986 5.065 5 6.064 2.65 8 

5 2.892 5.037 6 5.954 2.676 9 

6 2.993 5.061 4 6.296 2.981 8 

7 3.037 5.076 5 6.215 2.883 6 

8 2.924 5.064 3 5.942 2.791 8 

9 2.815 5.026 3 6.067 2.895 9 

10 2.856 5.066 5 6.251 2.898 8 

11 2.921 4.986 5 5.891 2.865 7 

12 2.807 4.963 4 6.286 2.945 6 

13 2.927 5.066 5 5.842 2.618 8 

14 2.824 4.973 4 6.232 2.848 9 

15 2.943 5.084 6 5.955 2.712 7 

16 2.965 5.105 6 6.187 2.908 9 

17 2.763 4.947 3 5.776 2.792 8 

18 2.932 5.041 3 6.12 2.837 9 

19 2.897 5.054 4 6.024 2.972 8 

20 2.922 5.084 5 5.923 2.783 7 

Averages 2.905 5.041 4.4 6.041 2.837 7.75 
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3.4 Procedure for Collecting Data 

A survey (Appendix D) was conducted to get participants‟ personal information such as 

age, gender, education, health conditions, marital status, and eye glass status before the 

study. Especially who had health conditions like flu or cold which could affect the 

experiment were not allowed to take the experiment. 

Between Part I and Part II of the experiment, subjects were provided with a chance to 

rest for a few minutes. During this period, they completed PANAS test
2
 (Appendix C) 

in order to detect and exclude outlier subjects based on their current mood state. In the 

PANAS test, subjects read each item and then list how they feel by indicating the 

number on the scale next to each word. This scale consists of a number of words that 

describe different feelings and emotions. 

One last survey (see Appendix E) was conducted to get participants‟ opinions about the 

experiment and to compare declared mental status of the participants with the measured 

values. Survey questions were designed for evaluating mental status of participants after 

being exposed to stressors (negative images, plenty of arrows and misguidance of 

participants)  

Volunteering participants were taken one-by-one into the experiment room. The 

informed consent form (Appendix F) describing the kinds of tasks they would complete 

during sessions was filled out initially. Subjects were not informed about subsequent 

testing to prevent intentional learning. In the consent form, no mention was made of any 

forthcoming stress test. Instead, the subjects were informed about our investigation on 

positive and negative IAPS pictures.  

 
2
The Positive and Negative Affect Schedule (PANAS) test (Watson et al., 1988) 
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CHAPTER 4 

 

 DATA PROCESSING, FEATURE EXTRACTION AND CLASSIFICATION 

 

There are three sections in this chapter. In the first section, data processing is explained. 

In the second section, feature extraction, feature definitions and feature selection 

procedures are covered. Third section is about the classification algorithms. Decision 

Tree, AdaBoost, Bagging and Random Forest classification methods are explained.  

4.1. Signal Processing 

We concatenated on the stimulus period and the rest period following immediately 

thereafter to assemble the response of each trial. Individual trials, consisting of 6 

seconds stimulus and 12 seconds rest are referred in the following as one „record‟.  

  
Figure 14. Pre-processing and Data Analysis Steps 
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In a record, pupil data is collected from the left and right eyes as dL=l1, l2,…,lk,..., lK   

and  dR=r1, r2,…,rk,..., rK respectively, where k=1...K and K = 18 * 60. Thermal data is 

collected from the periorbital area as t=t1, t2,…,tm,...,tM  where m=1...M and M = 18 * 

30. Total number of records is 20 for each part of the experiment. The pre-processing 

steps are presented in Figure 14 

Pupil Data Processing: Due to eye blinks or insufficient tracking when the subject 

looks away, the gaze is lost. Therefore, there may be missing data points in pupil 

measurements. These data are marked as -1 by TOBII Eyetracker. An in-house 

extrapolation algorithm is used to compensate for such data loss. When there is missing 

data for only one eye, pupil data from the other eye is used for interpolation; otherwise, 

linear interpolation is done using the average of the last five samples before the lost data 

and the average of the three samples after the lost data.  

At the very end, pupil diameter measurements are merged after testing whether left and 

right pupil diameters are highly correlated. For this purpose, the average of left and 

right pupils are computed and a single pupil data stream, p1, p2, …, pk, …, pK is 

obtained. Finally, moving average filter (Witten & Frank, 2005) is used for data 

denoising. In this filter, small window size is specified and moved from the beginning 

to the end of a record. A window size of 20 sample points is found to be optimal as 

explained in chapter 5 and Figure 27. A sample result of this method can be seen in 

Figure 15. 

 
Figure 15. A. Pupil record before pre-processing, dL (blue) and dR (red) B. Pupil record after pre-

processing, Interpolated and Merged Pupil Record 
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Thermal Data Processing: Each thermal data point is obtained from the mean 

temperature of the 10% hottest pixels within a pre-specified ROI. As suggested by 

(Pavlidis et al., 2007), before starting the experiment, for each subject we select the 

periorbital area  that includes the vessels between the eyes (see Figure 16A). A tracking 

algorithm utilizing template matching registers this ROI throughout the course of 

experiment. Despite subject motion, 10% of the hottest pixels (Pavlidis et al., 2007) 

within this region are extracted for each frame. Hottest pixels‟ temperature values are 

averaged in order to get a single result, depicted by tm which is used in feature 

extraction later. In rare events such as large motion, the thermal record is affected 

because tracking is lost. Hence interpolation is done to recover lost data. The same 

algorithm described for pupil diameter samples is used for interpolation of the thermal 

data as well. However, the moving average filter may become insufficient. Hence, to 

make a more robust estimate of the trend, simple moving median (SMM) is preferred 

for noise removal. In this method, the median is found by sorting the values inside a 

window and selecting the value in the middle. A window size of 15 points is found to be 

optimal as explained in chapter 5 and Figure 27. A sample record after preprocessing is 

seen in Figure 16. 

 
Figure 16. Thermal record after pre-processing 

A. Sample Thermal ROI B. Thermal Data C. Processed Thermal Data 

https://en.wikipedia.org/wiki/Median
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Afterwards, a standard outlier removal algorithm with median (Grubbs, 1969) is used in 

order to delete inappropriate data points. Especially in thermal signal acquisition, 

thermal tracking could be affected because of subject‟s abrupt movement. Omitting 

unwanted data and computing average before and after the outlier part is very important 

for classification at later steps. If ratio of missing values is higher than 30% in a record 

in both thermal and pupil data, this record is entirely omitted. 

4.2. Feature Extraction 

Original data is normalized before feature determination in order to get rid of signal 

variability between subjects. The signal values in each record are shifted to force all 

records to start with a value of 0. Overall averages of all records for all subjects are 

presented in Figure 17A and Figure 17B for pupil and thermal data.  

 
Figure 17. Pupil dilation and temperature record profiles (Blue:phase I; Red:phase II) 

A. Average pupil diameters across all records of all subjects 

B. Average temperature values across all records of all subjects 

In order to generate an entropy-based representation of the pupil dilation or thermal 

signal in each record, Shannon entropy value is computed in a window of size W, which 

slides along the pupil and thermal data samples pk and tm (de Araujo et al., 2003). To 

calculate the Shannon entropy of such a signal, pk and tm are first discretized into N 

signal amplitude levels. Let j be the sliding offset of the window W, Shannon entropy of 

each window is then calculated by (Cover & Thomas, 2006):    

where j is an index, 1,2,..j,..J, through the entire record and sn indicates the probability 

of each discretized signal level n, within the window W. J is different for pupil and 
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thermal records, since their sampling rates are different
3

. After calculating and 

combining entropy values, entropy series are created for every record. Sample pupil and 

thermal records with sliding window and entropy graphs are presented in Figure 18. 

Note that only the initial 6 seconds of the pupil measurement is extracted for the rest of 

the analysis. This choice is empirical, after observing that the initial 6 seconds of the 

pupil record is representative of neutral and stress class differences. This choice is in 

agreement with Bradley et al. (2008). The entropy graphs run shorter than the original 

records because of the window application. The amount that is truncated from the end is 

exactly the size of the chosen window, W. 

