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ABSTRACT

CLASSIFICATION OF SKEW-SYMMETRIC FORMS CORRESPONDING TO
CLUSTER ALGEBRAS WITH PRINCIPAL COEFFICIENTS

Mazı, Sedanur
M.S., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Ahmet İrfan Seven

November 2016, 35 pages

In this thesis, we study algebraic and combinatorial properties of the skew-symmetric
forms that correspond to cluster algebras with principal coefficients. We obtain a
classification of these forms under congruence and compute the Arf invariants for
finite types.

Keywords: Cluster Algebra, skew-symmetric form, Arf invariant
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ÖZ

TEMEL KATSAYILI KLASTER CEBİRLERİNE KARŞILIK GELEN
ANTİSİMETRİK FORMLARIN SINIFLANDIRILMASI

Mazı, Sedanur
Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ahmet İrfan Seven

Kasım 2016 , 35 sayfa

Bu tezde, temel katsayılı klaster cebirlerine karşılık gelen antisimetrik formların ce-
birsel ve kombinatoryal özelliklerini çalışıyoruz. Bu formları sınıflandırıp, sonlu tip-
ler için Arf değişmezlerini hesaplıyoruz.

Anahtar Kelimeler: Klaster cebiri, antisimetrik form, Arf değişmezi
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CHAPTER 1

INTRODUCTION

Cluster algebras are commutative rings which have applications in many different ar-

eas of mathematics. For example; they provide a natural algebraic set-up to study

recursively defined rational functions in combinatorics and number theory. In ge-

ometry, they introduce natural Poisson transformations. In topology, they formalise

symmetries between triangulations of surfaces. In representation theory, they form a

natural algebraic framework to study positivity.

A cluster algebra is uniquely determined by a class of skew-symmetric integer matri-

ces, called a mutation class; here mutation is a certain operation on skew-symmetric

matrices, it can also be viewed as an operation on certain graphs. Many important re-

sults and problems on cluster algebras can be described in terms of mutations, There-

fore it is natural to study algebraic and combinatorial properties of these classes.

In this thesis, we study linear algebraic properties of the matrices in the mutation

classes corresponding to the “cluster algebras with principle coefficients”, which are

the most fundamental type of cluster algebras. These matrices can be obtained from

“principle extensions of skew-symmetric matrices” by a sequence of mutations (Def-

inition 6.1). We obtain a classification of these matrices under congruence (Theorem

6.8). Furthermore, we consider the corresponding skew-symmetric forms over the

two-element field and compute the Arf invariants for finite types (Theorem 6.11).
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CHAPTER 2

SKEW-SYMMETRIC MATRICES AND BILINEAR FORMS

As we described in Section 1, the goal of this thesis is to establish some algebraic

and combinatorial properties of skew-symmetric matrices with integer entries. These

matrices have some special properties which are not commonly studied in standard

linear algebra texts. Therefore, in this chapter, we collect some basic linear algebraic

properties of skew-symmetric matrices over integers.

2.1 Basic definitions

In this thesis, we will only use matrices with integer entries. By a skew-symmetric

matrix, we mean the following:

Definition 2.1 Let B = (Bi,j) be a n × n matrix over integers. B is called skew-

symmetric if BT = −B (so Bi,j = −Bj,i for all i, j and Bi,i = 0 for all i).

To give an example, a 2× 2 skew-symmetric matrix is a matrix of the form 0 a

−a 0


We will use the following terminology for the vectors in the nullspace of a skew-

symmetric matrix:

Definition 2.2 Suppose that B is a skew-symmetric n×n matrix. A vector v ∈ Zn is

called a “radical vector” for B if Bv = 0.

3



Note that, according to this definition, a radical vector is an integer vector. Also zero

vector is a radical vector. The existence of non-zero radical vectors can be character-

ized by the determinant:

Proposition 2.3 Suppose that B is a skew-symmetric integer matrix. Then B has a

nonzero radical vector if and only if det(B) = 0.

Proof. For the proof, we consider B as a matrix over the field Q. Then, it is well-

known from linear algebra that, if B has a radical vector, then det(B) = 0. For the

converse, suppose that det(B) = 0. Then, by linear algebra, there exists a vector

X = (x1, . . . , xn) 6= 0 in Qn such that BX = O. Let us assume that xi = pi/qi,

i = 1, . . . , n for some pi, qi in Z and let a = lcm(q1, . . . , qn). Then v = aX in Zn

and it is a radical vector for B, because Bv = B(aX) = a(BX) = 0. �

Let us also recall from standard linear algebra that if B is a skew-symmetric n × n
matrix and n is odd, then det(B) = 0, so it has a non-zero radical vector.

2.2 Congruence of skew-symmetric matrices

The definition of congruence for skew-symmetric matrices over a field is well-known

in linear algebra: B andB′ are “congruent” if P TBP = B′ for some invertible matrix

P . Since we work with matrices over integers, we require that P is also an integer

matrix; then P is invertible if and only if det(P ) = ∓1. Thus, in this thesis, we take

the following as the definition of congruence:

Definition 2.4 Let B and B′ be skew-symmetric n× n integer matrices. We say that

B and B′ are “congruent” if P TBP = B′ for some invertible integer matrix P with

det(P ) = ∓1. This defines an equivalence relation on n× n skew-symmetric integer

matrices.

Let us also note that rank is preserved under congruence, i.e. rank of B is equal to

rank of B′.

4



2.3 Classification of skew-symmetric matrices under congruence

Skew-symmetric matrices over integers are classified under congruence relation as

follows:

Theorem 2.5 ( Bourbaki, Algebra Ch. 9) Let B be skew-symmetric integer matrix.

Then there is an n× n integer matrix P with det(P ) = ∓1 such that P TBP is of the

form.



0 d1

−d1 0

0 d2

−d2 0
. . .

0 dm

−dm 0

0
. . .

0


where di divides di+1, for i = 1, 2, ..., n − 1. Furthermore the integers di’s are

uniquely determined. (Note that 2m=rank of B.) We call this matrix ”the normal

form of B with respect to congruence”.

As we described in Section 1, the goal of this thesis is to determine normal forms of

a special class of matrices, called principal extensions of skew-symmetric matrices;

we will obtain these normal forms in Chapter 6.

2.4 Skew-symmetric forms defined by skew-symmetric matrices

We will obtain the main results of this thesis (Chapter6) by using geometric properties

of skew-symmetric matrices. To study these properties, we will use, as it is common

in linear algebra, skew-symmetric forms defined as follows:

5



Definition 2.6 Suppose that B is skew-symmetric integer matrix and let

B = {e1, e2, ..., en}

be the standard basis for Zn. We denote by 〈, 〉 the skew-symmetric bilinear form on

Zn defined on the standard basis vectors by 〈ei, ej〉 = Bij for all i, j = 1, . . . , n.

