
SEQUENCE FAMILIES WITH GOOD CORRELATION DISTRIBUTION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EDA TEKİN
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Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
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Signature :

v



vi



ABSTRACT

SEQUENCE FAMILIES WITH GOOD CORRELATION DISTRIBUTION

Tekin, Eda
Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

October 2016, 74 pages

In this thesis we focus on two main properties of sequences which have wide range
of applications in code division multiple access: autocorrelation and cross-correlation.
First, necessary properties of sequences, some known perfect autocorrelation sequences
and some known sequence families with their cross-correlation properties are given.
Then, a perfect autocorrelation sequence [18] is generalized with respect to a number
theoretic constraint of n for a given prime power q. This generalization enables the
designers to have more flexibility in terms of the deployment of these sequences.

Later, a sequence family with low maximum correlation magnitude is constructed for
an arbitrary even positive integer n and its correlation distribution is given. Gold-like
sequence family [6] is generalized depending on a plateaued function f(x), for all
possible p and n values and its correlation values are obtained. Finally, using Gold
function as f(x), the generalized family’s correlation distribution is given depending
on p and n.

Keywords : Sequences, autocorrelation, cross-correlation, code division multiple ac-
cess, spread spectrum, wireless communications
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ÖZ

İYİ KORELASYON DAĞILIMLI DİZİ AİLELERİ

Tekin, Eda
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Ekim 2016, 74 sayfa

Bu tezde kod bölmeli çoklu erişimde yaygın uygulamaları olan dizilerin iki temel
özelliğine odaklandık: otokorelasyon ve çapraz korelasyon. İlk olarak, dizilerin gerekli
özellikleri, bilinen bazı ideal otokorelasyon dizileri ve bilinen bazı dizi aileleri ile
bu ailelerin çapraz korelasyonları verilmiştir. Sonra bir ideal otokorelasyon dizisi
[18], verilen bir üstel q asal sayısı için n üzerinde bir dizi teorik şarta bağlı olarak
genelleştirilmiştir. Bu genelleştirme, tasarımcıların bu dizilerin kullanımı açısından
daha fazla esneklik kazanmasına olanak sağlamaktadır.

Daha sonra, verilen bir n çift tam sayısı için, düşük maksimum korelasyon değerine
sahip bir dizi ailesi inşa edilip bu ailenin korelasyon dağılımı verilmiştir. Gold-like
dizi ailesi [6], f(x) plato fonksiyonuna bağlı olarak, tüm olası p ve n değerleri için
genelleştirilmiştir ve ailenin korelasyon değerleri hesaplanmıştır. Son olarak, f(x)
fonksiyonunu Gold fonksiyonu alarak, bu genelleştirilmiş dizi ailesinin korelasyon
dağılımı p ve n değerlerine bağlı olarak verilmiştir.

Anahtar Kelimeler : Diziler, otokorelasyon, çapraz korelasyon, kod bölmeli çoklu
erişim, yayılı spektrum, kablosuz iletişim
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CHAPTER 1

INTRODUCTION

Code division multiple access (CDMA) is a form of spread spectrum transmission
which spreads the signal wider than the normal bandwith so that the signal hides under
noise. The system is secure when jamming is a threat. With this technology, users of
the system can send signal simultaneously without interfering each other.

Basic working principle of this system is: every user is assigned with a different code
(sequence) and use this unique sequence to transmit signal. To minimize the interfer-
ence with other users, the cross-correlation values of these assigned sequences should
be small. To send a data, users XOR the data with his/her own spreading sequence
and to decode the received signal, receiver XOR the signal with the sender’s attained
spreading sequence [7].

The spread spectrum is widely used in operational radar systems, navigation, military
and telecommunication systems for over eighty years. The amount of interest and
investment in this area is constantly growing after the invention of CDMA mobile
phones and the 3G mobile radio by industry [29].

First studies on spread spectrum systems were performed during the World War II in
the USA, the UK, Germany and the USSR. Most of the information was classified
as the studies were supervised by military services. In the 1960s different sequences
with some correlation properties were obtained by S. Golomb, N. Zierler, R. Gold, T.
Kasami and others. This led to a giant step in the spread spectrum technology and
various achievements [13], [28]. The commercial area of the spread spectrum started
to increase in the late 1970s, when the mobile phones spread around the world. Then in
the late 1980s, the spread spectrum techniques are implemented to the GPS technology,
satellite television and mobile radio [13].

The most common methods of the code division multiple access are direct sequence
and frequency hopping. Sequences used in these methods should satisfy some spesific
properties to have widespread applications. In this thesis, we have focused on two im-
portant properties of sequence design: perfect autocorrelation sequences and sequence
families with low maximum cross-correlation magnitude.
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1.1 Mathematical Background

In this part, we give the necessary mathematical background for sequence design. The
definitions and theorems given in this chapter can be found in [19] and [22].

Definition 1.1. A field (F,+, .) is a set F , with two binary operations (+) and (·)
satisfying the conditions below for all x, y, z ∈ F .

(i) F is closed under (+) and (·), that is, x+ y ∈ F and x · y ∈ F .

(ii) (+) and (·) are associative, that is, (x+y)+z = x+(y+z) and (x·y)·z = x·(y·z).

(iii) For two binary operations (+) and (·), F has unique identity elements e and e′
respectively, that is, x+ e = e+ x = x and x · e′ = e′ · x = x.

(iv) Each element of F has a unique inverse in F for (+) and (·), that is, x + x′ =
x′ + x = e and x · x′′ = x′′ · x = e′. Note that for the operation (·) x 6= e.

(v) (+) and (·) are commutative, that is, x+ y = y + x and x · y = y · x.

(vi) Distributive laws hold, that is, x·(y+z) = x·y+x·z and (x+y)·z = x·z+y ·z.

(vii) F has no zero divisors, that is, x · y = e implies x = e or y = e.

A field containing finite number of elements is called finite field. The order of a finite
field F , is the number of the different elements of the field. The characteristic of a
finite field F is the smallest positive integer n which satisfies nx = 0 for all x ∈ F and
every finite field has prime characteristic.

For an arbitrary prime number p, let F be the set of {0, 1, . . . , p− 1} and the function
Ψ be defined by:

Ψ : Z/(p)→ F
Ψ([a]) = a

for all a ∈ F .

Definition 1.2. The field F , constructed by Ψ, is a finite field and it is called Galois
field. F is denoted by Fp.

Definition 1.3. Let E be a subset of F which is also a field under the operations of F .
Then E is called a subfield of F and F is called an extension field of K.

Theorem 1.1. Existence and Uniqueness of Finite Fields: For every prime number p
and every positive integer n there exists a finite field which has pn elements. Moreover,
every finite field with pn elements is isomorphic to Fpn . Fpn is the splitting field of
xp

n − x over Fp and it is an extension field of Fp with the extension degree n.

Definition 1.4. For a finite field Fpn , a generator of its cyclic group F∗pn is called a
primitive element of Fpn .

2



Definition 1.5. For a prime power q = pn, let α ∈ F = Fqm and E = Fq be a subfield
of F . The trace function of α over E is defined as

TrF/E(α) = Trm1 (α) = α + αq + · · ·+ αq
m−1

. (1.1)

The trace function satisfies the following properties:

(i) Tr(αx+ βy) = αTr(x) + βTr(y), for all α, β ∈ Fq, x, y ∈ Fqm .

(ii) Tr(xq) = Tr(x), for all x ∈ Fqm .

(iii) For any α ∈ Fq we have

#{x ∈ Fqm : Tr(x) = α} = qm−1.

(iv) Let α ∈ Fqm . If Tr(αx) = 0 for all x ∈ Fqm then α = 0.

Definition 1.6. Let Fp be a finite field where p is a prime number, Fpn be an extension
field of Fp and ζp be the complex primitive p-th root of unity. For a given function
f : Fpn → Fp, the Walsh transform of the function f(x) is equal to the set of cor-
relations between f(x) and the linear functions Trn1 (λx) with λ ∈ Fpn . It is defined
by

Wf (λ) =
∑
x∈Fpn

(ζp)
f(x)−Trn1 (λx) . (1.2)

Definition 1.7. A function f : Fpn → Fp is called s-plateaued if absolute values of
its Walsh transform are in {0, pn+s2 }, for some s = 1, ..., n. Similarly, f is called
0-plateaued if absolute values of its Walsh transform equal to p

n
2 .

Moreover for the prime number p = 2, when n is an even integer, a function f is
called bent function if and only if f is a 0-plateaued function and it is called semi-bent
function if and only if f is a 2-plateaued function. When p = 2 and n is an odd integer,
a function f is called near-bent function if and only if f is a 1-plateaued function.

A function f : Fpn → Fp is called quadratic form if it can be written as

f (x) = Trn1 (a0x
1+p0 + a1x

1+p + a1x
1+p2 + ...+ atx

1+pt), (1.3)

where ai ∈ Fpn , i = 0, 1, . . . , t and t = dn
2
e.

There is a known method for computing the Walsh distribution of a quadratic func-
tion. To calculate the Walsh distribution of a given quadratic function f : Fpn → Fp,
one should compute the plateaued degree of the quadratic form. It is equivalent to
computing the rank of the quadratic function f(x). For this purpose, we will take ad-
vantage of the symplectic form of the quadratic function. The symplectic form, which
is symmetric and bilinear, of a given quadratic form f(x) is defined by

B (x, y) = f(x+ y)− f(x)− f(y). (1.4)
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The radical of a quadratic form is defined by

W = {x ∈ Fnp : B(x, y) = 0 ∀y ∈ Fnp}. (1.5)

Let M be the number of elements of the radical W , then the rank r of the quadratic
form f(x) can be computed by

r = n− logpM.

Note that here logpM = s is the plateaued degree of the quadratic function f(x).
While constructing new sequence families we will make use of plateaued fuctions as
it is easy to find the Walsh distribution of a plateaued function. The Walsh distribution
of the plateaued function is given by the following lemma and it can be proved easily
by counting and using Parseval.

Lemma 1.2. If f : Fpn → Fp is an s-plateaued function, where 1 ≤ s ≤ n, then the
absolute value of the Walsh transform is

|Wf (λ)| =
{
p
n+s
2 , pn−s times,

0, pn − pn−s times.
(1.6)

If f(x) is an 0-plateaued function in Fnp over Fp, then the absolute value of the Walsh
transform is equal to p

n
2 exactly pn times [22].

More specifically when p = 2, the the Walsh transform distribution is given by:

Wf (λ) =

 2
n+s
2 , 2n−s−1 + 2

n−s−2
2 times,

0, 2n − 2n−s times,
−2

n+s
2 , 2n−s−1 − 2

n−s−2
2 times,

(1.7)

for s 6= 0. If f : F2n → F2 is an 0-plateaued function then

Wf (λ) =

{
2
n
2 , 2n−1 times,
−2

n
2 , 2n−1 times.

(1.8)

Definition 1.8. Let Fp be a finite field where p is a prime number, Fpn be an ex-
tension field of Fp where n is a positive integer. For two arbitrary sequences u =
(u(0), u(1), ..., u(N − 1)) and v = (v(0), v(1), ..., v(N − 1)) of periodN defined over
Fpn , the periodic cross-correlation of these sequences is defined by

Cu,v (τ) =
N−1∑
t=0

(ζp)
u(t⊕τ)−v(t) . (1.9)

Here ζp denotes the complex primitive p-th root of unity and ⊕ denotes the addition
modulo N where N is a positive divisor of pn − 1.

Moreover, the maximum correlation magnitude of two sequences u and v is defined by

Cmax = max{|Cu,v (τ) | : u 6= v, or u = v and τ 6= 0}. (1.10)
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Definition 1.9. Similarly, under the conditions of previous definition, the periodic au-
tocorrelation function of a given sequence u = (u(0), u(1), ..., u(N − 1)) is defined
by

Ru (τ) =
N−1∑
t=0

(ζp)
u(t⊕τ)−u(t) . (1.11)

With a simple change of notation, when u and v are complex valued sequences of
period N , then the periodic cross-correlation function is defined by

Cu,v(τ) =
N−1∑
t=0

u(t⊕ τ)v(t), (1.12)

and the autocorrelation function is defined by

Ru(τ) =
N−1∑
t=0

u(t⊕ τ)u(t). (1.13)

Remark 1.1. Let ζp be the complex primitive p-th root of unity. By substituting the
sequences u(t) = ζ

f(t)
p and v(t) = ζ

g(t)
p in the equations 1.12 and 1.13, one get the

classical definition of cross-correlation and autocorrelation.

Definition 1.10. Any nonzero sequence u(t) over Fq is called a maximal length se-
quence (m-sequence) if it is generated by a primitive polynomial f(x) ∈ Fq[x] where
α is a root of f(x). Let α ∈ Fqn with order qn − 1, a = αi where i = 0, ..., qn − 1.
Then the m-sequence is defined by

u(t) = Trn1 (aαt). (1.14)

Remark 1.2. The period of anm-sequence is qn−1 and its elements are from Fq. Each
nonzero element of the sequence occurs exactly qn−1 times and 0 occurs qn−1−1 times
which means that every m-sequence is balanced.

Definition 1.11. The PSK+ alphabet Ω+
n , is defined as Ω+

n = Ωn ∪ {0}, where ω =
exp(2πi

n
) is the complex primitive n-th root of unity and Ωn = {1, ω, ω2, ...ωn−1}.

1.2 Desirable Properties of Sequences

The working procedure of a spread spectrum system is based on first synchronising the
receiver and transmitter spreding codes and then data modulation. The most common
methods of the spread spectrum systems are direct sequence and frequency hopping.
These are two distinct versions of code division multiple access (CDMA). In this sys-
tems maintaining the code synchronisation plays an essential role. To faciliate the syn-
chronisation, sequences which have two valued autocorrelation properties are required
[18]. Moreover, with the advent of new generation wireless communication systems,
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there is a much greater range of modulation schemes, period lengths, and channel as-
signment algorithms available to wireless system designers. These systems use higher
frequencies and the issue of channel identification, which can be performed in the
frequency domain by utilizing a perfect autocorrelation sequence, is also increasingly
significant.

The spread spectrum system which is used with multiple access channels are widely
used in code division multiple access (CDMA), wireless communication systems and
military communications if jamming is a threat [28]. In this manner, families of se-
quences with good cross-correlation properties plays an important role. The cross-
correlation values of a sequence family should be small, over and above, the maximum
correlation magnitude Cmax should be small. Constructing a new sequence family with
these desirable properties, lower bounds such as the Sidelnikov bound [26] (which is
the strongest for binary sequences of moderate size) are used to evaluate sequence
designs.

When jamming is a threat, using sequences with long periods are important. Using
sequences having long periods make difficult the jammer to reconstruct the sequence.
In addition to these important properties, the sequences should be easily generated in
case of any need. To summarize, the important and desired properties of a sequence
should satisfy to be employed in spread spectrum systems and CDMA are given below
[18]:

1. The autocorrelation should be two valued.

2. The cross-correlation and the maximum correlation magnitude should be small.

3. Sequences should have long periods.

4. Sequences should be easily generated.

Furthermore, p-ary m-sequences satisfy the three fundamental important properties
given in the theorem below. They are called pair properties of m-sequences. We will
use all these properties while proving our constructions.

Theorem 1.3. Let sk be arbitrary, s1 and s2 be two distinct m-sequences taking their
elements form the finite field Fp, t1 and t2 corresponds to two different phases of a
sequence. Let B be the set of ordered pairs {(sk, sk+r)}M−1k=0 with 0 < r < M and
M = pn − 1. For N = M

(p−1) ,

1. If gcd(r,M) ≡ 0 mod N , then there exists a w ∈ F∗p satisfying

(a) For all sk ∈ F∗p, (sk, wsk) appears in B exactly pn−1 times,

(b) The pair (0, 0) appears in B exactly pn−1 − 1 times.

2. Let s1 and s2 be two m-sequences under the condition of both of them are not
zero. If gcd(r,M) 6≡ 0 mod N then

(a) (s1, s2) appears in B exactly pn−2 times,

6



(b) The pair (0, 0) appears in B exactly pn−2 − 1 times.

3. There exist a primitive element < w >= F∗p satisfying sk+rN = wrsk with
r = 0, 1, 2, . . .

1.2.1 Known Sequences with Perfect Autocorrelation Properties

In this chapter we introduce some known perfect autocorrelation sequences. Con-
straints for the periodicity have been an issue in the sequence constructions. Studies
have been focused on finding new sequences with different periods and lengths.

In the thesis of Lee [18], in 1986, the construction of a perfect autocorrelation sequence
consists of two main parts. The first part of the construction is called intermediate
mapping and the second part of the construction is called terminal mapping. The
composite mapping consists of the combination of the intermediate and the terminal
mappings. In his study, he constructed the sequence family over prime fields and used
the properties of multiple characters to prove the autocorrelation of his sequences. The
details of the construction are given in Definition 1.12.

Definition 1.12. Let I be a cyclic group generated by a ∈ C of order m − 1. The
elemenets of this group are the elements of the m-ary sequence. Let a1, a2 ∈ C having
orders m1 and m2 respectively, with at least one of them having order m − 1 where
< a1 >= J1 ⊆ I and < a2 >= J2 ⊆ I . Let wm be a primitive element of F∗p and
k = . . . ,−1, 0, 1, . . . , then the composite mapping is defined as:

µ(ak) =

{
(a2)

k(a1)
v(wm,ak), if ak ∈ F ∗p

0, otherwise
(1.15)

where
v(wm, x) = logwm(x). (1.16)

The constraint of the periodicity depends on the choose of a1, a2 and w which is
mentioned in the item 3 of the Theorem 1.3. Let w = wsm then;

1. if a2 = at1 for some positive integer t, then the constraint for the periodicity is
tN + s ≡ 0 mod m1,

2. if a1 = at2 for some positive integer t, then the constraint for the periodicity is
N + ts ≡ 0 mod m2.

In both cases the constraint for the periodicity is a function depending on the parame-
ters p, n and s. And the sequence has perfect autocorrelation, that is;

Rµ(ak)(τ) =

{
pn−1, if τ ≡ 0 mod N

0, if τ 6≡ 0 mod N.
(1.17)
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In 2010, Boztaş and Parampalli [4] gave a sequence construction on an arbitrary finite
field (not necessarily prime field) when a1 = a2. In the construction, the constraint for
the periodicity is given as N + s ≡ 0 mod (q − 1) and it is a function depending on
the parameters q, n and s where q is a prime power. The sequence defined by using
PSK+ alphabet with adding zero is given in Definition 1.13.

