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ABSTRACT

SINGLE AND MULTI-FRAME MOTION DEBLURRING FOR LEGGED
ROBOTS: CHARACTERIZATION USING A NOVEL FD-AROC

PERFORMANCE METRIC AND A COMPREHENSIVE MOTION-BLUR
DATASET

Gültekin, Gökhan Koray
Ph.D., Department of Electrical and Electronics Engineering
Supervisor : Assoc. Prof. Dr. Afşar Saranlı

September 2016, 110 pages

Dexterous legged robots are agile platforms that can move on variable terrain at high
speeds. The locomotion of these legged platforms causes oscillations of the robot
body which become more severe depending on the surface and locomotion speed.
Camera sensors mounted on such platforms experience the same disturbances, hence
resulting in motion blur. This is a corruption of the image and results in loss of infor-
mation which in turn causes degradation or loss of important image features. Most
of the studies in the literature and the proposed performance metrics focus mainly
on the visual quality of motion blurred images and its improvement. However, from
the perspective of computer vision algorithms, feature detection performance is an
essential factor that determines their performance. The aim of this study is to analyze
and evaluate motion blur on a legged robot and the deblurring methods with a focus
on feature detection. We propose a multi-frame motion deblurring method utilizing
the variable motion blur in consecutive image frames captured from the camera on a
legged mobile robot. For a comparison of blurred and deblurred images, we define a
novel performance metric based on the feature detection accuracy. Noting that a suit-
able data set to evaluate the effects of motion blur and its compensation for legged
platforms is lacking in the literature, we develop a comprehensive multi-sensor data
set for that purpose. The data set consists of monocular image sequences collected
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in synchronization with a low cost MEMS gyroscope, an accurate fiber optic gyro-
scope and an externally measured ground truth motion data. We make use of this data
set for an extensive benchmarking of prominent motion deblurring methods from the
literature in terms of the proposed feature based metric.

Keywords: Motion Blur, Motion Deblurring, Corner Feature Detection, Legged Robots
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ÖZ

BACAKLI ROBOTLARDA HAREKET BULANIKLIĞINI TEKİL VE
ÇOĞUL KARELER KULLANARAK GİDERME: ÖZGÜN FD-AROC

BAŞARIM ÖLÇÜTÜ VE KAPSAMLI BİR HAREKET BULANIKLIĞI VERİ
KÜMESİ İLE NİTELEME

Gültekin, Gökhan Koray

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Afşar Saranlı

Eylül 2016 , 110 sayfa

Kabiliyetli bacaklı robotlar, yüksek hızlarda değişken arazilerde kıvrak bir şekilde
hareket edebilen yapılardır. Bu yapıların hareketleri, hareket hızı ve yüzeye bağlı ola-
rak robot gövdesinde ciddi salınımlara neden olmaktadır. Bu yapılara monte edilmiş
olan kamera algılayıcıları da aynı bozanetkenlere maruz kalmakta ve dolayısıyla ha-
reket bulanıklığına yol açmaktadır. Bu resimdeki bir bozulmadır, bilgi kaybına ve
resimdeki önemli öznitelik noktalarının kaybolmasına yol açmaktadır. Literatürdeki
birçok çalışma ve önerilen başarım ölçütleri genel olarak hareket bulanıklığına maruz
kalmış olan resimlerin görsel kalitesi ve bunun artırılması üzerine odaklanmaktadır.
Ancak, özniteliklerin tespit başarımı, bilgisayarla görme algoritmalarının başarımın-
daki önemli bir etkendir. Bu çalışmanın amacı, bacaklı bir robot üzerindeki hareket
bulanıklığının analizi ve bulanıklık giderme yöntemlerinin öznitelik tespit başarımına
odaklı olarak değerlendirilmesidir. Bacaklı bir robot üzerinden alınan ardışık resim
karelerindeki farklı hareket bulanıklığından yararlanılarak çok kareli bir hareket bu-
lanıklığı giderme yöntemi önerilmiştir. Hareket bulanıklığı ve giderilmesinin ölçü-
münde, öznitelik tespit başarımı temelinde yeni bir başarım ölçütü önerilmektedir.
Literatürde halihazırda, bacaklı robotların hareketinden kaynaklanan hareket bula-
nıklığı ve bunun giderilmesi için kullanılabilecek bir veri kümesi bulunmaması ne-
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deniyle, çoğul algılayıcı verisi içeren kapsamlı bir veri kümesi oluşturulmuştur. Veri
kümesi, tekgözlü kamera resim dizileri ile eş zamanlı olarak toplanmış olan düşük
maliyetli MEMS dönüölçer, hassas bir fiberoptik dönüölçer ve harici olarak ölçülmüş
olan referans hareket verisinden oluşmaktadır. Bu veri kümesi kullanılarak, litera-
türde öne çıkan hareket bulanıklığı giderme yöntemlerinin, önerilen öznitelik temelli
ölçüt ile kapsamlı olarak kıyaslaması yapılmıştır.

Anahtar Kelimeler: Hareket Bulanıklığı, Hareket Bulanıklığının Giderilmesi, Köşe
özniteliklerinin Bulunması, Bacaklı Robotlar
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CHAPTER 1

INTRODUCTION

Hexapod robots are highly mobile robotic platforms that can move on very rough
terrain surfaces with high speeds. The nature of these legged platforms causes high
mechanical vibrations on the robot body even during locomotion on a flat surface.
Moreover, if it moves on a rough terrain with high speed, these vibrations increases
even more. One such family of robots with outstanding rugged terrain locomotion
performance share the RHex morphology [46]. Our work utilizes the SensoRHex ex-
perimental hexapod platform, which preserves the morphology but is a hardware and
software improvement on the original RHex design. Fig. 1.1 shows the SensoRHex
robot with and without its skin.

Figure 1.1: SensoRHex legged mobile robot platform

During its operation in an environment, the robot requires to gather some information
about the state of itself and the surroundings. Among various sensors, cameras are
very commonly utilized since vision provides a rich variety of information by the
use of image processing techniques available. For this purpose, there exists a camera
mounted to the front of our legged robot platform SensoRHex as seen in Fig. 1.1.

An ideal image is the snapshot of a scene and every point in the scene corresponds
to a single point on the image. However, the cameras are not capable of capturing
the image of a scene in an instant of time. The measuring element of the camera
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(mostly image sensors in digital cameras) requires enough light to fall on them to be
able to measure the scene brightness with enough accuracy. Therefore, the measuring
element should be exposed to the light rays coming from the scene for some time
period. During this time period, the scene and the camera should be standing still to
be able to capture a sharp image of the scene. If this assumption does not hold, then
each point on the scene does not fall onto a single point on the image but spreads into
different locations causing a motion blur to appear in the captured image. Motion blur
is defined as the apparent streaking of rapidly moving objects in a still image. It is
caused by the relative motion between the camera and the scene during the exposure
period of the camera. If the frequency spectrum of a sharp image (having negligibly
small or no motion blur) is analyzed it can be observed that it includes high frequency
components. However, when this image is exposed to motion blur, it is observed
that motion blur acts like a lowpass filter and filters high frequency components out.
Although there are studies that intentionally add motion blur to generate visually
pleasant videos or utilize the motion blur effect (e.g. for generating super-resolution
image or to gather information about the motion, etc.), it is often an unwanted effect
that degrades the performance of most of the computer vision algorithms. Therefore,
it is one of the major problems in computer vision literature to eliminate or decrease
the effect of motion blur in images and video sequences.

The camera mounted on a legged robot which is moving with a high speed and on
a rough terrain is mostly exposed to high mechanical vibrations. These vibrations
during a video capture prevent obtaining sharp images from the camera. This results
in a corruption or loss of information by means of a blurring on the image. An ex-
ample image captured during the walking motion of a hexapod robot that includes
motion blur is shown in Fig. 1.2. As can be noticed easily from the figure, the cap-
tured image is neither visually pleasant for human perception for remote controlling
by a human operator nor suitable for gathering high frequency components of scene
such as edges, corners etc.

Computer vision often relies on image processing algorithms that can extract so called
image features that are meaningful for higher level visual processing and image un-
derstanding. Widely used image features include those that are suitable for human
interpretation such as corners, lines and angles in the image as well as important
features that are multi-dimensional and that do not carry such direct meaning. Such
features include the popular Harris Corner Detector [16], Features from Accelerated
Segment Test (FAST) [44, 45], Scale-Invariant Feature Transform (SIFT) [45] and
Speeded Up Robust Features (SURF) [5]. The non-uniform degradation of the image
and the loss of high-frequency components have a significant impact on the reliable
extraction of these features and hence the performance of subsequent image analysis.

The recovery of the original image content from the motion-blur corrupted version
has important applications. More traditionally, these applications involved improv-
ing visual appearance of the image such as in digital photography. A more recent
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focus is on computer vision and mobile robot vision in particular. Legged robotics
is a particularly challenging area because of ever-presence of severe camera motion.
It is reasonable to expect that compensation of motion-blur with the aim of partially
recovering the original image data would also improve the performance of the afore-
mentioned feature detection methods. Such compensation based on a single motion-
blurred frame which essentially is an inverse filtering problem, unfortunately is an
ill-posed problem. The zeros of the “blur filter” results in a loss of image information
that cannot be recovered. Single-frame deblurring methods, the focus of the present
paper, concentrate on using apriori information and make assumptions in order to
reconstruct the image with minimal loss and processing artifacts. Measuring the per-
formance of these reconstruction algorithms requires performance measures that can
quantify the success of the algorithm with respect to a given application. The liter-
ature discuss various such “performance metrics” but the present paper argues that
these are mostly focused on human perceptual improvement and/or raw distortion
in the image and are not necessarily well suited for automated computer vision ap-
plications since they do accurately reflect the performance of the feature extraction
process.

Secondly, the benchmarking of motion deblurring methods requires synthetic and/or
real test data with reliable ground truth information. There are many studies in the
literature on motion blur and methods of deblurring. Some of these, namely blind
methods require only motion blurred image(s) whereas informed methods require
both the motion blurred image(s) as well as information about the corresponding mo-
tion and/or the resultant blurring function (also called the point-spread function-PSF).
Proposed methods are generally tested with a custom generated limited test set which
often may not fully disclose the performance which can be highly dependent on the
chosen data. To be able to make a fair comparison of the methods, they should be
tested on the same data set which covers scenarios of the application area. For ex-
ample, for the application area of legged robotic platforms, the test data set collected
from a wheeled vehicle may not reflect the true performance of tested algorithms on
the intended application area. Legged locomotion platforms, including robotic ones
have some particular motion characteristics that are reflected to the resulting motion
blur. This effects algorithm performance but also, may sometimes be exploited for
the development of application specific optimizations.

Although there are many studies and data sets available on motion blur, to the best
of our knowledge, there is no multi-modal data set that can be used to evaluate the
performances of blind and non-blind motion deblurring algorithms within the legged
robotics application area. One of the aims of this study was to build a comprehensive
motion blur data set, composed of multiple on-board inertial sensors supplementing
the camera sensor as well as synchronized data from external sensors for ground truth
information. It is our hope that this data set is not only suitable for the objective
comparison of current and future algorithms on motion deblurring for legged mobile
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robotic but also for other vision research for cameras mounted on legged platform.

Figure 1.2: An example motion blurred image frame captured from the camera on
the SensoRHex robot while it is walking on flat laboratory ground surface.

1.1 Literature Survey

Motion blur term is as old as the invention of the camera. Therefore, a large body of
literature is available on motion blur because of the wide application area of cameras.
While some of the studies try to eliminate motion blur, some other utilizes motion blur
to gather information. Since our focus is on eliminating the motion blur and getting a
sharper image, we mainly present studies in literature focusing on this subject while
briefly giving examples from other studies which utilize motion blur such as generat-
ing super-resolution image in [1], motion estimation in [10], 3D shape estimation in
[11] and vehicle speed detection in [30].

As a sensor to gather information about the environment, camera is frequently used
in robotics applications [15, 17, 18, 30]. However, vision sensors are considerably
sensitive to shocks and instantaneous movements especially at high speed and ac-
celerations. An experimental study on the six-legged SensoRHex robot platform re-
vealed that the performance of the feature detectors (i.e., edge and corner detection
algorithms) degrades with increasing velocity values. Obtained results showed that at
various normalized velocity values which measured as 0.1, 0.4, 0.8 and 1.0, respec-
tively, every 2, 16, 28 and 60 of 100 frames cannot be included to feature detection
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algorithms due to the intolerable motion blur effect [52]. As these studies suggest,
motion blur is an unwanted effect for the robotics applications.

There are different techniques proposed in literature to eliminate motion blur. Stabi-
lization methods try to eliminate motion blur during the capturing process by cancel-
ing out the relative speed difference between the camera and the scene objects. This
is generally done by stabilizing the camera mechanically so that the camera and the
scene are standing still relative to each other during the exposure. This has the ability
to achieve both a fixed camera line-of-sight while concurrently reduce motion blur.
However the main disadvantage of the electro-mechanical approach is the complexity
of the control problem and the requirement of a mechanical structure that is generally
larger and heavier than the camera itself. To prevent camera motion, some newer
cameras optically stabilize their lenses where adaptive optical elements controlled by
inertial sensors compensate for camera motion to reduce blur [8, 37].

The camera stabilization mechanisms are also used in robotics applications. A camera
stabilization platform is designed for SensoRHex robot which is capable of stabiliz-
ing the disturbances along angular rotations around 3 axes [7, 43]. The mechanism
has three linear motors and which enables the platform to make roll, pitch and yaw
motions. The solid drawing of the camera stabilization platform is given in Fig. 1.3.
However, this kind of platforms can stabilize the camera motion only within a small
range and are not effective when scene motion exists.

Figure 1.3: Camera stabilization platform designed for SensoRHex robot. The
mechanism has three linear motors and has the capability to rotate around 3 axes

(roll, pitch and yaw)
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Since motion blur is a significant problem in robotics, there are studies that addresses
the motion deblurring in robotics. Motion deblurring for a fast moving robot eye is
studied in [23]. The mechanism is shown in Fig. 1.4. Instead of using any sensor,
they estimate the PSF by using the system dynamics and input commands. The ex-
perimental results are evaluated using an average pixel difference based metric. [38]
presents a coded exposure based motion deblurring for a wheeled mobile robot with
a side looking camera on it which is shown in Fig. 1.4. They estimate the blur kernel
by a simple template matching between adjacent frames.

Figure 1.4: (Left) The robot eye mechanism used for motion deblurring in [23].
(Right) Wheeled mobile robot with a side looking camera that is used for coded

exposure based motion deblurring in [38].

The other group of methods present post processing techniques to deblur a motion
blurred image by the use of post image processing methods. The post processing
methods can be classified into two groups: Deconvolution methods and hardware
based approaches. The difference between these two groups is that the deconvolution
methods use only the motion blurred image without manipulating the capturing pro-
cess of the image where hardware based approaches manipulates the camera during
the image capturing duration in order to modify the motion blurring process and mo-
tion blur characteristics of the captured image. Studies in these groups are explained
below in detail.

Deconvolution methods; are a major family of methods that do not modify the im-
age capture process but rely on purely algorithmic methods to rectify motion-blurred
images. Different from camera stabilization approaches and hardware based post
processing methods, deconvolution methods do not need a special mechanism and
therefore can be utilized in a wide range of space-constrained or ruggedized applica-
tions. They are divided into two as blind and non-blind deconvolution methods based
on the availability of Point Spread Function (PSF). The non-blind methods assumes
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Figure 1.5: A box filter in time domain and corresponding sinc function in frequency
domain which corresponds to a linear PSF. The zero response frequencies of the sinc

function prevents its invertibility.

that the PSF of the motion blur is available whereas blind methods try to estimate the
PSF from the motion blurred image. Then, by using the PSF, the blurred image is de-
convolved to restore the original sharp image. The motion blurring process behaves
like a box filter function as shown in Fig. 1.5. Because of the finite exposure time,
the convolution with a box function in time domain corresponds to multiplication by
a sinc function in frequency domain. The frequency transform of the PSF contains
zeros (nulls). Therefore the corresponding spatial frequencies in the captured photo
are lost. This makes the deblurring process an ill-posed problem.

Well known examples to deconvolution based methods are Richardson-Lucy [42, 32]
and Wiener deconvolution [57]. Richardson-Lucy is an iterative restoration algorithm
that uses a Poisson based statistical image pixel distribution model. Starting from
an initial estimate of the image to restore , the method iteratively updates using the
update expression given in (1.1), where t is the iteration index, f̃i is the ith pixel of
the original raster scanned image to be reconstructed, hj,k is the kth pixel of the PSF
of the jth pixel and gk is the kth pixel of the degraded image.

f̃ t+1
i = f̃ ti

∑
k

hi,k gk∑
j hj,k f̃

t
j

(1.1)

Wiener deconvolution is an application of Wiener filter to reduce the effect of noise
amplification in deconvolution. It works in frequency domain and try to maximize the
signal to noise ratio according to the image and noise power spectrum. The Wiener
deconvolution is defined in frequency domain as given in (1.2), where F̃ and H are
the Fourier transforms of restored image and the PSF, S is the mean power spectral
density of the original signal f and N represents the power spectral density of the
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noise n. Other recent studies in this group are explained below in more detail.

F̃ =
H∗ S

|H|2 S +N
(1.2)

As a relatively new example than the above, [12] propose a method for uniform mo-
tion blurred images due to camera shake where in-plane rotation is negligible. They
estimate the blur kernel in a coarse-to-fine fashion from a user specified patch which
is rich in edge structure within the blurred image and the initial maximum size of
the kernel. Then they perform a standard Richardson-Lucy deconvolution method for
deblurring.

