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ABSTRACT

ANISOTROPIC SOLUTIONS FOR GENERALISED HOLOGRAPHY

Devecioğlu, Deniz Olgu
Ph.D., Department of Physics

Supervisor : Prof. Dr. Bahtiyar Özgür SARIOĞLU

September 2016, 134 pages

We first find that the four dimensional cosmological Einstein-Yang-Mills theory with
SU(2) gauge group admits Lifshitz spacetime as a base solution for the dynamical
exponent z > 1. Motivated by this, we next demonstrate numerically that the field
equations admit black hole solutions which behave regularly on the horizon and at
spatial infinity for different horizon topologies. In the second part, using an off-shell
Killing spinor analysis we perform a systematic investigation of the supersymmetric
background and black hole solutions of the N = (1, 1) Cosmological New Massive
Gravity model. We find new solutions with a time-like Killing vector that are absent
in the N = 1 case. An example of such a solution is a Lifshitz spacetime. The
solutions described in this thesis, can be used as backgrounds for holography beyond
AdS/CFT.

Keywords: Lifshitz spacetime, Einstein-Yang-Mills, Non-Abelian Groups, Gauge
field, Black Hole, Holography, Non-Relativistic Spacetime
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ÖZ

LİFSHİTZ UZAY-ZAMANI ÇÖZÜMLERİ

Devecioğlu, Deniz Olgu
Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Bahtiyar Özgür SARIOĞLU

Eylül 2016 , 134 sayfa

lk olarak, dört boyutlu, SU(2) ayar gruplu kozmolojik Einstein-Yang-Mills teorisi-
nin dinamik katsayı z > 1 için Lifshitz uzay zamanını temel çözüm olarak aldığı
bulundu. Bundan yola çıkarak, nümerik olarak olay ufkunda ve uzaysal sonsuzda
düzenli davranan farklı olay ufku topolojilerine sahip kara delik çözümleri bulundu.
İkinci kısımda off-shell Killing spinör analizi kullanılarak N = (1, 1) Kozmolojik
New Massive Gravity kuramı sistematik bir şekilde incelendi. N = 1 durumundan
farklı olarak zamansal Killing vektörü içeren Lifshitz uzay-zamanı çözümü bulundu.
Bu tezde betimlenen çözümler AdS/CFT den öte holografi analizleri için arkaplan
olarak kullanılabilir.

Anahtar Kelimeler: Lifshitz Uzay-Zamanı, Einstein-Yang-Mills, Abelyen Olmayan
Gruplar, Ayar Alanları, Karadelikler, Holografi, Rölativistik Olmayan Uzay-Zamanlar
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“THERE is a pleasure in the pathless woods,
There is a rapture on the lonely shore,
There is society, where none intrudes,
By the deep sea, and music in its roar:
I love not man the less, but Nature more,
From these our interviews, in which I steal
From all I may be, or have been before,
To mingle with the Universe, and feel
What I can ne’er express, yet cannot all conceal.”

Lord Byron
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CHAPTER 1

INTRODUCTION

The holographic principle has its roots dating back to the works of t’Hooft and

Susskind [1, 2]. In its most general form, it basically states that the degrees of free-

dom of a gravitational system grows with the surface area that closes on the system,

not the volume. This sounds rather counterintuitive. If we think in terms of the en-

tropy of the d + 1 dimensional bulk and d dimensional boundary theories, the bulk

will have an higher entropy for large enough temperature T . However, there is an

important point to consider: In a gravitational system black holes will begin to pop

up [3] at large enough energies. Thus we have a natural cut-off for the gravitational

system dictated by the black holes. The usual thermodynamical computation will

break down for large temperatures and entropy will be proportional to the black hole

entropy, i.e. the surface area. Therefore, the thermal entropy and black hole entropy

is connected through the holographic principle.

These arguments are quite general and it is expected that holographic principle should

be applicable for any quantum theory of gravity. However, it is hard to find exam-

ples in which the dictionary and the computational framework between bulk/boundary

physics is lucid and applicable. The most studied and well-known example is the Anti

de Sitter (AdS) /Conformal Field Theory (CFT) correspondence [4], which states an

equivalence between a CFT living on the conformal boundary of a string theory on

asymptotically locally AdS (AlAdS) spacetime. The correspondence relates different

regimes of two theories, i.e. if one of them is perturbative the other is strongly cou-

pled. Therefore the observables that are hard/impossible to compute on one side is

manageable on the other side of the duality. From the viewpoint of the CFT side, the
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observables we can compute are the correlation functions of gauge invariant operators

and their symmetry relations. Classical symmetries of a quantum field theory action

will give rise to Noether charges and if these symmetries are local then the correla-

tion functions satisfy kinematical relations that are called Ward identities. However,

the classical symmetries of the systems is not always preserved at the quantum level

and broken by quantum corrections. A well-known example is the vanishing trace of

the energy momentum tensor of a classical conformal invariant theory, which may be

broken by quantum effects that introduces a scale and a non-zero trace for the corre-

lation function of the energy momentum tensor. The Ward identities of these broken

symmetries are called anomalous.

In order to compute the correlation functions of a given CFT, we first write down the

generating function

Z[g(0),�(0)] =

Z

[D'A
] exp

✓

�
Z

ddx
p
g(0)[LCFT('

A
; g(0)) + �(0)O('A

)

◆

, (1.1)

where g(0) is the background metric, �(0) is the source for the composite operator

O and 'A denotes all fields in the theory. Then, it is straightforward to generate

connected diagrams for the operator O('A
), e.g. the two point correlation function is

hO(x)O(0)i = �2W

��(0)(x)��(0)(0)

�

�

�

�

�

�(0)=0

, (1.2)

where W = logZ and the background metric is flat g(0)ij = �ij . We need to intro-

duce counter-terms to the action in (1.1) in order to obtain finite results for physical

observables. This, in turn, might break the classical symmetry of the action and make

the corresponding Ward identities anomalous.

The AdS/CFT correspondence states that: Instead of employing the generating func-

tion (1.1) for the computation of correlation functions in the regime where the theory

is strongly coupled and perturbation is not possible, the following equivalence is valid

at the leading order [4, 5]

Son-shell[f(0)] = �W [f(0)], (1.3)

where Son-shell[f0] is the on-shell value of the supergravity action with f0 represent-

ing the boundary values of all the bulk fields. Therefore, the two point correlation
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function (1.2) reads

hO(x)O(0)i = � �2Son-shell

��(0)(x)��(0)(0)

�

�

�

�

�

�(0)=0

. (1.4)

The dictionary of the AdS/CFT correspondence can be summarised as follows [5]:

• The bulk fields of the gravity theory are in correspondence with the gauge in-

variant operators of the CFT. The information about the field theory is contained

in the bulk theory.

• The operators of the field theory are coupled to the sources (�(0)’s in (1.1))

which are identified with the leading boundary behaviour of the bulk fields.

• The generating function of the CFT is identified with the string partition func-

tion.

Before we move on with the generalisation of these ideas, let us expound the def-

initions given in the dictionary and try to pin down what is meant by the leading

boundary behaviour and how to expand the metric as a function of distance to the

boundary.

The asymptotically locally AdS spacetimes have a well defined boundary in the sense

that at a point where the boundary is located, there is a conformal structure instead of

a metric, i.e. a set of boundary metrics that are related by conformal transformations

(see Sec. 2.1.3). Following the AdS/CFT dictionary, given a conformal structure at

the boundary we must be able to determine an Einstein space of constant curvature.

Luckily, this hard problem is studied by Fefferman, Graham and Lee [6, 7]. It was

shown that for the class of AlAdS metrics it is possible to expand the bulk metric as

follows

ds2 =
d⇢2

4⇢2
+

1

⇢
gij(x, ⇢)dx

idxj, (1.5)

where

gij(x, ⇢) = g(0)ij + ⇢g(2)ij + · · ·+ ⇢d/2(g(d)ij + (log ⇢)h(d)ij) + · · · , (1.6)

with ⇢ as a radial coordinate and x denoting the boundary coordinates.
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To make the meaning of the expansion coefficients clear, let us consider cosmological

Einstein gravity coupled to a scalar sector with a generic potential [5]1

S =

Z

dd+1x
p
g



� 1

22
R +

1

2

gµ⌫@µ�@⌫�+ V (�)

�

, (1.7)

with the potential of the form

V (�) =

⇤

2
+

1

2

m2
�

2
+ g�3

+ · · · , (1.8)

where ⇤ is the cosmological constant, m2 is the mass of the scalar field and is related

to the scaling dimension of the CFT operator as m2
= (�� d)�.

The boundary expansion of the metric (1.5) holds for any field in AlAdS space, scalar,

spinor or tensor. Therefore it is possible to expand the scalar field as

�(x, ⇢) = ⇢��d/2�(x, ⇢), (1.9)

�(x, ⇢) = �(0) + ⇢�(2) + · · · ⇢��d/2
(�(2��d) + (log ⇢) (2��d)) + · · · (1.10)

Plugging these expansions (1.5), (1.9) to the field equations coming from the action

(1.7), we find the relations between the expansion coefficients. It turns out that, all

of the coefficients except �(2��d) and the traceless transverse part of g(d)ij are deter-

mined in terms of g(0)ij and �(0), which are the aforementioned sources that couple

to the dual operators [8, 9]. The determined parts of g(d)ij is related to the Ward

identities and anomalies. Also the coefficient in front of the logarithmic terms are

responsible for the gravitational and matter part of the conformal anomaly [10].

Employing these expansions we can now compute the correlation functions by dif-

ferentiating the on-shell value of the action with respect the sources (1.4). How-

ever, as almost every computation of field theory is plagued with infinities, so is

this one. As a result of the infinite volume of the AdS spacetime, the Son-shell value

is divergent, which can be renormalized by introducing a cut-off and adding suit-

able counter-terms. This whole mechanism is called holographic renormalisation

and studied extensively with different techniques for various cases.

Having discussed the basic concepts of AdS/CFT correspondence, let us turn our

attention to the main subject of the thesis, i.e. non-relativistic spacetimes. Originally
1 It is possible to extend the matter type to gauge fields, spinors... For the sake of simplicity let us stick to the

scalar case.
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formulated on AdS5 ⇥ S5, the concept of holography thrived on different spacetimes

that are solutions of string theory. If we are to believe in t’Hooft and Susskind’s

arguments, it is reasonable that these bulk geometries are dual to field theories that live

on the boundary. Motivated by this, lots of phenomenological (“bottom up”) models

are proposed and most of them does not even have a string theory completion. Some

of these different models support solutions that have anisotropy between coordinates

and time, which are believed to be the dual geometries for condensed matter systems

like strongly correlated electrons. Lifshitz spacetime is one of the geometries that

exhibit these non-relativistic symmetries and will be the main topic of this thesis.

Along the way we will also discuss the properties of Schrödinger spacetimes, which

are intimately related to Lifshitz spacetimes.

Unlike AdS/CFT correspondence, the dictionary of non-relativistic (generalised) holog-

raphy is not well established. First of all, there is no well defined boundary like the

one we have discussed in AdS spacetimes. Moreover, as we will expound in chap-

ter 2, the null geodesics with spatial momenta experience a potential which impedes

them, so they can not reach the boundary. On the other hand, infalling observers en-

counter infinite tidal forces as they go deep in the bulk, which signals the geodesic

incompleteness of Lifshitz spacetimes. Therefore, the communication between bulk

and boundary is not complete and there is no analogue of Fefferman-Graham expan-

sion from which one can read off the boundary behaviour of fields and deduce the

correlation functions.

Fortunately, there are other ways to attack the problem. One of the techniques used

is based on the fact that z = 2 Lifshitz spacetimes are related to AlAdS spacetimes

by Scherk-Schwarz reduction [11, 12]. By computing 5-dimensional vacuum expec-

tation values (vevs) on AlAdS using well known techniques, 4-dimensional vevs can

be analysed and counterterms for holographic renormalisation can be obtained. The

most important result of [11, 12] was to show that the boundary geometry of Lifshitz

spacetime is described by an extension of Newton-Cartan (NC) geometry with a tor-

sion tensor, called torsional Newton-Cartan (TNC) geometry. The inclusion of TNC

changes the behaviour of the field theories, conserved currents and symmetries drasti-

cally. Contrary to the relativistic case where we have a pseudo-Riemannian manifold

endowed with a non-degenerate metric gµ⌫ , NC/TNC has much more structure. The

5



real problem is the particle number symmetry, which is a central charge for Galilean

algebra, i.e. commutes with all of the operators, but appears on the right handside of

the commutator of translations and Galilean boosts (see Sec. 2.2.3). Therefore, it has

to be related with the spacetime symmetries. Because of this fact, the geometry and

the connections can not be determined only in terms of the d dimensional metric gij

but we need extra data, a 1-form, positive semi-definite d� 1 rank tensor and a U(1)

connection related to the particle number. This extra baggage makes the coupling of

field theories to curved NC backgrounds difficult [13, 14]. The other aspect of the ge-

ometry of TNC is the fact that it can be realised from the gauging of the Schrödinger

algebra and imposing curvature constraints [15, 16], just as in the case of General

Relativity when it is obtained by gauging the Poincaré algebra (see Sec. 4.2.4). Al-

though the reduction technique for the holographic analysis employed in [11, 12] is

robust and reliable, it is not really possible to extend that holographic analysis to other

configurations with different types of matter. One should be able to obtain the theory

to be examined, from the higher dimensional ones with AdS backgrounds through

TsT (T-duality, shift, T-duality)+Scherk-Schwarz transformations and obviously that

is not possible for all cases.

Another approach to holographic renormalization that is in principle applicable to all

models with a Lifshitz background employs the Hamiltonian formalism [5, 17]. First,

let us quickly review the procedure for AdS. One starts by writing the Hamiltonian by

employing Arnowitt-Deser-Misner (ADM) formalism through which the correspond-

ing momenta of fields can be obtained. However, as AdS is a non-compact spacetime,

these momenta diverge. At finite radius one can cast momenta as functionals of the

bulk fields at hypersurface defined by radius r, but we also know that momenta are r-

derivatives of the bulk fields. Then in the spirit of Hamilton-Jacobi theory in classical

mechanics, functional partial differential equations can be defined for the momenta.

Although it is not easy to solve these functional PDEs, it is suitable for the asymptotic

analysis. At that point AdS analysis follows through the expansion of the metric and

matter fields (1.5), (1.9), however as we have discussed it is not easy to define fall-off

conditions for asymptotically non-AdS backgrounds. One can extract behaviour by

studying the linearised equations but the authors of [18, 19] instead construct a recur-

sion procedure based on the covariant expansion of the Hamilton-Jacobi solution in

6



eigenfunctions of suitable derivative operator. The analysis is carried out for a gen-

eral Einstein-Proca-dilaton model and in principle should be applicable to different

models.

The moral of the story is, holography of Lifshitz and Schrödinger spacetimes is a

valuable playground for studying the idea of t’Hooft and Susskind, i.e. the dual na-

ture of gravity and field theories should extend outside of the AdS/CFT correspon-

dence. However, the technical difficulties and lack of tools hinder the holographic

study of these spacetimes. In this thesis we won’t be dealing with the Lifshitz holog-

raphy, instead we first steer to the solutions with Lifshitz backgrounds supported by

non-abelian matter. Then in the second part, the supersymmetric solutions of three

dimensional higher curvature theory will be investigated. Both of these solutions

exhibit properties that make them interesting test grounds for the Lifshitz holography.

The plan of the thesis is as follows: We will set out with a discussion of AdS space-

time and its properties, which will be useful to compare with non-relativistic space-

times. Later in Chapter 1 we will investigate the symmetries and the causal structure

of non-relativistic spacetimes including Lifshitz and Schrödinger. In Chapter 2 we

will show that it is possible to support Lifshitz spacetime with a non-abelian matter

and present some numerical solutions. The final chapter will be on the classification

of solutions of 3-dimensional N = 2 quadratic curvature supergravity, which admits

Lifshitz spacetime as a solution.
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CHAPTER 2

NON-RELATIVISTIC SPACETIMES

2.1 AdS and its properties

2.1.1 AdS from an embedding and global coordinates

We will start with the properties of AdS spacetime in order to gain insight for sym-

metries and causal properties which will guide us through the discussion of non-

relativistic (NR) spacetimes. It is enlightening to see the features of AdS that are

crucial for holography and not shared by NR spacetimes. Conversely on the NR side,

partial breaking of the spacetime symmetries bring in extra structure, e.g. conserved

particle number and anisotropic scaling.

AdSn spacetimes are the maximally symmetric solution of the Einstein equations with

cosmological constant derived from the action

S =

1



Z

dnx
p

|g|(R + 2⇤), (2.1)

Rµ⌫ � 1

2

gµ⌫R = ⇤gµ⌫ . (2.2)

From (2.2), it follows that

Rµ⌫ =

2⇤

2� n
gµ⌫ (2.3)

which renders the solution as Einstein space. Demanding the Riemann tensor of the

solution to be

Rµ⌫⌧⇢ =
2⇤

(n� 1)(n� 2)

(gµ⌧g⌫⇢ � gµ⇢g⌫⌧ ), (2.4)

9



makes AdSn a maximally symmetric space. These spacetimes can be defined as an

embedding of particular quadratic surface in flat spacetimes. Let us consider M as

an m-dimensional submanifold of an n-dimensional manifold N with the metric gN .

Then the embedding f : M ! N will induce a pullback of the metric gM = f ?gN ,

which is given by [20]

gMµ⌫ = gN↵�
@f↵

@xµ

@f�

@x⌫
. (2.5)

As an example consider the well known embedding of a sphere Sn in Euclidean

spacetime ds2 =
Pn

i=0 dx
2
i with the quadratic given as

X2
0 +X2

1 + · · ·+X2
n = L2. (2.6)

In this form it is obvious that the quadratic (2.6) respects the symmetries of the em-

bedding space i.e. X i ! Xj
⇤

i
j with ⇤

i
j 2 SO(n+ 1). In order to find a set of global

coordinates, we need to solve the constraint (2.6). For n = 3

X0 = r sin ✓ cos�,

X1 = r sin ✓ sin�,

X2 = r cos ✓,

employing (2.5) with gN↵� = �↵� , we find the familiar result

ds2 = dr2 + r2(d✓2 + sin

2 ✓d�2
). (2.7)

The defining quadratic for Lorentzian1 AdSn differs from (2.6) with a signature change.

Instead of all positive signs, we will now have a hyperboloid with two sheets (note

that we have also changed the sign of L2)

�X2
0 �X2

n +

n�1
X

i=1

X2
i = �L2. (2.8)

This time it is not possible to take Euclidean or Minkowski signature for manifest

spacetime symmetries, we should embed (2.8) in ds2 = �dX2
0�dX2

n+
Pn�1

i=1 dX2
i , so

that the AdSn will be homogeneous and have SO(2, n� 1) symmetry. The following
1 The Euclidean AdSn is defined through the quadratic �X2

0 +
Pn

i=1 X
2
i = �L2 with the embedding space

with Minkowski metric ds2 = �dX2
0 +

Pn
i=1 dX

2
i .

10



set of coordinates is a solution to the constraint (2.8)

X0 = L cosh ⇢ cos ⌧,

Xn = L cosh ⇢ sin ⌧,

Xi = L⌦i sinh ⇢,

with
Pn�1

i=1 ⌦

2
i = 1. Then the induced metric (2.5) will read

ds2 = L2
(� cosh

2 ⇢d⌧ 2 + d⇢2 + sinh

2 ⇢d⌦2
i ). (2.9)

Note that the metric d⌦2
i possesses the symmetries of SO(n � 1). Therefore AdSn

has the manifest symmetry of SO(2) ⇥ SO(n � 1) in these coordinates. Taking

coordinate ranges ⇢ 2 (0,1) and ⌧ 2 [0, 2⇡), the hyperboloid is fully covered once,

hence we have global coordinates on AdSn. The timelike Killing vector has norm

squared cosh

2 ⇢ which is non-vanishing and well defined everywhere. However for

physical applications, AdSn in global coordinates is not quite suitable because of the

closed timelike curves which will spoil causality. Near ⇢ ' 0 the global metric (2.9)

goes like [21]

ds2 ' L2
(�d⌧ 2 + d⇢2 + ⇢2d⌦2

i ), (2.10)

which has the topology of S1 ⇥ Rn with timelike S1, that signals closed timelike

curves (CTC). In order to obtain a causal spacetime we will consider the universal

cover of global AdSn. In essence, the covering space of a manifold M is a “larger”

manifold that locally looks like discrete copies of M. The covering space N of the

manifold M is defined with a projection p : N ! M such that [22]

• the projection p is onto and continuous,

• every point in x 2 M has a neighbourhood U such that p�1
(U) is homeomor-

phic to U ⇥ ⇤, where ⇤ is a discrete space.

Through this projection we can define lifts of paths on M, which is the process of

unwrapping loops, hence ending up in a manifold with a simpler fundamental group2

2 Remember, the fundamental group basically counts the number of topologically distinct loops on a manifold.
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Finally, the universal covering is the manifold for which the fundamental group is

trivial. For the case of AdSn we will unwrap the CTC by taking �1 < ⌧ < 1,

ending in a causal spacetime.

There is another incarnation of AdSn which is used extensively. Defining (n� 2) di-

mensional Lorentz vector xi and a radial coordinate u > 0, the following redefinition

of embedding coordinates

X0 =
u

2

✓

1 +

1

u2
(L2

+ x2 � t2)

◆

, Xi =
Lxi

u

Xn�1 =
u

2

✓

1� 1

u2
(L2 � x2

+ t2)

◆

, Xn =

Lt

2

, (2.11)

brings the metric to the form

ds2 =
L2

u2
[du2 � dt2 + dxidx

i
]. (2.12)

In this set of coordinates SO(1, 1)⇥SO(1, n�2) is manifest and it has u = constant

Minkowski slices, because of the manifest symmetry this set of coordinates is called

Poincaré coordinates. The SO(1, 1) symmetry acts as [21]

(u, t, xi
) ! (au, at, axi

), a > 0. (2.13)

Unlike AdS in global coordinates, the Poincaré coordinates have a timelike Killing

vector that has a vanishing norm at u ! 1, which is called the horizon of the

Poincaré coordinates.

Having discussed the construction and the properties of AdS in different coordinates,

we are now in a position to explore the behaviour of particle trajectories in AdS.

2.1.2 Particle motion in AdS

In order to analyse particle trajectories in AdS spacetime we can start from the free

particle Lagrangian (square root action) and study the equations of motion for the

timelike, spacelike or null cases. By introducing an auxiliary field (gauge degree of

freedom), “the nasty-looking” square root action can be simplified even more [23].