 
Figure 18. Shannon Entropy graphs of pupil and thermal records 

When the window is positioned on an area, which contains a transition between neutral 

and stressed measurements, the entropy computed within the window will be high. On 

the contrary, when the window is positioned on an area, which embodies exclusively 

neutral signals or stressed signals, the entropy in this window will be low. Needless to 

say, the choice of the window size is crucial for emotion detection. In order to 

determine whether the transition detected by the entropy value is due to a change from a 

neutral state to stress or from a stressed state to neutral, the absolute values of the 

signals should also be considered.  

 

Using the actual measurements and entropy calculations, several features were defined 

for each record. These features and their explanations are listed in Table 5.   

 
3
For pupil record, J is K minus length of W, for thermal record, J is M minus length of W 
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Table 5. List of features 

 

Minimum, maximum, mean, median, SD, kurtosis, skewness are self-explanatory 

features. KLD, Slope, Curvecorrelation  features will be explained in detail.  

 

ID. 

 # 

 

Feature Name 

 

Explanation 

 

Entropy 

(E) 

 

Absolute 

(A) 

Selected 

Features 

 

Pupil 

 

Thermal 
1 Min Minimum value of the record   - (E) 

2 Max Maximum value of the record   - (E) 

3 Mean Mean value of the record   (E) - 

4 Median Median value of the record   (E) - 

5 SD Standard deviation value of the record   (A) (A) 

6 Kurt Kurtosis value of the record   - - 

7 Skew Skewness value of the record   - - 

8 KLD1 Every record was split into 2 pieces. The 

Kullback-Leibler distance was computed in 

the first piece as KLD1 

  - - 

9 KLD2 Every record was split into 2 pieces. The 

Kullback-Leibler distance was computed in 

the second piece as KLD2 

  - - 

10 Slope 1 Every record was split into 2 pieces. Slope 

of the linear regressor in the first piece was 

computed as Slope 1. 

  - - 

11 Slope 2 Every record was split into 2 pieces. Slope 

of the linear regressor in the second piece 

was computed as Slope 2. 

  (A) (A) 

12 CurveCorrelation1 Timeseries of records from phase 1 were 

used to make one generic mean curve to 

represent all phase 1 signals. 

 

Correlation between each record and the 

generic phase 1 curve was computed as 

Curvecorrelation1. 

  - - 

13 CurveCorrelation2 Timeseries of records from phase 2   were 

used to make one generic mean curve to 

represent all phase2 signals. 

 

Correlation between each record and the 

generic phase2 curve was computed as 

Curvecorrelation2. 

  (A) - 

14 CurveCorrelationDif Difference between CurveCorrelation1 and 

CurveCorrelation2 features of the record. 

 

This feature was expected to be positive for 

phase 1 records, negative for phase 2. 

  (A) - 



31 

 

The Kullback Leibler Distance (KLD) is a natural distance function from a "true" 

probability distribution, P(i), to a "target" probability distribution, Q(i). In Figure 19, a 

sample pupil record is split into 2 pieces (X1 and X2). 

 

Figure 19. KLD feature of sample pupil record 

P(i) indicates the probability of each discretized signal level n in X1 and Q(i) indicates 

the probability of each discretized signal level n in X2. The KLD was computed as; 

 

     (2) 

 

Slope is another important feature. In Figure 20, a sample pupil record is split into 2 

pieces (X1 and X2). Slope of the linear regressor (in the first piece) is computed as; 

  

Slope
1
=y

1
/x

1     
(3) 

 

 

Figure 20. Slope and CurveCorrelation features of sample pupil record 

Curvecorrelation is also an important feature. In Figure 20, sample pupil record is 

shown as green curve (observed data). Timeseries of pupil records from phase 1 are 

𝐾𝐿𝐷 =  P i log
𝑃 𝑖 

𝑄 𝑖 

𝑛
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used to make one generic mean curve to represent all phase 1 signals with 

Autocorrelation. This generic phase1 curve is shown as blue curve (predicted data) in 

Figure 20. Correlation values between a record and the generic phase1 curve are 

computed as Curvecorrelation1. D1 is the Euclidean Distance between first observed 

data and first predicted data.  

 

CurveCorrelation1=D1+D2+… +Dn      (4) 

 

Correlation values between a record and the generic phase 2 curve are computed as 

Curvecorrelation2. 

To reduce dimensionality of the large number of features, to remove noisy features and 

select significant ones, the embedded feature selection (CfsSubsetEval evaluator with 

BestFirst search) method in Weka
4
 (Witten & Frank, 2005) is used. As explained in 

Weka, 'CfsSubsetEval' evaluates the worth of a subset of features by considering the 

individual predictive ability of each feature along with the degree of redundancy among 

the chosen subset. 'BestFirst' searches the space of attribute subsets by greedy hill 

climbing augmented with a backtracking facility. Using this feature selection technique, 

we distinguish features that were best suited for separating the two classes (i.e. neutral 

and stressed) and removed all other features that are unproductive for the targeted 

classification. Ten best features are identified at the “Selected Features” Column for 

„Pupil‟ and „Thermal‟ sensors in Table 5. Features are later merged with Weka software 

to obtain feature level fusion.  

4.3. Classification Algorithms 

For classification of phase I versus phase II records, C4.5 (Decision Tree), AdaBoost 

with Random Forest, Bagging and Random Forest classification methods are used 

which are available in WEKA software
5
. WEKA is a comprehensive suite of Java class 

libraries that provides implementations of numerous classification, pre-processing, 

feature selection and prediction algorithms (Witten & Frank, 2005). For each 

classification algorithm the default parameters are used, as specified in Weka. 

Decision trees are predictive models which map input attributes to a target value using 

simple conditional rules. The most notable and classical examples to decision tree 

learning are the algorithms ID3 (J. R. Quinlan, 1986) and the C4.5 (Quinlan, 1993). 

C4.5 constructs a decision tree from a set of data by dividing up the data according to 

the information gain, IG. It recursively splits the tree by the attribute with the highest IG 

in the training, yielding a decision tree that can be reused for classification (Quinlan, 

1996). J48 method (Weka implementation of C4.5) has been used.  

 
4
 The Waikato Environment for Knowledge Analysis (WEKA) Software 

5
 Web Site: http://www.cs.waikato.ac.nz/ml/weka  version 3.6 

http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/ID3_algorithm
http://en.wikipedia.org/wiki/C4.5_algorithm
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Random Forest is one of the most successful ensemble learning techniques (Breiman, 

2001) which have been proven to be very popular and powerful in pattern recognition 

for high-dimensional classification (Meinshausen, 2006) and skewed problems. 

Random forest is a very useful method for categorical datasets. In random forest, there 

is a bunch of decision trees which create a forest structure. Each decision tree in the 

forest has got a maximum depth and nodes which contain split features. In training part 

of random forest, each split feature is picked from a random subset of the features. 

Instead of using the most discriminative thresholds, a random subset of features is used. 

Because of this randomness, the bias of the forest increases (Breiman, 2001). 

AdaBoost is another popular ensemble method. It is used for prediction in classification 

tasks and reported to present self-rated confidence scores by estimating the reliability of 

their predictions (Witten & Frank, 2005). It is a learning algorithm used to generate 

multiple classifiers from which the best classifier is selected (Efron & Tibshirani, 1993). 

For the combination of AdaBoost with random forest (ABRF) technique, random forest 

utilized as a weak learner to generate the prediction models with less error rate. 

Bagging (Bootstrap Aggregating) is also machine learning ensemble algorithm that is 

designed to improve stability and accuracy of algorithms used in statistical 

classification and regression. It helps to avoid over-fitting and reduces variance. 

Bagging is special case of the model averaging approach. Improvement in the accuracy 

of one model by using its multiple copies is goal of bagging method. Besides, average 

of misclassification errors on different data splits gives a better estimate of the 

predictive ability of a learning method. 