Another study assumes that the camera shake blur is mostly due to the 3D rotational
motion of camera which is presented in [56]. Different from most of the deblurring
methods in literature, their method handles non-uniform motion blur. They propose
a new parametrized geometric model for blurring in terms of the camera rotations.
They use two methods, first use only single blurred image and secondly use both a
blurred and a sharp but noisy image.

Figure 1.6: (Left) A typical real-world scene. (Right) The empirical distribution of
gradients in the scene (blue), along with a Gaussian fit (cyan), a Laplacian fit (red)

and a Hyper-Laplacian with α = 2/3 (green) [25].

[25] presents a new deconvolution approach using hyper-Laplacian priors shown in
Fig. 1.6. Their solution adopt either a look-up-table or analytical formulae. Either
way, they can achieve comparable quality to iteratively reweighted least squares based
methods while still being several order of magnitude faster in computation.

In [14], the authors present a new blur kernel estimation method based on the statis-
tical irregularities of motion blurred images power spectrum. They use a power-law
based model for describing natural images. Their method can achieve better running
times compared to maximum a posteriori estimation based methods.

[48] focuses on reducing visual artifacts in deblurring such as noise and ringing. They
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develop a probabilistic model for the spatial randomness of noise and a local smooth-
ness prior that reduces ringing artifacts in smooth regions.

Other interesting examples include for example [22] where they use inertial mea-
surement sensors to estimate blur function and use it for nonuniform deconvolution.
Another sensor assisted motion deblurring study is presented by [20] for smartphones.
They especially focus on the quality of human face deblurring in images.

A group of hardware related techniques try to manipulate the image capturing process
by configuring or controlling the camera hardware. This manipulation generates some
favorable properties for the motion blurred images that help the deblurring process.
These methods are generally focused on the motion blur caused not by the camera
ego-motion but by the scene motion.

Figure 1.7: The steps of motion deblurring method proposed in [40]. They only
manipulate the capturing part to get an invertible motion blur PSF.

Fluttered Shutter Approach: To prevent the zeros in PSF [40] propose a different
exposure method. Their method includes the three familiar steps as given in Fig. 1.7.
The only modification is done in the capturing part. Rather than keeping the shutter
open throughout the exposure duration, they propose a fluttered shutter approach.
They place a ferro-electric liquid crystal shutter in front of the camera lens as seen
in Fig. 1.8 to modulate the exposure with a binary code they proposed. They call
the resultant blur a “coded blur”. They toggle the shutter on and off in such a way
that the motion is integrated in different durations that corresponds different filtering
effects to be involved. The flutter changes the box filter to a broad-band filter that
preserves high-frequency spatial details in the blurred image and the corresponding
deconvolution becomes a well-posed problem. The corresponding PSF obtained by
this method can have the maximum coverage in the frequency domain so that a null-
free PSF can be obtained.

They use a binary code sequence with 52 chops. They suggest the use of two differ-
ent code types. One of the codes are called Modified Uniformly Redundant Arrays
(MURA) codes which are used in coded-aperture astronomical imaging. Another
code is proposed by them which is the sequence of 10100001110000010100001100
11110111010111001001100111. The frequency domain magnitudes of the proposed
codes are given in Fig. 1.9 together with the conventional flat exposure. As seen from
the figure, the coded exposure prevents the nulls in the PSF which provides invertibil-
ity of motion blur.
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Figure 1.8: The prototype camera setup with fluttered shutter mechanism and its
control circuit [40].

Figure 1.9: The DFT of the box filter (flat blur) is a sinc function and frequencies
with sharp dips are lost. The MURA code filter is better than box filter but the

variance of the frequency magnitudes is high compared to their proposed code. (b)
The DFT of decoding filters show that box and MURA filters require significant

amplification of certain high frequencies. [40]

The next step of the process is PSF estimation as usual. They do not perform PSF es-
timation, but instead rely on a user assisted interactions to estimate the blur path. The
last step is the deconvolution of the image by using the given PSF. Instead of using a
circular deconvolution method, they use a linear algebra approach. The comparison
of the obtained results are given in Fig. 1.10. It is seen from the results that fluttered
shutter approach is very successful in preserving the high frequency components and
also good at the obtained signal to noise ratio (SNR).
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Figure 1.10: The comparisons of obtained results. a) A short exposure photo is
shown in a low light environment and its log intensity scaled form is given at (e). b)

An image obtained with traditional continuous exposure with 200ms duration is
shown. c) Fluttered shutter exposure using MURA code. d) Fluttered shutter

exposure using proposed code. f,g,h) Deblurred results [40].

There are also some weaknesses of their study. Firstly, they require a camera with a
custom fluttering mechanism otherwise it is not possible to apply their method using
the conventional cameras. Secondly, the PSF should be known. Their method does
not include an automated PSF estimation and therefore an accurate PSF should be
maintained to their method in order to get good results. They assume the absence of
large occlusions and dis-occlusions which breaks the spatially-invariant PSF assump-
tion. This assumption also brings another constraint on the motion of the objects.
They assume linear constant velocity motions that lead to spatially-invariant blur in
photos. The direction of the motion should also be provided by the user and the
motions having different directions are out of their scope. They also cannot handle
transparent or translucent objects.

The inverse filtering methods can be classified according to their assumption on the
availability of the PSF. Those methods which assume that the PSF is unknown are
called blind deblurring methods and those that assume a known PSF are called non-
blind methods. Even when the PSF is known, deconvolution amplifies noise and high
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frequencies are usually lost in the deblurred results.

Two camera hybrid method for PSF estimation: [6] proposes a hybrid method includ-
ing two cameras for motion deblurring. Their main contribution is their proposed
method to estimate an accurate PSF. They use a hybrid system including two cameras
as seen in Fig. 12. One of the cameras capture low resolution, high frame rate images
to get motion blur free images and the other camera captures high resolution, low
frame rate images with high motion blur. The low resolution camera is used to obtain
the motion path to estimate the PSF. High resolution camera is the main camera. The
images captured by the high resolution camera will be deblurred by using the PSF
obtained from the secondary low resolution camera. They make an optical flow based
motion estimation for each frame obtained from the secondary camera. The discrete
motion vectors are interpolated among the frames to obtain an accurate PSF. Finally,
they utilize existing image deconvolution algorithms to obtain the deblurred image.
They select Richardson-Lucy iterative deconvolution algorithm.

Figure 1.11: Hybrid camera setup proposed by [6]. The primary camera has a high
resolution and low frame rate whereas the secondary camera has a low resolution

and high frame rate.

Multi image deblurring using varying exposure: [2] proposes differently exposed
multiple images to achieve invertible motion blur. Similar to the work of [40], the aim
in this study is to obtain blurred images having invertible PSF. To achieve this, they
use multiple images having different exposures each having different PSFs. When
these images are combined, the nulls in the frequency components of one frame can
be filled by other frames. Therefore, the combined frequency transform becomes null-
free and makes the deblurring a well-posed problem. The advantage of their method
over [40] is the use of a standard camera without the need of a flutter mechanism. The
individual PSFs with zeros and the combined operator P are shown in Fig. 1.12 and
compared with fluttered shutter method.

The deblurring process using this method includes additional steps which does not
exist in inverse filtering methods. Similar to other methods, after capturing the im-
ages, the first step is the PSF estimation. Motion vectors are computed by matching
the frames captured using the same exposure. Averaging the motion vectors for dif-

12



Figure 1.12: Noninvertible PSFs Hi(w) each having zeros and the combined operator
P which does not have zeros shown on left. Comparison with coded exposure shown

on right [2].

ferent exposures gives the estimate of object velocity v. For spatially-invariant linear
blur, PSF is found by multiplying the space object velocity v (pixel/ms) with the ex-
posure time (ms). The rest of the process moves iteratively. Each iteration begins with
segmenting the moving object by using a background subtraction method. Then the
blurred foregrounds need to be aligned before deconvolution. The input photos are
scaled to the same intensity level using the ratios between the corresponding exposure
times. After aligning the blurred foregrounds, deblurring is performed by solving the
linear system equations. The next step is the alignment refinement. The errors caused
by the potential misalignments occurred in the previous alignment step may yield er-
rors in deconvolution. This refinement process is applied to improve the results. The
iteration finishes with segmentation refinement step which is similar to the alignment
step. The quality of segmentation and deblurring improves significantly after the first
iteration. The algorithm iterates 1 or 2 times for the final result. The obtained results
are shown and compared to other methods in Fig. 1.13. The presented method has
similar limitations to the fluttered shutter approach. Moreover, it requires additional
processing steps such as segmentation and alignment. However, this method does not
require additional hardware or camera motion which is the fundamental advantage
over other method.

Motion invariant deblurring for 1D: [26] presents a method to deblurring a scene with
objects moving at different speeds along 1D direction, without requiring any segmen-
tation and without the knowledge of the object speeds. The method depends on using
a camera that moves during the exposure at a constant acceleration(parabolic integra-
tion). The key point is that, while the camera accelerates along the motions of objects,
for any object velocity within a range, there is always one moment during exposure
when the camera is perfectly tracking the object. In other words, there exists an in-
stant when the relative speeds of the object and the camera are zero. The obtained
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Figure 1.13: Comparison of varying exposure, traditional video and coded exposure
methods. Varying exposure method achieves similar performance to the coded

exposure method and a better performance than the traditional video [2].

results are shown in Fig. 1.14 together with a comparison with other methods. The
advantage of the method is that it requires no motion estimation or object segmen-
tation and provides nearly optimal reconstruction for the worst-case speed within a
given range. However, its drawback is the requirement of a speed controlled platform
and its use is limited only for 1D motions.

Motion invariant deblurring for 2D: [3] extends the 1D study of [26] for 2D motions
by translating a camera sensor circularly about the optical axis during exposure. This
enables the preservation of high frequencies for a wide range of in-plane linear object
motion in any direction within some predetermined speed range. Fig. 1.15 shows
the motion of the sensor for 1D and circular 2D cases. Although no object may be
photographed sharply at capture time due to the continous sensor motion, objects
having different motions can be captured in a single image and can be deconvolved
with similar quality. In addition, circular sensor motion has good effects on blur
estimation because of the distinct frequency zero patterns of the resulting motion blur
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Figure 1.14: The motion blurred frames captured with a static camera, parabolic
motion camera and fluttered shutter camera. Their deblurring outputs are given on

the bottom images [26].

PSFs. The disadvantage of the method is that it does not favor static objects. Because
of the sensor motion, static objects are also blurred. They suggest stopping the sensor
motion for a while during the exposure for future work.

Figure 1.15: First figure shows the range of motion for 1D case proposed by [26]
and the second figure shows the range of motion for the proposed 2D case by [3].

Third figure shows the circular motion of the sensor. The sensor is translated
circularly about the optical axis. Last figure shows the sensor motion trajectory (red

curve) in the space-time volume.

There are also studies that are benchmarking the available motion deblurring methods
based on a quantitative metric. One of them is presented in [47]. They obtain linear
motion blurred images using a 1D linear camera translation setup similar to our work.
The methods are tested both on synthetic and real test images and compared based on
PSNR metric. They test and compare Wiener deconvolution, R-L, Regularized filter,
MLE and Sondhi, which are quite old methods. They also provide the computation
times of the tested methods. Another study [24] is about a benchmarking study for
single image blind deconvolution methods. They present a dataset by recording the
camera shake motion and play back on a 6D mechanism as shown in Fig. 1.16. They
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test and compare deblurring methods by Fergus, Shan, Whyte, Cho, Xu and Krishnan
using PSNR and similarity based quantitative metrics for comparison.

Figure 1.16: Experimental setup used in [24]. (Left) Light-weight structure with
reflective spherical markers for recording camera shake with a Vicon system. (Right)

Camera attached to a high-precision Stewart platform to take pictures with played
back camera shakes in a controlled setting.

Most of the deblurring methods mentioned above just presents their results for visual
inspection without any quantitative measure for comparison. Only a few of the studies
compare their results quantitatively using PSNR(Peak Signal to Noise Ratio)[24, 4]
and MSE(Mean Square Error) as a metric. The suitability of those quantitative met-
rics are also questionable for a fair comparison. There are also a number of other
metrics that are used for image quality assessment purposes such as SSIM(Structural
Similarity Index), UQI(Universal Quality Measure), PQR(Picture Quality Rating),
MOS(Mean Opinion Score) etc. These metrics are generally used for image compres-
sion/decompression quality purposes and are not generally suitable for performance
comparison of other different computer vision applications.

In this study, we test and compare the methods proposed by [56], [25],[48] and [14]
on our motion blur dataset including uniform and nonuniform motion blurred images
with different blur magnitudes.

1.2 Contributions

In the present thesis study, our focus is on motion blur problem and its compensation
to increase the performance of feature detection methods in legged robotics computer
vision applications. Our first contribution is the finding that available image quality
assessment metrics do not indicate the quality of an image in terms of feature de-
tection performance. This finding led us to propose a novel metric based on feature
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detector performance that we demonstrate more accurately reflects the performance
of various single-frame image deblurring methods for computer vision applications,
in particular vision for dexterous legged robotic systems. Then, we use this metric
for a careful benchmarking of these methods demonstrating that conventional image
quality metrics including those used in deblurring studies do not accurately predict
deblurring contribution to feature detector performance.

Secondly, we analyze the properties of motion blur in legged robots and find out the
particular properties of motion blur in legged robotic platforms. Being inspired from
the fact that successive image frames captured from our legged robot have different
magnitudes of motion blur, we propose a multi image motion deblurring method to
combine the existing information in multiple frames for a better motion deblurring.

Finally, there was a need of a dataset for motion blur studies in legged mobile robotic
platforms. However, we noticed that there was no available motion blur data set
for this application area. Therefore, we build a comprehensive motion blur data set,
composed of multiple on-board inertial sensors supplementing the camera sensor as
well as synchronized data from external sensors for ground truth information. It is our
hope that this data set is not only suitable for the objective comparison of current and
future algorithms on motion deblurring for legged mobile robotic but also for other
vision research for cameras mounted on legged platform.

1.3 Outline of the Thesis

The organization of the thesis is as follows: After this introduction chapter, in Chap-
ter 2, we briefly introduce the mathematical background on motion blur formation,
restoration of motion blurred images, problems in single frame inverse filtering and
then propose a multi-image motion deblurring method in frequency domain that can
be used for deblurring in legged mobile robotics applications.

In Chapter 3, we introduce our feature detection performance based metric in and
its detailed justification using our relevant results. This is followed in Chapter 4 by
the description of the multi-modal motion-blur data collected for vision research for
legged platforms, which is also the basis of our experiments presented in Chapter 5.
In Chapter 5, we present our detailed comparative results using our novel metric.
The results and findings of our studies are discussed and summarized together with
possible future studies in Chapter 6.
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CHAPTER 2

PROPOSAL OF A MULTI-IMAGE MOTION DEBLURRING
METHOD FOR APPLICATION TO A LEGGED MOBILE

ROBOTIC PLATFORM

2.1 Theory of Motion Blur Formation and the Inverse Problem

2.1.1 Motion Blur Model as a Convolution

To be able to understand the image blurring problem, the image formation process
should be modeled. The following equation gives a mathematical model [7] of how a
camera observed image g(x,y) is formed from an ideal image f(x,y):

g(x, y) = n

(∫ +∞

−∞

∫ +∞

−∞
h(y, x; r, c) · f(r, c)drdc; y, x

)
(2.1)

Ideally every point in the scene should correspond to only one point on the captured
image. However, the relative motion between the scene and the camera during the
exposure time of the camera violates this assumption. Points in the scene may fall
onto different pixels and the information of a scene point is spreaded into more than
one pixels. The mathematical relation of this spreading is represented by a Point
Spread Function (PSF). In the above equation, the point spread function for each
pixel in the image is defined by h(y,x). Due to its nature, the PSF represents a real-
valued intensity distribution and takes non-negative values only. Another effect in the
image formation process is the unwanted changes in the measured pixel value which
is called noise. Noise is mainly caused by the measuring device in the cameras and
modeled in the above equation by n.

This model imposes different PSF for every pixel in the image which is computation-
ally not feasible. It is also not possible to estimate a different PSF value for each
pixel location. Therefore, it is assumed that every point has the same PSF, i.e. PSF
is spatially invariant over the image. This assumption holds for a camera-scene setup
where the scene is composed of points having the same distance to the camera and
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the same lateral motion relative to the camera. Single PSF for every pixel assumption
yields:

∀y, x, r, c : h(y, x; r, c) = h(y − r, x− c) (2.2)

The noise term can also be included as an additive term with zero-mean. This as-
sumption holds in most of the cases and also simplifies the image formation model
as:

g(y, x) =

∫ +∞

−∞

∫ +∞

−∞
h(y − r, x− c) · f(r, c)drdc+ n(y, x) (2.3)

The above model is written for continuous time signals. For digital images, this model
can easily be converted to a discrete model as:

g(y, x) =
+∞∑
−∞

+∞∑
−∞

h(y − r, x− c) · f(r, c) + n(y, x)

= h(y, x)⊗ f(y, x) + n(y, x)

(2.4)

The above operation is referred as 2D convolution of functions h and f. h is called
convolution kernel and the dimensions of the h matrix are often called a convolution
window.

The process of motion deblurring is composed of two sub-problems: The estimation
of the function that caused the motion blur, and applying a restoration algorithm. PSF
is briefly explained in the next section.

