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ABSTRACT

LEADING TWIST LIGHT CONE DISTRUBUTION AMPLITUDES OF
P-WAVE HEAVY QUARKONIA AND THEIR COUPLINGS TO

PSEUDOSCALAR AND VECTOR MESONS

OLPAK, MEHMET ALİ

Ph.D., Department of Physics

Supervisor : Prof. Dr. Altuğ Özpineci

September 2016, 97 pages

The problem analyzed in this work is the calculation of the coupling of L = 1

axial-vector heavy quarkonia to vector and pseudo-scalar open flavor mesons.

Calculations are based on light-cone QCD sum rules, with inputs from indepen-

dently performed quark model calculations for the analysis of radially excited

states. Those couplings are of interest for being inputs for effective theory calcu-

lations on the quark content and transitions of axial-vector Xc/b mesons. Results

involve profiles for the light-cone distribution amplitudes of charmonia and bot-

tomonia, their respective leptonic decay constants and the mentioned coplings.

Charmonium content of X(3872) is also discussed in light of the results.

Keywords: light-cone, sum rule, distribution amplitude, QCD, hadron
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ÖZ

P-DALGA AĞIR KUARKONYUMLARIN TVİST-2 IŞIK KONİSİ DAĞILIM
GENLİKLERİ VE PSÖDOSKALER VE VEKTÖR MEZONLARA

ÇİFTLENİMLERİ

OLPAK, MEHMET ALİ

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Altuğ Özpineci

Eylül 2016 , 97 sayfa

Bu çalışmada incelenen problem, L = 1 aksiyel-vektör ağır kuarkonyumların

açık çeşnili psödo-skaler ve vektör mezonlara çiftlenimlerinin hesaplanmasıdır.

Hesaplar ışık-konisi KRD toplam kuralları çerçevesindedir ve radyal uyarılmış

durumlar için, bağımsız kuark model hesaplarından girdiler içermektedir. Bu

çiftlenimlerle, aksiyel-vektör Xc/b mezonlarının içeriği ve geçişleri üzerine etkin

teori hesaplarında girdi olabilecekleri için ilgilenilmektedir. Sonuçlar, çarmon-

yum ve botomonyumların ışık-konisi dağılım genlikleri için profiller, ilgili du-

rumların leptonik bozunma sabitleri ve bahsi geçen çiftlenimleri içermektedir.

Ayrıca, X(3872)’nin çarmonyum içeriği de sonuçlar ışığında tartışılmıştır.

Anahtar Kelimeler: ışık-konisi, toplam kuralı, dağılım genliği, KRD, hadron

vi



...to my dear wife Ceren

vii



ACKNOWLEDGMENTS

This thesis is prepared under supervision of Dr. Altuğ Özpineci. His guidance

and patience was one of the main driving forces in preparation of this thesis.

It has also been great pleasure to discuss on various topics in physics with Dr.

Özpineci, both in the process of writing this thesis and before, while attending

his particle physics lectures. I am grateful to Dr. Özpineci for all his support

and advices, being his ph. d. student and assistant in general physics courses.

Part of this work is based on previous calculations performed by Vedat Tan-

rıverdi, and part of the results are interpreted based on calculations performed

by Elif Cincioğlu. Being members of the same research group, we had invalu-

able discussions on our research topics and on physics in general. I thank to my

colleagues for their valuable contribution.

I am also grateful to Dr. Güray Erkol and Dr. İsmail Turan, for being thesis

committee members and monitoring the development of this thesis and for their

valuble opinions.

The last two years of my ph. d. study have been the most efficient and moti-

vated period. Such motivation may have only one source; somebody who can

drive one’s will for a productive life, which is worth living. It is impossible to

completely express my gratitude to my dear wife, Ceren Tuğlu Olpak, even only

for her presence in my life. For this reason and infinitely many more, this thesis

is dedicated to her.

This work has been partially supported by TÜBİTAK under Grant No. 111T706.

viii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . xvi

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Hadrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Exotic Hadrons . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Glueballs . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Tetraquarks and meson molecules . . . . . . . 10

1.2.3 Baryonia and Hybrid Mesons . . . . . . . . . . 11

1.2.4 Other States . . . . . . . . . . . . . . . . . . . 11

1.3 Pseudoscalar - Vector - Axialvector Couplings . . . . . . 11

ix



2 THEORETICAL BACKGROUND . . . . . . . . . . . . . . . . 13

2.1 Quantum Chromodynamics . . . . . . . . . . . . . . . . 14

2.2 QCD Sum Rules . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 SVZ Sum Rules: General Concepts and Reasoning 17

2.2.2 Light-Cone Sum Rules . . . . . . . . . . . . . 26

2.3 Light-Cone Wavefunctions . . . . . . . . . . . . . . . . . 29

2.4 Quark Model Calculations . . . . . . . . . . . . . . . . . 32

3 TWIST-2 LIGHT-CONE DISTRIBUTION AMPLITUDES AND
LEPTONIC DECAY CONSTANTS FOR P -WAVE CHARMO-
NIA AND BOTTOMONIA . . . . . . . . . . . . . . . . . . . . 35

3.1 Relevant matrix elements and LCDAs . . . . . . . . . . 35

3.2 Fits for the LCDAs . . . . . . . . . . . . . . . . . . . . 44

4 COUPLINGOF AXIALVECTORHEAVYQUAKONIA TO PSEU-
DOSCALAR AND VECTOR MESONS . . . . . . . . . . . . . 47

4.1 Correlation function: Phenomenology . . . . . . . . . . 47

4.2 Correlation function: QCD . . . . . . . . . . . . . . . . 51

4.3 Borel transform and couplings . . . . . . . . . . . . . . 56

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . 64

4.5 Couplings and charmonium content of X(3872) . . . . . 72

5 SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . 75

APPENDICES

A LCDA FIT PARAMETERS . . . . . . . . . . . . . . . . . . . . 77

x



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xi



LIST OF TABLES

TABLES

Table 1.1 Quarks and respective masses [2]. The upper row has electric

charge eq = +2/3 the lower row has eq = −1/3 [7]. . . . . . . . . . . 3

Table 2.1 Masses of the first three levels of charmonia and bottomonia

calculated in quark model, and experimentally observed states having

the same quantum numbers. Notation: 2S+1LJ ; S: total spin of the

quark - anti-quark pair; L: relative orbital angular momentum; J :

total spin of the meson. . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 3.1 Decay constants f1P1
, f3P0

, f3P1⊥ for relevant charmonia and bot-

tomonia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Table 3.2 Decay constants f1P1⊥, f3P1
for relevant charmonia and bot-

tomonia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 3.3 Decay constants f3P2
, f3P2⊥ for tensor charmonia and bottomonia. 44

Table 4.1 Masses and decay constants of D, D∗, B, B∗ mesons used in

calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 4.2 PVA couplings. The values of M2 and s0 are 5GeV 2 and

4.59GeV 2 for all charmonia, 25GeV 2 and 30.3GeV 2 for all bottomonia. 70

Table 4.3 PVA couplings when states are normalized to 1. Value of M2

is 5GeV 2 for charmonia and 25GeV 2 for bottomonia. . . . . . . . . 73

xii



Table A.1 3P0 fit parameters . . . . . . . . . . . . . . . . . . . . . . . . 77

Table A.2 1P1⊥ fit parameters . . . . . . . . . . . . . . . . . . . . . . . . 78

Table A.3 1P1‖ fit parameters . . . . . . . . . . . . . . . . . . . . . . . . 79

Table A.4 3P1⊥ fit parameters . . . . . . . . . . . . . . . . . . . . . . . . 80

Table A.5 3P1‖ fit parameters . . . . . . . . . . . . . . . . . . . . . . . . 81

Table A.6 3P2⊥ fit parameters . . . . . . . . . . . . . . . . . . . . . . . . 82

Table A.7 3P2‖ fit parameters . . . . . . . . . . . . . . . . . . . . . . . . 83

xiii



LIST OF FIGURES

FIGURES

Figure 1.1 R = σ(e+e−→hadrons)
σ(e+e−→µ+µ−)

plotted against
√
s, where s is the invariant

mass squared of e+e− [42]. . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 2.1 Virtual quark - anti-quark pair in the process e−e− → e−e−,

where the solid lines represent the electrons and the wavy line repre-

sents the photon exchanged between them. The loop corresponds to

the pair, and u, d, s, ... denote various quark flavors [17]. . . . . . . . 17

Figure 2.2 The contour to be used for the correlation function. The

crosses represent hadronic thresholds, satisfying q2 = m2
hadron [17]. . 20

Figure 2.3 Some Feynmann diagrams relevant for the perturbative cal-

culations: (a) the free quark loop, (b,c,d) perturbative QCD correc-

tions [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4.1 Plots of gQCD versus α. . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.2 Plots for G1 −G2, G1 and G2 versus M2 (α = 0.2GeV ). . . . 67

Figure 4.3 Plots for G1 −G2, G1 and G2 versus M2 (α = 0.2GeV ). . . . 68

Figure 4.4 Plots of G2 versus α, where M2 = 5GeV 2 for charmonia and

M2 = 25GeV 2 for bottomonia. . . . . . . . . . . . . . . . . . . . . . 69

xiv



Figure A.1 LCDAs: 3P0. Upper limit of k⊥ integration is indicated in

parantheses. "or." refers to the original function and "fit" refers to

the fitted function. The radial quantum number n is indicated in

parantheses as superscript: φ(n)(u). . . . . . . . . . . . . . . . . . . 84

Figure A.2 LCDA plots as in Fig. A.1, but for 3P1⊥ states. . . . . . . . . 85

Figure A.3 LCDA plots as in Fig. A.1, but for 1P1‖ states. . . . . . . . . 86

Figure A.4 LCDA plots as in Fig. A.1, but for 1P1⊥ states. . . . . . . . . 87

Figure A.5 LCDA plots as in Fig. A.1, but for 3P1‖ states. . . . . . . . . 88

Figure A.6 LCDA plots as in Fig. A.1, but for 3P2‖ states. . . . . . . . . 89

Figure A.7 LCDA plots as in Fig. A.1, but for 3P2⊥ states. . . . . . . . . 90

xv



LIST OF ABBREVIATIONS

h.c. Hermitian conjugate

L Orbital angular momentum quantum number

QED Quantum electrodynamics

QCD Quantum chromodynamics

OPE Operator product expansion

LCDA Light-cone distribution amplitude

PVA Pseudo-scalar, vector, axial-vector

RQN Radial quantum number

SVZ Shifmann-Vainstein-Zakharov (relating to Shifmann-Vainstein-
Zakharov sum rules)

xvi



CHAPTER 1

INTRODUCTION

Since the discovery of the first charmonium resonance in 1974 [1, 2], the char-

monium spectrum has attracted attention in particle physics community. This

dicovery has been followed by the discoveries of other heavy mesons including

other charmonia and bottomonia, as well as developments in theoretical anal-

yses [1]. Within this period, the quark model assignments (that is, quark -

anti-quark pair for mesons and three (anti-)quarks for (anti-)baryons [3]) for the

internal structure of hadrons have still been commonly used [2, 4]. However,

hadrons which could be in partial conflict with quark model assignments have

also been observed in the course of these developments [?,3,5]. There are various

states which exhibit such behaviour and pictures trying to explain the observed

phenomena. The most recent example is the discovery of the penta-quark state

by LHCb [8]. Another example, which is also a motive for this work, is the fa-

mous X(3872) [9–13]. X(3872) has quantum numbers JPC = 1++ [13] and these

quantum numbers are consistent with L = 1 and S = 1 (L: orbital angular mo-

mentum quantum number, S: total spin of the quark - anti-quark pair). There

are models which describe X(3872) as a D̄D∗ + h.c. molecule [11], while there

are other models discussing both molecular and charmonium contributions to

the content of X(3872) [10, 14]. One can also find discussions on the content of

other exotica in the literature (see e.g. [15] for a sum rules analysis for Zc(3900)).

In this work, the motivation is to describe a framework for examining how

ground state and radially excited L = 1 axial-vector heavy quarkonia couple

to lighter open-flavor vector and pseudo-scalar mesons. These couplings are
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essential in understanding the interactions of the mentioned mesons, as well as

in determining the content of possible exotic states involving these mesons, such

as X(3872). The method which is at the core of the analysis is light-cone QCD

sum rules, which is a variant of the sum rules technique [16–19], whose details

will be discussed below. The necessary ingredients for using this technique are

light-cone distribution amplitudes (LCDAs), on which detailed discussions can

be found in [16–18, 20–39] and references therein. In order to calculate the

LCDAs, this work makes use of 2-particle wavefunctions of a heavy quarkonium

calculated in the framework of quark model [41].

In the following sections, concepts essential to this work will be summarized,

relevant examples from the literature will be presented, and the idea applied in

this work will be explained. Other chapters are organized as follows. In Chapter

2, theoretical background on the sum rules technique, light-cone distribution

amplitudes and wavefunctions will be presented and relavant information on

the quark model calculations which are used in this work will be reviewed. In

Chapter 3, calculation of the leptonic decay constants and LCDAs of heavy

quarkonia will be discussed and resulting leptonic decay constants and LCDAs

will be presented. In Chapter 4, light-cone sum rules analysis for L = 1 heavy

quarkonia will be discussed and numerical results for the pseudo-scalar - vector

- axial-vector (PVA) couplings of heavy quarkonia will be presented. Comments

on the charmonium content of X(3872) will also be given in Chapter 4. Chapter

5 gives a summary of the work.

1.1 Hadrons

Until after the first decades of the 20th century the physics community knew

only a few fundamental "particles", the electron, the proton, and the photon [42].

It was also observed by the community that the existence of and interactions

between the electron and the proton involved certain conserved properties, today

known as baryon and lepton number conservation [2] that is related to those

particles’ being "fundamentally distinct". With the discovery of the neutron

by J. Chadwick in 1932 [2], the community was more enlightened about the

2



Table1.1: Quarks and respective masses [2]. The upper row has electric charge
eq = +2/3 the lower row has eq = −1/3 [7].

u (up) (2MeV ) c (charm) (1200MeV ) t (top) (174000MeV )
d (down) (5MeV ) s (strange) (1000MeV ) b (bottom) (4200MeV )

content of the atomic nucleus. Further propositions for and discoveries of yet

unknown particles (whether "elementary" or not) followed in the next decades.

However, the notion of an "elementary particle" was still essential for describing

the building blocks of matter.

The history of the notion of "elementary building blocks of matter" goes back

to the famous Greek philoshopers of the presocratic school [43]. However, it

is still central to physical sciences, and practically applicable in a wide variety

of problems in modern physics and chemistry [44]. The first known hadrons

were also thought as "elementary" until the introduction of "quarks" in 1964

[2]. Beginning from these years around 1964, the community began describing

hadrons as composites of quarks. This description is referred to as the "quark

model" in the literature [2, 45–50]. Combined with techniques firstly developed

within non-relativistic quantum mechanics, quark model also provides means

to calculate the hadron spectrum and interactions, which is also referred to

as "potential models" [47, 51]. With adding the force-carriers between quarks,

gluons [2], hadrons are now described as composites of quarks, anti-quarks and

gluons in the modern wiev [42].

There are two sub-categories under the category "hadron": mesons and baryons

[2, 7, 42, 50]. In quark model, mesons are defined as quark - anti-quark bound

states, while baryons are bound states of three quarks (or three anti-quarks

for anti-baryons) [2, 50]. However, this classification ignores the fact that those

bound states can include gluons as well. Referring to the modern view, one can

argue that this classification can be generalized as follows: mesons are bosonic

bound states or resonances of quarks, anti-quarks and gluons, while baryons

are fermionic bound states or resonances of the same objects. In the relevant

sections below, it will be discussed that such a classification is also valid for

3



exotic hadrons, objects involving more than one set of mesonic or baryonic

quark content, and/or involving gluons or even no quarks at all.

Quarks have been proposed as particles having spin 1/2. The reason for this is

that in order to build both bosonic and fermionic composites, one needs fermionic

building blocks; otherwise no fermionic state (so no baryon) can be built. For

this reason, (anti-)baryons have to include an odd number of (anti-)quarks, and

the smallest possible number is 3.

Some properties of quarks can be derived directly from the properties of hadrons.

As an example, consider the proton and the neutron. They have nearly the same

mass [7] and are both fermions. Proton carries electric charge +1 and neutron is

electrically neutral. Due to being fermions, both can be assigned at least three

quarks. So one needs at least two types of quarks to construct a proton and a

neutron, and their electric charges have to be fractional. The u and d-quarks are

thus introduced, the former having electric charge +2/3 and the latter having

−1/3 [2, 7, 42, 50] (see Table 1.1 for the types of quarks). Similarly, quarks are

assigned baryon number 1/3 (so anti-quarks have baryon number −1/3). The

fundamental reason for assigning three quarks to the proton and the neutron is

discussed below.

As quarks are fermions, they are expected to obey Fermi exclusion principle.

This means, no two quarks in a hadron can have the same set of quantum

numbers; they have to differ in at least one quantum number [42]. The classic

example is the ∆++ baryon [2, 42]. ∆++ has electric charge +2, and has spin

3/2 [7]. ∆++(1232) is the lightest spin 3/2 baryon, and so the only possibility for

its quark assignment is three u-quarks having the same spin projection with zero

relative orbital angular momentum. However, this poses a problem: all quarks

are of the same type, they have the same spin projection. So there has to be an

additional quantum number which will have different values for the quarks. So,

a new degree of freedom, called "color charge" has been introduced [2, 42, 50].

Color charge is a conserved charge and is related to the strong force binding

sub-hadronic particles together [2, 42, 50].

However, this color degree of freedom was something not observable indepen-
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dently, or at least up to that time that degree of freedom could not be observed

independently. This is known as the "confinement phenomenon", and the color

charge has been postulated to be confined in hadrons [2, 42, 50]. In accordance

with this postulate, it has also been postulated that all physically observable

objects should be in color singlet configurations [2,42,50]. Relying on the early

quark model prescription that baryons are composed of three quarks, one is led

to introducing three different types of color (say, "red, blue and green") [2, 42].

There is also experimental evidence that the number of colors is 3. Let R be

the ratio of hadron production rate in electron-positron collisions to the rate of

muon - anti-muon production rate in the same events; that is:

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
. (1.1)

When the e+e− centre of momentum energy Ecm is much larger than the quark

masses, one has:

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= Nc

∑
f

e2
f , (1.2)

where Nc is the number of colors, and f denotes quark flavor and ef denotes

the electric charge of a quark of flavor f [2, 42]. For the light u, d, s quarks,

for example, R = 2
3
Nc, which is valid when Ecm > 2GeV [42]. When one

considers the c-quark along with others, one obtains R = 10
9
Nc (and this is

valid when Ecm > 3GeV ) etc. [42]. In Fig. 1.1, experimantal values at various

energies have been presented [42]. Apart from the resonances (that is, ω, ρ,

ψ etc.), the plateaus correspond to various values of R; the plateau of u, d, s

quarks appears just after 1GeV , c-quark is included above roughly 4GeV , and

b-quark is included above 10GeV [42], which correspond to values given by

R = Nc

∑
f e

2
f . This plot is a classic example, explaining why Nc = 3 is favoured

by the experiments.