Let us note that, for all v, w in Zn, we have 〈v, w〉 = vTBw. Also 〈v, w〉 = −〈w, v〉
and 〈v, v〉 = 0 for all v∈ Zn. Furthermore, if v is radical vector then 〈v, w〉 = 0 for

all w ∈ Zn.

2.5 Matrix of a basis

Once the form 〈, 〉 is defined by its values on the standard basis vectors, we have an

associated skew-symmetric matrix for any other basis as well:

Definition 2.7 In the set up of Definition 2.6, suppose ξ = {f1, f2, ..., fn} is a Z-

basis for Zn. We define the matrix of ξ with respect to 〈, 〉 as the skew-symmetric

matrix 

〈f1, f1〉
. . . 〈f1, fn〉

. . .

〈fn, f1〉
. . . 〈fn, fn〉


Note that the matrix of the standard basis {e1, . . . , en} with respect to 〈, 〉 is B.

Let us also recall from linear algebra that changing the basis affects the corresponding

matrices as follows:

Proposition 2.8 Suppose B is the matrix of the basis B = {f1, . . . , fn} and B′ is

the matrix of the B′ = {f ′1, . . . , f ′n}. Let T be the linear transformation defined by

T (fi) = f ′i for all i and P be the matrix of T with respect to B. Then B′ = P TBP

(or B = (P−1)TB′(P−1)), so B is congruent to B′.

6



This property will be the basis of our approach to study congruence of skew-symmetric

matrices, i.e. we will view skew-symmetric matrices as matrices of a skew-symmetric

bilinear form and study the effects of certain linear transformations on them. The

main type of transformations we use will be the following:

Proposition 2.9 Let V = Zn and B = {f1, ..., fn} be a Z-basis for V and k ∈ Z.

Let T : V → V be the linear transformation defined on the basis vectors as follows:

T (fi) = fi + kfj for some i, j = 1, . . . , n and k ∈ Z; T (fr) = fr for r 6= i . Then T

is invertible over Z.

Proof. Let us assume without loss of generality i < j. Let us note that the matrix of

T with respect to B is the lower triangular matrix A with Aii = 1 for all i , Aji = k

and the rest of the entries is zero. Then det(A) = 1, so it is invertible over Z. �

2.6 Symplectic bases

As it is well known in linear algebra, congruent skew-symmetric matrices can be

viewed as the matrices of a skew-symmetric bilinear form with respect to some bases

(Proposition 2.8). In particular, the matrices given in Theorem 2.5 can also be viewed

as matrices of certain bases; these are called symplectic bases. More precisely:

Definition 2.10 LetB be skew-symmetric matrix of size n and 〈, 〉 be the correspond-

ing form on Zn (Definition 2.6). Let

C = {u1, v1, ...um, vm, w1...wp}, (p = n− 2m),

be a basis such that the matrix of C with respect to 〈, 〉 is as in Theorem 2.5. Then C
is called a symplectic basis for 〈, 〉.

In Chapter 6, we will determine normal forms of the matrices called principal exten-

sions of skew-symmetric matrices by establishing symplectic bases.

7
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CHAPTER 3

SKEW-SYMMETRIC MATRICES AND GRAPHS

In this section, we will give some definitions that we will use to study combinatorial

properties of skew-symmetric matrices. The main idea of this approach is to view a

skew-symmetric matrix as a graph [3].

3.1 Graph of a skew-symmetric matrix

Definition 3.1 Let B be a skew-symmetric n× n integer matrix. We define the graph

of B as the graph Γ(B) with no loops or 2-cycles such that

• vertices are 1, . . . , n,

• there is an edge i j-b if and only if Bji = b > 0.

We call b the weight of the edge; if b = 1, we do not specify it on the edge.

Example 3.2 The following are some skew-symmetric matrices and the correspond-

ing graphs:

A =


0 1 −1

−1 0 1

1 −1 0

 B =


0 1 −1

−1 0 −1

1 1 0

 C =


0 1 −1

−1 0 2

1 −2 0



9
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JĴrr
r

1 3

2

Γ(B) :
-





� J
JJJJ]r r

r
2

1 3

2

Γ(C) :

Figure 3.1: Examples of graphs of skew-symmetric matrices

3.2 Graph of a basis with respect to a skew-symmetric form

We consider skew-symmetric matrices as matrices of a skew-symmetric forms with

respect to bases, therefore ,for convenience, we use the following analogue of Defini-

tion 3.1:

Definition 3.3 LetB be a skew-symmetric n × n integer matrix and let 〈, 〉 be the

skew-symmetric form on Zn given in Definition 2.6 . Let B = {f1, ..., fn} be a Z-

basis for Zn . We define Γ(B) as the graph with no loops or 2-cycles such that

• vertices are the basis vectors f1, . . . , fn,

• there is an edge i j-b if and only if 〈fj, fi〉 = b > 0.

if b = 1, we do not specify on the edge.

Note that if B = {e1, ..., en} is the standard basis, then Γ(B) is equal to Γ(B) (after

relabeling each vertex i by ei).

3.3 Graphs of symplectic bases

Let us note the following special case of Definition 3.3: if C = {u1, v1, ...um, vm, w1...wp}
(p = n− 2m) is a symplectic basis (Definition 2.10), then Γ(C) is as follows:

r r
r -u1u1 d1 v1v1 umum dm vmvm

w1 wp
-d2

d3

-

r
. . .

r -- r r r . . . r
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CHAPTER 4

SKEW-SYMMETRIC MATRICES OVER F2 AND THE ARF

INVARIANT

In this thesis, we study skew-symmetric matrices over integers also by considering

their modulo 2 reductions. This allows us to use linear algebra over the two-element

field F2 and obtain one of our main results (Theorem 6.11).

As it is well known, linear algebra over the field F2 requires some care because of its

some peculiar properties. One of these properties is the skew-symmetry of a matrix:

if we consider the definition in Section 2.1 (Definition 2.1) over F2, the diagonal

elements of a skew-symmetric matrix need not be equal to 0. Therefore, to consider

modulo 2 reductions of skew-symmetric integer matrices (which are the main objects

of study in this thesis), we use linear algebra of alternating matrices:

Definition 4.1 Let B be a matrix of size n over F2={0,1}. We call B alternating if

• Bii = 0 for i = 1, . . . , n,

• Bij = −Bji for all i 6= j.