In our classification approach, we used binary classifiers in order to discriminate the 

stress levels in the experiment. Every subject‟s data (phase I and II) are preprocessed 

and labeled as either in class 1 (neutral) or in class 2 (stressed). In order to obtain a 

more accurate and realistic assessment of the classifiers, a 10-fold cross validation 

method (Efron & Tibshirani, 1993) was used. First, the given data sets are separated 

into two parts: the training set and a test set, where the labels of the test set are 

considered unknown (Kohavi, 1995; Witten & Frank, 2005). In our study, the original 

data were first divided into 10 equal subsets, and one subset was tested using the 

classifier trained on the remaining nine subsets. This procedure was repeated until every 

subset had been used once for testing. The overall accuracy for the classifier is based on 

the average performance over the ten classification runs.  
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CHAPTER 5 

 

 RESULTS 

 

In this chapter, analyses and classification results are reported. This chapter comprises 

of eight sections. In the first and second sections, statistical and classification results are 

presented. In the third, ROC results are reviewed. In the fourth section, parameter 

effects on accuracy, in the fifth section, experimental results are discussed. In the sixth 

section, similarity results of IAPS pictures‟ arousal/valence values and features (pupil 

and thermal) are presented. In the seventh section, analysis of significant features are 

reviewed and in the last section debriefing results are examined.  

Analysis of data focused on the hypotheses which are expressed in the first chapter of 

study:  

Hypothesis 1. Pupil size variation can be used in order to understand user‟s stress. At 

stressful times during our experiment, participants‟ pupil will dilate in comparison to 

other times. 

Hypothesis 2. Stress can be evaluated by measuring thermal changes of facial area. At 

stressful times during our experiment, participants‟ thermal measurement will increase 

in comparison to other times. 

Hypothesis 3. Fusing pupil and thermal features will increase success of stress 

detection. 

Hypothesis 4. Using features that capture the difference of the rise and fall profiles in 

thermal and pupil signals will increase success of stress detection. 

We assume that there exist emotional/stressful states of participants in our experimental 

setup which can be detected. Hence, the purpose of the data analysis was primarily to 

identify such states.  

5.1. Statistical Results 

The statistical analysis of pupil and thermal features in Table 6 was performed in SPSS 

Software. The first step for pupil and thermal datasets included tests for normality 

(Kolmogorov-Smirnov Test) to specify what type of statistical methods (parametric or 

nonparametric) should be used. These tests were completed for each stimulus of Part I 
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(neutral) and Part II (stress) on each dependent measure shown earlier in Table 5. The 

majority of features were non-normally distributed as shown in Table 7. 

Table 6. Normality Results (bold and underlined features are normally distributed) 

 FEATURES 

Normal Parameters 

Test 

Statistic 

Asymp. Sig. 

 (2-tailed) Mean 

Std. 

Deviation 

 Pu_Ent_Min 5.050 0.449 .055 .010 

Pu_Ent_Max 5.940 0.383 .036 .200 

Pu_Ent_Mean 5.528 0.395 .061 .003 

Pu_Ent_Median 5.552 0.413 .042 .200 

Pu_Ent_Std 0.263 0.123 .078 .000 

Pu_Ent_Kurt -0.755 0.824 .129 .000 

Pu_Ent_Skew -0.189 0.543 .030 .200 

Pu_Abs_Max 0.285 0.181 .047 .055 

Pu_Abs_Std 0.138 0.046 .053 .016 

Pu_Abs_Kurt -0.744 0.699 .136 .000 

Pu_Abs_Skew -0.107 0.512 .037 .200 

Pu_Abs_Cross1 1.652 1.912 .095 .000 

Pu_Abs_Cross2 21.655 27.349 .210 .000 

Pu_Abs_Slope1 -0.002 0.003 .072 .000 

Pu_Abs_Slope2 0.001 0.001 .039 .200 

Pu_KLD1 0.716 0.285 .202 .000 

Pu_KLD2 0.729 0.273 .189 .000 

Pu_KLD_1_2 -0.014 0.057 .040 .200 

Th_Ent_Min 3.613 1.189 .143 .000 

Th_Ent_Max 4.260 1.104 .153 .000 

Th_Ent_Mean 3.952 1.139 .158 .000 

Th_Ent_Median 3.962 1.140 .162 .000 

Th_Ent_Std 0.182 0.108 .131 .000 

Th_Ent_Kurt -0.557 0.934 .162 .000 

Th_Ent_Skew -0.100 0.655 .046 .064 

Th_Abs_Max 0.255 0.341 .251 .000 

Th_Abs_Std 0.136 0.472 .396 .000 

Th_Abs_Kurt 0.225 1.806 .212 .000 

Th_Abs_Skew 0.018 0.751 .070 .000 

Th_Abs_Cross1 -2.522 1.051 .058 .006 

Th_Abs_Cross2 161.008 52.900 .033 .200 

Th_Abs_Slope1 0.000 0.001 .208 .000 

Th_Abs_Slope2 0.002 0.042 .446 .000 

Th_KLD1 0.198 0.223 .052 .022 

Th_KLD2 0.257 0.338 .080 .000 

Th_KLD_1_2 -0.059 0.350 .049 .035 

Since the features had non-normal distributions, we analyzed the data using non-

parametric statistics. Using the nonparametric Mann–Whitney U test, for each feature 
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we compared difference between neutral versus stress data. Differences with the 

probability α ≤ 0.05 were regarded as significant. 

Table 7. Mann–Whitney U test Results (bold and underlined features are significant) 

 

 Features 

Mann-

Whitney U 

Z Asymp. Sig.  

(2-tailed) 

Pu_Ent_Min 12531.000 -3.640 .000 

Pu_Ent_Max 11386.000 -4.805 .000 

Pu_Ent_Mean 11528.000 -4.660 .000 

Pu_Ent_Median 11362.000 -4.829 .000 

Pu_Ent_Std 15885.000 -.229 .819 

Pu_Ent_Kurt 14813.000 -1.319 .187 

Pu_Ent_Skew 15058.000 -1.070 .285 

Pu_Abs_Max 15406.000 -.716 .474 

Pu_Abs_Std 13185.000 -2.975 .003 

Pu_Abs_Kurt 13942.000 -2.205 .027 

Pu_Abs_Skew 15518.000 -.602 .547 

Pu_Abs_Cross1 13589.000 -2.564 .010 

Pu_Abs_Cross2 13437.000 -2.719 .007 

Pu_Abs_Slope1 15634.000 -.484 .628 

Pu_Abs_Slope2 9969.000 -6.246 .000 

Pu_KLD1 13858.000 -2.291 .022 

Pu_KLD2 12611.000 -3.559 .000 

Pu_KLD_1_2 12051.000 -4.129 .000 

Th_Ent_Min 15555.000 -.565 .572 

Th_Ent_Max 15704.000 -.413 .680 

Th_Ent_Mean 15722.000 -.395 .693 

Th_Ent_Median 15750.000 -.366 .714 

Th_Ent_Std 14438.000 -1.701 .089 

Th_Ent_Kurt 15752.000 -.364 .716 

Th_Ent_Skew 15465.000 -.656 .512 

Th_Abs_Max 12997.500 -3.166 .002 

Th_Abs_Std 11823.000 -4.360 .000 

Th_Abs_Kurt 16097.000 -.013 .989 

Th_Abs_Skew 16025.000 -.086 .931 

Th_Abs_Cross1 15557.000 -.562 .574 

Th_Abs_Cross2 16072.000 -.039 .969 

Th_Abs_Slope1 16101.000 -.009 .993 

Th_Abs_Slope2 14398.000 -1.741 .082 

Th_KLD1 15303.000 -.821 .412 

Th_KLD2 16049.000 -.062 .951 

Th_KLD_1_2 15622.000 -.496 .620 

Sample description (n=359) and as p value less than 0.05, concluded that the underlined 

features provided statistically significant evidence of a difference between Part I and 

Part II. Because the data is normalized across the participants, we pooled all data from 

all participants together in this analysis. As shown in Table 7, some pupil and thermal 

features were obtained as a significant descriptor. With respect to this result, we 

concluded that the Hypothesis 1 and Hypothesis 2 were once again verified. 
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5.2. Classification Results 

Common evaluation measures in classification problems are defined from a matrix with 

the numbers of examples correctly and incorrectly classified for each class, named 

confusion matrix. The confusion matrix for a binary classification problem (which has 

only two classes – positive and negative), is shown in Table 8. Performance of 

classifiers can be evaluated with the number of True Positives (TP), False Positives 

(FP), True Negatives (TN), and False Negatives (FN).  