As argued above, the number of colors is 3, so the corresponding symmetry

group is SU(3). So, the state vector of a quark carries a color index, which

can take one of the three different values. The force carriers between quarks,

5



Figure 1.1: R = σ(e+e−→hadrons)
σ(e+e−→µ+µ−)

plotted against
√
s, where s is the invariant

mass squared of e+e− [42].

gluons, also carry color charge [42]. Since color charge is conserved, and there is

nothing dictating the interactions to take place only among objects having the

same color, interactions can change the color of an object, conserving the overall

color charge. Then, it appears that the state vector of a gluon should carry two

color indices [42]. Mathematically speaking, this is equivalent to saying that

quarks are in the fundamental representation of SU(3), and gluons are in the

adjoint representation, and the state vectors mentioned above can be thought

as those representations [42]. The postulate that all hadrons should be in color

singlet combinations severely restricts the spectrum of possible combinations.

To understand the relation between this postulate and hadron contents, one

shold consider possible combinations of SU(3) representations. The conventions

and reasoning can be found in [2].

The fundamental representation can be realized as the eight 3 × 3 matrices,

known as Gell-Mann matrices:
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λ1 ≡


0 1 0

1 0 0

0 0 0

 , λ2 ≡


0 −i 0

i 0 0

0 0 0

 , λ3 ≡


1 0 0

0 −1 0

0 0 0

 ,

λ4 ≡


0 0 1

0 0 0

1 0 0

 , λ5 ≡


0 0 −i
0 0 0

i 0 0

 , λ6 ≡


0 0 0

0 0 1

0 1 0

 ,

λ7 ≡


0 0 0

0 0 −i
0 i 0

 , λ8 ≡ 1√
3


1 0 0

0 0 0

0 0 −2

 , (1.3)

satisfying
[
λa, λb

]
= 2ifabcλc. The three column matrices:

|red〉 ≡


1

0

0

 , |blue〉 ≡


0

1

0

 , |green〉 ≡


0

0

1

 (1.4)

can be used for defining quark color states.

One can understand the fundamental representation as 3 basis vectors in the

"color space", and the Gell-Mann matrices as the rotation matrices in the same

space. Let 3 represent the number of quark colors, and 3̄ represent that of anti-

quarks. Then, quark - anti-quark combinations can be written as 3̄⊗3 where ⊗ is

the tensor product (or direct product) operation. That means, one can construct

9 combinations of 3 quarks and 3 anti-quarks. These nine combinations can be

categorized as a "singlet", which is invariant under the application of rotations

in color space (in other words, transforms to itself under transformations in color

space), and an octet, whose members transform to one another or combinations

of each other under the action of transformations in color space. One writes this

relation as

3̄⊗ 3 = 1⊕ 8, (1.5)

⊕ being the direct sum operation, in group theory jargon. So, one observes that

3̄⊗ 3 combinations provide a singlet, and this state can be observed in nature.
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These are the conventional mesons. One can also consider the combination of 2

quarks:

3⊗ 3 = 3̄⊕ 6; (1.6)

that is, combination of 2 quarks gives two groups, one behaves as if it were an

anti-quark, and the other is the member of a sextet. This means, a 2-quark

state, also called a "diquark", cannot be realized in isolation. However, if one

combines the 3̄ group with a third quark, then one again obtains a singlet and

additional groups, that is,

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10. (1.7)

This singlet appearing in these combinations corresponds to conventional baryons.

The reasoning for conventional anti-baryons is exactly the same, with 3̄↔ 3.

One can also consider the combination of the singlets in, say, the 3̄⊗3 case. Then,

one obtains a singlet and various other states (whose details are not important

at this point), and this singlet corresponds to "molecules", meson-meson bound

states. Similarly, the combination of a diquark and an anti-diquark is also 3̄⊗3 as

demonstrated above, so this combination also gives a singlet, which corresponds

to a "tetra-quark", etc. This is related to "exotic states", discussed below.

1.2 Exotic Hadrons

As argued above, the meson - baryon classification can (and most probably

should) be done from a more general view, as the classification of bosonic and

fermionic bound states or resonances of quarks and gluons, respectively. For

example, more than one quark - anti-quark pair can be present in a meson. Or,

more precisely, the probability for finding more than one fermion pair in a meson

is non-zero. In terms of atomic physics, this is equivalent to arguing that in a

hydrogen atom, for instance, the probability for finding an electron - positron

pair, in addition to the already known proton and electron, is non-zero. In such

a description for the hydogen atom, chemical properties would be expected to

remain unchanged, provided that the electron - positron pair does not change

8



the quantum numbers that are relevant to the chemical properties. So one could

argue that the state vector of the hydrogen atom is a superposition of an electron

- proton vector and another vector involving the electron and proton plus the

electron - positron pair.

In the literature, it is widely accepted that describing mesons as quark - anti-

quark pairs and (anti-)baryons as bound states of three (anti-)quarks do not

suffice to explain all properties and interactions of hadrons. This view is also sup-

ported by experimental observations. A notable example is the case of X(3872),

which is also a motive for this work. According to [10, 52], the ratio of the

branching fractions for the decays X → J/ψππ and X → J/ψπππ is of O(1),

and in [10] the authors argue that DD∗ bound state picture for this observation

is favored. However, again according to [10] the production rate of X in proton

- anti-proton collisions requires a charmonium component, whose contribution

is roughly 1/20 [10]. So, for this example, one is led to consider a superposition

state involving a pure charmonium component and a DD∗ bound state [10,14].

There are various types of exotic hadrons. Although this work deals with the

heavy quarkonium spectrum, it is known that the discussion on exotics is equally

(and even more) relevant to the light sectors as well [53–56]. One can list meson-

meson, meson-baryon and baryon-baryon bound states, which are also reffered

to as "molecules", states involving only gluons and called "glueballs", multi-

quark - gluon bound states called "hybrids", and directly bound more than three

quarks called "tetraquarks, pentaquarks,..." etc [3, 53, 55–59]. In this sense, all

atomic nuclei are in fact hadronic molecules. It has also been argued in the

literature that molecules and many-quark states are indeed equivalent, in the

sense that they span the same Hilbert space to which the hadron state of interest

belongs [60]. Taking this observation into account, it is possible to classify all

hadron states as multi-quark states (those involving quarks (and/or anti-quarks)

only), glueballs (those involving gluons only), and hybrids (those involving both

quarks and gluons).

Particle Data Group review on "Non-qq̄ candidates" involves an extensive lit-
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erature on the status of exotic states as of 2015 [7]1. Here, some notes on

various exotic candidates have been presented, with the aim to demonstrate

the relevance of model building studies to investigate the properties of exotic

candidates.

1.2.1 Glueballs

According to [7], lightest glueballs are expected to have 0++ and 2++ JPC quan-

tum numbers, with masses expected around 1700MeV and 2300MeV , respec-

tively; and this expectation is supported by theoretical investigations such as

lattice calculations and QCD sum rules. There are various articles discussing

possible glueball candidates, and a number of f0 mesons appear as 0++ glueball

candidates, though which are mainly glueballs and which ones are mainly light

qq̄ states is still being investigated [7, 54, 61]. There are certain sets of JPC

numbers, such as 0−−, 0+−, 1−+, 2+− which cannot be qq̄ JPC numbers (in the

PDG review on "Non-qq̄ candidates" these are named as "exotic glueballs"),

and those are expected above 2GeV , together with the 0−+ state [7].

1.2.2 Tetraquarks and meson molecules

f0 mesons are also discussed in the context of tetraquark and molecule states,

and a0(980) is cited as another candidate for both [7]. According to [9] and [60],

there are tetraquark and/or molecule candidates in the heavy sectors as well;

one of which is the X(3872). According to [62], two photon couplings can pro-

vide information to distinguish scalar tetraquarks, molecules and conventional

mesons. In [7], f1(1420) is also cited as a molecule candidate, with the expected

content of KK̄π, and a1(1414) as its isovector partner. Heavy molecule can-

didates cited in [7] are D∗s0(2317)±, Ds1(2460)±, X(3872), Y (4260), Y (4360),

Y (4660), Zc(3900)±, Zc(4430)±, Zb(10610)± and Zb(10650)±. Charged mesons

which are known to involve a heavy quarkonium pair (i.e. Z±c (3900), Zc(4430)±,

Z±b (10610) and Z±b (10650)) clearly require a non-qq̄ picture, while for the neu-

tral states one should analyse decay properties, masses, quantum numbers etc.
1 Particle Data Group review on "Non-qq̄ candidates"
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of the mesons in order to decide whether they are mainly conventional mesons

or not.

1.2.3 Baryonia and Hybrid Mesons

Baryons can also form bound states, resulting in mesonic quantum numbers

[7] or meson-baryon bound states can also be formed, as demonstrated in the

recent work by LHCb [8]. One can think of the atomic nucleus as a molecule

composed of baryons as well. However, there are not many candidates poposed

for baryonia. The only state cited in [7] is f2(1565) as a 2++ proton - anti-proton

molecule.

There are various hybrid candidates cited in [7]: π1(1400), π1(1600), π1(2015),

having quantum numbers JPC = 1−+; π(1800) with JPC = 0−+; η2(1870) with

JPC = 2−+.

1.2.4 Other States

In principle, all quark-gluon bound states conforming to a certain set of quantum

numbers, corresponding to the quantum numbers of a hadron, contributes to the

state vector of the hadron [7]. Beyond the above mentioned possibilities, other

multi-quark/gluon states are possible. An example, which has also recently been

observed is the pentaquark state reported by LHCb [8].

1.3 Pseudoscalar - Vector - Axialvector Couplings

So far, hadron contents have been the core of discussion, and have led to the

idea that one needs to consider multi-particle states as well as the minimalistic

picture of quark model in order to have a deeper understanding of the hadron

spectrum and interactions. Within the context of quantum mechanics, hadrons

observed in experiments are expected to be eigenstates of some operator observ-

able. From the QCD point of view, this observable is nothing but HQCD, the

hamiltonian of QCD [25, 26, 28]. Neither the multi-quark nor the hybrid states
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are themselves eigenstates of this hamiltonian [25,26,28]. Then, in the presence

of interactions, there may be non-zero overlaps of different contributions. To

make this point more clear, one can consider X(3872) once again as an example.

One can consider the matrix element 〈D̄D∗(molecule)|Jint.|cc̄(L = 1)〉 which
measures the probability of transition of a pair of D̄ and D∗ mesons to a L = 1

charmonium as a result of the interaction Jint. (here, Jint. is the interaction part

of the QCD hamiltonian). In order to construct a model for X(3872) involving

both pure charmonium and DD∗ molecule, one needs to calculate this quantity.

Making use of this matrix element, one can define what are called the "PVA

couplings":

〈D̄(q)D∗(p′, η)|Jint.|cc̄(p′ + q, ε)〉 ≡ G1 (ε · q) (η∗ · q) +G2 (q · p′) (η∗ · ε) , (1.8)

where ε and η are the polarization vectors of cc̄ and D∗, respectively. The

numbers G1 and G2 are what are called PVA couplings. One can define the

same probability amplitude for the coupling of axial-vector bottomonium to B

and B∗ mesons in exactly the same way.

This definition is motivated by all possible scalar products of the vectors q, p′, ε, η.

All hadrons are on mass-shell (by construction), so ε ·P = η · p′ = 0. The vector

meson state dictates the presence of η and ε in each term, since the state vector

of a vector particle involves the polarization vector. Then, one is left with the

terms in 1.8, and εµναβqµp
′νεαηβ, but this term does not conserve parity while

the interactions considered here are parity conserving. So, the most general

combination of vectors satisfying the physical constraints is given in Eq. (1.8).

As the problem of calculating these numbers can itself be of interest, the motives

of this work include commenting on and (if possible) calculating the charmonium

content of X(3872) and its bottom-system counterpart. Such couplings can be

used as vertex factors in effective theories (see e.g. [14]), and the contents of

interest can also be deduced from these theories. What the results of this work

imply for the charmonium content of X(3872) will be summarized in the last

chapter.
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CHAPTER 2

THEORETICAL BACKGROUND

In this chapter, the theoretical framework necessary to understand QCD sum

rules, light-cone distribution amplitudes and light-cone wavefunctions will be

reviewed.

For Section 2.2, main references to be followed are [17, 20–22]. For the funda-

mental concepts related to complex functions Ref. [63] has been used. [64] is the

original article on SVZ sum rules and [16] is the original article on light-cone

sum rules. The references [12,18,31–35,37–40] involve various applications of the

technique. [23] discusses the advantages of light-cone sum rules over three point

SVZ sum rules. [19] is another review on the technique, but is an older one with

respect to [17]. [65] discusses calculating spectral densities for two independent

momenta using Borel transforms.

For Section 2.3, main references to be followed are [24,25,28–30,36,66–69]. [25]

is an extensive discussion on the physical motivations and theoretical properties

of the light-cone wavefunctions and [28] is equivalent to a textbook on the same

subjects. [26,27] also discuss the properties and use of light-cone wavefunctions.

[29] discusses light-cone quantization in detail. [30, 36] involve derivations of

the light-cone distribution amplitudes for L = 1 mesons. [66–68] involve the

calculation spin configurations of hadronic matrix elements.
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2.1 Quantum Chromodynamics

Quantum chromodynamics (QCD) was first formulated by D.Gross and F.Wilczek

and independently by H. D. Politzer in 1973 and led the inventors to the Nobel

Prize in 2004 [42]. The phenomenon bringing the Nobel Prize to Gross, Wilczek

and Politzer was "asymptotic freedom". The strength of attraction between

color charge carriers has been postulated to be increasing as the seperation be-

tween them increases [42]. This is equivalent to saying that the coupling strength

of the color field increases with increasing separation. This is in contrast to QED,

whose strength decreases with increasing separation.

QCD is accepted as the underlying theory of sub-hadronic physics [2,4,17,70,71]

and has the structure of a conventional field theory [17,70,72]. Just as in QED,

perturbative calculations are also used in QCD. However, all properties and in-

teractions of hadrons cannot be derived completely using only perturbative cal-

culations. Even one of the fundamental properties of sub-hadronic interactions,

the "confinement" phenomenon cannot be explained in a perturbative frame-

work [42]. Experiments observe hadrons, and sub-hadronic degrees of freedom

cannot be observed independently. This phenomenon is known as confinement

(of sub-hadronic particles or equivalently, of color charge which is discussed be-

low) [2,4,42,50,70]. For this reason, techniques which do not rely on perturbation

theory are necessary [17].

One of the well known methods developed to meet this requirement is "QCD

Sum Rules" [17,64], originally developed by Shifmann, Vainstein and Zakharov.

Another method, which is more familiar from non-relativistic quantum mechan-

ics is the quark model (also referred to as quark potential model) [47,51]. There

are other methods for analyzing hadron structure and interactions discusssed

extensively in the literature, such as lattice QCD (see e.g. [1]) and effective field

theories (e.g. [14]) which are also in use for analyzing the hadron spectrum and

interactions [14].

When one considers the evolution of electrodynamics, from simple concepts like

"lines of force" to highly sophisticated quantum electrodynamics (QED), one is
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led to the idea that the theory involving this color degree of freedom would most

probably be formulated in terms of the structure underlying QED. And history

reveals, this is indeed the case. QCD is a SU(3) gauge theory and involves the

full machinery of quantum field theory, and even more [2, 17,42,50,70].

Modern particle physics is based on quantum field theory, according to which

the fundamental constituents of the universe are fields extended in all space

and time, whose perturbations of quantized energy-momentum are perceived as

"particles" [70, 73]. So, for example, in QED, electrons and positrons are the

perturbations of the fermionic field, and photons are the perturbations of the

bosonic field which are included in the following lagrangian [70,73]:

L = ψ̄(x) (iγµDµ −m)ψ(x)− 1

4
F µνFµν , (2.1)

where Aµ(x) and ψ(x) are the bosonic and fermionic fields respectively, ψ̄ =

ψ†γ0, γµ are Dirac matrices satisfying {γµ, γν} = 2gµν , gµν is the metric tensor,

Dµ ≡ ∂µ − ieAµ(x) is the covariant derivative, e is charge of the positron,

Fµν = ∂µAν(x)− ∂νAµ(x) is the field strength tensor. Summation over repeated

indices is implied.

The fields involved in this lagragian are supposed to extremize the action S =´
d4xL. One varies S with respect to ψ, ψ̄ and Aµ to calculate the Euler-

Lagrange equations satisfied by these fields to calculate the dynamical evolution

of the fields [70,73].

The essence of the above Lagrangian is that is invariant under transformations

of the form [42]:

ψ(x)→ ψ
′
(x) = exp [ieθ(x)]ψ(x),

Aµ(x)→ A
′
µ(x) = Aµ(x) +

i

e
∂µθ(x), (2.2)

where θ(x) is some scalar function. This is indeed a gauge transformation, al-

ready known from classical electrodynamics [70,73]. In classical electrodynamics,

the physics involved is independent from the gauge chosen for the vector poten-

tial Aµ, and the idea is intact in the QED case as well. The gauge transformation
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amounts to a local change in the phase of ψ(x), the Lagrangian remains inde-

pendent from the overall phase of the fermion field. Gauge invariance is also

named as gauge symmetry.

The group of transformations leaving the QED Lagrangian gauge invariant (that

is, the symmetry group) is known as U(1), whose elements are scalar functions.

In fact, this group structure is related directly to the conservation of electric

charge; and since there is only one type of charge in QED, the relevant group

is U(1). However, in QCD case, one has three types of conserved charge, and

together with the confinement phenomenon, this dictates the symmetry group

be SU(3) [42]. Then, one seeks for a Lagrangian which is invariant under local

SU(3) transformations. The following Lagrangian has this property:

L = ψ̄i(x) (iγµDµ −m)ψi(x)− 1

2
Tr (F µνFµν) . (2.3)

Here i = 1, 2, 3 is the color index for quarks, Tr denotes trace, and the gluon

field, covariant derivative and field strength tensor are the following [42]:

Aµ ≡ Aaµ(x)
λa

2
,

Dµ ≡ ∂µ − iesAµ(x),

Fµν ≡ ∂µAν − ∂νAµ − ies [Aµ, Aν ] , (2.4)

where es replaces the electronic charge, a = 1, . . . , 8 and λa are the 3×3 traceless

hermitian matrices satisfying:[
λa

2
,
λb

2

]
= ifabc

λc

2
, (2.5)

fabc being the structure constants of SU(3) [42]. λa are also called Gell-Mann

matrices [42]. With the above mentioned fields, the QCD Lagrangian is invari-

ant under local gauge transformations of the form θ(x) = 1
2
λaθa(x), with the

following transformation properties [42]:

ψ(x)→ ψ
′
(x) = exp [iesθ(x)]ψ(x),

Aµ(x)→ A
′
µ(x) = exp [iesθ(x)]

(
Aµ(x) +

i

es
∂µ

)
exp [−iesθ(x)] . (2.6)
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Figure 2.1: Virtual quark - anti-quark pair in the process e−e− → e−e−, where
the solid lines represent the electrons and the wavy line represents the photon
exchanged between them. The loop corresponds to the pair, and u, d, s, ... denote
various quark flavors [17].

Ref. [42] is a valuable resource on QCD. One can also find many references

related to various topics in QCD in Ref. [3].

2.2 QCD Sum Rules

2.2.1 SVZ Sum Rules: General Concepts and Reasoning

Having briefly introduced the ingredients of QCD, one can now proceed to QCD

sum rules. This technique was originally developed by M. A. Shifman, A. I.

Vainshtein and V. I. Zakharov in 1979 [64].