Definition 1.13. Let q be a prime power, n ≡ −1 mod (q − 1) and let the max-
imal length sequence m(t) = Tr(αst) where α is a primitive element of F∗qm , t =
0, 1, . . . , qn− 2 and gcd(s, qn− 1) = 1. Let γ be the complex primitive (q− 1)-th root
of unity. The sequence s(t) over Ω+

q−1 is defined by:

s(t) =

{
γtφ(m(t)), ifm(t) 6= 0

0, otherwise
(1.18)

where the function φ(.) is defined as follows:

φ(x) = γlog(β,x), x ∈ F∗q. (1.19)

Here, β = α
(qn−1)
(q−1) , a primitive element of F∗q and log(β, x) is the discrete logarithm to

base β.

1.2.2 Known Sequence Families with Low Maximum Correlation Magnitude

Sequence families having small maximum correlation magnitude have been well stud-
ied in the literature. They play an important role while constructing new sequence fam-
ilies to be used in code division multiple access. There are two important lover bounds
which are useful to compare the maximum correlation magnitude of a sequence family.
We introduce some known important sequence families having good cross-correlation
distribution and their comparisions in this section.

Let S be a sequence family which consists of K cyclicly distinct sequences, all having
period N . That is,

S = {si(t) : 1 ≤ i ≤ K} (1.20)

and every sequence si(t), ∀1 ≤ i ≤ K has period N . Let Cmax denote the maximum
correlation magnitude of the sequence family S. Then the bounds are given in Theorem
1.4 and Theorem 1.5.

Theorem 1.4. [22] For the sequence family S and arbitrary positive integer m, the
Welch bound satisfies the following inequality:

(Cmax)
2m ≥ 1

(KN − 1)

 KN2m+1(
N +m− 1

N − 1

) −N2m

 (1.21)

Theorem 1.5. [22] For the sequence family S and arbitrary positive integer m, de-
pending on the prime power q, the Sidelnikov bound satisfies the following inequality:
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1. When q = 2, for 0 ≤ m < 2N
5

,

(Cmax)
2 > (2m+ 1)(N −m) +

m(m+ 1)

2
− 2mN2m+1

K(2m)!

(
N

m

) . (1.22)

2. When q > 2, for m ≥ 0,

(Cmax)
2 >

(m+ 1)

2
(2N −m)− 2mN2m+1

K(m!)2
(

2N

m

) . (1.23)

Now we introduce some known important sequence families with their correlation
properties.

Definition 1.14. Let n and d = 2k + 1 be odd integers satisfying gcd(n, k) = 1 and α
be a primitive element of F2n . Let s(t) = Trn1 (αt) be an m-sequence. Then the Gold
sequence family [9] is defined as follows:

S(t) = {s (t)} ∪ {s (dt)} ∪ {{s (t+ τ) + s (dt) : 0 ≤ τ ≤ 2n − 2}}. (1.24)

Definition 1.15. Let n = 2m, m ≥ 2 and α be a primitive element of F2n . The small
set of Kasami sequences [14] [15] is defined as follows:

S(t) = {sw(t) : w ∈ F2m , 0 ≤ t ≤ 2n − 2} (1.25)

where
sw(t) = Trn1

(
αt
)

+ Trm1
(
wα(2m+1)t

)
. (1.26)

Definition 1.16. Let n = 2m, m ≥ 2, α be a primitive element of F2n and β be a
primitive element of F2m . For 0 ≤ t ≤ 2n − 2, the large set of Kasami sequences [14]
[15] is defined as follows:

Sl(t) = {sγδ(t) : γ ∈ F2n , δ ∈ F2m} ∪ {sζη(t) : ζ ∈ Γ, η ∈ ∆} (1.27)

where
sγδ(t) = Trn1

(
αt + γα(2m+1+1)t

)
+ Trm1

(
δα(2m+1)t

)
(1.28)

and
sζη(t) = Trn1

(
ζα(2m+1+1)t

)
+ Trm1

(
ηα(2m+1)t

)
. (1.29)

Here, Γ and ∆ is defined depending on n as follows:

1. for n ≡ 0 mod 4, Γ = {1, α, α2} and ∆ = {1, β, . . . , β
(2m−1)

3
−1}

2. for n ≡ 2 mod 4, Γ = {1} and ∆ = F2m .

9



Definition 1.17. Let k be a positive integer smaller than the prime number p, α be a
primitive element of Fpn . For 1 ≤ m ≤ k, am ∈ Fpn , the Sidelnikov sequence family
[26] is defined as follows:

S(t) = Trn1

(
k∑

m=1

amα
mt

)
. (1.30)

Definition 1.18. Let p be a prime number, V n
p be an n-dimensional vector space over

the finite field Fp. Let f(x) be a function from Fpn to Fp and γ be the complex primitive
p-th root of unity, then for all w ∈ Fpn , the Walsh of the function is:

Wf (w) =
1√
pm

∑
x∈Fpm

γf(x)−Tr
n
1 (wx) (1.31)

and its inverse transform is defined by:

γf(x) =
1√
pm

∑
w∈Fpm

Wf (w)γTr
n
1 (wx) (1.32)

A function is called generalized bent function if the Walsh transform of f(x) takes
values of unit magnitude. The sequences of values γf(x) are called bent sequences
[24]. Let α be a primitive element of Fpn then the cross-correlation of a bent sequence
with an m-sequence is given by:

Cf (τ) =

pn−2∑
t=0

γf(α
t)−Trn1 (αt+τ ) (1.33)

Definition 1.19. Let n = 2m, m ≥ 2, α be a primitive element of F2n , then the No
sequence family [23] is definde as follows:

S(t) = {sw(t) : w ∈ F2n , 0 ≤ t ≤ 2n − 2} (1.34)

where
sw(t) = Trm1

((
Trnm

(
αt + wα(2m+1)t

))r)
(1.35)

with 1 ≤ r ≤ 2m − 1, gcd(r, 2m − 1) = 1. Here, r can not be written in the form of 2i

for any positive integer i.

Definition 1.20. Let n = 2m, p be an odd prime and α be a primitive element of Fpn .
Let f(x) be a p-ary bent function on the vector space V m

p , {β1, . . . , βm} be a basis of
Fpm over Fp and σ ∈ Fpn − Fpm . For δ ∈ F∗pm , the Kumar and Moreno p-ary bent
sequences [17] are defined as follows:

S = {sw(t) : w ∈ Fpm , 0 ≤ t ≤ pn − 2} (1.36)

where
sw(t) = f(L(αt)) + Trn1 ((wσ + δ)αt) (1.37)

and
L(x) = {Trn1 (β1σx), . . . ,Trn1 (βmσx)}. (1.38)
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Definition 1.21. Let n be an odd positive integer, p be a prime number and ζi be the
enumeration of the elements of the finite field F2n for 0 ≤ i ≤ 2n − 1. Then the
Gold-like sequence family [6] is defined as follows:

S = {si(t) : i = 0, 1, 2, ..., 2n, 0 ≤ t ≤ 2n − 2} (1.39)

where

si(t) =

{
Trn1 (ζiα

t) + p(αt), 0 ≤ i < 2n

Trn1 (αt), i = 2n.
(1.40)

The quadratic form p(x) is defined by:

p(x) =

n−1
2∑
l=1

Trn1 (x2
l+1). (1.41)

Definition 1.22. Let n and k be two positive integers satisfying gcd(k, n) = e and
n = em where m is an odd positive integer with m ≥ 3. Let ζi be the enumeration of
the elements of the finite field F2n for 0 ≤ i ≤ 2n − 1. Then the Kim and No sequence
family [16] is defined as follows:

S = {si(t) : i = 0, 1, 2, ..., 2n, 0 ≤ t ≤ 2n − 2} (1.42)

where

si(t) =

{
Trn1 (ζiα

t) + p(αt), 0 ≤ i < 2n

Trn1 (αt), i = 2n.
(1.43)

The quadratic form p(x) is defined by:

p(x) =

m−1
2∑
l=1

Trn1 (x2
el+1). (1.44)

Definition 1.23. Let n and k be two positive integers satisfying gcd(k, n) = e and n =
em where n and m are odd positive integers with m ≥ 3. Let ζi be the enumeration
of the elements of the finite field F2n for 0 ≤ i ≤ 2n − 1 and w be an element of
F2e different than 1. Tang et al. [31] constructed a new sequence family that we will
denote by U is defined as follows:

U = {ui(t) : i = 0, 1, 2, ..., 2n, 0 ≤ t ≤ 2n − 2} (1.45)

where

ui(t) =

{
Trn1 (ζiα

t) + pw(αt), 0 ≤ i < 2n

Trn1 (αt), i = 2n.
(1.46)

The quadratic form pw(x)is defined by:

pw(x) =

n−1
2∑
l=1

Trn1 (x2
l+1) +

m−1
2∑
l=1

Trn1 ((wx)2
l+1). (1.47)
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Table 1.1: List of some known sequence families and their maximum correlation mag-
nitudes Cmax.

Sequence Family p n Period Family Size Cmax

Gold 2 odd 2n − 1 2n + 1 2
n+1
2 + 1

Gold 2 even 2n − 1 2n + 1 2
n+2
2 + 1

Small Set of Kasami 2 even 2n − 1 2
n
2 2

n
2 + 1

Large Set of Kasami 2 even 2n − 1 2
n
2 (2n + 1) 2

n+2
2 + 1

Sidelnikov p k < p pn − 1 ≥ pn(k−1) (k − 1)p
n
2 + 1

Bent p even pn − 1 p
n
2 p

n
2 + 1

No 2 even 2n − 1 2
n
2 2

n
2 + 1

Kumar and Moreno odd arbitrary pn − 1 p
n
2 p

n
2 + 1

Gold-like 2 odd 2n − 1 2n + 1 2
n+1
2 + 1

Kim and No(*) 2 m : odd 2n − 1 2n + 1 2
n+e
2 + 1

U(*) 2 n,m : odd 2n − 1 2n + 1 2
n+1
2 + 1

The comparison of parameters and maximum cross-correlation values of some impor-
tant sequence families are given in Table 1.1. Note that the sequence families marked
with (*), also satisfies the condition n = em as mentioned in the definitions 1.22 and
1.23 above.
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CHAPTER 2

PERFECT AUTOCORRELATION SEQUENCES

Designing new sequences with perfect periodic autocorrelation and flexible parameters
has always been important. In particular, with the advent of new generation wireless
communication systems, there is a much greater range of modulation schemes, period
lengths, and channel assignment algorithms available to wireless system designers. In
such systems using higher frequencies, the issue of channel identification which can
be performed in the frequency domain by utilizing a perfect autocorrelation sequence,
is also increasingly significant.

A sequence with perfect autocorrelation has applications relevant to all the above dis-
cussed aspects of wireless and radar. For example, CDMA communication enables
wireless transmitters to successfully exchange information in the presence of inter-
ference from other users and other systems. The two distinct versions of CDMA,
Frequency Hopping (FH) and Direct Sequence (DS) address the issue of interference
differently. For details of CDMA, please see the survey in the Spread Spectrum Com-
munications Handbook [29]. For sequence construction methods the survey by Helle-
seth and Kumar is invaluable [10].

In Chapter 2 and Chapter 3 of this thesis, we focus on designing perfect autocorrela-
tion sequences, also referred to as “spreading codes” in DS-CDMA. In particular, the
performance of such codes is customary to employ correlations for synchronisation.

There exist very few sequence designs with perfect autocorrelation for symbol alpha-
bets of practical interest, such as the binary ({±1}) and quaternary ({±1,±i} with
i =

√
−1) alphabet. It is believed that there are no binary sequences with perfect

periodic autocorrelation, apart from the sequence (+1,+1,−1,+1) of length 4. This
is the famous conjecture that states there are no more circulant Hadamard matrices.
Moreover, it is known that quaternary sequences with perfect periodic autocorrelation
do not exist [25] for lengths 2m for m > 4. The first two lengths which are open cases
are lengths 36 and 40, to the best of our knowledge, while computer searches have
unearthed such sequences of lengths 4, 8 and 16.

Historically, designers studied ternary sequences (i.e., over the alphabet {0,±1} to ad-
dress this shortcoming. For example, ternary sequences of length (pn− 1)/(p− 1) for
primes p ≥ 2 with perfect autocorrelation exist (see [11, 12, 18]) under some restric-
tions on n. However, the desire for more flexible choices of period and alphabet are
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still there, due to the developments outlined in the first paragraph of this introduction.
There is a large literature dealing with sequence design and the applications of such
sequences; see [32] and the references therein.

In this chapter we continue our work on the design of nonbinary “extended” PSK
sequences with perfect autocorrelation and extend a previous construction to PSK+ al-
phabets with q elements, where q is not necessarily a prime number. We respectively
provide a brief overview of mathematical preliminaries and some definitions and no-
tation for general sequence designs. Then we present a new construction for perfect
PSK+ sequences and briefly discuss its properties. Later, we remark on the aperiodic
correlation and merit factor in the context of this new design. Finally, we provide a
summary of the lengths and alphabets for which we have experimentally found per-
fect autocorrelation sequences, by means of an exhaustive search, and conclude this
chapter. This new construction is published in [3].

2.1 Preliminaries

First we recall the definition of autocorrelation of a complex valued sequence and
some necessary properties of Tr(·) function. The definitions given in this chapter will
be used during the construction of a new perfect autocorrelation sequence.

Definition 2.1. Let u = (u(0), u(1), ..., u(N−1)) be a complex valued sequence where
N is the period of the sequence. The periodic autocorrelation function is defined as

Ru(τ) =
N−1∑
t=0

u(t⊕ τ)u(t). (2.1)

Here ⊕ denotes the addition modulo N , u(t) denotes the complex conjugate of u(t)
and τ represents the phase shift of the sequence.

Remark 2.1. Note that, if Ru(τ) = 0 for all τ 6= 0 mod N then the sequence u(t)
is called perfect autocorrelation sequence. If τ = 0, then for all sequences u =
u(0), u(1), ..., u(N − 1), we have maximum autocorrelation.

Throughtout this chapter, q = pk is a prime power and Fq is the finite field with q
elements. Tr(x) denotes the trace function from Fqn to Fq which is defined as

Tr(x) = xq + xq
2

+ ...+ xq
(n−1)

. (2.2)

Definition 2.2. Any nonzero sequence u(t) over Fq is called a maximal length se-
quence (m-sequence) if it is generated by a primitive polynomial f(x) ∈ Fq[x] where
α is a root of f(x). Let α ∈ Fqn with order qn − 1, a = αi where i = 0, ..., qn − 1.
Then the m-sequence is defined by

u(t) = Trn1 (aαt). (2.3)

Definition 2.3. The PSK+ alphabet Ω+
n , is defined as Ω+

n = Ωn ∪ {0}, where ω =
exp(2πi

n
) is the complex primitive n-th root of unity and Ωn = {1, ω, ω2, ...ωn−1}.

14



2.2 A New Generalization for Perfect Autocorrelation Sequences

Definition 2.4. Let m(t) be a maximal sequence (m-sequence) over the finite field Fq
with period M = qn − 1, defined as

m(t) = Tr(αst) for t = 0, 1, ..., qn − 2. (2.4)

Let q > 3, gcd(s, qn − 1) = 1 and γ be the (q − 1)-st complex primitive root of unity.
A new sequence S(t) over the alphabet Ω+

q−1 is defined by:

S(t) =

{
γtφ(m(t)), if m(t) 6= 0
0, otherwise (2.5)

where the function φ(.) is defined as follows:

φ(x) = γ2 log(β,x), x ∈ F∗q. (2.6)

Here, β = α
qn−1
q−1 is a primitive element of Fq and log(β, x) is the discrete logarithm to

base β, that is
βr = x ⇐⇒ log(β, x) = r (2.7)

where r ∈ {0, 1, . . . , qn−1
q−1 }.

This S(t) sequence has perfect autocorrelation. To prove this claim, we will take
advantage of φ(x) is a multiplicative character which is proven below.

Lemma 2.1. The function φ(x) is a multiplicative character of F∗q .

Proof of Lemma 2.1. Let β be a primitive element of Fq and x, y ∈ F∗q be defined as
x = βr1 and y = βr2 where r1 and r2 are nonnegative integers. Then

φ(xy) = γ2 log(β,xy) = γ2 log(β,β
r1+r2 ) = γ2(r1+r2)

= γ2r1γ2r2 = γ2 log(β,x)γ2 log(β,y)

= φ(x)φ(y).

Hence, φ(x) is a multiplicative character of F∗q .

Theorem 2.2. The sequence S(t) has perfect periodic autocorrelation under the con-
dition of n+ 2s ≡ 0(mod q − 1) for q > 3. The period of the sequence is N = M

q−1 =

1 + q + q2 + ...+ qn−1.

Proof. To prove the theorem we first need to show that S(t) has perfect periodic auto-
correlation under given restriction. In other words, autocorrelation

RS(τ) =
N−1∑
t=0

S(t⊕ τ)S(t) (2.8)
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equals 0 when τ 6= 0 and as autocorrelation peak RS(0) = qn−1 otherwise. While N is
yet to be determined, we know thatN divides the period ofm(t), that isN | qn−1. The
autocorrelation function over the interval K containing K/N periods can be written in
the form below ([13], [18]):

RS(τ) =
N

K

K−1∑
t=0

S(t⊕ τ)S(t)

= γτ
N

K

K−1∑
t=0

φ(m(t⊕ τ))φ(m(t))

where S(t ⊕ τ) 6= 0 and S(t) 6= 0. Note that here we have eliminated the terms
satisfying S(t⊕ τ)S(t) = 0 because they do not effect the value of the total sum. We
will continue to the proof in two cases depending on whether τ is a multiple of h or
not.