2.1.2 Point Spread Function

The PSF can be represented by a convolution kernel which satisfies some certain
conditions. Every convolution kernel cannot be a valid PSF. A PSF is a function
defined as:

h = <× < −→ <+ (2.5)

Therefore, a PSF convolution kernel is composed only of non-negative values. The
kernel h must also satisfy the following energy conservation constraint to be a valid
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blurring function:

∫∫
h(r, c)drdc = 1 (2.6)

in case of a discrete kernel:

∑
r

∑
c

h(r, c) = 1 (2.7)

As given above, if the sum of all elements of a convolution kernel is equal to 1, then
the kernel is called a normalized kernel. The average intensity value of an image
does not change after applying a normalized convolution kernel which states that the
energy is neither lost nor gained by the blurring operation.

2.1.3 Inverse Filtering

Once the motion blurred image and the PSF that is involved in the blurring process
are known, the original image is tried to be obtained by finding and applying the
inverse of the convolution operation. The process of reconstruction of the original
image from the blurred one with the same blurring function is called deconvolution.

The simplest approach to deconvolution is the inverse filtering. The key idea of this
method is that convolutions in spatial domain become pixel-by-pixel multiplications
in frequency domain:

g = h⊗ f ⇔ G = H · F (2.8)

where G and F are Fourier transforms of the blurred and original images that are
represented by g and f , respectively; H is the Fourier transform of the convolution
kernel h. Knowing the convolution kernel h and the degraded image g, we can find
the restored image f̃ by the following operation:

f̃ = F−1
(
G

H

)
(2.9)

where F is the discrete Fourier transform; F−1 is the inverse discrete Fourier trans-
form and denotes the (complex) pixel-by-pixel division. This method seems to be
very simple and effective however, the inverse filtering produces unsatisfactory results
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on (additive) noised images. Let us suppose that some additive noise n is present:

g = h⊗ f + n ⇔ G = H · F +N (2.10)

where the capitals denote Fourier transforms. The inverse filtering delivers the fol-
lowing approximation of :

f̃ = F−1
(
H · F +N

H

)
= F−1

(
F +

N

H

) (2.11)

IfH is a matrix with relatively small absolute values (which is almost always the case
if H is a valid PSF) then the noise N will be amplified dramatically by the division.
This makes the inverse filtering unusable, due to the fact that a small amount of noise
is always present.

2.2 Multi-Image Motion Deblurring

The frequency domain plots of 1-D linear PSFs with different blur lengths are shown
in Fig. 2.1. As can easily be noticed, the zeros of different PSFs appear at different
frequencies. If we have more than one blurred frames of the same scene with different
PSFs, the above inverse filtering operation can be written for each blurred image as,

F̃ (ω) =
Gi(ω)

Hi(ω)
, i = 1, 2, ..., n (2.12)

where i denotes the frame index. Then the frequencies corresponding to the zeros of
one PSF can be recovered from another PSF if the zeros do not overlap. Now, instead
of the ideal case, if we add noise n to the above blurring operation, then it becomes,

Gi(ω) = F (ω)Hi(ω) +Ni(ω) (2.13)

Then the inverse filtering becomes,

F̃i(ω) = F (ω) +
Ni(ω)

Hi(ω)
(2.14)

At frequencies where the Hi(ω) becomes very small, the noise is amplified severely.
Therefore, to reduce the noise amplification in inverse filtering, it is better to utilize
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Figure 2.1: Frequency responses of 1-D linear PSFs with different blur lengths.

the maximum Hi(ω) for every frequency ω to reconstruct F (ω) with minimum pos-
sible noise amplification. We will apply the inverse filtering using non-overlapping
frequency windows wi, where the sum of all windows are equal to identity.

n∑
i=1

Wi = I (2.15)

Then the inverse filtering of each blurred image is subject to its frequency window.

F̃ ·Wi =
Gi(ω)

Hi(ω)
·Wi (2.16)

A frequency window wi for ith image is defined as,

Wi(ωx, ωy) =

{
1, |Hi(ωx, ωy)| > |Hk(ωx, ωy)| for k = 1, 2, ...n ∧ k 6= i

0, else
(2.17)

Then the deblurred image is obtained by the summation of all windowed inverse
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filtered images in frequency domain as shown below.

n∑
i=1

(F̃ ·Wi) = F̃

n∑
i=1

Wi

= F̃ · I
= F̃

(2.18)

The windowed filtering operation can be illustrated by taking the maximum of fre-
quency responses of each PSF. Fig. 2.2 demonstrates this operation over the given
2 PSFs. It can be noticed that, the combined filter PSF has no zeros and moreover,
each frequency can be recovered with less amplification which will increase the SNR
(Signal to Noise Ratio).

Figure 2.2: (Left) Frequency responses of two different PSFs. (Right) Illustration of
the windowed filtering of PSFs based on maximum frequency responses. Dotted line

shows the equivalent combined filter frequency response.

2.2.1 Zero Response Frequencies of a Linear Motion Blur PSF

Linear motion blur point spread function(PSF) can be modeled as a box filter which
is given in Fig. 1.5. The width of the box filter corresponds to the magnitude of the
motion blur. Its amplitude also changes according to the width so that the underlying
area is unity. Since motion blur does not change the total energy in the image, this
ensures the energy conservation.

The Fourier Transform of the box filter can be derived as follows. First, we define the
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box function that is symmetric with respect to y axis and whose width is T .

bT (t) =

1, t ∈
[
−T
2
,
T

2

]
0, else

(2.19)

Then take the Fourier Transform of the defined box function.

b̂T (f) =

∫ +T/2

−T/2
e−i2πftdt

=
e−iπfT − eiπfT

−2πif

(2.20)

The frequency domain transformation of a box filter is obtained as nothing but a sinc
function as follows.

b̂T (f) = T
sin(πfT )

πfT

= T sinc(πfT )

(2.21)

The plot of the sinc function is given in Fig. 1.5. The magnitude of this sinc function
is also shown on the last plot of the same figure.

Next, we will find the zero response frequencies of the given box filter by equating
its Fourier Transform to zero as given below. f z corresponds to the zero response
frequencies.

sin(πf zT )

πf zT
= 0 (2.22)

It is known that for f = 0, the response of the box filter is unity. Then for other
frequency values of f , the denominator is nonzero. Therefore, we only have the
numerator term equal to zero.

sin(πf zT ) = 0 (2.23)
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For the above term to be zero, the sine function parameters should be integer multiple
of π.

⇒ πf zT = n.π , n = 1, 2, ...,∞ (2.24)

Then, the zero response frequencies are obtained simply as,

⇒ f z =
n

T
≤ 1

2
, n = 1, 2, ...,∞ (2.25)

The set of zero response frequencies can be written as,

f z =

{
1

T
,
2

T
, ...,

N

T

}
, N =

⌊
T

2

⌋
(2.26)

Let us assume two different linear motion blur functions corresponding to box filters
with a width of T1 and T2. Then the zeros will appear at frequencies given below.

T = T1 ⇒ f z =

{
1

T1
,
2

T1
, ...,

N1

T1

}

T = T2 ⇒ f z =

{
1

T2
,
2

T2
, ...,

N2

T2

} (2.27)

If the widths of box filters are irrational, then there will be no common zeros at the
same frequencies.

if T1, T2 /∈ Q ⇒ f z1 ∩ f z2 = ∅ (2.28)

However, if the widths of box filters are rational multiples of each other, then there
exists a ratio

a

b
such that,

if T1, T2 ∈ Q ⇒ T1
T2

=
a

b
, a, b ∈ Z ∧ a ⊥ b (2.29)

If a and b satisfies the following conditions, then there exists common zero frequen-
cies of PSFs.

if a ≤ T1
2
∧ b ≤ T2

2
⇒ f z1 ∩ f z2 6= ∅ (2.30)
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Then, the common zero response frequencies form a set of frequencies including the
terms given below.

f z1,2 =

{
a

T1
,
2a

T1
, ...,

na

T1

}
=

{
b

T2
,
2b

T2
, ...,

nb

T2

}
(2.31)

where n can be found using the following equation.

n =

⌊
T1
2a

⌋
=

⌊
T2
2b

⌋
(2.32)

Next, we will demonstrate the common zeros for different box filter widths. The
following examples calculate the zeros of box filters having widths of 8 and 16, 10
and 25, 9 and 11 pixels.

Example 1. This example calculates the common zeros of two blur filters whose
magnitudes (8 and 16) are integer multiple of one another, in particular 2. Calculation
of zero response frequencies for PSF pairs:

Given T1 = 8 pixel, T2 = 16 pixel

For the 8 pixels wide box filter, the zero response frequencies are:

T1 = 8 ⇒ f z1 =

{
1

8
,
2

8
, ...,

N1

8

}
where N1 =

⌊
T1
2

⌋
= 4

⇒ f z1 =

{
1

8
,
2

8
, ...,

4

8

} (2.33)

For the 16 pixels wide box filter, the zero response frequencies are:

T2 = 16 ⇒ f z2 =

{
1

16
,
2

16
, ...,

N2

16

}
where N2 =

⌊
T1
2

⌋
= 8

⇒ f z2 =

{
1

16
,
2

16
, ...,

8

16

} (2.34)
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The widths of the box filters are rational numbers therefore there exists a, b such that,

T1, T2 ∈ Q ⇒ T1
T2

=
8

16
=

1

2
=
a

b
, a, b ∈ Z ∧ a ⊥ b

⇒ a = 1, b = 2

(2.35)

Common zero response frequencies are,

f z1,2 =

{
1

8
,
2

8
, ...,

4

8

}
=

{
2

16
,
4

16
, ...,

8

16

}
(2.36)

For a frequency spectrum of a 1280 pixels horizontal resolution image ( fmax< 640
Hz ), the zero response frequencies are calculated as follows: For 8 pixels wide box
filter:

f z1 =

{
1

8
,
2

8
, ...,

4

8

}
.1280 = {160, 320, 480, 640} (2.37)

For 16 pixels wide box filter:

f z2 =

{
1

16
,
2

16
, ...,

8

16

}
.1280 = {80, 160, 240, 320, 400, 480, 560, 640} (2.38)

Common zero response frequencies:

a ≤ T1
2
∧ b ≤ T2

2
⇒ f z1 ∩ f z2 6= ∅

⇒ f z1,2 =

{
1

8
,
2

8
, ...,

4

8

}
.1280 = {160, 320, 480, 640}

(2.39)

Example 2. This example calculates the common zeros of two blur filters whose
magnitudes (10 and 25) are not integer multiple of each other but have at least one
common divisor, in particular 5. Calculation of zero response frequencies for PSF
pairs:

Given T1 = 10 pixel, T2 = 25 pixel
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Figure 2.3: Frequency response graph of two PSFs whose magnitudes (8 and 16) are
integer multiple of one another. Graph shows the common and individual zero

response frequencies as calculated above.

For a frequency spectrum of a 1280 pixels horizontal resolution image ( fmax< 640
Hz ), the zero response frequencies are calculated as follows: For 10 pixels wide box
filter:

f z1 =

{
1

10
,
2

10
, ...,

5

10

}
.1280 = {128, 256, 384, 512} (2.40)

For 25 pixels wide box filter:

f z2 =

{
1

25
,
2

25
, ...,

12

25

}
.1280

= {51.2, 102.4, 153.6, 204.8, 256, 307.2, 358.4, 409.6, 460.8, 512}

(2.41)

Common zero response frequencies:

T1
T2

=
a

b
=

10

25
⇒ a = 2, b = 5

f z1,2 =

{
2

10
,
4

10

}
.1280 = {256, 512}

(2.42)
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Figure 2.4: Frequency response graph of two PSFs whose magnitudes (10 and 25)
are not integer multiple of each other but have at least one common divisor. Graph
shows the common and individual zero response frequencies as calculated above.

Example 3. This example calculates the common zeros of two blur filters whose mag-
nitudes (9 and 11) are relatively prime with each other. Calculation of zero response
frequencies for PSF pairs:

Given T1 = 9 pixel, T2 = 11 pixel

For a frequency spectrum of a 1280 pixels horizontal resolution image ( fmax< 640
Hz ), the zero response frequencies are calculated as follows: For 10 pixels wide box
filter:

f z1 =

{
1

9
,
2

9
, ...,

4

9

}
.1280 = {142.2, 284.4, 426.7, 568.9} (2.43)

For the 11 pixels wide box filter, the zero response frequencies are:

f z2 =

{
1

11
,
2

11
, ...,

5

11

}
.1280 = {116.4, 232.7, 349.1, 465.5, 581.8} (2.44)
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Common zero response frequencies:

T1
T2

=
a

b
=

9

11
⇒ a = 9, b = 11

a �
T1
2
∧ b �

T2
2

⇒ f z1,2 = ∅

(2.45)
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Figure 2.5: Frequency response graph of two PSFs whose magnitudes (9 and 11) are
relatively prime with each other. Graph shows the common and individual zero

response frequencies as calculated above.

2.3 Motion Blur in Legged Mobile Robotic Platforms

Our efforts on motion deblurring are ultimately aimed to reduce the motion blur prob-
lem in the SensoRHex robot platform. In parallel to our studies on multi-frame de-
blurring, we try to understand and simulate the motion blur formation on the Sen-
soRHex robot which is the application area for motion deblurring. The motion blur-
ring of images captured from a legged mobile robot platform shows some particular
properties. The blur is caused by the interaction between the leg and the surface while
the robot is walking. This surface-leg interaction induces some mechanical vibrations
on the robot body and so on the camera. However these vibrations are not continuous
and fade out with time. Therefore, the magnitude of motion blur changes while the
robot walks. The analysis of image frames shows that there are captured both very
sharp, very blurred frames and different level of blurring in-between. In this section,
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we explain projection of camera motion onto image plane based on IMU (Inertial
Measurement Unit) data. Then we demonstrate the simulated motion blur for a given
6D camera motion.

2.3.1 IMU Based 6-D Spatially Varying Motion Blur PSF Computation and
Simulation

The vibrations on the robot body and so as the camera may occur in different forms
depending upon the direction and speed of the movement. Camera motions involving
both translational and rotational motions yield a rich content of motion blur. The
camera can do 6D motion. It can rotate around three axes and translate along three
axes. This motion can be conducted one at a time as well as all combined together.
As a result of this motion during the capture, there appears a motion blur effect in
the image [3,4,6]. The aim of this section is to model the motion blur based on the
camera motion and simulate the blurring process.

Figure 2.6: Coordinate axes definition for camera motion. Image plane is placed on
a plane parallel to the x-y plane and with a perpendicular distance f from the origin.

Optical axis is along the z axis.

The motion of the camera can be measured by an IMU device. According to this
motion, the scene points will project onto different points on the image plane causing
motion blur. We will utilize the pinhole camera model and follow the derivation
in [34] to calculate the velocities of points on the image plane. Coordinate axes
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definition for camera motion is shown in Fig. 2.6. Image plane is placed on a plane
parallel to the x-y plane and with a distance f from the origin. Optical axis is along
the z axis. The roll, pitch and yaw rotations are defined around the z, x and y axes
respectively. The translational motions are also defined with respect to this coordinate
frame. The pinhole camera model utilize the following equation to transfer world
coordinates (X, Y, Z) into the corresponding image plane coordinates (x, y),

[
x

y

]
=
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X

Z

f
Y

Z

 (2.46)

where f denotes the focal length of the camera. Taking the derivative of the equation
with respect to time yields the following equation which gives the velocities of image
points.
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The world point velocities are actually zero. However the velocity is induced by the
camera motion. Therefore, instead of moving the camera, we can move the world
point so that the same effect appears on image plane. The velocity of a point in space
caused by the roll, pitch and yaw axis rotations can be written as below.
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Substituting this into the image velocity equation yields,
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The above equation considers the velocity caused by rotation only. If the translational
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velocities are included in the above equation, then it becomes as follows.
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Using the above equation, we compute the image plane velocities when 6D motion is
known. Then we obtain the corresponding PSF for the image plane velocities. Fig. 2.7
shows the resultant velocity field when primary one axis translations are applied. The
PSFs corresponding to these motions are obtained and used to simulate the motion
blur. The resultant simulated images are given next to the velocity graphs. Note that,
the latter figure has spatially varying motion blur PSF.

Figure 2.7: The resultant velocity field when translation along x and y axis are
applied is shown on top graph and translation along z axis is shown on bottom graph.

The PSFs corresponding to these motions are obtained and used to simulate the
motion blur. The resultant simulated images are given next to the velocity graphs.

Note that, the latter figure has spatially varying motion blur PSF.
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Fig. 2.8 shows resultant velocity field when rotation around either of pitch, yaw and
roll axes are applied. The PSFs corresponding to these motions are obtained and used
to simulate the motion blur. The resultant simulated images are given next to the
velocity graphs. Note that, all the figures have spatially varying motion blur PSFs,
however the effect is seen dramatically on the bottom figure.

2.4 Estimation of 2-D Nonlinear Point Spread Function

The motion blur analysis presented above, models the motion blur as a linear PSF
which can be represented by a single motion blur magnitude in pixels and the direc-
tion of the motion blur using a single angle value. This assumption limits the cases
where the model is valid. When the motion of a camera on a legged mobile robot is
considered, it is obvious that the camera does not have to move in a single direction.
For example, it is very possible for the camera to move on a circular arc which can
not be modeled accurately using the 1-D linear model. To be able to handle these
cases, we extend the 1-D linear motion blur PSF assumption to be able to handle 2-D
nonlinear motion blur cases which is frequently encountered in legged robotics vision
applications.