In order to understand the subject properly, one can use an example. In this

chapter, the example presented in [17] will be used. This example is the creation

of a quark - anti-quark pair in electron-electron scattering (see Fig. 2.1). Then,

the object of interest is the two-point correlation function:

Πµν(q) = i

ˆ
d4x exp(iq · x)〈0|T {jµ(x)jν(0)} |0〉 = (qµqν − q2gµν)Π(q2). (2.7)
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Here, q is the 4-momentum of the virtual photon exchanged by the electrons

and is spacelike (i.e. q2 < 0) and jµ = ψ̄cγµψ
c is the quark current, c = 1, 2, 3

is the color index for quark operators, and γµ are Dirac matrices satisfying

{γµ, γν} = 2gµν , gµν being the metric tensor. T denotes time ordering:

T{A(t1), B(t2)} ≡ θ(t1 − t2)A(t1)B(t2) + θ(t2 − t1)B(t2)A(t1), (2.8)

where A,B are two arbitrary operators and θ(t) is the Heaviside step function.

The right hand side of 2.7 is dictated by the Lorentz structure and charge con-

servation: the only independent 4-vector is qµ and the electromagnetic current

is conserved, that is, ∂µjµ = 0, whose Fourier transform reads qµjµ = 0.

The task is now to calculate the function Π(q2).

The idea is to calculate this function in two limiting cases and matching the

results relying on analytical continuation. The limiting cases can be named as

the "QCD limit" where −q2 is very large and the relevant degrees of freedom

are quarks and gluons, and the "hadronic limit" where 0 < q2 and the relevant

degrees of freedom are hadrons. Traditionally, these limits are referred to as

the small and large distance, respectively, in the literature. The reason is that

for very large −q2, the exponential in the integrand oscillates rapidly except for

small values of the separation x, so this limit is the "short distance" limit, and

hence the other is the long distance limit.

To proceed further for the calculation of the correlation function, one can insert

an identity operator, which is a sum over projectors onto free hadronic states

involving various numbers of on-shell hadrons, between the current operators:

1 = |0 〉〈 0|+
ˆ

d4k

(2π)4
θ(E0)(2π)δ(k2 −m2

h)
∑
h

|h(k) 〉〈h(k)|

+

ˆ
d4kd4k′

(2π)8
θ(E)θ(E ′)(2π)2δ(k2 −m2

h)δ(k
′2 −m2

h′)

×
∑
h,h′

|h(k)h′(k′) 〉〈h(k)h′(k′)|+ · · ·
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= |0 〉〈 0|+
ˆ

d~k

(2π)32ω

∑
h

∣∣∣h(~k) 〉〈h(~k)
∣∣∣

+

ˆ
d~kd~k′

(2π)64ωω′

∑
h,h′

∣∣∣h(~k)h′(~k′) 〉〈h(~k)h′(~k′)
∣∣∣+ · · · (2.9)

One obtains matrix elements of the form 〈0|jµ(x)|V (k, η)〉, where k is the 4-

momentum of the vector meson state appearing in the momentum integrations

(when using the unitarity relation) and η is the polarization 4-vector of the

same object (satisfying η · k = 0). Using the translation property: jµ(x) =

eix̂·P̂ jµ(0)e−ix̂·P̂ , where x̂ and P̂ are position and momentum operators, one

obtains

〈0|jµ(x)|V (k, η)〉 = e−ik·x〈0|jµ(0)|V (k, η)〉, (2.10)

and the resulting matrix element defines the decay constant of the meson:

〈0|jµ(0)|V (k, η)〉 ≡ fVmV ηµ. (2.11)

The right hand side involves the polarization 4-vector of the meson, due to that

the wavefunction of a vector particle is proportional to its polarization 4-vector.

Making use of another important relation concerning vector particles, namely:∑
η

ηµη
∗
ν =

kµkν
m2
V

− gµν , (2.12)

one arrives at:

Πµν(q) =
−f 2

V

q2 −m2
V

(
qµqν −m2

V gµν
)

+ · · · , (2.13)

where excited and continuum states are denoted by · · · . Owing to Im
(

−1
q2−m2

V

)
=

πδ (q2 −m2
V ), where Im denotes "imaginary part", one obtains:

1

π
ImΠµν(q) = f 2

V

(
qµqν −m2

V gµν
)
δ
(
q2 −m2

V

)
+ · · · . (2.14)

Since the excited states and continuum are more complicated, one may isolate

the ground state contribution to the correlator and introduce a function (yet

unknown) to incorporate the remaining contributions:
1

π
ImΠ(q2) = f 2

V δ
(
q2 −m2

V

)
+ ρ(q2)θ

(
q2 − s0

)
, (2.15)
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Figure 2.2: The contour to be used for the correlation function. The crosses
represent hadronic thresholds, satisfying q2 = m2

hadron [17].

where s0 is the threshold over which hadronic continuum appears. It has been

noted in [17] that for systems involving heavy quarks, there are heavy quarko-

nium resonances below the pair production threshold for the mesons created by

the current j in the correlator, so one has to take the below threshold states into

account and calculate
∑

V ImΠ(q2) over the below-threshold states.

After this point, one exploits the analiticity properties of the correlation func-

tion, to relate the above form of the correlation function to Π(q2) at an arbitrary

value of q2.

Using Cauchy’s integral formula, one can express an arbitrary function f(z) as

f(z) =
1

2πi

˛
C

dw
f(w)

w − z , (2.16)

where C is some closed contour enclosing the point w = z in the complex plane,

and the function f(w) is assumed to be analytic on and within this contour.

Now consider the function Π(q2) and the contour shown in Fig. 2.2. The moti-

vation for choosing this contour is that one needs to match the q2 > 0 and large

−q2 limits of Π(q2). On the positive real axis, there are poles (indicated by the
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crosses) of the correlator corresponding to hadron masses (in the example being

discussed, masses of the vector bosons that can be created by the current j) and

a branch cut where the continuum starts, so the portions parallel to the real

axis are infinitesimally shifted away from the real axis. Let the radius of the

circular part be R, which will go to infinity at the end of the calculation. Along

this contour:

Π(q2) =
1

2πi


ˆ
|z|=R

dz
Π(z)

z − q2
+

R̂

0

dx
Π(x+ iε)− Π(x− iε)

x− q2

 , (2.17)

where ε > 0. If the function Π(z) tends to zero with any positive power of 1/q2,

then the integral over the circle vanishes. When this condition is not satisfied,

one can subtract the first few terms of the Taylor expansion of Π(q2) around

q2 = 0 from Π(q2). It has been noted in [17] that QCD calculations reveal that

the function Π(q2) is indeed divergent, while subtracting only the first term of

its Taylor expansion suffices to cure this problem.

Noting that Π(q2) is real for q2 < tmin where tmin = min{m2
V , s0}, one can

make use of "Schwarz reflection principle", which states that if a function f(z)

is real for real values of z, and is analytic in some region including the real

axis, then f ∗(z) = f(z∗), where ∗ denotes complex conjugation [63]. Then,

Π(z+ iε)−Π(z− iε) = 2iImΠ(i)(q2). Using this conclusion, one arrives at what

is called a dispersion relation:

Π(q2) =
1

π

∞̂

tmin

ds
ImΠ(s)

s− q2 − iε. (2.18)

Subtracting the first term of the Taylor expansion, one obtains:

Π̄(q2) ≡ Π(q2)− Π(0) =
q2

π

∞̂

tmin

ds
ImΠ(s)

s(s− q2)
. (2.19)

Substituting the imaginary part 2.15 into the above expression, one obtains:

Π(q2) =
q2f 2

V

m2
V (m2

V − q2)
+ q2

∞̂

tmin

ds
ρ(s)

s(s− q2)
+ Π(0). (2.20)
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It has been noted in [17] that Π(0) = 0 due to gauge invariance, but is kept in

order to remind possible subtractions or polynomials of q2 that can appear in

calculations for different correlators.

The use of the above dispersion relation still requires further operations, in

order to seperate the ground state more efficiently. The reason for this is that

the "cleanest" information coming from the dispersion relation is on the ground

state, since the technique proceeds without having the exact knowledge on the

structure of the hadron of interest. So, one makes use of an operation called

"Borel transform" to eliminate the unknown subtraction terms. This operation

is defined as:

BQ2→M2f(Q2) ≡ lim
Q2→∞
n→∞ →M2

(Q2)n+1

n!

(
− d

dQ2

)n
f(Q2), (2.21)

where M2 is called the Borel parameter. Since it is not a parameter introduced

by the physics of the problem, numerical results are expected to be independent

of M2.

Above definition for the Borel transform is slightly different from the one used

in [17], and is useful when one switches to Euclidean space (where Q2 ≡ −q2)

at some step within the calculations. However, the general reasoning is exactly

the same.

Some Borel transforms most commonly used in the calculations are the following:

BM2

(
1

(s+Q2)k

)
=

1

Γ(k)

exp(−s/M2)

(M2)k−1
,

BM2

(
(Q2)k

)
= 0,

BM2

[
exp(−tQ2)

]
= M2δ(tM2 − 1),

BM2

[
Q2

s+Q2

]
= BM2

[
1− s

s+Q2

]
= −s exp(−s/M2), (2.22)

where Γ(k) is the gamma function.

The Borel transform leads to exponential suppression of the hadronic continuum:

Π(M2) = f 2
V exp

(
−m

2
V

M2

)
+

∞̂

s0

dsρ(s) exp
(
− s

M2

)
. (2.23)
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After this point, the task is to calculate the correlation function in QCD. This

means, one should express the current operators in terms of quark and gluon

fields. In principle, all possible combinations of these fields corresponding to

the same set of quantum numbers are possible. However, various combinations

of quark and gluon fields will inevitably differ in the number of constituents.

However, QCD calculation is supposed to be valid at the large −q2 limit, and

in this limit quarks are nearly free (thanks to asymptotic freedom). For this

reason, one identifies the current operators with the quark model assingments

for the quarks; in a sense, one applies a minimal prescription. For example, if the

hadron of interest is the D meson, the quark model assignment is cū; and since

D meson is a pseudo-scalar meson, the corresponding current is c̄iγ5u, where c

and u are the spinor fields representing the charm and up quarks, respectively;

and γµ are the Dirac matrices [2, 42, 70,73].

At the first step of the calculation, one considers the time ordered product in the

correlation function. According to Wick’s theorem, the time ordered product can

be written as a sum over all possible contractions of the quark fields [42,70,73].

Writing the quark operators and Dirac matrices in terms of respective color and

spinor indices, one obtains:

〈0|T
{
ψ̄(x)γµψ(x), ψ̄(0)γνψ(0)

}
|0〉

=〈0|T
{
ψ̄iA(x) (γµ)AB ψ(x)iB, ψ̄

j
C(0) (γν)CD ψ

j
D(0)

}
|0〉

= (γµ)AB (γν)CD × 〈0|(: ψ̄iA(x)ψ(x)iBψ̄
j
C(0)ψjD(0) : + : ψ̄iA(x)ψjD(0) :

︷ ︸︸ ︷
ψ(x)iBψ̄

j
C(0)

+ : ψ(x)iBψ̄
j
C(0) :

︷ ︸︸ ︷
ψ̄iA(x)ψjD(0) +

︷ ︸︸ ︷
ψ(x)iBψ̄

j
C(0)

︷ ︸︸ ︷
ψ̄iA(x)ψjD(0))|0〉, (2.24)

where :: denotes normal ordering, meaning that all creation operators are to

be placed to the left of the annihilation operators in the quark fields, and︷ ︸︸ ︷
ψ(x)iBψ̄

j
C(0) denotes contraction of the operators ψ(x)iBψ̄

j
C(0) etc. i, j = 1, 2, 3

are color indices and A,B,C,D = 1, 2, 3, 4 are the spinor indices of the objects.

Contractions are equal to propagators, which read in the free quark approxima-

tion:

iSfree,ijBC =
︷ ︸︸ ︷
ψ(x)iBψ̄

j
C(0) = δij

ˆ
d4k

(2π)4
e−ik·x

(kµγ
µ +m)BC
k2 −m2

, (2.25)
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where m is the quark mass, and Sfree is the free quark propagator.

There are terms which involve operators that are not contracted. Those have

the following structure: 〈0| : ψ(x)iBψ̄
j
C(0) : |0〉. For those terms, one can expand

the operators around x = 0 in the following way:

ψ(x) = ψ(0) + xα∂αψ(x)|x=0 + · · · , (2.26)

which is indeed a Taylor expansion. In the Fock-Schwinger gauge, defined by:

xαAaα(x) = 0, (2.27)

where Aaα(x) is the gluon field, one has xµ∂µ = xµDµ, where D is the gauge

convariant derivative. This relation provides the use of full equations of mo-

tion (not necessarily the equations of motion for the free fields) in the calcula-

tions. After performing the expansion, one obtains matrix elements of the form

〈0|ψ̄(0)ψ(0)|0〉 etc. where all operators are defined at the same spacetime point

0. These terms are called "condensates".

The above expansion is called an "operator product expansion" (OPE). OPE

converts the bilocal (i.e. defined at two spacetime points - which are x and 0

in this example-) correlation function into a sum over the vacuum expectation

values of local operators:

Π(q2) =
∑
d

Cd(q
2)〈0|Od|0〉, (2.28)

where Cd, called "Wilson coefficients" are ordinary functions of q2 and Od are

local operators arising due to the expansion, involving various products of the

fields, and d is the mass dimension of the operators. For example, fermion

fields have mass dimension 3/2, and so the operator ψ̄ψ has d = 3, etc. Wil-

son coefficients scale with inverse powers of q2; higher dimension terms involve

higher powers of 1/q2. This allows one to truncate the expansion at a desired

order, since it is guarranteed that increasing mass dimension means decreasing

contribution to the correlation function in the large −q2 limit.

Returning to the example presented in [17], one remembers that the task has

been calculating the correlation function in QCD. This calculation yields two
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Figure 2.3: Some Feynmann diagrams relevant for the perturbative calculations:
(a) the free quark loop, (b,c,d) perturbative QCD corrections [17].

contributions, one coming from Feynmann diagrams like the ones demonstrated

in Fig. 2.3, and the other coming from the condensates.

The perturbative part gives up to the diagram (a) in Fig. 2.3 (details of this

calculation are not directly useful in the problem studied in this work, so are

omitted for brevity):

Π0(q2) =
q2

π

ˆ
ds

ImΠ(s)

s(s− q2)
, (2.29)

where ImΠ(s) = 1
8π
v(3− v2)θ(s− 4m2) and v =

√
1− 4m2/s.

One can make further approximations for Π0(q2), but the general flow of ar-

guments is important here, so details of further calculations in [17] will not be

discussed here. Π(q2) becomes:

Π(q2) = Π0(q2) + Πcond.(q2), (2.30)

where Πcond.(q2) involves the contributions of the condensates. One performs a
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Borel transform for Π(q2), and arrives at the following sum rule:

f 2
V e
−m

2
V

M2 +

∞̂

s0

dsρ(s)e−
s
M2

=
1

π

ˆ ∞
4m2

ds

8π

√
1− 4m2

s

(
2 +

4m2

s

)
e−

s
M2 + Πcond.(M2). (2.31)

For sufficiently large values of −q2, one can make the "quark-hadron duality"

approximation and write
∞̂

s0

dsρ(s)e(−
s
M2 ) ' 1

π

∞̂

spert.0

dsImΠpert.(s)e(−
s
M2 ), (2.32)

where spert.0 is expected to be close to the first excited vector meson mass squared.

Up to this point, the general flow of calculations in the framework of sum rules

has been presented. From now on, attention will be focused on light-cone sum

rules.

2.2.2 Light-Cone Sum Rules

The motivation for using light-cone sum rules is generally to calculate couplings

of various hadronic states, and this information can be deduced from a correla-

tion function like the following one:

F (q, p) = i

ˆ
d4x exp(iq · x)〈0|T

{
J(x)J

′
(0)
}
|H(p)〉, (2.33)

where p is the 4-momentum ofH. Here, the hadronH is on-shell by construction.

Experience from SVZ sum rules teaches that one will obtain terms involving
1

(p−q)2−m2
h′

(mh′ is the mass of the hadron created by the current J ′) and need

the Borel transform with respect to (p− q)2. This borel transform will thus be

necessary for the QCD calculation as well. So the large −(p− q)2 limit will also

be of interest in this case. Owing to:

(p− q)2 = p2 + q2 − 2p · q, (2.34)
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it is observed that as long as p is finite, p·q can also be large as well (the relevance

of this variable will be clear in a moment). This fact upsets the expansion around

x = 0. However, and expansion around x2 = 0 is still possible. One can see the

discussion given in [17], which is reviewed here.

Let:

Q2 ≡ −q2, ν ≡ q · p, ξ ≡ 2ν/Q2. (2.35)

The statement that p · q can be large is equivalent to:

|ν| ∼ |(p− q)2| ∼ Q2 � Λ2
QCD, (2.36)

where ΛQCD is the scale at which the QCD coupling es diverges. The region

where Eq. 2.36 is valid corresponds to ξ ∼ 1. Consider a reference frame where

|p0|, |~p| ∼ µ (that is, where the hadron mass is negligible with respect to its 3-

momentum) for some scale µ which satisfies µ2 � Q2, ν. Let also in this frame

~q⊥ = 0, so q = (q0, 0, 0, q3). This gives:

ν = p · q = p0q0 − p3q3 ∼ µ(q0 − q3)⇒ q0 − q3 ∼ ν/µ. (2.37)

Using q · q = (q0)2− (q3)2 = −Q2, one obtains q0 + q3 ∼ −Q2µ/ν. Together with

Eq. 2.37, the conclusion that q0 ∼ Q2ξ/(4µ) + 2µ/ξ ∼∼ Q2ξ/(4µ) is achieved.

One can approximate q · x as

q · x = q0x0 − q3x3 ' Q2ξ

4µ
x0 −

(√
Q4ξ2

16µ2
+Q2

)
x3 ' Q2ξ

4µ
(x0 − x3)− 2µ

ξ
x3.

(2.38)

The dominant contribution to the correlation function comes from the region

where the exponential eiq·x does not oscillate rapidly. This corresponds to the

region where both terms at the end of Eq 2.38 are of O(1). This gives:

(x0)2 ' (x3 + 4µ/(Q2ξ))2 ' (x3)2 + · · · . (2.39)

Then, one concludes that the dominant contribution comes from x · x = x2 ∼
1/Q2 → 0, and there is no short distance dominance owing to x0 ∼ x3 ∼
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ξ/(2µ) � 1/
√
Q2. For that reason, an expansion in terms of local operators

around x = 0 cannot be truncated at a finite order.

The OPE in the SVZ technique is performed around x = 0. This time, one

perfoms an expansion around x2 = 0, that is, near the light-cone. Calculation

of the hadronic sum and application of Borel transforms proceeds exactly in the

same way with the SVZ technique. However, different matrix elements arise

in the QCD calculation, which involve the on-shell hadron state and are not

directly related to the condensates. As an example, one can consider matrix

elements of the type 〈M(p)|ψ̄(x)Γφ(0)|0〉 for a meson M having 4-momentum

p.

Luckily, the terms in the expansion in local operators can still be arranged in

inverse powers of Q2. To see this, one again considers an OPE around x = 0,

but without expecting to truncate this expansion at a finite order. Following

from [17], the OPE has the form:

ψ̄(x)Γφ(0) =
∞∑
r=0

1

r!
ψ̄(0)
←−
Dµ1 · · ·

←−
DµrΓφ(0)xµ1 · · ·xµr , (2.40)

where the arrow to the left implies that derivatives act to the left. The matrix

elements of the operators in the OPE have the following structure:

〈M(p)|ψ̄(0)
←−
Dµ1 . . .