However, it is wiser to approach from the embedding definition of AdS, which we

have discussed in the previous section. Let us use that knowledge and define the

12



particle motion on AdS as an action with the constraint (2.8)

S =

Z

d⌧



1

2

⌘µ⌫ ˙Xµ
(⌧) ˙X⌫

(⌧) + ⇤

�

⌘µ⌫X
µ
(⌧)X⌫

(⌧) + L2
�

�

, (2.14)

⌘µ⌫ ⌘diag(�1, 1, · · · ,�1),

where we have parametrised the curves with ⌧ and employed the Lagrange multiplier

⇤ to ensure that the particle stays on the surface defined by the quadratic (2.8). The

equations of motion follow as

¨Xµ
= 2⇤Xµ, X2

+ L2
= 0. (2.15)

Now to eliminate ⇤, take second derivative of the constraint equation

Xµ
¨Xµ

= � ˙Xµ
˙Xµ. (2.16)

Plugging (2.16) in (2.15), we find the Lagrange multiplier ⇤ =

˙Xµ
˙Xµ/(2L2

). A

priori, the norm ˙Xµ
˙Xµ is an arbitrary function of ⌧ . However, it is possible to set

the norm to a constant value. First, observe that the antisymmetric tensor kµ⌫ =

Xµ
˙X⌫ �X⌫

˙Xµ is conserved on shell, i.e. ˙kµ⌫ = 0 and its norm is

kµ⌫k
µ⌫

= �2L2
˙Xµ

˙Xµ. (2.17)

Since kµ⌫ is conserved, (2.17) allows us to set ˙Xµ
˙Xµ = constant. Moreover, the field

equations (2.15) are invariant under rescaling of the parameter ⌧ so that we can set

⌘µ⌫ ˙Xµ
˙X⌫

= �, where � can take values ±1, 0 depending on whether the curve we

consider is spacelike, timelike or null 3.

After eliminating ⇤, the particles on AdS satisfy the equation

¨Xµ � �

L2
Xµ

= 0. (2.18)

It is obvious that the null geodesics are straight lines on the embedding space [24].

On the other hand timelike ones (� = �1) are

Xµ
(⌧) = cµ cos(⌧/L) + sµ sin(⌧/L), (2.19)

with cµcµ = sµsµ = �L2 and cµsµ = 0, coming from the constraint equation (2.8). In

the previous section we have discussed about taking the universal cover of AdS to get

3 It is easy to show that the field equations (2.15) are reparametrization invariant with ⌧ = ⌧(�) if
d2�
d⌧2

= 0.
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rid of CTCs yet we now see that timelike particles in AdS have periodic trajectories.

Basically, AdS spacetime behaves like a box. This state of affairs is summarised by

Gibbons in [25] as

“Many physicists are unhappy with the CTCs in AdSp+2 and seek to assuage their

feelings of guilt by claiming to pass to the universal covering spacetime AdSp+2. In

this way they feel that they have exorcised the demon of “acausality”. However ther-

apeutic uttering these words may be, nothing is actually gained in this way. Consider

for example the behaviour of test particles. Every timelike geodesic on AdSp+2 is a

closed curve of the same durations equal to 2⇡L, which Heraclitus would have called

the “Great Year”.”

2.1.3 Conformal Infinity

Developed by Penrose [26, 27], the concept of conformal infinity is not limited to

AdS spacetimes. The need for such concept originated from the study of ”isolated

systems” like binary stars and their gravitational wave characterisation ([28] and ref-

erences therein). Initially people have studied the problem of gravitational radia-

tion by classifying the behaviour of Riemann tensor and Bianchi identities at large

distances. It was Penrose who noticed that, by making a conformal transformation

g = !2g̃, one can bring infinity to a finite coordinate value, which translates into

attaching boundary points to the physical spacetime g̃ and ending up in a larger mani-

fold with a metric g. Since conformal transformations leave the light cones invariant,

the causal structure of g̃ will be the same after the transformation4. One of the well-

known examples is the 4-dimensional Minkowski spacetime which is diffeomorphic

to the inner part of Einstein universe or R⇥ S3 [29].

To make the discussion clear, let us define asymptotically simple spacetime (confor-

mally compact manifold) as a Lorentzian manifold ( ˜M, g̃ab), with conformally related

partner (M, gab) having the following properties [28]

• ˜M is an open submanifold of M with smooth boundary @ ˜M = X ,

• there exists a smooth scalar field ⌦ on M such that gab = ⌦

2g̃ab on ˜M and, so
4 In Euclidean signature conformal transformations maps Sn ! Sn.
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that ⌦ = 0, d⌦ 6= 0 on X ,

• every null geodesic in ˜M acquires a past and future endpoint on X .

Moreover a spacetime is asymptotically flat if it also satisfies ˜Rab = 0 near the bound-

ary. The Minkowski spacetime is an example of both simple and asymptotically flat

spacetime. The AdS/dS spacetimes are asymptotically simple but not asymptotically

flat.

The couple (M,⌦) defines a conformal structure at the boundary, i.e given a function

⌦ that has the given properties above, any other function ⌦ e↵ is also acceptable if

↵ is a function with no zeros or poles at the boundary. Therefore we have a set of

boundary metrics that are related by conformal transformations. The non-degenerate

boundary metric g|X ⌘ g0 is a representative of the conformal class of metrics on X .

Computing the curvature tensor of g̃µ⌫ we find [30]

R�µ⌫ [g̃] = |d⌦|2g(g̃µg̃⌫� � g̃⌫ g̃�µ) +O(⌦

�3
), (2.20)

where |d⌦|2g ⌘ gµ⌫@µ⌦ @⌫⌦. From the properties of ⌦ it is apparent that as we

approach boundary, i.e. as ⌦ ! 0, the curvature tensor (2.20) will begin to look

like AdS, as the first term is of the order ⌦�4. The important point here is that, we

have not used the equation of motion to obtain (2.20). Requiring (2.2) to hold fixes

|d⌦|2g = �2⇤/(n�1)(n�2). Then asymptotically locally AdS (AlAdS) spacetimes are

defined as solutions of Einstein’s equations for which the Riemann tensor approaches

(2.20) asymptotically. On the other hand, asymptotically AdS (AAdS) spacetimes are

exactly of the form (2.4) without deviations.

Being conformally compact, AdS spacetime in global coordinates (2.21) can be con-

formally extended. First, to put global AdS (2.9) in a manageable form consider a

coordinate transformation tan ✓ = sinh ⇢, ✓ 2 [0, ⇡/2),

ds2 =
L2

cos

2 ✓
(�d⌧ 2 + d✓2 + sin

2 ✓ d⌦2
n�1). (2.21)

Then, multiplying by cos

2 ✓/L2 we have a conformal completion of AdS which is

actually a part of the Einstein universe,

ds2 = �d⌧ 2 + d✓2 + sin

2 ✓ d⌦2
n�1. (2.22)
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We are characterising as “part of” since, normally the full Einstein universe covers

✓ 2 [0, ⇡) but for AdS ✓ 2 [0, ⇡/2). The conformal factor blows up at ✓ = ⇡/2, there-

fore there is a spherical boundary at that point. Note that, the conformal completion

doesn’t uniquely define the larger spacetime which we extend the physical spacetime

into. By performing a different transformation we will end up in different spacetimes.

2.1.4 Conformal symmetries and AdS

The action of the generator of a symmetry with the parameter ✏A can be defined as

a linear operator �(✏) acting on fields in a chosen representation. The parameters ✏A

depend on coordinates if symmetry is local, otherwise they are only constants for

global symmetries. The most general form of symmetry operation is defined as [31]

�(✏) = ✏ATA (2.23)

where TA is an operator that acts on fields. The operators TA can be taken as a matrix

representation of a Lie algebra, i.e. TA�i
= �(tA)ij�

j with commutator [tA, tB] =

fAB
CtC , and �i are the fields that transform in the chosen matrix representation.

Following the definition of conformal transformation discussed in the previous sec-

tion, i.e. gab = ⌦

2g̃ab, we can derive the equations that are satisfied by the infinitesi-

mal generators of the transformations which are also called conformal Killing vectors.

Let us define the infinitesimal form of the transformations at first order as x̃µ =

xµ + ⇠µ(x) and let ⌦(x) = 1 + !(x), and study the conformal transformation in flat

spacetimes. Plugging in, we find at first order

@µ⇠⌫ + @⌫⇠µ = !(x) ⌘µ⌫ . (2.24)

Taking the trace to derive the equation for generators, we find

@µ⇠⌫ + @⌫⇠µ � 2

D
@↵⇠

↵⌘µ⌫ = 0. (2.25)

First of all, note that something special happens in two dimensions obviously. Setting

D = 2 in (2.25) and writing all possible equations we find

@1⇠1 =@2⇠2, (2.26)

@2⇠1 =� @1⇠2, (2.27)
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which are the Cauchy-Riemann conditions from complex analysis. This remarkable

thing tells us that it is possible to define a holomorphic function ⇠(z) ⌘ ⇠1+i⇠2 which

makes the generators of conformal transformations at D = 2 holomorphic maps i.e.

@z̄⇠ = 0. Since ⇠(z) is holomorphic, it will have a Laurent expansion, which signals

at D = 2 we have infinite dimensional algebra, namely the Witt algebra.

Before going into the case D > 2, let us remember the Killing vector equation and

its solution for the flat spacetime

@µ⇠⌫ + @⌫⇠µ = 0. (2.28)

Hitting it with one more derivative and summing up the equations with permuted

indices we find @↵@µ⇠⌫ = 0. This tells us that the generator of symmetries for flat

spacetimes, i.e. the Poincaré group is linear in coordinates xµ. The solution is given

by

⇠µ(x) = aµ + �µ⌫x⌫ , where �µ⌫ = ��⌫µ, (2.29)

where aµ are D parameters for translations and �µ⌫ are D(D � 1)/2 parameters for

Lorentz transformations. Together they form D(D+1)/2 parameter Poincaré algebra.

Performing the same trick for the equation (2.25) this time, we find @↵@⇢@µ⇠⌫ =

0, indicating generators for the conformal group are at most quadratic in xµ. The

solutions are well known

⇠µ(x) = aµ + �µ⌫x⌫ + �Dx
µ
+ (x2�µKx

2 � 2xµx↵�
↵
K). (2.30)

Again, we have the Poincaré part, so it is a subalgebra of the conformal algebra. The

�D is the parameter for dilatations and the last part �K is the parameter for special

conformal transformations. Adding these extra parameters to Poincaré, we have the

(D + 1)D(D + 2)/2 dimensional conformal algebra which is actually isomorphic to

the SO(2, D) algebra.

The most general conformal transformation acting on fields of a conformal theory is

given by

�(✏) = aµPµ +
1

2

�µ⌫M[µ⌫] + �DD + �µKKµ. (2.31)
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The non-vanishing commutators of the conformal algebra are

[Mµ⌫ ,M⇢�] = 4⌘[µ[⇢M�]⌫], [Pµ,M⌫⇢] = 2⌘µ[⌫P⇢],

[Kµ,M⌫⇢] = 2⌘µ[⌫K⇢], [Pµ, K⌫ ] = 2(⌘µ⌫D +Mµ⌫)

[D,Pµ] = Pµ, [D,Kµ] = �Kµ. (2.32)

Several observations are in order. First, the generators Pµ, Kµ are vectors and D is

a scalar under the Lorentz group SO(1, D � 1). The last two commutators indicate

that Pµ, Kµ are ladder operators similar to the simple harmonic oscillator in quantum

mechanics with the hamiltonian operator D in this case.

Secondly, there is one special discrete transformation, that is not connected to the

identity, called inversion, which is extensively used in discussions of CFTs and holog-

raphy. The inversion is defined as I : xµ ! x̃µ = xµ/x2, acting twice we have the

identity map I2 = I. By combining translations with inversion, IPµI , we can repro-

duce finite special conformal transformations Kµ

IP µI = Kµ
=

xµ
+ aµx2

1 + a2x2
+ 2a.x

. (2.33)

Adding this discrete transformation to the SO(2, D) generators, we end up in O(2, D).

Finally, to see the connection with AdS, let us assemble the generators in the follow-

ing fashion with µ̂, ⌫̂ = 0, · · · , D, D + 1

M µ̂⌫̂
=

2

6

6

6

6

4

Mµ⌫ 1

2

(P µ �Kµ
)

1

2

(P µ
+Kµ

)

�1

2

(P µ �Kµ
) 0 �D

�1

2

(P µ
+Kµ

) D 0

3

7

7

7

7

5

. (2.34)

The new generators will satisfy the SO(2, D) algebra

[Mµ̂⌫̂ ,M⇢̂�̂] = 4⌘̂[µ̂[⇢̂M�̂]⌫̂] (2.35)

where ⌘̂ = diag(�1, 1, 1, 1 · · · � 1). Previously we have defined AdSD+1 as an em-

bedding (2.8) with an embedding metric having the same signature. Therefore the

AdSD+1 has the isometry group O(2, D).
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2.2 Non-Relativistic Spacetimes

In this section we will focus on the main theme of the thesis, the non-relativistic

(NR) spacetimes. However, before going into details about NR spacetimes, let us

discuss the physical importance of the scale invariance and start the discussion from

the viewpoint of Renormalization Group. The discussion will be conceptual and may

not be crucial for the rest of the thesis, but it is really easy to get smothered by the

amount of jargon used in papers. Therefore, we believe it is a good idea to cover the

origins and motivation to introduce anisotropic scale invariant spacetimes.

2.2.1 Regularization, renormalization basics

Assume we are studying a QFT given by a Lagrangian involving coupling constants

like masses and charges. From computations we have done in QFT courses, we know

that even the easiest observables we can compute are generally plagued by infinities.

In order to overcome this problem one can first impose a frequency cut-off ⇤ for

which, we simply ignore all waves above ⇤ in a Fourier expansion of a field in the

theory we consider. That is called regularization5. If we think in terms of Euclidean

signature, i.e. Wick rotating the time component t ! it, the frequency cut-off will

turn into the distance cut-off. Both terms are used interchangeably depending on the

area of research (high energy, condensed matter).

Take ��4 theory as an example from Zee [32]. It is easy to show that �2 correction to

the meson-meson scattering amplitude is

M =

1

2

(��)2i2
Z

d4k

(2⇡)4

✓

1

k2 �m2
+ i✏

◆✓

1

(K � k)2 �m2
+ i✏

◆

, (2.36)

where K ⌘ k1 + k2 is the sum of the momenta of inital particles. It is obvious that

for large values of k, the integrand is logarithmic divergent (d4k/k4 ⇠ dk/k). By

introducing a cut-off ⇤ (2.36) reads

M = �i�+ iC�2


log

✓

⇤

2

s

◆

+ log

✓

⇤

2

t

◆

+ log

✓

⇤

2

u

◆�

+O(�3), (2.37)

where it was assumed that m2 ⌧ K2 so that we have no m2 in (2.37), C is a numerical

constant and the kinematic variables s ⌘ K2
= (k1 + k2)2, t ⌘ (k1 � k3)2, u ⌘

5 There are other types of regularization schemes which are suitable for different cases.
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(k1 � k4)2 are used (k3, k4 are momenta for final particles). By introducing a scale

⇤ we effectively have increased the number of parameters in our theory which may

seem inconvenient at first. However, if we try to do an experiment and measure the

interaction we will see that the results will depend on the energy or how hard we

smash them into each other. So there is no harm seeing an energy scale around. The

parameters �, ⇤, s, t, u are called bare values that appear in the Lagrangian. There

is also a physical value of these parameters �P , ⇤P , s0, t0, u0, which correspond to

the values that are used, found in the experiment. In renormalization, our goal is to

write all observables in terms of physical quantities.

Now assume you have measured a physical coupling constant �P at a given momen-

tum s0, t0, u0, and we search for the bare coupling constant that gives this physical

value for a given ⇤. If we can somehow find these different bare values corresponding

to physical measurements as ⇤ ! 0, we have a renormalizable theory in hand, other-

wise the theory is non-renormalizable. Following the lines of [32] the meson-meson

scattering amplitude reads

M = �i�P + iC�2P



log

⇣s0
s

⌘

+ log

✓

t0
t

◆

+ log

⇣u0

u

⌘

�

+O(�3P ). (2.38)

Note that the dependence on energy scale cut-off has disappeared as should be the

case for a renormalizable theory.

It is also possible that the zero bare coupling constants can have nonzero physical

counterparts. A massless particle can gain mass through these quantum corrections.

In that case one has to start renormalization from a more general action that respects

symmetries and degrees of freedom. If this number of extra terms is finite then we

have a renormalizable theory, otherwise not.

2.2.2 Renormalization Group

In the previous section we have discussed the difference between bare coupling con-

stants and how to define physical ones through renormalization. The example of

meson-meson scattering amplitude (2.38) tells us the well-known fact that the am-

plitude, in other words coupling constant �P , depends on the momentum of particles

involved in the interaction. Taking s0 = t0 = u0 = µ2 to simplify things, (2.38) reads
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[32]

M = �i�P (µ) + iC�2P (µ)



log

✓

µ2

s

◆

+ log

✓

µ2

t

◆

+ log

✓

µ2

u

◆�

+O(�P (µ)
3
).

(2.39)

The simplest and meaningful question to ask here is the behaviour of the coupling

constant �P at different momentum values µ0 ⇠ µ. The relation is given by subtrac-

tion

�P (µ
0
) = �P (µ) + 3C�P (µ)

2
log

✓

µ02

µ2

◆

+O(�3P ), (2.40)

which can be cast in the form of a differential equation

µ
d�P
dµ

= 6C�2P +O(�3P ). (2.41)

This equation, giving us the behaviour of the coupling constant at different momen-

tum values, is called the renormalization group (RG) flow.

Motivated by this example, given a QFT we can imagine n coupling constants living

in n-dimensional space, each of them satisfying a flow equation

µ
dgi
dµ

= �i(g1, · · · gi), (2.42)

where �i(g) is called the beta function of the theory. Then depending on the sign of

the right hand side, the couplings either grow or shrink as we go to bigger values on

the length scale (i.e. decreasing energy).

We can play this game for both renormalizable/non-renormalizable theories. The

difference is, in non-renormalizable theories, the couplings will scale with the positive

power of energy, i.e. they will grow infinitely as we go through short distance scales

(ultraviolet). On the other hand couplings in renormalizable ones will scale with the

zeroth power of energy,

The asymptotic behaviour of RG flows are controlled by the fixed points where the

beta function approaches to zero �i(g⇤) = 0. The points that are at large distance

scales are called infrared fixed points and the ones at smaller are called ultraviolet

fixed points. These points correspond to scale invariant QFTs, meaning the theory

will transform simply under scaling. For Lorentz invariant field theories we may have

the conformal symmetry and a conformal field theory (CFT) at these points. The
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CFTs are special in the sense that, all QFTs can be thought of as a deformation from

the fixed point. In other words, they are like the building blocks for QFTs.

Starting from the most general action with the desired number of degrees of freedom

and symmetries

S = S0 +

Z

dDx
X

i

gi✓i(x), where S0 =

Z

dDx(@�)2, (2.43)

with
P

i gi✓i(x) indicating all possible interactions. We can now change the distance

scale and look for the behaviour of the � function. The operators ✓i can be classified

into three different species according to their behaviour near fixed points as we look

into larger distance scales

• relevant: flow away from fixed point,

• irrelevant: flow to fixed point,

• marginal: preserves scaling symmetry.

We can classify theories according to their behaviour of operators when we change

the energy scale. Although we might have two (microscopically) different systems

in hand, at long distances these two different systems might have the same type of

relevant operators, i.e. the physical observables are identical. Therefore, they have

the same scaling behaviour or they are in the same universality class.

There is a special phenomenon at the infrared fixed points of the renormalization

group called 2nd-order phase transition. The phase transitions can be crudely de-

fined as the non-analycity of some thermodynamic quantity. The transition between

phases of water is a first order phase transition in which the internal energy changes

discontinuously. There is a point, called critical point, where the boundary between

liquid and gas form of water disappears. Basically you can not differentiate between

liquid and gas phases, they seem to exist at the same time and the system becomes

scale invariant in some sense.

Another canonical example of critical point is the Curie temperature in ferromagnets.

Above the Curie temperature ferromagnets, like iron, do not display magnetization.

However, if we place a ferromagnet in an external magnetic field and crank down
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the system below the Curie temperature, the spins will align themselves in the same

direction as the external field and material is magnetised. At the Curie temperature,

the state of being magnetised in the up or down direction dies out and the system is

again scale invariant in the sense that examining crystal lattice we see spin-up or spin

down regions. If we look closely (changing distance scale), we see that these regions

have subregions that are opposite in spin variable, i.e. there is no distinguished length

scale.

The observables at the critical points have a remarkably simple form because of the

scaling symmetry. Let us define an operator �(x), which is 1 or 0 depending on the

spin state of an atom at the point x. Then the correlation of two spins is the expec-

tation value h�(x)�(y)i, called correlation function. Away from the critical point,

the correlation functions roughly decay exponentially depending on the distance on

points |x� y| and a length scale L called correlation length,

h�(x)�(y)i ⇠ exp(�|x� y|/L). (2.44)

As we advance towards the critical point, the scale invariance of the theory kicks

in and dictates a special form for the correlation functions. The 2-point correlation

functions have to decay with a power law

h�(x)�(y)i ⇠ 1

|x� y|⇠ . (2.45)

where ⇠ is called the critical exponent. Similarly, the higher order correlation func-

tions, n-point functions, satisfy power laws at the critical point, with the forms deter-

mined by the scale transformations.

In this short section, we have tried to convey some ideas of the renormalization group

ideas, phase transitions, fixed points and the scale invariance at fixed points. Our

discussion was nowhere rigorous and just focused on the ideas, concepts that are

crucial to motivate the study of NR spacetimes with anisotropic scaling.

2.2.3 Lifshitz and Schrödinger backgrounds

In the previous section we have argued that, at fixed points of the RG flow, theories

exhibit scale invariance. For Lorentz invariant theories scaling has to act the same
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way on both space and time,

t ! �t, x ! �x. (2.46)

However, the scaling behaviour does not have to be isotropic for non-relativistic the-

ories. Instead we could have the dynamical scaling, commonly seen in condensed

matter systems

t ! �zt, xi ! �xi, i = 1, · · · d and z 6= 1, (2.47)

where z is called the dynamical critical exponent6. The simplest example with non-

relativistic scaling z = 2, is the good old Schrödinger equation derived from the

Lagrangian  †
(@t�r2

) . Another canonical example arising in critical points of the

phase diagrams of certain materials is the Lifshitz field theory

L =

Z

d2x dt
⇥

(@t�)
2 � (r2�)2

⇤

. (2.48)

This model is studied in the context of strongly correlated electron systems [33, 34]

and it lies in the universality class of some important systems.

Following the logic of AdS/CFT correspondence, we should then look for spacetimes

which are dual to theories living at fixed points enjoying the anisotropic scale invari-

ance. Besides scale invariance with dilatation generator D, one should also demand

the invariance under space and time translations Pi, H , spatial rotations Mij , P and

T symmetry. Then these set of generators will satisfy the following algebra of com-

mutators

[D,Mij] = 0, [D,Pi] = Pi, [D,H] = zH,

[Mij,Mkl] = 4⌘[i[kMl]j], [Pi,Mjk] = 2⌘i[jPk]. (2.49)

(2.50)

By choosing a Maurer-Cartan basis for this solvable group [35]

er =
dr

r
, ei =

dxi

r
, et =

dt

rz
, (2.51)

one is lead to the following metric for Lifshitz spacetimes

ds2 = L2

✓

�dt2

r2z
+

dr2

r2
+

dxidxi

r2

◆

. (2.52)

6 We can even have anisotropy between spatial components.
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which was first constructed in [36]. The Killing vectors of (2.52) satisfying the alge-

bra (2.49) are

Mij = �(xi@j � xj@i), Pi = �@i, H = �@t, D = �(zt@t + xi@i + r@r).