Table 8. Confusion Matrix 

 Predicted Class 

True Class Stress (Part II) Neutral (Part I) 

Stress (Part II) TP FN 

Neutral (Part I) FP TN 

Sensitivity is the percentage chance that the test will correctly identify Part II (stress) 

records which actually belong to part II. 

           =
  

     
      

Specificity is the percentage chance that the test will correctly identify Part I (neutral) 

records which the test will identify Part I (neutral) 

           =
  

     
      

        =
     

           
      

Receiver Operating Characteristic (ROC) curve can be used for evaluating 

performances of classifiers. All sensitivity namely TP values are shown by a ROC 

curve. Equivalent values which are (1-Specificity) thresholds are on the y axis. Area 

Under Curve (AUC) which is the area under the ROC curve is generally thought as a 

key performance because a single quantity of overall accuracy is provided with this 

metric (Witten & Frank, 2005). 

Several classification tests were conducted to investigate performances with respect to 

input data type (absolute signal value or entropy), or physiological/physical 

measurements (pupil or thermal). The outcomes of the classification, which are 

illustrated in Table 9, Table 10 and Table 11, show that on the average, the fusion of 

pupil and thermal features produce 10% increase in classification accuracy. Accuracy of 

72.7% was reached using only pupil data features, 76.3% was reached using only 

thermal features and 83.8% was obtained using both pupil and thermal record features. 

Sensitivity and specificity values were highest (83.9% and 83.8%) with ABRF method 

using pupil and thermal data. 
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In Table 9, Table 10 and Table 11, all types of data results are shown according to 

classification methods. In these tables, SF labels are used in order to point Weka feature 

selection algorithm is processed before classification step. Best results are obtained via 

fusing pupil and thermal data features which are selected according to feature selection 

algorithm. 

With respect to these results, pupil size variations and thermal changes were prominent 

separator for stress and neutral states considering Table 9 and Table 10. Stress detection 

is successful (accuracy higher than 70%) only as long as adequate features that reflect 

pupil or thermal data are included. As a result, we concluded that the Hypothesis 1 and 

Hypothesis 2 were verified. 

Table 9. Thermal Data Classification Results, SF: Selected Features 

  Decision 

Tree 

Random Forest ABRF Bagging  

Absolute Data Sensitivity 0.35 0.589 0.594 0.606 

Entropy Data Sensitivity 0.35 0.517 0.511 0.533 

Absolute & Entropy Sensitivity 0.656 0.644 0.717 0.689 

Absolute & Entropy (SF) Sensitivity 0.528 0.744 0.772 0.756 

Absolute Data Specificity 0.877 0.682 0.648 0.648 

Entropy Data Specificity 0.737 0.553 0.542 0.559 

Absolute & Entropy Specificity 0.709 0.799 0.754 0.743 

Absolute & Entropy (SF) Specificity 0.81 0.754 0.754 0.754 

Absolute Data Accuracy 0.612 0.635 0.621 0.626 

Entropy Data Accuracy 0.543 0.534 0.526 0.545 

Absolute & Entropy Accuracy  0.682 0.721 0.735 0.715 

Absolute & Entropy (SF) Accuracy  0.668 0.749 0.763 0.754 
 

Table 10. Pupil Data Classification Results, SF: Selected Features 

  Decision 

Tree 

Random Forest ABRF Bagging  

Absolute Data Sensitivity 0.806 0.683 0.694 0.711 

Entropy Data Sensitivity 0.683 0.594 0.617 0.611 

Absolute & Entropy Sensitivity 0.844 0.728 0.772 0.756 

Absolute & Entropy (SF) Sensitivity 0.817 0.744 0.744 0.761 

Absolute Data Specificity 0.436 0.67 0.693 0.642 

Entropy Data Specificity 0.413 0.536 0.553 0.564 

Absolute & Entropy Specificity 0.436 0.631 0.626 0.581 

Absolute & Entropy (SF) Specificity 0.48 0.687 0.709 0.67 

Absolute Data Accuracy 0.621 0.676 0.693 0.676 

Entropy Data Accuracy 0.548 0.565 0.584 0.587 

Absolute & Entropy Accuracy  0.640 0.679 0.699 0.668 

Absolute & Entropy (SF) Accuracy  0.649 0.715 0.727 0.715 
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Following Hypothesis 3, which stated that fusing pupil and thermal features could 

increase success of stress detection, we further checked whether the fusion of pupil size 

and facial thermal changes were descriptive of stress. In Table 11, best classification 

results (accuracy is higher 83%) was obtained by ABRF, Decision Tree, Bagging and 

Random Forest methods with fusing pupil and thermal features. With respect to this 

result, we concluded that the Hypothesis 3 was verified. 

Following Hypothesis 4, which stated that using absolute signal and entropy based 

features could increase success of stress detection, we further checked whether absolute 

signal and entropy based features were descriptive of stress. In Table 11, best 

classification result was obtained by ABRF method (accuracy is higher 83%) with 

absolute signal and entropy based features. With respect to this result, we concluded 

that the Hypothesis 4 was also verified.  

Table 11. Pupil & Thermal Data (Fusion) Classification Results, SF: Selected Features  

  
Decision 

Tree 

Random Forest AdaBoost Bagging  

Absolute Data Sensitivity 0.728 0.711 0.75 0.756 

Entropy Data Sensitivity 0.639 0.594 0.644 0.628 

Absolute & Entropy Sensitivity 0.778 0.806 0.839 0.822 

Absolute & Entropy (SF) Sensitivity 0.694 0.817 0.839 0.839 

Absolute Data Specificity 0.609 0.715 0.721 0.676 

Entropy Data Specificity 0.531 0.598 0.564 0.575 

Absolute & Entropy Specificity 0.782 0.793 0.793 0.737 

Absolute & Entropy (SF) Specificity 0.771 0.832 0.838 0.81 

Absolute Data Accuracy 0.668 0.713 0.735 0.715 

Entropy Data Accuracy 0.584 0.596 0.604 0.601 

Absolute & Entropy Accuracy  0.779 0.799 0.816 0.779 

Absolute & Entropy (SF) Accuracy  0.732 0.824 0.838 0.824 

According to the sensitivity results graph (see Figure 22), when ABRF and Random 

Forest algorithms were used for thermal and pupillary data with absolute and entropy 

based features, sensitivity greater than 80% was achieved. Moreover, when Decision 

Tree algorithm was used for pupillary data with absolute and entropy based features, 

more than 80% sensitivity was also reached. Moreover, using absolute and entropy 

based features together has higher sensitivity than using these features separately. In 

comparison with pupillary and thermal data, pupillary data has higher sensitivity. 

Besides, fusing pupil and thermal data improves sensitivity 5 percent considering 

ABRF, Bagging and Random Forest. 

Specificity results graph (see Figure 23) shows that, using ABRF, Bagging and Random 

Forest algorithms on thermal and pupillary data with absolute signal and entropy based 

features (after feature selection), more than 80% specificity was reached. Furthermore, 

when Decision Tree algorithm was used for thermal data with absolute signal based 

features, more than 80% success was also achieved. In comparison with pupillary and 
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thermal data, thermal data has higher specificity. Besides, fusing pupil and thermal data 

improves specificity 5-10 percent considering ABRF, Bagging and Random Forest. 