Thus, if A is a skew–symmetric matrix over integers, then A mod 2 is an alternating

matrix.

Example 4.2 Let A be the matrix
0 3 −5

−3 0 1

5 −1 0


11



Then A mod 2 is the matrix 
0 1 1

1 0 1

1 1 0


The definitions and statements given in Chapter 2 hold for alternating matrices over

F2 (so we will not restate them in this chapter). In particular, the “classification

theorem”, Theorem 2.5 holds with d1 = ... = dm = 1 (where 2m=rank). However,

to assign graphs to bases, we modify Definition 3.3 as follows:

Definition 4.3 Suppose that B be n×n alternating matrix over F2 and let 〈, 〉 be the

alternating form defined by B on Fn2 . Let B = {f1, ..., fn} be a basis for Fn2 . We

define Γ(B) as the undirected graph such that

• vertices of Γ(B) are v1, . . . vn,

• there is an edge vi vjq q if and only if 〈vi, vj〉 = 1.

It may be noted from Definition 4.1 that an alternating matrix is also symmetric,

therefore there is an associated quadratic form defined as follows:

Definition 4.4 Let B be alternating matrix over F2 and 〈, 〉 be alternating bilinear

form defined by B on Fn2 = V (Definition 4.3 ). The quadratic form associated with

〈, 〉 (or B) is the F2-valued function q : V × V → F2 such that

• q(u+ v) = q(u) + q(v)+〈u, v〉 for all u, v ∈ V ,

• q(ei) = 1 for all i = 1, . . . , n.

It is well known that quadratic forms over F2 are classified by a numerical invariant,

called “Arf invariant”, defined as follows:

Definition 4.5 Let B be alternating matrix over F2 and 〈, 〉 be alternating bilinear

form defined by B on Fn2 = V . Let q be quadratic form associated with B and

B = {u1, v1, . . . , um, vm, w1, . . . wp} be a symplectic basis for 〈, 〉 (Definition 2.10).

12



Let V0 = span{w1, . . . wp} and suppose that q(V0)=0, that is, for any v ∈ V0, we

have q(v) = 0. Then, we define

Arf(q) =
m∑
i=1

q(ui)q(vi) mod 2.

It is well known that Arf(q) is independent of the choice of the symplectic basis.

In Section 6.4 , we will determine Arf invariants of matrices called principal exten-

sions of skew-symmetric matrices.

13
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CHAPTER 5

MUTATIONS

Mutation has been defined first in [2] as an operation on skew-symmetric matrices

to define cluster algebras. Since then, it has been observed later mutation appears

naturally in many other areas of mathematics [7]. Also several equivalent types of

mutations have been formulated. In this chapter, we will discuss basic properties of

three types of mutations: mutations of bases, matrices and graphs. We will first define

mutations of bases and show how the other mutations can be obtained from it.

5.1 Mutations of bases

In this section, we define mutation as a special type of base change for Zn:

Definition 5.1 Suppose that 〈, 〉 is a skew-symmetric form on Zn (defined by a skew-

symmetric matrix, Definition 2.6). Suppose also that B = {v1, . . . , vn} is a Z-basis

of Zn and let B denote the matrix of B with respect to 〈, 〉 (so 〈vi, vj〉 = Bi,j for all

i, j by Definition 2.7) .

For any ε ∈ {+,−}, we define ε-mutation of the basis B = {v1, . . . , vn} as the basis

µk
ε(B) = B′ = {v′1, . . . , v′n}

such that

• v′k = −vk,

• v′i = vi + |Bik|vk if sgn(Bik) = −ε,

15



• v′i = vi otherwise.

Let us now show that the inverse of a mutation is also a mutation:

Proposition 5.2 µ−εk µ
ε
k(B) = B.

Proof. Assume, without loss of generality, that ε = + and µ+
k (B) = B′ = {v′1, . . . , v′n}.

Suppose that vi is connected to vk with 〈vi, vk〉 < 0. Then we have v′i = vi + |Bik|vk,

v′k = −vk, v′j = vj and for any j 6= i with 〈vj, vk〉 ≥ 0. Now let B′′ = µ−k (B′) =

{v′′1 , . . . , v′′n} then we have v′′k = −v′k = −(−vk) = vk. Note that 〈v′k, v′i〉 =

〈−vk, vi+|Bik|vk〉 = −〈vk, vi〉−|Bik|〈vk, vk〉 = −〈vk, vi〉. Thus, v′′i = v′i+|Bki|v′k =

vi + |Bik|vk + |Bki|(−vk) = vi and v′′j = v′j = vj . Hence B = B′′. �

5.2 Mutations of matrices

The bases µk+(B) and µk−(B) in Definition 5.1 are different in general, however,

their matrices turn out to be equal. More precisely:

Proposition 5.3 In the setup of Proposition 5.1, let B′ and B′′ be the matrices of the

bases B′= µk
+(B) and B′′=µk−(B) with respect to the form 〈, 〉 (Definition 2.7).

Then B′ = B′′.

Proof. Let B = {v1, . . . , vn} and B′ = {v′1, . . . , v′n} = µk
+(B). Let B′′ =

{v′′1 , . . . , v′′n} = µk
−(B). We will show that for any i,j={1, . . . , n} we have B′i,j =

〈v′i, v′j〉 = 〈v′′i , v′′j 〉 = B′′i,j . Let us first assume that i = k or j = k. We may

assume that i = k and Bjk = β ≥ 0 . Then we have v′j = vj , v′i = −vi = −vk
and v′′j = vj + |Bjk|vk = vj + |Bjk|vi, v′′i = −vi = −vk, so, 〈v′i, v′j〉 = 〈−vk, vj〉
and 〈v′′i , v′′j 〉 = 〈−vi, vj + βvk〉=〈−vk, vj〉 + β〈−vk, vk〉=〈−vk, vj〉. Thus 〈v′i, v′j〉 =

〈v′′i , v′′j 〉.

For the rest of the proof, we assume that i, j 6= k. We continue considering in cases:

Case 1. Both of vi and vj are connected to vk. We consider this case in two subcases:

16



Subcase 1.1. Both of vi and vj are connected to vk with the same direction. We

may assume that sgn(Bjk) = + = sgn(Bik) and |Bik| = α, |Bjk| = β . Then, we

have v′i = vi + αvk, v′j = vj + βvk and v′′i = vi, v′′j = vj . Notice that 〈v′i, v′j〉 =

〈vi + αvk, vj + βvk〉 = 〈vi, vj〉 + β〈vi, vk〉 + α〈vk, vj〉 + αβ〈vk, vk〉 = 〈vi, vj〉 and

〈v′′i , v′′j 〉 = 〈vi, vj〉, so 〈v′i, v′j〉 = 〈v′′i , v′′j 〉.