The linear PSF is determined by calculating the beginning and ending position/orientation
of the camera using the external motion tracking data as explained in Section 2.3.1.
Instead of using the initial and final camera poses, the samples of the motion track-
ing data are integrated to get the trajectory of the camera during the exposure period.
An example set of motion data are projected onto image plane using (2.50) and the
resultant 2-D nonlinear pixel motion trajectory is shown in Fig. 2.9 on top. The cor-
responding 2-D nonlinear PSF is computed and shown at the bottom of the same
figure.
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Figure 2.8: The resultant velocity field when rotation around either of pitch, yaw and
roll axes are applied is shown top, center and bottom figures respectively. The PSFs
corresponding to these motions are obtained and used to simulate the motion blur.
The resultant simulated images are given next to the velocity graphs. Note that, all

the figures have spatially varying motion blur PSFs, however the effect is seen
dramatically on the bottom figure.
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Figure 2.9: (Top) 2-D nonlinear pixel motion trajectory using a set of motion data
which are projected onto image plane using (2.50). (Bottom) The corresponding 2-D

nonlinear PSF.

37



38



CHAPTER 3

MOTION BLUR ASSESSMENT AND FEATURE BASED
IMAGE QUALITY METRIC FOR COMPUTER VISION

APPLICATIONS

3.1 Available Metrics for Image Quality

Visual quality assessment is an important field for performance comparison of im-
age processing algorithms. They can depend on either human opinion based subjec-
tive assessment or a mathematical processing of image which is referred as objective
metrics, to compute a quality score. Objective metrics can be grouped into two as
referenced or no reference metrics. Some of the image quality assessment metrics
which are available in literature are as follows. The ones we consider in this study are
especially explained in more detail.

i. MSE (Mean Squared Error) is a pixelwise error metric computed using the
differences of reference image pixels xj,k and the degraded image pixels xj,k as
given in (3.1).

MSE =
1

MN

M∑
j=1

N∑
k=1

(
xj,k − x′j,k

)2
, (3.1)

where the image consists of M ×N pixels. Images having lower MSE scores are
interpreted to have better quality.

ii. PSNR (Peak Signal to Noise Ratio) [19] is a metric for the ratio between the
maximum possible power value of a signal and the power of distorting noise that
affects the quality of the signal. It is computed based on the MSE expression as
given in (3.2).

PSNR = 10 log
(2n − 1)2

MSE
(3.2)
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The PSNR is expressed in logarithmic scale since most of the signals have a large
dynamic range. Therefore, the unit of PSNR is expressed in decibells(dB). Im-
ages having higher PSNR scores are interpreted to have better quality.

iii. NCC (Normalized Cross Correlation) [54] is an image correlation based metric
as given in (3.3).

NCC =

M∑
j=1

N∑
k=1

(
xj,k . x

′
j,k

)
M∑
j=1

N∑
k=1

(xj,k . xj,k)

(3.3)

iv. SSIM (Structural Similarity Index) [54] is a reference based metric that mea-
sures the similarity of an image to a reference image. It is computed on windows
defined by x and y of common size N × N . The computation is based on three
terms which are luminance (l), contrast(c) and structure (s) as shown in equa-
tions given below where, µx, µy, σx, σy and σxy are the local means, standard
deviations, and cross-covariance for x and y.

l(x, y) =
2µxµy + c1
µ2
x + µ2

y + c1
(3.4)

c(x, y) =
2σxσy + c2
σ2
x + σ2

y + c2
(3.5)

s(x, y) =
σxy + c3
σxσy + c3

(3.6)

The SSIM metric is a weighted combination of the terms given in (3.4), (3.5) and
(3.6).

SSIM(x, y) =
[
l(x, y)α · c(x, y)β · s(x, y)γ

]
(3.7)

If the exponents α, β and γ are set to 1 and c3 = c2/2, then the metric simpli-
fies as given in (3.8). The SSIM score can get value between -1 an 1 where 1
corresponds to the ideal case(identical images).

SSIM(x, y) =
(2µxµy + c1)(2σxσy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.8)
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v. NRMSE (Normalized Root Mean Squared Error) is a normalized error mea-
sure computed using the differences of reference image pixels xj,k and the de-
graded image pixels xj,k as given in (3.9). The second expression is for normal-
ization where xmax and xmin are the maximum and minimum values of image
pixels respectively.

RMSE =

√∑M
j=1

∑N
k=1

(
xj,k − x′j,k

)2
M.N

,

NRMSE =
RMSE

xmax − xmin

(3.9)

vi. MAE (Mean Absolute Error) is another pixelwise error metric computed using
the absolute differences of reference image pixels xj,k and the degraded image
pixels xj,k as given in (3.12).

MAE =
1

MN

M∑
j=1

N∑
k=1

∣∣∣xj,k − x′

j,k

∣∣∣ (3.10)

vii. UQI (Universal Quality Index) is a structural similarity based index which is
similar to SSIM. The details of the measure can be found in [53].

viii. VSNR (Visual Signal to Noise Ratio) is a wavelet-based visual signal to noise
ratio for natural images which is explained in [9] in detail.

ix. MOS / DMOS (Difference Mean Opinion Score) are subjective metrics that
are based on the human users view of the quality.

x. PQR (Picture Quality Rating)

xi. VIF (Visual Information Fidelity) assumes that Human Visual System (HVS)
perceives natural images and therefore instead of modeling HVS, this metric is
defined using a natural image statistics based model. The details of the measure
can be found in [49].

The common property of the above assessment methods is that, they all try to mea-
sure the visual quality of an image. As we have discussed earlier, in robotics or other
machine vision applications, the end user of the captured image frames are not a hu-
man but the machine code that is used for pattern recognition, tracking, etc. Most
of these machine vision algorithms depend on the performances of feature detection
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algorithms. Therefore, from the view of machine vision, the image quality is (or
should be) measured as the ability to successfully detect the features. One may ar-
gue that some machine vision algorithms have improved performances even on low
quality images. However, this does not mean that those methods do not yield better
performances on images where a more accurate feature extraction can be achieved.
Therefore in general, we can propose that more accurate feature detection will im-
prove the performances of higher level processing algorithms.

Most of the deblurring methods proposed in literature are demonstrated on a limited
number of images. The performance evaluation is generally left to reader by means
of a visual inspection of the deblurred images. This is a very subjective and error
prone approach even if results are shared on-line and not only in print. Only a few
of the studies report their results using an objective quality metric such as PSNR or
MSE. These metrics are computed using pixel by pixel difference between a refer-
ence image and a corrupted or recovered image as given in (3.1) and (3.2) where xj,k
represents the pixel value at location (j, k) of the reference image while x′j,k is the one
of the test image, M and N are the horizontal and vertical dimensions of the images
and n is the number of bits used to represent the image pixel values. These metrics
are frequently used (and suitable) for measuring the error in image coding/decoding,
compression/decompression applications. We believe that they are not for our appli-
cation focus of computer vision and image understanding.

3.2 Available Metrics for Image Sharpness

Detection of motion blur magnitude, in other words how much an image is blurred,
is generally a common pre-process in most of the applications related with motion
blur. There are many methods proposed in literature to determine the motion blur
magnitude. However, each method has different pre-assumptions and has its own
disadvantages when compared to each other. Therefore, the method to use should be
selected based on the application.

According to the obtained video frames from the robot camera, it is observed that
the frames are exposed to motion blur with various amounts. Some of the frames are
highly exposed to motion blur whereas some of the others are very sharp i.e. without
any motion blur. Therefore, the video frames should be classified according to the
amount of motion blur before deblurring process. According to this classification
result, the frames that are not exposed to considerable motion blur will be ignored
and the other motion blurred frames will be considered for deblurring process.

There are a number of available motion blur measures proposed in the literature.
Most of these measures are based on the idea to emphasize high frequencies of the
image and measure their quantity. It corresponds with our intuitive expectation that

42



the blurring suppresses high frequencies. One of the simplest blurring measures is
calculated using the integral of variance of image gray levels over the whole image
frame which can be formulated as

M1 =

∫ ∫
(gi (x, y)−mi)

2 dxdy (3.11)

wheremi denotes the mean gray level value of gi(x, y) which represents the 2D image
signal of the ith frame. This measure is monotonic and, it is equivalent to the image
energy in Fourier domain for zero-mean images.

∫ ∫
|Gi (u, v)|2 dudv (3.12)

In the graphic given in Fig. 2, the blurring of an example image sequence using image
variance as a measure is shown. Peaks indicate sharper frames and valleys indicate
blurred frames.

Figure 3.1: Blurring quantity of an image sequence captured from the camera on the
SensoRHex robot using the variance measure.

Several other blur measures are defined by means of image derivatives. We know
that gradient gives us the rate of change of the signal. For sharp images, the rapid
transitions of brightness on the edges yield high amplitude of gradient. Using the
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sums of L1 norm of image gradient, the following expression gives a scalar value
which is correlated with the sharpness of the image.

M2 =

∫ ∫ ∣∣∣∣∂gi (x, y)∂x

∣∣∣∣+ ∣∣∣∣∂gi (x, y)∂y

∣∣∣∣ dxdy (3.13)

where M2 is higher for a sharper image and decreases proportional to the increasing
motion blur effect.

Figure 3.2: Blurring quantity of an image sequence captured from the camera on the
SensoRHex robot using the L1 norm of the 1st order image derivatives as a measure.

L2 norm of image gradient (sometimes called gradient energy) is another derivative
based measure of image blurring given by the following expression.

M3 =

∫ ∫ (
∂gi (x, y)

∂x

)2

+

(
∂gi (x, y)

∂y

)2

dxdy (3.14)

Instead of first derivatives, another alternative is to use the second order derivatives.
The following blur measure computes L1 norm of second derivatives.

M4 =

∫ ∫ ∣∣∣∣∂2gi (x, y)∂x2

∣∣∣∣+ ∣∣∣∣∂2gi (x, y)∂y2

∣∣∣∣ dxdy (3.15)
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Figure 3.3: Blurring quantity of an image sequence captured from the camera on the
SensoRHex robot using the L2 norm of the 1st order image derivatives as a measure.

Energy of image Laplacian can also be used as a blur measure. Using the following
expression, M5 gives an approximate measure for the image blurring.

M5 =

∫ ∫ (
∂2gi (x, y)

∂x2
+
∂2gi (x, y)

∂y2

)
dxdy (3.16)

3.3 Proposed Standard Deviation Based Motion Blur Measurement of an Im-
age Within an Image Sequence

The motion blur detection methods in literature can be analyzed mainly in two groups
according to the reference. The first group of methods assumes that there is only
one motion blurred frame of the scene. These methods try to extract the motion
blur using only the single blurred image itself. These methods are referred as “no-
reference” methods since there is no reference frame available which represents the
sharp snapshot of the considered scene. A popular method in this group is based on
the just noticeable blur approach proposed in [13]. This metric is generally used to
compare visual quality and it is applicable for relatively small blur amounts. An-
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Figure 3.4: Blurring quantity of an image sequence captured from the camera on the
SensoRHex robot using the L1 norm of the image Laplacian as a measure.

other no-reference metric is presented in [35]. Their metric is based on a cumulative
probability of blur by taking into account the Human Visual System. In [33] a blur
metric based on the analysis of the spread of the edges in an image is given. Wavelet
transform coefficients are utilized in [55] claiming that blurring disrupts the phase
coherence. The study in [58] utilizes contrast based blur invariant features together
with local standard deviations to determine spatially varying blur in images. In [29],
the authors utilize the gradient profile sharpness of image edge and the histogram of
sharpness distribution. In [51], they consider both the defocus and motion blur arti-
fact. They use local edge blur to estimate the overall image blur. Although this group
of methods has more application area because of the lack of reference need, their
performances depend much on the scene type since there is no information available
about the sharp representation of the scene.

The second group of methods depends on the knowledge of a reference frame which
is not exposed to any motion blur and therefore a sharp representation of the scene.
Because of the use of a reference frame, this group of methods is called “reference
based” methods. These methods try to determine the amount of motion blur that
causes the reference scene to appear as the motion blurred frame captured of that
scene. Generally these methods perform better than the no-reference based methods
since there is more information available about the scene. However, there are fewer
studies in this group available in literature since the cases where the reference frame
is available are rare. An important study in this group is presented in [36]. They
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assume the existence of global motion blur and a sharp reference frame. They use
linear least squares fit approach in a wavelet-based Haar filters and claim the real-
time operation of the algorithm. A study on the motion blur removal for humanoid
robots is presented in [28]. They first classify the images as less blurred and severely
blurred by using Just Noticeable Blur Metric [13] as a quantitative criterion. For less
blurred images, they propose a maximum a posteriori framework by taking advantage
of the previous sharp image as reference. Our proposed metric can be classified in the
second group as a reference based method.

For the analysis of the image texture in the point of blur amount, several methods can
give information on the high frequency content available in the image data. A motion
blurred image is poor in high frequency components since they are smoothed out.
Therefore analyzing the statistical properties of the texture of the images captured
from the same scene can give information on which one is sharper. In development
of this metric, a synthetic checkerboard pattern is first used as an experimental input
image since it has both horizontal and vertical sharp edges and it is easier to find the
ground truth blur amount manually.

Figure 3.5: Variation on blur magnitude (pixels) versus standard deviation of the
synthetically generated checker board pattern. .

R-square value and the root-mean square error value (RMSE) are considered for mea-
suring the linearity of the proposed metric with respect to the blur magnitude criteria
by fitting a linear line. It can be seen that standard deviation ensures an R-square
value of 0.9957. Therefore, being founded of the assumptions, it can be concluded
that standard deviation function has a good linearity relation with respect to the mo-
tion blur magnitude. The equation that is used in the calculation of standard deviation
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is given by the following expression.

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (3.17)

The calculation of any motion blur, mainly the magnitude of the blur in both direc-
tions, is performed with the assumption that the standard deviation of the motion
blurred image changes linearly as a new, synthetic filter is applied on, as previously
mentioned. The algorithm used in this study predicts the blur amount based on a
comparison of each frame to a reference frame, i.e. the sharpest frame, in a window
of frames containing a predefined number of frames taken in time.

Before we continue with the estimation of the blur the camera is exposed to, let us
mention how the sharpest frame is selected among the others in a time window of n
frames. The image that the program chooses as the reference image in a time slot
is simply the image which has the highest standard deviation in the window that is
examined. During the testing of the operation of the function, we used a fixed time
window of 10. Therefore, inside of the window, the reference image chosen for each
image is unique and the reference input changes as the window slides in time. One
drawback of this kind of operation is that during the real-time operation it needs
several image frames to be buffered to find the reference frame. This means that the
algorithm calculates the blurring of a frame only after n previous frames are available
in the buffer. This of course, is related only to the choice of the time window, so the
type of application and can be adjusted accordingly.

After determining the sharpest image taken in a fixed time window, the function
utilizes the valid assumption of linearity of standard deviation against motion blur
amount. At this stage, the algorithm fits a linear function to the graph of standard
deviation versus motion blur magnitude. At the next step, it determines the inverse
function of the line obtained, i.e. the function from the set of standard deviations
to the set of motion blur amount, called the motion blur function which is linear by
definition.

At the last step, the function estimates the blur amount of any non-reference image
coupled to that reference image as the output of the motion blur function. The input
variable of the metric is the calculated standard deviation of the considered blurred
image. valid assumption that the images, prior or posterior to the coupled references,
are alike in terms of content and therefore can be used as a starting point for the
calculations.

As a result, our blur metric separates the operation time into frame window of a given
length and determines the sharpest frames for the frames in that window to use them
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Figure 3.6: Flow chart of the proposed motion blur detection method.

as reference. Then, blurs each reference image to determine a linear relation between
the blur amount and change in standard deviation and refers to this relation estimating
the blur amount of any image. The steps of the algorithm are given by the flow chart
in Fig. 3.6.

In order to gain an insight into the motion of the legged robot, we need to observe the
amount of the motion blur by calculating the standard deviation of the blurred images.
Figure 3 demonstrates the variation of standard deviation for 50 consecutive images
captured at 25 fps from the camera mounted on the legged robot platform. Coarsely, it
can be said that frames having higher standard deviation are relatively sharper than the
frames having lower standard deviation values. From the graph, it can be realized that
there are both sharp and blurred images in the video sequence obtained while the robot
is walking in a periodic manner. The sharp frames can be used as a reference frame
representing the non-blurred representation of the scene. Actually, the reference of
each motion blurred frame is different. However, the consecutive image frames are
not changing too much with respect to its neighboring frames. Therefore, it can be
assumed that a reference frame is valid among its neighboring frames collected in
a window. The window size should be selected properly so as to both there exists a
sharp frame to be selected as the reference frame and the reference frame still remains
valid for all the other frames in the window. In our case, we selected a window of
10 consecutive image frames. Therefore, this observation will shape our approach
during the calculation steps.

3.3.1 Justification of Standard Deviation Based Motion Blur Measurement on
a Legged Robot Image Sequence

After constitution of theoretical structure and enhancement of the operation of the
function, it is tested on the consecutive image frame samples taken from a camera
mounted on a legged robot. Comparison between theoretical and real values of blur
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Figure 3.7: Standard deviation vs. time of the 50 consecutive images captured from
a camera mounted on a legged mobile robot platform.

amount for two different images which are selected randomly is as follows.

The experimental blur magnitude of the first randomly chosen image is calculated
as 7.9 pixels while the corresponding ground truth value is 8.9 pixels. The image
frame is visualized in Figure 5 together with a magnified image patch which shows
the blurring of pixels around the edge.

Figure 3.8: First randomly chosen image taken from camera mounted on a legged
robot platform and its blown-up version. The experimental blur magnitude is

calculated as 7.9 pixels while the ground truth value is 8.9 pixels.

The experimental blur magnitude of the second chosen image is calculated as 1.69
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pixels while the corresponding original value is 2.23 pixels. The image frame is
visualized in Figure 6 together with a magnified image patch which shows the blurring
of pixels around the edge.