Case 1: Let h = qn−1
q−1 be a fixed integer and let τ 6= 0 mod h . By using the pair

property which is stated in [35] of m-sequences m(t) over Fq, (m(t⊕ τ),m(t)) takes
any (x, y) ∈ F2

q − {(0, 0)} exactly qn−2 times. Then, the autocorrelation function can
be written as follows:

RS(τ) = γτqn−2
N

K

∑
x∈F∗

q

∑
y∈F∗

q

φ(x)φ(y)

= γτqn−2
N

K

∑
x∈F∗

q

φ(x)
∑
y∈F∗

q

φ(y)

As Lemma 2.1 states that φ(.) is multiplicative character. As q > 3 it is nontrivial. It
satisfies

∑
y∈F∗

q
φ(y) = 0. So when τ 6= 0 mod h, we have

RS(τ) = 0.

Case 2: Let τ ≡ 0 mod h, that is τ = kh for some integer k. For a primitive element
β of Fq, and for the pair (S(t⊕ τ), S(t)),

S(t⊕ τ) = βkS(t)

is satisfied as τ is a multiple of h. By the pair property only the pairs (βkx, x) ∈ F2
q

enter the sum. Because of the balance property of q-ary sequences, shown in [35], the
nonzero elements of an m-sequence with period M = qn − 1 each occur exactly qn−1
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times. Now the autocorrelation function can be written as follows:

RS(τ) = RS(kh) = γkhqn−1
N

K

∑
x∈F∗

q

φ(βkx)φ(x),

= γkhqn−1
N

K
φ(βk)

∑
x∈F∗

q

φ(x)φ(x),

= γkhqn−1
N

K
γ2 log(β,β

k)(q − 1),

= γkhqn−1
N

K
γ2k(q − 1),

= γk(h+2)qn−1(q − 1)
N

K
,

since ∑
x∈F∗

q

φ(x)φ(x) =
∑
x∈F∗

q

φ(x)φ(x−1) =
∑
x∈F∗

q

φ(1)

=
∑
x∈F∗

q

γ2(q−1) =
∑
x∈F∗

q

(γ(q−1))2 = 1.

As qr ≡ 1 mod (q − 1) for every r ≥ 1, using this fact we obtain

h =
qn − 1

q − 1
= 1 + q + q2 + ...+ qn−1 ≡ n mod (q − 1). (2.9)

For every k, by taking n ≡ −2 mod (q − 1) we can ensure

γk(h+2) ≡ 1 mod (q − 1). (2.10)

This menas that n ≡ −2 mod (q − 1) must be satisfied for perfect autocorrelation.
With this condition on n, we have

RS(τ) = qn−1(q − 1)
N

K
(2.11)

for any integer k. Moreover using the result of Case 1, for τ 6= kh, the auto-correlation
function gives zero. Since the autocorrelation function repeats itself every h samples,
period of the sequence S(t) is h. Thus, N = h = qn−1

q−1 .

Lemma 2.3. If RS(τ) is periodic with period N, then the sequence S(t) has the same
period N, since

RS(0) = RS(N) =
N−1∑
t=0

| S(t) |2 (2.12)

is a positive real constant, thus the shifted sequence at N is actually equal to the
original sequence, not just a scalar multiple of it.

By Lemma 2.3 we can conclude that the sequence has perfect autocorrelation with the
autocorrelation peak qn−1 and periodicity N = qn−1

q−1 when n+ 2 ≡ 0 mod (q − 1).
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Remark 2.2. For a given m-sequence m(t) = Trq
n

q (αt) over Fq with period M =

qn − 1, when gcd(s, qn − 1) = 1, the function m′(t) = Trq
n

q (αst) gives us another
m-sequence. By using the same properties with the new m-sequence it is easily seen
that when gcd(s, qn − 1) = 1 and n+ 2s ≡ 0 mod (q − 1), the sequence has perfect
autocorrelation with the autocorrelation peak qn−1 and periodicity N = qn−1

q−1 . As a
result, the constraint for the periodicity is dependent on three parameters which are q,
n and s.

2.2.1 Aperiodic Correlation and Merit Factor

Here we give a brief digression on aperiodic correlations. Sequences with perfect
periodic correlation are candidates for good aperiodic correlation, which is significant
for some synchronisation applications in radar and wireless communications.

Definition 2.5. For a complex valued sequence u = (u(0), u(1), ..., u(N − 1)), where
N is the length of the sequence, the aperiodic autocorrelation function is defined by:

Raper
u (τ) =


∑N−1−τ

t=0 u(t+ τ)u(t), if 0 ≤ τ ≤ N − 1∑N−1−τ
t=0 u(t+ τ)u(t), if −N + 1 ≤ τ < 0.

(2.13)

Another property of sequences which has been of interest for a long time, and is a very
difficult problem when the sequences are binary, is the Merit Factor (MF).

Definition 2.6. For a complex valued sequence u = (u(0), u(1), ..., u(N − 1)), where
N is the length of the sequence, the merit factor is defined by:

F (u) =
Raper
u (0)2∑

τ 6=0 |R
aper
u (τ)|2

=
Raper
u (0)2

2
∑

0<τ<N |R
aper
u (τ)|2

(2.14)

In brief, it is very difficult to design binary sequences with MF lower bounded by a
constant greater than 6. It is easier to find nonbinary complex valued sequences with
growing merit factor, though the alphabet size required may be of the order of

√
N

where N is the length of the sequence. For more details see Borwein et al [1] and
Mercer [21], and the references therein. Here, we have a new sequence design with
bounded alphabet size, so it is of interest to evaluate the MF, which is a measure of the
performance of sequences in radar applications.

Example 2.1. Let q = p = 5 and n = 2. An m-sequence m(t) on F5 whose length is
N = 52 − 1 = 24 is given below:

(1, 1, 4, 0, 3, 1, 3, 3, 2, 0, 4, 3, 4, 4, 1, 0, 2, 4, 2, 2, 3, 0, 1, 2).

By taking the primitive polynomial over F5 of degree n = 2 as x2 + 3x + 3 and w as
the (5− 1) = 4-th root of unity we obtain the 5-ary sequence of period N = 52−1

5−1 = 6
given by

(φ(t)) = (1, w,−1, 0,−1, w)
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whose autocorrelation value is Rφ(τ) = 0 for τ 6= 0 and Rφ(0) = 5(2−1) = 5.
In addition, the aperiodic autocorrelation of the sequence is

(Raper
φ (τ)) = (−i, 0, 0, 0,−i, 5,−i, 0, 0, 0, i)

for τ ∈ {−5,−4, . . . , 4, 5} respectively, and the MF is found as 25/4 = 6.25.

2.2.2 Some Computational Results on Existence

Table 2.1: Experimental results of q−ary sequences derived from m-sequences

HH
HHHHn

q 4 5 7 8 9 11

2 Exist Exist∗ Exist Exist Exist Exist
3 None None None Exist None None
4 Exist∗ None Exist∗ Exist None Exist
5 Exist None None Exist∗ None None
6 None Exist∗ None Exist Exist∗ None

H
HHH

HHn
q 13 16 17 19 23 25

2 Exist Exist Exist Exist Exist Exist
HHH

HHHn
q 27 29 31 32 37 49

2 Exist Exist Exist Exist Exist Exist

It is of interest to find out if the constraints on n derived by the work in the previous
section are necessary for finding perfect autocorrelation sequences. In this section,
we give some numerical results for some arbitrary values of n for the construction
given in Definition 2.4 of the construction by removing the constraint on n. The cases
q = 9 and q = 7, which give PSK+ alphabets Ω+

8 and Ω+
6 , being small alphabets,

and especially the first one is interesting in applications [4]. To be precise, we keep the
construction but remove the constraint. Interestingly, our construction gives perfect
sequences for some values of q and n that can be seen on Table 2.1 where we have
marked the corresponding parameter with an asterisk. Exist∗ notation in the table
shows that corresponding parameters are examples of the construction given in this
chapter.

Now we will give an example of an experimentally discovered perfect autocorrelation
sequence for the prime power q = 9 below, where the constraint on n does not hold.

Example 2.2. Let q = p2 = 9 and n = 2. Thus, an m-subsequence on F9 whose
length is N = 92−1

9−1 = 10 can be written as:

(1, 1, θ, θ6, θ5, θ, θ7, θ, 2, 0),
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where θ is the primitive element of F9. By taking the primitive polynomial over F9 of
degree n = 2 as x2 + 2x + θ3 and w as the (q − 1) = 8-th root of unity we obtain the
9-ary sequence of period N = 10 given by

(φ(t)) = (1, w,−1,−w3,−w2,−w3,−1, w, 1, 0)

whose autocorrelation value is 0 for τ 6= 0 and 92−1 = 9 otherwise. Note that, here it
is adequate to take first N terms of the m-sequence (i.e. m-subsequence of length N ).
In addition, the aperiodic autocorrelation of the sequence (given for 0 ≤ τ ≤ N − 1,
since the rest is determined by conjugate symmetry) is

(Raper
φ (τ)) = (9, 0, 1,−w3 + w,−1, 0, 1, w3 − w,−1, 0)

for τ ∈ {0, . . . , 8, 9} respectively and the MF can be found as F (φ) = 81/16 =
5.0625.

Remark 2.3. Some lengths resulting in a perfect correlation sequence by using our
construction for which no previous perfect correlation sequence was known include
N = 73, 85, 400, 585, 1464, 341, 4681, 3906, 97656, 488281.

2.3 Results

In this chapter we have generalised a construction for perfect periodic autocorrelation
sequences due to [18] and brieflly discussed existence of perfect periodic autocorrela-
tion sequences for the PSK+ alphabet. The generalisation takes the form of being able
to use an arbitrary (not necessarily prime size) subfield as the symbol alphabet during
the construction. Moreover, we have pointed out the fact that these sequences seem to
have decent MF and aperiodic correlation properties.

20



CHAPTER 3

GENERALIZED PERFECT AUTOCORRELATION
SEQUENCES WITH FLEXIBLE PERIODS AND ALPHABET

SIZES

The importance of DS-CDMA, perfect autocorrelation sequences and the needs for
flexible parameters are discussed in detailed in Chapter 2. Now we improve our study
and generalize the costruction given in previous chapter for all possible n and q pa-
rameters depending on a positive integer i. We focus on the design of nonbinary
“extended” PSK sequences with perfect autocorrelation and extend a previous con-
struction to PSK+ alphabets with q elements, where q is not necessarily a prime, as
well as to more flexible periods than before.

This chapter is organised as follows. First some definitions and notations for general
sequence designs and a brief overview of mathematical preliminaries are given as a
quick reminder. Then, the generalized construction for perfect PSK+ sequences is
introduced and the properties of these sequences are discussed. Later, some examples
of the new design and a detailed table showing the new sequences in the context of
existing designs are given.

3.1 Preliminaries

Definition 3.1. For a complex valued sequence u = (u(0), u(1), ..., u(N − 1)), where
N is the period of the sequence, the periodic autocorrelation function is defined as

Ru(τ) =
N−1∑
t=0

u(t⊕ τ)u(t). (3.1)

Here ⊕ denotes the addition modulo N and u(t) denotes the complex conjugate of
u(t).

Throughtout this chapter, q = pk is a prime power and Fq is the finite field with q
elements. Tr(x) denotes the trace function from Fqn to Fq which is defined as

Tr(x) = xq + xq
2

+ ...+ xq
(n−1)

. (3.2)
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Definition 3.2. Any nonzero sequence u(t) over Fq is called a maximal length se-
quence (m-sequence) if it is generated by a primitive polynomial f(x) ∈ Fq[x] where
α is a root of f(x). Let α ∈ Fqn with order qn − 1, a = αi where i = 0, ..., qn − 1.
Then the m-sequence is defined by

u(t) = Trn1 (aαt). (3.3)

Definition 3.3. The PSK+ alphabet Ω+
n , is defined as Ω+

n = Ωn ∪ {0}, where ω =
exp(2πi

n
) is the complex primitive n-th root of unity and Ωn = {1, ω, ω2, ...ωn−1}.

3.2 Generalization of Perfect Autocorrelation Sequences with Flexible Periods

Definition 3.4. For an arbitrary i satisfying 1 ≤ i ≤ q − 2, let α be a primitive
element of Fqn where n ≡ −i mod (q− 1) for q > 2. The m-sequence m(t) be given
by m(t) = Tr(αt) over Fq with period M = qn − 1 for t = 0, 1, ..., qn − 2. With
the (q − 1)-st complex primitive root of unity γ, the new sequence Si(t) over Ω+

q−1
depending on i is defined as

Si(t) =

{
γtφi(m(t)), if m(t) 6= 0
0, otherwise.

Moreover, the function φi(.) is defined as follows:

φi(x) = γi log(β,x), x ∈ F∗q. (3.4)

Here β = α(qn−1)/(q−1) is a primitive element of Fq and log(β, x) is the discrete loga-
rithm to base β, that is

βr = x ⇐⇒ log(β, x) = r (3.5)

where r ∈ {0, 1, . . . , qn−1
q−1 }.

This Si(t) sequence has perfect autocorrelation. To prove this claim, we take advantage
of φi(x) being a multiplicative character which is proven below.

Lemma 3.1. The function φi(x) is a multiplicative character of F∗q.

Proof. Let β be a primitive element of Fq and x, y ∈ F∗q be defined as x = βr1 and
y = βr2 where r1 and r2 are nonnegative integers. Then

φi(xy) = γi log(β,xy) = γi log(β,β
r1+r2 ) = γi(r1+r2)

= γir1γir2 = γi log(β,x)γi log(β,y)

= φi(x)φi(y).

Hence, φi(x) is a multiplicative character of F∗q .

Theorem 3.2. The sequence Si(t) has perfect periodic autocorrelation under the con-
dition of n + i ≡ 0(mod q − 1) for q > 2. The period of the sequence is obtained as
N = M

q−1 = 1 + q + q2 + ...+ qn−1.
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Proof. To prove the theorem we need to show Si(t) has perfect periodic autocorrela-
tion under given restriction. In other words, the autocorrelation

RSi(τ) =
N−1∑
t=0

Si(t⊕ τ)Si(t) (3.6)

equals 0 when τ 6= 0 and as autocorrelation peak RSi(0) = qn−1 otherwise. We know
that N divides the period of m(t), that is N | qn−1. The autocorrelation function over
the interval K containing K/N periods can be written in the form ([18], [13]):

RSi(τ) =
N

K

K−1∑
t=0

Si(t⊕ τ)Si(t)

= γτ
N

K

K−1∑
t=0

φi(m(t⊕ τ))φi(m(t))

where Si(t ⊕ τ) 6= 0 and Si(t) 6= 0. Note that here we have eliminated the terms
satisfying Si(t⊕ τ)Si(t) = 0, because they do not affect the value of the total sum.

Case 1: Let h = qn−1
q−1 be a fixed integer, q > 2 be an odd number and τ 6≡ 0 mod h.

By using the pair property, which is stated in [35], of m-sequences m(t) over Fq,
(m(t ⊕ τ),m(t)) takes any (x, y) ∈ F2

q − {(0, 0)} exactly qn−2 times. Then the auto-
correlation function can be written as follows:

RSi(τ) = γτqn−2
N

K

∑
x∈F∗

q

∑
y∈F∗

q

φi(x)φi(y)

= γτqn−2
N

K

∑
x∈F∗

q

φi(x)
∑
y∈F∗

q

φi(y).

As Lemma 3.1 states φ(.) is multiplicative character and it satisfies
∑

y∈F∗
q
φ(y) = 0.

So when τ 6= 0 mod h, we have

RSi(τ) = 0.

Case 2: Let τ ≡ 0 mod h, that is τ = kh for some integer k. For a primitive element
β of Fq, and for the pair (Si(t⊕ τ), Si(t)),

Si(t⊕ τ) = βkSi(t)

is satisfied as τ is a multiple of h. By the pair property, only the pairs (βkx, x) ∈ F2
q

enter the sum. Because of the balance property of q-ary sequences, shown in [35], each
nonzero element of an m-sequence with period M = qn−1 occurs exactly qn−1 times.
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Now the autocorrelation function can be written as follows:

RSi(τ) = RSi(kh) = γkhqn−1
N

K

∑
x∈F∗

q

φi(β
kx)φi(x),

= γkhqn−1
N

K
φi(β

k)
∑
x∈F∗

q

φi(x)φi(x),

= γkhqn−1
N

K
γi log(β,β

k)(q − 1),

= γkhqn−1
N

K
γik(q − 1),

= γk(h+i)qn−1(q − 1)
N

K
,

since ∑
x∈F∗

q

φi(x)φi(x) =
∑
x∈F∗

q

φi(x)φi(x
−1) =

∑
x∈F∗

q

φi(1)

=
∑
x∈F∗

q

γi(q−1) =
∑
x∈F∗

q

(γ(q−1))i = 1.

As qr ≡ 1 mod (q − 1) for every r ≥ 1, using this fact we obtain

h =
qn − 1

q − 1
= 1 + q + q2 + ...+ qn−1 ≡ n mod (q − 1). (3.7)

For every k, by taking h ≡ −i mod (q − 1) we can ensure

γk(h+i) ≡ 1 mod (q − 1). (3.8)

This means that n ≡ −i mod (q − 1) must be satisfied for perfect autocorrelation.
With this condition on n, we have

RSi(τ) = qn−1(q − 1)
N

K
(3.9)

for any integer k. Moreover using the result of Case 1, for τ 6= kh, the autocorrelation
function gives zero. Since the autocorrelation function repeats itself every h samples,
period of the sequence Si(t) is h. Thus, N = h = qn−1

q−1 .

Lemma 3.3. If RSi(τ) is periodic with period N, then the sequence Si(t) has the same
period N, since

RSi(0) = RSi(N) =
N−1∑
t=0

| Si(t) |2 (3.10)

is a positive real constant, thus the shifted sequence at N is actually equal to the
original sequence, not just a scalar multiple of it.

By Lemma 3.3 we can conclude that the sequence has perfect autocorrelation with the
autocorrelation peak qn−1 with periodicity N = qn−1

q−1 when n+ i ≡ 0 mod (q − 1).
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Remark 3.1. For a given m-sequence m(t) = Trq
n

q (αt) over Fq with period M =

qn − 1, when gcd(s, qn − 1) = 1, the function m′(t) = Trq
n

q (αst) gives us another
m-sequence. By using the same properties with the new m-sequence it is easily seen
that when gcd(s, qn − 1) = 1 and n + is ≡ 0 mod (q − 1), the sequence has perfect
autocorrelation. The autocorrelation peak of the sequence is qn−1 and periodicity N =
qn−1
q−1 . As a result, the constraint for periodicity is dependent on three parameters which

are q, n and s.