According to the accuracy results graph (Figure 24), using ABRF, Bagging and 

Random Forest algorithms on thermal and pupillary data with absolute and entropy 

based features (after feature selection) more than 80% success was achieved. As a 

result, ABRF performed best accuracy among other methods. Using absolute signal and 

entropy based features together increases accuracy (5%) more than using these features 

separately. In comparison with pupillary and thermal data, pupillary data has higher 

accuracy. Besides, fusing pupillary and thermal data improves accuracy (10-15%) 

significantly.  

Feature selection algorithm increases accuracy 5 percent, sensitivity 2-3 percent among 

ABRF, Bagging and Random Forest algorithms. Unfortunately, feature selection had 

bad effect on Decision Tree method considering sensitivity, specificity and accuracy 

results. This warrants further investigation. 

 
Figure 21. Classification Algorithm‟s Accuracy Results 

In comparison with classification methods, Figure 21 shows best and worst 

classification results of ABRF, Bagging, Random Forest and Decision tree algorithms. 

ABRF and Bagging results are very close but best accuracy is reached with ABRF. 

Random Forest method has also high accuracy results but its variation is greater than 

other methods. In addition, Decision Tree algorithm has 10-15% worse accuracy than 

other algorithms.  

Ensemble learning methods (ABRF, Bagging, Random Forest), combine predictions of 

multiple learning algorithms that is why they often lead to a better predictive 

performance than a single learner (Decision Tree). They are well-suited when small 

differences in the training data produce very different classifiers. Main drawbacks are 

computation time and lower interpretability. 
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Figure 22. Sensitivity Results 
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Figure 23. Specificity Results 
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Figure 24. Accuracy Results 
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5.3. Receiver Operating Characteristic (ROC) Curve Results 

Classifiers performances can be evaluated in terms of the area under the Receiver 

Operating Characteristic (ROC) curves (graphical plots of correct detection rate 

versus false alarm rate for a binary classifier system as its discrimination threshold is 

varied).  

Figure 25 illustrates the predictive performance of the four classifiers, ABRF, 

Bagging, Random Forest and Decision Tree with pupil and thermal features. The 

results show that ABRF, Bagging and Random Forest method performs relatively 

well compared to Decision Tree method in terms of ROC curve.  

 
Figure 25. ROC of classification methods for all features 

The AUC is an effective and combined measure of sensitivity and specificity. AUC 

scores of our study can be seen in Figure 26. The best score was obtained using the 

Pupil and Thermal Features (Weka feature selected) with Random Forest and ABRF 

classification methods. Fusing pupil and thermal features increased ROC AUC for 

our classification methods. And also feature selection method increased ROC AUC 

except Decision Tree algorithm. Perhaps, Weka‟s feature selection methods were not 

good/compatible with the way Decision Tree works. 
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Figure 26. Area under curve scores 

5.4. Effects of Parameters on Accuracy 

Classification performance scores were reached after separate investigation of three 

parameters for pupil and thermal records in classification success: entropy window 

size (Wentropy), slope window size (Wslope), moving average filter window size 

(Wmoving). Because of the different physiological windows of pupil dilation and facial 

temperature, different optimum parameters were determined and used for 

classifications. In Figure 27, accuracy results are shown when two parameters are 

fixed but one parameter is manipulated for pupil and thermal data. After careful 

inspection of Figure 27, we preferred the following parameters in our classifications: 

Wslope: 120 time points for the pupil and 200 time points for the thermal 

signal,Wentropy:200 time points for the pupil and 160 time points for the thermal 

signal, Wmoving: 20 time points for the pupil and 15 time points for the thermal signal. 

In Figure 27, darker areas indicate higher accuracy and lighter areas indicate lower 

accuracy in classification results. It is important to note that when all variables are 

varied at the same time, optimum results may differ. Furthermore, the choice of 

Wslope and Wentropy affected the accuracy only around 4%, but the choice of the 

Wmoving was more important, because this changed the performance around 20%. 
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Figure 27. Effect of parameters on classification results (X and Y-axes show varying window size for 

the pupil and thermal records respectively) (A) slope window size (B) entropy window size              

(C) moving average filter window size 
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5.5. Experimental Results 

A total of 11 subjects participated, but 2 of them were excluded because more than 

30% of their records were missing due to eye-blinks.  All participants had completed 

the experiment once. Acceptable values of PANAS (Watson, Clark, & Tellegen, 

1988) scores are such that, for a positive mood the mean was 29.7 (SD: 7.9), for a 

negative mood the mean was 14.8 (SD: 5.4). Our average positive score was 29.85 

and negative score was 15.14, which were in the acceptable ranges for all healthy 

subjects. Correlation between the right and left pupil diameter samples was r =0.876, 

p < 0.01 therefore merging right and left eyes into a single record was justified.   

  

 
Figure 28. Stimulus Effects on Accuracy Results, number of stimulus (one at a time) was excluded. 

(In comparison when all (20) stimuli used, accuracy is % 83.8) 

The classification results are investigated with respect to effects introduced by 

individual stimuli and participants‟ in order to analyze the homogeneity of findings. 

In Figure 28, for a particular method (weka feature selection and ABRF 

classification)  the effect of stimulus on thermal and pupil data is demonstated by 

excluding one stimulus at a time. Accuracy results varied between 77.71% and 

82.11%. In this figure, best result was obtained with all stimuli included, but twelfth 

stimulus excluded. Twelfth stimulus had the minimum effect on overall accuracy and 

eighth stimulus had the maximum effect. Every stimulus was useful for overall 

accuracy (83.85%) so we concluded that every stimulus was not necessary for our 

experiment. On the basis of each subject, the results are presented in figure 33, at the 

end of this chapter. Third participant had the worst stress detection accuracy. Third 

participant was the oldest subject in our group. 
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5.6. Similarity Results 

All features in Table 5 were tested for validity by running cosine similarity method 

in SPSS Software (Statistical Package for the Social Sciences, Version 20; IBM 

statistic tool, NY, USA) as follows. In each stimulus, the 9 IAPS pictures‟ 

arousal/valence values were averaged in order to produce a single arousal/valence 

value. Then the entire pupil data was pulled together for each feature. The cosine 

similarity between this value and the average arousal/valence value were computed. 

This process was repeated for thermal data and thermal features. Some of the 

features had high similarity values (>0.6) as shown in Figure 29. For the pupil 

measurements, the features that had high similarity values (>0.6) to IAPS ratings 

were: Mean (Entropy), Median (Entropy), SD (Absolute), Slope2 (Absolute) and 

CurveCorrelation2 (Absolute). For the thermal measurements, the features that had 

high similarity values (>0.6) to IAPS ratings were: Min (Entropy) and Max 

(Entropy). As seen from Figure 29, among the ten best features selected by Weka, 

only three features had low cosine similarity values. 

 

 
Figure 29. Verification of validity of selected pupil and thermal features with IAPS valence and 

arousal values (X-axis contains reference numbers of features from Table 5). Cosine Similarity 

between stimulus average arousal/valence values and selected pupil (A) and thermal (B) features 
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5.7. Analysis of significant features and classification results 

Significant features (from Table 7) and selected features (from Table 5) are 

illustrated in Table 12. Features that are common (painted) were studied in detail and 

some of these common features were plotted (Figure 30, Figure 31 and Figure 32). 

Table 12. Comparison of Selected Features and Significant features 

According to Figure 30, Figure 31 and Figure 32, “pu_ent_median”, “pu_ent_mean” 

and “pu_abs_slope2” features in Part I (green) clearly differed from Part II (blue). 

However, for the third and twelfth stimuli, discrimination of Part I and Part II was 

not clearly possible according to these three features.  

 
Figure 30. Part I and Part II feature (Pupil Median) difference for all participants 

 

ID. 