←−
DµrΓφ(0)|0〉 = (−i)rpµ1 . . . pµrp(Γ)Mr

+(−i)rgµ1µ2pµ3 . . . pµrp(Γ)M
′
r + . . . , (2.41)

where p(Γ) stands for the Lorentz indices dictated by Γ, and there are further

terms involving more factors of the metric tensor gµν . The factorsMr,M
′
r, which

do not involve x-dependence, will be discussed below. So, the following structure

is obtained:

〈M(p)|ψ̄(0)
←−
Dµ1 . . .

←−
DµrΓφ(0)|0〉xµ1 . . . xµr =

(−i)r (p · x)r p(Γ)Mr + (−i)rx2 (p · x)r−2 p(Γ)M
′
r + · · · . (2.42)

Defining

Mr ≡ (constant)×
1ˆ

0

duurφ(u, µ), (2.43)
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one obtains factors of the form (−iup · x)r. When summed over r, exponentials

of the form eiup·x are obtained. As an example, consider the matrix element

discussed in [17]. The generic term of the expansion reads:

〈π0(p)|ψ̄(0)
←−
Dµ1 . . .

←−
DµrΓφ(0)|0〉. (2.44)

The expansion arising from these matrix elements gives:

1

Q2

∞∑
r=0

ξrMr +
4

Q4

∞∑
r=2

ξr−2

r(r − 1)
M
′
r + . . . . (2.45)

The operators appearing with the same power of Q2 have a certain common

property. The difference of their mass dimensions and spins are all equal. This

difference is called "twist".

So, the hadron-to-vacuum matrix elements can be written in the following way:

〈H(p)|ψ̄(x)Γφ(0)|0〉|x2=0 ≡ (factors)

1ˆ

0

du exp(iup · x)φ(u, µ), (2.46)

where the "factors" are determined by the Lorentz structure of the current

operator and quantum numbers of the hadron H, and involve so-called "leptonic

decay constants". The variable u spans the whole range of quark seperation from

y ≡ ux ∼ 0 to ∼ x. The functions φ(u, µ) are called "light-cone distribution

amplitues (LCDAs)".

Although they can be deduced from experiment as well, in the literature there

are methods to calculate LCDAs. Next section is devoted to summarizing the

main concepts relevant to calculating LCDAs by making use of wavefunctions

obtained using quark model.

2.3 Light-Cone Wavefunctions

So far, no detailed discussion has been presented on how the quark-gluon struc-

ture of hadrons can be incorporated in the above techniques. For such a dis-

cussion, one needs a picture of hadrons in terms of QCD degrees of freedom.
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This can be achieved by introducing wavefunctions. For instance, for a state

involving a quark- anti-quark pair, one writes:

|H(p)〉 ≡
∑
λ,λ̄

ˆ
d3q

(2π)3
Ψλ,λ̄(~q)|q1(~p− ~q, λ)q̄2(~q, λ̄)〉, (2.47)

where |q1(~p − ~q, λ)q̄2(~q, λ̄)〉 is the quark - anti-quark state having a quark of

3-momentum ~p− ~q and spin projection λ, and an anti-quark of 3-momentum ~q

and spin projection λ̄, and Ψλ,λ̄(~q) is the coresponding wavefunction. The sum

over spins is according to the quantum numbers of the hadron, that is, implying

relevant spin and orbital angular momentum combinations. The information

on orbital angular momentum is encoded in the wavefunction. Notice that 3-

momenta of the quarks add up to the 3-momentum of the hadron, whereas

their energies do not add up to the energy of the hadron due to binding. The

conventions on defining the wavefunction may differ in various works (e. g. one

may include energy denominators in the integration measure), and the definition

and normalization of the Fock states may also be different, but the idea is

always the same. One picks up a Fock state of definite 3-momentum and spin

projections, and adds up such Fock states over all possible momenta and with

the relevant orbital angular momentum quantum numbers.

This is how one defines a hadronic wavefunction (in momentum space) in stan-

dard Minkowski coordinates. However, the light-cone expansion motivates an-

other set of coordinates, namely the light-cone coordinates, which is more suit-

able for use in the light-cone expansion.

Light-cone coordinates are defined as:

k± = k0 ± k3, ~k⊥ ≡ (k1, k2) = ~k⊥. (2.48)

One can define the Fock states having definite 3-momentum in the sense that k+

and ~k⊥ components are conserved, and k− components play the role of energy (it

is indeed named as "light-cone energy" in the literature). The relation between

wavefunctions in different coordinate systems is a complicated issue (see e. g.

[74]). However, it is easier to relate wavefunctions when expressed in terms of

relative momentum variables, at least for a conventional meson consisting of
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a quark and an anti-quark. In this case, wavefunctions calculated in standard

Minkowski and light-cone coordinates can be related as:

Ψ(k+, ~k⊥) ≡ N ×
√∣∣∣∣ ∂k3

∂k+

∣∣∣∣Ψ(~k⊥, k
3), (2.49)

where N is determined from the normalization relation for the wavefunction

(normalization also depends on conventions, but the invariance of normalization

among various coordinate systems leads to this relation). This relation arises

owing to the fact that normalization of the wavefunction should be consistent

in any corrdinate system, meaning that:
ˆ
dk3d2k⊥|Ψ(~k⊥, k

3)|2 =

ˆ
dk+d2k⊥

∣∣∣∣ ∂k3

∂k+

∣∣∣∣ |Ψ(k+, ~k⊥)|2. (2.50)

One can also define the light-cone momentum fractions carried by the con-

stituents of the hadron in the following way:

ui ≡
k+
i

p+
, (2.51)

where ki is the momentum of the i-th constituent and p is hadron momentum.

By definition, 0 ≤ ui ≤ 1 and
∑

i ui = 1. So, this variable can be identified with

the u variable mentioned in Eq. 2.46.

Having this technology at hand, one can define field operators in terms of light-

cone coordinates as well, and simply calculates the matrix elements appearing

in the QCD calculations by taking care of relevant angular momentum combi-

nations.

However, the issue of distinguishing between radial excitations of the same

hadron is still open. Up to this point, the only information on radial excita-

tions was that "the relevant information is encoded in the wavefunctions". If

one constructs and solves a Schrödinger-like equation, this issue can be under-

stood. Rather than this approach, in the literature, model functions motivated

by the underlying physics have been preferred. Using model functions is also

preferred in this work, and the model functions have been calculated in the

framework of quark model [41].
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2.4 Quark Model Calculations

The wavefunctions used in this work have been calculated using the Godfrey-

Isgur hamiltonian [41]. For a more recent treatment on the charmonium spec-

trum one can consult Ref. [75].

The Hamiltonian used in [47] is the following:

H = H0 +Hconf.
ij +Hhyp.

ij +Hso
ij (2.52)

where H0 is the kinetic term, Hconf.
ij is the confinement term, Hhyp.

ij is the hyper-

fine term and Hso
ij is the spin-orbit term. This hamiltonian has been constructed

in meson rest frame so that its eigenvalues lead directly to relevant masses. This

hamiltonian has been diagonalized using the eigenfunctions of the 3-dimensional

simple harmonic oscillator as a basis [41]. This basis leads to the following wave-

functions:

ΨQM(~κ;n, L, S, J, Jz) (2.53)

=
∑
Lz ,Sz

C× 〈L,Lz;S, Sz|L, S, J, Jz〉 × χS,Sz × YL,Lz(θκ, φκ)

×
N∑
m=0

hnm

√
2× 2

ν3

m!

Γ(m+ L+ 1
2
) [2(L+m) + 1]

(νκ)L exp

[
− κ2

2ν2

]
Ll+1/2
m (

κ2

ν2
),

where ~κ is the relative momentum of the particles, Ll+1/2
m (κ

2

ν2 ) are Laguerre poly-

nomials, YL,Lz(θκ, φκ) are spherical harmonics in momentum space. n is the

radial quantum number, C = 1√
3
(RR̄+BB̄ +GḠ) is the color part and χS,Sz is

the spin part of the wavefunction. Functions having the above form constitute a

complete orthonormal basis. hnm are the elements of the n-th eigenvector of the

hamiltonian given in Eq.(2.52). The parameter ν parametrizes the frequency of

the oscillator. For numerical calculations, the expansion has been truncated at

some finite dimension of the hamiltonian matrix.

Dressed c and b quark masses have been taken to be mc = 1628MeV, mb =

4977MeV in those calculations. Other relevant parameters can be found in [47].

The calculated masses presented in Table 2.1 are used in numerical calculations

in this work. In labeling the states, spectroscopic notation is used: for 2S+1LJ ,
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Table2.1: Masses of the first three levels of charmonia and bottomonia calculated
in quark model, and experimentally observed states having the same quantum
numbers. Notation: 2S+1LJ ; S: total spin of the quark - anti-quark pair; L:
relative orbital angular momentum; J : total spin of the meson.

Masses cc̄ bb̄

M (GeV ) \ n n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

M3P0
(χq0) 3.37 3.88 4.30 9.81 10.2 10.7

M3P1
(χq1) 3.54 3.97 4.33 9.89 10.3 10.6

M1P1
(hq) 3.53 3.96 4.37 9.88 10.3 10.6

M3P2
(χq2) 3.54 3.98 4.34 9.89 10.3 10.6

Masses (exp.) cc̄ bb̄

M (GeV ) \ n n = 1 n = 2 n = 3 n = 1 n = 2 n = 3

M3P0
(χq0) 3.41475 − − 9.85944 10.2325 −

M3P1
(χq1) 3.51066 − − 9.89278 10.25546 10512.1

M1P1
(hq) 3.52538 − − 9.8993 10.2598 −

M3P2
(χq2) 3.55620 3.9272 − 9.91221 10.26865 −

S is the total spin of the quark - anti-quark pair, L is relative orbital angular

momentum and J is the total spin of the meson.
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CHAPTER 3

TWIST-2 LIGHT-CONE DISTRIBUTION

AMPLITUDES AND LEPTONIC DECAY CONSTANTS

FOR P -WAVE CHARMONIA AND BOTTOMONIA

The remaining necessary ingredients for calculating the coupling parameters

are the LCDAs for the ground states and the first two radial excitations of

these mesons; and these LCDAs have been calculated using corresponding quark

model wavefunctions. As a first step to test the reliability of the quark model

wavefunctions, one may calculate the corresponding meson masses and compare

these values with the existing experimental data [41]. As can be observed in

Table 2.1, there is a good agreement between the calculated and experimental

values. So, in this work, quark model wavefunctions calculated in the framework

of [47] have been used.

3.1 Relevant matrix elements and LCDAs

In [30, 35], LCDAs of L = 1 mesons can be extracted certain hadronic matrix

elements involving the follwing quantities:

zα = xα − Pα 1

m2
cc̄

(
P · x−

√
(P · x)2 − x2m2

cc̄

)
= xα − Pα x2

2P · z +O(x4), (3.1)

pα ≡ Pα −m2
cc̄

zα
2P · z , (3.2)

ε
∗(σ)
⊥α ≡ ε∗(σ)

α − ε∗(σ) · z
p · z

(
pα −

m2
cc̄

2p · z zα
)
, (3.3)
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where z2 = p2 = 0. One can write the polarization tensor of the tensor meson

in terms of two polarization vectors for a massive vector particle [30]:

εµν(m) = 〈11;m′,m′′|11; 2,m〉εµ(m′)εν(m′′), (3.4)

where m,m′,m′′ denote spin projections along a certain (say, x3) axis and

〈11;m′,m′′|11; 2,m〉 are the corresponding Clebsh-Gordon coefficients for two

spin-1 objects forming a spin-2 combination. One can decompose εµνzν in lon-

gitidunal and transverse parts as follows [30]:

εµν‖ zν =
εανzαzν
pαzα

(
pµ − zµ m2

cc̄

2p · z

)
, εµν⊥ zν = εµνzνε

µν
‖ zν , (3.5)

which is cited for completeness.

The matrix elements, in terms of the above defined quantities are as follows [30]:

〈0 |q̄(−z)γµq(z)|S(P )〉 |z2=0

= fSP
µ

1ˆ

0

duφS(u), (3.6)

〈0 |q̄(−z)γµγ5q(z)|A(P, ελ=0)〉 |z2=0

= ifAMAε
µ

1ˆ

0

duφA‖(u), (3.7)

1

2

〈
0
∣∣∣q̄(−z)(γµz · D̂ + γνzνD̂

µ)q(z)
∣∣∣T (P, ελ=0)

〉
|z2=0

= fTM
2
T ε

µνzν

1ˆ

0

duξφT‖(u), (3.8)

〈0 |q̄(−z)σµνzνε⊥µγ5q(z)|A(P, ελ=±1)〉 |z2=0

= f⊥A

1ˆ

0

duφA⊥(u) (ε · ε⊥) (P · z) , (3.9)
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〈0 |q̄(−z)σµνzνε⊥µρz
ρq(z)|T (P, ελ=±1)〉 |z2=0

= if⊥T MT

1ˆ

0

duφT⊥(u) (εµνzνε⊥µρz
ρ) , (3.10)

where z is the spacetime seperation between the quark and the anti-quark, εµ

and εµν are the polarization vector and tensor of the relevant mesons, P is the

four-momentum, M and f are the mass and decay constant of the relevant

mesons, and D̂ is the gauge covariant derivative.

It can be observed that, depending on the charge conjugation parities (C-

parity) of the operators and meson states, LCDAs are either symmetric or anti-

symmetric functions of u with respect to u = 1/2. C parities of the operators

and meson states are as follows. Scalar (ψ̄ψ) and axialvector ψ̄γµγ5ψ operators

have C = +1, pseudoscalar (ψ̄γ5ψ), vector (ψ̄γµψ) and tensor ψ̄σµνψ operators

have C = −1. For a meson state, C-parity is calculated as (−1)L+S, where

L is relative orbital angular momentum and S is the total spin of the quark -

anti-quark pair. Remembering that all mesons of interest have L = 1, S = 1

scalar (3P0), S = 1 axialvector (3P1) and S = 1 tensor (3P2) meson states

have C = +1, S = 0 axialvector (1P1) meson state has C = −1. As a result,

the LCDAs φ1P1⊥(u) and φ3P1‖(u) are symmetric, φ3P0
(u), φ3P1⊥(u), φ1P1‖(u),

φ3P2‖(u) and φ3P2⊥(u) are anti-symmetric with respect to u = 1/2. To under-

stand how this conclusion derives, and remembering that the objects of interest

are current operators having the form ψ(x)Γψ′(y), one can consider a generic

matrix element of the form:

〈M |O(x, y)|0〉 = 〈M |
(
C†C

)
O(x, y)

(
C†C

)
|0〉, (3.11)

where C is the charge-conjugation operator and C† is its hermitian conjugate

satisfying C†C = 1. Since the C-parity of the vacuum state is +1, the matrix

element in Eq. 3.11 becomes:

= 〈M̄ |Ō(y, x)|0〉, (3.12)
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where |M̄〉 = CM |M〉 and Ō(y, x) = CO × C†O(x, y)C are the charge conju-

gates, CM and CO are the C-parities of the meson M and the operator O(x, y),

respectively. Then the following equality is obtained:

CM × CO × 〈M̄ |Ō(y, x)|0〉 = 〈M |O(x, y)|0〉. (3.13)

So, the C-parities of the meson state and the operator are multiplied. The in-

terchange of x and y arises due to the q and q̄ [70]. When the above matrix

elements are considered, in which x = −z and y = z, this change can be accom-

panied by interchanging u and ū ≡ 1 − u in the integrals. This determines the

symmetry/anti-symmetry of the LCDAs with respect to u = 1/2.

In [30], a slightly different notation is used for the LCDAs, which are related

to the notation used in this work in the following way: φ1P1⊥(u) = φ1A1⊥(u),

φ3P1‖(u) = φ3A1‖(u), φ3P0
(u) = φS(u), φ3P1⊥(u) = φ3A1⊥(u), φ1P1‖(u) = φ1A1‖(u),

φ3P2‖(u) = φT‖(u), φ3P2⊥(u) = φT⊥(u).

From these matrix elements, the following expressions for the distribution am-

plitudes are obtained in [30]:

φ3P0
(u) =

√
2

f3P0

ˆ
d2κ⊥

2(2π)3

(ū− u)mq√
uū

ϕ3P0
(mq, u, ~κ⊥), (3.14)

φ3P1‖(u) =
2
√

3

f3P1‖

ˆ
d2κ⊥

2(2π)3

κ2
⊥√

uūM0(mq, u, ~κ⊥)
ϕ3P1‖(mq, u, ~κ⊥), (3.15)

φ1P1‖(u) =

√
6

f1P1‖

ˆ
d2κ⊥

2(2π)3

(ū− u)mq√
uū

ϕ1P1‖(mq, u, ~κ⊥), (3.16)

φ3P2‖(u) =

√
6

f3P2‖

ˆ
d2κ⊥

2(2π)3

(ū− u)√
uū

ϕ3P2‖(mq, u, ~κ⊥)

×
[
M0(mq, u, ~κ⊥)−mq −

κ2
⊥

M0(mq, u, ~κ⊥) + 2mq

]
, (3.17)

φ3P1⊥(u) =

√
3

f3P1⊥

ˆ
d2κ⊥

2(2π)3

(ū− u)mq√
uū

ϕ3P1⊥(mq, u, ~κ⊥), (3.18)
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φ1P1⊥(u) =

√
6

f1P1⊥

ˆ
d2κ⊥

2(2π)3

κ2
⊥√

uūM0(mq, u, ~κ⊥)
ϕ1P1⊥(mq, u, ~κ⊥), (3.19)

φ3P2⊥(u) =

√
6

f3P2⊥

ˆ
d2κ⊥

2(2π)3

(ū− u)√
uū

×
[
mq +

2κ2
⊥

M0(mq, u, ~κ⊥) + 2mq

]
ϕ3P2⊥(mq, u, ~κ⊥), (3.20)

where ū = 1 − u, mq is the quark mass used in the framework in which the

functions ϕ(mq, u, ~κ⊥) are calculated, ~κ is (half) the relative momentum of the

particles and

M2
0 =

m2
q + κ2

⊥

u
+
m2
q + κ2

⊥

ū
(3.21)

where

ξ ≡ 1− 2u. (3.22)

The functions ϕ(mq, u, ~κ⊥) are the radial parts of the momentum-space wave-

functions of the quark - anti-quark pairs.

In this work, these expressions have been used to calculate the LCDAs of cc̄/bb̄

systems.

Here, the quark mass issue appears for the first time. As mentioned above,

values for quark masses may be different in the context of sum rules and quark

models. On the other hand, the above relations are independent of both sum

rules and quark model calculations. So the only criterion for determining the

correct values for the quark masses is the calculation of ϕ(mq, u, ~κ⊥).

Following [30], one may factor the radial and orbital parts of the wavefunction

as:

ϕL,Lz(u, κ⊥) = ϕp(u, κ⊥)κLz(u, κ⊥) (3.23)
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where κLz=±1 = ∓i(κ1 ± iκ2)/
√

2 and κLz=0 = κ3(u, κ⊥); and the wavefunction

is normalized as:ˆ
dud2κ⊥
(2π)3

ϕL,Lz(u, κ⊥)ϕ∗L′,L′z(u, κ⊥) = δL,L′δLz ,L′z . (3.24)

One may calculate the wavefunction in terms of the standard Minkowski coor-

dinates. If K(|~κ|) is the radial part of the wavefunction calculated as such, one

can relate the function ϕp and K(|~κ|) in the following way:

ϕp(u, κ⊥) = A×
√∣∣∣∣∂κz∂u

∣∣∣∣K(|~κ|)
|~κ| , (3.25)

where ~κ = ~κ(u, ~κ⊥), κz = κz(u, ~κ⊥) and one calculates the normalization con-

stant A using the normalization integral Eqn.3.24. This relation is obtained by

demanding the normalization be consistent in all coordinate systems as in Eq.