Figure 3.9: Second randomly chosen image taken from camera mounted on a legged
robot platform and its blown-up version. The experimental blur amount value is 1.69

pixels while the original value is 2.23 pixels.

The mean error and the standard deviation of error of the metric are provided as
criteria of accuracy and preciseness. The mean error is calculated as 1.2598 while the
standard deviation of error is found as 2.9042.

The theoretical and real values of blur amount taken from a random frame window
consisting of 20 consecutive frames are provided in Fig. 3.10.

After the implementation of metric to the consecutive image frame samples taken
from a camera (Point Grey Flea2 640x480 resolution) mounted on a legged robot, it
is observed that the metric definitely give a deep understanding about the comparison
of the blur amounts of frames between each other. However, some errors occur in
the computation of blur amount globally as can be seen in Fig 7. These errors can be
minimized by proper selection of the size of frame window. The window size must be
chosen such that it should be as large as possible to include a sharp frame for the sake
of accuracy of the calculated motion blur magnitudes. On the other hand, it must also
be not so large since the comparison of standard deviations of two images which are
too much far from each other is meaningless. In this study, the window size is kept at
a selected constant value. However, using an adaptive window size can improve the
accuracy of the results. Another approach may be to utilize more than one reference
frame to reduce the dependence on the proper selection of a single reference.

Regarding the computation time of the algorithm, the tests on a 1.73GHz computer
having 1 GB RAM have shown that for a file containing 10 test images, the time
interval the first results are computed, i.e. the first estimations appear, is from 0.8s
to 1.1s. After characterizing the time window by its sharpest image and motion blur
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Figure 3.10: Comparison of experimental and real values of blur magnitude for a
randomly selected image frame index which are taken from images captured from a

camera mounted on a legged mobile robot platform.

function it takes about 30ms to compute each frame’s amount of motion blur estima-
tion separately. This shows that the metric can be computed in real-time even on a
computer having low computational resources.

3.4 Proposed Feature Detection Based Image Quality Metric for Computer Vi-
sion Applications

In any study where image distortion is involved, one needs to define an image quality
metric to assess the loss/recovery of image information. Similarly, the assessment of
motion blurred and deblurred images need a quality metric to assess the outcome of
any effort to recover distorted images. The definition of such a metric highly depends
on the intended application. In the literature, widely used quality metrics are mostly
based on subjective visual assessments or based on pixel-wise distortion measures.
However, computer vision applications such as robot vision require a drastically dif-
ferent approach. Since vision algorithms rely on accurate detection of image features
such as "corners", "edges" or other higher dimensional features, one needs an image
quality metric that is specifically based on feature detection performance. The pro-
posal of such a metric for the evaluation of the effects of motion blur and single-image
deblurring algorithms is our focus in the present study.

It is known that the motion blur effect causes an information loss in the image content
especially in the high frequency components. It also deteriorates the performances of
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feature detection methods such as corner features which generally depend on the spa-
tial relation of neighboring image pixels. The corner features that are detected on
an example sharp, blurred and deblurred images are given in Fig. 3.11. The per-
formance loss of feature detection methods reflect negatively to the higher level com-
puter vision algorithms that utilize them. Motion deblurring methods can be used as a
workaround in order to recover blurred images and hence increase the performance of
such algorithms. On the other hand, while motion deblurring helps recovering some
of the image content, it may also introduce some specific distortions such as ringing
which may result in some true image features to get lost and some false features to
appear. Therefore, the relevant performance of a motion deblurring method in the
field of computer vision and in particular for robotic applications should be measured
in terms of the improvement of the feature detection performance. In the following
discussion, we lay out a proposal for such a measure and use it for a comprehensive
experimental study.

Figure 3.11: (a)Corners detected on sharp image. (b)Corners detected on blurred
image. (c)Corners detected on deblurred image.

3.4.1 "Receiver Operating Characteristic" for Feature Detection Performance

Feature detection methods, as most other detection algorithms, generally have a sensi-
tivity parameter such as a threshold value that effects the number of detected features
on an image. There is often a trade-off: Changing this parameter may result in more
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true positives(TP) with accompanied more false positives(FP). Alternatively, the pa-
rameter can be adjusted to reduce FPs at the expense of missing some TPs, reducing
detection performance. Hence, it is generally not sufficient to test the output of a
feature detector for a single sensitivity parameter value. In order to discuss the ben-
efit of a deblurring method on a feature detector, it should be tested with a set of
parameters. The results of this variable parameter analysis are generally referred as
ROC(Receiver Operating Characteristic) Curves and frequently utilized in RADAR
and Pattern Recognition literature. We adopt this method to characterize motion de-
blurring methods based on the resulting performance of feature detectors.

A ROC analysis is mainly the determination of samples of a probability relationship
curve, namely samples of the True Positive Rate(TPR) as a function of the False Pos-
itive Rate (FPR) parametrized over a set of sensitivity parameter values. Originally,
the TPR and FPR are defined as given in (3.18) and (3.19) respectively. TPR and FPR
can take values over the interval [0 1].

TPR =
TP

TP + FN
(3.18)

FPR =
FP

FP + TN
, (3.19)

In our terminology; TP can be defined as the number of correctly detected features,
False Negatives(FN) is the number of features that can not be detected although there
is, FP is the number of false alarms and True Negatives(TN) is the number of features
that are not detected as expected. However, the use of TN is not very appropriate for
this application. A medium sized image includes millions of pixels and the number of
features are generally not more than hundreds. Therefore the rest of the pixels should
be referred as TN which is not very meaningful. Therefore, instead of using the above
definition of FPR, we stick to the FPR definition given in [21] which is more suitable
to this application. Current FPR definition is given in (3.20).

FPR =
FP

TP + FP
(3.20)

The ground truth corners are considered as the corner points of checkerboard pattern
on sharp images. Due to the motion blur, a corner point may sometimes appear as two
splitted corner points. We call this phenomena a "Diplopia" effect. A detected corner
point is considered as a TP if the location of it is in the "vicinity" of the ground truth
corner location. The "vicinity" here is defined as a circular region whose center is
on the ground truth corner location and its diameter is equal to the maximum motion
blur magnitude on that image.
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Using the TPR definition in (3.18) and FPR definition in (3.20), we propose a fea-
ture detection ROC curve based performance analysis of motion deblurring methods.
ROC curve analysis indicate a comparative performance evaluation of detection meth-
ods for a set of possible operating points defined with variable thresholds or other
algorithmic parameters. Instead of comparing the methods at a single operating point
such as for a given Constant FPR (this is called as the CFAR technique [41]), ROC
analysis provides an overall performance evaluation over a range of operating points.
In ROC analysis, the curve that travels closer to the upper-left corner of the graph
range (an ideal point of unity TPR and zero FPR) is considered to perform better
overall. This provides a higher TPR with a lower FPR as cost. Therefore, the area
under the ROC curve is frequently used as the performance indicator for detection or
classification methods. In this study, we use the area under the feature detection ROC
curve and name our performance metric as “FD-AROC”. Using this performance met-
ric, we conduct a thorough comparative analysis of how different deblurring methods,
when combined with a subsequent feature detection method, perform in extracting se-
lected visual features in the image. It is important to emphasize that our purpose is
not to evaluate feature detectors but the deblurring algorithms although the proposed
metric can also easily be used for the evaluation of the former.

An example ROC graph of three arbitrary detectors are shown in Fig. 3.12. When the
detection performances of these three methods are compared using the FD-AROC
metric, it can be concluded that the method represented with blue (*) markers has
the highest overall performance since it has the highest area under the ROC curve.
Second best is represented with green (+) markers and the red (o) markers has the
worst performance. FD-AROC metric changes from 0 to 1. Therefore, a metric value
1 represents the perfect detector while 0 represents the worst case in which none of
the true features could be detected.

For the comparison of ROC curves, we propose one more method besides area under
ROC based FD-AROC metric. Instead of the area under the ROC curve, this measure
scores how close a ROC curve is to the upper left corner of the graph (TPR=1 and
FPR=0) which is the best score a method can get. It is measured using the Euclidean
distance between the upper left corner ([0,1]) and the closest point of the ROC curve.
We call this measure as MinDist. It is easier to calculate than the AROC measure.
We show that both give close results in comparisons and therefore they can be used
interchangeably for the comparison of the ROC curves.

3.4.2 Justification of Feature Based Metric

Some of the studies in literature try to compare the performances of motion deblur-
ring methods in terms of some image quality metrics. Generally these metrics try
to measure the visual quality of a processed image with respect to a pixel-wise error
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Figure 3.12: An example ROC graph of three arbitrary detectors. The one
represented with blue star markers has the highest performance, second one is the

green plusses and the red circles are the worst.

as compared to a reference image. However, for computer vision applications, the
“quality of an image” should be judged based on the performance of computer vision
algorithms, in particular the low level feature detectors. One can argue that exist-
ing image quality metrics for an image should also highly correlate with the feature
detector performance on that image. Our claim, which we attempt to prove in this
section through experimental results, is that the existing metrics may lead to mislead-
ing results for the computer vision application and hence it is more reliable to use a
feature detection performance based metric instead.

In this section we compare three of the frequently used and well known image quality
metrics from the literature, namely PSNR [19], NCC [27] and SSIM [54], together
with the proposed metric on a set of examples. All of the metrics are computed on a
controlled set of motion blurred images having different blur magnitudes. The blurred
images also have the corresponding sharp images as the reference. The other details
of the dataset is presented in Chapter 4.

The scores obtained using PSNR, NCC and SSIM metrics are demonstrated in Ta-
ble 3.1 together with the proposed FD-AROC feature metric. The results for two
different feature detectors(Harris & FAST) tested at two different motion blur mag-
nitudes are given as an example. "Sp02" data includes 20 pixel and "Sp09" data
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includes 90 pixel 1D linear, uniform motion blurred images which are applied the
given motion deblurring methods.

Table 3.1: Comparison of three frequently used image quality metrics and
FD-AROC.

DATA Metric Metric Scores (Ordered from best to worst)

Sp02

PSNR
Wiener No-DB Shan R-L Krish. Goldst. Whyte

21.19 20.89 20.74 20.30 19.95 18.94 18.75

NCC
Krish. Shan No-DB Goldst. R-L Whyte Wiener

1.086 1.082 1.082 1.076 1.075 1.060 1.057

SSIM
No-DB Shan Krish. R-L Whyte Wiener Goldst.

0.858 0.837 0.813 0.799 0.776 0.764 0.689

FD-AROC Krish. Shan Whyte No-DB Goldst. R-L Wiener

(Harris) 0.9972 0.9704 0.9462 0.9444 0.9370 0.8889 0.8655

FD-AROC Goldst. Krish. No-DB Whyte Shan R-L Wiener

(FAST) 0.7877 0.6980 0.6036 0.5693 0.4836 0.3142 0.2658

Sp09

PSNR
R-L Wiener Whyte No-DB Shan Goldst. Krish.

19.07 16.84 16.77 16.37 15.36 15.02 14.31

NCC
Shan No-DB R-L Goldst. Whyte Wiener Krish.

1.064 1.062 1.059 1.057 1.055 1.054 1.052

SSIM
R-L No-DB Shan Whyte Wiener Goldst. Krish.

0.784 0.777 0.745 0.734 0.600 0.577 0.514

FD-AROC Krish. Goldst. R-L No-DB Whyte Shan Wiener

(Harris) 0.8526 0.6444 0.6419 0.6196 0.6038 0.5903 0.3808

FD-AROC Goldst. Krish. No-DB Whyte R-L Shan Wiener

(FAST) 0.6318 0.6003 0.4599 0.3066 0.2445 0.2191 0.1585

The given table is a representative selection from our results in Chapter 5 and illus-
trates mainly one important result: None of the metrics can reliably predict which
deblurring method will lead to an overall best feature detection performance when
combined with a standard feature detector. A striking example is on the first row of
the table: For small blur case (Sp02), while the Wiener deblurring method seems to
maximize the performance in terms of PSNR, in fact it leads to the worst final feature
detection performance! Another example is on the 3rd row of the table: SSIM mea-
sure ranks the Goldstein method as the worst performing deblurring method. In fact,
it is the best overall method in terms of the feature detection performance, hence the
FD-AROC measure.
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CHAPTER 4

A COMPREHENSIVE MOTION BLUR DATASET FOR
LEGGED ROBOTICS

4.1 Motivation and Scope of a New Motion Blur Dataset

The verification and performance evaluation of a motion deblurring method requires
synthetic and/or real test data with reliable ground truth information. There are
many studies in literature on the motion blur and deblurring. Some of the studies
(blind methods) require only motion blurred image(s) whereas there are also meth-
ods(informed) that require both motion blurred image(s) and the corresponding mo-
tion or the resultant blurring function(PSF). Proposed methods are generally tested
with a custom generated limited test set which emphasize the strong sides of that
method. However, performance of the methods can be very dependent on the testing
data. To be able to make a fair comparison of the methods, they should be tested
on the same data set which covers enough scenarios of the application area. For ex-
ample, if the application area of a deblurring method is the motion blur on legged
platforms, then a test data set collected from a camera on a moving wheeled vehicle
may not reflect its true performance on the application area. It is obvious that, the
legged walking platforms have some particular motion characteristics and therefore
that reflects to the properties of motion blur in captured frames.

Although there are many studies and data sets available on motion blur, there is no
data set that can be used to evaluate the performances of the blind and non-blind
motion deblurring algorithms on legged robotics application area. One of the aims
of this thesis study is to build a comprehensive motion blur data set which will be
used for the current and future studies on legged mobile robotic based computer vi-
sion tasks evaluations and comparisons. Although there are many different types of
motion blur, a set of carefully selected scenarios can represent similar characteris-
tics that can be applicable to a wide range of applications. Our database consists
mainly of two scenarios: The first includes a very precisely controlled 1-D linear
camera motion setup that is used to obtain both spatially invariant(uniform) and spa-
tially varying(nonuniform) motion blurred images. The second is an unconstrained
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realistic motion blur data taken from a camera on a legged mobile platform while the
robot is running at different speeds. The methods and specifications of our dataset are
discussed in detail in the following sections.

4.2 1-D, Linear, Spatially Invariant Motion Blur Dataset

Before testing the methods on a fully realistic data set, it is generally advantageous
to test on a more controlled data set where the pre-assumptions of the method are
totally met. The first setup, as seen in Fig. 4.1, is established using the 1D motion
platform developed by Quanser [39]. This platform is composed of a track and a cart
moving on it. The cart is driven by a DC motor and the cart position is obtained
through a high resolution optical quadrature encoder. The motors are driven by a
motor driver. The encoder and the motor is controlled by a PC running Simulink via
a data acquisition card. A Pointgrey Flea2 camera is placed on top of the cart using
a mounting plate. There is a projector led light to provide proper light conditions for
the camera. This setup can generate a speed and position controlled linear camera
motion. By adjusting the speed, exposure and heading direction of the camera, it
is possible to generate both spatially varying and invariant linear motion blur with
precise ground truth information.

Coordinate axes definition for camera motion is shown in Fig. 2.6. Image plane is
placed on a plane parallel to the x-y plane and with a distance f from the origin.
Optical axis is along the z axis. Camera is mounted such that it translates along the
sides, i.e. x axis. The roll, pitch and yaw rotations are defined around the axes z, x
and y axes respectively. The translational motions are also defined with respect to this
coordinate frame.

A glass plate with a checkerboard pattern is placed in front of the camera objective.
It is oriented such that the plate is parallel to the image plane. The alignment of the
plate to the image plane is done precisely by the help of a laser leveler device and
a caliper. The camera is equipped with an 8mm lens having adjustable aperture and
focus. The aperture is kept very narrow to have a large depth of field. This also helps
the pinhole camera model fit better to the obtained images.

The motion of the setup is controlled by a ready to use speed controller designed
in Simulink by Quanser. The controller is modified to capture images at predefined
cart positions while controlling the cart speed to track a given speed profile. The cart
speed can be adjusted accurately from as low as 0.1cm/sec and up to a maximum
speed of 25cm/sec. To capture images at desired locations the controller generates
an external camera trigger signal. Camera exposure is set before the beginning of the
camera motion experiment and kept constant until the end of the experiment.

The accuracy of the setup is tested with an example speed profile which applies a
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Figure 4.1: Accurate speed and position controlled one dimensional translating stage
with a Pointgrey Flea2 camera mounted on top. This stage is used to demonstrate

controllable camera speed resulting in controllable motion blur (i.e. PSF).

10cm/sec step input. Fig. 4.2 shows the step response of the system. The rise time is
measured as 40ms. The mean speed for the 10cm/sec input is measured as 9.83cm/sec
and there is a steady state error of 0.17cm/sec on the average with a 0.14 standard
deviation.

Figure 4.2: The velocity profile of the speed controlled setup when a 10cm/sec step
input speed is applied. The graph on the right shows the magnification of ripples.
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Fig. 4.3 shows the image frames captured while the camera is translating at different
speeds that are 2cm/sec, 5cm/sec, 7cm/sec and 11cm/sec. It can be seen that each
frame has different amount of motion blur. Although the camera is translating at
different speeds, it is trigged to start exposure at the same track position to capture the
same pattern. This helps us to overcome the alignment problem of images. Alignment
differs only a few pixels based on the translation speed because of the trigger delay.
It can easily be corrected by subtracting an offset distance that is proportional to the
camera speed.

(a) (b)

(c) (d)

Figure 4.3: Images obtained by the controlled camera motion setup. The exposure is
kept constant at 100ms for all images. The four images are all captured at the same

cart position while the cart is moving at different speeds. The cart speeds are
2cm/sec, 5cm/sec, 7cm/sec and 11cm/sec for images numbered from (a) to (d)

respectively.