Subcase 1.2. Both of vi and vj are connected to vk with opposite directions. We may

assume that sgn(Bjk) = −, sgn(Bik) = + and |Bik| = α, |Bjk| = β. Then we

have v′i = vi + αvk, v′j = vj and v′′i = vi, v′′j = vj + βvk, so 〈v′i, v′j〉 = 〈vi, vj〉 +

α〈vk, vj〉 = 〈vi, vj〉 + αβ and 〈v′′i , v′′j 〉 = 〈vi, vj〉 + β〈vi, vk〉 = 〈vi, vj〉 + βα. Thus

〈v′i, v′j〉 = 〈v′′i , v′′j 〉.

Case 2. Suppose one of the vi and vj is not connected to vk in Γ. We may assume that

vi is not connected to vk.

Subcase 2.1. Suppose vj is connected to vk with opposite direction. Then we have

v′j = vj , v′i = vi and v′′j = vj + |Bjk|vk, v′′i = vi, so, 〈v′i, v′j〉 = 〈vi, vj〉 and 〈v′′i , v′′j 〉 =

〈vi, vj〉+ |Bjk|〈vi, vk〉 = 〈vi, vj〉. Thus 〈v′i, v′j〉 = 〈v′′i , v′′j 〉.

Subcase 2.2. Suppose vj is not connected to vk. Then we have v′i = vi, v′j = vj and

v′′i = vi, v′′j = vj , so, 〈v′i, v′j〉 = 〈v′′i , v′′j 〉 = 〈vi, vj〉. This completes the proof. �

Definition 5.4 In the setup of Proposition 5.1, letB′ be the matrix of the form 〈, 〉with

respect to B′= µk
+(B) (or B′′=µk−(B), Proposition 5.3 ). We denote B′ = µk(B)

and call it “the mutation of B at k”.

We can describe the matrix B′ = µk(B) explicitly as follows:

Proposition 5.5 B′ = µk(B) is equal to the following matrix:

B′ij =


−Bij if i=k or j=k

Bij + sgn(Bik)[BikBkj]+ otherwise.
(5.1)

where [BikBkj]+ = max{BikBkj, 0}.
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Proof. Let B be a matrix with respect to the basis B = {v1, . . . , vn} and B′ =

{v′1, . . . , v′n} be the ε-mutation of the basis at k.

Case 1. We first consider the situation for i = k or j = k. Now for any i, j ∈
{1, . . . , n} we may assume that i = k, j 6= k.

Subcase 1.1. Assume sgn(Bjk) = ε, then we have v′i = v′k = −vk = −vi and

v′j = vj . Note that B′ij = 〈v′i, v′j〉 = 〈−vk, vj〉 = −〈vk, vj〉 = −〈vi, vj〉 = −Bij .

Thus, B′ij is as in the proposition.

Subcase 1.2. Assume now sgn(Bjk) = −ε, then we have v′i = v′k = −vk = −vi and

v′j = vj + |Bjk|vk. Note that B′ij = 〈v′i, v′j〉 = 〈−vk, vj + |Bjk|vk〉 = −〈vk, vj〉 −
〈vk, |Bjk|vk〉 = −〈vk, vj〉− 0 = −〈vk, vj〉 = −〈vi, vj〉 = −Bij . Thus, B′ij is as in the

proposition.

Case 2. Now assume that i, j 6= k and |Bik| = α, |Bjk| = β where α, β is greater

than or equal 0. We continue with two cases.

Case 2.1. Consider the case α = 0 or β = 0. Assume that α = 0 and sgn(Bjk) = ε.

Now we have v′i = vi, v′j = vj and B′ij = 〈v′i, v′j〉 = 〈vi, vj〉 = Bij . Notice that Bij +

sgn(Bik)[BikBkj]+ = Bij + sgn(Bik) max{BikBkj, 0} = Bij + sgn(Bik) max{0 ·
Bkj, 0} = Bij . So, B′ij is as in the proposition.

Case 2.2. Assume that sgn(Bik) = ε and sgn(Bjk) = ε, then v′i = vi, v′j = vj

and B′ij = 〈v′i, v′j〉 = 〈vi, vj〉 = Bij . Note that Bij + sgn(Bik)[BikBkj]+ = Bij +

sgn(Bik) max{BikBkj, 0} = Bij + (+) max{α(−β), 0} = Bij + 0 = Bij . So, B′ij is

as in the proposition.

Case 2.3. Now, assume without loss of generality that sgn(Bik) = ε and sgn(Bjk) =

−ε, then we have v′i = vi, v′j = vj + |Bjk|vk and B′ij = 〈v′iv′j〉 = 〈vi, vj + |Bjk|vk〉 =

〈vi, vj〉 + |Bjk|〈vi, vk〉. Notice that in this case , Bij + sgn(Bik)[BikBkj]+ = Bij +

(+) max{BikBkj, 0} = Bij + max{αβ, 0} = Bij + αβ. So, B′ij is as in the proposi-

tion. This completes the proof. �
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5.3 Mutations of graphs

Let us recall that we represent a skew-symmetric matrix by a graph as in Definition

3.1. Then the mutation operation on skew-symmetric matrices can be viewed as an

operation on the graphs of skew-symmetric matrices. More precisely:

Definition 5.6 Suppose that B is a skew-symmetric matrix with Γ = Γ(B) and let

Γ′ = Γ(µk(B)). We denote the graph Γ′ = µk(Γ) and call it “the mutation of Γ at

k”.

We obtain µk(Γ) from Γ in the following way:

• the orientations of all edges incident to k are reversed, their weights unchanged,

• For any vertices i and j which are connected to k in Γ, the direction and the

weight of the edge {i, j} in µk(Γ) are given in the Figure 5.1.

5.4 Basic properties of mutations

Some basic properties of the mutation operation are the following:

1. Mutation is involutive: µ2
k =Identity.

2. If Γ′ subgraph of Γ and k ∈ Γ′, then µk(Γ′) is also subgraph of µk(Γ).

3. If Γ is connected, then µk(Γ) is also connected.

Proof of property 1: Let B be a basis whose graph is Γ = Γ(B) and B′ = µεk(B),

B′′ = µ−εk (B). By Proposition 5.2 and Proposition 5.3, we have µ−εk µ
ε
k(B) = B and

Γ(B′) = Γ(B′′). Now we will show that µ2
k(Γ(B)) = µkµk(Γ(B)) = Γ(B). Now

µ2
k(Γ(B)) = µkµk(Γ(B)) = µk(Γ(µεk(B))) = Γ(µ−εk µ

ε
k(B)) = Γ(B) = Γ.