2.50, and noticing that the wavefunctions in spherical polar coordinates are given

as K functions times the spherical harmonics YL,Lz , which read YL,Lz = κL,Lz/|~κ|
for L = 1.

To proceed furhter for the leptonic decay constants, one can make use of the

normalization conditions for the LCDAs [30,35]:

1ˆ

0

duφeven(u) = 1,

1ˆ

0

du(1− 2u)φodd(u) = 1. (3.26)

One can also calculate the the leptonic decay constants by directly using the

matrix elements (see e.g. [4]). However, as can be observed, part of these matrix

elements are exactly equal to zero when the quark and the anti-quark meet at

the same spacetime point. Such instances requires one to search for different

matrix elements involving the same decay constants; so the procedure followed

in [30] appears to be more practical.

If one neglects spin-orbit effects, the functions ϕp can be assumed to be the same

for all states having the same n and L values, and the following equalities can

be derived [30,35]:
√

3f3P0
= f1P1‖ =

√
2f3P1⊥ ≡ fodd,

f3P1‖√
2

= f1P1⊥ ≡ feven. (3.27)
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φ3P0
= φ1P1‖ = φ3P1⊥ ≡ φodd, φ3P1‖ = φ1P1⊥ ≡ φeven. (3.28)

In [30], the following values have been calculated for the decay constants. For

charmonia:

fodd = 0.0884GeV, feven = 0.109GeV ;

fT‖ = 0.124GeV, fT⊥ = 0.0978GeV ; (3.29)

and for bottomonia:

fodd = 0.0674GeV, feven = 0.0716GeV ;

fT‖ = 0.0750GeV, fT⊥ = 0.0692GeV. (3.30)

In [35], the decay constant 1P1⊥ (corresponding to the hc meson in [35]) is

calculated as

f1P1⊥ = 0.192GeV. (3.31)

These numerical values will be compared with the corresponding decay constants

for the ground states, while feven and fodd are to be compared with the spin-

weighted averages of the corresponding decay constants. Spin-weigthed avarages

are as follows:

fodd =
1× f3P0

+ 3× f1P1‖ + 3× f3P1⊥

7
,

feven =
3× f3P1‖ + 3× f1P1⊥

6
. (3.32)

There is no discussion on the radial excitations in [30]; however, as will be

discussed below, the LCDA profiles of [30] correspond to ground state profiles

in this work. This is the reason why decay constants given in [30] are also to be

compared with those of ground states in this work.

Results obtained in this work and the above relations will be compared and

discussed later on.
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The only missing ingredient at this point is determining the radial part of the

wavefunction. In [30], the following model function is used for all L = 1 states:

ϕp(u, k⊥) =
4
√

2

β

(
π

β2

)3/4
√
dκz
du

exp

(
−|~κ|

2

2β2

)
. (3.33)

Making use of wavefunctions calculated in the framework of quark model gives

one the chance to calculate the LCDAs of the excited states in addition to that

of the ground state. Furthermore, this approach can serve as a test for the

validity of the approximation used in [30] which leads to the above mentioned

model wavefunction for quarkonia.

The values obtained for the leptonic decay constants of n = 1, 2, 3 (n: radial

quantum number) cc̄ and bb̄ systems are presented in Tables 3.1, 3.2 and 3.3.

Calculations have been performed for two different cut-off values (quark mass

and infinity) imposed on integrations over transverse relative momentum. Since

the systems investigated are heavy quarkonia, quark dynamics is expected to be

approximately non-relativistic, whereas relativistic effects may not be completely

suppressed. With the motivation to understand the extent of the relativistic ef-

fects, two different cut-off values are used. Working with light-cone variables,

one observes that the (+) components of the momentum vectors are already

bounded (that is, 0 ≤ u ≤ 1). So the only unbounded components are the

transverse components, and this is why the cut-off is imposed on transverse mo-

mentum components. However, this does not completely define the "relativistic

region". Remembering the definition of the u variable, Eq. 2.51,it is observed

that u ∼ 1 and 1 − u ∼ 1 correspond to relativistic momenta for finite k⊥. So,

the conclusion is that the domain in which relativistic effects are important,

namely the "relativistic region", can be expressed as k⊥ > mq, ξ ≡ 1−2u ∼ ±1.

Calculated decay constants for cc̄ and bb̄ systems are presented in Tables 3.1,

3.2 and 3.3. The tables are organized so as to compare the results with Eq. 3.27

and Eq. 3.28.

The decay constants are roughly of the same order for n = 1, 2, 3 for each

meson state. Numerical values given in [30] can be as small as 50 percent

of the values obtained in this work. The conclusion here is that decay con-
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Table3.1: Decay constants f1P1
, f3P0

, f3P1⊥ for relevant charmonia and bottomo-
nia.

n \ f (GeV ) f3P0
f3P1⊥ f1P1

√
3f3P0

√
2f3P1⊥ fodd

charmonia Λ =∞
n = 1 0.109 0.0959 0.142 0.189 0.136 0.118

n = 2 0.0801 0.0881 0.129 0.139 0.125 0.105

n = 3 0.0755 0.0824 0.133 0.131 0.117 0.103

Λ = mc

n = 1 0.0916 0.0875 0.127 0.159 0.124 0.105

n = 2 0.0588 0.0741 0.107 0.102 0.105 0.0860

n = 3 0.0459 0.0615 0.0946 0.0795 0.0870 0.0735

bottomonia Λ =∞
n = 1 0.104 0.0802 0.119 0.180 0.113 0.100

n = 2 0.103 0.0832 0.124 0.178 0.118 0.104

n = 3 0.131 0.0834 0.143 0.227 0.118 0.116

Λ = mb

n = 1 0.0972 0.0794 0.117 0.168 0.112 0.0981

n = 2 0.0976 0.0822 0.121 0.169 0.116 0.101

n = 3 0.118 0.0820 0.136 0.204 0.116 0.0951

stants are sensitive to the set of parameters used. The relations 3.27 and 3.28

appear to be partially satisfied, and the differences are interpreted as spin-

orbit effects. |f1P1
−
√

2f3P1⊥| differences (which are smaller than 15 percent

of min
{
f1P1

,
√

2f3P1⊥

}
) are less than |f1P1

−
√

3f3P0
| differences. Comparing

f1P1⊥ and f3P1
/
√

2 values, one observes that for n = 1, 2 the differences are less

than 10 percent of min
{
f1P1⊥ , f3P1

/
√

2
}
, while for n = 3 the differences are

greater, with the exception of n = 3, Λ = mc charmonium. These observations

suggest that spin-orbit effects are not negligible, though one can at least de-

termine the order of magnitude of the decay constants ignoring the spin-orbit

effects.

One can also make the interpretation that the differences between the results

for the decay constants for the ground states (n = 1) and those of [30] and [35]

are also a measure of the spin-orbit coupling.

The value of the cut-off effects charmonia decay constants more significantly than

those of bottomonia, while both values increase with increasing value of cut-off.
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Table3.2: Decay constants f1P1⊥, f3P1
for relevant charmonia and bottomonia.

n \ f (GeV ) f3P1
f1P1⊥

f3P1√
2

feven f3P1
f1P1⊥

f3P1√
2

feven

charmonia Λ =∞ Λ = mc

n = 1 0.264 0.199 0.187 0.232 0.185 0.133 0.131 0.159

n = 2 0.279 0.209 0.197 0.244 0.143 0.101 0.101 0.122

n = 3 0.290 0.246 0.205 0.268 0.0852 0.0595 0.0603 0.0724

bottomonia Λ =∞ Λ = mb

n = 1 0.182 0.138 0.129 0.160 0.173 0.126 0.122 0.146

n = 2 0.197 0.148 0.139 0.173 0.184 0.135 0.130 0.156

n = 3 0.204 0.182 0.144 0.193 0.187 0.153 0.132 0.170

Table3.3: Decay constants f3P2
, f3P2⊥ for tensor charmonia and bottomonia.

n \ f (GeV ) f3P2
f3P2⊥ f3P2

f3P2⊥

charmonia Λ =∞ Λ = mc

n = 1 0.198 0.141 0.177 0.128

n = 2 0.229 0.142 0.189 0.118

n = 3 0.245 0.140 0.182 0.101

bottomonia Λ =∞ Λ = mb

n = 1 0.133 0.113 0.131 0.112

n = 2 0.148 0.121 0.146 0.119

n = 3 0.178 0.137 0.168 0.131

The observation that charmonia are affected more compared to bottomonia is

expected, due to the fact that bottom quark is heavier than charm quark, and

so relativistic effetcs are expected to be smaller for bottom quarks. However,

for decay constants, the effect of relativistic momenta are still observable, as the

values calculated for Λ =∞ are greater than those calculated for Λ = mq.

3.2 Fits for the LCDAs

It is possible to fit suitable functions to the LCDAs for practical applications.

Finding suitable fit functions which reflect the general properties of the LCDAs

also provides one a means to use the LCDAs without giving reference to any

44



specific model.

In [35], the following functional forms have been used for the ground states:

φ(ξ) = c(β)(1− ξ2)ξ exp[− β

(1− ξ2)
]

ψ(ξ) = −
ξˆ

−1

dtφ(t) =
c(β)

2
(1− ξ2)2E3[

β

(1− ξ2)
] (3.34)

where ξ ≡ 1 − 2u, E3[x] ≡
´∞

1
dt exp[−xt]

t3
, and the parameters c and β are to

be calculated. These forms have been derived using the conventional SVZ sum

rules. The idea in this work is to calculate the LCDAs using an independent

approach and making use of these functions within sum rule calculations, and

also calculating the LCDAs for the first two excited states. The first issue is

handled by using quark model wavefunctions, and the second one is handled by

motivating fit functions (making use of the above forms) which are suitable for

the excited states. The fit functions used for the ground states are also slightly

different from those derived in [35].

The fit functions used in this work have the following forms. For even LCDAs:

n = 1 : ψ(ξ) = a(1− ξ2)2

(
E3[

β

(1− ξ2)
] + b exp[−ξ

2

c
]

)
(3.35)

n = 2, 3 : ψ(ξ) = a

{
1

1 +
(ξ2−ξ2

0)2

σ2

+ b exp[−ξ
2

c
]

}
exp[− β

(1− ξ2)
],

and for odd LCDAs:

n = 1 : φ(ξ) = aξ(1− ξ2){exp[− β

(1− ξ2)
] + b exp[−ξ

2

c
]} (3.36)

n = 2, 3 : φ(ξ) = − d

dξ

{
a

[
1

1 +
(ξ2−ξ2

0)2

σ2

+ b exp[−ξ
2

c
]

]
exp[− β

(1− ξ2)
]

}
.

Fits have been performed using a χ2 minimization procedure in Mathematica

software. Data sets have been obtained from the original LCDAs (those calcu-

lated directly from the quark model wavefunctions), and the above forms have

been fitted to those data sets. Weight functions in the form (1− ξ2)r have been

used, where r is a non-zero number which can be large as 40. The motivation for
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using such weight functions is that the regions ξ ∼ ±1 correspond to highly rel-

ativistic momenta and this form of a weight function suppresses the importance

of these regions in determining the fit functions.

LCDAs calculated directly from the quark model wavefunctions and fits are

presented in the Fig. A.1-A.7. Relevant fit parameters are presented in Tables

A.1-A.7.

Certain patterns exhibited by the LCDAs have been observed. Ground state

profiles are the same with those obtained in [30]. For even LCDAs, the ground

state has a single global maximum at ξ = 0. The first excited state has a local

minimum at ξ = 0 and two symmetric global maxima. The second excited

state has a single global maximum at ξ = 0 in the shape of a bump. For odd

LCDAs there is a node at ξ = 0 for all states. The ground state has one global

maximum. The first excited state has two additional nodes, and four extrema,

whose signs are alternating. The second excited state has six extrema and no

additional nodes, and all extrema lying on the same side of the origin have the

same sign. For all states, the extrema are closer to ξ = 0 for bottomonia as

compared to charmonia, and the functions approach to zero as e−
β

1−ξ2 . For odd

LCDAs, the global extrema approach to ξ = ±1 as n increases, meaning that

the relativistic region becomes more significant for increasing n.

It has also been observed that charmonia are more sensitive to the cut-off com-

pared to bottomonia. 1P1⊥ and 3P1‖ LCDAs for charmonia calculated using

Λ = mc even do not exhibit the above mentioned pattern. Although charm

quark is considered as a "heavy" quark with a mass above 1GeV , this obser-

vation suggests that relativistic effects are still important for the charmonium

system. The quark model calculations have been based on the "relativized"

model of [47]. However, as any model based on writing effective non-causal

potentials (such as those involving Coulomb 1/r or confinement kr terms), the

ability of quark models in incorporating relativistic effects still appears to be a

matter of debate.
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CHAPTER 4

COUPLING OF AXIALVECTOR HEAVY QUAKONIA

TO PSEUDOSCALAR AND VECTOR MESONS

In order to calculate the coupling of an axial-vector meson to psuedo-scalar

and vector mesons within the context of light-cone sum rules, the object of

interest is the two point correlator relating an on-shell axial-vector state to

the hadronic vacuum via pseudo-scalar and vector current operators. The 1++

state is considered on-mass-shell, and the 0− and 1− currents represent the

corresponding mesons to which the axial-vector couples (D̄ and D∗ mesons for

the charmonia, B̄ and B∗ for the bottomonia case) at hadronic level. Using

this correlation function, one can calculate the overlap of the 1++ state with a

bound state of the 0− and 1− states, which involves the parameters measuring

the strength of coupling of these states.

The calculations presented below involve the general flow calculations. Although

the charmonium case is discussed in the flow, calculations for the bottomonium

case are exactly the same, the only difference being the relevant parameters

used.

4.1 Correlation function: Phenomenology

The object of interest in calculating the pseudoscalar - vector - axialvector cou-

plings is the correlation function:

F ∗phenν (q, p, ε) = −i
ˆ
d4x exp(iq · x) 〈0 |T {J5(x)Jν(0)}| cc̄(P, ε)〉 . (4.1)
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Here, the operators J5(x) and Jν(0) are composed of quark field operators which

are solutions of QCD equations of motion. However, they can also be expressed

in terms of the free solutions satisfying (iγµ∂µ − m)ψ = 0 (ψ representing c

and/or u quark) such that J5 = c̄iγ5u which creates a D̄0 (or destroys a D0)

and Jµ = ūγµc which creates a D∗0 (or destroys a D̄0∗) [70]:

F ∗phenν (q, p, ε) = −i
ˆ
d4x exp(iq · x)

×
〈

0

∣∣∣∣T {J5(x)Jν(0) exp

[
i

ˆ
d4yJint(y)

]}∣∣∣∣ cc̄(P, ε)〉 . (4.2)

Here, Jint(y) represents the interaction terms in the QCD Hamiltonian. The

interaction term appears due to making use of the free quark fields in the corre-

lation function, and the effect of interactions are encoded in the Jint term. Dis-

cussion on why such correlation functions are suitable for calculating hadronic

couplings can be found in [17,18,23,37].

Considering only the first non-zero contribution to the correlation function, phe-

nomenology gives the following expression:

F ∗ν (q, P, ε) =

ˆ
d4xd4y exp(iq · x) 〈0 |T {J5(x)Jν(0)Jint(y)}| cc̄(P, ε)〉 . (4.3)

Here, contribution of all terms in the time ordered product are listed. The

arrows indicate that the terms on the right hand side appear in calculating the

matrix element which is written on the left hand side.

〈0 |J5(x)Jν(0)Jint(y)| cc̄(P, ε)〉 →
∑
(λ)

1

4EE ′(E + E ′ − P 0)(q0 − E)
,

〈0 |J5(x)Jint(y)Jν(0)| cc̄(P, ε)〉

→
∑
(λ)

(−1)

4EE ′(E − E ′ − P 0)

{
1

(p′)0 + E ′
+

1

(q0 − E)

}
,

〈0 |Jint(y)J5(x)Jν(0)| cc̄(P, ε)〉

→
∑
(λ)

(−1)

4EE ′(q0 + E)

{
1

(p′)0 + E ′
− 1

(E + E ′ + P 0)

}
,

〈0 |Jint(y)Jν(0)J5(x)| cc̄(P, ε)〉 →
∑
(λ)

(−1)

4EE ′(E + E ′ + P 0)(q0 + E)
,
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〈0 |Jν(0)J5(x)Jint(y)| cc̄(P, ε)〉 →
∑
(λ)

1

4EE ′(E + E ′ − P 0)((p′)0 − E ′) ,

〈0 |Jν(0)Jint(y)J5(x)| cc̄(P, ε)〉 →
∑
(λ)

1

4EE ′(q0 + E)((p′)0 − E ′) , (4.4)

where E =
√
~q2 +m2

D , E ′ =
√
~p′2 +m2

D∗ , and q
0 + (p′)0 = P 0. All terms in the

above expressions are multiplied by the hadronic matrix elements
〈
0 |J5| D̄(q)

〉
,

〈0 |Jν |D∗(p′, η)〉 and
〈
D̄0(q)D∗0(p′, η(λ)) |Jint| cc̄(P, ε(σ))

〉
.

One makes use of the following relation in x0 and y0 integrations:

lim
t→±∞

exp(iαt) = lim
t→±∞

lim
ε→0

exp[i(α± iε)t], (4.5)

and the resolution of identity for the hadronic matrix elements:

1 = |0 〉〈 0|+
ˆ

d4k

(2π)4
θ(E0)(2π)δ(k2 −m2

h)
∑
h

|h(k) 〉〈h(k)|

+

ˆ
d4kd4k′

(2π)8
θ(E)θ(E ′)(2π)2δ(k2 −m2

h)δ(k
′2 −m2

h′)∑
h,h′

|h(k)h′(k′) 〉〈h(k)h′(k′)|+ · · ·

= |0 〉〈 0|+
ˆ

d~k

(2π)32ω

∑
h

∣∣∣h(~k) 〉〈h(~k)
∣∣∣

+

ˆ
d~kd~k′

(2π)64ωω′

∑
h,h′

∣∣∣h(~k)h′(~k′) 〉〈h(~k)h′(~k′)
∣∣∣+ · · · (4.6)

Normalization of the states is relativistic ( [70]):

〈h(~p, λ)|h(~p′, λ′)〉 = 2
√
~p′2 +m2(2π)3δ(3)(~p− ~p′)δλ,λ′ , (4.7)

where λ, λ′ denote the spins of the corresponding hadrons.

The matrix element defining the leptonic decay constant fH∗ of a vector meson

H∗ is ( [17,18,42]):

〈0 |q̄γµQ|H∗(P, η)〉 = mH∗fH∗η
(H∗)
µ , (4.8)

and that of a pseudo-scalar meson is:

〈0 |q̄γµγ5Q|H(P )〉 = ifHPµ. (4.9)
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The Lorentz structure in the matrix elements 4.8 and 4.9 determine the Lorentz

structure of the right hand sides. For 4.9, there is only one Lorentz vector at

hand, Pµ, so the right hand side involves Pµ. For 4.8, there are two Lorentz

vectors, ην and Pµ. The state vector of a vector particle carries information on

its polarization state, and the vector carrying this information is ην . So, the

state vector has to be proportional to ην . In principle, 4.8 can also involve Pµ
as well; however, the coefficient of Pµ has to be proportional to ην , and the only

possibility is contracting ην and Pµ, which is zero, by definition.