The camera is moved at different constant speeds from 2cm/s up to 13cm/s. The
platform motion starts exactly from the same location each time and the camera is
externally triggered at 2cm intervals by the controller during its constant speed mo-
tion. There are a total of 120 motion blurred images with 1280x960 pixels resolution
in the data set obtained at 8 different camera speeds and using 100ms exposure time.
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There are also the corresponding sharp reference images captured at exactly the same
positions as the blurred ones but without motion blur. The properties of the 1-D linear
uniform motion blur dataset is summarized in Table 4.1.

Table 4.1: Properties of the camera speed controlled 1D linear, uniform motion blur
dataset experiments.

Camera Speed
Motion Blur
Magnitude

Exposure
Time

Number of
Frames

Test Pattern

2cm/sec 20 pixels

100 ms

3 ms
15 frames

Checkerboard

Pebble Stone

Prismatic Objects

3cm/sec 30 pixels

5cm/sec 50 pixels

6cm/sec 60 pixels

7cm/sec 70 pixels

9cm/sec 90 pixels

11cm/sec 110 pixels

13cm/sec 130 pixels

The test pattern used in the setup can be changed easily for obtaining motion blur data
from different scenes. Other than the checkerboard pattern, we took a high resolution
photograph of a natural office scene, pebble stone and a setup of prismatic objects
placed on top of a table with black background. The scenes of office, pebble stone
and prismatic objects are shown in Fig. 4.4. The motion blur dataset experiments are
repeated for the pebble stone and prismatic objects scene. We have photographed a
number of other scenes however, did not used as a test pattern in the current dataset.
These scenes are shown in Fig. 4.5. They are particularly selected from outdoor
natural scenes, since legged robots can move in outdoors at different kinds of terrains
and these are the scenes that are frequently exposed to the camera of the robot. It
is possible to add more scenes to the dataset according to the necessities of future
studies.

4.3 1-D Spatially Varying Motion Blur Dataset

The 1-D camera motion setup for obtaining spatially invariant linear motion blur is
modified to obtain zooming blur which is a spatially varying motion blur type. The
camera is rotated 90 degrees clockwise around its yaw axis and attached to the moving
cart. The cart is moved from far to near the checkerboard pattern at different speeds
to simulate zooming based motion blurring effect.
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Figure 4.4: The scenes of office(top), pebble stone(bottom left) and prismatic
objects(bottom right).

4.4 Multi-Sensor Motion Blur Dataset for Legged Mobile Robotic Vision Ap-
plications

The data set collection setup includes 4 sensors shown in Fig. 4.9: Camera, Fiberop-
tic Gyro (FOG), MEMS IMU and external motion tracking system. The camera is
by Pointgrey Flea2 FL2-08s2c with 1024x768 pixels resolution streaming 15 fps.
The communication interface is IEEE1394 Firewire and GPIO. The Fiberoptic Gyro
is manufactured by Fizoptika, model VG941-3MD, streams 600 Hz Euler Angles
(Roll,Pitch,Yaw) via RS232 serial communication at 115200 baud rate. IMU is from
MicroStrain, model 3DM-GX1 which has 3 axis MEMS gyro and 3 axis MEMS ac-
celerometer with compass. It has an internal filtering for accurate state estimation.
However, we turned the filtering off because it is decreasing the highest achievable
sampling rate. Therefore it can output raw data at 333 Hz. OptiTrack external motion
tracking system (model s250e) can provide 6D state of a defined rigid body which
has at least 3 reflective markers rigidly placed on it. The data is transmitted at up to
250 Hz via UDP protocol through Ethernet or wireless network.

The general overview of our experiment area is shown in Fig. 4.8. Six OptiTrack
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Figure 4.5: The scenes of "dry leaves"(upper left), "green leaves"(upper right),
"Forest Ground"(lower left) and "pine cones"(lower right).

cameras are placed to the area (ceiling) to form a two triangular region such that at
least 3 cameras can see the robot at any place during the experiments. The system can
only calculate the 6D position and orientation if and only if at least two cameras can
detect at least 3 of the reflective markers. Increasing the number of cameras that can
see the robot at the same time increases the accuracy of the data. The camera system
covers an area of about 5m in length and 3m in width. They are calibrated and the
right handed coordinate axes are assigned such that the moving direction of the robot
is –z axis, and the vertical direction from the floor plane is +y axis.

Table 4.2: The sensors used in dataset and their properties.

Sensor Model Sampling Rate Properties

Camera Pointgrey FL2-14S3C 15 fps 1280×960 RGB

FOG Fizoptika VG941-3MD 600 Hz ±500 deg/sec

IMU MicroStrain 3DM-GX1 333 Hz ±300 deg/sec, ±5 g

Motion Capture OptiTrack S250e 120 Hz 832×832, 56◦FOV
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Figure 4.6: The setup for obtaining spatially varying motion blur caused by the
zooming effect. The camera is rotated 90 degrees clockwise around its yaw axis and

attached to the moving cart. The cart is moved from far to near the checkerboard
pattern at different speeds to simulate zooming based motion blurring effect.

Figure 4.7: Spatially varying motion blurred images obtained by the above setup.
The exposure is kept constant at 100ms for all images. The images are captured at

same cart speed of 13cm/sec with 2cm distance intervals each during the
approaching motion.

The FOG and IMU are used to measure the rotational velocities and linear accel-
eration of the camera. Therefore they should be rigidly connected to get accurate
and reliable data. We designed a mounting part shown in Fig. 4.10 to mount FOG,
IMU and the camera together. The designed part is manufactured in PLA plastic via
a 3D printer. The manufactured mounting parts and assembled camera, FOG and
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Figure 4.8: The general overview of the experiment area. There are 6 OptiTrack
cameras mounted on the ceiling. The checkerboard pattern is placed vertical to the

ground plane and the optical axis of the camera. Three PCs are used; one is for
controlling of the robot; one of them is used for real-time data capturing from the

sensors; and the other one is optitrack server which computes 6D position &
orientation and sends packets via UDP protocol through network to the data

capturing PC.

Figure 4.9: The PointGrey Flea2 camera (models 14s3c and 08s2c), MicroStrain
IMU, OptiTrack s250e motion tracking camera and its reflective marker are shown

respectively
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IMU structure is shown in Fig. 4.11. The whole structure is designed such that it can
also be assembled to the body frame of SensoRHex with a couple of auxiliary parts
that are also designed and 3D printed. The FOG and IMU are assembled such that
their coordinate axis directions are parallel to each other. The possible misalignments
originated from the manufactured parts are neglected. The optical axis of camera cor-
responds to the -x axis of IMU & FOG and -z axis of OptiTrack. The vertical axis to
the ground plane in the upper direction corresponds to -y axis of IMU & FOG and y
axis of OptiTrack.

Figure 4.10: (Top) Camera mounting part for mounting both to the FOG, IMU and
the body frame of SensoRHex. (Bottom) Mounting structure for assembling FOG
and IMU together. The whole structure is also used for mounting to the camera.

The camera, FOG & IMU structure assembly onto the body frame of SensoRHex
is shown in Fig. 4.12. The camera is accurately placed on the center of the front
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Figure 4.11: The manufactured mounting parts and assembly of the camera, FOG
and IMU. The whole structure is designed such that it can also be assembled to the

body frame of SensoRHex with a couple of auxiliary parts that are also designed and
3D printed.

frame. 11 reflective markers of external motion tracking system are rigidly mounted
asymmetrically to the various places of the body frame via 3D printed mounting parts.

The robotic platforms have the ability of locomotion on a wide range of environment
and terrain. They can both walk on flat indoor surfaces as well as on outdoor rough
terrains. The camera images are frequently used for recognizing objects, localization
and mapping kind of applications. Therefore, the data set might include data captured
in a number of different environments and scenes. However, there are some limita-
tions for collecting data outdoor. For instance, the external motion tracking cameras
are not suitable for outdoor data capturing. Therefore, our data set includes only in-
door captured data for the time being. However, it is possible to change the indoor
scene. The scene can be a natural office scene as well as there can be a more structured
pattern placed in front of the robot at a known distance for a more controlled scene
capture. As frequently discussed in our reports, visual feature points are important
information that can be derived from the images. Therefore, we place a checkerboard
pattern in front of the camera to capture feature rich images whose ground truth is
possible to extract.

It is frequently needed to manually analyze the data in the collected data set. However
it is not easy to manually analyze the data without an easy to use interface, especially,
when there is more than one kind of data such as visual images and numeric motion
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Figure 4.12: The camera, FOG & IMU structure assembled onto the body frame of
SensoRHex. The camera is accurately placed on the center of the front frame. 11
reflective markers are rigidly mounted asymmetrically to the various places of the

body frame via 3D printed mounting parts.

velocities that are captured from different sensors at different sampling rates. The
best way to do this is to design a graphical user interface which has the capability
to display the data that corresponds to a desired time instance and has the ability to
easily navigate on the data.

The graphical user interface (GUI) designed for manual data analysis of multi-sensor
motion blur data set is shown in Fig. 4.14. The complete rotational motion data
are shown together with the image frame selected by clicking on the desired time
instance. The motion data that correspond to the frame capturing period of selected
frame is also plotted on the small figure windows seen on the left side. It is possible
to move one frame forward or backwards using the mouse buttons. A preview of
homogeneously selected frames from the whole sequence is displayed for a quick
overview. The motion data and the image frames can be zoomed in and out using
mouse and keyboard shortcuts. It is also possible to apply a corner feature detection
algorithm to the selected frame. There is an option to enable or disable the corner
feature detection algorithm since it takes time to find the features.

There have been a number of problems and difficulties in the real-time capturing of
data from four different sensors at different sampling rates. All of the data capture
process are controlled by programs written in Matlab running at windows operating
system. However, there occurs some data drop at the OptiTrack data. OptiTrack cam-
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Table 4.3: Properties of the legged robot motion blur dataset experiments.

Average Robot Speed Experiment Duration

8 cm/sec 39 sec

12 cm/sec 38 sec

16 cm/sec 37 sec

22 cm/sec 33 sec

35 cm/sec 28 sec

48 cm/sec 17 sec

Figure 4.13: Sample image frames taken from the SensoRHex motion blur dataset
together with their magnified views below them.

eras are connected to a server PC via Ethernet switches and the server broadcasts the
computed motion data to other PCs connected to the same network via UDP protocol.
Since UDP is not a lossless packet transmition protocol, some of the packets may be
dropped because of the traffic congestions in network or the lack of processing power
of the receiving computer to cope with the incoming packets in real-time. Since the
capture computer is very busy with data capturing at high rates and video frames
compression, the processing power is not sufficient to process the UDP packets in
time. This causes frame drops in the received OptiTrack motion data. Although the
OptiTrack is capable of sending data at up to 250 Hz, the data drop reaches percent-
ages more than %60. Therefore, we set the sampling data rate to 120 Hz to decrease
the frame drops below %10. However, it can be seen from the figures that some of
the OptiTrack samples are contradicting with the gyro data which are caused by the
frame drops.

4.5 Offline Synchronization of Motion Data & Image Data

All of the data from the four sensors are recorded at Matlab platform on the same
computer to capture a synchronous data. However, the captured data are not perfectly
synchronized due tp the operating system related issues. It is not possible to initial-

71



Figure 4.14: The graphical user interface (GUI) designed for manual data analysis of
multi-sensor motion blur data set. The complete rotational motion data are shown

together with the image frame selected by clicking on the desired time instance. The
motion data that correspond to the frame capturing period of selected frame is also

plotted on the small figure windows seen on the left side. A preview of
homogenously selected frames from the whole sequence is displayed for a quick
overview. It is also possible to zoom in and out to the motion data and the image

frames.

ize the sensors to stream their data at the same desired time, since windows is not a
real-time operating system. Therefore, a fine offline data synchronization is required.
Since there are different kinds of data (visual and numerical) that are defined in differ-
ent spaces, it is not easy to synchronize these data unless they are defined according
to a common space. Therefore, we decided to utilize optical flow vectors space as the
common space. The optical flow vectors are computed both from the motion data and
the image sequence data. Then, optical flow vectors computed from the gyro data is
matched with the optical flow computed from image frames for fine synchronization.

4.5.1 Optical Flow Computation From the Motion Data

What we call “optical flow vectors” in this part is somewhat different than the general
computation and usage of optical flow. Optical flow is generally computed from the
pixel movements between two images. However, we calculate and use optical flow
vectors to represent the movements of pixels during the exposure time. This slight
difference comes from the violation of the assumption which states that the move-
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Figure 4.15: An example motion blurred frame (frame:193 at t=13.79s) taken from
the collected dataset and the corresponding optical flow vectors computed from the

gyro data.

ments of the pixels are negligibly small during the exposure. However, it is obvious
that the movements of the pixels are relatively large within an exposure period in
motion blurred images.

An example frame taken from the dataset and the corresponding optical flow vector
field are shown in Fig. 4.15 The optical flow vectors are computed using the Euler
angles that correspond to the frame capturing time which is shown in Fig. 10. Euler
angles can be directly read from OptiTrack whereas the gyro rates taken from FOG
and IMU needs to be integrated.

There have been a number of problems and difficulties in the real-time capturing of
data from four different sensors at different sampling rates. All of the data capture
process are controlled by programs written in Matlab running at windows operating
system. However, there occurs some data drop at the OptiTrack data. OptiTrack cam-
eras are connected to a server PC via Ethernet switches and the server broadcasts the
computed motion data to other PCs connected to the same network via UDP protocol.
Since UDP is not a lossless packet transmition protocol, some of the packets may be
dropped because of the traffic congestions in network or the lack of processing power
of the receiving computer to cope with the incoming packets in real-time. Since the
capture computer is very busy with data capturing at high rates and video frames
compression, the processing power is not sufficient to process the UDP packets in
time. This causes frame drops in the received OptiTrack motion data. Although the
OptiTrack is capable of sending data at up to 250 Hz, the data drop reaches percent-
ages more than 60%. Therefore, we set the sampling data rate to 120 Hz to decrease
the frame drops below 10%. However, it can be seen from the figures that some of
the OptiTrack samples are contradicting with the gyro data which are caused by the
frame drops.
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Figure 4.16: Euler angles from OptiTrack, FOG and IMU. Gyro based Euler angles
are computed by the integration of gyro rates. The two red bars shows the frame

capturing period (13.79s to 14.46s) of the example frame (f:193) shown in Fig. 9.
Small figure on the left shows the gyro rates taken during the frame capturing period

of the selected frame.

4.5.2 Optical Flow Computation From the Image Frames

Optical flow computation from the images requires two image frames. The main
assumption of the optical flow algorithms is the brightness constancy which assumes
that the brightness values of the pixels do not change for the consecutive frames.
Actually in real images this assumption is impossible to strictly satisfy due to noise
and motion blur. Since optical flow means that the pixels have a motion, then it is
only possible to prevent motion blur by shortening the exposure time with respect to
the frame period, so that the motion of pixels during the exposure are negligibly small
when compared to the complete frame period. However, even if the motion blur may
decrease the performance of the optical flow algorithm, it gives a comparable estimate
on the motion.

For the computation of the optical flow, we used a well performing method in the
literature proposed by Sun, Roth and Black [50] . For the computation we used two
example consecutive blurred frames from the data set. One of the frames is more
blurred than the other which enforces the limits of brightness constraint assumption.
The selected frames and the computed optical flow vector field is shown in Fig. 4.18.
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Figure 4.17: Euler rates captured from the FOG, IMU and OptiTrack. Small figure
on the left shows the gyro rates taken during the frame capturing period of the

example frame (f:193) shown in Fig. 9

Figure 4.18: Selected consecutive motion blurred image frames for optical flow
computation and the corresponding optical flow vector field computed by the

method given in [32].

Although there is significant motion blur in one frame, the computed optical flow is
good enough to estimate the motion of the frames.

4.5.3 Synchronization Using Optical Flow From Images & Camera Motion

Fig. 4.19 shows the frame averages of computed optical flow vectors. The red curve
is computed from gyro data and the blue curve represents the optical flow frame
averages computed from consecutive image frames. Although the waveforms have

75



Figure 4.19: Optical flow averages computed from gyro versus image sequences.
The starting of motion can easily be identified from both curves. It is observed that

the gyro and camera data are not synchronized.

similar behaviors, it can easily be seen that there is a lack of synchronization. For
example, the motion seems to have started earlier in image frames than the gyro
samples. Therefore, we have utilized the starting and ending of optical motion for
synchronization.

After the synchronization by the mentioned method, we have obtained the plots
shown in Fig. 4.20. It can be seen that the general behavior of the waveforms matches
well. The parameters obtained from this synchronization method is utilized to syn-
chronize the motion and image data.

The synchronization parameters revealed that the timestamps and sampling rates of
the actual data logged in computer differs slightly due to the non-real-time operat-
ing system related issues. Since the data is logged from different sensors via different
communication interfaces, the occurrences of delays and sample losses are inevitable.
Data fusion plays an important role here to be able to compensate the errors and im-
perfections in the collected data. More advanced data fusion and estimation methods,
such as Kalman Filter, can be utilized if more accurate data is required.
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Figure 4.20: Optical flow averages computed from gyro versus image sequences.
The gyro and camera data are synchronized by adding the required time shift and

adjusting the actual frame rate of camera from 15 fps to 14 fps.
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CHAPTER 5

EXPERIMENTS AND TEST RESULTS ON MOTION
DEBLURRING STUDIES

In this chapter, we demonstrate experimentally the comparative performances of:
1)Single frame motion deblurring methods in terms of a) FD-AROC metric, b) a fea-
ture descriptor based metric and 2) the improvements possible a) using multi-frame
approach and b) the extension to nonlinear blur kernel estimate.