(2.53)

The non-relativistic nature of (2.52) can also be seen from the near boundary be-

haviour of lightcones. Taking a factor of 1/r2 out, (2.52) reads

ds2 =
L2

r2

✓

� dt2

r2(z�1)
+ dr2 + dxidx

i

◆

. (2.54)

Now, consider a radial slice at r = r⇤ with the induced metric

ds2 =
L2

r2⇤

��c(r⇤)
2dt2 + dxidx

i
�

, (2.55)

where c(r⇤) = r(1�z)
⇤ . Therefore as we approach the boundary, i.e. as r⇤ ! 0 for

z > 1, the effective speed of light will diverge, forcing lightcones to open up and

flatten at the boundary. For z < 1 the boundary lightcone closes up leading to the so

called Carroll theories.

Apart from the Lifshitz symmetries, one could naively demand a simpler non-relativistic

symmetry. Instead of adding scale invariance, we can expect a non-relativistic the-

ory that is invariant under rotations, space and time translations and Galilean boosts

xi ! xi + vit, t ! t with i = 1, · · · , d. Denoting the Galilean boosts with Ki we

have the following commutators

[Mij,Mkl] = 4⌘[i[kMl]j], [Pi,Mjk] = 2⌘i[jPk],

[Mij, Kk] = 2�k[iKj], [Pj, Ki] = 0, [H,Ki] = Pi. (2.56)

However this set of commutators is not actually enough for physically relevant sys-

tems. This can be seen by the fact that the Lagrangians are changed by a total deriva-

tive under the Galilean boosts [37].

As a fundamental example for the action of Galilean boosts, consider the change of

action for a free particle under the infinitesimal transformation �xi
= vit,

S =

1

2

Z t2

t1

Mẋi
2dt ! �S =

d

dt

⇥

Mxiv
i
⇤t2

t1
. (2.57)
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So the Noether current of this transformation will be

JG = �Mẋiv
it+Mxiv

i,

= �piv
it+Mxiv

i. (2.58)

On the other hand the Noether current for translations �xi
= ai is

JP = �Mẋja
j
= �pja

j. (2.59)

The Poisson bracket of charges of these currents will reveal the structure of the sym-

metry algebra

{QG, QP} =

Z

dD�1x

✓

�QG

�xi

�QP

�pi
� �QG

�pi
�QP

�xi

◆

= �Mvia
i, (2.60)

which basically points out the fact that, the non-commutativity of boosts and trans-

lations are related to the mass of the particle. Then with this hindsight, the central

extension of Galilean algebra reads

[Pj, Ki] = 0 ! [Pj, Ki] = ��ijN. (2.61)

which is called the Bargmann algebra. For a single particle N = M , and in general

N counts the number of particles with a certain mass. There is even more to the

story when d = 1 or d = 2 (meaning we have 1 or 2 spatial dimension and one time

dimension). For the latter case, one can introduce 3 central charges M,K,E (we have

also defined M12 = J, i.j = 1, 2.)[38, 39, 40]

[J,Ki] = ✏ijKj, [J, Pi] = ✏ijPj

[J,H] = E, [Ki, Pj] = �ijM

[Ki, Kj] = ✏ijK, [Ki, H] = Pi, [Pi, H] = [P1, P2] = 0. (2.62)

For this algebra to make sense in group level one should set E = 0 [38]. This can be

seen from the action of finite rotations on H (assuming E = e.I)

e✓JHe�✓J
= (1 + ✓J + · · · )H(1� ✓J + · · · ),
= H � ✓[H, J ]

= H � e✓I. (2.63)
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In order to have the same values for energy at ✓ = 0 and ✓ = 2⇡ one should set

E = 0. Before leaving the discussion of the d = 2 algebra, let us make a final

comment about the possible physical applications. By defining Xi = Ki/M , we can

modify the commutators [Xi, Pj] = �ij and [Xi, Xj] = ✏ijK/M2 and in this new

phase space variables the coordinates are non-commutative. The non-commutative

Galilean invariant models have been studied [39, 41, 42] (see the references therein)

based on this extended algebra.

The Bargmann algebra that is conformally extended to include dilatations of the form

(2.47) is called Schrödinger algebra and is denoted by schz(d) [43, 44]. First per-

formed in [45], the idea of geometrizing the Schrödinger algebra for z = 2 is moti-

vated by the symmetry properties of fermions at unitarity [46, 47]. Being a strongly

coupled system, fermions interact with a short ranged potential that is fine-tuned to

support a zero-energy bound state and is scale invariant in the limit of zero range

potential. Then following AdS/CFT correspondence once again, one should be able

to investigate the system with its gravity dual that realizes the Schrödinger symmetry

geometrically.

There is a special z = 2 value which makes sch2(d) a subset of conformal algebra

O(2, d+2), therefore introducing a special conformal transformation. This fact can be

deduced from the massless Klein-Gordon equation in d + 2 dimensional Minkowski

spacetime [45]

⇤� ⌘ �@2t �+

d+1
X

i=1

@2i � = 0. (2.64)

Introducing light-cone coordinates

x±
=

x0 ± xd+1

p
2

, (2.65)

(2.64) reads
 

�2

@

@x�
@

@x+
+

d
X

i=1

@2i

!

� = 0. (2.66)

Identifying @/@x� ⌘ �im, we have the following Schrödinger equation with x+

acting as time coordinate
 

2im
@

@x+
+

d
X

i=1

@2i

!

� = 0. (2.67)
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Several comments are in order. First the equation (2.67) has a scaling symmetry (2.47)

with z = 2, i.e. sch2(d). Moreover, massless Klein-Gordon equation is conformal

invariant (no scale) which makes sch2(d) a subgroup of O(2, d + 2). Therefore the

sch2(d) algebra can be embedded into the conformal algebra (2.32) with the follow-

ing identifications [45]7

M =

˜P+, H =

˜P�, P i
=

˜P i, M ij
=

˜M ij,

Ki
=

˜M i+, D =

˜D +

˜M+�, C =

˜K+

2

, (2.68)

where ˜P+ ⌘ (

˜P 0
+

˜P d+1
)/
p
2. The non-zero commutators of sch2(d) are

[Mij,Mkl] = 4⌘[i[kMl]j], [Pi,Mjk] = 2⌘i[jPk],

[Mij, Kk] = 2�k[iKj], [Pj, Ki] = ��ijM, [H,Ki] = Pi, (2.69)

[D,Pi] = �Pi, [D,Ki] = Ki, [D,H] = �2H, (2.70)

[D,C] = 2C, [H,C] = D. (2.71)

The central charge M of the Bargmann algebra again commutes with all of the gen-

erators in sch2(d). Moreover, the triplet C,H,D forms an sl(2,R) algebra. Unlike

AdS or Lifshitz case, the symmetries of sch2(d) is realised by the following d + 2

dimensional metric

ds2 = �2(dx+
)

2

r4
+

�2dx+dx�
+ dxidxi

+ dr2

r2
(2.72)

The generators (2.68) generates the following isometries of the metric [45]

P i
: xi ! xi

+ ai, H : x+ ! x+
+ a, M : x� ! x�

+ a,

Ki
: xi ! xi � aix+, x� ! x� � aixi,

D : xi ! (1� a)xi, r ! (1� a)r, x+ ! (1� a)2x+, x� ! x�,

C : r ! (1� ax+
)r, xi ! (1� ax+

)xi, x+ ! (1� ax+
)x+,

x� ! x� � a

2

(xixi
+ r2). (2.73)

From the action of generators on coordinates (2.73), we see that the null coordinate

x� is related with the particle number. In non-relativistic theories the mass has gener-

ally discrete spectrum. By compactifying the coordinate x� we can achieve discrete

spectrum, yet this approach has its drawbacks [48].
7 Note that we have denoted the generators of conformal algebra with tilde signs M̃ij .
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Unlike the z = 2 case, for a generic exponent z 6= 1, 2, it is not possible to extend the

Bargmann algebra to include special conformal generator C to the schz(d). Yet, it is

possible include the dilatations with the following change of commutators in (2.71)

[D,H] = �zH, [D,M ] = (z � 2)M, [D,Ki] = (z � 1)Ki, (2.74)

where we also have set C = 0. It is apparent that for generic values of z, the particle

number M is not a central extension. The metric corresponding to z 6= 1, 2 is

ds2 = �2(dx+
)

2

r2z
+

�2dx+dx�
+ dxidxi

+ dr2

r2
. (2.75)

In this section we have discussed spacetimes that are possible candidates of gravity

duals of non-relativistic theories. Although our focus in this thesis will be mainly on

Lifshitz spacetimes, we also have discussed the important example of Schrödinger

spacetimes. Both of these spacetimes possess symmetries that are crucial for non-

relativistic scale invariant field theories. The main difference being the particle num-

ber generator M . Theories exhibiting Lifshitz symmetries will have particle produc-

tion (since particle number is not conserved). On the other hand Schrödinger space-

times with dynamical exponent z = 2 are endowed with a conserved particle number.

Our next step will be to check the particle motion in these spacetimes.

2.3 Particle Motion in Lifshitz and Schrödinger spacetimes

In order to discuss geodesic motion of particles in Lifshitz spacetimes let us first

construct the conserved quantities along a geodesic [49]. If ⇠µ is a Killing vector and

� is a geodesic with a tangent vector uµ, then ⇠µuµ is conserved along the geodesic �.

This fact can be easily seen from the following equality

uµrµ(⇠⌫u
⌫
) = uµu⌫rµ⇠⌫ + ⇠⌫u

µrµu
⌫
= 0, (2.76)

where the first term in the equality is zero by Killing equation and the second term

vanishes by the geodesic equation. The timelike and spatial Killing vectors of Lifshitz

spacetime will then amount to the following conserved quantities

E ⌘
⇣ r

L

⌘�2z
˙t, Pi ⌘

✓

L

r

◆2

ẋi, (2.77)
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where we have parametrized the geodesic tangent vector with ⌧ with the components

u(⌧)µ = (t(⌧), r(⌧), xi(⌧)) and dot denotes the derivative with respect to ⌧ . The norm

of the tangent vector is either timelike, spacelike or null uµuµ
= �,  = ±1, 0,

respectively. Replacing the conserved quantities in the norm of the tangent vector, we

have the following equation for radial behaviour of geodesics
✓

L

r

◆2(z+1)

ṙ2 = E2 � Veff, (2.78)

where the effective potential for geodesics is [50]

Veff =

✓

L

r

◆2z

+

✓

L

r

◆2(z�1)

P

2. (2.79)

As a warm-up, consider z = 1 case, which corresponds to the AdS in Poincaré patch

(2.12). The spatial momenta term in the effective potential becomes constant and

depending on the value of  we have different behaviours. For timelike geodesics

 = 1 (2.78) reads

ṙ2 =
r4

L4
(E2 �P

2
)� r2

L2
(2.80)

with E2 � P

2 ⌘ M2 > 0. The radial geodesics have turning points, i.e. ṙ = 0 at

rmax = ±L/M , meaning they can not reach the boundary situated at r = 0. For null

geodesics  = 0, Veff is just a constant. Therefore null geodesics in AdS can reach

the boundary and turn back in a finite time r(t) = ±(M/E)t.

The behaviour of geodesics in Lifshitz spacetimes depends heavily on Veff. For time-

like ones the transverse momentum term in Veff diverges as r ! 0, but the first term

diverges faster, making timelike geodesics turn around some minimum value like

their counterparts in AdS. The null geodesics can reach the boundary in a finite time

if their transverse momenta P = 0, i.e. they are radial. The non-radial geodesics will

experience a potential forcing them to turn back at some minimum value. This has

important consequences on the holography of Lifshitz spacetimes: An observer at the

boundary of spacetime will not be able to receive the signals with transverse momenta

making the reconstruction of the bulk from the boundary impossible [50, 51, 52].

The other side, r ! 1 of the Poincaré like coordinate system (2.52) is incomplete in

the sense that any timelike geodesic crosses the horizon in finite time, just like in AdS.

However in AdS we already know that this is a relic of coordinate system (Poincaré
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patch). It is possible to extend the spacetime by choosing a global coordinate patch.

To answer the question whether there is a similar extension for Lifshitz spacetime,

one can look for the tidal forces, i.e. how the separation between family of geodesics

behave as we approach r ! 1.

Consider a congruence of geodesics with parameter ⌧ and a tangent vector V µ with

the separation vector ⇠µ, then the geodesic deviation is given by

D2⇠↵

D⌧ 2
= �K↵

� ⇠
�, (2.81)

where K↵
µ = R↵

�µ⌫V �V ⌫ . To simplify the discussion assume we have two parallel

and radial geodesics. Plugging in (2.52) the transverse components yield

D2⇠i

D⌧ 2
= �⇠i

✓

ṙ

r

◆2

+

1

L2

✓

L

r

◆2z

z⇠i ˙t2. (2.82)

Employing previous definitions for energy and norm of tangent vector of geodesic,

we have the following [50]

D2⇠y

D⌧ 2
= ⇠y

E2

L2



(1� z)
⇣ r

L

⌘2z

� 

E2

�

. (2.83)

For z = 1, observers reach r = 1 in finite proper time without any singularity,

signalling geodesic completeness of AdS. The tidal force becomes divergent as r !
1 when z > 1, so Lifshitz spacetimes have singularities, falling observers experience

infinite tidal forces, i.e. they are geodesically incomplete.

Although we won’t discuss in detail, things are more peculiar for Schrödinger space-

times. First of all, neither timelike nor null geodesics reach the boundary of the

spacetime [53]. However tidal forces are more forgiving, behaving like (z � 1)r4�2z.

Therefore they are divergent between 1 < z < 2 and finite for z � 2, making the

global coordinate extension of Schrödinger spacetimes possible [53].

In this chapter we have summarised the symmetry and causal properties of various

spacetimes. Our starting point was maximally symmetric AdS spacetime which has

quite unique properties e.g. conformal completion, behaviour of geodesics that we

have discussed. We then consider our main objective, non-relativistic spacetimes. By

deforming the conformal algebra we introduced anisotropic scaling for NR space-

times. The Lifshitz algebra is simple, besides the usual generators of rotations and

translations, it accommodates the dilatation generator. On the other hand, the algebra
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of Schrödinger spacetimes has more structure. Addition of Galilean boosts intro-

duces a central charge M related with particle number. Finally, we have checked

the geodesics and causal properties of Lifshitz spacetimes. In fact, the geodesics do

not exhibit the same properties as their AdS counterparts, making the definition of

holographic dictionary quite difficult.
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CHAPTER 3

EINSTEIN-YANG-MILLS-LIFSHITZ SOLUTIONS

In this chapter we will try to answer whether it is possible to support Lifshitz space-

time with non-abelian matter. In order to tame the problem into a more palpable form,

we will make use of the symmetries of the spacetime and gauge fields.

In the search for solutions one could bluntly insert unknown functions to field equa-

tions and try to find a solution to those coupled, highly nonlinear equations. Moreover

Einstein-Yang-Mills (EYM) system inherits other difficulties to tackle. On one hand

we have diffeomorphism invariance of gravity, on the other gauge invariance of YM

theory introducing extra degrees of freedom. Remedy of this mess will be the sym-

metries we impose on the solution. First, to keep things as simple as possible we will

assume static fields, i.e. there is no change in time. The Achilles’ heel of this prob-

lem will be the planar symmetry. By imposing planar symmetry both on metric and

the gauge field we will greatly simplify the problem. This is easier said than done,

especially for the gauge field. One must conceive how symmetries on the spacetime

manifold manifest themselves on gauge fields. This process will be carried out in

detail in this thesis. After fixing the gauge for planar symmetric SU(2) gauge field,

we will look for the configurations that support Lifshitz spacetime as a background.

This chapter is based on the work that is published in [4].

The outline of this chapter is as follows: Sec. 3.1 starts with the problem of finding the

most general form of gauge fields that respect the given spacetime symmetry. After

presenting the procedure, an easy U(1) example will be given Sec. 3.1.1. Then the

spherically symmetric and planar symmetric SU(2) ansatz will be discussed. Having

dealt with symmetric gauge fields, we then describe in Sec. 3.2 how to use those to
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reduce the fields equations into a simpler form, invoking Palais’ Symmetric Criticality

theorems. Starting from Sec. 3.3, we begin constructing the EYM solutions. In Sec.

3.3.1 we will show that it is possible to find a planar symmetric configuration with a

Lifshitz background. Later, in Sec. 3.5 we will find series and numerical black hole

solutions and investigate their thermal properties in Sec. 3.6.

3.1 Gauge fields and Symmetry

In this section we will briefly review the interplay between the symmetries of space-

time and gauge fields. In what follows we will make use of the construction given in

[55, 56], although the problem had been worked out by mathematicians long before

[57, 58]. Important examples are ‘t Hooft-Polyakov monopole [59, 60] and Witten‘s

multi-instanton ansatz [61], which we will make use in the search for a EYM solution

that exhibits SO(3) symmetry. By introducing a systematic way, we will be able to

generate different type of Ansätze for different symmetry groups. Furthermore there

are far-reaching and interesting applications of this construction, like reduction of the

Yang-Mills action to a gauge theory with Higgs fields in lower dimension if the met-

ric of the spacetime manifold has the same symmetries as the gauge fields. To keep

the discussion short, we will avoid calculational details and give a simple example of

U(1) gauge field with planar symmetry at the end of this section.

Let � be a mapping of D dimensional manifold M onto itself

� : M ! M; x 7�! x̄ (3.1)

In this general form � could define an action of the symmetry group over the space-

time manifold M. In order to use Lie derivative in construction, we will focus on the

infinitesimal version of � defined by the vector field ⇠µ(x).

x̄µ
= xµ

+ ✏⇠µ(x) (3.2)

As well known, under this action, change in the objects living on manifold M can be

computed by the Lie derivative which is given by

L⇠T
⇢�···
µ⌫··· = ⇠�@�T

⇢�···
µ⌫··· + (@µ⇠

�
)T ⇢�···

�⌫··· + (@⌫⇠
�
)T ⇢�···

µ�··· + · · ·� (@�⇠
⇢
)T ��···

µ⌫··· � · · · .
(3.3)
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As in the case of Killing vectors of a metric, we say a scalar, vector or tensor possesses

the symmetry generated by ⇠µ(x) when its Lie derivative along ⇠µ(x) vanishes

L⇠Vµ = 0. (3.4)

The gauge fields are different objects, with one leg on the manifold M and the other

on the group manifold, thus they behave differently. Now, consider the gauge group

G with generators T a satisfying [T a, T b
] = gabcT c (where gabc are called structure

constants of the gauge group, not of the spacetime symmetry group) and let the nor-

malization be given by Tr(T aT b
) = 2�ab. Under a gauge transformation with the

group element g(x) 2 G the gauge field Aµ(x) = Aµ(x)aT a transforms as

Ag
µ(x) = gAµ(x)g

�1
+ (@µg)g

�1. (3.5)

Expanding the group element g around identity will yield in the first order

Ag
µ(x) = (1 +W a

(x)T a
)Aµ(x)(1�W b

(x)T b
)

+

⇥

@µ(1 +W c
(x)T c

)

⇤

(1�W d
(x)T d

),

= Aµ(x) + (@µW (x) + [Aµ(x),W (x)]),

= Aµ(x) +DµW (x), (3.6)

where Dµ ⌘ @µ + [Aµ, ] and W (x) = W a
(x)T a is in the Lie algebra of G. The

right hand side of the symmetry expression for gauge fields will not be zero. Since

we have found that the gauge fields are equivalent up to a total divergence of a Lie

algebra valued function, (3.4) will turn into

L⇠Aµ = DµW (x). (3.7)

This is something expected, somehow the extra structure we imposed must appear.

We will further restrict the function W (x) by assuming that both sides of (3.7) trans-

forms in the same way. Before that, let us massage the left side of (3.7). Using the

explicit form of the Lie derivative, (3.7) can be cast in the form

L⇠Aµ = ⇠⇢F⇢µ +Dµ(⇠
⇢A⇢), where F⇢µ = @⇢Aµ � @µA⇢ + [A⇢, Aµ]. (3.8)

With (3.7) we can relate the field strength and the function W (x) as

⇠⇢F⇢µ = Dµ�; �(x) ⌘ W (x)� ⇠⇢A⇢. (3.9)
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In this form, the transformation of W (x) is more apparent. Under gauge transforma-

tions, the gauge field and field strength transforms as

Aµ(x) =) gAµ(x)g
�1

+ (@µg)g
�1,

Fµ⌫ =) g�1Fµ⌫g. (3.10)

In order to have a gauge covariance, � must transform as � =) g�1�g, which in turn

implies that

W (x) =) g�1W (x)g + ⇠↵g�1@↵g. (3.11)

An interesting analogy with the Riemannian geometry is possible here. The commu-

tator of derivatives is equal to the Riemann tensor

[rµ,r⌫ ]⇠↵ = Rµ⌫↵
⇢⇠⇢. (3.12)

When ⇠µ are Killing vectors, from elementary properties of Killing vectors it is easy

to show that

R⌫µ↵
⇢⇠⇢ = r↵r⌫⇠µ. (3.13)

To make the connection with the first equation in (3.9) obvious, let us supress the two

indices ⌫, µ

R..↵
⇢⇠⇢ = r↵(r.⇠.). (3.14)

Now, both (3.14) and (3.9) expresses the same property, i.e. the projection of curva-

tures along the generator of coordinate transformation is equal to the gradient of some

quantity. In the case of Riemannian geometry that “some quantity” is the derivative of

the generator again. On the other hand, for non-Abelian gauge theories that quantity

is not specified. In some sense Riemannian geometry has more structure [56].

Another simple observation we can make is the case of one symmetry generator

⇠µ(x). Having one vector field we can always choose a frame so that ⇠µ(x) =

(1, 0, 0, · · · ). Then our symmetry equation will simplify to

@0Aµ = @µW � AµW +WAµ. (3.15)

The goal is to make W = 0 by choosing a suitable g, so that Aµ will be independent

of x0. Consider (3.11), the choice

g(x) = (Const) exp


�
Z x0

0

W (y, · · · )dy
�

(3.16)
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sets W = 0. In this gauge we see that Aµ is independent of x0. However when there

are several symmetries present, life is not that easy. One can not simultaneously make

all components of several generators zero in one frame.

Let us consider several symmetries with ⇠µm where 1  m  N . In this case our

symmetry equation will modify into

L⇠mAµ = DµWm, (3.17)

with ⇠’s satisfying an algebra i.e.

[⇠m, ⇠n]
µ ⌘ ⇠⇢m@⇢⇠

µ
n � ⇠⇢n@⇢⇠

µ
m = fmnp⇠

µ
p . (3.18)

Notice that, we keep the structure constants of the algebra of spacetime symmetry

generators and algebra of gauge group generators different for now. In order to use

this algebra, let us consider the commutator of Lie derivatives

(L⇠mL⇠n � L⇠nL⇠m)Aµ = L⇠m(DµWn)� L⇠n(DµWm). (3.19)

After a little manipulation, (3.19) reduces to

L⌘Aµ = Dµ(L⇠mWn � L⇠nWm + [Wm,Wn]) = DµW⌘. (3.20)

Assuming DµW⌘ 6= 0, we require for consistency that

L⇠mWn � L⇠nWm + [Wm,Wn]� fmnpWp = 0. (3.21)

First, solving the above consistency condition with a given set of coordinate transfor-

mations and employing the equation (3.7) for Aµ, we will be able to get rid of the

extra degrees of freedom in symmetric gauge fields. Note that, there is a special case

here. If the Lie derivatives of Wf and Wg are constant, i.e. L⇠mWn = L⇠nWm = 0,

then the gauge functions satisfy

[Wm,Wn] = fmnpWp = W⌘. (3.22)

Remember that fmnp is the structure constant of the spacetime symmetry group.