Using equations of motion, one multiplies 4.9 with−iP µand obtains ( [17,18,42]):

〈0 |q̄iγ5Q|H(P )〉 =
fHm

2
H

mQ +mq

. (4.10)

For vector particles, one has ( [17,18,42]):∑
λ

η∗(λ)
µ (k′)η(λ)

ν (k′) = −gµν +
k′µk

′
ν

m2
. (4.11)

The coupling of cc̄ to the D̄D∗ molecule is defined by the matrix element:〈
D̄0(k)D∗0(k′, η(λ)) |Jint| cc̄(k + k′, ε(σ))

〉
≡
[
G1(ε(σ) · k)(η∗(λ) · k) +G2(k′ · k)(ε(σ) · η∗(λ))

]
≡ g(k, k′, ε, η), (4.12)

which has been discussed in Section 1.3, Eq. 1.8.

Remembering that the hadronic sum involves summations over relevant quantum

numbers of the hadron states (here, the polarization vector of the vector meson),

one needs to calculate the sum over η. Performing this summation, one obtains:∑
λ

η(λ)
ν g(k, k′, ε, η) =

(ε(σ) · k)(k′ · k)

m2
D∗

(G1 −G2)k′ν −G1(ε(σ) · k)kν −G2(k′ · k)ε(σ)
ν .

(4.13)

Then the correlation function becomes:

F ∗phenν (p′, q, ε) = (subtractraction terms)− m2
D̄
mD∗fD̄fD∗

mc(m2
D − q2)(m2

D∗ − p′2)

×
{

(ε(σ) · q)(p′ · q)
m2
D∗

(G1 −G2)p′ν −G1(ε(σ) · q)qν −G2(p′ · q)ε(σ)
ν

}
. (4.14)
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and after the Wick rotation k0 → −ik0
E:

F ∗phenE,ν (p′, q, ε) = (subtraction terms)− m2
D̄
mD∗fD̄fD∗

mc(m2
D + q2

E)(m2
D∗ + p

′2
E)

×
{

(ε
(σ)
E · qE)(p

′
E · qE)

m2
D∗0

(G1 −G2)p
′
E,ν +G1(ε

(σ)
E · qE)qE,ν +G2(p

′
E · qE)ε

(σ)
E,ν

}
.

(4.15)

4.2 Correlation function: QCD

On the QCD side, the correlation function can be expressed as (complex conju-

gate of the function presented in the previous section):

FQCD
ν = i

ˆ
d4z exp(−iq · z)

×
〈
cc̄(P, ε)

∣∣∣∣T {c̄(z)iγ5u(z)ū(0)γνc(0) exp

[
i

ˆ
d4yJint(y)

]}∣∣∣∣ 0〉 . (4.16)

On the QCD side, the zeroth order term in the expansion of exp
[
i
´
d4yJint(y)

]
already gives a nonzero contribution. To demonstrate this, one may consider:

FQCD
ν = i

ˆ
d4z exp(−iq · z)

〈
cc̄(P, ε)

∣∣∣T{c̄(z)iγ5u(z)ū(0)γνc(0)}
∣∣∣0〉 . (4.17)

Using the time ordering, one obtains:

FQCD
ν = i

ˆ
d4z exp(−iq · z)θ(z0)

〈
cc̄(P, ε)

∣∣∣c̄(z)iγ5u(z)ū(0)γνc(0)
∣∣∣0〉

+i

ˆ
d4z exp(−iq · z)θ(−z0)

〈
cc̄(P, ε)

∣∣∣ū(0)γνc(0)c̄(z)iγ5u(z)
∣∣∣0〉 . (4.18)

In terms of the spinor components of the objects (capital Latin subscripts denote

spinor indices, small latin superscripts denote color indices):

c̄(z)iγ5u(z)ū(0)γνc(0) = θ(z0)c̄iA(z) (iγ5)AB u
i
B(z)ūjC(0) (γν)CD c

j
D(0)

+θ(−z0)ūjC(0) (γν)CD c
j
D(0)c̄iA(z) (iγ5)AB u

i
B(z)

= θ(z0) (iγ5)AB (γν)CD c̄
i
A(z)cjD(0)uiB(z)ūjC(0)

+θ(−z0) (iγ5)AB (γν)CD c
j
D(0)c̄iA(z)ūjC(0)uiB(z), (4.19)

51



where the fact that operators of different flavors anti-commute has been used.

So, the time ordered product becomes:

T{c̄(z)iγ5u(z)ū(0)γνc(0)}

= (iγ5)AB (γν)CD
(
θ(z0)c̄iA(z)cjD(0)uiB(z)ūjC(0) + θ(−z0)cjD(0)c̄iA(z)ūjC(0)uiB(z)

)
.

(4.20)

Then, one observes the following:

T{c̄(z)iγ5u(z)ū(0)γνc(0)} = (iγ5)AB (γν)CD T{c̄iA(z)cjD(0)}T{uiB(z)ūjC(0)},
(4.21)

owing to the fact that θ(z0)θ(−z0) = 0 and θ(z0)θ(z0) = θ(z0). The time ordered

product of u-quark operators gives:〈
0
∣∣T{uiB(z)ūjC(0)}

∣∣ 0〉 = iS
(u)ij
BC +

〈
0
∣∣: uiB(z)ūjC(0) :

∣∣ 0〉 , (4.22)

where the normal ordered product gives condensates involving u-quarks. The

propagator:

iS
(u)ij
BC ' δij

izα (γα)BC
2π2z4

(4.23)

for light quarks [17]. The condensate terms deserve some discussion. When

expanded, the expression for
〈
0
∣∣: uiB(z)ūjC(0) :

∣∣ 0〉 brings terms in the form〈
0
∣∣∣: uiB(0)

←−
Dµ1 · · ·

←−
Dµr ū

j
C(0) :

∣∣∣ 0〉 zµ1 · · · zµr , (4.24)

where the matrix elements are independent of z. Each factor of zµi (i = 1 . . . r)

can be obtained in the following way:

zµ1 · · · zµre−iq·z = (i)r
∂

∂qµ1

· · · ∂

∂qµr
e−iq·z. (4.25)

When the matrix element involving c-quarks is written in terms of the LCDAs,

the z-integral takes the following form:
ˆ
d4ze−iq·z+uP ·z = (2π)4δ4(uP − q), (4.26)

and the derivatives of this function with respect to qµ are obtained. After per-

forming the Borel transformation, this term does not contribute to the correla-

tion function.
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Returning to c-quarks, using Wick’s theorem, one obtains:

T{c̄(z)γ5γαγνc(0)} =: c̄(z)γ5γαγνc(0) : +
︷ ︸︸ ︷
c̄(z)γ5γαγνc(0), (4.27)

where :: denotes normal ordering and
︷︸︸︷
AB denotes the contraction of operators

A,B (here the c-quark operators). Since the matrix element without any c-

quark operators will give zero (owing to presence of the cc̄ state), the correlation

function (without the condensate terms) becomes the following:

FQCD
ν = −i

ˆ
d4z exp(−iq · z)

zα

2π2z4

〈
cc̄(P, ε)

∣∣∣: c̄(z)γ5γαγνc(0) :
∣∣∣0〉 . (4.28)

One has:

γαγν = −iσαν + gαν , (4.29)

and according to [36], the relevant expression up to twist-2 should involve the σ

term only (the g term contributions begin from twist-3).

One uses the definitions from [30, 36] for the matrix element (see Section 3.1).

Then:

FQCD
ν =

f⊥cc̄
2π2

ˆ
d4z

ˆ 1

0

du exp(i(up− q) · z)
zα

z4
(ε∗⊥αpν − ε∗⊥νpα)Φ⊥(u), (4.30)

where:

p · z = P · z −m2
cc̄

z2

2P · z ,

ε∗⊥·z = ε∗·z−ε
∗ · z
p · z

(
p · z − m2

cc̄

2p · z z
2

)
= ε∗·z m2

cc̄z
2

2 (p · z)2 = ε∗·z m2
cc̄z

2

2
(
P · z −m2

cc̄
z2

2P ·z

)2 .

(4.31)

At O (1/z4), one obtains:

p · z ' P · z, ε∗⊥ · z ' 0, exp(iup · z) ' exp(iuP · z). (4.32)

So one has:

FQCD
ν = − f

⊥
cc̄

2π2

ˆ 1

0

duΦ⊥(u)

ˆ
d4z

exp {i (uP − q) · z}
z4

×
{
− (ε∗ · z)Pν +

(ε∗ · z)m2
cc̄

(P · z)
zν − (P · z) ε∗ν

}
. (4.33)
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In the previous section, the complex conjugate of this function was used. The

complex conjugate is:

F ∗QCDν = − f
⊥
cc̄

2π2

ˆ 1

0

duΦ⊥(u)

ˆ
d4z

exp {−i (uP − q) · z}
z4

×
{
− (ε · z)Pν +m2

cc̄

(ε · z)

(P · z)
zν + (P · z) εν

}
. (4.34)

Now the correlation function can be examined term by term.

For factors involving zµ, one may take derivatives with respect to kµ ≡ (uP − q)µ.
For the 1/(P · z) factor, one may define:

ϕ(u) ≡ −
uˆ

1

dvΦ⊥(v); (4.35)

and integrate by parts with respect to u once to get:
ˆ 1

0

du exp {−i (uP − q) · z}Φ⊥(u)
(ε · z)

(P · z)
=

ˆ 1

0

duϕ(u)ε · ∂
∂k

exp {−ik · z} .
(4.36)

Since
´ 1

0
duΦ⊥(u) = 0 [30, 36], one obtains ϕ(0) = 0 in the above line.

At this point, the correlation function becomes:

F ∗QCDν =
−if⊥cc̄
2π2

ˆ 1

0

du{−PνΦ⊥(u)

(
ε · ∂
∂k

)
+ ενΦ⊥(u)

(
P · ∂

∂k

)

+m2
cc̄ϕ(u)

(
ε · ∂
∂k

)
∂

∂kν
}
ˆ
d4z

1

z4
exp {−ik · z} . (4.37)

Now one can perform a Wick rotation z0 ≡ −iz0
E, ~z ≡ ~zE which leads to:

F ∗QCDE,ν = − f
⊥
cc̄

2π2

ˆ 1

0

du{PE,νΦ⊥(u)

(
εE ·

∂

∂kE

)
− εE,νΦ⊥(u)

(
PE ·

∂

∂kE

)

+m2
cc̄ϕ(u)

(
εE ·

∂

∂kE

)
∂

∂kνE
}
ˆ
d4zE

1

z4
E

exp {ikE · zE} . (4.38)

One can proceed now by calculating the z-integral.

Making use of:
1

(z2
E)n

=
1

Γ(n)

ˆ ∞
0

dt exp(−tz2
E)tn−1, (4.39)
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one obtains:
ˆ
d4zE

1

z4
E

exp {ikE · zE} =

ˆ
d4zE

ˆ ∞
0

t exp
{
−tz2

E + ikE · zE
}
dt. (4.40)

The Gaussian integral can be evaluated as:
ˆ
d4z exp{−tz2 + ik · z} =

ˆ
d4z exp{−t(z − ik

2t
)2 − k2

4t
} = e−

k2

4t
π2

t2
, (4.41)

owing to the fact that in one dimension
´∞
∞ dze−tz

2
=
√

π
t
and one can shift the

integration variable z since the integration is over all space. So, one obtains:
ˆ
d4zE

ˆ ∞
0

t exp
{
−tz2

E + ikE · zE
}
dt =

ˆ ∞
0

dt
π2

t
exp

{
−k

2
E

4t

}
. (4.42)

Making a change of variables v ≡ 1/t one obtains 1:
ˆ ∞

0

dt
π2

t
exp

{
−k

2
E

4t

}
=

ˆ ∞
0

dv
π2

v
exp

{
−vk

2
E

4

}
. (4.43)

One now plugs this result into the expression for the correlation function and

obtains:

F ∗QCDE,ν = − f
⊥
cc̄

2π2

ˆ 1

0

du{PE,νΦ⊥(u)

(
εE ·

∂

∂kE

)
− εE,νΦ⊥(u)

(
PE ·

∂

∂kE

)

−m2
cc̄ϕ(u)

(
εE ·

∂

∂kE

)
∂

∂kνE
}
ˆ ∞

0

dv
π)2

v
exp

{
−vk

2
E

4

}
= f⊥cc̄

ˆ 1

0

du{−PE,ν
Φ⊥(u) (εE · qE)

(uP − q)2
E

+εE,ν

[−Φ⊥(u) (PE · (uP − q)E) +m2
cc̄ϕ(u)

(uP − q)2
E

]

+
2m2

cc̄ϕ(u) (εE · qE)

(uP − q)4
E

(uP − q)E,ν}. (4.44)

Introducing p′E ≡ PE − qE and ū ≡ 1 − u, one obtains for the scalar products

PE · (uP − q)E =
(
m2
cc̄ + p

′2
E − q2

E

)
/2 and (uP − q)2

E = uūm2
cc̄ + up

′2
E + ūq2

E and

the correlation function becomes the following:

F ∗QCDE,ν

= f⊥cc̄

ˆ 1

0

du{p′E,ν (εE · qE)

[
− Φ⊥(u)(

uūm2
cc̄ + up

′2
E + ūq2

E

) +
2m2

cc̄uϕ(u)(
uūm2

cc̄ + up
′2
E + ūq2

E

)2

]
1 Although the resulting integral 4.43 is divergent, what are needed are its derivatives, which are

convergent.
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+qE,ν (εE · qE)

[
Φ⊥(u)(

uūm2
cc̄ + up

′2
E + ūq2

E

) − 2m2
cc̄ūϕ(u)(

uūm2
cc̄ + up

′2
E + ūq2

E

)2

]

+εE,ν
m2
cc̄ϕ(u)− 1

2
Φ⊥(u)

(
(1− 2u)m2

cc̄ + p
′2
E − q2

E

)
uūm2

cc̄ + up
′2
E + ūq2

E

}. (4.45)

Remembering that:

F phen.∗
E,ν (q, p′, ε) = − m2

DmD∗fDfD∗

mc(m2
D + q2

E)(m2
D∗ + p′2E)

×
{

(εE · qE)(p
′
E · qE)

m2
D∗

(G1 −G2)p
′
E,ν +G1(εE · qE)qE,ν +G2(p

′
E · qE)εE,ν

}
(4.46)

one has the following relations (factors multiplying (εE ·qE)p
′
E,ν , (εE ·qE)qE,ν , εE

respectively):

FQCD
p′ = f⊥cc̄

ˆ 1

0

du

{
−Φ⊥(u)(

uūm2
cc̄ + up

′2
E + ūq2

E

) +
2m2

cc̄uϕ(u)(
uūm2

cc̄ + up
′2
E + ūq2

E

)2

}

F pheno.
p′ =

(G1 −G2)m2
DfDfD∗

mD∗mc

(
m2
cc̄ + p

′2
E + q2

E

)
/2

(m2
D + q2

E)(m2
D∗ + p

′2
E)

;

FQCD
q = f⊥cc̄

ˆ 1

0

du

{
Φ⊥(u)(

uūm2
cc̄ + up

′2
E + ūq2

E

) − 2m2
cc̄ūϕ(u)(

uūm2
cc̄ + up

′2
E + ūq2

E

)2

}

F pheno.
q = −G1m

2
D̄
mD∗fD̄fD∗

mc

1

(m2
D + q2

E)(m2
D∗ + p

′2
E)

;

FQCD
ε = f⊥cc̄

ˆ 1

0

du

{
m2
cc̄ϕ(u)− 1

2
Φ⊥(u)

(
(1− 2u)m2

cc̄ + p
′2
E − q2

E

)
uūm2

cc̄ + up
′2
E + ūq2

E

}

F pheno.
ε =

G2m
2
D̄
mD∗fD̄fD∗

mc

(m2
cc̄ + p′2E + q2

E) /2

(m2
D + q2

E)(m2
D∗ + p

′2
E)
. (4.47)

Since ε is fixed but arbitrary, ε · q terms can be cancelled from the two sides.

4.3 Borel transform and couplings

One can write the dispersion relations and consider the contributions coming

from them following the treatment in [65]. The correlation function calculated
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in QCD contains terms having the form
´ 1

0
du f(u)

(u(p′)2
E+ūq2

E+uūm2
cc̄)

n . Since the cal-

culation will proceed with Euclidean momenta, it is convenient to supress the

cumbersome notation pE from now on: pE → p. Then, one defines:
1ˆ

0

du
f(u)

(up′2 + ūq2 + uūm2
cc̄)n
≡

∞̂

0

ds1

∞̂

0

ds2
ρn(s1, s2)

(s1 + p′2)(s2 + q2)
. (4.48)

Now one performs a double Borel transform with respect to q2 and p22:

BM2
2
(p′2)BM2

1
(q2)

1ˆ

0

du
f(u)

(up′2 + ūq2 + uūm2
cc̄)n

≡ BM2
2
(p′2)BM2

1
(q2)

∞̂

0

ds1

∞̂

0

ds2
ρn(s1, s2)

(s2 + p′2)(s1 + q2)

=

∞̂

0

ds1

∞̂

0

ds2ρn(s1, s2) exp(− s1

M2
1

− s2

M2
2

) (4.49)

To obtain the spectral density, one need to perform two more Borel transforms

with respect to 1/M2
1 and 1/M2

2 , and obtains:

Bτ2(
1

M2
2

)Bτ1(
1

M2
1

)


∞̂

0

ds1

∞̂

0

ds2ρn(s1, s2) exp(− s1

M2
1

− s2

M2
2

)

 =
1

τ1τ2

ρn(
1

τ1

,
1

τ2

).

(4.50)

Having calculated the spectral density, one can write the correlation function in

terms of a dispersion integral.

This is the general way of obtaining the spectral density when one has two

independent momenta. However one may need a further simplification since

the Borel transform of the above function also includes obviously the DA itself.

When the pseudo-scalar and vector meson masses are close, one can assume

M2
1 = M2

2 = 2M2. The mass difference is 0.14GeV for D and D∗ mesons, and

is 0.05GeV for B and B∗ mesons and so this approximation can be done. One

defines:

s ≡ (s1 + s2)/2; β ≡ s1/(s1 + s2)

⇒
∞̂

0

ds1

∞̂

0

ds2 =

1ˆ

0

dβ

∞̂

0

ds

∣∣∣∣∣∣∂s1/∂s ∂s2/∂s

∂s1/∂β ∂s2/∂β

∣∣∣∣∣∣ =

∞̂

0

ds · s
1ˆ

0

dβ. (4.51)
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Then, the calculation proceeds as follows:

∞̂

0

ds1

∞̂

0

ds2ρn(s1, s2) exp(− s1

M2
1

− s2

M2
2

) ≡
∞̂

0

ds · s
1ˆ

0

dβρn(s, β) exp(− s

M2
)

=

∞̂

0

ds · ρn(s) exp(− s

M2
), (4.52)

where ρn(s) ≡
´ 1

0
dβρn(s, β). Taking one more Borel transform here suffices to

calculate the spectral density.