 # 

 

Feature Name 

Pupil Features Thermal Features 

Selected 

(Weka) 

Significant 

(SPSS) 

Selected 

(Weka) 

Significant 

(SPSS) 

1 Min - (E) (E) - 

2 Max - (E) (E) (A) 

3 Mean (E) (E) - - 

4 Median (E) (E) - - 

5 SD (A) (A) (A) (A) 

6 Kurt - (A) - - 

7 Skew - - - - 

8 KLD1 - (A) - - 

9 KLD2 - (A) - - 

10 Slope 1 - - - - 

11 Slope 2 (A) (A) (A) - 

12 CurveCorrelation1 - (A) - - 

13 CurveCorrelation2 (A) (A) - - 

14 CurveCorrelationDif (A) (A) - - 
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Figure 31. Part I and Part II feature (Pupil Mean) difference for all participants 

 
Figure 32. Part I and Part II feature (Pupil Slope2) difference for all participants 
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5.8. Debriefing Results 

Each participant was interviewed and debriefed on the true purpose of the study. 

According to participants‟ Debriefing Form (Appendix E), second part (negative) of 

our experiment was found more stressful and disturbing than the first part. Moreover, 

viewing negative images resulted in loss of concentration and inability to find and 

count arrows correctly in time. In Figure 33, participant‟s data was analyzed with 

ABRF method. Except for subject 33, the classification of each participant was 

higher than 77%.  

 

 
Figure 33. Participant‟s Effect on Accuracy Result. 
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CHAPTER 6 

 

 DISCUSSION 

 

In the literature, the success rates of the stress detection through pupil dilation and 

facial thermal signals are contingent upon cumbersome offline data processing. 

When pupil dilation is concerned, according to Ren (Barreto, Gao, & Adjouadi, 

2013) the best average accuracy of “relaxation” versus “stress” states of the 

computer user, through the monitoring and processing of the pupil signal is 83%. In 

their study, several pre-processing steps such as Kalman filtering, Wavelet 

denoising, Walsh transform were required which prevented real-time dynamic pupil 

analysis. On the other hand, our methods are applicable to real-time analysis with 

little effort. 

Pedrotti et al. (2014) proposed a method for relating pupillary behavior to 

psychological stress. During a simulated driving task, pupil diameter and 

electrodermal activities were recorded. In that study, Neural Network classifier was 

able to reach 79.2% precision whereas our precision result was 83.9% considering 

pupil and thermal data.  

According to Zhai et al. (2005), in order to monitor the stress state of computer users 

based on Blood Volume Pulse, Galvanic Skin Response and Pupil Diameter signals, 

80% accuracy was reached with SVM method. Zhai & Barreto (2006) also implied 

that, non-invasive, non-intrusive real-time assessment of the affective state of a 

computer user could be achievable and by using four physiological signals: BVP, 

GSR, PD and ST, acceptable levels (up to 90.10%) of differentiation between 

“relaxed” and “stressed” states could be observed. Proposed system was unsuitable 

for real-time and remote sensing. 

Researches show that, electrodermal activity signal has less discriminating power 

compared to pupil signals for stress classification (Pedrotti et al., 2014; Ren et al., 

2013; Zhai & Barreto, 2006). 

When facial thermal signal is concerned, classification accuracy of nearly 80% was 

achieved with thermal facial imaging while classifying baseline versus high arousal 

and valence levels (Nhan & Chau, 2010). In that study, five ROIs were tracked so 

classification required extra work. In another study (Khan et al., 2006), infrared 
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thermal sensing of positive and negative affective states was achieved with manual 

specification of facial thermal feature points (FTFP) resulting in 66.3-83.8% 

accuracy rates. FTFP required human intervention, so its use seemed to be limited.  

In Yuen et al. (2009)‟s study, to classify physical and emotional stress based on 

facial ST, elevation of temperatures in the facial region, particularly in the forehead, 

periorbital, eardrum and cheek regions were used. Remarkable increase of skin 

temperature in the prefrontal region was seen at the onset of emotional stress, while 

increased number of hot pixels in the periorbital region was monitored under 

physical stress. Our study was similarly based on thermal imaging in periorbital 

region. Quantitative assessment techniques were not implemented by Yuen et al. 

(2009) which made this study subjective and its results incomparable. 

According to Cross et al. (2013)‟s study, mental and physical stresses were remotely 

detected using ST and EO. Accurate heart and respiration rates could also be sensed 

from both thermal and radar signatures. Because of processing so many complex 

thermal facial tracking methods and real-time detection objective, linear 

classification method (LDA) was preferred. On the other hand, Cross et al. (2013) 

also claimed that classification of physical and psychological stressor was greater 

than 90%.  

Giakoumis et al., (2013) proposed a subject-dependent emotion recognition system 

to detect psychological stress via GSR and ECG. In this work, video game 

competition was the stimulus and LDA classifier with sequential backward search 

(SBS) feature selection method was used and 95% accuracy was reached. Major 

disadvantages of this work were using subject dependent experiment and their 

system didn‟t work real-time and remotely. However, our system works remotely 

and near real-time. 

Observer stress for an observer of a real-life environment is a new concept created by 

Sharma & Gedeon, (2014). Observer stress was detected based on EEG, GSR and 

ST. Genetic algorithm was used for feature selection to build a SVM classifier and 

observer stress was recognized with an accuracy of 98%. The outcome of this 

research was to predict human stress response to real-life environments. Proposed 

system was unsuitable for real-time, remote sensing and did not identify actual stress. 

In comparison with these studies (see Table 13), our method has the advantage to 

classify data in near real time
6
, once training is accomplished offline. Obviously, in a 

real time scenario, the pre-processing steps as well as the classification procedure 

introduces a lag. In certain situations, where the entire thermal record is necessary, 

this lag can be as high as 18 seconds, but generally, we estimate that classification on 

the fly can be achieved with a lag of 10-15 seconds. However, the eye tracker and 

 

6
Real-time processing may sometimes jeopardize the data capturing process. Therefore, thread 

management should be optimized accordingly. 
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thermal camera we used, are sensitive, sophisticated and a little bit expensive 

measurement devices that applications may have difficulty in providing. 

In accordance to our hypotheses, we found that stress could solely be predicted using 

either pupil diameter or facial temperature over 70% accuracy. With respect to the 

Hypothesis 1, when we categorized our participants' results into two parts, namely 

neutral and stress, pupillary responses allowed us to classify emotion (stress). That is 

why we can easily say that pupillary response differs with respect to the emotional 

state the subject is currently in. Relation between IAPS pictures arousal, valence 

values and pupillary responses was demonstrated using cosine similarity method.   

With respect to the Hypothesis 2, participants‟ stress was evaluated over 70% 

accuracy based on the variations in facial temperatures. At stressful times during our 

experiment, participants‟ facial temperatures raised in comparison to other times. 

Our results show us that stress can be evaluated by measuring thermal changes of 

facial area. As a result, facial thermal variations could also be an indicator of the 

stress. 

Our analysis further showed that when applying fusion techniques on thermal and 

pupil features, stress classification accuracy was enhanced over 83.8%. The success 

rate of our method is on the high end in comparison to other methods in the 

literature. The accuracy rates we have obtained show the complementary potential of 

the of pupil and facial thermal recordings 

This result supported Hypothesis 3, expressing that using pupil and thermal features 

together will increase success of stress detection. Moreover, when using entropy 

based features stress classification accuracy was 60% while using absolute signal 

features made accuracy 73.53%. Fusing entropy based and absolute signal features 

enhanced stress detection accuracy over 83.84%. This result supported Hypothesis 

4, using features that capture the difference of the rise and fall profiles in thermal and 

pupil signals will increase success of stress detection. 

Furthermore, all participants declared that in the second part of our experiment, they 

were more affected and disturbed from negative IAPS pictures which made the 

subject miscount the arrows in pictures.  Therefore we can say that we have 

behavioural evidence regarding the success of our method, both in stress induction 

and stress detection.  
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Table 13. Review of emotion & stress detection studies. 

Reference 

(Citation) 

Stimulus Measurements Classification Methods Reported 

Accuracy 

Disadvantage 

Our Study Visual stimuli (IAPS) with varying 

arousal and valence content 

(Psychological Stress) 

PD, ST (facial) ABRF  

Bagging 

Random Forest 

Decision tree  

% 83.8 

% 82.8  

% 81.0  

% 74.2 

Doesn‟t work real time. 