3.2.1 Existence of Si(t) for q Depending on n

In this section, we classify the results for some arbitrary values of n of the construction
given in Definition 3.1, using the constraint on n. The cases q = 9 and q = 17, which
give PSK+ alphabets Ω+

8 and Ω+
16 are interesting, being practically very relevant.

Table 3.1 demonstrates that our generalized construction fills in the gaps in the param-
eters of existing constructions.

Table 3.1: Comparison of new perfect autocorrelation sequences with previous con-
structions.

HHHHn
q 3 4 5 7

2 N† E(1) E(2) E∗ :i ≡ 4 mod 6

3 E(1) N† E(1) E∗ :i ≡ 3 mod 6

4 N† E(2) N† E(2)

5 E(1) E(1) E∗ :i ≡ 3 mod 4 E(1)

6 N† N† E(2) N†
HH

HHn
q 8 9 11 13

2 E∗ :i ≡ 5 mod 7 E∗ :i ≡ 6 mod 8 E∗ :i ≡ 8 mod 10 E∗ :i ≡ 10 mod 12

3 E∗ :i ≡ 4 mod 7 E∗ :i ≡ 5 mod 8 E∗ :i ≡ 7 mod 10 E∗ :i ≡ 9 mod 12

4 E∗ :i ≡ 3 mod 7 E∗ :i ≡ 4 mod 8 E∗ :i ≡ 6 mod 10 E∗ :i ≡ 8 mod 12

5 E(2) E∗ :i ≡ 3 mod 8 E∗ :i ≡ 5 mod 10 E∗ :i ≡ 7 mod 12

6 E(1) E(2) E∗ :i ≡ 4 mod 10 E∗ :i ≡ 6 mod 12
H
HHHn

q 16 17 19 23
2 E∗ :i ≡ 13 mod 15 E∗ :i ≡ 14 mod 16 E∗ :i ≡ 16 mod 18 E∗ :i ≡ 20 mod 22

3 E∗ :i ≡ 12 mod 15 E∗ :i ≡ 13 mod 16 E∗ :i ≡ 15 mod 18 E∗ :i ≡ 19 mod 22
HHHHn

q 25 27 29 31
2 E∗ :i ≡ 22 mod 24 E∗:i ≡ 24 mod 26 E∗:i ≡ 26 mod 28 E∗:i ≡ 28 mod 30

3 E∗:i ≡ 21 mod 24 E∗:i ≡ 23 mod 26 E∗:i ≡ 25 mod 28 E∗:i ≡ 27 mod 30

The notation (1) in the table above denotes that the sequences are from [4], (2) denotes
that the sequences are from [3] and ∗ denotes that the sequences are derived using
proved construction. Bold characters highlight prime powers. :i notation corresponds
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to necessary i values such that the sequence defined by Si(t) has perfect autocorre-
lation. † indicates that no perfect sequence exists for those parameters. E denotes
existence and N denotes nonexistence of perfect autocorrelation sequence for speci-
fied parameters. For all these examples, the resulting perfect sequences have period
N = qn−1

q−1 and alphabet Ω+
q−1.

Now we examine the necessary parameters of this general construction for a given
prime power q.

• Let q = 3, i = 1 then n ≡ −1 mod 2. We can always find an s satisfying
N + s ≡ 0 mod 2 and gcd(s, 3n − 1) = 1. As N ≡ n mod 2 and n ≡ −1
mod 2, −1 + s ≡ 0 mod 2 so s = 1 is the obvious solution for all n ≡ −1
mod 2. There exists a perfect autocorrelation S1(t) sequence for n = 2k −
1, ∀k = 2, 3, . . .

• Let q = 4, i = 1, 2. When i = 1, n ≡ −1 mod 3. We can always find an s
satisfying N + s ≡ 0 mod 3 and gcd(s, 4n − 1) = 1. As N ≡ n mod 3 and
n ≡ −1 mod 3, −1 + s ≡ 0 mod 3 so s = 1 is the obvious solution for all
n ≡ −1 mod 3. Smilarly when i = 2, n ≡ −2 mod 3. We can always find
an s satisfying N + 2s ≡ 0 mod 3 and gcd(s, 4n − 1) = 1. As N ≡ n mod 3
and n ≡ −2 mod 3, −2 + 2s ≡ 0 mod 3. s = 1 is the obvious solution for
all n ≡ −2 mod 3. There exists a perfect autocorrelation S1(t) sequence for
n = 3k − 1, ∀k = 1, 2, 3, . . . and there exists a perfect autocorrelation S2(t)
sequence for n = 3k − 2, ∀k = 2, 3, . . .

Using the same method we compute some other examples and give a general form of
n for which a perfect sequence exists, for a given q.

• Let q = 5, i = 1, 2, 3. There exists a perfect autocorrelation S1(t) sequence for
n = 4k − 1, ∀k = 1, 2, 3, . . . There exists a perfect autocorrelation S2(t) se-
quence for n = 4k−2, ∀k = 1, 2, 3, . . . and there exists a perfect autocorrelation
S3(t) sequence for n = 4k − 3, ∀k = 2, 3, . . .

• Let q = 7, i = 1, 2, 3, 4, 5. There exists a perfect autocorrelation S1(t) sequence
for n = 6k − 1, ∀k = 1, 2, 3, . . ., a S2(t) sequence for n = 6k − 2, ∀k =
1, 2, 3, . . ., a S3(t) sequence for n = 6k − 3, ∀k = 1, 2, 3, . . ., a S4(t) sequence
for n = 6k − 4, ∀k = 1, 2, 3, . . . and a S5(t) sequence for n = 6k − 5, ∀k =
2, 3, . . .

In general for a given prime power q,

• for n = (q − 1)k − 1, ∀k = 1, 2, 3, . . . there exists a perfect autocorrelation
S1(t) sequence;

• for n = (q−1)k−(q−3), ∀k = 1, 2, 3, . . . there exists a perfect autocorrelation
S(q−3)(t) sequence;
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• for n = (q − 1)k − (q − 2), ∀k = 2, 3, . . . there exists a perfect autocorrelation
S(q−2)(t) sequence

since N + i ≡ 0 mod q− 1 is the obvious solution for this construction. Thus we can
find a perfect autocorrelation sequence for all n values except n ≡ 0 mod q − 1 for a
given prime power q. We have thus proved:

Proposition 3.4. For a given prime power q, we can find a perfect autocorrelation
sequence over Ω+

q−1 with period N, for all n 6≡ 0 (mod q − 1).

Example 3.1. We consider some cases of practical importance in this example. Note
that we have periods N = 6, 31, 156, 781, 3906 obtained by choosing n = 2, 3, 4, 5, 6
for Ω+

4 and N = 18, 307 obtained by choosing n = 2, 3 for Ω+
16. These sequences can

be directly used in 4PSK and 16PSK systems.

Now we give some examples of perfect autocorrelation sequences proved by this con-
struction.

Example 3.2. Let q = 7, n = 2 and i = 4. Thus, an m-subsequence on F7 whose
length is N = 72−1

7−1 = 8 can be written as follows:

(1, 1, 3, 1, 4, 0, 2, 5).

Let the primitive polynomial over F7 of degree n = 2 be x2 + x + 3 and w be the
(q − 1) = 6-th root of unity. We obtain the 7-ary sequence of period N = 8 as

(φ4(t)) = (1, w, 1,−1, w − 1, 0, w − 1,−1).

The autocorrelation value R(τ) is 0 for τ 6= 0 and 72−1 = 7 otherwise.

Example 3.3. Let q = 23 = 8, n = 2 and i = 5. Thus, an m-subsequence on F8

whose length is N = 82−1
8−1 = 9 can be written as follows:

(1, θ, 0, θ, 1, θ2, θ5, θ5, θ2).

Let the primitive polynomial over F8 of degree n = 2 be x2 + θx + θ and θ be the
primitive element of F8 where w is the (q − 1) = 7-th root of unity. We obtain the
8-ary sequence of period N = 9 as

(φ5(t)) = (1, w, 0, w, 1, w2, w5, w5, w2).

The autocorrelation value R(τ) is 0 for τ 6= 0 and 82−1 = 8 otherwise.

Example 3.4. Let q = 24 = 16, n = 2 and i = 13. Thus, an m-subsequence on F16

whose length is N = 162−1
16−1 = 17 can be written as follows:

(1, θ,−θ6 − θ, θ7, γ,−θ5 − 1, θ3, θ3,−θ5 − 1, γ, θ7,−θ6 − θ, θ, 1, θ2, 0, θ2).

Let the primitive polynomial over F16 of degree n = 2 be x2 + θ9x + θ and θ be
the primitive element of F16 where w is the (q − 1) = 15-th root of unity. Let γ =
−θ7 + θ5 − θ4 − θ + 1. We obtain the 16-ary sequence of period N = 17 as

(φ13(t)) = (1, 1, w3, w13, w3, w5, w9, w2, w14, w13, w9, 1, w13, w14, w6, 0).

The autocorrelation value R(τ) is 0 for τ 6= 0 and 162−1 = 16 otherwise.
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3.3 Results

In this chapter we have generalised a construction for perfect periodic autocorrelation
sequences introduced in the thesis of Lee [18] for all possible values of n for a given
prime power q with respect to a number of theoretic constraint. The generalisation
takes the form of being able to use an arbitrary (not necessarily prime size) subfield as
the symbol alphabet during the construction. This construction enables the designers to
have more flexibility in terms of the deployment of these sequences, as part of existing
and new generation wireless communication and radar systems.
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CHAPTER 4

CORRELATION DISTRIBUTION OF A NEW SEQUENCE
FAMILY

Binary sequence families with good correlation are widely used in CDMA, wireless
communication systems and military communications if jamming is a threat [28]. To
faciliate synchronization and to minimize the interference due to other users, the corre-
lation values of the sequence family should be small. As a result of this, minimizing the
maximum correlation magnitude Cmax value plays an important role when construct-
ing a new sequence family. Lower bounds such as the Sidelnikov bound [26] (which
is the strongest for binary sequences of moderate size) are used to evaluate sequence
designs.

The basic aim of CDMA is to enable wireless transmitters to successfully exchange
information in the presence of potential conflicts which lead to interference. There are
two main methods of CDMA, Frequency Hopping (FH) and Direct Sequence (DS).
For details of CDMA networks, we refer the interested reader to the survey in the
Spread Spectrum Communications Handbook by Simon et al. [28] and for sequence
construction methods we recommend the more recent survey [10] as well. In this paper
we focus on DS-CDMA

Boztaş and Kumar constructed Gold-like sequences which satisfies Sidelnikov’s bound
and computed their correlation distribution in [6] using the quadratic form technique.
Kim and No generalized the quadratic form in [16]. Later, using these two quadratic
forms, Tang et al. gave a new family of Gold-like sequences and computed the corre-
lation distribution in [31]. All these constructions were done when n is an odd integer.
When n is even, there are two important families, the small set of Kasami sequences
and the large set of Kasami sequences, which have later on been generalised. For this
case please see Zeng et al. [34] and the references therein.

This chapter is organised as follows. First we give a basic background about se-
quence families and correlation functions and some known sequence families with
their quadratic forms. Later, the new family is constructed when n is even and its cor-
relation distribution is computed. It is shown that the correlation is six-valued. Finally,
the relationship of the new construction to existing designs is discussed.

The new sequence family we constructed turns out to be equivalent to the sequence
family given by Udaya and Siddiqi in [33], mentioned in the related work by Kim and
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No [16]. This study was published in [5].

4.1 Preliminaries

Throught this chapter, let x ∈ F2 be binary field and F2n be an extension field of x ∈ F2

where n is of the form n = me and n,m, e are positive integers. Let α be a primitive
element of F2n and ζ be an element of F2e different than 1. For given arbitrary two
sequences u = (u(0), u(1), ..., u(N − 1)) and v = (v(0), v(1), ..., v(N − 1)) of period
N , the correlation of these sequences is defined by

Cu,v (τ) =
N−1∑
t=0

(−1)u(t+τ)+v(t) . (4.1)

Maximum correlation magnitude of a sequence is defined as

Cmax = max{|Cu,v (τ) | if u 6= v, or u = v and τ 6= 0}. (4.2)

For a given function f , the Walsh transform of the function is equal to the correlation
between of all the sequences and that is the trace transform of the function which is
given as

Wf (λ) =
∑
x∈F2n

(−1)f(x)+Trn1 (λx) . (4.3)

Here, f(x) is a quadratic form in F2n over F2 and any quadratic form over F2 can be
written as

f (x) = Trn1 (a0x
2 + a1x

1+2 + a1x
1+22 + ...+ atx

1+2t), (4.4)

where t = dm
2
e.To calculate the correlation distribution of a given sequence, it is

enough to compute the rank of the quadratic form. For this purpose, the symplectic
form of the quadratic form is defined by

B (x, y) = f(x) + f(y) + f(x+ y) (4.5)

and it is bilinear. Then the radical is

W = {x ∈ F2n : B(x, y) = 0 ∀y}. (4.6)

If N is the the number of the elements of the radical W , then the rank 2r of the
quadratic form f(x) can be computed by

2r = n− log2N.

Lemma 4.1. If f(x) is a quadratic form of rank 2r, 2 ≤ 2r < n in F2n over F2, then
the Walsh transform distribution is

Wf (λ) =

 2n−r, 22r−1 + 2r−1 times,
0, 2n + 22r times,
−2n−r, 22r−1 − 2r−1 times.

(4.7)
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Definition 4.1. A function f is called t-plateaued if the Walsh transform values of f
are in {0,±2

n+t
2 } for some t = 0, 1, ..., n. Here t is the dimension of the radical.

Definition 4.2. When n is an even integer, a function f is called bent if and only if f
is 0-plateaued and called semi-bent if and only if f is 2-plateaued. When n is an odd
integer, a function f is called near-bent if and only if f is 1-plateaued.

4.2 Some Known Quadratic Forms Used in Sequence Design

When n is odd, Boztaş and Kumar [6] studied the quadratic form p(x) which is of the
form

p(x) =

n−1
2∑
l=1

Trn1 (x2
l+1), (4.8)

defined the sequence family G and gave the correlation distribution of the family in.

Definition 4.3. The Gold-like sequence family G = {gi : i = 0, 1, 2, ..., 2n} is defined
as

gi(t) =

{
Trn1 (ζiα

t) + p(αt), 0 ≤ i < 2n

Trn1 (αt), i = 2n.

The correlation distribution of the family is

Ci,j(τ) =


−1 + 2n, 2n + 1 times,
−1, 23n−1 + 22n − 2n − 2 times,
−1 + 2

n+1
2 , (22n − 2)(2n−2 + 2

n−3
2 ) times,

−1− 2
n+1
2 , (22n − 2)(2n−2 − 2

n−3
2 ) times.

(4.9)

Here, the rank of the quadratic forms p(x) and q(x) = p(x) + p(xατ ) are equal to
2r = n− 1. These p(x) and q(x) functions are 1-plateaued and so near-bent.

Later, under the restriction of n odd, Kim and No generalized this p(x) quadratic form
to

q(x) =

m−1
2∑
l=1

Trn1 (x2
el+1). (4.10)

Tang et al. constructed a new family of sequences based on these two p(x) and q(ζx)
quadratic forms in [31].

Definition 4.4. The sequence family U = {ui : i = 0, 1, 2, ..., 2n} is defined as

ui(t) =

{
Trn1 (ζiα

t) + p(αt) + q(ζαt), 0 ≤ i < 2n

Trn1 (αt), i = 2n
(4.11)
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The correlation distribution of the family is

Ci,j(τ) =


−1 + 2n, 2n + 1 times
−1, 23n−1 + 22n − 2n − 2 times
−1 + 2

n+1
2 , (22n − 2)(2n−2 + 2

n−3
2 ) times

−1− 2
n+1
2 , (22n − 2)(2n−2 − 2

n−3
2 ) times

(4.12)

4.3 Construction of the New Sequence Family

In this section, we assume that n is even. Let f(x) be the quadratic form

f(x) = Trn1 (cx2
n/2+1) +

n
2
−1∑
l=1

Trn1 (x2
l+1) (4.13)

where c ∈ F2n satisfies the condition c2
n
2 + c = 1. We shall make use of results from

Çakçak and Özbudak [8] to prove the theorem below.

Definition 4.5. Let F2n = {ζ1, ζ2, ..., ζ2n}. The new sequence family S = {si : i =
1, 2, ..., 2n + 1} is defined as

si(t) =

{
Trn1 (ζiα

t) + f(αt), 1 ≤ i ≤ 2n

Trn1 (αt), i = 2n + 1.
(4.14)

While computing the correlation distribution of the sequence family S, we will take
advantage of Lemma 4.2 below.

Lemma 4.2. The radicalW of the quadratic form f(x) is {0}, and the rank is 2r = n.

Proof. The symplectic form of the quadratic form f(x) is of the form

B(x, y) =

n
2
−1∑
i=1

(xy2
i

+ x2
i

y) + cxy2
n
2 + cx2

n
2 y (4.15)

Then using the necessary transformations, the radical W becomes the roots of the
polynomial

W (x) =
n−1∑
n
2
+1

(x2
i

) +

n
2
−1∑
1

(x2
i

) + x(c2
n
2 + c) = 0 (4.16)

Taking into consideration that c2
n
2 + c = 1 and multiplying the equation with x2

n
2 +1

,
the problem is reduced to finding the roots of the polynomial

W (x) = x+ Trn1 (x) = 0. (4.17)

If Trn1 (x) = 0 then x = 0. If Trn1 (x) = 1 then x = 1. But as n is even Trn1 (1) = 0 so
this is a contradiction. Hence the radicalW is {0}, and the rank is 2r = n.
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Lemma 4.3. Let f(x) = Trn1 (cx2
n/2+1) +

∑n
2
−1

l=1 Trn1 (x2
l+1) and let the polynomial

f̃(x) be defined by:
f̃(x) = f(βx) + f(x) (4.18)

where β = ατ ∈ F2n and β /∈ F2. Then the dimension of the radicalW is:

dim(W) =

{
0, 2n−1 times,
2, 2n−1 times.