The experiments substantiate two contributions of the thesis: a) A more reliable per-
formance metric indicative of feature based performance of deblurring. b) The novel
multi-frame deblurring method proposed based on variable non-overlapping motion
blur spectral profiles. The chapter also covers a descriptor based characterization of
these methods.

5.1 Testing and Benchmark Comparison of Single Frame Motion Deblurring
Methods

In this section, the performances of selected single frame motion deblurring methods
are compared based on the proposed feature detection metric. It is important to note
that, the given performance comparisons of deblurring methods should not be evalu-
ated alone but considered together with the applied feature detector. The ROC graphs
and the FD-AROC metric indicate the relative performances of deblurring methods
under the applied feature detector. Therefore, one can decide on which deblurring
method to use together with the corresponding feature detector if the input images
are exposed to motion blur.

The proposed metric is applied to a wide range of motion blur cases that are avail-
able in our motion blur dataset. The performances of methods vary according to the
magnitude, uniformity and the linearity of the motion blur. Firstly, the methods are
tested using the controlled 1D linear spatially invariant motion blur data with different
camera speeds which yield different blur magnitudes. There are two different scenes
used for experiments. One of them is the generic checkerboard pattern scene and the
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Figure 5.1: An example motion blurred frame from Sp02 dataset and its zoomed in
view.
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Figure 5.2: ROC analysis of Harris(left) and FAST(right) feature detectors under
different motion deblurring methods using the linear uniform 20 pixel motion

blurred images in Checkerboard dataset.

other one is the natural office scene. The ROC analysis of Harris and FAST feature
detectors under different motion deblurring methods using the linear uniform 20 pixel
motion blur checkerboard dataset is shown in Fig. 5.2. This corresponds to a camera
speed of 2cm/sec which is the lowest motion blurred image data in the dataset. The
top figure shows the results under Harris detector and the bottom one corresponds
to the FAST detector. It can easily be observed that Harris has a good performance
on low motion blurred images regardless of which deblurring method is used to re-
construct the image. The detection performance of FAST features is poor even at
low motion blur, proving that motion blur has a significant impact on this important
feature. However, the positive effect of motion deblurring methods is also significant
in this case. One can observe from the results that Goldstein and Krishnan deblur-
ring methods significantly increase the feature detection performance, although not
matching the performance of Harris which appears to be much more robust against
motion blur.

The ROC analysis for 20 pixels blurred checkerboard pattern dataset is repeated for
20 pixels blurred natural office scene. The ROC curves corresponding to the natural
office scene dataset is shown in Fig. 5.3. The ROC curves in the left figure corre-
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Figure 5.3: ROC analysis of Harris(left) and FAST(right) feature detectors under
different motion deblurring methods using the linear uniform 20 pixel motion

blurred images in Office Scene dataset.

sponds to Harris feature detector under different motion deblurring methods and no
deblurring. Similarly, the right figure corresponds to results with FAST feature detec-
tor. As can be seen from the figures, the order of deblurring methods obtained with
the natural office scene dataset are more or less the same as the order obtained from
the checkerboard pattern dataset shown in Fig. 5.2. However, the feature detection
performance in natural office scene is lower than the checkerboard pattern. This re-
sult is expected since the corner features in checkerboard pattern are significant where
the corner features in natural office scene are not as strong as the checkerboard cor-
ner features. Some of the motion deblurring methods contribute to the performance
of feature detectors as in checkerboard experiments where the others may degrade
the performance of the detector even more than the no deblurring case. Harris cor-
ner detector performance is not effected much by motion deblurring methods either
positively or negatively. Therefore, for low motion blur cases, there is no need to
use a deblurring method with Harris. However, for FAST detector, Krishnan’s and
Goldstein’s methods improve the detection performance dramatically.

Figure 5.4: An example motion blurred frame from Sp05 dataset and its zoomed in
view.

When the speed of the camera is increased, the ROC performance begin to get worse
as expected since the amount of motion blur gets higher. Fig. 5.5 shows the ROC
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Figure 5.5: ROC analysis of Harris(left) and FAST(right) feature detectors under
different motion deblurring methods using the linear uniform 50 pixel motion

blurred images in Checkerboard dataset.
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Figure 5.6: ROC analysis of Harris(left) and FAST(right) feature detectors under
different motion deblurring methods using the linear uniform 50 pixel motion

blurred images in Office Scene dataset.

graph of methods on 50 pixels motion blurred images. The decrease in detection per-
formance is more considerable for Harris detector than the FAST. However, the uti-
lization of Krishnan deblurring method increases the detection performance of Harris
dramatically. Goldstein, R-L and Shan methods also have a positive effect in the de-
tection performance of Harris. For FAST, the detection performance does not drop
dramatically when the motion blur is increased. However, it is still possible to in-
crease the detection performance when Krishnan and Goldstein deblurring methods
are applied to the motion blurred images.

Fig. 5.6 shows the ROC curves obtained from natural office scene dataset with 50
pixels motion blur. As the motion blur increases, the effect of motion deblurring
methods become more significant both for Harris and FAST. Krishnan, Goldstein
and Shan improves the performance of Harris where only Krishnan and Goldstein
contributes to the performance of FAST.
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Figure 5.7: ROC analysis of Harris(left) and FAST(right) feature detectors under
different motion deblurring methods using the SensoRHex motion blur dataset.

Up to now, the presented results are all obtained using a fully controlled 1D linear and
uniform motion blur data set which guarantees that the assumptions of all the utilized
deblurring methods are met. For some applications these results can be applicable
only if the blur consists of translation along a single axis. The dataset also includes
scenarios in development where these assumptions, such as blur uniformity or time
invariance are selectively removed. Within the scope of the present paper, our focus
is on demonstrating the two extreme of the scenario spectrum: In the other extreme,
such as the legged robotics application, the motion of the camera is not controlled and
therefore results in complicated motion blur PSFs. Most of the time, this motion is a
combination of roll, pitch and yaw rotations together with translations along x,y and
z axes. Often, for far field imaging, the translational motion effects can be negligi-
ble as compared with the rotational motion. In this case, there appears nonlinear and
nonuniform motion blurred frames which cause some of the assumptions of motion
deblurring methods to be violated. To be able to measure the applicability of motion
deblurring methods in these scenarios, we tested the above methods on our motion
blur dataset obtained from the research robot platform SensoRHex. The results are
obtained using the images captured while SensoRHex is walking at highest locomo-
tion speed: 48cm/sec. Although the robot has the ability to walk faster, the motion
blur dataset is collected for speeds up to 48cm/sec which already results in signifi-
cant magnitude of motion blur in the captured image frames. Some of the frames are
given as an example from the dataset together with their magnified views below them
in Fig. 4.13.

The results obtained using the SensoRHex motion blur dataset is shown in Fig. 5.7.
Similar to the results obtained using the controlled motion blur dataset, the feature
detection performance of Harris is higher than the FAST with or without the applica-
tion of any deblurring method. For both of the detectors, Shan, Whyte and Krishnan’s
deblurring methods improve the detection performance. However, for Harris corner
detector, Shan yields the highest performance while Whyte performs the best for the
FAST detector.
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It may seem surprising that Whyte have a higher performance in SensoRHex dataset
than the controlled motion blur dataset. Actually, the success of Whyte over other
methods in SensoRHex dataset is not by chance since it is the only method that han-
dles nonuniform motion blur caused by the 3D camera rotations as explained in Sec-
tion 1.1. The success of Shan for Harris detector is similar to its behavior in previous
dataset examples. Although it does not handle nonuniform motion blur, the ringing
artifact suppression property of Shan seems to work well with Harris corner detector
even in nonuniform motion blur cases.

The performances of the methods illustrated by the given ROC curves can be quanti-
fied as a scalar number using the proposed FD-AROC metric. The ROC curves for the
three chosen scenarios from the larger dataset are illustrated above. The FD-AROC
scores for the deblurring methods for the entire content of the dataset are summarized
in Table 5.1 and Table 5.2 for the Harris corner feature detector and FAST feature
detector respectively.
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(a) No-DB (b) R-L

(c) Wiener (d) Goldstein

(e) Shan (f) Krishnan

(g) Whyte (h) MID

Figure 5.8: (a) 20 pixels motion blurred checkerboard image. (b-h) Deblurring
results obtained using the methods written on top of the frames given above.
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(a) No-DB (b) R-L

(c) Wiener (d) Goldstein

(e) Shan (f) Krishnan

(g) Whyte (h) MID

Figure 5.9: (a) 50 pixels motion blurred checkerboard image. (b-h) Deblurring
results obtained using the methods written on top of the frames given above.
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(a) No-DB (b) R-L

(c) Wiener (d) Goldstein

(e) Shan (f) Krishnan

(g) Whyte (h) MID

Figure 5.10: (a) 20 pixels motion blurred Office Scene image. (b-h) Deblurring
results obtained using the methods written on top of the frames given above.
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(a) No-DB (b) R-L

(c) Wiener (d) Goldstein

(e) Shan (f) Krishnan

(g) Whyte (h) MID

Figure 5.11: (a) 50 pixels motion blurred Office Scene image. (b-h) Deblurring
results obtained using the methods written on top of the frames given above.
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Table 5.1: Metric scores of motion deblurring methods with Harris corner detector.

DATA Metric Metric Scores (Ordered from best to worst)

Sp02
MinDist Krishnan No-DB Shan Whyte Goldstein R-L Wiener

0.0003 0.0023 0.0028 0.0046 0.0113 0.0298 0.0922

ROC Area Krishnan Shan Whyte No-DB Goldstein R-L Wiener
0.9972 0.9704 0.9462 0.9444 0.9370 0.8889 0.8655

Sp03
MinDist Krishnan R-L Shan Goldstein Whyte Wiener No-DB

0.0018 0.0169 0.0342 0.0684 0.0698 0.1931 0.2412

ROC Area Krishnan R-L Shan Whyte Goldstein Wiener No-DB
0.9639 0.9046 0.8602 0.8375 0.8339 0.6297 0.5911

Sp05
MinDist Krishnan R-L Goldstein Shan No-DB Whyte Wiener

0.0032 0.0318 0.0856 0.1165 0.2526 0.3032 0.3470

ROC Area Krishnan R-L Goldstein Shan No-DB Whyte Wiener
0.9645 0.8460 0.8424 0.7674 0.5628 0.5343 0.5034

Sp06
MinDist Krishnan R-L Goldstein Shan No-DB Wiener Whyte

0.0012 0.0246 0.1011 0.1023 0.2464 0.2895 0.2923

ROC Area Krishnan R-L Goldstein Shan No-DB Whyte Wiener
0.9861 0.8135 0.8088 0.7862 0.6032 0.5515 0.5206

Sp07
MinDist Krishnan R-L Goldstein Shan No-DB Wiener Whyte

0.0039 0.0202 0.1643 0.2512 0.2725 0.2762 0.3377

ROC Area Krishnan R-L Goldstein Shan No-DB Whyte Wiener
0.9578 0.8317 0.7305 0.6811 0.5592 0.5422 0.5235

Sp09
MinDist Krishnan R-L Whyte Goldstein Shan No-DB Wiener

0.0799 0.0852 0.2215 0.2276 0.2638 0.2651 0.4522

ROC Area Krishnan Goldstein R-L No-DB Whyte Shan Wiener
0.8526 0.6444 0.6419 0.6196 0.6038 0.5903 0.3808

S.Rhex
MinDist Shan Whyte Krishnan No-DB Goldstein Wiener R-L

0.2293 0.3036 0.4428 0.4789 0.4989 0.5437 0.7174

ROC Area Shan Whyte Krishnan No-DB Goldstein Wiener R-L
0.7041 0.6311 0.4593 0.4425 0.3526 0.3494 0.3106
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Table 5.2: Metric scores of motion deblurring methods with FAST corner detector.

DATA Metric Metric Scores (Ordered from best to worst)

Sp02
MinDist Goldstein Krishnan R-L No-DB Shan Wiener Whyte

0.2298 0.2839 0.4322 0.4578 0.5788 0.6437 0.7118

ROC Area Goldstein Krishnan No-DB Shan R-L Whyte Wiener
0.7877 0.6980 0.6036 0.5693 0.4836 0.3142 0.2658

Sp03
MinDist Goldstein Krishnan No-DB R-L Shan Whyte Wiener

0.2642 0.2690 0.4251 0.4286 0.5746 0.7166 0.7180

ROC Area Krishnan Goldstein No-DB R-L Shan Whyte Wiener
0.6904 0.6858 0.5678 0.3446 0.2516 0.2027 0.1805

Sp05
MinDist Krishnan Goldstein No-DB R-L Shan Wiener Whyte

0.2527 0.2868 0.4135 0.5660 0.6210 0.7800 0.8190

ROC Area Krishnan Goldstein No-DB R-L Shan Wiener Whyte
0.6662 0.6074 0.5092 0.2495 0.2286 0.1389 0.1343

Sp06
MinDist Krishnan Goldstein No-DB R-L Shan Wiener Whyte

0.2222 0.3351 0.4545 0.5773 0.6313 0.7785 0.8913

ROC Area Krishnan Goldstein No-DB Shan R-L Wiener Whyte
0.6808 0.6671 0.4882 0.2569 0.2294 0.1349 0.1064

Sp07
MinDist Krishnan Goldstein No-DB R-L Shan Wiener Whyte

0.2261 0.3329 0.4292 0.5864 0.6999 0.7477 0.7779

ROC Area Krishnan Goldstein No-DB Shan Whyte R-L Wiener
0.7125 0.5994 0.5352 0.2925 0.2477 0.2318 0.1419

Sp09
MinDist Goldstein Krishnan No-DB R-L Whyte Shan Wiener

0.2681 0.3267 0.4784 0.6221 0.6260 0.7301 0.7649

ROC Area Goldstein Krishnan No-DB Whyte R-L Shan Wiener
0.6318 0.6003 0.4599 0.3066 0.2445 0.2191 0.1585

S.Rhex
MinDist Whyte Shan Krishnan Goldstein No-DB Wiener R-L

0.3644 0.5443 0.5796 0.6153 0.6841 0.7146 0.7946

ROC Area Whyte Shan Krishnan No-DB Goldstein Wiener R-L
0.4985 0.3731 0.3232 0.2928 0.2906 0.2461 0.2200
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For all the motion blur magnitudes of 1-D uniform dataset, Krishnan’s deblurring
method is the most successful method in combination with the Harris corner feature
detector. When compared with respect to the no deblurring case, Krishnan’s method
achieves an increase between 0.05 to 0.40 in the FD-AROC metric. However, for
the SensoRHex dataset with non-uniform blur, the performance increase with Krish-
nan deblurring is not more than 0.02. When combined with the FAST detector in
1-D uniform dataset, Krishnan competes with Goldstein. When compared with the
no deblurring case, Krishnan improves the FAST detector performance from 0.09 to
0.19 and Goldstein from 0.06 to 0.18 in terms of the performance metric proposed.
However, similar to the Harris detector case, for the SensoRHex robot data, Krishnan
can only contribute 0.03 where Goldstein shows no improvement when combined
with the FAST detector. This shows that, the FD-AROC performance of Krishnan
degrades dramatically for nonuniform motion blur cases with both Harris and FAST
detectors. Similarly, although Goldstein’s method work well with FAST for 1-D uni-
form motion blur dataset, its performance drops slightly below the no deblurring case.
On the other hand, Shan and Whyte’s methods are distinguished well over the other
methods for the nonuniform motion blur dataset.

To summarize, the results discussed above show that the selection of a motion deblur-
ring method for improving the performance of a feature detector depends on both the
properties of motion blur (hence the various parts of the dataset) and the motion blur
magnitude. Therefore the selected methods are tested on the collected motion blur
dataset that includes controlled 1-D linear uniform together with nonlinear, nonuni-
form motion blurred video. It is also demonstrated that a motion deblurring method
that favors a feature detector may not perform as well for other feature detectors show-
ing that there is no one universal deblurring method for the application. We believe
that the obtained results can be used as a selection guide for deciding on the motion
deblurring method to use for a particular feature based computer vision application in
legged robotics and other legged platforms. The proposed feature based FD-AROC
metric we believe can be used as a reliable performance measure that can be utilized
in this field for benchmarking for all proposed motion deblurring methods. Finally,
we would like to note that the dataset includes a multi-sensor aspect that we are in
the process of using in our ongoing research. In particular, we believe that for video
processing on mobile platforms, the motion data from inertial sensors, which is part
of our presented dataset, can very successfully be used for aiding image processing
and computer vision algorithms in general and motion deblurring in particular.

5.2 Multi-Frame Motion Deblurring Results

The comparison of selected single frame methods based on the FD-ROC analysis
were presented in Section 5.1. In this section, the multi-frame deblurring method
explained in Chapter 2 is tested on real test images obtained from our 1-D motion
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setup and compared according to the FD-ROC based feature detection performance
metric.

Similar to the experiments on single frame deblurring methods, the proposed multi-
frame deblurring method is tested with different motion blur magnitudes. The results
are compared with the best performing single frame deblurring method and no de-
blurring applied images in the linear uniform motion blur dataset.
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Figure 5.12: ROC analysis of Harris(left) and FAST(right) feature detectors under
multi-frame deblurring method, best performing single frame motion deblurring

method and no deblurring applied images in the linear uniform 20 pixel motion blur
dataset.