Therefore, we have basically embedded the spacetime symmetries into the gauge

group, making the compensating gauge transformations global.
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Before moving into the examples let us discuss about the reduction of Yang-Mills

actions into the Yang-Mills-Higgs system. After some manipulations, the consistency

conditions (3.21) and the definition of gauge covariant scalar (3.9) will lead to

⇠µmDµ�n � ⇠µnDµ�m + [�m,�n]� �k = ⇠µm⇠
⌫
nF⌫µ (3.23)

where [⇠m, ⇠n] ⌘ ⇠k and �k is the related scalar with ⇠k. Finally using the projection

(3.9)

⇠µn⇠
⌫
mF⌫µ = [�m,�n]� �k. (3.24)

This powerful equality states that certain projections of curvature are directly related

to the scalars. Following the lines of [56], one can decompose the Yang-Mills action

as follows: Assume the gauge fields are invariant under coordinate transformations

that are the elements of some submanifold M0. Then, we can separate the indices

µ, ⌫ parallel to M0 and its complement M00, i.e. M = M0 [ M00. The Yang-Mills

action will decompose as

L =

1

2

TrF µ⌫Fµ⌫ ,

=

1

2

TrF || ||F|| || + TrF ||?F||? +

1

2

TrF??F??,

=

1

2

TrF??F?? + (D?�)(D
?�)� Tr

1

2

([�,�]� �)2 , (3.25)

where in the final line we have used (3.24), (3.9). The first term in (3.25) is the pure

Yang-Mills in submanifold M0, the second term is a kinetic term for Higgs field and

the final one is the potential for the Higgs field. This type of splits has been studied

along the equivalence of solutions and obtaining Weinberg-Salam model from a pure

Yang-Mills theory [56, 61, 62].

3.1.1 An easy example

In this section we will discuss a simple, well-known application of the procedure we

have introduced. The problem is simple: What is the form of the vector potential of a

uniform magnetic field in the z direction ? Answer is well-known and repeatedly used

in electromagnetic theory and quantum mechanics courses. Stated in more “rigorous”

way we need to find a U(1) gauge field, invariant under E(2), that is rotations about
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the z axis and translations along x or y. Generators of E(2) are simple to guess

PY = � @

@y
, PX =

@

@x
, M = x

@

@y
� y

@

@x
, (3.26)

with PX , PY describing the translations and M is the rotation about the z axis. Written

in polar coordinates

PY = � sin'
@

@⇢
� cos'

⇢

@

@'
, PX = cos'

@

@⇢
� sin'

⇢

@

@'
, M =

@

@'
.

(3.27)

In addition, we will make use of the commutation relations of generators

[PX , PY ] = 0, [PX ,M ] = �PY , [PY ,M ] = PX . (3.28)

Let us turn back to (3.21) and make use of the machinery we have developed in the

previous section. Since U(1) is an Abelian gauge group, (3.21) will simplify into

L⇠mWn � L⇠nWm = fmnpWp. (3.29)

From the transformation properties of W ’s we see that for the rotation generator M

WM =) g�1WMg + g�1Mµ@µg, Mµ
= (0, 1). (3.30)

Here we have made our first choice and set WM = 0 (Note that, we have fixed only

the ' part of g(⇢,')). The choice made here is quite general, for most of the problems

the rotation generator part of W is set to zero. In this example that choice makes the

gauge field Aµ independent of ', i.e.

LMAµ = 0. (3.31)

With this choice we can assume the following form of Aµ

A = A⇢(⇢)d⇢+ A'(⇢)d'. (3.32)

One could push further and make use of (3.5) and make A⇢(⇢) = 0 by fixing the

residual ⇢ dependence on g(⇢,'). Then (3.32) reduces to having one component

only:

A = A'(⇢)d'. (3.33)
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The remaining equations for PX , PY read

LMWPX = WPY (3.34)

LMWPY = �WPX . (3.35)

These will generate the first order coupled equations with solution

WPY = f(⇢) cos' (3.36)

WPX = f(⇢) sin'. (3.37)

The explicit forms of WPY , WPX can be used to extract differential equations from

LPY Aµ = @µWPY , LPXAµ = @µWPX . (3.38)

(3.38) amounts to two simple differential equations

f(⇢)� @⇢A'(⇢) +
A'(⇢)

⇢
= 0,

df

d⇢
=

A'(⇢)

⇢2
, (3.39)

with a solution

A(⇢) = c1 + c2⇢
2. (3.40)

We cast this in a more familiar form by turning to Cartesian coordinates

A = B⇢2d� = B(xdy � ydx), (3.41)

where B is a constant. In this simple problem we have actually used a sledgehammer

to crack a nut, but this is a nice, simple example to practice on this machinery. The

power of this can be seen on non-abelian groups with complicated symmetries. In the

next section we will discuss about SO(3) invariant SU(2) gauge field ansatz given

by Witten [61].

3.1.2 Spherically and Planar Symmetric SU(2) Ansatze

Witten gave a seminal ansatz for the SU(2) gauge field with rotational symmetry in

[61]. We will make use of this ansatz to simplify EYM equations, however we will not

expound it in here. Derivation with the construction we have introduced can be found

in [55] or [56]. [55] uses the coset techniques which is rather complicated, whereas

[56] directly solves the differential equations as we did in the previous section.
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The following static SU(2) connections are invariant under SO(3) and the connected

part of SO(2, 1) [55, 61]

A = q(r)T 3dt+ p(r)T 3dr +
�

w(r)T 1
+ u(r)T 2

�

d✓

+

�

w(r)⌦k(✓)T
2 � u(r)⌦k(✓)T

1
+

˜

⌦k(✓)T
3
�

d�, (3.42)

for k = 1,�1, where ⌦1(✓) ⌘ sin ✓, ⌦�1(✓) ⌘ sinh ✓, ˜⌦1(✓) ⌘ cos ✓, ˜⌦�1(✓) ⌘
cosh ✓. The values of k = ±1 control whether the ansatz is symmetric under spherical

rotations or hyperbolic rotations.

This expression still has a U(1) gauge freedom [63], which can be used to set u(r) =

0. Next, to simplify the discussion, we will only consider the gauge field strengths

with vanishing electric part, i.e. q(r) = 0 which is rather restrictive. In fact it was

shown in [64] that (assuming appropriate asymptotic) the Reissner-Nordström solu-

tion is the only static black hole with non-zero YM electric field. However, all of this

was for asymptotically flat backgrounds which obviously does not necessarily apply

to Lifshitz spacetimes. Nevertheless, for the sake of simplicity, we shall restrict our-

selves to the purely magnetic case in this work. The extension of this work is done

in [65], where the authors coupled an extra U(1) field and found exact solutions with

colourful vacua in different dimensions.

Taking these considerations into account, we have the simplified version of the ansatz

(3.42)

A =

8

<

:

w(r)T 1d✓ + (w(r)⌦k(✓)T 2
+

˜

⌦k(✓)T 3
)d�; for k = ±1

w(r)T 1d✓ + w(r)T 2d�; for k = 0

. (3.43)

The form of the Lifshitz metric (2.52) we have given in the previous chapter is planar

symmetric in the spatial part. This form will be the actual background solution which

we will dress with blackholes. The non-abelian gauge field configuration respecting

the symmetry of the plane is a subgroup of the Poincaré group and studied extensively

in [66, 67]. Additionally, we shall again restrict ourselves to the static and purely

magnetic case which leads to the SU(2) gauge connection

Aµdx
µ
= w(r)T 1dx1 + w(r)T 2dx2. (3.44)

41



3.2 Palais’ Principle of Symmetric Criticality

Having dealt with the procedure for finding group invariant gauge fields and presented

the ones we are going to use, let us now discuss how to implement these symmetric

fields and further simplify the field equations. The Palais’ Principle of Symmetric

Criticality (PSC) asserts that given a symmetry, the field equations restricted to fields

that are invariant under symmetry action are equivalent to the field equations that

are obtained through a symmetry reduced Lagrangian [68]. The PSC has been em-

ployed in a variety of cases in gravitational theories [69, 70, 71, 72] involving higher

curvature ones and so on.

However one should be careful before implementing PSC, it may not be possible

to impose the symmetry on the fields and retrieve correct, reduced field equations.

The theory may have non-trivial boundary terms in the restricted variational princi-

ple [73, 74] which spoils equivalence. The conditions on the applicability of PSC

on gravitational theories depend on the group action regardless of the Lagrangian,

spacetime manifold [75, 76].

Now let us give a simple example which will also be useful in the EYM model.

The most general spherically symmetric metric in four dimensions in Schwarzschild

gauge is given by the following

ds2 = �S(r, t)2µ(r, t)dt2 +
dr2

µ(r, t)
+ r2d⌦2, (3.45)

where d⌦2
= d✓2 + sin

2 ✓d�2 is the usual metric on the 2-sphere S2. This form of

the metric is used by Weyl [69] to derive Schwarzschild solution in a very classy way.

Plugging (4.179) in cosmological Einstein action amounts to

IE =

Z

d4x
p�g(R� 2⇤)

=

Z

dr dt d⌦

(

S(r, t)
⇥

2� 2r2⇤0 � 2µ(r, t)� r2µ(r, t)00 � 4rµ(r, t)0
⇤

� ⇥4rµ(r, t)S(r, t)0 + 3r2S(r, t)0µ(r, t)0 + 2r2µ(r, t)S(r, t)00
⇤

+

r2 ˙S(r, t)µ̇(r, t)

(S(r, t)µ(r, t))2
+

2r2S(r, t)µ̇(r, t)2

S(r, t)µ(r, t)3
� r2µ̈(r, t)

S(r, t)µ(r, t)2

)

(3.46)

where dot denotes t derivatives and prime indicates derivative with respect to the

coordinate r. One can immediately see the consequences of Birkhoff’s theorem, i.e.
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the last three terms can be cast as a time total derivative boundary term. Therefore

there are no time derivative terms in the integrated action. The main objective is to get

rid of the second radial derivative terms with integration by parts. After performing

necessary integrations, we have the following

IE =

Z

dr d⌦ 2S(µ+ rµ0 � 1 + r2⇤) + Boundary Terms. (3.47)

The Schwarzschild-de-Sitter solution easily follows from Euler-Lagrange equations

for µ(r), s(r)

µ(r) = 1� r2⇤

3

+

c1
r
, S(r) = c2. (3.48)

We have seen that, by employing the PSC theorem and reducing the Lagrangian be-

fore varying it, we can extract the simplest form of field equations. This procedure

will be really valuable when we couple non-linear Yang-Mills fields to the Einstein

sector.

3.3 Lifshitz configurations

In this section we will construct the Lifshitz background supported by the planar

symmetric SU(2) gauge field (3.44). As well known, Einstein gravity with a neg-

ative cosmological constant does not admit anisotropic backgrounds as a solution.

One can consider matter couplings to engineer these backgrounds. One of the first

matter configuration considered is the string theory motivated p-form fields in [36],

which is conjectured to be the gravitational dual of 2 + 1 dimensional field theo-

ries modelling quantum critical behaviour in strongly correlated electron systems. In

[77] different types of anisotropic backgrounds (including spatial anisotropy) were

constructed, with massive gauge fields, U(1) fields with dilaton-like couplings [78]

which are themselves better studied models for gravity duals.

Another possibility is to employ higher order derivative terms to source the met-

ric. Once we depart from Einstein gravity and add higher curvature corrections, the

amended theories begin to accommodate these backgrounds as a solution [79, 80, 81,

82]. The downside of these theories is that they are not wieldy for the applications of

holography, e.g. they don’t possess a well defined variational principle which makes
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the definition quantities, procedures (like conserved charges, holographic renormal-

isation) somewhat sketchy. Moreover, higher curvature theories may have unitarity,

ghost problems which are important for relativistic field theories, though it may not

be crucial for the applications of non-relativistic holography.

The matter Lagrangians with non-abelian gauge fields have been employed in holo-

graphic superconductor models [83, 84], with AdS/Schwarzschild black hole back-

grounds. In [85] Lifshitz scaling on these models were considered. However, in these

examples non-abelian matter was used as an extra degree of freedom not to support

the background spacetime. In this part of the thesis we will attack the problem of find-

ing the non-abelian matter configuration that will support Lifshitz background. After

solving that problem, the next task we undertake is the dressing up of this background

solution with black holes.

3.3.1 Colored Lifshitz Vacua

We will consider four dimensional cosmological EYM theory with the gauge group

SU(2) described by the action

S =

Z

d4x
p�g

⇣

(R� 2⇤)� 1

2g2YM

TrFµ⌫F
µ⌫
⌘

, (3.49)

where ⇤ is the cosmological and g2YM is the gauge coupling constant in dimensions of

1/length2.

Note that we have kept the coupling g2YM and cosmological constant ⇤ explicit, in order

to determine their dependence on the dynamical critical exponent z, which basically

controls the geometry. This is actually quite different from the AdS and asymptoti-

cally flat cases [86, 87] in which they are both solutions of the cosmological Einstein

and YM field is used only as a hair parameter, not for supporting the geometry. There-

fore with hindsight we expect that at conformal limit, i.e. z = 1, we expect g2YM ! 1
and two sectors will decouple. Because of the decoupling, it is not possible to recover

the results of [86] for a crosscheck.

Einstein field equations following from the action (3.49) read

Rµ⌫ � ⇤gµ⌫ =

1

g2YM

Tµ⌫ , (3.50)
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with the traceless YM stress-energy tensor defined as

Tµ⌫ ⌘ Tr (Fµ
↵F⌫↵ � 1

4

gµ⌫F↵�F
↵�
), (3.51)

and the YM field equations

DµF
µ⌫

= 0. (3.52)

We can immediately determine the cosmological constant by exploiting the traceless

nature of the stress-energy tensor. Taking the trace of (3.50) with respect to the metric

(2.52) yields1

⇤ = �3 + 2z + z2

2L2
. (3.53)

The next step is now to bring all ingredients into play and find the field equations

of EYM with a non-abelian gauge field configuration respecting the symmetry of

the plane. Besides the symmetric gauge field (3.44), we will also employ a plane

symmetric metric ansatz that is similar to the spherical one (4.179) we have discussed

in PSC theorem. For our purposes it is convenient to consider the following form

ds2 = L2
⇣

� S(r)2µ(r)dt2 +
dr2

µ(r)
+ r2dx2

⌘

. (3.54)

As we have discussed in the previous section, we just plug in the gauge field (3.44)

and metric (3.54) into the action (3.49)

IEYM =

Z

dr 2L2S(r)
⇥

µ(r) + rµ(r)0 + r2⇤
⇤

+

S(r)

g2YM

✓

w(r)4

2L2r2
+ µ(r)w(r)02

◆

. (3.55)

Invoking PSC and varying reduced action we end up with the following field equa-

tions

S�1S 0
=

1

2L2g2YM

(w0
)

2

r
, (3.56)

(µw0
)

0
=

w3

r2
� 1

2L2g2YM

µ(w0
)

3

r
, (3.57)

rµ0
+ µ+ L2r2⇤ = � 1

2g2YML
2

⇣ w4

2r2
+ µ(w0

)

2
⌘

, (3.58)

1 Note that in this chapter we will use the transformed form of the metric (2.52) with r ! 1/r, which basically
maps the boundary from r = 0 to r ! 1.
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with prime denoting the ordinary derivative with respect to r. The choice S(r) =

rz�1, µ(r) = r2 will reproduce Lifshitz spacetimes. Taking this into account and

using (3.53) as the cosmological constant value, it is straightforward to show that the

Lifshitz spacetime (2.52) is a solution for all z > 1 provided that the gauge field and

the coupling constant are chosen as

w(r) = ±p
z + 1 r, g2YM =

1

2L2

(z + 1)

(z � 1)

. (3.59)

There are various remarks that need to be made at this point. First of all, there is

a sign ambiguity in the gauge field which can be deduced from the invariance of the

field equations (3.56), (3.57), (3.58) under w(r) ! �w(r). That actually corresponds

to a gauge transformation [88]. Hence, in what follows we will choose the positive

sign gauge field. We need z > 1 in order to have real gauge fields, which signals the

“critical slowing down” of the possible dual field theories [36]. As we have pointed

out earlier, the conformal limit is special in the sense that the YM part decouples

from the gravity action and, as well-known, the AdS spacetime is a solution of (3.50)

without matter fields, provided ⇤ = �3/L2. On the other hand the decoupled gauge

field is also a solution to the pure YM part, which is in some sense the AdS analogue

of the flatspace solution given in [66, 67].

The five dimensional extension to our four dimensional solution was later done in [65]

and it was shown that the solution can also be extended to D = 5 with the following

couplings

⇤ = �(D � 2)[(z2 + (D � 2)z + (D � 1)]

4L2
, g2YM =

z +D � 3

(D � 2)(z � 1)L2
, (3.60)

and the gauge field

A =

3
X

a=1

T aAa
= w(r)(T 1dx1

+ T 2dx2
+ T 3dx3

), (3.61)

where T a are the Pauli matrices. Having found the non-abelian configuration that

supports Lifshitz asymptotics, in the next section we will dress up this background

geometry to obtain black hole solutions.
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3.4 Heavenly Bodies, Hair, YM solitons

The concept of a “black hole” has its roots even in Newtonian Era. Laplace has

discussed existence of such objects and called them dark stars. He argued that “the

attractive force of a heavenly body could be so large, that light could not flow out of

it”[29]. The real deal started with the Einstein’s theory of gravitation; shortly after

its construction Schwarzschild [89] came up with a solution. However this solution

was plagued with singularities at the centre r = 0 and r = rg, which were not fully

understood for almost thirty years. The structure of spacetime was revealed with the

pioneering works of Finkelstein, Fronsdal, Kruskal and Szekeres [90, 91, 92, 93].

In the middle of 1960s black hole studies gained an impetus with Kerr‘s rotating

solution [94]. At this era the black hole “no-hair” conjecture proposed by Israel,

Penrose and Wheeler had a paramount importance on the black hole theory. The

conjecture states that:

All stationary, asymptotically flat, four dimensional electro-vacuum black hole

spacetimes are characterised by their mass, angular momentum and electric charge.

This conjecture has a striking similarity with a statistical system that is in thermal

equilibrium. In statistical physics a system in equilibrium can be described by a

small set of variables E, V, T,N (energy, volume, temperature, number of particles)

although we have large number of accessible states for each particles. Likewise a

static black hole is described by mass, angular momentum and charge, regardless

of its microstates if any. Moreover, the black hole mass variation formula [95] and

the area increase theorem [29] are analogous to energy variation and second law of

thermodynamics (entropy increase). These strong resemblances led people to believe

in a generalised version of the no hair conjecture which simply states that all black

hole equilibrium configurations are characterised by mass, angular momentum and

global gauge field charges. By global charges we mean quantities which are measured

from infinity, far from the event horizon.

The proof of this conjecture, as stated above, took some serious effort and required

strong assumptions such as stationarity, asymptotic flatness, Einstein equations. If
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we relax some of the conditions such as adding a cosmological constant, “topological

black holes” [96, 97] starts to appear with non-spherical event horizon. That contra-

dicts with Israel’s theorem [98, 99] used in the proof of the no-hair conjecture, which

states that staticity guarantees spherical symmetry of the horizon. This alone shows

that the no-hair conjecture in its original form is too restrictive.

Another way to relax the conditions is to add matter. One of the first examples is

the Bocharova-Bronnikov-Melnikov-Bekenstein (BBMB) blackhole [100, 101, 102]

which is basically the extremal Reissner-Nordstrom black hole with a conformally

coupled scalar field. For our purposes, the related example is the asymptotically flat

EYM blackholes [103]. However both examples are highly unstable which saves the

no-hair conjecture for stable black holes. On the other hand, asymptotically AdS

EYM blackholes with SU(2) gauge fields are actually stable and they require a new

parameter to describe the geometry outside of the horizon [86, 104, 105]. Therefore

in addition to mass, charge and angular momentum we have another parameter, ex-

tending the no-hair conjecture. In some sense the conjecture still holds, i.e. we have

finite number of parameters describing the black hole.

Besides the no-hair conjecture there were also a number of reasons that made research

on solutions with self gravitating fields a no man’s land until 1989.

i) Lichnerowicz theorem [106] proves that there are no gravitational solitons.

Likewise Einstein-Maxwell system does not admit solitons [107].

ii) Deser’s simple argument [108] proves that there are no static solutions to Yang-

Mills equations in four dimensional spacetime. Also he further proved that

three dimensional Einstein-Yang-Mills equations do not admit solitons.

These arguments are plausible enough to conjecture that there are no EYM solitons.

When Bartnik-McKinnon [103] found globally regular solutions to SU(2) EYM the-

ory, it was a big surprise. Considered on their own both theories are not capable

of supporting solitons, but taken together the non-linearities of the gravitational and

gauge fields seem to balance themselves.

48



3.4.1 Einstein Yang-Mills Equations

The importance of black hole solutions in holography comes from the principle that

they describe the finite temperature behaviour of those dual field theories. With AdS

asymptotics there are beautiful examples of analytic blackholes in various theories

and dimensions. Passing from AdS to Lifshitz spacetime we break some of the sym-

metry and this is no good for finding exact solutions. The analytic black holes with

Lifshitz background are actually quite rare. Things get harder especially with a mat-

ter coupling [77, 78] for generic dynamical exponent z, [109, 110, 111, 112] for fixed

value of z.

Recall that, another possibility to support Lifshitz spacetimes is the curvature correc-

tions. Although this approach opens up the way for large families of analytic black

holes in different dimensions [82, 80, 79, 81], again the holographic discussion of

these solutions are tricky. On the other hand, it is still possible to learn a great deal

of properties from the numerical solutions, which were explored for theories with

massive gauge fields and p-forms with generic z values and for different horizon

topologies [113, 114, 115, 116, 117]. Motivated by our background solution, let us

now gather the ingredients together and investigate the numerical solutions of EYM

Lifshitz system thoroughly.

We will start with a more general form of the metric (3.54)

ds2 = L2
⇣

� S(r)2µ(r)dt2 +
dr2

µ(r)
+ r2d⌦2

k

⌘

, (3.62)

where we control the spatial part of the metric with the parameter k. It is clear that,

k = 0 corresponds to the planar symmetric case, in which we have employed in the

background solution, k = 1 yields the spherically symmetric metric, and k = �1

option is invariant under hyperbolic rotations. We also need to consider the general

form of the gauge field, i.e. spherical symmetric ansatz (3.43) for the cases k = ±1.