(4.19)

Proof. To find the rank of the quadratic form f̃(x), we use the equation below given
by Boztaş and Kumar in [6]:

Bf (x, y) = f(x) + f(y) + f(x+ y) = Tr(xy) + Tr(x)Tr(y) (4.20)

Then for our case, that is for f̃(x) = f(βx) + f(x) we need to find the number of the
roots of the symplectic form Bf̃ (x, y):

Bf̃ (x, y) = Tr(xy) + Tr(x)Tr(y) + Tr(βxβy) + Tr(βx)Tr(βy)

= Tr(xy) + Tr(yTr(x)) + Tr(βxβy) + Tr(βyTr(βx))

= Tr(y(x+ Tr(x))) + Tr(βy(βx+ Tr(βx)))

= Tr(y(x+ Tr(x) + β2x+ βTr(βx)))

To find the rank of f̃(x), we need to find the number of the roots of the polynomial

h(x) = x+ Tr(x) + β2x+ βTr(βx). (4.21)

where β = ατ ∈ F2n and β /∈ F2. We give the proof in four cases depending on the
values of Tr(x) and Tr(βx).

a) If Tr(x) = 0 and Tr(βx) = 0, then

h(x) = x+ β2x = 0 ⇐⇒ x(1 + β2) = 0.

As (1 + β2) 6= 0, x = 0 is a root of the polynomial h(x).

b) If Tr(x) = 0 and Tr(βx) = 1, then

h(x) = β + x+ β2x = 0 ⇐⇒ x(1 + β2) = β.

As (1 + β2) 6= 0, x = β
1+β2 is a root of h(x) under the condition of 4.21, that is:

h(
β

1 + β2
) = Tr(

β

1 + β2
) + βTr(

β2

1 + β2
) +

β

1 + β2
+

β3

1 + β2

= Tr(
β

1 + β2
) + β[1 + Tr(

β2

1 + β2
)] = 0

As a result, x = β
1+β2 is a root of h(x) if Tr( β2

1+β2 ) = 1 and Tr( β
1+β2 ) = 0.
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c) If Tr(x) = 1 and Tr(βx) = 0, then

h(x) = 1 + x+ β2x+ = 0 ⇐⇒ x(1 + β2) = 1.

As (1 + β2) 6= 0, x = 1
1+β2 is a root of h(x) under the condition of 4.21, that is:

h(
1

1 + β2
) = Tr(

1

1 + β2
) + βTr(

β

1 + β2
) +

1

1 + β2
+

β2

1 + β2

= Tr(
1

1 + β2
) + βTr(

β

1 + β2
) + 1 = 0

As a result, x = 1
1+β2 is a root of h(x) if Tr( β

1+β2 ) = 0 and Tr( 1
1+β2 ) = 1.

d) If Tr(x) = 1 and Tr(βx) = 1, then

h(x) = x+ β2x+ 1 + β = 0 ⇐⇒ x(1 + β2) = 1 + β.

As (1 + β2) 6= 0, x = 1+β
1+β2 is a root of h(x) under the condition of 4.21, that is:

h(
1 + β

1 + β2
) = Tr(

1 + β

1 + β2
) + βTr(

β + β2

1 + β2
) +

1 + β

1 + β2
+
β2 + β3

1 + β2

= Tr(
1 + β

1 + β2
) + βTr(

β + β2

1 + β2
) + β + 1 = 0

As a result, x = 1+β
1+β2 is a root of h(x) if Tr( 1+β

1+β2 ) = 1 and Tr(β+β
2

1+β2 ) = 1.

Combining all cases together, we see that the conditions in (b) are equivalent to the
conditions in (d). If ∃β ∈ F2n − F2, satisfying Tr( 1

1+β2 ) = 1 and Tr( β
1+β2 ) = 0, then

the radical W = Sp{ β
1+β2 ,

1
1+β2}, otherwise the radical W = 0. There exist exactly

2n−1 such β where Tr( 1
1+β2 ) = 1 and Tr( β

1+β2 ) = 0, and 2n−1 such β where trace
conditions does not satisfied, which means that:

dim(W) =

{
0, 2n−1 times,
2, 2n−1 times.

Theorem 4.4. The correlation distribution of the new binary sequence family S is:

Si,j(τ) =



−1 + 2n, 2n + 1 times
−1, 23n−2 + 23n−3 + 22n − 2 times
−1 + 2

n
2 , (22n−1 − 2)(2n−1 + 2

n−2
2 ) times

−1− 2
n
2 , (22n−1 − 2)(2n−1 − 2

n−2
2 ) times

−1 + 2
n
2
+1, 22n−3(2n−1 + 2

n
2 ) times

−1− 2
n
2
+1, 22n−3(2n−1 − 2

n
2 ) times.

(4.22)
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Proof. For the family S we will examine the correlation distribution in 5 cases:

Case 1: When i = j and τ = 0:

Ci,j(τ) = Ci,i(0) =
∑

0≤t≤2n−2

(−1)si(t)+si(t)

=
∑

0≤t≤2n−2

(−1)0 = 2n − 1.

That is Ci,j(τ) = −1 + 2n, 2n + 1 times.

Case 2: When i = j = 2n + 1 and τ 6= 0 then

C2n+1,2n+1(τ) =
∑

0≤t≤2n−2

(−1)s2n+1(t)+s2n+1(t+τ)

=
∑

0≤t≤2n−2

(−1)Tr(α
t)+Tr(αt+τ )

=
∑
x∈F∗

2n

(−1)Tr(x+βx)

=
∑
y∈F∗

2n

(−1)Tr(y)

= −1 +
∑
y∈F2n

(−1)Tr(y) = −1

We used ατ = β, αt = x, (1 + βx) = y. That means Ci,j(τ) = −1, 2n − 2 times.

Case 3: a) Let i = 2n + 1 and j 6= 2n + 1, fix τ , 0 ≤ τ ≤ 2n − 2:

C2n+1,j(τ) =
∑

0≤t≤2n−2

(−1)Tr(α
t)+Tr(ζjα

t+τ )+f(αt+τ )

=
∑

0≤t≤2n−2

(−1)Tr(α
t(1+ζjβ))+f(α

t+τ )

=
∑
x∈F∗

2n

(−1)Tr(γ1x)+f(βx)

=
∑
y∈F∗

2n

(−1)Tr(γ2y)+f(y) .

Where ατ = β, αt = x, 1 + ζjβ = γ1, βx = y and γ1 = γ2β. There exists one to one
correpondence between 1 ≤ j ≤ 2n and γ2 ∈ F2n . Then the exponent can be written
of the form:

f(x) + Tr(γ2x) = g(x) + Ψa(x) (4.23)

where g(x) is a quadratic form and Ψa(x) is linear transformation. Fix a standard basis
{e1, e2, ..., en} of F2n over F2 and let dimW = k. In [8], it is shown that if n is even
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then the polynomial g(x) = g(e1x1, e2x2, ..., en−kxn−k) can be shown in two types:

Type 1 : g(e1x1, e2x2, ..., en−kxn−k) = x1x2 + x3x4 + ...+ xn−k−1xn−k
= H1(x1, x2, ..., xn−k),

Type 2 : g(e1x1, e2x2, ..., en−kxn−k) = x1x2 + x3x4 + ...+ xn−k−1xn−k + x2n−k−1 + dx2n−k
= H2(x1, x2, ..., xn−k),

where Trn1 (d) = 1. Let a1 = Ψa(e1), a2 = Ψa(e2), ..., an−k = Ψa(en−k) and

C1 = H1(a2, a1, ..., an−k, an−k−1),

C2 = H2(a2, a1, ..., an−k, an−k−1),

Çakçak and Özbudak [8] showed that for i = 1, 2, Type 1 and Type 2 can be written
as:

g(e1x1, e2x2, ..., en−kxn−k, d1y1, ..., dkyk) + Ψa(e1x1, e2x2, ..., en−kxn−k, d1y1, ..., dkyk)

= Hi(x1, x2, ..., xn−k) + (a1x1 + a2x2, ...+ an−kxn−k)

= Hi(x1 + a2, x2 + a1, ..., xn−k−1 + an−k, xn−k + an−k−1) + Ci

Finally, we give the theorem below and then using these information, we continue to
our proof of Case 3.

Theorem 4.5. In [20], for even n, d ∈ F2, Trn1 (d) = 1, the number of the solutions of
the equation

x1x2 + x3x4 + ...+ xn−k−1xn−k = H1(x1, x2, ..., xn−k) = b (4.24)

is given by
N = 2n−k−1 + v(b)2

n−k−2
2 (4.25)

and the number of the solutions of the equation

x1x2 + x3x4 + ...+ xn−k−1xn−k + x2n−k−1 + dx2n−k = H2(x1, x2, ..., xn−k) = b

is given by
N = 2n−k−1 − v(b)2

n−k−2
2 . (4.26)

For our case, using these information above, using Type 1 and k = 0, the number of
the solutions is given by:

N =

{
2n−1 + 2

n−2
2 , if b = 0;

2n−1 − 2
n−2
2 , if b = 1.

(4.27)

We can now continue to our proof of correlation distribution of Case 3. Let γ2 = a,
then:

C2n+1,j(τ) = −1 +
∑
x∈F2n

(−1)Tr(ax)+f(x)

= −1 +
∑

x1,x2,...,xn∈F2

(−1)H1(x1+a2,x2+a1,...,xn+an−1)+c1

= −1 +
∑

y1,y2,...,yn∈F2

(−1)H1(y1,y2,...,yn−1,yn)+c1 = T
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When c1 = 0,

T = −1 +
∑

H1(y1,...,yn)=0

(1) +
∑

H1(y1,...,yn)=1

(−1)

= 2n−1 + 2
n−2
2 − (2n−1 − 2

n−2
2 ) = −1 + 2

n
2

When c1 = 1 using the same method,

T = −1 +
∑

H1(y1,...,yn)=0

(−1) +
∑

H1(y1,...,yn)=1

(1) = −1− 2
n
2

As a result for i = 2n + 1 and j 6= 2n + 1 the correlation distribution of the sequence
family S is given by:

C2n+1,j(τ) =

{
−1 + 2

n
2 , (2n − 1)(2n−1 + 2

n−2
2 )times

−1− 2
n
2 , (2n − 1)(2n−1 − 2

n−2
2 )times.

Note that the solution is the same for Type 2.

Case 3: b) For j = 2n + 1, i 6= 2n + 1 as the correlation function is equivalent with
the Case 3 (a). The correlation distribution is the same and given by:

C2n+1,j(τ) =

{
−1 + 2

n
2 , (2n − 1)(2n−1 + 2

n−2
2 )times

−1− 2
n
2 , (2n − 1)(2n−1 − 2

n−2
2 )times.

(4.28)

Case 4: Let τ = 0, 1 ≤ i, j ≤ 2n and i 6= j then:

Ci,j(τ) =
∑

0≤t≤2n−2

(−1)si(t)+sj(t)

=
∑

0≤t≤2n−2

(−1)Tr(ζiα
t)+f(αt)+Tr(ζjα

t)+f(αt)

=
∑

0≤t≤2n−2

(−1)Tr((ζi+ζj)α
t)

=
∑
x∈F∗

2n

(−1)Tr(x) = −1 +
∑
x∈F2n

(−1)Tr(x) = −1

where (ζi + ζj)α
t = x. Which means Ci,j(τ) = −1 exactly 2n(2n − 1) times.

Case 5: The final case is τ 6= 0, 1 ≤ τ ≤ 2n − 2 and 1 ≤ i, j ≤ 2n. Then the
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correlation function:

Ci,j(τ) =
∑

0≤t≤2n−2

(−1)si(t)+sj(t+τ)

=
∑

0≤t≤2n−2

(−1)Tr(ζiα
t)+f(αt)+Tr(ζjα

t+τ )+f(αt+τ )

=
∑

0≤t≤2n−2

(−1)Tr((ζi+ζjβ)α
t)+f(αt)+f(βαt)

=
∑
x∈F∗

2n

(−1)Tr(γx)+f(x)+f(βx)

where ατ = β, ζi + ζjβ = γ, αt = x. Then we define:

f̃(x) = f(βx) + f(x) (4.29)

It turns out that f̃ has the rank 2r = n − 2 or 2r = n, depending on some technical
conditions on β. Please see Lemma 4.3 for the details.

For β ∈ F2n and β does not satisfy the trace conditions Tr( 1
1+β2 ) = 1 and Tr( β

1+β2 ) =

0 at the same time, then f̃(x) has full rank. Then the correlation distribution is:

C2n+1,j(τ) =

{
−1 + 2

n
2 , 2n(2n−1 − 2)(2n−1 + 2

n−2
2 )times

−1− 2
n
2 , 2n(2n−1 − 2)(2n−1 − 2

n−2
2 )times.

(4.30)

And for β ∈ F2n under the condition of Tr( 1
1+β2 ) = 1 and Tr( β

1+β2 ) = 0, f̃(x) has
rank 2r = n− 2, then the exponent of the correlation function can be written as

f̃(x) + Tr(γx) = g(x) + Ψa(x) (4.31)

where g(x) is a quadratic form and Ψa(x) is linear transformation. Then Type 1 and
Type 2 are given by:

Type 1 : g(e1x1, e2x2, ..., en−2xn−2) = x1x2 + x3x4 + ...+ xn−3xn−2
= H1(x1, x2, ..., xn−2)

Type 2 : g(e1x1, e2x2, ..., en−2xn−2) = x1x2 + x3x4 + ...+ xn−3xn−2 + x2n−3 + dx2n−2
= H2(x1, x2, ..., xn−2)

where Trn1 (d) = 1. Let a1 = Ψa(e1), a2 = Ψa(e2), ..., an−2 = Ψa(en−2) and

C1 = H1(a2, a1, ..., an−2, an−3),

C2 = H2(a2, a1, ..., an−2, an−3).

For i = 1, 2, Çakçak and Özbudak [8] showed that for Type 1 and Type 2 the following
is satisfied:

g(e1x1, e2x2, ..., en−2xn−2, d1y1, d2y2) + Ψa(e1x1, e2x2, ..., en−2xn−2, d1y1, d2y2)

= Hi(x1, x2, ..., xn−2) + a1x1 + a2x2, ...+ an−2xn−2
= Hi(x1 + a2, x2 + a1, ..., xn−3 + an−2, xn−2 + an−3) + Ci
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Using the Theorem 4.5, and k = 2, then the number of the solutions of Type 1:

N =

{
4(2n−3 + 2

n−4
2 ), if b = 0;

4(2n−3 − 2
n−4
2 ), if b = 1.

(4.32)

Finally, let γ = a and i = 1, ...n− 2, then the correlation function

Ci,j(τ) = −1 +
∑
x∈F2n

(−1)Tr(ax)+f̃(x)

= −1 +
∑
xi∈F2

(−1)H1(x1+a2,x2+a1,...,xn−2+an−3)+c1

= −1 +
∑
yi∈F2

(−1)H1(y1,y2,...,yn−2)+c1 = T

When c1 = 0,

T = −1 + 4(
∑

H1(y1,...,yn−2)=0

(1) +
∑

H1(y1,...,yn−2)=1

(−1))

= −1 + 4(2n−3 + 2
n−4
2 − (2n−3 − 2

n−4
2 )) = −1 + 2

n
2
+1

When c1 = 1 by the same method,

T = −1 + 4(
∑

H1(y1,...,yn−2)=0

(−1) +
∑

H1(y1,...,yn−2)=1

(1))

= −1− 2
n
2
+1

After computing the number ofRi,j(τ) = −1 case, we have the correlation distribution
under the condition of Tr( 1

1+β2 ) = 1 and Tr( β
1+β2 ) = 0, f̃(x) as:

Ci,j(τ) =


−1, 23n−2 + 23n−3 times
−1 + 2

n
2
+1, 22n−3(2n−1 + 2

n
2 )times

−1− 2
n
2
+1, 22n−3(2n−1 − 2

n
2 )times.

(4.33)

Note that Type 2 gives the same distribution of Ri,j(τ). Then the total correlation
distribution for case 5 is given by:

Ci,j(τ) =



−1, 23n−2 + 23n−3 times
−1 + 2

n
2 , 2n(2n−1 − 2)(2n−1 + 2

n−2
2 ) times

−1− 2
n
2 , 2n(2n−1 − 2)(2n−1 − 2

n−2
2 ) times

−1 + 2
n
2
+1, 22n−3(2n−1 + 2

n
2 ) times

−1− 2
n
2
+1, 22n−3(2n−1 − 2

n
2 ) times.

(4.34)

Finally, collecting all 5 cases together, we have the correlation distribution of the se-
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quence family S and it is given by:

Ci,j(τ) =



−1 + 2n, 2n + 1 times
−1, 23n−2 + 23n−3 + 22n − 2 times
−1 + 2

n
2 , (22n−1 − 2)(2n−1 + 2

n−2
2 ) times

−1− 2
n
2 , (22n−1 − 2)(2n−1 − 2

n−2
2 ) times

−1 + 2
n
2
+1, 22n−3(2n−1 + 2

n
2 ) times

−1− 2
n
2
+1, 22n−3(2n−1 − 2

n
2 ) times.

Note that in this proof not only have we computed the correlation distribution, but also
we have determined all cross-correlation values exactly depending on β ∈ F2n .

Corollary 4.6. According to the correlation function distribution, maximum correla-
tion magnitude Cmax of the sequence family is (1 + 2

n
2
+1).

We now point out a link between our construction and plateaued boolean functions.

Corollary 4.7. As has been shown above, the rank of the quadratic form f(x) is equal
to 2r = n, i.e., the function f is 0-plateaued and so f is bent. In Appendix 2 it is shown
that the rank of the quadratic form f̃(x) = f(x)+f(xατ ) is equal to 2r = n−2 when
Tr( 1

1+β2 ) = 1 and Tr( β
1+β2 ) = 0 where β = ατ . Under these conditions, f̃ is 2-

plateaued and so semi-bent. Otherwise the rank of the quadratic form f̃(x) is equal to
2r = n so again f̃ is 0-plateaued and so bent.

4.4 Results

In this chapter, we construct a sequence family for even positive integer n over the finite
field F2n . We prove this family’s correlation distribution and determine the β ∈ F2n

elements for all correlation values.