Consider again
´ 1

0
du f(u)

(u(p′)2
E+ūq2

E+uūm2
cc̄)

n :

Bp′2,M2
2
Bq2,M2

1


1ˆ

0

du
f(u)

(up′2 + ūq2
E + uūm2

cc̄)n


= Bp′2,M2

2


1ˆ

0

du
f(u)

ūnΓ(n)M
2(n−1)
1

exp

[
−

u
ū
p′2 + um2

cc̄

M2
1

]
=

1ˆ

0

du
f(u)

ūnΓ(n)M
2(n−1)
1

exp

[
−um

2
cc̄

M2
1

]
M2

2 δ

(
uM2

2

ūM2
1

− 1

)

=
f(u0) exp

[
−u0m2

cc̄

M2
1

]
ūn0 Γ(n)M

2(n−1)
1

M2
2

M2
2

ū2
0M

2
1

=
f(u0) exp

[
−u0m2

cc̄

M2
1

]
ūn−2

0 Γ(n)M
2(n−2)
1

, (4.53)

where u0 = M2
1/(M

2
1 +M2

2 ). Choosing M2
1 = M2

2 = 2M2 gives:

Bp′2,M2
2
Bq2,M2

1


1ˆ

0

du
f(u)

(up′2 + ūq2 + uūm2
cc̄)n


=

 f(1
2
) exp

[
− m2

cc̄

4M2

]
M2, n = 1

f(1
2
) exp

[
− m2

cc̄

4M2

]
, n = 2

 . (4.54)

So, one proceeds as follows. Defining F1(M2,m2
cc̄) ≡ f(1

2
) exp

[
− m2

cc̄

4M2

]
M2 and

F2(M2,m2
cc̄) ≡ f(1

2
) exp

[
− m2

cc̄

4M2

]
, one observes that:

−4
∂F1

∂m2
cc̄

= F2 ⇒ −4
∂ρ1

∂m2
cc̄

= ρ2. (4.55)
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For n = 2:

f(
1

2
)BM−2,τ−1

{
exp

[
− m2

cc̄

4M2

]}
=

∞̂

0

ds · ρ2(s)
1

τ
δ(
s

τ
− 1) = ρ2(τ)

⇒ ρ2(s) = f(
1

2
)
1

s
δ

(
m2
cc̄

4s
− 1

)
. (4.56)

So, for n = 1:

ρ1(s) = f(
1

2
)θ

(
1− m2

cc̄

4s

)
. (4.57)

Here, it is convenient to summarize the procedure for finding the spectral den-

sities:

BM−2,s−1

{[
Bp′2,M2

2
Bq2,M2

1
F (q2, p

′2)
]
M2

1

= M2
2 ≡ 2M2

}

≡ Bq2,p′2→M−2,s−1F (q2, p
′2) = ρ(s), (4.58)

where[
Bp′2,M2

2
Bq2,M2

1
F (q2, p

′2)
]
M2

1 =M2
2≡2M2

≡
∞̂

0

ds · ρ(s) exp(− s

M2
). (4.59)

In JPC = 1++ case, s0 = ((mD + α)2 + (mD∗ + α)2)/2 (0GeV ≤ α ≤ 0.5GeV ),

that is, slightly above one fourth of the cc̄/bb̄ mass squared. Threshold param-

eters are generally chosen to be slightly above the mass squared of the relevant

hadrons, and are expected to be less than the mass squared of the first excited

states. Since s = (s1 + s2)/2, the above mentioned threshold is obtained. So the

above relation becomes, in its final form (after continuum subtraction):

[
Bp′2,M2

2
Bq2,M2

1
F (q2, p

′2)
]s0
M2

1 =M2
2≡2M2

=

s0ˆ

0

ds · ρ(s) exp(− s

M2
), (4.60)

where it is understood that the two sides are not exactly equal, but the Borel

transforms supress the excited states and continuum and one is left with the

ground state terms on both sides.

Consider once again the OPE and QCD calculations for the correlation function.

The coefficients of the p′ term were:

I : FQCD
p′ = f⊥cc̄

ˆ 1

0

du

{
−Φ⊥(u)(

uūm2
cc̄ + up

′2
E + ūq2

E

) +
2m2

cc̄uϕ(u)(
uūm2

cc̄ + up
′2
E + ūq2

E

)2

}
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F pheno.
p′ =

(G1 −G2)m2
DfDfD∗

mD∗mc

(
m2
cc̄ + p

′2
E + q2

E

)
/2

(m2
D + q2

E)(m2
D∗ + p

′2
E)
.

Then:

Bq2,p′2→M−2,s−1

ˆ 1

0

du

{
− Φ⊥(u)

up
′2
E + ūq2

E + uūm2
cc̄

+
2m2

cc̄ϕ(u)u(
up
′2
E + ūq2

E + uūm2
cc̄

)2

}

≡ ρI(s) = −Φ⊥(
1

2
)θ

(
1− m2

cc̄

4s

)
+ 2m2

cc̄ϕ(
1

2
)

1

2s
δ

(
m2
cc̄

4s
− 1

)

=
m2
cc̄

s
ϕ(

1

2
)δ

(
m2
cc̄

4s
− 1

)
, (4.61)

due to the fact that Φ⊥(1
2
) = 0 for being asymmetric with respect to u = 1/2.

For the right hand side:

f⊥cc̄

s0ˆ

0

ds · ρI(s) exp(− s

M2
)

= Bq2,p′2→M−2,s−1

{
(G1 −G2)m2

DfDfD∗

mD∗mc

(
m2
cc̄ + p

′2
E + q2

E

)
/2

(m2
D + q2

E)(m2
D∗ + p

′2
E)

}

= Bq2,p′2→M−2,s−1{(G1 −G2)m2
DfDfD∗

2mD∗mc

{ m2
cc̄

(m2
D + q2

E)(m2
D∗ + p

′2
E)

+
1

(m2
D + q2

E)

(
1− m2

D∗

(m2
D∗ + p

′2
E)

)
+

1

(m2
D∗ + p

′2
E)

(
1− m2

D

(m2
D + q2

E)

)
}}

= Bq2,p′2→M−2,s−1

{
(G1 −G2)m2

DfDfD∗

2mD∗mc

m2
cc̄ −m2

D −m2
D∗

(m2
D + q2

E)(m2
D∗ + p

′2
E)

}
⇒ FQCD

p′ = fcc̄ϕ

(
1

2

)
m2
cc̄ exp[− m2

cc̄

4M2
]

= F pheno.
p′ =

(G1 −G2)m2
DfDfD∗

2mD∗mc

(
m2
cc̄ −m2

D −m2
D∗
)

exp[−m
2
D +m2

D∗

2M2
], (4.62)

⇒ G1−G2 = 2ϕ

(
1

2

)
f⊥cc̄

fDfD∗

m2
cc̄mD∗mc

m2
D (m2

cc̄ −m2
D −m2

D∗)
exp

[
2 (m2

D +m2
D∗)−m2

cc̄

4M2

]
.

(4.63)

The q terms were:

II : FQCD
q = f⊥cc̄

ˆ 1

0

du

{
Φ⊥(u)

up′2 + ūq2 + uūm2
cc̄

− 2m2
cc̄ϕ(u)ū

(up′2 + ūq2 + uūm2
cc̄)

2

}
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F pheno.
q = −G1m

2
DmD∗fDfD∗

mc

1

(m2
D + q2)(m2

D∗ + p′2)
.

Following the above steps, one obtains:

ρII(s) = −m
2
cc̄

s
ϕ(

1

2
)δ

(
m2
cc̄

4s
− 1

)
. (4.64)

⇒ FQCD
q = −f⊥cc̄ϕ

(
1

2

)
m2
cc̄ exp

[
−m

2
D +m2

D∗

2M2

]

= F pheno.
q = −G1m

2
DmD∗fDfD∗

mc

exp

[
− m2

cc̄

4M2

]
, (4.65)

⇒ G1 = ϕ

(
1

2

)
f⊥cc̄

fDfD∗

m2
cc̄mc

m2
DmD∗

exp

[
2 (m2

D +m2
D∗)−m2

cc̄

4M2

]
. (4.66)

The ε terms were:

FQCD
ε = f⊥cc̄

ˆ 1

0

du

{
m2
cc̄ϕ(u)− 1

2
Φ⊥(u)

(
(1− 2u)m2

cc̄ + p
′2 − q2

)
uūm2

cc̄ + up′2 + ūq2

}

F pheno.
ε =

G2m
2
DmD∗fDfD∗

mc

(m2
cc̄ + p′2 + q2) /2

(m2
D + q2)(m2

D∗ + p′2)
.

Consider the following term on the left hand side:

Bp′2,M2
2
Bq2,M2

1


1ˆ

0

du
Φ⊥(u) (1− 2u)m2

cc̄

up′2 + ūq2 + uūm2
cc̄


→
[
Φ⊥(u) (1− 2u)m2

cc̄θ

(
1− m2

cc̄

4s

)]
u=1/2

= 0. (4.67)

So this term does not contribute to the result.

Consider now the other terms on the left hand side:

Ball op.


1ˆ

0

du
m2
cc̄ϕ(u)

up′2 + ūq2 + uūm2
cc̄

 = m2
cc̄ϕ(

1

2
)θ

(
1− m2

cc̄

4s

)
. (4.68)

lim
M2

1 ,M
2
2→2M2

Bp′2,M2
2
Bq2,M2

1

1

2

1ˆ

0

du
Φ⊥(u) (p′2 − q2)

up′2 + ūq2 + uūm2
cc̄


= lim

M2
1 ,M

2
2→2M2

Bp′2,M2
21

2

1ˆ

0

duΦ⊥(u)

[
p′2/ū

u
ū
p′2 + q2 + um2

cc̄

− 1

ū

(
1−

u
ū
p′2 + um2

cc̄
u
ū
p′2 + q2 + um2

cc̄

)]
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= lim
M2

1 ,M
2
2→2M2

Bp′2,M2
21

2

1ˆ

0

duΦ⊥(u) exp

[
−um

2
cc̄

M2
1

](
u

ū
m2
cc̄ −M2

1 ū
∂

∂u

)[
M2

2 δ

(
uM2

2

ūM2
1

− 1

)] ;

since Φ⊥(0) = Φ⊥(1) = 0. This leads to the following:

= lim
M2

1 ,M
2
2→2M2

Bp′2,M2
2

1

2

1ˆ

0

duM2
2 δ

(
uM2

2

ūM2
1

− 1

)(
u

ū
m2
cc̄ −M2

1

∂

∂u

)[
ūΦ⊥(u) exp

[
−um

2
cc̄

M2
1

]]
= −M4Φ′⊥(

1

2
) exp

[
− m2

cc̄

4M2

]
. (4.69)

Then:

ρ̃III(s) = BM−2,s−1

{
−M4Φ′⊥(

1

2
) exp

[
− m2

cc̄

4M2

]}

= BM−2,s−1

−M4Φ′⊥(
1

2
)

∞̂

0

dt× t× exp

[
−m

2
cc̄ + 4t

4M2

]

= −M4Φ′⊥(
1

2
)

∞̂

0

dt×t×1

s
δ

[
m2
cc̄ + 4t

4s
− 1

]
= −Φ′⊥(

1

2
)

(
s− m2

cc̄

4

)
θ

(
s− m2

cc̄

4

)
.

(4.70)

⇒ F pheno.
ε =

G2fDfD∗m
2
DmD∗

2mc

exp

[
−m

2
D +m2

D∗

2M2

]

= FQCD
ε = 2f⊥cc̄

ˆ s0

m2
cc̄/4

ds exp
[
− s

M2

]{
m2
cc̄ϕ(

1

2
)− Φ′⊥(

1

2
)

(
s− m2

cc̄

4

)}
. (4.71)

Finally, the third relation gives the following:

III : G2 =
f⊥cc̄

fDfD∗

4mc exp

[
2(m2

D+m2
D∗)

4M2

]
m2
DmD∗ (m2

cc̄ −m2
D −m2

D∗)

×
ˆ s0

m2
cc̄/4

ds exp
[
− s

M2

]{
m2
cc̄ϕ(

1

2
)− Φ′⊥(

1

2
)

(
s− m2

cc̄

4

)}
. (4.72)
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As a summary, all three relations for the couplings have been collected together

at this point:

I : G1 −G2 = 2ϕ
(

1
2

) f⊥cc̄
fDfD∗

m2
cc̄mD∗mc

m2
D(m2

cc̄−m2
D−m

2
D∗)

exp

[
2(m2

D+m2
D∗)−m2

cc̄

4M2

]
;

II : G1 = ϕ
(

1
2

) f⊥cc̄
fDfD∗

m2
cc̄mc

m2
DmD∗

exp

[
2(m2

D+m2
D∗)−m2

cc̄

4M2

]
;

III : G2 = f⊥cc̄
fDfD∗

4mc exp

[
2(m2

D+m2
D∗)

4M2

]
m2
DmD∗(m2

cc̄−m2
D−m

2
D∗)

×
´ s0
m2
cc̄/4

ds exp
[
− s
M2

] {
m2
cc̄ϕ(1

2
)− Φ′⊥(1

2
)
(
s− m2

cc̄

4

)}
. (4.73)

Before proceeding further, one can concentrate on the relations giving G1, G2

and G1−G2 one more time. The relations giving G1 and G1−G2 are independent

of s0, and one observes that

G1 −G2

G1

=
2m2

V

m2
qq̄ −m2

P −m2
V

, (4.74)

that is, their ratio is also independent from the LCDA at twist-2 accuracy. It is

an important question whether this result is valid only for this level of accuracy

or is a general result, which cannot be addressed in this work. However, this

relation is another sum rule, and being independent of the LCDAs (at least at

this level of accuracy), it can be useful in interpreting the results.

At this point, one has the desired sum rules for 1++ heavy quarkonia. The

parameters appearing in the above expressions can be categorized as follows:

masses of c/b-quarks and D̄/B̄ and D∗/B∗ mesons, leptonic decay constants

of D̄/B̄ and D∗/B∗ mesons are inputs from experiment, whose values can be

found in [7]. cc̄/bb̄ masses have been calculated in quark model (in [41]), and are

presented in Appendix 2.4. Leptonic decay constants of the quarkonium states,

whose values can be found in Tables 3.1, 3.2 and 3.3, have been calculated using

the relations derived in [30] and the quark model wavefunctions calculated in

the framework of [41,47].

The above mentioned experimental values are as follows. Leptonic decay con-

stants of D̄/B̄ and D∗/B∗ mesons [17]: fD = 180MeV , fD∗ = 270MeV ,

fB = 170MeV , fB∗ = 195MeV . Masses of c/b quarks, D̄/B̄ and D∗/B∗
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mesons [7]: mc = 1.28GeV , mb = 4.66GeV , mD = 1.87GeV , mB = 5.28GeV ,

mD∗ = 2.01GeV , mB∗ = 5.33GeV .

4.4 Numerical Results

Up to this section, necessary ingredients for calculating the couplings of L = 1

axial-vector quarkonia to pseudo-scalar and vector mesons (PVA couplings) have

been demonstrated and calculated. In addition to these, LCDAs of L = 1

charmonia and bottomonia have been calculated. In this chapter, numerical

results for PVA couplings will be presented.

Before proceeding further for the couplings, masses and decay constants of the

vector and pseudo-scalar mesons should be given.

Table4.1: Masses and decay constants of D, D∗, B, B∗ mesons used in calcula-
tions.

Meson Mass (GeV) [7] Decay Constant (GeV) [17]
D 1.87 0.18

D∗ 2.01 0.27

B 5.28 0.17

B∗ 5.33 0.195

Results for the couplings can now be presented. The factors involving certain

values of the derivative and first integral of the LCDAs have been calculated

using the fitted functions presented in the previous section. The fit parameters

for n = 1, 2 bottomonia are not affected by the cut-off. As a consequence,

numerical values of the corresponding couplings are also not affected by the

cut-off.

In calculating the couplings, the threshold s0 has been chosen as (mP+α)2+(mV +α)2

2
,

where 0 ≤ α ≤ 0.5GeV .

As observed in equations 4.62, 4.65 and 4.71, the spectral densities leading to

the first two equations involve delta functions, so the resulting FQCD
p′ and FQCD

q

functions are independent of s0, while FQCD
ε depends on s0 and so depends on
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α. For this reason, in order to determine the value of α, FQCD
ε has been used.

The dependence on α is exponential, and G2 is dependent on another parameter,

namely the Borel parameter M2 (which is also true for G1). However, one can

observe that −∂ ln[F pheno.ε ]
∂(1/M2)

=
m2
P+m2

V

2
, that is, independent of M2 and α. So,

defining the following function:

gQCD(M2, α) ≡ −∂ ln[FQCD
ε ]

∂(1/M2)
, (4.75)

one can consider plotting gQCD(M2, α) and m2
P+m2

V

2
versus α and try to determine

a sensible interval for α which lies within 0 ≤ α ≤ 0.5GeV .

One also expects the couplings to change slowly (or not to change at all) with

M2, since this is not a parameter dictated by the physics involved, but is a

calculational tool to suppress the contributions of the hadronic continuum. So,

the dependence of the couplings on the Borel parameter are also examined.

Choices for the values of α and M2 and the resulting values for the couplings

are discussed below.

As can be observed in the plots, the couplings do not change significantly for val-

ues of M2 larger than the vector meson mass squared. For this reason, both for

charmonia and for bottomonia, the Borel parameters are chosen to be around the

vector meson mass squared; 5GeV 2 for charmonia and 25GeV 2 for bottomonia.

This behaviour is not affected by the dependence on α. The cut-off dependence

is obviously insignificant for bottomonia LCDAs, and as the numbers and plots

are calculated one observes that the cut-off dependence for charmonia affects

the numbers but not M2 or α dependece behaviour.

α dependence of G2 appears to be case dependent. For n = 1 charmonium, one

can find a value of α such that independently calculated values for G1, G2 and

G1−G2 agree, and this value of α lies within the previously prescribed interval.

The values of α corresponding to the two different cut-off cases have been used

in the relevant plots and in calculating the couplings, which have been presented

in Table 4.2. For n = 2 charmonium, such a value of α (∼ 0.338GeV ) causes

s0 = 3.89694GeV , that is, slightly below m2
cc̄/4. The conclusion is that G2 = 0

for n = 2 charmonium. This conclusion is also supported by the fact that for
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Figure 4.1: Plots of gQCD versus α.

mcc̄ ∼ 3.95GeV , 4.74 implies G2 ∼ 0, and in this work mcc̄ = 3.97GeV (cc̄ mass

around this value is also suggested in other references in the literature, such

as [10, 75]). n = 3 charmonium case is the same with n = 1 case, except that

the sign and order of magnitude of G2 is different. For n = 1 bottomonium,

the value of α making G1, G2 and G1 − G2 agreed is negative. For n = 2

bottomonium, even the signs of G1, G2 and G1 −G2 cannot be consistent with

the given parameters and the interval for α. This leads to the same conclusion

with the n = 2 charmonium case. For n = 3 bottomonium, the case is the same

with n = 1, 3 charmonium cases, except that the signs of G2 for n = 1 and n = 3

bottomonia are the same.

In order to estimate the extent of errors in calculating the PVA couplings, it is

possible to consider how much the fit functions deviate from the original ones.