Utilising all these, the equations (3.56), (3.57), (3.58) can be put into a more general
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form covering major topologies [87]

S�1S 0
=

1

2L2g2YM

(w0
)

2

r
, (3.63)

(µw0
)

0
=

w(w2 � k)

r2
� 1

2L2g2YM

µ(w0
)

3

r
, (3.64)

rµ0
+ µ+ L2r2⇤� k = � 1

2g2YML
2

⇣

(w2 � k)2

2r2
+ µ(w0

)

2
⌘

. (3.65)

Although this form seems compact and useful for the constraints on the fields, for the

sake of numerical study it is a bit impractical for the reasons we have described in

the appendix. What we need is the first order equations and it can be done by simply

redefining the metric and the gauge field functions. It should be done in such a way

that the Lifshitz vacuum (2.52) can be explicitly recovered at large radius. One can

achieve this with simple redefinitions

w(r) ⌘p
z + 1 rh(r), µ(r) ⌘ r2

g(r)2
,

S(r) ⌘rz�1f(r)g(r), w0
(r) ⌘ p

z + 1 j(r). (3.66)

Provided f(r), g(r), h(r), j(r) go to one in the large r limit, i.e. when r � 1, we

recover the Lifshitz background solution for the EYM system with k = 0. To make

this fact quite clear and point out the differences with asymptotically AdS solutions

of EYM let us write down the metric k = 0 explicitly

ds2 = L2

✓

�r2zf(r)2dt2 +
dr2

r2
g(r)2 + r2dx2

◆

. (3.67)

For comparison, the form of the metric used in the AdS analysis is [86]

ds2 =L2
⇣

� S(r)2µ(r)dt2 +
dr2

µ(r)
+ r2d⌦2

k

⌘

,

where µ(r) = 1� 2m(r)

r
� ⇤r2

3

, (3.68)

from which you can define the mass of the black hole. Similar to the Lifshitz case

m(r) ! 1 as we go further from the event horizon. This choice also reflects the

fact that the gauge field is a hair parameter in this case, without it the solution is

Schwarzschild-AdS. On the other hand, for our case we recover the plain background

for the large radius.
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The set of transformations (3.66) will yield the following first order system of equa-

tions

rf(r)0 = �f(r)
⇣

(z � 1)� j(r)2

2

(z � 1) +

g(r)2h(r)4

4

(z2 � 1)

� g(r)2

4

(3 + 2z + z2) +
3

2

⌘

� kf(r)g(r)2
n k

4r4
(z � 1)

(z + 1)

� h(r)2

2r2
(z � 1)� 1

2r2

o

, (3.69)

rj(r)0 = j(r) + g(r)2h(r)3(z + 1)� g(r)2j(r)

2

(z2 + 2z + 3)

+

g(r)2h(r)4j(r)

2

(z2 � 1)

� k
n

g(r)2
⇣h(r)2j(r)

r2
(z � 1)� k

j(r)

2r4
(z � 1)

(z + 1)

+

j(r)

r2
+

h(r)

r2

⌘o

, (3.70)

rg(r)0 =
g(r)j(r)2

2

(z � 1) +

g(r)3h(r)4

4

(z2 � 1)� g(r)3(3 + 2z + z2) +
3g(r)

2

+ kg(r)3
n k

4r4
(z � 1)

(z + 1)

� h(r)2

2r2
(z � 1)� 1

2r2

o

, (3.71)

rh(r)0 = j(r)� h(r). (3.72)

There are important points to discuss here. First, the equations are highly nonlinear

which is a common characteristic of the EYM system. This very fact makes the

analytic study impossible, and despite our efforts, we couldn’t find an exact solution

with non-trivial gauge field functions. There are ways to overcome this difficulty. In

[65] another U(1) field is coupled to the EYM system and by using SU(2) only to

support the Lifshitz spacetime, the new U(1) field is used to construct black holes.

Since one does not touch the SU(2) sector, the equations are easy to control. In this

work we will only consider SU(2) fields by attacking the set of equations (3.69),

(3.70), (3.71), (3.72) numerically.

Secondly, spherical and hyperbolic cases k = ±1 involve terms with 1/r2 and 1/r4

which decays at long distances. Motivated by this fact, in the large r limit, we will

replace the spherical and hyperbolic parts by a flat one [113, 114], which forces all

of the unknown functions that appear in the numerical solution to have the same

asymptotic behavior, f(r) = g(r) = h(r) = j(r) = 1.

Note that the last three equations form a closed system which will be studied sepa-

rately. The first equation will be considered afterwards. In addition, the right hand
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side of the first equation is linear in the function f(r), i.e. we can scale the function

f(r) freely. This freedom is essentially a gauge choice, corresponding to the rescaling

of the time coordinate [36]. This property will be critical to get the correct asymp-

totics after the numerical integration. We will choose the initial value of f(r) such

that at large distances all functions will go to unity.

In the next section we will lay the foundations for the numerical study. More specifi-

cally, we will expand the functions f(r), g(r), h(r), j(r) at large r and separately at

the horizon, for all possible values of the parameter k but for a fixed value of z. The

asymptotic form of the solutions will yield the behaviour of functions at large r and

the possible shooting parameter at the horizon which is of paramount importance.

3.5 Series and Numerical Solutions

In this section, we will look for the series solutions of equations (3.69), (3.70), (3.71),

(3.72) by first expanding them at large radius to see how they behave. Later we

will expand functions at the horizon and try to extract a shooting parameter for the

numerical analysis. After the series expansions, we will move on to the numerical

study for various cases.

3.5.1 Series solution for the large radius

After the usual transformation r = 1/x in field equations (3.69), (3.70), (3.71), (3.72),

we can proceed with the small x expansions

f(r) =
1
X

n=0

˜fnx
n, g(r) =

1
X

n=0

g̃nx
n, h(r) =

1
X

n=0

˜hnx
n, j(r) =

1
X

n=0

˜jnx
n.

(3.73)

Imposing the Lifshitz asymptotics, i.e. ˜f0 = g̃0 =

˜h0 =

˜j0 = 1, we found that the

behaviour of solutions is rather interesting for different values of z. When z is odd

there is a solution for all cases k = 0,±1. However, when z is even only the planar

geometry k = 0 survives. This is obtained after plugging in the expansions (3.73)

in transformed equations and working order by order in x. Rather than giving the
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details, we prefer simply to state the results for different cases2:

For z = 2 and k = 0, we have

f(r) = 1� 9hL

2r4
� 1557

176

h2
L

r8
+O(1/r16) + · · · , (3.74)

g(r) = 1 +

6hL

r4
+

1143

22

h2
L

r8
+O(1/r16) + · · · , (3.75)

h(r) = 1 +

hL

r4
+

405

44

h2
L

r8
+O(1/r16) + · · · , (3.76)

j(r) = 1� 3hL

r4
� 2835

44

h2
L

r8
+O(1/r16) + · · · . (3.77)

However, for z = 3 and with generic k, the solution is

f(r) = 1 +

k

2r2
+

127

1352

k2

r4
+O(1/r5) + · · · , (3.78)

g(r) = 1 +

23

676

k2

r4
+

12hL

r5
+O(1/r6) + · · · , (3.79)

h(r) = 1� 3

338

k2

r4
+

hL

r5
+O(1/r6) + · · · , (3.80)

j(r) = 1 +

9

338

k2

r4
� 4hL

r5
+O(1/r6) + · · · . (3.81)

Note that, in both solutions there is only one parameter hL that characterises the

system at large r. As a side remark, the difference between even and odd is an artefact

from the expansion (3.73) we have considered. Note that we have not considered

fractional powers which can resolve the issue for even z. Another approach could be

to use a different choice of coordinates to investigate the solutions for large r. For the

sake of completeness, in numerical part of the calculations we will fix z = 3 to cover

all possible cases of topologies.

3.5.2 Series solution about the event horizon

Having found the large r expansion and its dependence on a single parameter, let us

consider the functions on the presumed horizon. The numerical integration will start

from the horizon so the initial values and the bounds on the functions is essential

to proceed. Besides the existence of horizon we will assume that the gtt and grr
2 To keep the following discussion simple, we only present our findings for the z = 2 and z = 3 cases. The

generic behaviour of the solutions are captured by the z = 2 choice for even z = 4, 6, 8, · · · or by the z = 3
choice for odd z = 5, 7, 9, · · · .
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components of the metric (3.62) must have a simple zero and a simple pole [113, 114]

at the finite horizon r = R0. This condition basically guarantees non-extremal black

holes, which leads to the following horizon expansions of the functions

f(r) =
p

r �R0

1
X

n=0

fn(r �R0)
n, (3.82)

g(r) =
1p

r �R0

1
X

n=0

gn(r �R0)
n. (3.83)

Before employing these expansions let us focus on the bounds of the gauge field

functions at the horizon. We already know the large r values for the functions. On

the other hand, the horizon values will define a shooting parameter for the system,

i.e. we can choose different values. However there must be some kind of upper/lower

value above/below which the system is not well-defined physically. To discuss these

constraints, consider the general form of the field equations (3.63), (3.64), (3.65) we

have discussed in the previous section. Start with the equation (3.64) on the horizon

µ0
(R0)w

0
(R0) =

w(R0)(w2
(R0)� k)

R2
0

, (3.84)

where we have used µ(R0) = 0 on the horizon. Now use (3.65) to replace µ0
(R0)

µ0
(R0) =

k � L2R2
0⇤

R0
� 1

2L2g2YMR0

✓

(w2
(R0)� k)2

2R2
0

◆

. (3.85)

These two equations imply that the gauge field function w(r) and its derivative is

related at the horizon as

w0
(R0) =

w(R0)(w2
(R0)� k)

⇣

kR0 � 1

2g2YML
2

(w2
(R0)� k)2

2R0
� L2R3

0⇤

⌘

, (3.86)

employing the identification w(R0) =
p
z + 1R0h0 and w0

(R0) =
p
z + 1j0

j(R0) = j0 =
2h0R0 (h2

0R
2
0(z + 1)� k)

2kR0 +R3
0 (z

2
+ 2z + 3)� (z�1)

(

k�h2
0R

2
0(z+1)

)

2

R0(z+1)

for z > 1,

(3.87)

where h0 ⌘ h(R0) and j0 ⌘ j(R0). The equality (3.87) relates the expansion coeffi-

cients on the horizon for different values of k. At this point, it is worth emphasising

the meaning of h0. For that, consider a non-coordinate basis for the one-forms [36]

✓t = Lrzf(r)dt, ✓xi = Lrdxi, ✓r = L
g(r)

r
dr, i = 1, 2 (3.88)
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in which the planar metric (3.62) takes the form ds2 = ⌘µ⌫d✓µd✓⌫ with ⌘µ⌫ =

diag(�1, 1, 1, 1). Taking this into account, the gauge connection can be written as

A =

p
z + 1

L
h(r)(T 1✓1 + T 2✓2). (3.89)

This relation suggests that, up to some normalization, h0 can be considered as the

strength of the gauge field at the horizon. Going back to equation (3.87), we see that

the planar case is somewhat special. For k = 0, the horizon radius cancels out, and

j0 depends only on the gauge field strength, h0 and the dynamical exponent z.

The bound for the strength of the gauge field follows from the regularity condition of

the derivative of the function µ(r) at the horizon

dµ

dr

�

�

�

�

r=R0

> 0. (3.90)

Then, with the help of (3.65), one finds that

k � 1

2g2YML
2

(w2
(R0)� k)2

2R2
0

� L2R2
0⇤ > 0. (3.91)

In terms of w(R0) =
p
z + 1h0, this inequality further simplifies to

R2
0(z + 1)

⇣

2k +R2
0(3 + 2z + z2)

⌘

(z � 1)

> (k �R2
0(z + 1)h2

0)
2. (3.92)

This inequality effectively reduces the possible values of h0 that can be chosen as

a shooting parameter. Again the planar case k = 0 differs from others, where h0

becomes independent of the horizon radius and is solely bounded by the dynamical

critical exponent z, meaning that once a suitable h0 is found for a given z, it will

always be a solution for black holes with different radii. There is even more to the

story for the hyperbolic case k = �1. The event horizon radius is bounded by the

value of the cosmological constant as

|⇤| > 1

L2R2
0

(1 +

1

4g2YMR
2
0L

2
). (3.93)

For a crosscheck, the above relations and bounds can be obtained from near horizon

expansions. If the functions h(r), j(r) are finite on the horizon, they can be expanded

as

h(r) =
1
X

n=0

hn(r �R0)
n, (3.94)

j(r) =
1
X

n=0

jn(r �R0)
n. (3.95)
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Inserting the expansions (3.73), (3.94), (3.95) into (3.69), (3.70), (3.71), (3.72), we

find that for fixed z, solutions are characterised by two free parameters h0, the strength

of the gauge field at the horizon, and R0, the horizon radius.

As a simple example, for z = 2 and k = 0, one gets

g0 !
p
2R0

p

11� 3h4
0

, (3.96)

j0 ! 6h3
0

11� 3h4
0

, (3.97)

h1 ! h0 (3h4
0 + 6h2

0 � 11)

(11� 3h4
0)R0

, (3.98)

g1 !
p
2 (18h8

0 + 27h6
0 � 99h4

0 + 121)

(11� 3h4
0)

5/2
p
R0

, (3.99)

f1 ! f0 (�27h8
0 + 9h6

0 + 165h4
0 � 242)

(11� 3h4
0)

2R0
. (3.100)

At the last equality f0 appears to be a free parameter, however from the previous

section we already know that f(r) can be scaled without affecting the equation of

motion. Therefore it is just an overall normalization factor, not a free parameter. The

bound we have found on h0 guarantees real values for g0, h0, e.g. for z = 2, k = 0

the strength of the gauge field must be h4
0 < 11/3 which agrees with (3.92). Finally

the value of j0 (3.87) is also recaptured here.

To sum up, in this section we have established the procedure for numerical computa-

tion, by finding how the gauge field strength h0 depends on the value of R0, k and z.

Now fixing one of the event horizon radius R0 for a given topology, we numerically

integrate the functions and force them to converge to unity at infinity by fine tuning

the initial value h0.

3.5.3 Numerical solutions

In this section we will perform the numerical integration of the field equations by

fine-tuning the initial conditions specified at the horizon. Our program of choice will

be the MATLAB’s differential equation solver ode45 in default settings, which uses

Runga-Kutta method with variable step-size and the relative tolerance value is 10�3

56



(0.1 accuracy).

Before going into details, let us summarize our findings and compare them to the

EYM solutions with different asymptotics. Spherically symmetric, asymptotically

AdS solutions are found in continuous open intervals [86], i.e. 0 < !h < !c
h where

!h is the shooting parameter and !c
h is the upper bound for the value of gauge field

above which there is no solution. In contrast, our solutions have a unique critical

value of shooting parameter h0 within the allowed region (3.92), at which we capture

the desired asymptotics. Moreover, AdS solutions exhibit nodes for sufficiently small

values of |⇤| [86], whereas our solutions are nodeless.

We start the analysis with larger black holes, and fix z = 3 in order to cover all

possible topologies and to compare results. We see that the solutions behave similarly

regardless of the topology of the event horizon. In figures 3.1 and 3.2 we set R0 = 10

and plotted the functions for all values of k. However, since their behaviours are the

same for all k, they coalesce on top of each other and seem as one graph. For the sake

Figure 3.1 The figure plots the metric functions f(r) and g(r) as a function of radius

r. This is an example of a large black hole with R0 = 10, where the plots overlap for

all values of k.
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of clarity, let us present the initial value of the gauge field function, i.e. the shooting
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Figure 3.2 The figure shows the gauge field functions h(r) and j(r) as a function of

radius r with R0 = 10. The initial values of functions for different topologies are

very close to each other. Graphs for different topologies merge into one.
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parameter

h0 =

8

>

>

<

>

>

:

1.025530137, for k = 1,

1.023139854, for k = �1,

1.024335678, for k = 0,

(3.101)

with the cut-off value rmax = 1000. By fine tuning the shooting parameter h0 to

desired order, we can extend the numerical integration to a larger distance. Simply

setting h0 = 1.025530137219, for k = 1 and R0 = 10 the asymptotics is extended to

rmax = 10.000. Note that in all calculations we need the value of j0, which follows

from the equality (3.87).

We next focus on the smaller black holes by fixing R0 = 0.5. The functions now differ

in behaviour according to their horizon topology. The metric function f(r) reaches

a maximum value before converging to unity (Figures 3.3, 3.4 and 3.5), whereas in

planar and hyperbolic cases functions monotonically converge to one. The radial

component of the metric function g(r) first dips then approaches to one for k = 1.

From the graphs we also see that the spherical and hyperbolic solutions decay slower

than the planar ones. The shooting parameters we have used for the small black holes
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Figure 3.3 A small black hole with R0 = 0.5. Figure shows the metric function f(r)

for different cases k = 1,�1, 0. The solid line corresponds to k = 1, the dashed line

to k = 0 and dot-dashed line represents k = �1, respectively.
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Figure 3.4 The figure illustrates the metric function g(r) with a small radius R0 =

0.5. The solid line indicates k = 1, while the k = 0 and k = 1 cases are represented

by dashed and dot-dashed lines, respectively.
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Figure 3.5 The gauge field function h(r) is displayed on the top and j(r) at the

bottom, both as functions of r. In both graphs R0 = 0.5. The solid line indicates

k = 1, while the k = 0 and k = 1 cases are represented by dashed and dot-dashed

lines, respectively.
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with radius R0 = 0.5 are as follows

h0 =

8

>

>

<

>

>

:

1.425617169, for k = 1,

0.278652475, for k = �1,

1.024335678, for k = 0.

(3.102)

The next task we undertake is to compare the analytic bound (3.92) with the values

of h0 we have found in numerical analysis for different radii. In the previous section

we have shown that the planar black holes have a unique value of h0 that is com-

patible with all radii R0. Behaviours change if we consider spherical or hyperbolic

event horizons. The spherical ones demand stronger gauge fields as the radius gets

smaller, in contrast the hyperbolic ones can support weaker gauge fields for smaller

radii. In [113, 114] the same behaviour was observed with abelian fields. Plotting

analytic bound (3.92) along with the numerical values of h0 with respect to different

R0, we see the bound is saturated as the radius gets smaller (Figure 3.6). Finally we

observe that the lower limit on the horizon radius of hyperbolic black holes (3.93) is

compatible with the numerical results for z = 3, i.e. from Figure 3.7 it is obvious that

numerical integration stops and there is no solution below R0 ⇠ 0.48.

3.6 Thermal behavior

Finally let us focus on the thermal behaviour, a property that we can compute and

discuss from the numerical data we obtain from the solutions. Since we don’t have

the exact solution, we will resort to the Wick rotation technique.

For convenience let us display the metric (3.67) after a Wick rotation ⌧ = it

ds2 = L2

✓

r2zf(r)2d⌧ 2 +
dr2

r2
g(r)2 + r2d⌦2

◆

. (3.103)

Now, assume a point outside but close to the horizon, i.e. r = R0 + ✏ where " >

0. Since we don’t have the exact solution, consider the near horizon expansions of

functions f(r) and g(r) for non-extremal black holes (3.83)

f(R0 + ") =
p
" f0, (3.104)

g(R0 + ") =
1p
"
g0, (3.105)
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Figure 3.6 The inequality (3.92) as a function of R0 is plotted with a solid line for

k = 1. The dashed line corresponds to the numerical values of h0 as a function of R0

for spherically symmetric black holes.
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Figure 3.7 The inequality (3.92) as a function of R0 is plotted with a solid line for

k = �1. The dashed line corresponds to the numerical values of h0 as a function of

R0 for hyperbolically symmetric black holes. The lower bound (3.93) on the horizon

radius is apparent.
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and plugging these in (3.103)

ds2 =L2



(R0 + ")2zf 2
0 "d⌧

2
+

d"2

(R0 + ")2
g20
"

+ (R0 + ")2d⌦2

�

, (3.106)

⇠L2



R2z
0 f 2

0 "d⌧
2
+

g20
R2

0"
d"2 +R2

0d⌦
2

�

. (3.107)

The metric near the horizon (3.107) can now be written as a product manifold of some

2-dimensional manifold times S2 of radius R0. After the transformations, ⇢ = 2g0
p
"

and ⌧ = 2g0�/R
z+1
0 f0, the two dimensional metric

ds22 = L2



R2z
0 f 2

0 "d⌧
2
+

g20
R2

0"
d"2
�

, (3.108)

will transform into a metric looking like a plane in polar coordinates

ds22 =
L2

R2
0

⇥

⇢2d�2
+ d⇢2

⇤

(3.109)

with angle � that is not restricted to the range (0, 2⇡). But we know from the appendix

that Euclidean time is related to the periodic 2⇡ polar angle � which in turn makes

⌧ periodic with 4⇡g0�/R
z+1
0 f0 and finally the temperature will be the inverse period

[115]

T =

f0R
z+1
0

4⇡g0
. (3.110)

The coefficient g0 is determined from the series solution near the horizon

g0 =

p

2(z + 1)R3/2
0

(2h2
0kR

2
0(z � 1) + h4

0R
2
0(1� z)(z + 1)� k2 (z�1)

(z+1) + 2k +R2
0(3 + 2z + z2))1/2

.

(3.111)

The other coefficient f0 was actually a normalization constant for the numerical so-

lutions, so it depends on the shooting parameter h0. By fixing z = 3, we can now

compare the temperature of black holes with different sizes and topology. The algo-

rithm of finding temperature is simple, first we will find solutions with different R0

values, then since we know the shooting parameter h0 and f0 from normalization, the

equation (3.110) will directly lead us to temperature. Following this algorithm we

have plotted Figure 3.8.

Similar to their behaviour in section 3.5.3, the large black holes with different topolo-

gies agree on the higher temperature. On the other hand, the smaller ones are cooler
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and differ in their cooling rates, e.g. hyperbolic ones have a higher cooling rate than

the planar ones. The thermal behaviour of these black holes is opposite to their AdS

counterparts, where the Hawking temperature increases with the ever decreasing ra-

dius causing thermal instability. Moreover, it is clear that the EYM black holes do

not exhibit Hawking-Page transition. A similar thermal behaviour is observed for

the Lifshitz black holes supported by abelian p-forms [113, 114] which indicates that

the black holes become extremal, i.e. they have zero Hawking temperature in the

vanishing black hole size.

Figure 3.8 Temperature versus horizon radius for z = 3. The different topologies

are represented by a solid line k = 0, by a dashed line k = 1 and a dot-dashed line

k = �1.
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CHAPTER 4

N = (1, 1) COSMOLOGICAL NEW MASSIVE

SUPERGRAVITY SOLUTIONS

In this chapter we will focus on the solutions of a higher curvature supergravity

(SUGRA) model, namely, the three dimensional N = (1, 1) New Massive Grav-

ity [5]. Apart from thr maximally symmetric AdS backgrounds, we will see that the

theory supports plethora of backgrounds including Lifshitz spacetimes. Introducing

supersymmetry will actually help us finding solutions, since the Killing spinor equa-

tion will be first order and constrains the metric functions. However, in order to get to

the solution phase, we need to establish serious machinery forged for Clifford alge-

bra. After we have the right tools, it will be easy to manipulate identities and extract

the information we need.

The organisation of this section is as follows: In section 4.1, we give a brief summary

of the Clifford algebra and spinor properties. We will try to summarise all of the ma-

chinery that is needed to perform off-shell Killing spinor analysis. Section 4.2 starts

by presenting a general formalism for the conformal construction. The subsection

4.2.4 of section 4.2 is devoted to the construction of Einstein gravity from a confor-

mal gauge theory. In section 4.3 we will give the origin and details of the theory we

are going to study. Section 4.4 basically deals with the definition and useful identities

for off-shell Killing spinors. In sections 4.5 and 4.6 we will investigate and classify

solutions with null and timelike Killing vectors, respectively.
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4.1 Spinors and Clifford Algebra

Before we move on to the construction of three dimensional N = 2 SUGRA theories,

we will first cover the basics of Clifford algebras and spinors. Incorporating fermions

into the theories is always a formidable task, even for flat spacetimes. The local

SUSY transformations demand spacetime to be curved, making the discussion even

harder. Along the way, we will see that most of the identities and properties related to

the spinors depend on the dimension of spacetime. Therefore, to keep the discussion

more general we do not fix the dimension at first. In what follows we will basically

summarise the conventions and definitions of [31], so more detailed discussion is in

the book. Instead of just referring to the source, we will try to put all the ingredients

we need in a nutshell.