The maximum cross-correlation magnitude Cmax of the sequence family is found as
(1 + 2

n
2
+1). This shows that the family has low maximum cross-correlation magnitude

which is advantageous for the use of the sequence family in CDMA applications.

Moreover, when n is even, the small set of Kasami sequences K is defined (see the
survey by Helleseth and Kumar [10]) as below:

Definition 4.6. The small Kasami sequence family K = {ki : i = 0, 1, 2, ..., 2n/2} is
defined as

ki(t) =

{
Trn1 (αt) + Tr

n/2
1 (ηiα

(2n/2+1)t), 0 ≤ i < 2n/2

Trn1 (αt), i = 2n/2.

where {ηi}i=0,1,...,2n/2−1 is an enumeration of the subfield F2n/2 of F2n .
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Comparison: The nontrivial correlation values of the small Kasami sequence family
lie in the set

{−1,−1± 2n/2}
which make the small Kasami set optimal with respect to the Sidelnikov lower bound.
However, the small Kasami set has a much smaller size compared to our design S. On
the other hand, our sequences do not attain the Sidelnikov lower bound, and thus are
suboptimal.
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CHAPTER 5

CORRELATION DISTRIBUTION OF GOLD-LIKE SEQUENCE
FAMILY GENERATED BY PLATEAUED FUNCTIONS

Sequence families having low maximum correlation magnitude are used in direct se-
quence code division multiple access (DS-CDMA) which allows multiple users to uti-
lizate the system simultaneously in the same bandwith without interfering each other.
Different orthogonal and non-orthogonal (such as Gold [9] or Kasami Sequences [15])
codes are assigned to the users according to the required properties of the system. To
demodulate the received signal, one needs to multiply it with the code used during
the transmission. To keep the signals protected and maintain privacy, density of the
transmitted signal should be lower than the noise density. The sender ensures that the
receiver can demodulate the hiding signal in the noise if the receiver knows the code
used during the trasmission.

The CDMA system performs best when there is a clear separation between the signal
of desired users and other users. Receiver can separate the signal by correlating the
desired signal code with other received signals. If the signal matches with the code
of the user, then the cross-correlation function will be high and the system can extract
the signal. Otherwise, the cross-correlation is close to zero. The aim is to faciliate
synchronization and to minimize the interference due to other users [28].

For these purposes, sequences having low maximum correlation magnitude Cmax play
an important role when constructing a new sequence family. Some lower bounds such
as Sidelnikov bound [27] are used in sequence design.

Boztaş and Kumar constructed Gold-like sequences which satisfies Sidelnikov’s bound
and computed their correlation distribution in [6] by using the quadratic form tech-
nique. This construction set up when n is an odd integer and p = 2.

In this chapter, we generalized Gold-like sequences for arbitrary positive integer n
and arbitrary prime number p by using an arbitrary s-plateaued function instead of
a fixed quadratic form but keeping the rest of the construction same. Later, we give
the correlation values of the sequence family depending on p and n, taking the Gold
function as plateaued function.
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5.1 Preliminaries

Let p be a prime number, Fp be a finite field and Fpn be an extension field of Fp where
n is an odd integer and α is a primitive element of Fpn . For two arbitrary sequences
u = (u(0), u(1), ..., u(N − 1)) and v = (v(0), v(1), ..., v(N − 1)) of period N , the
periodic correlation function of these sequences is defined by

Cu,v (τ) =
N−1∑
t=0

(ζp)
u(t+τ)−v(t) . (5.1)

Here ζp is the complex primitive p-th root of unity. The maximum correlation magni-
tude of a sequence family is defined as

Cmax = max{|Cu,v (τ) | : u 6= v, or u = v and τ 6= 0}. (5.2)

For a given function f : Fpn → Fp, the Walsh transform of the function is equal to the
set of correlations between f and the linear functions Trn1 (λx) which is given by

Wf (λ) =
∑
x∈Fpn

(ζp)
f(x)−Trn1 (λx) . (5.3)

Definition 5.1. A function f : Fpn → Fp is called s-plateaued if its absolute Walsh
transform values are in {0, pn+s2 } for some s = 1, ..., n. f is called 0-plateaued if its
absolute Walsh transform value equals to p

n
2 .

Lemma 5.1. If f : Fpn → Fp is an s-plateaued function, where 1 ≤ s ≤ n, then the
absolute value of the Walsh transform is

|Wf (λ)| =
{
p
n+s
2 , pn−s times,

0, pn − pn−s times.
(5.4)

If f(x) is a 0-plateaued function in Fpn over Fp, then the absolute value of the Walsh
transform is exactly p

n
2 , pn times. More specifically when f : F2n → F2, the Walsh

transform distribution is given by:

Wf (λ) =

 2
n+s
2 , 2n−s−1 + 2

n−s−2
2 times,

0, 2n − 2n−s times,
−2

n+s
2 , 2n−s−1 − 2

n−s−2
2 times,

(5.5)

for s 6= 0. If f : F2n → F2 is an 0-plateaued function then

Wf (λ) =

{
2
n
2 , 2n−1 times,
−2

n
2 , 2n−1 times.

(5.6)

A quadratic form f : Fpn → Fp can be written as

f (x) = Trn1 (a0x
1+p0 + a1x

1+p + a1x
1+p2 + ...+ atx

1+pt), (5.7)
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where t = dn
2
e. To calculate the correlation distribution of a given sequence generated

by a quadratic function f(x), it is enough to compute the rank of the quadratic form.
For this purpose, the symplectic form of the quadratic form is defined by

B (x, y) = f(x+ y)− f(x)− f(y) (5.8)

and it is bilinear. Then the radical is

W = {x ∈ Fpn : B(x, y) = 0 ∀y ∈ Fpn}. (5.9)

IfN is the the number of the elements in the radicalW , then the rank r of the quadratic
form f(x) can be computed by

r = n− logpN. (5.10)

Lemma 5.2. A quadratic function f : Fpn → Fp is s-plateaued if and only if rankf(x) =
r = n− s for some s = 0, 1, ..., n.

Corollary 5.3. A quadratic function f : Fpn → Fp is s-plateaued if and only if s =
logpN where N is the the number of the elements of the radical W of the quadratic
form.

Definition 5.2. Let F be an arbitrary field. An algebraic curve over F is the equation
F (x, y) = 0. Here, F/F is the function field.

Definition 5.3. Let C be an algebraic curve defined by F (x, y) = 0 over F and let
F be a field containing F. The F rational points of C are the solutions of the curve
F (x, y) = 0 for x, y ∈ F .

Definition 5.4. The L-polynomial of the algebraic function field F/F is defined as

L(t) = (1− t)(1− qt)Z(t)

where Z(t) is the zeta function.

During this chapter, let F/Fq be a function field with genus g over Fq, LF (t) denote the
L-polynomial, Nr = N(Fr) be the number of places of degree 1 of the field extension
Fr = FFqr of degree r. Necessary theorems are given according to these notations.

Theorem 5.4. The L-polynomial satisfies the following properties [30]:

1. L(t) factors in C[t] as

L(t) =

2g∏
i=1

(1− αit)

where α1, . . . , α2g are complex numbers satisfying

αm + cm−1α
m−1 + · · ·+ c1α + c0 = 0

for ci ∈ Z and αi + αg+i = q for i = 1, . . . , g.
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2. If Ln(t) = (1 − t)(1 − qnt)Zn(t) is the L-polynomial of the extension field
Fr = FFqr , then similarly for αi satisfying the conditions above,

Lr(t) =

2g∏
i=1

(1− αri t).

Corollary 5.5. For all n ≥ 1, the number of places of degree 1 is given as follows

Nn = qn + 1−
2g∑
i=1

αri

where α1, . . . , α2g are given in the L-polynomial [30]. In particular for n = 1, since
N1 = N(F ),

N = N(F ) = q + 1−
2g∑
i=1

αi.

Theorem 5.6 (Hasse-Weil Theorem). The reciprocals of the roots of the L-polynomial
L(t) satisfy

|αi| = q1/2

for i = 1, . . . , 2g.

Theorem 5.7 (Hasse-Weil Bound). The number Nn = N(Fn) of degree one places of
the function field Fn/Fqn satisfies

|Nn − (qn + 1)| ≤ 2gqn/2

for all n ≥ 1.

A curve is called maximal if it attains the upper Hasse-Weil Bound.

Definition 5.5. The Gold sequence family S is constructed by using the quadratic form
f(x) = Trn1 (x2+1) when n is an odd integer. The family

S = {si(t) : i = 0, 1, 2, ..., 2n}

is defined as

si(t) =

{
Trn1 (ζiα

t) + f(αt), 0 ≤ i < 2n

Trn1 (αt), i = 2n

where ζi is an enumeration of F2n , α is a primitive element of F2n , 0 ≤ t ≤ 2n − 2.
The correlation values of the Gold sequence family are {−1,−1 + 2

n+1
2 ,−1− 2

n+1
2 }.

Boztaş and Kumar [6] studied the quadratic form p(x) =
∑n−1

2
l=1 Trn1 (x2

l+1) when n is
an odd integer. They defined the sequence family G and gave the correlation distribu-
tion of the family.

46



Definition 5.6. Let n be an odd integer. The Gold-like sequence family

G = {gi(t) : i = 0, 1, 2, ..., 2n}

is defined as

gi(t) =

{
Trn1 (ζiα

t) + p(αt), 0 ≤ i < 2n

Trn1 (αt), i = 2n
(5.11)

where ζi is an enumeration F2n , α is a primitive element of F2n and 0 ≤ t ≤ 2n − 2.
The correlation distribution of the family is

Ci,j(τ) =


−1 + 2n, 2n + 1 times
−1, 23n−1 + 22n − 2n − 2 times
−1 + 2

n+1
2 , (22n − 2)(2n−2 + 2

n−3
2 ) times

−1− 2
n+1
2 , (22n − 2)(2n−2 − 2

n−3
2 ) times.

(5.12)

5.2 Classification of a Sequence Family Using Plateaued Functions

Definition 5.7. Let Fpn = {ω1, ω2, ..., ωpn} be an enumeration of the elements of the
finite field Fpn , α be a primitive element of Fpn and f : Fpn → Fp be an s-plateaued
function where s is arbitrary. For 0 ≤ t ≤ pn − 2, the sequence family

V = {vi(t) : i = 1, 2, ..., pn + 1} (5.13)

is defined as

vi(t) =

{
Trn1 (ωiα

t) + f(αt), 1 ≤ i ≤ pn

Trn1 (αt), i = pn + 1.
(5.14)

Theorem 5.8. For an arbitrary s-plateaued function f : Fpn → Fp let the sequence
family V be defined as above. Also let

fβ(x) = f(βx)− f(x)

and let Nk be the number of β in Fpn − {0, 1} for which fβ(x) is k-plateaued, where
k = 0, 1, ...,m, m ≤ n and

N0 +N1 + ...+Nm = #β = pn − 2.

Then the correlation distribution of this family satisfies

|Ci,j(τ) + (ζp)
l| =



0, (pn − 1)[pn(pn − 2) + 2(pn − pn−s)]
+pn(

∑m
k=1Nk(p

n − pn−k)) times
pn, pn + 1 times
p
n+s
2 , 2pn−s(pn − 1) times

p
n
2 , p2nN0 times
p
n+1
2 , pnpn−1N1 times

... ...

p
n+m

2 , pnpn−mNm times

(5.15)

where l ∈ {0, f(0),−f(0)} and the exact values are given in the proof.
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Proof. Throught the proof we will use Tr(·) for Trn1 (·). The absolute correlation dis-
tribution of the sequence family V is calculated in five cases as follows :

Case 1: When i = j and τ = 0, the cross-correlation function:

Ci,j(τ) = Ci,i(0) =
∑

0≤t≤pn−2

(ζp)
vi(t)−vi(t)

=
∑

0≤t≤pn−2

(ζp)
0 = pn − 1

That is |Ci,j(τ) + 1| = pn exactly pn + 1 times.

Case 2: When i = j = pn + 1 and τ 6= 0 then the cross-correlation function:

Cpn+1,pn+1(τ) =
∑

0≤t≤pn−2

(ζp)
vpn+1(t+τ)−vpn+1(t)

=
∑

0≤t≤pn−2

(ζp)
Tr(αt+τ )−Tr(αt)

=
∑
x∈F∗

pn

(ζp)
Tr(βx−x)

=
∑
y∈F∗

pn

(ζp)
Tr(y)

= −1 +
∑
y∈Fpn

(ζp)
Tr(y) = −1

Here ατ = β, αt = x, (β − 1)x = y. That means |Ci,j(τ) + 1| = 0 exactly pn − 2
times.

Case 3: a) For i 6= pn + 1 and j = pn + 1 fix τ , 0 ≤ τ ≤ pn − 2. Then the
cross-correlation function:

Ci,j(τ) =
∑

0≤t≤pn−2

(ζp)
f(αt+τ )+Tr(ωiα

t+τ )−Tr(αt)

=
∑

0≤t≤pn−2

(ζp)
f(αt+τ )−Tr((1−ωiβ)αt)

=
∑
x∈F∗

pn

(ζp)
f(βx)−Tr((1−ωiβ)x)

= −(ζp)
f(0) +

∑
z∈Fpn

(ζp)
f(z)−Tr(( 1

β
−ωi)z) .

Where ατ = β, αt = x and βx = z. For fixed β and for 1 ≤ i ≤ pn, as the ωi values
ranges over Fpn , ( 1

β
− ωi) takes on all values of Fpn exactly once.

Now the problem reduces to finding the Walsh distribution so we need to find the
plateaued degree of the function f(x). We can then compute the Walsh distribution via
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Lemma 5.1 which gives us the correlation distribution. Finally we can determine the
number of occurrences by Parseval’s identity.

If f(z) is an s-plateaued function, then for 0 ≤ τ ≤ pn− 2, j = pn + 1 and 1 ≤ i ≤ pn

the difference between the correlation Ci,j(τ) and −(ζp)
f(0) satisfies:

|Ci,j(τ) + (ζp)
f(0)| =

{
0, (pn − 1)(pn − pn−s) times
p
n+s
2 , (pn − 1)pn−s times,

(5.16)

via Lemma 5.1.

Case 3: b) For j 6= pn + 1 and i = pn + 1, fix τ , 0 ≤ τ ≤ pn − 2. Then the
cross-correlation function:

Ci,j(τ) =
∑

0≤t≤pn−2

(ζp)
Tr(αt+τ )−f(αt)−Tr(ωjαt)

=
∑
x∈F∗

pn

(ζp)
−f(x)−Tr((ωj−β)x)

= −(ζp)
−f(0) +

∑
z∈Fpn

(ζp)
−f(x)−Tr((ωj−β)x) .

For fixed β and for 1 ≤ j ≤ pn, i.e for ωj ∈ Fpn , (ωj − β) takes all values of Fpn .
Then the cross-correlation obeys:

|Ci,j(τ) + (ζp)
−f(0)| =

{
0, (pn − 1)(pn − pn−s) times
p
n+s
2 , (pn − 1)pn−s times.

(5.17)

Case 4: τ = 0, 1 ≤ i, j ≤ pn and i 6= j, then the cross-correlation function:

Ci,j(τ) =
∑

0≤t≤pn−2

(ζp)
vi(t)−vj(t)

=
∑

0≤t≤pn−2

(ζp)
Tr(ωiα

t)+f(αt)−Tr(ωjαt)−f(αt)

=
∑

0≤t≤pn−2

(ζp)
Tr((ωi−ωj)αt)

=
∑
x∈F∗

pn

(ζp)
Tr(x) = −1 +

∑
x∈Fpn

(ζp)
Tr(x) = −1

where (ωi − ωj)αt = x. It means that |Ci,j(τ) + 1| = 0 exactly pn(pn − 1) times.
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Case 5: The final case is τ 6= 0, 1 ≤ τ ≤ pn − 2, 1 ≤ i, j ≤ pn then:

Ci,j(τ) =
∑

0≤t≤pn−2

(ζp)
vi(t+τ)−vj(t)

=
∑

0≤t≤pn−2

(ζp)
Tr(ωiα

t+τ )+f(αt+τ )−Tr(ωjαt)−f(αt)

=
∑

0≤t≤pn−2

(ζp)
f(βαt)−f(αt)−Tr((ωj−ωiβ)αt)

= −1 +
∑
x∈Fpn

(ζp)
f(βx)−f(x)−Tr((ωj−ωiβ)x)

where ατ = β, αt = x. Let β and ωi be fixed elements of Fpn . For 1 ≤ j ≤ pn,
ωj ∈ Fpn and (ωj − ωiβ) takes all values of Fpn exactly once.

Now the problem reduces to finding the Walsh distribution so we need to find plateaued
degree of the function f(βx) − f(x). Then we can compute the Walsh transform
and this gives us the correlation distribution. We can then determine the number of
occurrences by Parseval’s identity. If f(βx) − f(x) is k-plateaued Nk times for 0 ≤
k ≤ m where N0 +N1 + ...+Nm = pn−2, then for 0 ≤ τ ≤ pn−2 and 1 ≤ i, j ≤ pn

the cross-correlation obeys:

|Ci,j(τ) + 1| =



0, pn(
∑m

k=1Nk(p
n − pn−k)) times

p
n
2 , p2nN0 times
p
n+1
2 , pnpn−1N1 times

... ...

p
n+m

2 , pnpn−mNm times

(5.18)

by Lemma 5.1.

Collecting all five cases together, for an arbitrary s-plateaued function f(x) let Nk be
the number of β in Fpn − {0, 1} satisfying fβ(x) = f(βx) − f(x) where fβ(x) is
k-plateaued depending on k. The correlation distribution of the sequence family V
satisfies:

|Ci,j(τ) + (ζp)
l| =



0, (pn − 1)[pn(pn − 2) + 2(pn − pn−s)]
+pn(

∑m
k=1Nk(p

n − pn−k)) times
pn, pn + 1 times
p
n+s
2 , 2pn−s(pn − 1) times

p
n
2 , p2nN0 times
p
n+1
2 , pnpn−1N1 times

... ...

p
n+m

2 , pnpn−mNm times

(5.19)

where l ∈ {0, f(0),−f(0)} as given in this proof.
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5.3 Correlation Values of Generalized Gold Sequences for Arbitrary p and n

In this section, we constructed our sequence family using the well known Gold func-
tion and computed the correlation distribution of this family, depending on the prime
number p and positive integer n. Throughout our proof of the correlation distribution
we take advantage of the theory of algebraic curves to show the functions f(x) and
f(βx) − f(x) are plateaued functions. Then we give the correlation distribution us-
ing the proof of Theorem 5.8. Finally we support our proof with some computational
results of the correlation distribution.