 

(Ren et al., 

2013) 

Stroop Color Word Test           

(Mental Stress)  

PD, GSR 

 

Multilayer Perceptron and 

Naive Bayes classifier 

% 84.21 

accuracy 

Doesn‟t work real time and remotely 

 

So many pre-processing steps such as 

Kalman filtering, Wavelet denoising, 

Walsh transform are needed. 

(Zhai & 

Barreto, 

2006) 

Paced Stroop Test                     

(Mental Stress) 

PD, BVP,  

GSR, ST(finger) 

SVM  

Decision tree  

Naive Bayesian network  

% 90.10 

% 88.02 

% 78.65 

Doesn‟t work real time and remotely 

(Pedrotti et 

al., 2014) 

Simple Driving Test with external 

stressful stimuli             

(Psychological Stress) 

PD, EDA wavelet transform and neural 

networks  

% 79.2 

(precision) 

EDA doesn‟t correlate with self-

reports  

 

Doesn‟t work real time and remotely 

(Nhan & 

Chau, 2010) 

Visual stimuli (IAPS) with varying 

arousal and valence content   

(Psychological Stress) 

 

ST (facial)  Fisher LDA classifier with 

Genetic Algorithm 

% 66.3- 83.8  

 

human intervention needed (Manual 

specification of thermal feature 

points)  

 

many medications (analgesics, 

antidepressants, antihypertensives, 

antispasmatics, melotonin, and 

niasin), motion artefacts and loss of 

focus can affect thermal results 
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(Yuen et al., 

2009) 

Running exercise (physical stress) 

and Quiz (emotional stress) 

ST (Facial) None None No quantitative assessment. 

 

Subjective results. 

(Giakoumis et 

al., 2013) 
Video-game competition, arithmetic 

questions were also asked 

(Psychological Stress) 

GSR, ECG  

 

LDA-based classifier and 

sequential backward search 

(SBS) feature selection. 

95%  Doesn‟t work real time and remotely 

 

Subject dependent 

(Carl B. Cross 

et al., 2013) 

Computerized version of the Stroop 

Color-Word Interference Test, 

(Mental Stress)                        

Pedaling a recumbent exercise bicycle 

(Physical Stress) 

ST and EO LDA                                 

ANN and SVM  

100%       

90%  

Sensitive to individual movements  

 

Doesn‟t measure emotional stress 

(Sharma & 

Gedeon, 

2014) 

Interview experiment & Meditation 

experiment 

(Observer Stress for an observer of a 

real-life environment.) 

EEG, GSR and ST Individual-independent SVM  

Genetic algorithm for feature 

selection 

98%  Doesn‟t work real time and remotely 

 

Doesn‟t identify actual stress.  

 

Identify only environmental stress 
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CHAPTER 7 

 

 CONCLUSION 

 

In the scope of this thesis, we conducted an experimental study on detecting stress 

via measurement of the physiological responses, pupil dilation and facial thermal 

changes. In the experiment we designed, IAPS pictures that varied in pleasure and 

arousal axes were used as stimuli. Our results showed that negative contents reliably 

evoke greater pupillary response and facial temperature compared to neutral pictures.  

The most important contribution of our study is increased stress detection 

performance by feature-based fusion of pupil dilation and facial thermal changes. 

The results of the research outlined show a promising relation between the stressful 

state of stimulus and the physiological signals monitored. An important characteristic 

of the stress detection method suggested here is that, it is generic for capturing 

physiological signals with variable rise and fall profiles. This advantage is attained 

through the use of entropy which is robust for all kinds of physiological sensors.  

Overall, the best results were obtained by the fusion of both pupil and thermal data 

features. Furthermore, classification with ABRF method outperformed classification 

with other methods. By using ABRF with both absolute and entropy-based features, 

classifications‟ rates in the range of 80-84 percent accuracy were reached.  

Considering that the measurement of pupil and periorbital temperature can be made 

unobtrusively, the method proposed herein for stress detection stands out with its 

feasibility and speed. The pre-processing, feature extraction and classification 

methods implemented in this thesis are fast, robust and can be applied to real-time 

emotion classification. 

7.1. Future Work 

In this study, the experiment takes place in near real time. Making all process in real 

time will be our future work. Besides, using deep learning technique can increase the 

accuracy of the stress detection and can be seen another next goal.  

In our experiment, IAPS pictures with high arousal values were used after neutral 

ones. In real time scenarios, this is not possible. Because real time stimuli evolve 
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dynamically. Feature extraction and classification for dynamic stimuli would make 

the framework presented in this study more applicable. 

An experimental limitation of the procedure mentioned in this thesis was that we 

used a template matching algorithm in order to track the head. Advanced tracking 

methods like particle filtering might help us to acquire more sensitive and robust data 

from thermal camera that can increase accuracy of classification.  

A future direction is to involve the Emotional Quotient Test results of the 

participants in emotion detection. The utility of this test for increasing the 

performance is stress detection remains to be investigated.  

 

Other classification methods should also be examined and their potential to achieve 

even a higher accuracy in the detection of stress must be evaluated. One of the most 

common methods of classifying data, SVM remains to be explored. Additionally, 

larger collections of experimental data need to be gathered, to allow for the 

development of a stronger classifier. 

The experiment we have designed reveals a limited emotional palette compared to a 

dynamic multi-media experience with unpredictable shifts between neutral and 

negative emotions. Testing the promise of the chosen features for a dynamic 

emotional environment is necessary to identify the actual real-life performance in 

stress detection. 

Overall we have presented a successful stress classification scheme in a lab 

environment. Our method is unobtrusive and fast. The promise of this method using 

dynamic stimuli along with other classification techniques is a new investigation area 

brought along with our findings. 
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APPENDIX A : STIMULI  FROM  PART I 

 

# of 

Stimulus 

 

Grid of IAPS Images  

IAPS # 

1 

 

7090 

7235 

7001 

7179 

7006 

7190 

7032 

7057 

7185 

2 

 

7006 

7032 

7057 

7185 

7224 

7217 

7090 

7179 

7235 



70 

 

3 

 

7179 

7217 

7057 

7001 

7235 

7190 

7090 

7006 

7224 

4 

 

7001 

7006 

7090 

7057 

7224 

7179 

7185 

7032 

7190 

5 

 

7179 

7090 

7057 

7185 

7224 

7041 

7235 

7217 

7190 



71 

 

6 

 

7224 

7090 

7032 

7217 

7041 

7057 

7179 

7190 

7001 

7 

 

7032 

7190 

7041 

7235 

7057 

7001 

7224 

7090 

7179 

8 
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7179 
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7190 
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7057 

7235 
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7179 
7041 
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APPENDIX B : STIMULI  FROM  PART II 

 

# of 

Stimulus 

 

Grid of IAPS Images IAPS # 

1 

 

8230 

2900 

3030 

3103 

9332 

9423 

6550 

3213 

6940 

2 

 

9423 

6940 

9925 

2900 

9584 

1120 

3103 

1300 

3213 



77 
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9332 

1300 
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6940 
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9584 

8230 

2900 

3213 
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3030 

6550 
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9332 

9423 

6940 

3103 

5 
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9584 

3103 

3030 
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9332 
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2900 

8230 



78 
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3103 
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3030 

9584 
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3213 
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3103 

9423 
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8230 

8 

 

9584 

9423 

3030 

9332 

8230 
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6550 

3213 

6940 



79 
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6940 

9332 

9584 

3213 

6550 

3030 

9925 

8230 

1300 

10 

 

3213 

8230 

1120 
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9332 

9584 

9423 

1300 

3030 

11 

 

6550 

9332 

8230 

9584 
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3030 

6940 

2900 

9925 
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9332 
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9332 
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3103 

3213 
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9423 
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14 
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3030 

3103 
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3213 

6550 

9584 

2900 



81 
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9925 

3030 

3213 
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9423 

9332 

3103 
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16 

 

3213 
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9584 
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1120 

3030 

9925 

9584 
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8230 

9332 
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18 

 

3103 
3213 
1300 
9423 
6940 
6550 
9925 
9584 
3030 

19 

 

6550 
6940 
9423 
3030 
2900 
9925 
1300 
9584 
1120 

20 

 

9332 
8230 
3213 
9925 
9423 
2900 
1300 
3030 
6940 
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APPENDIX C : PANAS TEST 

 

Bu ölçek farklı duyguları tanımlayan bir takım sözcükler içermektedir. Son iki hafta 

nasıl hissettiğinizi düĢünüp her maddeyi okuyun. Uygun cevabı her maddenin 

yanında ayrılan yere (puanları X ekleyerek) iĢaretleyin.  