Definition 5.7 We say that skew-symmetric matrices B and B′ (or graphs Γ and Γ′)

are “mutation-equivalent” if B can be obtained from B′ by a sequence of mutations.
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This is an equivalence relation on skew-symmetric matrices (or graphs). Equivalence

classes under this relation are called mutation classes.

The general problem related with mutations is to find properties (of matrices, graphs,...)

which are invariant under mutation-equivalence. In this thesis we study some linear

algebraic properties which are invariant under mutations. For this, let us discuss how

mutation is related to congruence.

5.5 Mutations and congruence

As we mentioned above, being a fundamental operation with important applications,

it is natural to ask for properties which are invariant under mutations. One such

property is congruence:

Proposition 5.8 Suppose B and B′ are mutation equivalent matrices. Then, there is

a matrix P with det(P ) = ∓1 such that P TBP = B′, so B and B′ are congruent. In

particular, they are congruent to the same matrix of the form in Theorem 2.5.

Proof. It is enough to prove the statement for B′ = µk(B). Let P be the matrix

whose entries are defined as follows: Pki = Bki for any i 6= k; , Pkk = −1; for any

r 6= k, Prr = 1 and all the rest are 0. Then it follows that P is as in the statement of

the proposition (see Proposition 2.8 ). �

Similarly Arf invariant (Definition 4.5) is also a mutation invariant:

Proposition 5.9 [6, Proposition 5.2] Suppose B and B′ are mutation equivalent ma-

trices. Let q and q′ and be the quadratic forms associated with B mod 2 and B′

mod 2 respectively (Definition 4.4). Then Arf(q) = Arf(q′).

5.6 Skew-symmetric matrices of finite type and their graphs

Finite type skew-symmetric matrices are the most important type of matrices with

respect to the mutation operation. They were introduced in [3] as a natural analogue
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Figure 5.1: Mutation of graphs

of finite type cluster algebras, which are the most basic type of cluster algebras.

Definition 5.10 We say that a skew-symmetric matrix B is of finite type if, for any

B′ in the mutation class of B, we have |B′i,j| ≤ 1. Equivalently, we say that a graph

Γ is of finite type if, for any Γ′ in the mutation class of Γ, the weight of any edge in Γ′

is equal 1. We say that Γ is of infinite type if it is not of finite type.

The following are some properties of finite type graphs:

1. Subgraph of a finite type graph is also of finite type.

2. Mutation class of a finite type graph is finite.

Proof of property 1: Suppose Γ is a finite type graph. Suppose it has a subgraph Γ′

which is not of finite type. Then, there is a sequence of vertices k1, . . . , kr in Γ′ such

that Γ1 = µkr . . . µk1(Γ
′) has an edge with weight is at least 2. On the other hand, Γ1

is a subgraph of Γ2 = µkr . . . µk1(Γ); since Γ2 is also finite type, the weight of any

edge in Γ2 is equal to 1. We get a contradiction.
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One of the main theorems of cluster algebras is the classification of skew-symmetric

matrices (or graphs) of finite type:

Theorem 5.11 [3] A connected graph Γ is of finite type if and only if it is mutation

equivalent to a Dynkin graph in Figure 6.2.

It is natural to ask how to recognize whether a given graph is of finite type. An

effective method for this has been given in [6] using the following notion:

Definition 5.12 A graph Γ is called minimal infinite type if it is of infinite type, how-

ever all of its proper subgraphs are of finite type.

Minimal infinite graphs have been given in [6]; this can be used to determine finite

type graphs as follows:

Proposition 5.13 A graph is of infinite type if and only if it has minimal infinite sub-

graph.

Proof. Suppose Γ is finite type graph with n vertices. Then, any subgraph of Γ is of

finite type. Thus, Γ does not have any minimal infinite subgraph.

Now, suppose Γ is infinite type. Then, we will show that Γ contains a minimal infinite

subgraph by induction on the number n. The basis of induction is for n = 2. Then Γ

is a two vertex graph whose weight is greater than or equal 2, so Γ itself is minimal.

Thus, Γ contains a minimal infinite subgraph as in the proposition. Now, suppose the

statement is true for all infinite type graphs whose number of vertices is less than or

equal n− 1, so we may assume that Γ is of infinite type with n vertices. If Γ itself is

minimal, then we can take Γ = Γ′, so we are done. We may assume now that Γ is not

minimal. Then it has a proper subgraph Γ1 of infinite type with n− 1 vertices or less

,so, by induction assumption, the graph Γ1 contains a subgraph Γ2 which is minimal.

Note that Γ2 is also a subgraph of Γ. Thus, the statement is true for Γ with n vertices.

This completes the proof. �
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CHAPTER 6

PRINCIPLE EXTENSIONS OF SKEW-SYMMETRIC

MATRICES AND THEIR CLASSIFICATION: MAIN RESULTS

Principal extensions of skew-symmetric matrices are the matrices that correspond

to the “cluster algebras with principle coefficients”, whose structural properties de-

termine properties of the other cluster algebras as well [4]. Therefore, it is natural

to study algebraic and combinatorial properties of the matrices which are mutation-

equivalent to the principle extensions of skew-symmetric matrices. As we discussed

in 5.5 the normal forms and Arf invariants are also mutation invariants. In this section,

we will determine these two invariants for the matrices which are mutation-equivalent

to principal extensions (Theorems 6.8 and 6.11).

6.1 Basic definitions

Definition 6.1 LetB be a skew-symmetric integer matrix of size n. We define “principal

skew-symmetric extension of B” as the 2n× 2n matrix B̃ of the form

B̃ =



B −I

I 0


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Let us note that Γ(B̃) is obtained from Γ(B) by introducing, for each vertex i =

1, ..., n in Γ(B), a new vertex (n+ i) and a new edge from i to (n+ i).

Example 6.2 The following are the graphs of a skew-symmetric matrix and its prin-

ciple extension:

Γ(B) r r r r r- - - -

Γ(B̃) r r r r r- - -

6 6

-

6 6 6 6

6.2 Principal extensions and the mutation operation: c-vectors

In this section, we recall some remarkable properties of the matrices mutation-equivalent

to principal extensions (Definition 6.1). Let us first introduce some notation.

Definition 6.3 Let Tn be the n regular tree with edges being labeled by the numbers

1, . . . , n; the n edges incident to vertex have different labels. We write t k t′ if t, t′ ∈
Tn are connected by an edge whose label is k.