Definition 5.8. For arbitrary prime number p and arbitrary positive integer n the quadratic
form corresponding to the Gold function f(x) is defined as:

f : Fpn → Fp
x → Trn1 (x1+p).

(5.20)

Using the Gold fuction f(x), the sequence family

V = {vi(t) : i = 0, 1, 2, ..., pn}

is defined by:

vi(t) =

{
Trn1 (ζiα

t) + f(αt), 0 ≤ i < pn

Trn1 (αt), i = pn
(5.21)

where ζi is an enumeration Fpn , α is a primitive element of Fpn and 0 ≤ t ≤ pn − 2

Theorem 5.9. The correlation distribution of the sequence family V , constructed by
using the Gold function with arbitrary prime number p and arbitrary positive integer
n is given as follows:

If p = 2 and n is odd, then:

|Ci,j(τ) + 1| =


0, (pn − 2) + pn(pn − 1) + (pn − pn−1)[2(pn − 1)

+pn(pn − 2)] times
p
n+1
2 , pn−1(2(pn − 1) + pn(pn − 2)) times

pn, pn + 1 times.

(5.22)

If p = 2, n = 4k, A = (pn − pn2+1 − 8)/3 and B = (pn+1 + p
n
2
+1 − 4)/3 then:

|Ci,j(τ) + 1| =



0, (pn − 2) + 3pn(pn − 1)

+(pn − pn−2)(2(pn − 1) + Apn) times
p
n
2 , Bp2n times
p
n+2
2 , pn−2(2(pn − 1) + Apn) times

pn, 3pn + 1 times.

(5.23)
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If p = 2, n = 4k + 2, A = (pn + p
n
2
+1 − 8)/3 and B = (pn+1 − pn2+1 − 4)/3 then:

|Ci,j(τ) + 1| =



0, (pn − 2) + 3pn(pn − 1)

+(pn − pn−2)(2(pn − 1) + Apn) times
p
n
2 , Bp2n times
p
n+2
2 , pn−2(2(pn − 1) + Apn) times

pn, 3pn + 1 times.

(5.24)

If p is odd and n is odd, then:

|Ci,j(τ) + 1| =


0, (pn − 2) + 2pn(pn − 1) times
p
n
2 , 2pn(pn − 1) + p2n(pn − 3) times
pn, 2pn + 1 times.

(5.25)

If p is odd and n = 4k, let A = (pn − pn2+2 + p
n
2
+1 + 1)/(p+ 1), then:

|Ci,j(τ) + 1| =



0, (pn − 2) + (p+ 1)pn(pn − 1)

+(pn − pn−2)(2(pn − 1) + (A− 3)pn) times
p
n
2 , p2n(pn − p− A+ 1) times
p
n+2
2 , pn−2(2(pn − 1) + (A− 3)pn) times

pn, (p+ 1)pn + 1 times.

(5.26)

If p is odd and n = 4k + 2 > 2, let N be found computationally as given in the proof,
then:

|Ci,j(τ) + 1| =


0, (pn − 2) + (p+ 1)pn(pn − 1) +Npn(pn − pn−2) times
p
n
2 , 2pn(pn − 1) + p2n(pn − p−N − 2) times
p
n+2
2 , Npnpn−2 times

pn, (p+ 1)pn + 1 times.
(5.27)

Finally, if p is odd and n = 2, then:

|Ci,j(τ) + 1| =


0, (p2 − 2) + (p+ 1)p2(p2 − 1) times
p, 2p2(p2 − 1) + p4(p2 − p− 2) times
p2, (p+ 1)p2 + 1 times.

(5.28)

Proof. To compute the correlation distribution of the sequence family constructed by
using the Gold function we need to find the plateaued degree of f(x) and f(βx)−f(x)
for all β ∈ Fpn−{0, 1} in cases 3 and 5. For the other cases, the correlation distribution
is independent of the function used to generate the sequence family, and depends on
standard linear trace sums, as in the proof of Theorem 5.9.

Correlation Case 3: To find the plateaued degree of f(x), we need to find the rank of
the function. The symplectic form of the function is:

B(x, y) = Tr(xyp + xpy) = 0 ⇐⇒ y(xp + xp
−1

) = 0,∀y ∈ Fpn .
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So the radical equals:

W = {x ∈ Fpn : B(x, y) = 0, ∀y ∈ Fpn}
= {x ∈ Fpn : Tr(y(xp + xp

−1
)) = 0, ∀y ∈ Fpn}

= {x ∈ Fpn : xp
2

+ x = 0}
= {x ∈ Fpn : xp

2−1 = −1}

(5.29)

For an odd prime number p and an even integer n, when n = 4k, the radical:

W = {x ∈ Fpn : xp
2

+ x = 0} (5.30)

and xp2 + x splits in Fpn , thus dim(W) = 2 and f(x) is 2-plateaued.

Note that xp2 +x splits in Fp4 . For an odd prime number p and an even integer n, when
n = 4k + 2, Fp4 ∩ Fpn = Fp2 . Moreover for x ∈ Fp2 , xp2 = x hence the radical:

W = Fp2 ∩ (solutions of (xp
2

+ x)) = {0}. (5.31)

Thus f(x) is 0-plateaued.

Similarly when p and n are both odd integers, Fp4 ∩Fpn = Fp and for x ∈ Fp, xp
2

= x
hence the radical:

W = Fp ∩ (solutions of (xp
2

+ x)) = {0}. (5.32)

Thus f(x) is 0-plateaued.

Using the same method, for the even prime number p = 2, xp2 + x splits in Fp2 . When
p = 2 and n is an even integer, Fp2 ∩ Fpn = Fp2 and as xp2 = x = −x the radical:

W = Fp2 . (5.33)

Thus f(x) is 2-plateaued.

And finally for p = 2 and an odd integer n, Fp2∩Fpn = Fp2 hence similarly the radical:

W = Fp. (5.34)

Thus f(x) is 1-plateaued.

Corollary 5.10. Correlation distributions of Case 3 depending on p and n are given
as follows: For p = 2 and n odd:

|Ci,j(τ) + 1| =

{
0, 2(pn − 1)(pn − pn−1) times
p
n+1
2 , 2(pn − 1)pn−1 times.

(5.35)

For p = 2 and n even:

|Ci,j(τ) + 1| =

{
0, 2(pn − 1)(pn − pn−2) times
p
n+2
2 , 2(pn − 1)pn−2 times.

(5.36)

53



For p odd and n odd:

|Ci,j(τ) + 1| =
{
p
n
2 , 2pn(pn − 1) times. (5.37)

For p odd and n = 4k:

|Ci,j(τ) + 1| =

{
0, 2(pn − 1)(pn − pn−2) times
p
n+2
2 , 2(pn − 1)pn−2 times.

(5.38)

For p odd and n = 4k + 2:

|Ci,j(τ) + 1| =
{
p
n
2 , 2pn(pn − 1) times. (5.39)

Correlation Case 5: For β ∈ Fpn − {0, 1},

gβ(x) = f(βx)− f(x) = Tr((β1+p − 1)x1+p). (5.40)

Then the symplectic form of the quadratic form is:

Bβ(x, y) = Tr((β1+p − 1)xyp + (β1+p − 1)xpy). (5.41)

The kernel:

W = {y ∈ Fpn : (β1+p − 1)yp + (β1+p − 1)p
−1

yp
−1

= 0}, (5.42)

which means that we need to find the number of the solutions of the equation:

(β1+p − 1)pyp
2

+ (β1+p − 1)y = 0. (5.43)

Let (β1+p − 1) = γ, then the equation is given by:

γpyp
2

+ γy = 0. (5.44)

For γ 6= 0, the equation can be written as:

γp−1yp
2

+ y = 0. (5.45)

When p is odd γp−1yp2−1 = −1 = w
pn−1

2 and when p is even γp−1yp2−1 = −1 =
wp

n−1.

Now the question is to find the β values when the equation

γ = β1+p − 1 (5.46)

equals to 0. γ = 0 if and only if β1+p = 1, where β = wi for a primitive element w of
Fpn . In other words, γ = 0 if and only if wi(1+p) = 1 if and only if pn−1 | i(p+1). To
find the solutions of the equation 5.46, we will need to use the following information:

When p is even:

gcd(pn − 1, p+ 1) = gcd(2n − 1, 3) =

{
1, if n is odd,
3, if n is even.

(5.47)
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When p is odd:

gcd(pn − 1, p+ 1) =

{
2, if n is odd,
p+ 1, if n is even.

(5.48)

To simpilfy the notation, let A = (ωj − ωiβ) and γ = β1+p − 1 where

gβ(x) = f(βx)− f(x) = Tr((β1+p − 1)x1+p). (5.49)

Then
|Ci,j(τ) + 1| = |

∑
x∈Fpn (ζp)

gβ(x)−Tr(Ax)|
= |Wgβ(A)|. (5.50)

p = 2 and n is odd: The solution of the equation 5.46:

γ = βp+1 − 1 = 0 ⇐⇒ i = pn − 1 ⇐⇒ β = 1,

which is impossible. Then for γ 6= 0 let

Ψ : F2n − {0, 1} → F2n − {0,−1}
β → γ = βp+1 − 1.

(5.51)

Note that Ψ is a one-to-one map. For y 6= 0,

γp−1yp
2−1 = 1 ⇐⇒ y3 =

1

γ
. (5.52)

As gcd(3, 2n− 1) = 1, choose a, b ∈ Z satisfying 1 = 3a+ (2n− 1)b. By multiplying
the equations (y3)a = ( 1

γ
)a and (y2

n−1)b = 1 we get

y3a+(2n−1)b = (
1

γ
)a, (5.53)

that is y = ( 1
γ
)a is the exact solution for all β ∈ F2n − {0, 1}.

Corollary 5.11. When p is even and n is odd gβ(x) is 1-plateaued for all β and the
correlation distribution for Case 5 is:

|Ci,j(τ) + 1| =

{
0, pn(pn − 2)(pn − pn−1) times
p
n+1
2 , pnpn−1(pn − 2) times.

(5.54)

p = 2 and n is even: Let β = αi. Then the solutions of the equation 5.46 can be
found by:

γ = βp+1 − 1 = 0 ⇐⇒ i ∈ S = {p
n − 1

3
, 2
pn − 1

3
, pn − 1} ⇐⇒ β ∈ F∗4

So for these β ∈ F4 − F2, γ = 0. When A = 0 and γ = 0 the correlation takes the
value −1 + pn, 2 times and similarly when A 6= 0 and γ = 0, the correlation takes the
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value −1 exactly 2 times. This means that the function is n-plateaued two times when
β ∈ F4 − F2.

For γ 6= 0 we define a 3−to−1 map

Ψ : F2n − {0, 1} → S = {γ : γ = βp+1 − 1}

such that Ψ−1(0) has two values and Ψ−1(s) has three values for each s ∈ S∗ where
S∗ = S − {0}. |S| = 2n−1

3
and 0 ∈ S. As γ 6= 0, y3 = 1

γ
, that is y3 = 1

β3+1
.

Number of β is the number of the solutions on the curve y3 = x3 + 1.

1. Let N0 be the number of β such that y3 = x3 + 1 has no solutions, in that case,
β will give us a 0-plateaued function.

2. Let N1 be the number of β such that y3 = x3 + 1 has 2n solutions together with
y = 0; in that case, β will give us an n-plateaued function which is the same as
the γ = 0 case.

3. Let N3 be the number of β such that y3 = x3 + 1 has exactly three distinct
solutions and such β will give us a 2-plateaued function after adding the trivial
solution y = 0.

From the theory of algebraic curves in [30], when n = 2m and Nn denotes the number
of rational points of the curve over Fm2 including the point at infinity, we have:

Nn =

{
(2m + 1)2, if m is odd (n ≡ 2 mod 4)

(2m − 1)2, if m is even (n ≡ 0 mod 4).
(5.55)

When m is odd, that is n ≡ 2 mod 4:

N3 =
(2m + 4)(2m − 2)

3
=

(2n + 2
n
2
+1 − 8)

3
, N0 = 2n −N3 − 4 and N0

1 = 2.

Note that there is exactly 3 points over infinity, three points for β = 0 and exactly 1
point for β ∈ F4−{0} which gives the solution y = 0. For cube root 1/γ, the polyno-
mial gβ(x) is 2-plateaued A1 = (2n + 2

n
2
+1 − 8)/3 times and n-plateaued 2 times (for

β ∈ F4 − {0, 1}). Otherwise gβ(x) is 0-plateaued, B1 = (2n+1 − 2
n
2
+1 − 4)/3 times.

Similarly when m is even that is n ≡ 0 mod 4, then

N3 =
(2m − 4)(2m + 2)

3
=

2n − 2
n
2
+1 − 8

3
, N0 = 2n −N3 − 4 and N0

1 = 2.

By the same method the polynomial gβ(x) is 2-plateaued A2 = (2n − 2
n
2
+1 − 8)/3

times and n-plateaued 2 times (for β ∈ F4 − {0, 1}). Otherwise, gβ(x) is 0-plateaued
B2 = (2n+1 + 2

n
2
+1 − 4)/3 times.
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Corollary 5.12. For p = 2 and n = 4k + 2, the polynomial gβ(x) is n-plateaued 2
times, 2-plateauedA1 = (2n + 2

n
2
+1 − 8)/3 times and 0-plateauedB1 = (2n+1 − 2

n
2
+1 − 4)/3

times. Similarly, for p = 2 and n = 4k, the polynomial gβ(x) is n-plateaued 2 times, 2-
plateauedA2 = (2n − 2

n
2
+1 − 8)/3 times and 0-plateauedB2 = (2n+1 + 2

n
2
+1 − 4)/3

times. For i = {1, 2} depending on n = 4k + 2 or n = 4k, we can formulize the cor-
relation distribution for Case 5 as:

|Ci,j(τ) + 1| =


0, pn(Ai(p

n − pn−2) + 2(pn − 1)) times
p
n
2 , Bip

2n times
p
n+2
2 , Aip

npn−2 times
pn, 2pn times.

(5.56)

p is odd and n is odd: Let β = αi. We know that

gcd(pn − 1, p+ 1) = 2

and β = 1 is impossible then the solution of the equation 5.46 is β = −1. For β = −1
it is seen that γ = 0. Then when A = 0, the cross-correlation |Ci,j(τ) + 1| = pn and
when A 6= 0, the cross-correlation |Ci,j(τ) + 1| = 0.

When γ 6= 0,

#{β ∈ Fpn − {0, 1} : γ 6= 0} = #{β ∈ Fpn − {0, 1,−1}} = pn − 3.

Then we need to check whether the equation yp
2−1 = −1

γp−1 is solvable or not. To
continue our proof, we need the following fact.

Fact: xa = b is solvable if and only if xgcd(pn−1,a) = b is solvable.

As gcd(pn − 1, p2 − 1) = p − 1 when n is odd, using this fact we need to find the
solutions of the equation

yp−1 =
−1

γp−1
. (5.57)

It is easily seen that if −1 is (p − 1)-th power, then gβ(x) is 1-plateaued, otherwise
gβ(x) is 0-plateaued. As

(p− 1)(1 + p+ ...+ pn−1)

2
=
pn − 1

2
,

we need to check whether p−1 divides (1 + p+ ...+ pn−1)/2 or not. Note that p and n
are odd, so (1+p+...+pn−1) is odd. Then, p−1 does not divide (1 + p+ ...+ pn−1)/2
which means that −1 is not a (p − 1)-th power, and so, the polynomial gβ(x) is 0-
plateaued pn − 3 times.

Corollary 5.13. For an odd prime number p and odd integer n, gβ(x) is n-plateaued
when β = α

pn−1
2 = −1, and 0-plateaued pn− 3 times. The correlation distribution for

Case 5 is given by:

|Ci,j(τ) + 1| =


0, pn(pn − 1) times
p
n
2 , p2n(pn − 3) times
pn, pn times.

(5.58)
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Moreover, as a further information, when p and n are odd and γ = βp+1 − 1 6= 0, the
left hand side of the equation

γpxp
2

+ γx = 0

is a permutation and
γpxp

2

+ γx = −A
has a unique solution. This solution can be found using the method given in [8].

Example 5.1. For n = 3 the unique solution x0 = a2x
p2 + a1x

p + a0x of the equation
γpxp

2
+ γx = −A can be found by:

(a2x
p2 + a1x

p + a0x) ◦ (γpxp
2

+ γx) = x mod xp
3 − x.

Then,
x = (a2γ

p2 + a0γ
p)xp

2

+ (a2γ + a1γ
p)xp + (a1γ

p2 + a0γ)x

where a0 = 1
2γ

, a1 = 1

2γp2
and a2 = −γp

2γp2+1
. Thus the solution of the given equation is

found as:
x0 =

−γp

2γp2+1
xp

2

+
1

2γp2
xp +

1

2γ
x

where γ = βp+1 − 1.

p is odd and n is even: Let < α >= F∗pn and < θ >= F∗p2 . Then as θp2−1 = 1,

γ = βp+1 − 1 = 0 ⇐⇒ β ∈ S = {β1 = θp−1, β2 = c1θ
p−1, ..., βp = cp−1θ

p−1}.

The number of the elements of set S is p. As θ = α1+p2+...+pn−2 , then the set of β
values are found as:

β1 = α(p−1)(1+p2+...+pn−2)

β2 = α(p−1)(1+p2+...+pn−2)+(1+p+...+pn−1)

. . . . . .

βp = α(p−1)(1+p2+...+pn−2)+(p−1)(1+p+...+pn−1).

(5.59)

For these β ∈ F∗p2 , γ = 0 thus gβ(x) is n-plateaued p times. Moreover, for β /∈ S we
want to find the number of the solutions of the polynomial:

yp
2−1 =

−1

(βp+1 − 1)p−1
=
−1

γp−1
.