  Çok az 

(hiç) 
Biraz Ortalama Oldukça Çok fazla 

1 Ġlgili      

2 Sıkıntılı      

3 Heyecanlı      

4 Mutsuz      

5 Güçlü      

6 Suçlu      

7 ÜrkmüĢ      

8 DüĢmanca      

9 Hevesli      

10 Gururlu      

11 Asabi      

12 Uyanık      

13 UtanmıĢ      

14 Ġlhamlı      

15 Sinirli      

16 Kararlı      

17 Dikkatli      

18 Tedirgin      

19 Aktif      

20 KorkmuĢ      
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APPENDIX D: DEMOGRAPHIC INFORMATION FORM 

 

Kişisel Bilgiler: 

Adı Soyadı:                Uygulama Tarihi: 

… / … / … 

Cinsiyeti: Kadın ( ) Erkek ( ) 

Doğum Tarihi: … / … / … 

YaĢı: …  

Medeni Hali: Evli ( ) Bekar ( ) Dul ( ) BoĢanmıĢ ( ) 

Mesleği: ……………………… 

El Tercihi: Sağ ( ) Sol ( ) 

Eğitim Durumu:  Ġlkokul (0-5 yıl) ( ) 

Ortaokul (6-8 yıl) ( ) 

Lise (9-12 yıl) ( ) 

Üniversite (12+) ( ) 

Sağlık Durumuna İlişkin Bilgiler: 

ĠĢitme Bozukluğu: Var ( ) Yok ( ) 

Varsa düzeltilmiĢ mi? ……………………… 

Görme Bozukluğu var mı? Var ( ) Yok ( ) 

Varsa hangisi? Miyop ( ) Astigmat ( ) Hipermetrop ( ) 

Varsa düzeltilmiĢ mi? ……………………… 

Renk Körlüğü: Var ( ) Yok ( ) 

Fiziksel Özür: Var ( ) Yok ( ) 

Varsa türü: ……………………… 

Geçirdiği Önemli Rahatsızlıklar (Psikiyatrik, Nörolojik veya Psikolojik): 

Halen Kullanmakta Olduğu Ġlaç: Var ( ) Yok ( ) 

Varsa ilacın/ilaçların adı: ……………………… 

Uzun Süre Kullanıp Bıraktığı Ġlaç: Var ( ) Yok ( ) 

Varsa ilacın/ilaçların adı: ……………………… 

Varsa kullanım süresi: ………………………  
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APPENDIX E: DEBRIEFING FORM 

 

1. Deneyimizi nasıl buldunuz? 

 

 

 

 

2. Kendi performansınızı nasıl degerlendiriyorsunuz? 

 

 

 

 

3. Okları tutarlı olarak sayabildiğinizi düĢünüyor musunuz? 

 

 

 

 

4. Birinci kısım ile ikinci kısım arasında ne gibi bir fark hissettiniz? 

 

 

 

 

5. Birinci kısım ile ikinci kısım arasında heyacanlanmanızda degisiklik oldu mu? 

 

 

 

 

6. Resimlerin icerikleri hakkinda ne düĢünüyorsunuz? 

 

 

 

 

7. Eklemek istediğiniz baĢka Ģeyler var mı? 
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APPENDIX F: INFORMED CONSENT FORM 

 
ARAŞTIRMAYA GÖNÜLLÜ KATILIM FORMU 

 

Bu araĢtırma, Enformatik Enstitüsü Sağlık BiliĢimi Bölümü öğretim üyelerinden Y. 

Doç. Dr. Didem Gökçay tarafından yürütülmekte olup Sağlık BiliĢimi Doktora 

Programı öğrencisi Serdar Baltacı‟nın doktora tez çalıĢmasının bir gereği olarak 

yapılmaktadır. Bu form sizi araĢtırma koĢulları hakkında bilgilendirmek içindir. 

 

Çalışmanın Amacı 
Günlük hayatımızda olumluluk açısından farklı içeriklere sahip birçok görsel 

uyaranla karĢılaĢmaktayız. Bu uyaranların aynı zamanda heyecan verici olma, stres 

yaratma gibi özellikleri de bulunabilir. Bu araĢtırmanın amacı, tüm bu maruz 

kaldığımız uyaranların duygusal ve biliĢsel süreçlerde davranıĢlarımız üzerindeki 

etkilerini incelemek ve vücut fizyolojimizde ne gibi değiĢimler yarattığını 

gözlemlemektir. 

 

Bize Nasıl Yardımcı Olmanızı İsteyeceğiz? 
ÇalıĢma sırasında sizden 2 deneye katılmanız ve her birinde 20‟Ģer resmi 

değerlendirmeniz istenmektedir. Değerlendirme sırasında görsel uyaranın üzerindeki 

okları saymanız ve „+„ Ģeklindeki odaklanma iĢaretini gördüğünüz sırada ok sayısını 

sesli bir Ģekilde belirtmeniz beklenmektedir. Daha sonra size söylediğiniz ok 

sayısının doğru ya da yanlıĢ olduğu belirtilecektir. ÇalıĢmaya katılmayı kabul 

ettiğiniz takdirde, doldurmanız gereken anketler hakkında bilgilendirileceksiniz. 

ÇalıĢma süresi toplam yarım saat olarak planlanmıĢtır. 

 

Sizden Topladığımız Bilgileri Nasıl Kullanacağız? 
AraĢtırmaya katılımınız tamamen gönüllülük temelinde olmalıdır. ÇalıĢmada sizden 

kimlik veya çalıĢtığınız kurum/bölüm/birim belirleyici hiçbir bilgi istenmemektedir. 

Cevaplarınız ve sizden alınan veriler tamamıyla gizli tutulacak, sadece araĢtırmacılar 

tarafından değerlendirilecektir. Katılımcılardan elde edilecek bilgiler toplu halde 

değerlendirilecek ve bilimsel yayımlarda kullanılacaktır. Sağladığınız veriler gönüllü 

katılım formlarında toplanan kimlik bilgileri ile eĢleĢtirilmeyecektir. 

 

Katılımınızla ilgili bilmeniz gerekenler: 
Bu çalıĢmada gözbebeği büyümesini ve hareketlerini takip edip kayıt altına almak 

için bir göz izleme cihazı kullanılmaktadır. Bilgisayar ekranının arkasında bir 

kamera fark edebilirsiniz, o kamera ile de yüz bölgenizin sıcaklığı saptanmaktadır. 

Bu cihazlar insan sağlığı ya da ruhsal durumu açısından en ufak bir risk teĢkil 

etmemektedir. 
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Araştırmayla ilgili daha fazla bilgi almak isterseniz: 
Bu çalıĢmaya katıldığınız için Ģimdiden teĢekkür ederiz. ÇalıĢma hakkında 

daha fazla bilgi almak için ODTÜ öğretim üyelerinden Y. Doç. Dr. Didem Gökçay 

(ODTÜ Enformatik Enstitüsü, A-216, (0 312) 210 3750,  E-posta: 

dgokcay@metu.edu.tr) ile iletiĢim kurabilirsiniz.  
Yukarıdaki bilgileri okudum ve bu çalışmaya tamamen gönüllü olarak katılıyorum.  
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APPENDIX H: VISUAL ANGLE COMPUTATION 

 

 

 

  
 

tan(15)= X/65 

 

X=17.11 cm 

 
65 cm 
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