The results obtained with 20 pixel blurred images are presented in Fig. 5.12. ROC
analysis of Harris feature detector is shown on top-right graph and FAST feature
detector is shown on top-left graph. The multi-frame deblurring method is applied
using two image frames; one with 20 pixels and the other with 30 pixels motion blur
magnitudes. The frequency response spectrum of 20 and 30 pixels motion blur PSFs
are shown on bottom graph in Fig. 5.12. As can be seen from the frequency spec-
trum, the 20 pixel motion blur PSF has zero response at 10 frequencies and 30 pixel
motion blur PSF has zero response at 15 frequencies. However, when multi-frame
deblurring is used, then half of the zeros of 20 pixel motion blur PSF is compensated
with 30 pixel motion blur PSF hence resulting in zero responses at only 5 frequen-
cies. This leads to less image information to be lost and a low amplification factor
for restoration which increases the signal to noise ratio (SNR). Therefore, a perfect
detection rate (FD-AROC=1) could be achieved with Harris feature detector which is
better than both the no deblurring case and deblurring with the best performing single
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frame deblurring method by Krishnan. For FAST feature detector, the multi-frame
deblurring method performs better than the best performing single frame motion de-
blurring method by Goldstein. Although the detection rates for FAST detector seem
to have a lower performance than the Harris, the application of deblurring yields a
significant increase in the detection performance when compared to the no deblurring
case.
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Figure 5.13: ROC analysis of Harris(left) and FAST(right) feature detectors under
multi-frame deblurring method, best performing single frame motion deblurring

method and no deblurring applied images in the linear uniform 50 pixel motion blur
dataset.

Another example result obtained with relatively higher motion blur magnitude of 50
pixels is presented in Fig. 5.13. The multi-frame deblurring method is applied us-
ing two image frames; one with 50 pixels and the other with 60 pixels motion blur
magnitudes. The frequency response spectrum of 50 and 60 pixels motion blur PSFs
are shown on bottom graph in Fig. 5.13. It can be noticed that the number of zero
response frequencies of PSFs are increasing with higher motion blur magnitudes as
explained in Section 2.2. The response amplitudes are also getting lower which re-
quires higher amplification factor in restoration. The obtained results show that the
proposed multi-frame deblurring method improves the feature detection performance
of both Harris and FAST detectors when compared to the no deblurring case. For Har-
ris and FAST feature detectors, the multi-frame deblurring method performs slightly
better than the best performing single frame motion deblurring method by Krishnan.

The application of multi-frame deblurring method with linear PSF estimation on the
1D linear motion blur dataset yields satisfactory results as presented above. How-
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Figure 5.14: ROC analysis of Harris(left) and FAST(right) feature detectors under
multi-frame deblurring method(with linear and nonlinear PSF estimation), two of
the best performing single frame motion deblurring methods and no deblurring

applied images in the SensoRHex motion blur dataset.

ever, when it is tested on the nonlinear SensoRHex motion blur dataset, the obtained
results were even worse than the no-deblurring cases as shown in Fig. 5.14. There-
fore, instead of linear PSF estimation, we made a nonlinear PSF estimation from the
inertial measurement sensors. The combination of multi-frame deblurring together
with the nonlinear PSF estimation improved the feature detection performance re-
sults dramatically both for Harris and FAST feature detectors. In Harris, multi-frame
deblurring performs as good as Shan’s method. In FAST detector, the improvement
is much more considerable. The performance of multi-frame deblurring method with
nonlinear PSF estimation is considerably better than the best performing single-frame
deblurring method by Whyte et.al.

5.3 The Effect of Motion Blur and Deblurring on Feature Descriptors

In the previous section, we presented the effect of motion blur and deblurring on the
detection of corner features. An important indicator which is as important as the de-
tection of a feature is to measure how much a feature descriptor is effected(distorted
or recovered) from motion blur and deblurring. Especially in tracking kind of appli-
cations the matching performance of features depends on the descriptor of a feature
not to be changed(distorted) too much. Therefore, our aim in this section is to analyze
the effect of motion blur and deblurring on the feature descriptors.

There are a number of feature descriptors available in literature such as SURF, SIFT.
SIFT(Scale Invariant Feature Transform) is one of the most popular methods for de-
tecting and describing image features that are invariant to image translation, scaling
and rotation. Therefore, we choose SIFT features for analyzing the effect of motion
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Table 5.3: Number of SIFT keypoints that can be detected on sharp, blurred(No-DB)
and deblurred images with the given motion deblurring methods.

DATA Number of Detected SIFT Keypoints

Sharp No-DB R-L Wiener Goldst. Shan Krishn. Whyte
Sp02 3690 163 1224 2297 4239 639 2465 2129

Sp03 3690 115 677 1399 4568 385 1399 1524

Sp05 3690 61 352 768 3607 269 981 1609

Sp06 3690 47 306 620 2743 300 830 1331

Sp07 3690 40 276 519 2547 305 740 689

Sp09 3690 30 211 325 2728 187 664 822

blur and deblurring on a feature descriptor using the SIFT Matlab codes provided by
the author of [31]. Firstly, we analyze how the number of detected SIFT features
varies under different motion blur magnitudes. Our 1D linear motion blur dataset
with a real office scene is used as the testing data. The number of detected SIFT
features on sharp, blurred(No-DB) and deblurred images using different deblurring
methods are summarized in Table 5.3. The parameters of the method is kept constant
at default values. As can be seen from the table, the blurring decreases the number
of detected SIFT keypoints dramatically as the blur magnitude increases. Another
consequence is the effect of deblurring methods on the number of SIFT keypoints
that can be detected. It can easily seen that all of the deblurring methods increases
the number of SIFT keypoints. However, it is not possible to say that the deblurring
methods recover the exact SIFT keypoints as detected from the sharp image by just
looking at the increased number of detected keypoints. Therefore, we need to com-
pare the vector distance between the descriptor vectors to determine the amount of
distortion in the descriptors introduced by the blurring/deblurring process. For this,
we selected the similar keypoints from both the sharp image and the blurred/deblurred
image that matches. The mean distances between the descriptor vectors of the SIFT
keypoints are shown in Table 5.4. The first observation from the table is the increas-
ing mean error of SIFT keypoint descriptors as the motion blur magnitude increases
as expected. Similar behavior is valid for the deblurred images. The mean error in-
creases for the deblurred images with increasing blur. However, when compared to
the no deblurring case, it can easily be observed that deblurring reduces the mean
error for most of the cases. There are also cases where deblurring increases mean
error. In fact, there is no deblurring method except Shan’s that decreases the mean
error for all blur magnitudes in the test data set. This result (descriptor mean error),
when considered together with the number of keypoints detected given in Table 5.3,
concludes that although the deblurring methods help finding more keypoints than the
no deblurring case, the mean error of the keypoint descriptors are increased in high
blur cases because of the high amount of distortion introduced by these deblurring
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methods. High descriptor error means that the descriptor is distorted and it differs
more from the original descriptor of the keypoint which is detected on the sharp im-
age. However, increasing mean error should not be considered alone for evaluating
a deblurring method. Because, although the descriptor error is increased it may be
still possible to match the keypoints. Therefore, the mean error should be considered
together with the number of keypoints that can be detected.

Table 5.4: The mean error of matching SIFT descriptor vectors on blurred and
deblurred images with the given motion deblurring methods.

DATA SIFT Descriptor Vectors Mean Error (Lower is better)

No-DB R-L Wiener Goldst. Shan Krishn. Whyte
Sp02 0.112 0.101 0.100 0.083 0.100 0.122 0.114

Sp03 0.116 0.110 0.110 0.111 0.109 0.135 0.125

Sp05 0.146 0.128 0.130 0.120 0.126 0.144 0.139

Sp06 0.175 0.157 0.165 0.157 0.130 0.160 0.147

Sp07 0.194 0.239 0.247 0.222 0.184 0.255 0.179

Sp09 0.339 0.302 0.297 0.429 0.318 0.634 0.320

For detecting corner features using the Harris corner detector, every pixel in the image
is assigned a cornerness score. A higher cornerness score means a more likelihood a
pixel to be a corner. However, when the image is motion blurred we have shown in
previous sections that some of the corner features cannot be detected. When deblur-
ring methods are applied to a motion blurred image, then some of the undetectable
corner features can be recovered. In this section, we analyze how the cornerness
scores of corner features are effected due to motion blurring and deblurring methods
applied. In Table 5.5, the cornerness scores of ground truth corner pixels are shown
for sharp, blurred and deblurred checkerboard images with the given motion deblur-
ring methods. The tests are repeated for different motion blur magnitudes. It can
be seen from the table that sharp image corner pixels have a mean cornerness score
of 1.654. However, the scores decreases dramatically as motion blur magnitude is
increased. When deblurring methods are applied, the cornerness scores are increased
for all of the deblurring methods.

5.4 Computational Complexities of the Tested Motion Deblurring Methods

Computation times of motion deblurring methods are important especially for appli-
cations where real-time operation or fast computation is required and the computation
resources are limited. Robotic applications are generally among these type of appli-
cations. Therefore in this section we present the measured computation times of the
tested motion deblurring methods. For an accurate computation time measurement
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Table 5.5: The cornerness scores of sharp, blurred and deblurred checkerboard
images with the given motion deblurring methods.

DATA Cornerness Scores (Higher is better)

Sharp No-DB R-L Wiener Goldst. Shan Krishn. Whyte
Sp02 1.654 0.043 0.569 0.172 1.017 0.304 1.711 0.450

Sp03 1.654 0.002 0.421 0.076 0.849 0.173 1.798 0.027

Sp05 1.654 0.000 0.141 0.010 0.613 0.069 1.148 0.013

Sp06 1.654 -0.002 0.097 0.002 0.113 0.037 0.382 0.004

Sp07 1.654 -0.002 0.049 0.001 0.003 0.003 0.160 0.002

Sp09 1.654 -0.003 0.013 -0.001 0.001 0.001 0.007 0.001

and comparison, all of the methods should be implemented with same programming
language and run on same computation platform. Instead of implementing all of the
methods ourselves using the same software language, we prefer using the codes pro-
vided by the authors of the methods since reimplementing all of the methods requires
too much time and effort which is not the main focus of this study. However, the
implementations of the deblurring methods used are done using different software
languages. Some of them are implemented in Matlab and others are provided only in
precompiled executables. Therefore, the computation time analysis provided in this
section are coarse and can only be used for gaining insight about the computation
time of each method individually.

Table 5.6: The computation times required for the tested motion deblurring methods
to run on 1280x960 resolution images.

Computation Times (seconds)
R-L Wiener Goldstein Shan Krishnan Whyte MID

(Matlab) (Matlab) (Matlab) (Exe) (Matlab) (Exe) (Matlab)

Sp03 5.2 0.36 31.8 26.1 169.2 1017.2 0.28

Sp05 5.2 0.36 80.4 35.8 224.0 1052.7 0.29

The measured computation times of the tested motion deblurring methods used are
presented in Table 5.6. The computation times are measured on 1280x960 pixels
resolution images having two different motion blur magnitudes. It can be easily rec-
ognized that the computation time of some of the methods depend on the motion blur
magnitude whereas the others are independent of how much the image is blurred. For
example, Richardson-Lucy, Wiener, Whyte methods are computed on both 30 pixels
and 50 pixels motion blurred images at equal or close time durations whereas Gold-
stein, Shan and Krishnan’s methods require significantly longer computation times for
the higher motion blur magnitude. For Multi-image deblurring (MID), the presented
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method is tested with pairs of motion blurred frames. For Sp03 case, a pair of images
one with 30 pixels and the other with 50 pixels motion blur are used. Similarly, for
Sp05 case, the reported computation time involves computation with 50 and 60 pixels
motion blurred image pairs. Since the presented method does not depend much on the
blur magnitude, the computation times of Sp03 and Sp05 pairs are nearly the same.
All of the computation complexity tests are carried out on the same computer having
Intel i7-4790 3.6GHz CPU and 16GB RAM running Windows 8 operating system.
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CHAPTER 6

CONCLUSIONS AND FUTURE STUDIES

6.1 Conclusions

In this study, we focused on the motion blur and its compensation in legged mobile
robotic platforms in order to increase the feature detection performance. The proper-
ties of motion blur in SensoRHex robot is analyzed and possible deblurring methods
are explored. We begin with accurately and objectively evaluating the performance
of single-frame motion deblurring methods for legged moving platforms. We are mo-
tivated by the significant presence of motion-blur for camera systems on such plat-
forms and the resulting negative effects for computer vision applications particularly
for dexterous legged robots.

We identified that feature detection performance is crucial for most higher level com-
puter vision algorithms and the fact that existing performance measures for deblurring
do not measure this. We hence proposed a direct feature detection ROC based metric
and demonstrated the inaccuracy of available image quality metrics from the literature
for indicating the quality of an image in terms of feature detection performance and
so as the computer vision applications that utilize them. The ROC analysis approach
is adapted to the problem and the “FD-AROC” metric is proposed for benchmarking.

Due to the lack of a motion blur dataset in legged robotics in literature, a comprehen-
sive dataset is constructed, with motion-blurred images having both controlled linear,
uniform and realistic nonuniform (robotic) motion components. The dataset includes
measurements of camera motion from FOG and MEMS gyroscope sensors together
with an external motion tracking data as the ground truth. Two feature detectors
(Harris and FAST) are considered for experiments. The performances of six deblur-
ring methods, proposed by Goldstein, Krishnan, Richardson-Lucy, Shan, Whyte and
Wiener are compared in terms of the FD-AROC metric.

It is a fact that motion blur blur PSFs have zero response frequencies in frequency
domain that causes the corresponding frequency information to be totally lost in the
blurred image. From the properties of motion blur obtained from our robot, we have

99



discovered that consecutive image frames have different motion blur PSFs. We an-
alyzed the zero response frequencies of linear PSFs and derived the conditions of
having overlapping and non-overlapping zero response frequencies. Utilizing this
fact, we proposed a multi frame motion deblurring method for motion blur in our
legged mobile platform. The proposed method is tested on 1-D linear uniform dataset
using two image frames having different amounts of motion blur. The results are
compared with the best performing single frame motion deblurring method and the
no deblurring applied images in terms of the proposed FD-AROC based feature de-
tection performance metric. The obtained results show that multi-frame deblurring
method significantly increases the performances of Harris and FAST corner feature
detector performances. It also slightly improves the performance obtained from the
best performing single frame motion deblurring methods. However, the application
of multi-frame deblurring method to the nonlinear and nonuniform motion blurred
images does not yield good results. Therefore we studied on 2-D nonlinear PSF
estimation from motion data and could obtain accurate 2-D nonlinear PSFs. We be-
lieve that the usage of nonlinear PSF estimation together with multi-frame deblurring
can yield better results for the motion blurred images taken from the legged mobile
robotic platform. Another factor that limits the performance of the deblurring method
in legged robot image dataset is the existence of non-uniformity (spatially variance)
of PSFs on the image. Our notion on this issue is that, non-uniformity of the PSF
is the fundamental effect that limits the performance of deblurring. We also state in
our future works in Section 6.2 that the future studies on extending the multi-frame
deblurring method to non-uniform motion blur cases may significantly contribute to
the performance of the method.

6.2 Future Work

This thesis presents our initial studies on motion blur and its compensation on a
legged mobile robotic platform in order to increase the performances of computer vi-
sion applications that utilize image features such as corners. The proposed FD-AROC
metric is used to demonstrate the performances of a number of deblurring methods
together with two fundamental corner feature detectors which are Harris and FAST.
This metric can be further used for benchmarking all of the other motion deblurring
metrics that are already available in literature or will be proposed in the future.

The proposed metric is also appropriate to measure the performance under motion
blurred and deblurred images using other future detectors. SUSAN, SIFT, SURF,
MSER are such examples to other feature detectors. Some of these detectors are used
for corner detection similar to the feature detectors we used in this study and others
are used for blob detection or detection of higher dimensional feature vectors. A
matching based performance comparison can be used for those detectors that do not
detect a visual feature such as a corner.

100



We obtained a comprehensive motion blur dataset for current and future studies of
motion blur, deblurring and other computer vision applications on a legged mobile
robot platform. Therefore, it is possible to utilize this dataset to develop and test other
computer vision applications in the future. Although the dataset includes many types
of controlled and uncontrolled motion blur obtained using different kinds of scenes
and speeds, all of the data are collected indoors due to the difficulties to establish
the current data collection setup outdoors. All of our tests are carried out on a flat
and rigid laboratory floor. Although it is possible to operate the SensoRHex robot
outdoors together with its onboard sensors such as camera and gyro; OptiTrack, the
external motion tracking system, is not appropriate for outdoor operation. An outdoor
motion tracking method can be used if such a dataset is needed.

We compared the single frame motion deblurring methods and proposed a multi frame
deblurring method for legged robotics applications. However, the performance of the
multi frame deblurring method can be increased if the spatially invariant (uniform)
motion blur assumption can be extended to nonuniform cases. Our analysis revealed
that the images taken from a legged robotic platform includes a considerable amount
of nonuniform motion blurred frames. Therefore, we think that this improvement
can increase the feature detection performance of motion blurred frames in legged
robotics vision applications.

Our study considers the images captured from the SensoRHex robot without interfer-
ing with the image capturing process. The proposed multi frame deblurring method
utilizes the fact that most of the consecutive image frames have different motion blur
magnitudes and therefore different motion blur PSFs. However, this assumption may
not be applicable for all the frames. In that cases the multi frame deblurring method
can not be utilized or will result in a poor performance. We have discussed in Sec-
tion 1.1 that some of the methods in literature modifies the image capturing process
to obtain a motion blur PSF having favorable properties for the motion deblurring
process. Instead of keeping the exposure constant as in our case, the exposure can
be modified in realtime according to the motion of the robot to obtain more suitable
image frames for multi frame motion deblurring.
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