For w ∈ F∗pn , as p is an odd prime number and n is even, w
pn−1

2 = −1. Then the
generator θ of F∗p2 can be written in terms of w as

θ = w
1+p+...+pn−1

2

which means that θp−1 = −1. Additionally when n = 4k we know that θp2−1 = −1.
According to the information above, we will give the proof of this case in two subcases
depending on n.
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n ≡ 0 mod 4 : Note that

yp
2−1 =

−1

γp−1
is solvable in Fp4k ⇐⇒ γ

(p−1)( p
n−1

p2−1
)

= 1.

Since −1 is a (p2 − 1)-th power, the equation can be written as

yp
2−1 =

θp
2−1

γp−1
(5.60)

for some θ ∈ Fpn . Equation 5.60 is solvable if and only if yp2−1 = γp−1 is solvable. In
other words, Equation 5.60 is solvable if and only if

yp+1 = γ = βp+1 − 1

is solvable. Thus we need to find the number of the solutions of

xp+1 = yp+1 + 1. (5.61)

As a result, as gcd(pn − 1, p2 − 1) = 1, when β ∈ Fp2 and βp+1 − 1 6= 0, gβ(x) is
2-plateaued; when β ∈ Fpn − Fp2 , gβ(x) is 0-plateaued.

n ≡ 2 mod 4 :

yp
2−1 =

−1

γp−1
is solvable in Fp4k+2 ⇐⇒ −γp−1 =

1

yp2−1
.

In other words, the equation is solvable if and only if

yp
2−1 = −(xp+1 − 1)p−1.

Since −1 is a (p− 1)-th power, the equation can be written as

yp
2−1 = θp−1(xp+1 − 1)p−1 (5.62)

for some θ ∈ Fpn . Thus we need to find the number of solutions of

xp+1 = θyp+1 − θ (5.63)

where θp + θ = 0, θ ∈ Fp2 . As a result, as gcd(pn− 1, p2− 1) = 1, when β ∈ Fp2 and
βp+1 − 1 6= 0, gβ(x) is 2-plateaued, and when β ∈ Fpn − Fp2 , gβ(x) is 0-plateaued.

To complete the proof, we need to find the number of solutions of the curves xp+1 =
yp+1 + 1 and xp+1 = θyp+1 − θ. Before we continue with the proof of the theorem we
give some lemmas that will help us in the next steps.

Lemma 5.14. The number of points N of the set S where

S = {y ∈ Fpn : ∃x ∈ Fpn with xp+1 = yp+1 + 1, yp+1 6= −1 and yp+1 6= 0}

is N = pn−p
n
2 +2+p

n
2 +1+1

p+1
− 2 for n = 4k.
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Proof. We take advantage of some known facts given in the definitions and [30] during
this proof.

Claim 1. xp+1 = yp+1 + 1 is a maximal curve over Fp2 with genus g = p(p−1)
2

and the
number of rational points N = p3 + 1.

Fact 1. In [30], the L−polynomial of the curve is given by:

L(t) =

2g∏
i=1

(1− αit) (5.64)

where αi ∈ C with |αi| =
√
p2 = p and

N1(x) = p2 + 1− (α1 + α2 + ...+ α2g) (5.65)

Here Ni denotes the number of places of degree 1 over the finite field Fpi . Then, for
n = 2,

p3+1 = p2+1−(α1+α2+...+αp(p−1)) ⇐⇒ p2(p−1) = α1 = α2 = ... = αp(p−1) = −p.

Thus
L(t) = (1− pt)2g

and
N1(x) = p2 + 1 + p2(p− 1).

In general for n = 4k + 2, the L−polynomial of the curve over Fpn is

L(t) =

2g∏
i=1

(1− α
n
2
i t). (5.66)

Thus using the formula, the number of rational points is

Nn
2
(x) = pn + 1− (α

n
2
1 + α

n
2
2 + ...+ α

n
2
2g). (5.67)

Using the same method we get the curve maximal because of

Nn
2
(x) = pn + 1− p(p− 1)(−p)

n
2 = pn + 1 + p

n
2
+1(p− 1).

Claim 2. xp+1 = yp+1 + 1 is a minimal curve over Fp4 with genus g = p(p−1)
2

.

Fact 2. The L−polynomial of the curve is defined by:

L(t) =

2g∏
i=1

(1− α2
i t) (5.68)

where αi ∈ C with |αi| =
√
p2 = p and

N2(x) = p4 + 1− (α2
1 + α2

2 + ...+ α2
2g). (5.69)
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Figure 5.1: Unramified points of the curve xp+1 = yp+1 + 1 over Fp4k

Here Ni denotes the number of places of degree one over the finite field Fpi , [30]. For
n = 4,

N2(x) = p4 + 1− p(p− 1)p2 = p3 + 1

and using 5.1, the number of unramified affine points on the curve including y = 0
over Fp4 is found as

N =
p4 + 1− p3(p− 1)− 2(p+ 1)

p+ 1
= p2 − p− 1.

Thus, when n = 4, gβ(x) is 2-plateaued p2 − p− 2 times.

In general for n = 4k, the L−polynomial of the curve over Fpn is given by

L(t) =

2g∏
i=1

(1− α
n
2
i t). (5.70)

Thus using the formula, the number of rational points is

Nn
2
(x) = pn + 1− (α

n
2
1 + α

n
2
2 + ...+ α

n
2
2g).

Using the same method we get the curve minimal because the number of the places of
degree one is:

Nn
2
(x) = pn + 1− p(p− 1)(p)

n
2 = pn + 1− p

n
2
+1(p− 1). (5.71)

Using Figure 5.1, the number of unramified affine points of the curve including y = 0
over Fpn is found as:

N = pn−p
n
2 +2+p

n
2 +1+1

p+1
− 2

= −2 + (1− p+ p2 − ...+ p
n
2 ) + p

n
2
+2(p− 1)(1 + p2 + ...+ p

n
2
−4).

When we exclude the point y = 0, as it splits, the polynomial gβ(x) is 2-plateaued
N − 1 times.

Corollary 5.15. For p odd and n = 4k, let

A =
pn − pn2+2 + p

n
2
+1 + 1

p+ 1
.
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Then gβ(x) is n-plateaued for β ∈ S exactly p times, 2-plateaued A − 3 times and 0-
plateaued pn − p−A+ 1 times. The correlation distribution for Case 5 is formulated
as:

|Ci,j(τ) + 1| =


0, pn((pn − pn−2)(A− 3) + p(pn − 1)) times
p
n
2 , p2n(pn − p− A+ 1) times
p
n+2
2 , pnpn−2(A− 3) times

pn, ppn times.

(5.72)

For n = 2, we will find the number of the set S where

S = {y ∈ Fp2 : ∃x ∈ Fp2 with xp+1 = θyp+1−θ, θp−1 = −1, yp+1 6= −1 and yp+1 6= 0}

The curve splits in Fp2 if and only if θ is a (p + 1)-th power for some u ∈ Fp2 . Let
θ = up+1 then

θp−1 = up
2−1 = 1.

This is a contradiction with θp−1 = −1. Thus N = p+1
p+1

= 1 over Fp2 is not minimal
so if we exclude the point y = 0 then gβ(x) is 2-plateaued 0 times.

Corollary 5.16. For p odd and n = 2, gβ(x) is n-plateaued p times when β ∈ S and
0-plateaued pn − p− 2 times. The correlation distribution for Case 5 is:

|Ci,j(τ) + 1| =


0, ppn(pn − 1) times
p
n
2 , p2n(pn − p− 2) times
pn, ppn times.

(5.73)

Note that for n = 4k + 2 the curves xp+1 = yp+1 + 1 and xp+1 = θyp+1 − θ where
θp + θ = 0 are isomorphic to each other if θ = up+1 for some u ∈ Fpn . Because in this
case if we let θ = up+1, x = ux1, y = y1 and apply change of variables to the curve

xp+1 = θyp+1 − θ, (5.74)

then we would have
xp+1 = yp+1 + 1. (5.75)

But as θp−1 = up
2−1 = −1 = w

pn−1
2 and

p2 − 1 - (pn − 1)/2 = [(p− 1)(p+ 1)(1 + p2 + ...+ pn−2)]/2

then such u ∈ Fpn does not exist for n = 4k + 2. As a result, these curves are not
isomorphic to each other for n = 4k + 2. Moreover the curve xp+1 = θyp+1 − θ is
not maximal or minimal so we can not determine the number of the degree one places
when n = 4k+2 using this method. One can only find the number of degree one places
N(x) of the curve computationally. If one get N(x), then the correlation distribution
of this case is given in the corollary below.
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Corollary 5.17. For p odd and n = 4k + 2, let N(x) be found computationaly. Then
gβ(x) is n-plateaued for β ∈ S exactly p times, 2-plateaued N = N(x)

p+1
− 1 times and

0-plateaued pn−p−N−2 times. The correlation distribution for Case 5 is formulated
as:

|Ci,j(τ) + 1| =


0, pn(N(pn − pn−2) + p(pn − 1)) times
p
n
2 , p2n(pn − p−N − 2) times
p
n+2
2 , pnpn−2(N) times

pn, ppn times.

(5.76)

Collecting all five cases together one can obtain the total correlation distribution of the
sequence family depending on p and n as:

If p = 2 and n is odd, then:

|Ci,j(τ) + 1| =


0, (pn − 2) + pn(pn − 1) + (pn − pn−1)[2(pn − 1)

+pn(pn − 2)] times
p
n+1
2 , pn−1(2(pn − 1) + pn(pn − 2)) times

pn, pn + 1 times.

(5.77)

If p = 2, n = 4k, A = (pn − pn2+1 − 8)/3 and B = (pn+1 + p
n
2
+1 − 4)/3. Similarly

If p = 2, n = 4k + 2, A = (pn + p
n
2
+1 − 8)/3 and B = (pn+1 − pn2+1 − 4)/3 then:

|Ci,j(τ) + 1| =



0, (pn − 2) + 3pn(pn − 1)

+(pn − pn−2)(2(pn − 1) + Apn) times
p
n
2 , Bp2n times
p
n+2
2 , pn−2(2(pn − 1) + Apn) times

pn, 3pn + 1 times.

(5.78)

If p is odd and n is odd, then:

|Ci,j(τ) + 1| =


0, (pn − 2) + 2pn(pn − 1) times
p
n
2 , 2pn(pn − 1) + p2n(pn − 3) times
pn, 2pn + 1 times.

(5.79)

If p is odd and n = 4k, let A = (pn − pn2+2 + p
n
2
+1 + 1)/(p+ 1), then:

|Ci,j(τ) + 1| =



0, (pn − 2) + (p+ 1)pn(pn − 1)

+(pn − pn−2)(2(pn − 1) + (A− 3)pn) times
p
n
2 , p2n(pn − p− A+ 1) times
p
n+2
2 , pn−2(2(pn − 1) + (A− 3)pn) times

pn, (p+ 1)pn + 1 times.

(5.80)
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If p is odd and n = 4k + 2 > 2, let N be found computationally, then:

|Ci,j(τ) + 1| =


0, (pn − 2) + (p+ 1)pn(pn − 1) +Npn(pn − pn−2) times
p
n
2 , 2pn(pn − 1) + p2n(pn − p−N − 2) times
p
n+2
2 , Npnpn−2 times

pn, (p+ 1)pn + 1 times.
(5.81)

Finally, if p is odd and n = 2, then:

|Ci,j(τ) + 1| =


0, (p2 − 2) + (p+ 1)p2(p2 − 1) times
p, 2p2(p2 − 1) + p4(p2 − p− 2) times
p2, (p+ 1)p2 + 1 times.

(5.82)

We also computed the correlation distribution for some values of p and n using MAGMA
[2] and confirmed our results proved in the theorem. Now we give some examples on
the correlation distribution of the sequence family V .

Example 5.2. For p = 3 and n = 2, the correlation distribution of the sequence family
V is found as:

|Ci,j(τ) + 1| =


0, 295 times
3, 468 times
9, 37 times.

(5.83)

This is the same result with the correlation distribution obtained from the proof.

Example 5.3. For p = 5 and n = 4, the correlation distribution of the sequence family
V is found as:

|Ci,j(τ) + 1| =


0, 9839423 times
25, 234375000 times
125, 312450 times
625, 3751 times.

(5.84)

This is the same result with the correlation distribution obtained from the proof.

Example 5.4. For p = 2 and n = 5, the correlation distribution of the sequence family
V is found as:

|Ci,j(τ) + 1| =


0, 17374 times
8, 16352 times
64, 33 times.

(5.85)

This is the same result with the correlation distribution obtained from the proof.
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Example 5.5. And finally, for p = 2 and n = 6, the correlation distribution of the
sequence family V is found as:

|Ci,j(τ) + 1| =


0, 91934 times
8, 147456 times
16, 26592 times
64, 193 times.

(5.86)

This is also the same result with the correlation distribution obtained from the proof.

5.4 Results

In this chapter, we generalize and classify the Gold-like sequence family with arbi-
trary characteristic, depending on an s-plateaued function f(x). The function f(x)
is used to construct the generalized sequence family under the restriction of its time
shift f(βx) − f(x) being also a plateaued function depending on β ∈ Fpn . Previ-
ous constructions which use the Gold-like sequence family are based on a quadratic
form function. By our generalization, one can generate new sequence families using
arbitrary plateaued functions. Therefore, it is easy to compute their correlation distri-
butions using Theorem 5.8.

Later, as an example, we compute the correlation distribution of the Gold-like sequence
family constructed using the Gold function for all prime numbers p and positive inte-
gers n. We give the proof by taking advantage of the theory of algebraic curves and our
generalization. In some cases, the correlation values depend on some integers that we
spesified during the proof. Finally we give some computational results of correlation
distributions of the sequence family V for some spesific p and n values. This chapter
leads the interested readers to find more new sequence families with good correlation
distributions.
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CHAPTER 6

CONCLUSION

The most common methods of the code division multiple access are direct sequence
and frequency hopping. These methods have widespread applications in radar sys-
tems, military and wireless communication. The sequences should satisfy some spe-
sific properties to have these applications. In this thesis, we focus on two important
properties of sequence design: perfect autocorrelation sequences and sequence fami-
lies with low maximum cross-correlation magnitude.

In Chapter 1, we give a summary of mathematical background that we use during
this thesis. We mention necessary properties of sequences, some known important
sequences and sequence families. We compare the sequence families according to
their family size and maximum correlation magnitude in Table 1.1.

In Chapter 2, we generalise a construction for perfect periodic autocorrelation se-
quences due to [18] for an arbitrary prime power q and a positive integer n over the
PSK+ alphabet. Note that, we have the restriction n + 2 ≡ 0 mod (q − 1) in this
construction. We experimentally check the existence of these sequences without any
restrictions. The important point in this generalisation is that the subfield, which is
used as the symbol alphabet, is not necessarily a prime field. Moreover, we give some
examples of these sequences which have decent merit factor and aperiodic correlation
properties.

In Chapter 3, our aim is to eliminate the restriction which we obtain in Chapter 2. For
this purpose, we generalise the sequences in the previous chapter, using a variable i.
We give perfect periodic autocorrelation sequences for all possible values of n and
for a given prime power q, with respect to the constraint n + i ≡ 0 mod (q − 1).
The arbitrary subfield used as symbol alphabet is not necessarily a prime field. This
generalisation enables the designers to have more flexibility in terms of the deployment
of these sequences.

We focus on designing new sequence families which have low cross-correlation val-
ues in Chapter 4. We construct a sequence family for even positive integer n over
the finite field F2n and prove the correlation distribution of this new family. Further-
more, the correlation values are determined exactly depending on an element β ∈ F2n .
The maximum cross-correlation magnitude Cmax of the sequence family is obtained
as (1 + 2

n+2
2 ) and this value shows that the sequence family has low maximum cross-
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correlation magnitude. Having low maximum correlation magnitude is advantageous
for the use of the sequence family in CDMA applications. It is obvious from Table 1.1.
that, the new sequence family S has much bigger size than the small set of the Kasami
sequences. On the other hand, small set of the Kasami sequences is optimal according
to the Sidelnikov lower bound but the new sequence family does not attain the bound.
In addition, the new sequence family S has the same maximum correlation magnitude
with Gold sequence family and the large set of the Kasami sequences for p = 2 and
even integer n.

In Chapter 5, we generalized and classified the Gold-like sequence family with arbi-
trary characteristic, depending on an s-plateaued function f(x) which is used to con-
struct the sequence family. Previous constructions, which use the Gold-like sequence
family, are based on a quadratic form function. With our generalization method, one
can generate new sequence families using arbitrary plateaued functions. Correlation
distribution and maximum correlation magnitudes of this new construction are given
for arbitrary p and n values. The correlation distribution of the generalized Gold-like
sequence family constructed by the Gold function for all prime numbers p and positive
integers n are obtained by using the theory of algebraic curves and our generalization.
This chapter leads the interested readers to find more new sequence families with good
correlation distributions.
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• S. Boztaş, F. Özbudak and E. Tekin, Generalized perfect autocorrelation se-
quences with flexible periods and alphabet sizes, Sequences and Their Appli-
cations (SETA) 2016, accepted.

74


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTERS
	INTRODUCTION
	Mathematical Background
	Desirable Properties of Sequences
	Known Sequences with Perfect Autocorrelation Properties
	Known Sequence Families with Low Maximum Correlation Magnitude


	PERFECT AUTOCORRELATION SEQUENCES
	Preliminaries
	A New Generalization for Perfect Autocorrelation Sequences
	Aperiodic Correlation and Merit Factor
	Some Computational Results on Existence

	Results

	GENERALIZED PERFECT AUTOCORRELATION SEQUENCES WITH FLEXIBLE PERIODS AND ALPHABET SIZES
	Preliminaries
	Generalization of Perfect Autocorrelation Sequences with Flexible Periods
	Existence of Lg for Lg Depending on Lg

	Results

	CORRELATION DISTRIBUTION OF A NEW SEQUENCE FAMILY
	Preliminaries
	Some Known Quadratic Forms Used in Sequence Design
	Construction of the New Sequence Family
	Results

	CORRELATION DISTRIBUTION OF GOLD-LIKE SEQUENCE FAMILY GENERATED BY PLATEAUED FUNCTIONS
	Preliminaries
	Classification of a Sequence Family Using Plateaued Functions
	Correlation Values of Generalized Gold Sequences for Arbitrary Lg and Lg
	Results

	CONCLUSION
	REFERENCES
	CURRICULUM VITAE