4.1.1 Clifford Algebra

As well known, while working on a relativistic wave equation Dirac came up with

matrices satisfying the following anti-commutation relations

�µ�⌫ + �⌫�µ = 2⌘µ⌫I. (4.1)

These matrices are the elements of Clifford algebra. For general D, the gamma matri-

ces are complex, and the spinor they act on is also complex, called the Dirac spinor.

However, in some dimensions the real representation of gamma matrices can be cho-

sen, and the spinors they act on is also real, which are called Majorana spinors. By

tensor multiplying the Pauli matrices we can construct gamma matrices, resulting in

2

[D/2] dimensional representations1.

The basis of the Clifford algebra consists of the identity, the D matrices �µ and pos-

sible combinations of gamma matrices. From (4.1) we see, it is not possible to take

symmetric combinations, which will always reduce to simpler expressions. Therefore

we take the anti-symmetric ones, and define

�µ1µ2···µr ⌘ �[µ1 · · · �µr], �µ⌫ =

1
2(�

µ�⌫ � �⌫�µ), (4.2)

1 Here [D/2] refers to the integer part of D/2.
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where D � r. There are different types of gamma matrix contractions that are fre-

quently used in SUGRA theories, summarized as

�µ1···µr⌫1···⌫s�⌫s···⌫1 =
(D � r)!

(D � r � s)!
�µ1···µr , (4.3)

�⇢�
µ1···µr�⇢ =(�1)

r
(D � 2r)�µ1µ2···µr , (4.4)

�µ⌫⇢��⌧ =�µ⌫⇢�⌧ + 6�[µ⌫ [⌧�
⇢]
� + 6�[µ�⌫ [⌧�

⇢]
�]. (4.5)

Although it can not be expressed in a general form, the last equality can be computed

for different cases. The basic idea is, multiplication of two Clifford matrices can

be written as a totally antisymmetric matrix with all indices plus other lower order

matrices with possible index pairings.

4.1.2 Basis of Clifford Algebra

The basis of Clifford algebra is spanned by different sets depending on the dimension

of spacetime. For even D = 2m, the following 2

D matrices is a basis

{�A
= I, �µ, �µ1µ2 , · · · , �µ1···µD}, (4.6)

with index vales µ1 < µ2 < · · · < µr. On top of these, one can also define a highest

rank element for even dimensions

�⇤ ⌘ (�i)m+1�0�1 · · · �D�1, or �µ1µ2···µD = im+1✏µ1µ2···µD�⇤, (4.7)

which is hermitian and satisfies �2⇤ = 1. The highest rank element is used in the study

of chiral fermions by defining projection operators PL =

1
2(I+�⇤) and PR =

1
2(I��⇤).

In odd dimensions D = 2m + 1 the basis (4.6) changes considerably. The highest

rank element can be included to the generators and two sets of 2m + 1 generating

elements are defined as follows

�µ± = (�0, �1, · · · �(2m�1), �2m = �⇤). (4.8)

Because of this, the highest element in (4.6) is some factor times unity, meaning that

there is no chiral projector in odd dimensions. Moreover, the rank r and rank D � r

branches are related by

�µ1µ2···µr
± = ±im+1 1

(D � r)!
✏µ1···µD�±µD···µr+1 , (4.9)
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effectively reducing the number of matrices in D = 2m + 1 dimensional Clifford

algebra to m. We will be dealing with D = 3 theories so that the structure of Clifford

algebra will be quite simple i.e. we have at most rank one, 2⇥ 2 matrices, which will

be chosen as Pauli matrices.

Finally, defining a basis for Clifford algebra we can expand any matrix M in the basis

{�A} satisfying the orthogonality relation Tr(�

A
�B) = 2

m�AB ,

M =

X

A

mA�
A, where mA =

1

2

m
Tr(M�A). (4.10)

4.1.3 Symmetry Properties

The symmetry properties of gamma matrices are rather odd. In order to define the

notion of symmetric/antisymmetric matrices, we will introduce a unitary matrix C,

called the charge conjugation matrix. One can then define the multiplication of C�

A

as symmetric or anti-symmetric as

(C�

r
)

T
= �trC�

r, tr = ±1. (4.11)

We don’t actually need all tr’s to find the symmetry properties of different ranks.

From the rank r = 0 and r = 1 relations

CT
= �t0C, and �µT = t0t1C�

µC�1, (4.12)

we can extract any other ranks. Consider the second rank gamma matrix (C�µ⌫)T

(C�µ⌫)T =

1

2

⇥

(C�µ�⌫)T � (C�⌫�µ)T
⇤

, (4.13)

=

1

2

⇥

t1t0(�
⌫TCT�µ � �µTCT�⌫)

⇤

, (4.14)

=t0C�
µ⌫

= �t2C�
µ⌫ , (4.15)

so t2 = �t0 and t3 = �t1. By following similar arguments, it can be shown that

tr+4 = tr. The values of t0 and t1 depend on the dimension we study and given in a

table in [31]. For D = 3, t1,2 = �1 and t0,3 = +1.

We are working in hermitian representations with �µ† = �0�µ�0. Therefore, the

complex conjugation and charge conjugation matrix are related as follows

�µ⇤ = �t0t1B�
µB�1, where B = it0C�

0 (4.16)
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and B also satisfies B⇤B = �t1I.

In order to produce scalars, we need a conjugate to the spinors in general. We will

define the Majorana conjugate as follows

¯� ⌘ �TC. (4.17)

Employing this definition and (4.11) the spinor bilinear ¯��µ1···µr� can be flipped as

(

¯��µ1···µr�)
T
=�T�µ1···µr

TCT�, (4.18)

=tr�
TC�µ1···µr�, (4.19)

=tr�̄�µ1···µr�. (4.20)

Note that, the components of the spinors are Grassmann numbers, so flipping compo-

nents will bring up an extra minus sign. The flipping relations will play an important

role in the discussion of the Dirac spinor we use in this work.

4.1.4 Working with Indices

It is possible to introduce indices and contraction rules for spinors. We will denote

the basic spinor with the index down �! �↵, where ↵ = 1, · · · 2[D/2]. The Majarona

conjugate is spinor with an index up ¯� ! �↵. The relation between the spinors with

up and down indices follows from (4.17)

�↵ = C↵���. (4.21)

so C↵� are the components of CT . Unlike spacetime indices, the order of the contrac-

tion of spinor indices is important. We will use the convention NW-SE, i.e. indices

up must be contracted with the indices on their right and vice versa. Therefore, for

lowering of indices, introduce C↵�

�↵ = ��C�↵, (4.22)

which must obey C↵�C�� = ��↵ and C�↵C��
= �↵� . The bilinears we have introduced

in the previous section can also be expressed with indices

¯��µ� = �↵(�µ)↵
���. (4.23)

Note that, � matrices will be expressed as one index down and one index up.
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4.1.5 Reality Conditions

In order to check whether a quantity is real or hermitian, we should define a com-

plex conjugation. Directly taking the complex conjugate of a contracted quantity e.g

a scalar, will most probably include taking the complex conjugates of the gamma

matrices and C, which will complicate computations. So we will introduce an opera-

tion, which will simplify to taking a complex conjugate when acting on scalars. Let

us define charge conjugate of a spinor as

�C ⌘ B�1�⇤. (4.24)

The Majorana conjugate spinor is then

¯�C =(B�1�⇤)TC,

= �†(B�1
)

TC,

= it0�
†
(C�1

)

T
(�0)TC,

= it20�
†
(C�1

)(�0)TC,

= �it0t1(i�
†�0),

(4.25)

where we have used (B�1
)

T
= �it0(C�1

)

T
((�0)�1

)

T . The charge conjugate of ma-

trices is defined as MC ⌘ B�1M⇤B, which makes the gamma matrix transformation

to be

(�µ)
C
= B�1�⇤µB = B�1

(�t0t1B�µB
�1
)B = �t0t1�µ, (4.26)

where we have employed (4.16). The complex conjugation of bilinears can be con-

structed as follows

(

¯�M�)⇤ ⌘ (

¯�M�)C = (�t0t1)¯�
CMC�C . (4.27)

Armed with this definition, we can impose reality conditions on spinors

� = �C = B�1�⇤. (4.28)

The spinors that satisfy this condition will be called Majorana spinors. By simply

taking the complex conjugate of (4.28), we see that the reality condition is not com-

patible in all dimensions

�⇤ = B�! � = B⇤�⇤ ! � = B⇤B�. (4.29)
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Thanks to the equality B⇤B = �t1I, we find that Majorona condition is only possible

for dimensions with t1 = �1. For t1 = �1 there is a branching with t0 = ±1. The

first case i.e. t1 = �1 and t0 = 1 is available in D = 2, 3, 4,mod 8. We are able

to choose a representation where all �-matrices are real and from (4.16) it is possible

to choose B = I up to a phase, setting C = i�0. The other possibility t1 = �1 and

t0 = �1 is relevant for D = 8, 9 in which � matrices can now be chosen as purely

imaginary.

4.1.6 Dirac Spinors in 3D N = 2

The SUGRA theory we are going to study will be N = 2, i.e. we have 4 super-

charges (4 spinor components). In previous sections, we have discussed that in three

dimensions spinors have 2 components. Therefore, in order to have 4 supercharges

we either choose Majorana spinors and label them with indices or we choose Dirac

spinors and deal with complex entries. In [119], Dirac spinors were used to construct

the theory, so we will proceed with Dirac spinors.

However, choosing Dirac spinors over Majorana ones brings in extra structure, which

can be observed from decomposing a Dirac spinor into two Majorana spinors. Let us

assume a Dirac spinor that is given as

✏ = ✏1 + i✏2, (4.30)

where ✏1 and ✏2 are 2 dimensional Majorana spinors, i.e. ✏⇤i = ✏i with i = 1, 2. Note

that, we have chosen B = I and C = i�0. So that the Dirac conjugation, i.e. ✏̄ =

i✏†�0, on a Majorana spinor is basically a Majorana conjugate (4.17). Considering

this we have the following spinors and conjugates

✏⇤ =✏1 � i✏2

✏̄ =✏̄1 � i✏̄2

¯✏⇤ =✏̄1 + i✏̄2 ⌘ ✏̃. (4.31)

Given these spinors and conjugates we will check the flipping relations, similar to the

ones in the previous section. From now on we will assume our spinors are commuting

for the reasons that are described in Sec. 4.4. Keeping this in mind, let us look for
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different bilinears we can construct from (4.31). Consider

✏̄�� =(✏̄1 � i✏̄2)�(�1 + i�2), (4.32)

=✏̄1��1 + i✏̄1��2 � i✏̄2��1 + ✏̄2��2, (4.33)

=� tr [(�̄1 + i�̄2)�✏1 � i(�̄1 + i�̄2)�✏2] , (4.34)

=� tr(�̃�✏
⇤
), (4.35)

where tr is the rank of the gamma matrix. In three dimensions, the possible ranks are

t0 = 1 and t1 = �1. Following the same strategy, i.e. decomposing into Majorana

and using the flipping rules, we obtain [119]

¯��r�⇤
= �tr�̄�

r�⇤, (4.36)

˜��r� = �tr�̃�
r�. (4.37)

These equalities (4.35), (4.36), (4.37) will be the backbone of our off-shell Killing

spinor analysis.

4.1.7 Fierz Identity

Previously, we have seen that the gamma matrices form a complete basis {�A} and

any matrix can be expanded in terms of the basis as in (4.10). Now armed with the

index structure for spinors and matrices, let us proceed and derive the basic Fierz

identity. Consider the product �↵����, treat the indices ↵, � as spectators and �, � as

the matrix indices for M in (4.10), which now reads

�↵
���

�
=

X

A

(mA)↵
�
(�

A
)�

�, (4.38)

employing the definition of mA in (4.10)

�↵
���

�
=

1

2

m

X

A

(�A)↵
�
(�

A
)�

�, (4.39)

The equation (4.39) is the basic Fierz identity, which we can utilize to manipulate the

bilinears we construct.

As an example, we consider the three dimensional Fierz identity for the commuting

Dirac spinors that is used in this chapter. With that goal in mind, multiply (4.39) with
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the commuting Dirac spinors ✏↵1 ✏2���

✏�1 ✏2��
�
=

1
2

⇥

✏�1�
�✏2� + ✏↵1 (�µ)↵

�
(�µ)�

�✏2��
�
⇤

, (4.40)

(✏̄1✏2)�̄ =

1
2(�̄✏2)✏̄1 +

1
2(�̄�

µ✏2)✏̄1�µ, (4.41)

multiplying with ✏3

(✏̄1✏2)�̄✏3 =
1
2(�̄✏2)✏̄1✏3 +

1
2(�̄�

µ✏2)✏̄1�µ, (4.42)

then renaming the spinors for convenience. The Fierz identity in three dimensions

amounts to

(✏̄1�
µ✏2)�µ✏3 = 2(✏̄1✏3)✏2 � (✏̄1✏2)✏3. (4.43)

4.2 Conformal construction

In this section we discuss the procedure of conformal construction which is easy to

understand once you have the right tools. However, it gets too arduous to implement

this once we consider higher curvature corrections. Therefore starting from defining

tools and technology, we will try to convey the idea of conformal construction, but

will not expound the whole procedure with higher curvature terms. In this section we

will follow the book by van Proeyen and Freedman [31].

4.2.1 Gauge theories, symmetries

We have actually discussed a special example of transformations and parameters in

chapter 1, Sec. 2.1.4, where we have derived the parameters of conformal algebra

and given the non-zero commutators of generators. Here, we will take this issue in a

more general approach without restricting the algebra.

We will define an infinitesimal transformation as a linear operation on fields, with a

parameter ✏A. For constant parameter we have a global (rigid) transformation and

transformations with parameters that depend on spacetime points are called local

transformations. With the operator TA acting on fields, the infinitesimal transfor-

mation reads

�(✏) = ✏ATA (4.44)
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with index A running over possible symmetries. We will deal with symmetries that

can be realised as matrix transformations, i.e. TA�i
= �(tA)ij�j with �i’s are the

fields that transform in a given representation and the matrix generators satisfy

[tA, tB] = fAB
CtC . (4.45)

It is easy to show that the commutation also holds for the infinitesimal transformations

defined through (4.44)

[�(✏1), �(✏2)] = �(✏C3 = ✏B2 ✏
A
1 fAB

C
). (4.46)

Note that, up to now we have taken the parameters as bosonic objects. For supersym-

metry we need fermionic ones, so we will change TA with Majorana spinors Q↵ and

the parameters as Majorana spinor conjugates ✏̄↵

�(✏) = ✏̄↵Q↵. (4.47)

This time the generators will satisfy an anti-commutation algebra

{Q↵, Q�} = f↵�
CTC . (4.48)

The structure of supersymmetric theory is apparent here. By acting two times with

the elements of the fermionic algebra, we have a sum over bosonic ones. Another

important result of (4.48) is the commutator of infinitesimal transformations

[�(✏1), �(✏2)] = ✏̄↵2 ✏̄
�
1 (Q↵Q� +Q�Q↵) = ✏̄↵2 ✏̄

�
1f↵�

CTC = �(✏C3 = ✏̄↵2 ✏̄
�
1f↵�

C
), (4.49)

which confirms that equation (4.46) is valid even for fermionic symmetries.

4.2.2 Gauge fields

While constructing field theories we are guided by the symmetry principles of the

problem. For a theory to enjoy local symmetries we need to introduce gauge fields

denoted by B(x)A, where the index A covers the localized symmetries. The transfor-

mation of gauge fields is given by

�(✏)B(x)Aµ = @µ✏(x)
A
+ ✏(x)CB(x)Bµ fBC

A. (4.50)

Under this transformation it is easy to show that the commutator (4.46) is satisfied.
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For an illustration of how fields transform under Poincaré plus supersymmetry trans-

formations and to point out peculiarities, let us consider the following algebra with

the structure constants and parameters2

[Mab,Mcd] =4⌘[a[cMd]b], f[ab][cd]
[ef ]

= 8⌘[c[b�
[e
a]�

f ]
d] ,

[Pa,Mbc] =2⌘a[bPc], fa,[bc]
d
= 2⌘a[b�

d
c]

{Q↵, Q�} =� 1

2

(�a)↵�Pa f↵�
a
= �1

2

(�a)↵�

[Mab, Q] =� 1

2

�abQ, f[ab],↵
�
= �1

2

(�ab)↵
� (4.51)

with the gauge fields and parameters as

!ab
µ , �ab, Lorentz Transformations, (4.52)

eaµ, ⇠a, Translations, (4.53)

✏̄↵, ¯ ↵
µ , Supersymmetry. (4.54)

As an example, consider the transformation of the vielbein eaµ under SUSY. Starting

from the general form of transformation (4.50), we pick the free index A = a as

Lorentz index. However, the first term, i.e. derivative of parameter, can not have a

Lorentz index for SUSY transformation, it should have a spinor index. From this we

deduce that first term is absent

�(✏)eaµ = ✏CBB
µ fBC

a. (4.55)

The only non-zero structure constant comes from the commutator of SUSY f↵�a =

�1/2(�a)↵� , plugging this in and using the fact that gravitino is the gauge field of

SUSY transformations

�(✏)eaµ = ✏↵B�
µf�↵

a
= ✏̄↵ ¯ �

µ

✓

�1

2

(�a)↵�

◆

=

1

2

✏̄�a µ, (4.56)

where we have also lowered the index on gravitino, which brings in an extra minus

sign. This algorithm of reading of transformations from the algebra has limitations

which can easily be seen from the translations of the gravitino, �P . Writing down

the general form, we see again that the derivative does not contribute. Moreover, there

is also no contribution from the second part, meaning �P = 0. However, it is a well

known fact that SUSY commutator on gravitino is a translation and it is non-zero. In

the next section we will handle this anomaly of translations more carefully.
2 In this chapter we have used Greek indices µ, ⌫, ⇢, · · · as coordinate (curved) indices and latin ones

a, b, c, · · · as local frame indices.
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4.2.3 Covariant Derivatives

In order to construct Lagrangians with kinetic terms that exhibit local symmetries, we

need to introduce a notion of covariant derivative in which the transformation of the

derivative of a field does not contribute a term with the derivative of a parameter. In

short, we need to subtract the terms that has derivatives of transformation parameters.

Assuming the fields in theory transform as �(✏)�i
(x) = ✏A(TA�i

(x)), the following

is the definition for a covariant derivative

Dµ�
i ⌘ (@µ � �(Bµ))�

i
=

�

@µ � BA
µ TA

�

�i, (4.57)

where �(Bµ) refers to the inclusion of all gauge transformations with BA
µ as a gauge

parameter. It is easy to show that if the symmetry algebra is closed off-shell, then

the gauge transformations commute with covariant differentiation, i.e. �(Dµ�i
) =

✏ADµ(TA�i
). The gauge field strength or curvature is defined as usual

[Dµ, D⌫ ] = ��(Rµ⌫), RA
µ⌫ = 2@[µB

A
⌫] +BC

⌫ B
B
µ fBC

A, (4.58)

again �(Rµ⌫) is a gauge transformation with curvature as a gauge parameter. An

important example is the curvature for translations Rµ⌫(P a
). Following the definition

(4.58)

Rµ⌫(P
a
) =2 @[µe

a
⌫] + edµ!

bc
⌫ fd[bc]

a
+  ↵

⌫ 
�
µf�↵

a, (4.59)

=2 @[µe
a
⌫] + 2!ab

[µe⌫]b � 1
2
¯ µ�

a ⌫ . (4.60)

The last term is the familiar torsion term of SUGRA and from the vielbein postulate,

i.e. r[µea⌫] = @[µea⌫] + !ab
[µe⌫]b � �

�
[µ⌫]e

a
� = 0, which is equivalent to the first Cartan

structure equation. Therefore by imposing Rµ⌫(P a
) = 0, we effectively find the spin

connection !ab
µ in terms of the other gauge fields in symmetry group we study. This

is the first constraint we see, along the way we will encounter more to express the

spin connection as a composite field. Before moving on to the principles of covariant

differentiation [31], which will make computations a lot easier, let us point out to an

ambiguity in the definition (4.57). Consider the covariant derivative of a field with a

symmetry group including translations. According to our formula

Dµ� = @µ�� eaµ@a� = 0, (4.61)

78



signalling to a peculiarity in translations, similar to the case in the previous section.

Thus, from now on, we will exclude translations in the sum over group indices.

Armed with the covariant differentiation and a proper curvature definition we now

have a chance to construct Lagrangians with kinetic terms.

The guiding principles for covariant derivative are the following [31]

• The covariant derivative Da of a covariant object is a covariant object.

• The principle above implies that the derivate of a covariant quantity does not

contain the derivative of a parameter.

• The transformation of a covariant object is covariant if the algebra is closed

off-shell. The result is that, there is no explicit gauge field around after the

transformation of a covariant object.

Note that, in the first principle covariant derivative is written in flat coordinates Da

and this is crucial for the completeness of principles (the proof is in Appendix 11A.1

[31]).

Let us apply these principles to the simple example of a chiral multiplet that can be

embedded in SUGRA. Without going into details, assume that the complex scalar Z in

the multiplet transforms under SUSY as 1p
2
✏̄PL� (where � is a Majorana spinor) and

under the YM gauge group as �YMZ = �✓AtAZ. The transformation of the gravitino

is � µ = @µ✏ +
1
4!

ab
µ �ab✏, and finally assume that the gauge field transforms under

SUSY as �AA
µ = �1

2 ✏̄�µ�
A, where �A is a Majorana spinor. Following the definition

of the covariant derivative, we will use the gauge fields as parameters, resulting in the

covariant derivative of Z as

DaZ = ✏µa

✓

@µZ � 1p
2

¯ µPL�+ AA
µ tAZ

◆

. (4.62)

The transformation (4.62) can be decomposed as follows: First, � will hit the vielbein

�eµa = ��abeµb , which contributes a term ��abDbZ. Then, we find that @µ�Z will

generate 1p
2
@µ(✏̄PL�) under SUSY, however, the second principle demands that there

is no derivative on ✏ and the first principle requires that covariant objects will have

covariant derivatives. From these arguments we deduce @µ�Z ! 1p
2
✏̄DµPL�. By
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the same arguments under YM transformations @µ�Z ! �✓AtADµZ. The transfor-

mation of the second term � 1p
2
�( ¯ µPL�) does not produce anything since, � µ has

the derivative of a parameter and explicit gauge fields (principle 2-3). Moreover, no

matter what �PL� is, it will always have an explicit gauge field in front so that, that

piece also does not contribute. With the same reasoning, the last term produces a

single term �1
2(✏̄�µ�

A
)tAZ. In its final form one has

�DaZ = ��abDbZ +

1p
2
✏̄DaPL�� ✓AtADaZ � 1

2(✏̄�a�
A
)tAZ. (4.63)

The principles allow us to compute the transformation of a covariant quantity, without

going into the actual calculations, which will be straightforward but arduous. This

procedure is indeed outstanding when one considers, the conformal construction of

higher derivative SUGRA theories.