We use the vertices of Tn as a location for the matrices that we obtain from principal

extensions by mutations:

Definition 6.4 For any choice of an initial vertex t0 in Tn and an initial skew-symmetric

n×nmatrixB0, we assign each vertex t in Tn with t0 t1 . . . tr (the edge ti ti+1

is labeled by ki+1) to an n × n matrix Ct as follows: Ct0 = I , Ct = [c1;t, . . . , cn;t]

where Ct is the lower left part of µkr ...µk1(B̃0). We call ci;t c-vectors.

The following is another striking result of the theory of cluster algebras:
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Theorem 6.5 [1], [5] For each t ∈ Tn, the corresponding c-vectors which are

columns of the matrix Ct are sign coherent i.e. all entries of ci are nonnegative or all

are nonpositive; we write sgn(ci) = + or sgn(ci) = −.

Another interesting property of the c-vectors is that they can be obtained from the

standard basis by mutations of bases (Definition 5.1):

Proposition 6.6 In the setup of Definition 6.4, suppose t k t′ in Tn and let Ct =

[c1 . . . cn], Ct′ = [c′1 . . . c
′
n]. Let B = {c1, . . . , cn}, B′ = {c′1, . . . , c′n} and sgn(ck) =

ε. Then B′ = µεk(B).

Proof. We denote B̂ = µkr . . . µk1(B̃0) and B̂′ = µk(B̂) and C = Ct, C ′ = C ′t

be the c-matrices of B̂ and B̂′ respectively. Let us note that ci = [B̂n+1,i . . . B̂2n,i]
T

and c′i = [B̂′n+1,i . . . B̂
′
2n,i]

T . Let sgn(ck) = ε; if i = k, then (Definition 5.1), we

have the following: B̂′n+j,i = B̂n+j,i for all j = 1 . . . n, so c′i = −ci (as in the

definition of basis mutation). Suppose now that i 6= k and sgn(Bik) = −ε then, for

any j = 1, . . . , n, we have B̂′n+j,i = B̂n+j,i + sgn(B̂n+j,k) max{B̂n+j,kB̂ki, 0} =

B̂n+j,i + B̂n+j,kB̂ki = B̂n+j,i + |B̂ik|ck, so c′i = ci + |B̂ik|ck as in the basis mutation.

Suppose now sgn(Bik) = ε. Then max{B̂n+j,kB̂ki, 0} = 0 and so, by definition of

matrix mutation we have B̂′n+j,i = B̂n+j,i and c′i = ci. Thus, B′ = µk(B). This

completes the proof. �

In Definition 6.4, a c-matrix (whose columns are c-vectors) was defined as part of a

matrix which is obtained from a principal extension by a sequence of mutations. That

part determines the whole matrix as follows:

Proposition 6.7 In the setup of Definition 6.4 let 〈, 〉 be the form defined by B0 (Def-

inition 2.7) and B = µkr . . . µk1(B0). Let C = Ct = [c1, . . . , cn] be the c-matrix

assigned to t in Tn. Then 〈ci, cj〉 = Bij .

Proof. Let B̂ = µkr . . . µk1(B̃0) and B̂′ = µk(B̂) where B′ is the upper left part of

B̂′ so (B′ = µkr . . . µk1(B). Let C = Ct and C ′ = C ′t be the c-matrices of B̂ and

B̂′ respectively). Note that the statement is true for initial B0 i.e. 〈ei, ej〉 = (B0)ij .
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Assume the statement is true for B, i.e. 〈ci, cj〉 = Bij for all i, j = 1 . . . , n. Now

we will prove that the statement is true for B′, so 〈c′i, c′j〉 = B′ij in cases. We assume

without loss of generality sgn(ck) = + and i, j 6= k.

Case 1. Let sgn(Bik) = − and sgn(Bjk) = −. Then we have c′i = ci + |Bik|ck
and c′j = cj + |Bjk|ck. Then 〈c′i, c′j〉 = 〈ci + |Bik|ck, cj + |Bjk|ck〉 = 〈ci, cj〉 +

|Bjk|〈ci, ck〉+ |Bik|〈ck, cj〉+ |Bik||Bjk|〈ck, ck〉 = Bij + |Bjk|Bik + |Bik|Bkj = Bij +

sgn(Bjk)BjkBik+sgn(Bik)BikBkj = Bij+Bik(−Bjk−Bkj) = Bij . But notice that

B′ij = Bij + sgn(Bik) max{BikBkj, 0} and max{BikBkj, 0} = 0, so B′ij = Bij =

〈ci, cj〉 = 〈c′i, c′j〉.

Case 2. Let sgn(Bik) = − and sgn(Bjk) = +. Then we have c′i = ci + |Bik|ck and

c′j = cj . Then 〈c′i, c′j〉 = 〈ci+|Bik|ck, cj〉 = 〈ci, cj〉+|Bik|〈ck, cj〉 = Bij+|Bik|Bkj =

Bij + sgn(Bik)BikBkj . But notice that B′ij = Bij + sgn(Bik) max{BikBkj, 0} and

max{BikBkj, 0} = BikBkj , so B′ij = Bij + sgn(Bik)BikBkj = 〈c′i, c′j〉.

Case 3. Let sgn(Bik) = + and sgn(Bjk) = −. Then we have c′i = ci and c′j = cj +

|Bjk|ck. Then 〈c′i, c′j〉 = 〈ci, cj + |Bjk|ck〉 = 〈ci, cj〉+ |Bjk|〈ci, ck〉 = Bij + |Bjk|Bik.

But notice thatB′ij = Bij+sgn(Bik) max{BikBkj, 0} and max{BikBkj, 0} = BikBkj ,

so B′ij = Bij + sgn(Bik)BikBkj = Bij + sgn(Bkj)BikBkj = Bij + |Bkj|Bik. Thus

B′ij = 〈c′i, c′j〉.

Case 4. Let sgn(Bik) = + and sgn(Bjk) = +. Then we have 〈c′i, c′j〉 = 〈ci, cj〉 = Bij

but notice that B′ij = Bij + sgn(Bik) max{BikBkj, 0} and max{BikBkj, 0} = 0, so

B′ij = Bij = 〈ci, cj〉 = 〈c′i, c′j〉. This completes the proof. �

6.3 Classification of principal extensions (first main result of the thesis)

Our first result is the classification of principal extensions of skew-symmetric matri-

ces under congruence:

Theorem 6.8 Let B be skew-symmetric integer matrix of size n and B̃ be the prin-

cipal skew-symmetric extension of B. Then, the normal form of B̃ with respect to

congruence (Theorem 2.5) is the following 2n× 2n matrix:
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

0 1

−1 0

0 1

−1 0
. . .