As can be observed from the plots, the deviations | φ−φfit
minφ,φfit

| are not large in the

region |ξ| < 0.5, while on the "tails", that is, in the regions beyond |ξ| < 0.5
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n = 1 cc̄, Λ =∞ n = 1 cc̄, Λ = mc
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Figure 4.2: Plots for G1 −G2, G1 and G2 versus M2 (α = 0.2GeV ).
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n = 1 bb̄, Λ =∞ n = 1 bb̄, Λ = mb
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Figure 4.3: Plots for G1 −G2, G1 and G2 versus M2 (α = 0.2GeV ).
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Figure 4.4: Plots of G2 versus α, where M2 = 5GeV 2 for charmonia and M2 =

25GeV 2 for bottomonia.
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Table4.2: PVA couplings. The values of M2 and s0 are 5GeV 2 and 4.59GeV 2

for all charmonia, 25GeV 2 and 30.3GeV 2 for all bottomonia.

cc̄ (Λ =∞)

G1 −G2 (GeV −1) G1 (GeV −1) G2 (GeV −1)

n = 1 −10.2 −6.95 5.62

n = 2 −4.34 −4.34 −2.20

n = 3 −4.13 −4.54 −0.30

cc̄(Λ = mc)

G1 −G2 (GeV −1) G1 (GeV −1) G2 (GeV −1)

n = 1 −9.40 −6.39 5.34

n = 2 −3.42 −3.41 −2.18

n = 3 −2.81 −3.08 −0.12

bb̄ (Λ =∞)

G1 −G2 (GeV −1) G1 (GeV −1) G2 (GeV −1)

n = 1 −25.3 −18.5 24.3

n = 2 −14.2 −12.5 −8.66

n = 3 −12.5 −12.3 0.71

bb̄ (Λ = mb)

G1 −G2 (GeV −1) G1 (GeV −1) G2 (GeV −1)

n = 1 −25.3 −18.5 24.5

n = 2 −14.2 −12.5 −8.55

n = 3 −12.5 −12.3 0.75
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can be large as the functions approach to zero exponentially in these regions.

However, the contributions from these regions to the sum rules obtained in this

work are not significant, owing to the fact that the first integrals and derivatives

at ξ = 0 of the LCDAs will enter into the sum rules, where the integrals are

less sensitive to the exact values of the original function, while the behaviour

of the original and fit functions at ξ = 0 match rather well so that | φ−φfit
minφ,φfit

|
cannot be large. Other contributions to the errors are from the estimated errors

in the other parameters, such as the vector and pseudoscalar decay constants

and masses. The dependence of the couplings on the Borel parameter is another

source of error. It can be observed from the plots that above M2 = 5GeV 2 for

charmonia and M2 = 25GeV 2 for bottomonia, the couplings converge rapidly,

and it appears that this source cannot have a significant contribution to the error

in the couplings. The error in quarkonium masses and decay constants cannot be

estimated here, though it can be asserted that their contribution to the overall

error can be expected to have the same extent with that of the LCDAs.

According to [17], the decay constants of D,D∗ and B,B∗ mesons with corre-

sponding errors are

fD = 180± 30MeV, fB = 170± 30MeV,

fD∗ = 270± 35MeV, fB = 195± 35MeV. (4.76)

So, the fractional error in these numbers, ∆f/f , is largest for the B meson,

being around 18 percent.

According to PDG listings [7], the errors in the measured masses of D,D∗ and

B,B∗ mesons is rather small, e.g. below 0.05 percent, so can safely be neglected

for an estimation.

Since the decay constants of D,D∗ and B,B∗ are inversely proportional to the

couplings, the fractional errors are to be summed to estimate the error in the

couplings:

∆G

G
=

∆fP
fP

+
∆fV
fV

. (4.77)

The conclusion is that the error in the couplings due to the D,D∗ and B,B∗

mesons is around 35 percent, which is also the extent of the overall error.
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4.5 Couplings and charmonium content of X(3872)

Calculated values for the couplings also give insights on the quarkonium content

of Xc/b mesons. To describe this insight, one can consider the expression for the

coupling matrix element (Eq. 4.12) once again:〈
D̄0(k)D∗0(k′, η(λ)) |Jint| cc̄(k + k′, ε(σ))

〉

≡
[
G1(ε(σ) · k)(η∗(λ) · k) +G2(k′ · k)(ε(σ) · η∗(λ))

]
≡ g(k, k′, ε, η). (4.78)

The mass difference between lowest lying X states and sum of the vector and

pseudo-scalar masses for the excited states is not large; so one can consider the

molecule states in the nonrelativistic approximation and the rest frame of the cc̄

system. In this system, ε ∼ (0,~ε), while k ∼ (mD,~0) and similar for k′ . So, the

first term is negligible and the second term is rather of interest. When charmo-

nium states are considered, one observes that G2 is negligible for n = 2. This

means, the coupling of n = 2 charmonium to DD∗ molecule is negligible. It has

been asserted in [14] that one expects roughly 5 percent charmonium contribu-

tion in X(3872), and this contribution is most probably from n = 2. However,

the conclusion here disfavors this argument; the charmonium conitribution to

X(3872) will most probably be from n = 1 state.

To estimate this contribution, one can resort to [14]. To make use of the results

obtained in [14], it is necessary to convert the normalization of states in this work

to those of [14]. In order to make the normalizations consistent, one divides the

matrix element by √mqq̄mPmV :〈
P̄ (k)V (k′, η(λ)) |Jint| qq̄(k + k′, ε(σ))

〉
→
〈
P̄ (k)V (k′, η(λ)) |Jint| qq̄(k + k′, ε(σ))

〉
√
mqq̄mPmV

=
G2∆m2

2
√
mqq̄mPmV

≡ d, (4.79)

where ∆m2 ≡ m2
qq−m2

P −m2
V . The variable d is the coupling strength discussed

in [14]. Conversion from GeV to fm is 1 fm = 0.197GeV −1.

72



Due to the sensitivity of the sum rule involving G2 on the parameters (and

especially s0), the other sum rules involving G1 and G1−G2 are used to calculate

G2 as G1 − (G1 −G2).

Table4.3: PVA couplings when states are normalized to 1. Value ofM2 is 5GeV 2

for charmonia and 25GeV 2 for bottomonia.

cc̄ (Λ =∞) cc̄ (Λ = mc)

d (GeV −1/2) d (fm1/2) d (GeV −1/2) d (fm1/2)

n = 1 2.42 1.08 2.25 1.00

n = 2 0 0 0.01 0.01

n = 3 −0.44 −0.20 −0.36 −0.16

bb̄ (Λ =∞) bb̄ (Λ = mb)

d (GeV −1/2) d (fm1/2) d (GeV −1/2) d (fm1/2)

n = 1 8.46 3.76 8.46 3.76

n = 2 2.49 1.10 2.49 1.10

n = 3 0.33 0.14 0.33 0.14

According to [14] and [76], the interval 0.1 fm1/2 ≤ |d| ≤ 0.25 fm1/2 correspond

to 10-30 percent of charmonium contribution to X(3872). This conclusion has

been based on the following assumptions: (a) cc̄ state has mass 3.906GeV , (b)

the coupling is of the same order for all radial excitations and (c) the dominant

contribution comes from n = 2. The charmonium contribution discussed in [14]

is dependent on the coupling d. In this work, it appears that the coupling of to

n = 2, 3 charmonium to the molecule state is rather small, while n = 1 appears

to have a larger coupling. With the parameters used in this work and according

to the calculations in the framework of [14], n = 1 charmonium contribution

to X(3872) is about 15 percent, n = 2 contribution is negligible and n = 3

contribution is around 1 percent [76].
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this work, leptonic decay constants and LCDAs of L = 1 axial-vector heavy

quarkonia and their couplings to vector and pseudo-scalar open flavor mesons

have been calculated.

The decay constants are roughly of the same order for n = 1, 2, 3 for each meson

state. The relations 3.27 and 3.28 are partially satisfied. The deviations from

these relations are interpreted as effects of spin-orbit interations. However, for

each n, the decay constants related in 3.27 and 3.28 are of the same order, and

hence the order of magnitude of decay constants can still be deduced correctly

without taking spin-orbit effects into account.

Functions fitted to the LCDAs and the observed patterns provide profiles for

the LCDAs, which can be used independently from the details of the calculation

performed in this work. Thus, the fit functions, fitted LCDA parameters and/or

the profiles can be used by experimentalists. The extrema are closer to ξ = 0

for bottomonia as compared to charmonia for all states. All functions approach

to zero as e−
1

1−ξ2 . Ground state profiles are the same with the profiles of the

functions calculated in [30].

Couplings of L = 1 charmonia and bottomonia to D,D∗ and B,B∗ mesons have

been calculated. The couplings converge to their limiting values (i.e. M2 →∞)

rapidly for values of M2 larger than the vector meson mass squared and this

behaviour is not affected by α nor by cut-off values used in calculating the

LCDAs and decay constants. So, when calculating the values presented in Table
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4.2, M2 values are chosen around the vector meson mass squared; 5GeV 2 for

charmonia and 25GeV 2 for bottomonia.

The charmonium contributions to X(3872) have been deduced, using the results

of this work and Ref. [14]. These contributions (about 15 percent from n = 1 ,

negligible from n = 2 and about 1 percent from n = 3 [76]) are to be tested by

experimental data, which is yet not available.
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APPENDIX A

LCDA FIT PARAMETERS

Fit parameters and plots of the LCDAs calculated in this work have been pre-

sented in the tables and figures below.

TableA.1: 3P0 fit parameters

cc̄, Λ =∞
a ξ0 σ2 β b c

n = 1 5.29486 − − 0.867659 1.36101 0.352628

n = 2 6.98919 0.257499 0.182999 1.50283 −0.560786 0.149576

n = 3 1.98475 0.51822 0.0928117 0.847995 0.482135 0.083937

cc̄, Λ = mc

a ξ0 σ2 β b c

n = 1 5.87696 − − 1.00251 1.2953 0.346534

n = 2 7.26777 0.255466 0.185855 1.52799 −0.567534 0.152166

n = 3 2.22227 0.538532 0.063798 0.736003 0.262874 0.0490782

bb̄, Λ =∞
a ξ0 σ2 β b c

n = 1 14.9131 − − 1.29523 2.47014 0.070175

n = 2 4.08343 0 0.018278 1.01745 −0.155892 0.0244758

n = 3 6.5 0.288561 0.0244281 1.70944 0.260454 0.0285309

bb̄, Λ = mb

a ξ0 σ2 β b c

n = 1 7.88045 − − 1.03344 5.01843 0.0756304

n = 2 4.15287 0 0.0173548 1.01512 −0.173547 0.0256279

n = 3 3.33759 0.280277 0.0230325 1.10439 0.283173 0.0283235

77



TableA.2: 1P1⊥ fit parameters

cc̄, Λ =∞
a ξ0 σ2 β b c

n = 1 1.78365 − − 1.4891 0.636329 0.431836

n = 2 2.43681 0.284756 0.0966684 0.921282 0 −
n = 3 1.53215 0.487944 0.122605 0.734715 0.562724 0.122482

cc̄, Λ = mc

a ξ0 σ2 β b c

n = 1 2.26917 − − 2.14573 0.541302 0.383543

n = 2 1.40861 0.370795 0.0301022 0.303023 0 −
n = 3 2.15625 0.530031 0.0483686 0.23274 0.269402 1.01888

bb̄, Λ =∞
a ξ0 σ2 β b c

n = 1 11.7196 − − 1.74248 0.126342 0.0638176

n = 2 1.59483 0.12902 0.00748694 0.1 0 −
n = 3 17.2954 0.254288 0.0186876 2.57763 0.18766 0.0149827

bb̄, Λ = mb

a ξ0 σ2 β b c

n = 1 13.3807 − − 1.94856 0.120252 0.0635912

n = 2 1.61774 0.135557 0.00687409 0.1 0 −
n = 3 8.28066 0.24319 0.0150691 1.86152 0.242844 0.0159363
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TableA.3: 1P1‖ fit parameters

cc̄, Λ =∞
a ξ0 σ2 β b c

n = 1 7.28898 − − 4.6828 1.79244 0.273028

n = 2 8.65428 0.242683 0.167489 1.86131 −0.326097 0.128336

n = 3 2.8194 0.514286 0.0924345 1.13424 0.456194 0.0903501

cc̄, Λ = mc

a ξ0 σ2 β b c

n = 1 53.6273 − − 2.39208 0.155202 0.273479

n = 2 10.0745 0.269738 0.160284 1.92211 −0.426175 0.13256

n = 3 2.74678 0.516953 0.0704437 0.980324 0.294645 0.0616262

bb̄, Λ =∞
a ξ0 σ2 β b c

n = 1 10.5205 − − 1.50861 5.65674 0.0638543

n = 2 24.2512 0 0.0147382 2.63148 −0.199554 0.0189217

n = 3 3.28997 0.232939 0.0123631 0.987534 0.300752 0.0169844

bb̄, Λ = mb

a ξ0 σ2 β b c

n = 1 9.97137 − − 1.52337 6.0868 0.0639454

n = 2 8.82176 1.25× 10−6 0.0113222 1.63918 −0.18903 0.0186983

n = 3 18.256 0.255062 0.0130517 2.61225 0.240445 0.0151002
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TableA.4: 3P1⊥ fit parameters

cc̄, Λ =∞
a ξ0 σ2 β b c

n = 1 47.933 − − 2.33766 0.183997 0.263943

n = 2 9.78918 0.142262 0.180577 1.92684 −0.391433 0.12737

n = 3 2.62768 0.474425 0.07959 1.05711 0.437048 0.0611108

cc̄, Λ = mc

a ξ0 σ2 β b c

n = 1 58.1733 − − 2.42818 0.148617 0.258012

n = 2 12.3322 0.156543 0.184174 2.02338 −0.500837 0.135897

n = 3 2.71267 0.487316 0.062559 0.966985 0.318898 0.044592

bb̄, Λ =∞
a ξ0 σ2 β b c

n = 1 460.545 − − 3.96925 0.127859 0.0535103

n = 2 24.2512 0 0.0147382 2.63148 −0.199554 0.0189217

n = 3 1.33436 0.207932 0.009408 0.1 0.314583 0.0117902

bb̄, Λ = mb

a ξ0 σ2 β b c

n = 1 460.778 − − 3.98292 0.129095 0.515475

n = 2 24.2512 0 0.0147382 2.63148 −0.199554 0.0189217

n = 3 2.50176 0.21579 0.00891723 0.692022 0.312109 0.0119042
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TableA.5: 3P1‖ fit parameters

cc̄, Λ =∞
Λ =∞ a ξ0 σ2 β b c

n = 1 1.89725 − − 0.833424 0.531147 0.334782

n = 2 3.59963 0.000054 0.148262 0.571469 −0.551464 0.67177

n = 3 2.32785 0.469035 0.109016 0.999494 0.406331 0.0780892

cc̄, Λ = mc

a ξ0 σ2 β b c

n = 1 11.121 − − 1.91255 0.0836092 0.343286

n = 2 5.84685 1× 10−8 0.152987 0.33432 −0.847095 0.529515

n = 3 1.34405 0.487261 0.0170547 0.05 0.0564819 0.00851709

bb̄, Λ =∞
a ξ0 σ2 β b c

n = 1 15.1067 − − 1.99935 0.104585 0.0630898

n = 2 1.62749 0.129254 0.00695058 0.1 0 −
n = 3 4.52742 0.216833 0.0131697 1.26096 0.233993 0.0111891

bb̄, Λ = mb

a ξ0 σ2 β b c

n = 1 8.43243 − − 1.68704 0.200742 0.0638126

n = 2 1.63952 0.133876 0.00654186 0.1 0 −
n = 3 33.7026 0.252602 0.0148385 3.14863 0.181075 0.00958596
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TableA.6: 3P2⊥ fit parameters

cc̄, Λ =∞
a ξ0 σ2 β b c

n = 1 18.9386 − − 1.53348 0.588362 0.187505

n = 2 9.78268 0.000301 0.159954 1.92414 −0.331021 0.125204

n = 3 2.98352 0.455036 0.0789049 1.21573 0.49737 0.0706649

cc̄, Λ = mc

a ξ0 σ2 β b c

n = 1 23.5577 − − 1.70536 0.469824 0.191909

n = 2 6.95313 0.2615 0.122794 1.72871 −0.251262 0.0784634

n = 3 3.28322 0.4731 0.0684879 1.16459 0.309103 0.0461067

bb̄, Λ =∞
a ξ0 σ2 β b c

n = 1 5.03627 − − 1.36603 12.6441 0.066995

n = 2 54.0733 0 0.0147382 3.38888 −0.199327 0.0189271

n = 3 4.27052 0.223597 0.0109257 1.21376 0.305811 0.0155296

bb̄, Λ = mb

a ξ0 σ2 β b c

n = 1 4.60379 − − 1.34201 14.0572 0.0666158

n = 2 22.905 1.04× 10−6 0.0121405 2.55386 −0.184869 0.0175767

n = 3 7.66472 0.231103 0.0112419 1.75192 0.282943 0.014799
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TableA.7: 3P2‖ fit parameters

cc̄, Λ =∞
a ξ0 σ2 β b c

n = 1 11.3608 − − 1.21471 0.697849 0.272678

n = 2 4.44771 0.232039 0.158319 1.41475 −0.119605 0.0808185

n = 3 2.3202 0.461568 0.0998141 1.01046 0.418644 0.0858612

cc̄, Λ = mc

a ξ0 σ2 β b c

n = 1 14.4417 − − 1.40581 0.551405 0.278178

n = 2 8.83337 0.173308 0.229571 1.85411 −0.360409 0.141981

n = 3 2.51931 0.476137 0.0902674 0.976052 0.253069 0.0561185

bb̄, Λ =∞
a ξ0 σ2 β b c

n = 1 5.24954 − − 1.11938 10.5179 0.069816

n = 2 26.8594 0 0.0147382 2.73992 −0.168346 0.0189217

n = 3 3.78742 0.222412 0.0131263 1.13605 0.259637 0.0157952

bb̄, Λ = mb

a ξ0 σ2 β b c

n = 1 4.7464 − − 1.09225 11.8753 0.0695242

n = 2 26.8594 0 0.0147382 2.73992 −0.168346 0.0189217

n = 3 2.28 0.222311 0.0105893 0.673188 0.326787 0.0180464
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Figure A.1: LCDAs: 3P0. Upper limit of k⊥ integration is indicated in paran-
theses. "or." refers to the original function and "fit" refers to the fitted function.
The radial quantum number n is indicated in parantheses as superscript: φ(n)(u).
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Figure A.2: LCDA plots as in Fig. A.1, but for 3P1⊥ states.
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Figure A.3: LCDA plots as in Fig. A.1, but for 1P1‖ states.
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Figure A.4: LCDA plots as in Fig. A.1, but for 1P1⊥ states.

87



cc̄ bb̄

−1 −0.5 0 0.5 1
0

0.5

1

1.5

ξ

φ
(1
)

3
P
1
‖
(ξ

)

or.(Λ =∞)
fit(Λ =∞)
or.(Λ = mc)
fit(Λ = mc)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

ξ

φ
(1
)

3
P
1
‖
(ξ

)

or.(Λ =∞)
fit(Λ =∞)
or.(Λ = mb)
fit(Λ = mb)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

ξ

φ
(2
)

3
P
1
‖
(ξ

)

or.(Λ =∞)
fit(Λ =∞)
or.(Λ = mc)
fit(Λ = mc)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

ξ

φ
(2
)

3
P
1
‖
(ξ

)

or.(Λ =∞)
fit(Λ =∞)
or.(Λ = mb)
fit(Λ = mb)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

ξ

φ
(3
)

3
P
1
‖
(ξ

)

or.(Λ =∞)
fit(Λ =∞)
or.(Λ = mc)
fit(Λ = mc)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

ξ

φ
(3
)

3
P
1
‖
(ξ

)

or.(Λ =∞)
fit(Λ =∞)
or.(Λ = mb)
fit(Λ = mb)

Figure A.5: LCDA plots as in Fig. A.1, but for 3P1‖ states.
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Figure A.6: LCDA plots as in Fig. A.1, but for 3P2‖ states.
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Figure A.7: LCDA plots as in Fig. A.1, but for 3P2⊥ states.
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