4.2.4 Gauging Conformal Algebra and Einstein Gravity

Let us now examine the machinery of this conformal construction in a simple, purely

bosonic example from [31]. We will acquire the Einstein action from a gauge multi-

plet that is coupled to a scalar field. By a gauge multiplet, we mean the gauge fields

of the conformal algebra (2.32) we have discussed in chapter 1. The following set is

the gauge fields and parameters of (2.32)

!ab
µ , �ab, Lorentz Transformations, (4.64)

eaµ, ⇠a, Translations, (4.65)

bµ, �D, Dilatation, (4.66)

fa
µ , �aK , Superconformal Transformations. (4.67)

The transformation of gauge fields follow from (4.50) easily. The important point is

to throw away the translations in the summation. Let us consider several examples.

The first one is the transformation of the vielbein �eaµ

�eaµ =✏CBB
µ fBC

a

=�dbecµfc[db]
a
+ �De

b
µ�

a
b ,

�eaµ =� �abeµb � �De
a
µ. (4.68)
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Note that we have not taken the derivative of the parameter part, since it is a translation

@⇠a. Then, on the second line the non-zero commutators [M,P ] = P and [D,P ] = P

are employed. On the other hand, the gauge field of special conformal transformations

transform as

�fa
µ = @µ�

a
K + ✏CBB

µ fBC
a, (4.69)

and this time the second part has four non-zero terms. Then using the structure con-

stants of commutators

�fa
µ = @µ�

a
K � bµ�

a
K + !ab

µ �Kb � �abfµb + �Df
a
µ . (4.70)

Following the same logic, the remaining gauge field transformations are

�!ab
µ =@µ�

ab
+ 2!µc

[a�b]c � 4�[aKe
b]
µ

�bµ =@µ�D + �aKeµa. (4.71)

This set of gauge fields is too crowded for Einstein theory. The metric or the vielbein

is the only physical field that is relevant. Therefore, somehow we need to write the

other fields in terms of vielbeins or gauge away the irrelevant ones. The way to do

that is the curvature constraints that is similar to the one we have employed in the

previous section Rµ⌫(P a
) = 0. But this time, the curvature of translations has an

extra term from the dilatation

Rµ⌫(P
a
) =2@[µe

a
⌫] + 2![µ

abe⌫]b +BD
⌫ B

b
µfbD

a
+Bb

⌫B
D
µ fDb

a

=2@[µe
a
⌫] + 2![µ

abe⌫]b + 2b[µe
a
⌫] = 0. (4.72)

Solving for !ab
µ is simple: Just multiply (4.72) with a vielbein e⌫b and consider the

sum of permutations, then !ab
µ reads

!µ
ab
(e, b) =2e⌫[a@[µe

b]
⌫] � e⌫[aeb]�eµc(@⌫e

c
�) + b⌫e

[a
µ e

|⌫|b]

=!µ
ab
(e) + b⌫e

[a
µ e

|⌫|b]. (4.73)

The curvature of Lorentz transformations is related to the special conformal gauge

field

Rµ⌫
ab
(M) = Rµ⌫

ab
(e) + 8f [a

[µe
b]
⌫]

where Rµ⌫
ab ⌘ 2@[µ!

ab
⌫] + 2![µ

a
|c|!⌫]

cb. (4.74)
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Multiplying by the inverse vielbein and taking the trace we find the gauge field fa
µ in

terms of curvatures that are function of vielbeins

2(D � 2)fa
µ =

1

2(D � 1)

eaµR�Ra
µ. (4.75)

With the help of these constraints and curvatures, we have managed to write the non-

physical fields in terms of eaµ and bµ. Of course, the dilatation gauge field is still an

extra degree of freedom which can be gauged away by fixing the K transformations.

Note that, under �Kbµ = 2�Kµ, so by a clever choice bµ can be set to zero.

After setting the stage for the construction of the action, let us consider a scalar field

� that transforms as

�� = w�D�, (4.76)

where w is the Weyl weight of the scalar �. In order to generate fa
µ’s, which is equal

to the curvature scalar, consider the conformal D’Lambertian

⇤C� = ⌘abDaDb�. (4.77)

The explicit form of the above expression is a mess to compute if we continue bluntly.

However, the principles of covariant differentiation will guide us through this mess.

Start with the first derivative of � which is straightforward

Da� = eµa(@µ � wbµ)�, (4.78)

where we have used the dilatation gauge field as a gauge parameter. Then the trans-

formation of this will be

�Da� = �eµaDµ�+ eµa(�@µ�)� eµaw(�bµ)�� eµawbµ��. (4.79)

The first term is trivial from (4.68), which is ��abDb�+�DDa�. The second one has

a derivative of �, from the principles we know it should be a covariantized derivative,

i.e. w�D(Da�). The third term has the transformation of dilatation field which has

a derivative term that we throw away and the rest will contribute as �2�aKw�. The

last term has an open gauge field so it does not contribute. The final result is

�Da� = ��abDb�+ (w + 1)�D(Da�)� 2�aKw�. (4.80)
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From this transformation we can immediately write down the second derivative, using

the basic rule, i.e by taking the gauge fields as the parameters, we have

⇤C� = eµa
�

@µDa�� (w + 1)bµ(Da�) + !µabD
b�+ 2wfµa�

�

. (4.81)

We finally have generated the gauge field fa
µ which will bring in a curvature term.

Before writing down the action, we need to fix the Weyl weight w, by demanding a

conformal invariant action, i.e. we check for the �⇤C�

�⇤C� = (w + 2)�D⇤C�+ (2D � 4w � 4)�aKDa�. (4.82)

So by choosing w = D/2 � 1, the following action is invariant under conformal

transformations

I = �1

2

Z

dDx e�⇤C�, (4.83)

where e is the determinant of the metric. After gauge fixing bµ = 0 and replacing

eµaf
a
µ = �R/ (4(D � 1)), the action (4.83) reads

I =� 1

2

Z

dDxe�⇤C� = �1

2

Z

dDxe�



Da
(e⌫a@⌫�)�

R(D � 2)�

4(D � 1)

�

=

Z

dxDe



1

2

gµ⌫@µ�@⌫�+

(D � 2)

8(D � 1)

R�2

�

. (4.84)

With a final gauge fixing on � we can retrieve Einstein gravity.

In this simple example we have seen that by coupling a gauge multiplet to a scalar

field, and with suitable constraints and gauge choices, it is possible to generate Ein-

stein gravity. The supersymmetric version has the same logic, albeit with more gauge

fields and symmetries to handle.

4.3 3-Dimensional Supergravity Theories

Despite having a simpler fermionic algebra, three dimensional supergravity theories

offer a rich structure. The theories we are going to consider will have extended su-

persymmetry i.e. N = 2 with 4 real supercharges. There are several ways to obtain

different 3-dimensional N = 2 theories. One of the obvious ways is to consider the

dimensional reduction of the four dimensional N = 1 SUGRA action. The Poincaré
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versions of four dimensional N = 1 and three dimensional N = 2 SUGRA are very

similar. However it is not possible to recover all possible three dimensional N = 2

theories with dimensional reduction, and especially those theories that possess Chern-

Simons terms which are unique to three dimensions. One should use more systematic

ways, such as the superconformal method or superspace techniques. Besides being

systematic, these tools also provide the off-shell formulations of such SUGRA theo-

ries which are also valuable for their own sake.

When it comes to AdS, there are several disguises of supergravity theories in 3D,

which were found by Achuarro and Townsend [120]. Basically three dimensional N
extended theories have AdS supergroups OSp(p|2;R) ⌦ OSp(q|2;R), where p, q 2
Z+ and N = p + q with p � q. The (0, 0) theory corresponds to the good old

cosmological Einstein theory without supersymmetry. The (1, 0) theory is the basic

N = 1 theory that first appeared in [121, 122], with the action

e�1LR = R� 2S2 � ¯ µ�
µ⌫⇢ D⌫(!) ⇢ , (4.85)

e�1LC = S +

1
8
¯ µ�

µ⌫ ⌫ , (4.86)

L = LR + LC (4.87)

where the first term corresponds to the Poincaré part and the second is the cosmolog-

ical constant. This Lagrangian is invariant under the following transformation rules

�eµ
a

=

1
2 ✏̄�

a µ , (4.88)

� µ = Dµ(!)✏+
1
2S�µ✏ ,

�S =

1
4 ✏̄�

µ⌫ µ⌫(!)� 1
4S✏̄�

µ µ , (4.89)

where

Dµ(!)✏ =

⇣

@µ +
1
4!µ

ab�ab
⌘

✏,  µ⌫ = D[µ(!) ⌫] . (4.90)

Here the off-shell multiplet consists of a graviton, a real scalar and a Majorana grav-

itino, with the off-shell degrees of freedom 3+1=4. In N = 2, we have different

choices. The first one is the (1, 1) theory where the Poincaré part is [123, 124]

e�1LEH = R + 2V 2 � 2 |S|2 � � ¯ µ �
µ⌫⇢D⌫(b!) ⇢ + h.c.

�

, (4.91)

and the cosmological part is

e�1LC = S � 1

4

˜ µ �
µ⌫  ⌫ + h.c., (4.92)
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with two auxiliary fields, a complex scalar S and a real vector Vµ (3+2+3=8). The

theory is invariant under supersymmetry transformations

�eµ
a

=

1
2 ✏̄�

a µ + h.c.,

� µ = Dµ(b!) ✏� 1
2 iV⌫ �

⌫�µ ✏� 1
2S�µ (B✏)

⇤ ,

�Vµ =

1
8 i✏̄ �

⌫⇢�µ
⇣

 ⌫⇢ � iV��
��⌫  ⇢ � S�⌫ (B ⇢)

⇤
⌘

+ h.c.,

�S = �1
4 ✏̃ �

µ⌫
⇣

 µ⌫ � iV� �
��µ ⌫ � S�µ (B ⌫)

⇤
⌘

, (4.93)

where

Dµ(b!)✏ = (@µ +
1
4b!µ

ab �ab)✏ ,  µ⌫ = 2D[µ(b!) ⌫] . (4.94)

The (1, 1) theory can be obtained as a dimensional reduction from N = 1, D = 4

AdS supergravity. The other choice (2, 0) is the novel one. It is given by the Poincaré

and cosmological parts [119, 125, 126]

e�1LEH = R� 2G2 � 8D2 � 8✏µ⌫⇢ Cµ @⌫V⇢, (4.95)

e�1LC = 2D � ✏µ⌫⇢ Cµ G⌫⇢ �
✓

1

8

¯ µ �
µ⌫  ⌫ + h.c.

◆

, (4.96)

where the gravitino  µ is a Dirac vector spinor, Vµ is a U(1)R symmetry gauge field,

Cµ is a vector gauge field and D is an auxiliary real scalar. We have also defined

Gµ := ✏µ⌫⇢G
⌫⇢ , G2

:= GµG
µ . (4.97)

The local supersymmetry transformation rules that leaves the (2, 0) theory invariant

are

�eµ
a

=

1
2 ✏̄ �

a  µ + h.c.,

� µ =

�

@µ +
1
4b!µ

ab �ab � iVµ

�

✏� 1
2 i �µ� · bG✏� �µ D✏,

�Cµ = �1
4 i ✏̄  µ + h.c.,

�Vµ = �1
2 i✏̄ �

⌫
b µ⌫ +

1
8 i✏̄ �µ� · b � 1

2 ✏̄ � · bG µ + iD✏̄  µ + h.c.,

�D = � 1
16 ✏̄ � · b + h.c., (4.98)

where the U(1)R covariant gravitino field strength is given by

b µ⌫ = 2

�

@[µ +
1
4b![µ|

ab �ab � iV[µ

�

 ⌫] � i�[µ� · bG ⌫] � 2D �[µ ⌫] . (4.99)

The Chern Simons term makes this theory unique to three dimensions, i.e. it can not

be obtained from dimensional reduction like the (1, 1) theory.
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Similar to the case in which the four dimensional N = 1 theory has different con-

formal compensators coupled to a Weyl multiplet. The (1, 1) and (2, 0) actions are

constructed from different compensating multiplets and they are off-shell supersym-

metric theories, which means that one does not need to impose the field equations for

invariance under supersymmetry transformations. One can consider the scalar multi-

plet for the (1, 1) theory and the vector multiplet for the (2, 0) theory. There is even a

third multiplet called the linear complex multiplet which is dual to the scalar multiplet

for the (1, 1) theory.

These actions can be extended to involve higher derivative terms. However, perform-

ing these extensions in an off-shell setting is not an easy task at all. Obviously one

can not simply add an R2 or Rµ⌫Rµ⌫ term. The superconformal construction should

be extended to involve higher order derivatives [119].

Luckily for three dimensions we have a special higher curvature extension i.e. Chern-

Simons terms

e�1LCS = � 1

4µ
"µ⌫⇢

�

Rµ⌫
ab!⇢ab +

2
3!

ab
µ !⌫b

c!⇢ca

�

+

1

µ
"µ⌫⇢Fµ⌫V⇢ , (4.100)

and the fermionic CS piece, up to quartic fermion terms, is given by

e�1LCS =

1

4µ
"µ⌫⇢

�

R⇢⌧ � 1
4Rg⇢⌧

�

¯ µ�
⌧ ⌫ � 1

µ
¯Rµ�⌫�µR

⌫ (4.101)

with Rµ
= "µ⌫⇢(D⌫ � iA⌫) ⇢ . These terms are really special since they are invariant

under supersymmetry transformations without the need for extra terms, so one can

simply couple CS terms to the actions we have discussed. By coupling these higher

derivative terms, the auxiliary fields begin to propagate. In [127], the authors simply

take the (1, 1) cosmological Einstein theory coupled to Chern-Simons terms (4.100).

Then, they consider the off-shell Killing spinors (in Lorentzian signature) and find the

spacelike-squashed, timelike-stretched AdS3 for the spacelike and timelike norms of

auxiliary field in the (1, 1) theory.

Motivated by the off-shell Killing spinor and supersymmetric background analysis of

[127, 128, 129], we will try to do the same to the (1, 1) higher curvature theory given
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by the action below

LCNMG = �(R + 2V 2 � 2|S|2) + 4MA (4.102)

+

1

m2

h

Rµ⌫R
µ⌫ � 3

8R
2 �Rµ⌫V

µV ⌫ � Fµ⌫F
µ⌫

+

1
4R(V 2 � B2

)

+

1
6 |S|2(A2 � 4B2

)� 1
2V

2
(3A2

+ 4B2
)� 2V µB@µA

i

,

where � = ±1 controls the sign of Einstein term and the complex auxiliary scalar is

decomposed as S ⌘ A + iB. The following are the field equations derived from the

variations of the fields A,B, Vµ and gµ⌫ respectively

0 = 4M � 4�A+

1

m2



2

3

A3 � B2A� 3V 2A+ 2 (r · V )B + 2V µ@µB

�

,

0 = 4�B +

1

m2



1

2

RB + A2B +

8

3

B3
+ 4V 2B + 2V µ@µA

�

,

0 = 4�Vµ � 1

m2



2Rµ⌫V
⌫
+ 4r⌫Fµ

⌫
+ Vµ

✓

3A2
+ 4B2 � R

2

◆

+ 2B@µA

�

,

0 = �
⇣

Rµ⌫ + 2VµV⌫ � 1

2

gµ⌫ [R + 2V 2 � 2(A2
+B2

)]

⌘

� 2gµ⌫MA

+

1

m2

"

⇤Rµ⌫ � 1

4

rµr⌫R +

9

4

RRµ⌫ � 4R⇢
µR⌫⇢ � 2Fµ

⇢F⌫⇢

+

1

4

RVµV⌫ � 2R⇢
(µV⌫)V⇢ � 1

2

⇤(VµV⌫) +r⇢r(µ(V⌫)V
⇢
)

+

1

4

Rµ⌫(V
2 � B2
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)� 1
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VµV⌫(3A
2
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+

1
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⇤R� 3R2
⇢� �R⇢�V

⇢V �

+r⇢r�(V
⇢V �

)� F 2
⇢� +

1

4

R(V 2 � B2
)� 1

2

⇤(V 2 � B2
)

+

1
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)� 1

2

V 2
(3A2

+ 4B2
)� 2BV ⇢@⇢A

⌘

#

. (4.103)

The m ! 1 limit is the cosmological Poincaré supergravity, i.e. A,B and Vµ can

be eliminated algebraically. In the next section, we will show that the Minkowski

or AdS3 is a maximally supersymmetric background. By imposing projection condi-

tions on ✏, we can generate more solutions, with less supersymmetry.

Without higher derivative terms, the auxiliary fields can be eliminated from the theory,

resulting in an on-shell supergravity theory with the field content (eµa, µ). However,

once those terms are added, the ‘auxiliary’ fields become dynamical and contribute

to the supersymmetric backgrounds allowed by the CNMG Lagrangian (4.102).
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4.4 Killing Spinors

Killing spinors are one of the powerful tools in the realm of the classical solutions

of the supersymmetric theories. The supergravity theories are invariant under super-

symmetry transformations with arbitrary spinors ✏(x) as transformation parameters.

Killing spinors are the subset of these arbitrary spinors, for which the classical solu-

tions of the theory remain invariant when transformed with one of the elements of this

subset. Therefore, Killing spinors do not have to preserve all of the supersymmetry.

In order to find these spinors we have to make an important assumption: the classical

solution we are going to look for, whether it is a background, a black hole a pp-wave

or whatever it is, it should have vanishing fermions, which means that

�(✏)boson = ✏fermion = 0 �(✏)fermion = ✏boson = 0. (4.104)

The first equation is trivially satisfied since all fermions vanish, but from the second

one we have a condition for the spinor ✏(x) and that is the Killing spinor equation.

The theory we are looking for may have N number of supersymmetries, but as we

have said, the solutions may not preserve all of the supersymmetries of the theory.

The supergravity solutions with Killing spinors are called Bogomol’nyi, Prasad and

Sommerfield (BPS) solutions, e.g. 1/2 BPS means a solution with a Killing spinor

preserving half of the supersymmetry of a theory.

From (4.104) and the gravitino transformation, we see that � µ = 0 = Dµ✏(x),

where Dµ is the covariant derivative for the theory or background we consider (for

Minkowski background we simply have @µ). The integrability condition will then

follow from the commutator of [Dµ, D⌫ ]✏(x) =

1
2Rµ⌫

ab�ab✏(x). This condition will

largely constraint the geometry Killing spinor is living in. Finally, it can be easily seen

from the Killing spinor bilinears, Kµ
= ✏̄�µ✏, one can construct Killing vectors Kµ,

such that r(µK⌫) = 0. The Killing vectors constructed from spinors provide valuable

information about the solutions we are after. Since the Killing spinor equations are

first order in derivatives, it is easier to solve and obtain constraints on metric functions.
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4.4.1 Off-Shell Killing Spinors

Although we have discussed Killing spinors based on solutions of a theory, we can

extend this definition to the off-shell Killing spinors. The Killing spinor equation

follows from (4.104) which is the result of gravitino transformation. If we are given

a theory with auxiliary fields, e.g. the (1, 1) or (2, 0) theories, the off-shell Killing

spinors can be studied by simply setting � µ = 0 from (4.98), (4.93). Thus the

most general form of the metric and auxiliary fields can be found assuming that there

exists at least one Killing spinor. From the off-shell Killing spinor bilinears, one can

construct null or timelike Killing vectors and look for the possible forms of pp-wave

solutions metrics with a timelike Killing vector. Once the equations of motion is

imposed, the solutions are found.

4.4.2 Maximally Supersymmetric Backgrounds

Let us start the analysis of off-shell Killing spinors by considering the maximally

supersymmetric backgrounds i.e. Killing spinors without any projection conditions

on them. We start with the Killing spinor equation obtained through the gravitino

transformation (4.93)

Dµ✏ =Dµ(b!)✏� 1

2

iV⌫ �
⌫�µ ✏� 1

2

S�µ✏
⇤
= 0 ,

=Dµ(b!)✏� i

2

Vµ✏+
i

2

�µ
⇢V⇢✏� 1

2

A�µ✏
⇤ � i

2

B�µ✏
⇤, (4.105)

where we have used �m�n = �µ⌫ + gµ⌫ and defined S = A + iB. To extract a

geometric quantity out of this first order equation, we will take one more derivative
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and check the commutator or integrability condition. The second derivative will read

DµD⌫✏ = DµD⌫✏� i

2

(rµV⌫)✏+
i

2

�⌫
⇢
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2

�⌫
⇢V⇢Dµ✏

� 1
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⇤ � 1

2
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2
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2
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⇤

� i

2

VµD⌫✏� 1

4

VµV⌫✏+
1

4

�⌫
⇢VµV⇢✏+

i

4

AVµ�⌫✏
⇤ � 1

4

BVµ�⌫✏
⇤

+

i

2

�µ
⇢V⇢D⌫✏+

1

4

�µ
⇢V⇢V⌫✏� 1

4

�µ
⇢�⌫

�V⇢V�✏� i

4

AV⇢�µ
⇢�⌫✏

⇤
+

1

4

BV⇢�µ
⇢�⌫✏

⇤

� 1

2

A�µD⌫✏
⇤ � i

4

AV⌫�µ✏
⇤
+

i

4

AV⇢�µ�⌫
⇢✏+

1

4

A2�µ�⌫✏� i

4

AB�µ�⌫✏

� i

2

B�µD⌫✏
⇤
+

1

4

BV⌫�µ✏
⇤ � 1

4

BV⇢�µ�⌫
⇢✏⇤ +

i

4

AB�µ�⌫✏+
1

4

B2�µ�⌫✏.

(4.106)

Note that, when Dµ hits on vectors it becomes rµ and the derivative of the gamma

matrices is zero rµ�⌫ = 0. Antisymmetrizing on µ, ⌫

[Dµ,D⌫ ]✏ =
1

4

Rµ⌫
⇢��⇢�✏� i

2

Fµ⌫✏+ i�[⌫
⇢
(rµ]V⇢)✏� (r[µA)�⌫]✏

⇤ � i(r[µB)�⌫]✏
⇤

+ iAV[µ�⌫]✏
⇤ � BV[µ�⌫]✏

⇤ � 1

2

�[µ
⇢��⌫]V⇢V�✏� i

2

AV⇢�[µ
⇢�⌫]✏

⇤

+

1

2

BV⇢�[µ
⇢�⌫]✏

⇤
+

i
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AV⇢�[µ�⌫]
⇢ � 1

2

BV⇢�[µ�⌫]
⇢✏⇤ +

1

2

(A2
+B2

)�µ⌫✏.