0 1

−1 0


(so, in the setup of Theorem 2.5, we have d1 = ... = dn = 1).

Proof. Let 〈, 〉 be the form defined by B̃ on Z2n (we have 〈ei, ej〉 = B̃ij ). Let us

also note that, for j, k = 1, . . . , n with k 6= j, we have 〈en+j, ek〉 = 0. We will prove

the theorem by showing the existence of a symplectic basis, whose matrix is as in the

statement of the theorem (Definition 2.10). We will show that such a basis can be

obtained by changing the initial basis using transformations of the following type:

Lemma 6.9 Suppose there is an edge from ei to ej with weight α in Γ(B). Let e′i =

ei + αen+j . Then the graph of the basis B̃′ = {e1, . . . , ei−1, e′i, ei+1,

. . . , ej . . . , en, en+1, . . . , e2n} with respect to 〈, 〉 is obtained from Γ(B̃) by removing

only the edge from ei to ej and not introducing any new edges. Thus, the matrix of

the basis B̃′ with respect to 〈, 〉 is the principal extension of the matrix B′ such that

B′i,j = B′j,i = 0 and B′k,l = Bk,l for any (k, l) 6= (i, j).

Proof. Let us note that 〈e′i, ej〉=〈ei+αen+j, ej〉=〈ei, ej〉+ α〈en+j, ej〉=−α+α·1 = 0,

so there is no edge between e′i and ej in Γ(B̃′). Also, for any k = 1, . . . , 2n with k 6=
j, we have 〈e′i, ek〉 = 〈ei+αen+j, ek〉 = 〈ei, ek〉+α〈en+j, ek〉 = 〈ei, ek〉+0 = 〈ei, ek〉,
so there is an edge between e′i and ek in Γ(B̃′) if and only if the same holds for Γ(B̃).

�

To prove theorem, let us consider an ordering of the edges in Γ(B) as

i1 j1 ,
α1 α2 αrr -r -i2 r j2 , . . . , ir r -jr.

27



Applying Lemma 6.9 consecutively for this sequence of edges, we eliminate all edges

of Γ(B) and obtain a basis C={f1, . . . , fn, fn+1 = en+1, . . . , f2n = e2n} such that the

only edges in the graph of C are the edges from ei to en+i for i = 1, ..., n, so C is

a symplectic basis (Section 3.3) whose matrix is as in the statement of the theorem.

The proof of the theorem has been completed. �

6.4 Arf invariants of principal extensions of finite type skew-symmetric matri-

ces (second main result of the thesis)

Our second result is a formula that gives Arf invariants of principal extensions of

finite type skew-symmetric matrices. The formula computes the Arf invariant using

combinatorial properties of the corresponding graphs, therefore we first give some

related definitions.

Definition 6.10 Suppose Γ is a graph, by a subgraph of Γ, we mean an induced (full)

directed subgraph on some vertices of Γ and we keep the edge weights as in Γ.

By a cycle in Γ we mean an induced (full) subgraph whose vertices can be labeled by

{1, 2, ..., r}, r ≥ 3, such that there is an edge between i and j if and only if |i−j| = 1

or {i, j} = {1, r}.

Note that every vertex in a cycle must be connected to precisely two vertices in the

cycle.

Examples of subgraphs of a graph are the following:

Note that (2) is a subgraph of the graph (1) on the vertices {1,2,3} and it is a cycle,

however, (3) is not cycle but still a subgraph of (1) on the vertices {2,3,4,5}.

We can now state our second main result:

Theorem 6.11 Let B be a skew-symmetric matrix of finite type with graph Γ(B)

(Definition 3.1) . Let B̃ be the principal extension of B and q̃ be the quadratic form

associated with B̃ mod 2 (Definition 4.4). Then we have the following:
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Figure 6.1: Examples of subgrahs

Arf(q̃) =


0 if Γ(B) has odd number of cycles

1 if Γ(B) has even number of cycles.
(6.1)

(Note that B̃ mod 2 is non-singular by Theorem 6.8, soArf(q̃) is defined (Definition

4.5 ))

Proof. For the proof, we use the setup given in Chapter 4: we denote by 〈, 〉 the

alternating form defined by B̃ mod 2 on F2n
2 , so 〈ei, ej〉 = B̃ij mod 2, for all i, j =

1, . . . , 2n, where {e1, ..., e2n} is the standard basis of F2n
2 . Since we work over F2

and each non-zero element of B̃ is either 1 or −1 (because B is of finite type), we

use same notation Γ(B̃) for the undirected graph of the standard basis with respect to

the form 〈, 〉 (Definition 4.3). More generally, for a basis {f1, ..., f2n} of F2n
2 whose

matrix is B̃′ with respect to the form 〈, 〉, Γ(B̃′) denotes the undirected graph as in

Definition 4.3.

We first observe the following for B as in the statement of the theorem:

Lemma 6.12 Suppose Γ(B) has a leaf, i.e a vertex, say ei, connected to exactly one

other vertex, say ej , in Γ(B). Let B′ be the matrix of size n − 1 such that Γ(B′) is

the graph obtained from Γ(B) by removing the vertex ei. Let q̃′ be the quadratic form

associated with B̃′ mod 2. Then Arf(q̃) = Arf(q̃′). Furthermore, Γ(B) and Γ(B′)

have the same number of cycles.

Proof. We may assume that i = n. Then, for any k = 1, . . . , 2n− 1, we have the

following: if k = j, then 〈en + en+j, ej〉=〈en, ej〉+ 〈en+j, ej〉=1+1=0; if k 6= j, then
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〈en + en+j, ek〉=〈en, ek〉+ 〈en+j, ek〉=0+0=0. Thus the graph Γ(B̃) is a disjoint union

of Γ(B̃′) and the two vertex graph

e2n (en + en+j)e2n (en + en+j)
q q

for all cases. Let now {u′1, v′1, . . . , u′n−1, v′n−1} be a symplectic basis for the restriction

of the form 〈, 〉 to the subspace span{e1, .., en−1, en+1, ..., e2n−1} (note that the matrix

of this basis with respect to 〈, 〉 is B̃′ mod 2), so Arf(q̃′) =
n−1∑
i=1

q(u′i)q(v
′
i). Then

{u′1, v′1, . . . , u′n−1, v′n−1, en + en+j, e2n}

is a symplectic basis of 〈, 〉 on the whole space F2n
2 , so Arf(q̃) =

n−1∑
i=1

q(u′i)q(v
′
i) +

q(en + en+j)q(e2n) = Arf(q̃′) + q(en + en+j)q(e2n). We also have q(en + en+j) =

q(en) + q(en+j) + 〈en, en+j〉 = 1 + 1 + 0 = 0. Thus, Arf(q̃) = 0 · 1 + Arf(q̃′) =

Arf(q̃′). Let us also notice that removing the vertex ei from Γ(B̃) doesn’t change

the number of cycles in Γ(B̃), because ei is connected to precisely one vertex, so it is

not contained in any cycle in Γ(B) (removing ei does not affect any cycle). Thus the

number of cycles in Γ(B̃) and Γ(B̃′) are equal. �

Lemma 6.13 Suppose Γ(B) has a vertex ei such that ei is contained in exactly one

cycle C in Γ(B) and ei is not connected to any vertex which is not in C. Let B′

be the (n − 1) × (n − 1) matrix such that Γ(B′) is the graph obtained from Γ(B)

by removing the vertex ei. Let q̃′ be the quadratic form associated with B̃′. Then

Arf(q̃)=1+Arf(q̃′). Furthermore, the number of cycles in Γ(B′) is one less than the

number of cycles in Γ(B).

Proof. Let us assume, without loss of generality, that i = n. Let ej and ek be

the vertices in C which are connected to ei. Note that these are the only vertices

which are connected to ei. Let us denote by B′ the basis {e1, . . . , en−1, en + en+j +

+en+k, en+1, . . . , e2n}. Let us also note that for any m = 1, . . . , 2n− 1 we have the

following: if m = j, then 〈en + en+j + en+k, ej〉=〈en, ej〉+ 〈en+j, ej〉+ 〈en+k, ej〉 =

= 1 + 1 + 0 = 0; if m = k, then 〈en + en+j + en+k, ek〉=〈en, ek〉 + 〈en+j, ek〉 +

〈en+k, ek〉 = 1 + 0 + 1 = 0; if m 6= k, j, then 〈en + en+j + en+k, em〉=〈en, em〉 +

〈en+j, em〉 + 〈en+k, em〉 = 0 + 0 + 0 = 0. Thus, the graph of Γ(B̃) is disjoint union
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of Γ(B̃′) and the two vertex graph

e2n (en + en+j + en+k)e2n (en + en+j + en+k)
q q .

Let now {u′1, v′1, . . . , u′n−1, v′n−1} be a symplectic basis for the restriction of the form

〈, 〉 to the subspace span{e1, .., en−1, en+1, ..., e2n−1} (note that the matrix of this basis

with respect to 〈, 〉 is B̃′ mod 2), so Arf(q̃′) =
n−1∑
i=1

q(u′i)q(v
′
i). Then

{u′1, v′1, . . . , u′n−1, v′n−1, en + en+j, e2n}

is a symplectic basis of 〈, 〉 on the whole space F2n
2 , so Arf(q̃) =

n−1∑
i=1

q(u′i)q(v
′
i) +

q(en+en+j +en+k)q(e2n) = Arf(q̃′)+q(en+en+j +en+k)q(e2n). Notice that, q(en+

en+j + en+k) = q(en) + q(en+j) + q(en+k) + 〈en, en+j〉+ 〈en, en+k〉+ 〈en+j, en+k〉 =

1 + 1 + 1 + 0 + 0 + 0 = 1. Thus Arf(q̃) = 1 · 1 + Arf(q̃′) = 1 + Arf(q̃′). Notice

that removing the vertex ei from Γ(B̃) eliminates the cycle C, but does not affect any

other cycle in Γ(B), because C is the only cycle that contains ei, so the number of

cycles in Γ(B̃) is one more than that of Γ(B̃′).

This completes the proof of the lemma. �

The following lemma follows from the description given in [6] for finite type graphs:

Lemma 6.14 Let Γ be a finite type graph. Then it has a vertex as in Lemma 6.12 or

in Lemma 6.13.

To complete the proof of the theorem, suppose Γ(B) is a finite-type graph with n

vertices. We will show that Arf(q̃) is as in the Theorem by induction on n. The

basis of induction is for n = 1. Then, Γ(B) is a single vertex e1 and so, {e1, e2} is

a symplectic basis for Γ(B̃). Therefore, Arf(q̃) = q(e1)q(e2) = 1 which is as in the

statement of the theorem because Γ(B) has zero number of cycles for n = 1. For the

inductive hypothesis, we will assume that the theorem is true for finite-type graphs

with n− 1 vertices. We will show that Arf(q̃) is as in the theorem for any finite-type

graph Γ with n vertices. Since Γ is a finite type graph, by Lemma 6.14, it has a vertex

as in the Lemma 6.12 or Lemma 6.13. Let us suppose first that (by Lemma 6.14) Γ

has a leaf as in the Lemma 6.12. Let Γ′ be the graph with n − 1 vertices obtained
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from Γ by removing the leaf. Then, by Lemma 6.12, we have Arf(q̃)=Arf(q̃′). Note

that Γ′ is also of finite-type because it is a subgraph of Γ. By induction assumption,

Arf(q̃′) is as in the theorem. Note also that, by Lemma 6.12, Γ(B) and Γ(B′) have

the same number of cycles, so, Arf(q̃) is also as in the theorem. To continue, let us

now suppose (by Lemma 6.14) that Γ has a vertex as in Lemma 6.13, say en. Let Γ′

be the graph with n − 1 vertices obtained from Γ by removing the vertex en. Then,

by Lemma 6.13, we have Arf(q̃) = 1 + Arf(q̃′). Note that Γ′ is also of finite type

because it is a subgraph of Γ. Furthermore, by induction assumption, Arf(q̃) is as in

the statement of the theorem (Theorem 6.11), so we have

Arf(q̃) =


1 + 0 = 1 if Γ(B̃′) has odd number of cycles

1 + 1 = 0 if Γ(B̃′) has even number of cycles.
(6.2)

Also the graph Γ(B̃) has one more cycle than Γ(B̃′) (Lemma 6.12), so if Γ(B̃′) has

odd number of cycles, then Γ(B̃) has even number of cycles and if Γ(B̃′) has even

number of cycles, then Γ(B̃) has odd number of cycles. Thus

Arf(q̃) =


1 + 0 = 1 if Γ(B̃) has even number of cycles

1 + 1 = 0 if Γ(B̃) has odd number of cycles,
(6.3)

Also note that the cycles in Γ(B) and Γ(B̃) are the same, so Arf(q̃) is as in the

statement of the theorem. This completes the proof of theorem. �
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