(4.107)

We will now employ the product rules for gamma matrices similar to the one (4.5),

�µ⇢�⌫ = �µ⇢⌫ + �µ�⌫⇢ � �⇢gµ⌫ . Applying this equality on (4.107)

[Dµ,D⌫ ]✏ =
1

4

Rµ⌫
⇢��⇢�✏� i

2

Fµ⌫✏+ i�[⌫
⇢
(rµ]V⇢)✏� (r[µA)�⌫]✏

⇤ � i(r[µB)�⌫]✏
⇤

+iAV[µ�⌫]✏
⇤ � BV[µ�⌫]✏

⇤ � V ⇢V[⌫�µ]⇢✏+
1

2

V 2�µ⌫✏+ iA�µ⌫
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⇤

�B�µ⌫
⇢V⇢✏

⇤
+

1

2

(A2
+B2

)�µ⌫✏. (4.108)

Collecting terms that has the same rank gamma matrices and keeping in mind that

�µ⌫⇢ = �✏µ⌫⇢ in three dimensions, one has

[Dµ,D⌫ ]✏ =
1

4

⇣

Rµ⌫
⇢�

+ 2�⇢µ�
�
⌫ (A

2
+B2

) + 2�⇢µ�
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2 � 4i��[⌫rµ]V
⇢ � 4��[⌫Vµ]V

⇢
⌘

�⇢�✏

� ��[⌫

⇣

@µ]A+BVµ]

⌘

��✏
⇤ � i��[⌫

⇣

@µ]B � AVµ]

⌘

��✏
⇤ � 1

2

iFµ⌫✏

+ i✏µ⌫⇢V
⇢
(A+ iB)✏⇤ = 0. (4.109)

Before moving on to the cases with broken supersymmetry, let us try to simplify

the integrability condition and capture the AdS and Minkowski backgrounds from
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(4.109) by multiplying it with �µ. After rearranging terms and utilising gamma matrix

contractions (4.3), �⇢�⇢µ = 2�µ, �⇢�⇢µ⌫ = �µ⌫ , one gets

�µ[Dµ,D⌫ ]✏ =
⇣

1

2

Rµ⌫ � i

2

Fµ⌫ � i

2

(r↵V
↵
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+B2
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� 1

2

VµV⌫ +
1

2
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� i

2

(rµV⇢)�⌫
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✓

�1

2

(rµA)� i

2

rµB +

1

2

BVµ � i

2

AVµ

◆

�µ⌫✏
⇤

+((r⌫A) + i(r⌫B)� iAV⌫ +BV⌫) ✏
⇤
= 0. (4.110)

From the first line

Rµ⌫ = iFµ⌫ + i(r↵V
↵
)gµ⌫ � 2(A2

+B2
)gµ⌫ + VµV⌫ � V 2gµ⌫ , (4.111)

we see that AdS is a solution for Fµ⌫ = 0, Vµ = constant, @µA = @⌫B = 0 and

�1/
p
A2

+B2 equals to the AdS3 radius.

4.4.3 Off-Shell Killing Spinor Analysis

After finding the maximally supersymmetric backgrounds, let us proceed to the con-

struction of bilinears out of Killing spinors. These bilinears will constrain the func-

tions that appear in the background solutions. In what follows, we will assume that

we have at least one unbroken supersymmetry and follow the discussion of [127].

Consider the flipping relations of bilinears we have found (4.36), (4.37) and let us

assume that the spinor appearing in the equalities is the same Killing spinor ✏. Then

for rank zero matrices3 , i.e. identity matrix, these relations imply

✏̄✏⇤ = ✏̃✏ = 0 . (4.112)

From the remaning bilinear (4.35) we can define a scalar as follows

✏̄✏ =� ✏̃✏ = ✏̄1✏1 + ✏̄2✏2 + i(✏̄1✏2 � ✏̄2✏1),

=2i✏̄1✏2 = if, where f ⌘ 2✏̄1✏2, (4.113)

where f is a real function since ✏1, ✏2 are Majorana spinors and for Majorana spinors

✏̄✏ = �✏̄✏ = 0. The bilinears that include rank-1 are more interesting. A close scrutiny
3 Note that, here we use the rank of the matrix as the number of spacetime indices on a gamma matrix.
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of (4.35), (4.36) shows that

Kµ ⌘ ✏̄�µ✏ = ✏̃�µ✏⇤ =✏̄1�
µ✏1 + ✏̄2�

µ✏2 + i(✏̄1�
µ✏2 � ✏̄2�

µ✏1),

Kµ
= ✏̄1�

µ✏1 + ✏̄2�
µ✏2. (4.114)

Lµ ⌘ ✏̄�µ✏⇤ =✏̄1�
µ✏1 � ✏̄2�

µ✏2 � i(2✏̄1�
µ✏2),

Lµ
=Sµ

+ iT µ,

where Sµ ⌘✏̄1�µ✏1 � ✏̄2�
µ✏2, T µ ⌘ �2✏̄1�

µ✏2, (4.115)

where Kµ (Lµ) is a real (complex) vector. The norm of the vectors can be obtained

from the three dimensional Fierz identity (4.43), assuming all spinors are the same

(✏̄�µ✏)�µ✏ = (✏̄✏)✏. (4.116)

Multiply this with ✏̄ and use the definition (4.113)

(✏̄�µ✏)✏̄�µ✏ = (✏̄✏)2 = KµK
µ
= �f 2. (4.117)

The function f is real, therefore the vector Kµ can be either timelike or null. On the

other hand, the norm of TµT µ is spacelike

TµT
µ
= 4✏̄1 [(✏̄1�

µ✏2)�µ✏] = 4✏̄1 [2(✏̄1✏2)✏1 � (✏̄1✏2)✏2] = 4(✏̄1✏2)
2
= f 2. (4.118)

Although we won’t use the following equalities, let us state them for convenience

SµS
µ
=✏̄1 [(✏̄1�

µ✏1)�µ✏1]� 2✏̄1 [(✏̄2�
µ✏2)�µ✏1] + ✏̄2 [(✏̄2�

µ✏2)�µ✏2] ,

=� 2✏̄1 [(✏̄2�
µ✏2)�µ✏1] .

=� 2✏̄1 [2(✏̄2✏1)✏2 � (✏̄2✏2)✏1] ,

SµS
µ
=4(✏̄1✏2)

2
= f 2, (4.119)

SµTµ =� 2✏̄1 [(✏̄1�
µ✏2)�µ✏1] + 2✏̄2 [(✏̄1�

µ✏2)�µ✏2] ,

SµTµ =0. (4.120)

After finding all of the vectors constructed from the bilinears, let us check what kind

of differential equations they satisfy. It is obvious from the previous discussions that

the bilinear Kµ must satisfy the Killing vector equation. For the sake of completeness,

we first write down the Killing spinor equation and its conjugates

Dµ(b!)✏ =
i

2

V⌫�
⌫�µ✏+

1

2

S�µ✏
⇤, (4.121)

Dµ(b!)✏̄ =� i

2

V⌫ ✏̄�µ�
⌫ � 1

2

S⇤✏̃�µ, (4.122)

Dµ(b!)✏
⇤
=� i

2

V⌫�
⌫�µ✏

⇤
+

1

2

S⇤�µ✏. (4.123)
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The derivative of Kµ reads

rµK⌫ = rµ(✏̄�⌫✏) =(Dµ(b!)✏̄)�⌫✏+ ✏̄�⌫(Dµ(b!)✏),
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⇤. (4.124)

Symmetrising in µ, ⌫ we find r(µK⌫) = 0. Therefore, depending on the value of f ,

Kµ is a timelike or null Killing vector. Let us cast (4.124) in a more suggestive form

for future manipulations, by considering gamma matrix identities from Sec. 4.1:4
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. (4.125)

As similar identity holds for Lµ
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⇢K⇢ + ifS⇤gµ⌫ . (4.126)

4 In deriving (4.125) the duality relation between gamma matrices �µ = 1
2"

µ⌫⇢�⇢⌫ , and the highest rank
element �µ⌫⇢

± = ±i2"µ⌫⇢ for odd dimensional Clifford algebra is used. Finally three index version of gamma
product rule is employed �⌫↵

µ + 2�[⌫�↵]
µ . Moreover, r[µK⌫] = @[µK⌫] i.e. we set the torsion to zero, since we

have imposed vanishing fermions as a Killing spinor condition.
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Likewise the derivative of i@µf = @µ(✏̄✏) is
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Also the Levi-Civita contraction of Kµ and Lµ is as follows
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Finally, another useful Levi-Civita contraction is

"µ⌫⇢LµL
⇤
⌫ = "µ⌫⇢(Sµ + iTµ)(S� � iT⌫) = 2iSµT⌫"

µ⌫⇢, (4.129)

plugging in the definitions of Sµ and Tµ (4.115)

"µ⌫⇢LµL
⇤
⌫ = 4i [✏̄1�µ✏1 � ✏̄2�µ✏2] (✏̄1�⌫✏2)"

µ⌫⇢. (4.130)

To put this bilinear into a suitable form, we turn back to Fierz identity (4.43) and first

multiply it with �⌫

(✏̄1�
µ✏2)�⌫�µ✏3 = 2(✏̄1✏3)�⌫✏2 � (✏̄1✏2)�⌫✏3, (4.131)

and contract with ✏̄4

(✏̄1�
µ✏2)✏̄4�⌫µ✏3 + (✏̄1�⌫✏2)✏̄4✏3 = 2(✏̄1✏3)✏̄4�⌫✏2 � (✏̄1✏2)✏̄4�⌫✏3. (4.132)

To generate our first identity, take 3, 4 ! 1 (keeping in mind that ✏̄✏ = 0)

(✏̄1�
µ✏2)✏̄1�⌫µ✏1 = �(✏̄1✏2)✏̄1�⌫✏1, (4.133)

and for the second identity 3, 4 ! 2

(✏̄1�
µ✏2)✏̄2�⌫µ✏2 = (✏̄1✏2)✏̄2�⌫✏2. (4.134)
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Now, we are in a position to express equation (4.130) in a more compact way. First

replace "µ⌫⇢�⇢ = ��µ⌫

"µ⌫⇢LµL
⇤
⌫ = 4i [(✏̄1�µ✏2)✏̄1�

⇢µ✏1 � (✏̄1�µ✏2)✏̄2�
⇢µ✏2] , (4.135)

then employ the Fierz identities we have derived in (4.133) and (4.134) to get

"µ⌫⇢LµL
⇤
⌫ = 4i [(✏̄1�

⇢✏1) + (✏̄2�
⇢✏2)] (✏̄1✏2) = 2if K⇢. (4.136)

By computing various identities (4.125), (4.126), (4.127) (4.128) we have set the

stage for the analysis of Killing spinors according to their norms. We will start from

the null case, after a through analysis, timelike case will be considered.

4.5 The Null Killing Vector

We first start with the case, where the function f introduced in eq. (4.113) is zero

everywhere, i.e. f = 0, which makes Kµ a null Killing vector. Previously, we have

considered Dirac spinors as an object constructed out of Majorana spinors. It also was

shown that the norm ✏̄✏ = 2i✏̄1✏2 ⌘ if with ✏1 and ✏2 as different Majorana spinors.

Therefore, the f = 0 case is only possible for Dirac spinors that is proportional to a

real spinor ✏0 up to a phase factor

✏ = e�i
✓
2 ✏0 . (4.137)

This observation will lead to a simplification of the following vectors we have defined

previously

Kµ
=✏̃�µ✏⇤ = ✏̄0�

µ✏0, (4.138)

Lµ
=✏̄�µ✏⇤ = ei✓ ✏̄0�

µ✏0, (4.139)

Lµ
=ei✓Kµ. (4.140)

The equations (4.125), (4.127), then imply

@[µK⌫] � "µ⌫⇢K
⇢ Re(Sei✓) = 0, (4.141)

Im(Sei✓)Kµ + "µ⌫
⇢V ⌫K⇢ = 0. (4.142)
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Exploiting (4.140), the derivative Lµ (4.126) will read

rµL⌫ =rµ(e
i✓K⌫),

i(@µ✓)K⌫ +rµK⌫ =� iV⌫Kµ � iVµK⌫ + igµ⌫K�V
�
+ e�i✓"µ⌫⇢K

⇢S⇤. (4.143)

Antisymmetrize the latter in µ⌫, then plug it in (4.141) to find

i(@[µ✓)K⌫] + "µ⌫⇢K
⇢Re(Sei✓) =

⇥

Re(Sei✓)� iIm(Sei✓)
⇤

"µ⌫⇢K
⇢,

i(@[µ✓)K⌫] =� iIm(Sei✓)"µ⌫⇢K
⇢. (4.144)

Using the previous result on the imaginary part of Sei✓ (4.142), we can derive a

constraint on the auxiliary field Vµ

i(@[µ✓)K⌫] =i"µ⌫⇢"
⇢
↵�V

↵K�.

=� i2V[µK⌫], (4.145)

Assuming that this holds for all K⌫ , we find

Vµ = �1

2

@µ✓. (4.146)

On the other hand, we can learn a great deal on the geometry and the metric by

contracting the equation (4.141) with K⌫

Kµ rµ K⌫ = 0 . (4.147)

By Frobenius’ theorem, we find that K is hypersurface orthogonal and thus tangent

to affinely parametrized geodesics. One can, adopt coordinates (u, v, x), with v being

an affine parameter along the geodesics, i.e.

Kµ @µ =

@

@v
. (4.148)

Then it is possible to choose an adapted coordinate system such that the functions

appearing in the metric does not depend on v [130]

ds2 = hij(x, u) dx
i dxj

+ 2P (x, u) du dv , (4.149)

where xi
= (x, u). Without loss of generality, this metric can be cast in the following

form by a coordinate transformation [129, 131]

ds2 = dx2
+ 2P (x, u) du dv +Q(x, u) du2 , (4.150)
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with
p|g| = P . With this choice of metric and coordinates, let us reconsider equation

(4.125)

@xKu = "xuv(S
⇤e�i✓

+ Sei✓), (4.151)

which is the only non-zero combination. The Levi-Civita pseudo tensor is defined as

"µ⌫⇢ =

p�g✏µ⌫⇢ in terms of the tensor density ✏µ⌫⇢, where we use the convention

✏xuv = 1. The equation (4.151) will then take the form [127]

Sei✓ + S⇤e�i✓
= @x logP (x, u) . (4.152)

Note that until now we have not used any field equation, everything was off-shell and

derived from the transformation properties of the gravitino. In the next subsection,

we will make use of this off-shell analysis and investigate the solutions of CNMG

with the null Killing vector.

4.5.1 The pp-wave solution with A = ±1/l, B = 0

We start by setting S to be a constant; to be more precise we set A = 1/l and B = 0

in order to simplify field equations and capture AdS asymptotics when Q(x, u) = 0

in (4.150). Each choice of signs of 1/l, covers different part of AdS and two charts

together cover the whole AdS [129].

Using (4.127) we obtain

✏µ⌫⇢ V
⌫K⇢

= �1

l
Kµ sin ✓(u, x) . (4.153)

The non-zero u component of this equation reads

1

l
Ku sin ✓(u, x) = P (u, x)Vx . (4.154)

For nowhere vanishing P (u, x), this equation can be used to integrate (4.146). After

a simple
R

d✓/ sin ✓ integration we find ✓(u, x) to be

c(u)e�2x/l
=tan

✓(u, x)

2

,

✓(u, x) = arctan

⇣

2 c(u) e�2x/l

1� c(u)2 e�4x/l

⌘

, (4.155)
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for an arbitrary function c(u). With our choices, the equality (4.152) simplifies to

2

l
cos ✓(u, x) = @x logP (u, x) , (4.156)

which, upon using (4.155) and the trigonometric relation cos arctan(x) = 1/
p
1 + x2,

yields

P (u, x) = P (u)[ e2x/l + e�2x/lc2(u)] , (4.157)

where P (u) is an arbitrary function of u. The function P (u) can be set to unity with-

out loss of generality [129, 130]. This point is actually the farthest we can reach,

without invoking field equations. To proceed, we substitute into the (4.150) vector

field equation (4.103) and find c(u) = 0. Before moving onto the metric field equa-

tions, let us present the final form of the metric

ds2 = dx2
+ 2 e2x/l du dv +Q(u, x) du2 , (4.158)

and the limit l ! 1 gives rise to the pp-wave in a Minkowski background.

The final task we undertake is to find the function Q(u, x). For notational simplicity,

we set l = 1 and feed the metric (4.158) into the metric field equations. The result is

a linear fourth order ordinary differential equation with constant coefficients

(2 + 4�m2
)Q0 � (9 + 2�m2

)Q00
+ 8Q000 � 2Q0000

= 0 , (4.159)

where the prime denotes a derivative with respect to x. The most general solution of

this differential equation is well known and given by

Q(x, u) = e
(1�

r
1
2��m2)x

C1(u) + e
(1+

r
1
2��m2)x

C2(u) + e2xC3(u) + C4(u),(4.160)

where the functions Ci(u) , i = 1, · · · , 4, are arbitrary functions of u. The solution we

have found is the same as the one in [128] which is the N = 1 version of the theory

we study. Therefore we expect that 1/4 of the supersymmetry is conserved, which is

a property we will show in the next section. The non-supersymmetric version [132]

also matches to the solution we have found.

The solution Q(u, x) we have found is not in the most desirable form. It actually has

redundant pieces that can be gauged away by a set of suitable coordinate transforma-

tions. To that end, consider the following coordinate transformations [131]

x = ex� 1
2 log a

0 , u = a(eu) , v = ev � 1
4e

�2ex a
00

a0
+ b(eu) , (4.161)
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where a(eu) and b(eu) are arbitrary functions of eu and here prime denotes a derivative

with respect to eu. The next step is to choose the arbitrary functions a(eu) and b(eu)

such that, the differential equations

⇣a00

a0

⌘0
� 1

2

⇣a00

a0

⌘2

� 2(a0)2 eC4(eu) = 0 , b0 +
1

2

a0 eC3(eu) = 0 , (4.162)

are satisfied, i.e. the functions eC3 and eC4 can be set to zero. Thus one is naturally

led to set C3 = C4 = 0 without loss of generality. In addition to this, after the

transformations we get the new set of functions as

eC1(eu) = C1(a(eu))[a
0
(eu)]

1
2 (3+

r
1
2��m2)

, eC2(eu) = C2(a(eu))[a
0
(eu)]

1
2 (3�

r
1
2��m2)

.

So far we have not fixed the values of the parameters �m2. With a quick glance, it is

easy to see that for the �m2
=

1
2 case, the function with coefficient C1 degenerates

with C2, whereas for the �m2
= �1

2 case the function with coefficient C1 degenerates

with C4, while the function with coefficient C2 degenerates with C3. Following the

theory of differential equations, we generate linearly independent solutions for these

special values of the parameters by simply multiplying xe2x, etc,

�m2
=

1
2 : Q(u, x) = ex D1(u) + x ex D2(u) + e2x D3(u) +D4(u) ,

�m2
= �1

2 : Q(u, x) = x e2x D1(u) + xD2(u) + e2x D3(u) +D4(u) .

Here Di(u) , i = 1, . . . , 4, are arbitrary functions of u. Setting D3 = D4 = 0, we are

led to the following cases:

�m2 6= ±1
2 : ds2 = dx2

+ 2 e2x du dv

+

⇣

e
(1�

r
1
2��m2)x

D1(u) + e
(1+

r
1
2��m2)x

D2(u)
⌘

du2 ,

�m2
=

1
2 : ds2 = dx2

+ 2 e2x du dv +
⇣

ex D1(u) + x ex D2(u)
⌘

du2 ,

�m2
= �1

2 : ds2 = dx2
+ 2 e2x du dv +

⇣

x e2x D1(u) + xD2(u)
⌘

du2 .

This is the most general solution we can find for the null case. The next question that

comes to mind is the amount of supersymmetry that these solutions preserve. In the

next section we will attack this problem by working out the Killing spinor equation

(4.105).
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4.5.2 Killing Spinor Analysis

The following set of orthonormal frames is the most suitable for the construction of

the Killing spinors of the pp-wave metric (4.158) [131]

e0 = e
2x
l
�� dv, e1 = e�du+ e

2x
l
�� dv, e2 = dx , (4.163)

where Q(u, x) = e2�(u,x). A simple calculation shows that the spin-connections are

!01 = � ˙� du�
⇣

�0 � 1

l

⌘

dx ,

!02 = �
⇣

�0 � 1

l

⌘

e� du� 1

l
e
2x
l
�� dv ,

!12 = �0 e� du+

1

l
e
2x
l
�� dv , (4.164)

where

˙� ⌘ @�

@u
, �0 ⌘ @�

@x
. (4.165)

Plugging in our choices to the Killing spinor equation (4.105)5

0 = d✏+
1

4

!ab �
ab✏+

1

2l
�a e

a ✏⇤ . (4.166)

Until now we have not made a choice for the � matrices. As we have discussed

previously, in three dimensions the representation is real and 2⇥2 dimensional. Hence

a natural choice is

�0 = i�2 , �1 = �1 , �2 = �3 , (4.167)

where �i’s are the standard Pauli matrices. With this choice the Killing spinor equa-

tion reads

0 = d✏ +

1
2

⇣

˙� �3 ✏� e��0
(�1 + i�2) ✏+

1

l
e��1 (✏+ ✏⇤)

⌘

du

� 1

2l
e
2x
l
��

(�1 + i�2) (✏� ✏⇤) dv

+

1

2

⇣

�0�3 ✏� 1

l
�3 (✏� ✏⇤)

⌘

dx . (4.168)

In order to read the components of the spinor explicitly, we decompose the Dirac

spinor into two Majorana spinors as ✏ = ⇠ + i⇣

✏ =

0

@

⇠1 + i⇣1

⇠2 + i⇣2

1

A , (4.169)

5 Note that, in this section we have used A = �1/l which does not effect the results.
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and obtain the following equations for the components

0 = d⇠1 +
1

2

˙� ⇠1 du� e�(�0 � 1

l
) ⇠2 du+

1

2

⇠1 �
0 dx ,

0 = d⇠2 +
1

l
e� ⇠1 du� 1

2

˙� ⇠2 du� 1

2

�0 ⇠2 dx ,

0 = d⇣1 +
1

2

˙� ⇣1 du� e� �0 ⇣2 du� 2

l
e
2x
l
�� ⇣2 dv +

1

2

(�0 � 2

l
) ⇣1 dx ,

0 = d⇣2 � 1

2

˙� ⇣2 du� 1

2

(�0 � 2

l
) ⇣2 dx . (4.170)

By choosing ⇠1 = ⇠2 = 0 the first two equations are uniquely solved. For the last two

equations, we have a non-trivial solution with a generic function �(u, x)

⇣1 = e�
1
2�+

x
l , ⇣2 = 0 . (4.171)

A close scrutiny shows that there exists an additional solution for the special case that

� = x

⇣1 = (u+ 2v)e
1
2x , ⇣2 = e�

1
2x , (4.172)

which corresponds to the first case given in eq. (4.163) with a parameter �m2 6=
±1/2 and the functions D1(u) = 0, D2(u) = 1 . However, from the Killing spinor

equations we have to choose �m2
= �1/2 which is in conflict with the solution in the

previous section. Therefore, the only solution for the pp-wave Killing spinor equation

reads

⇠1 = ⇠2 = ⇣2 = 0 , ⇣1 = e�
1
2�+

x
l . (4.173)

Since we are left with only a one-component spinor, we deduce that the pp-wave so-

lutions all preserve 1/4 of the supersymmetries. The l ! 1 limit, i.e. where we

recover Minkowski pp-wave solutions, the equations for ⇠ and ⇣ degenerate, mak-

ing the number of Killing spinors the same for both AdS and Minkowski pp-wave

solutions.

As a final remark, let us investigate the maximally supersymmetric AdS spacetime

and see how the supersymmetry enhances. For the choice D1 = D2 = 0, the metric

reduces to AdS3 in a Poincaré patch

ds2 = dx2
+ 2e2x/l du dv = dx2

+ e2x/l (�dt2 + d�2
) . (4.174)

With a similar choice of basis

e0 = ex/l dt , e1 = ex/l d� , e2 = dx . (4.175)
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the spin connections are

!02 = �1

l
ex/l dt , !12 =

1

l
ex/l d� . (4.176)

The Killing spinor equation then reads

d✏� 1

2l
ex/l
⇣

�1✏� i�2✏
⇤
⌘

dt� 1

2l
ex/l
⇣

i�2✏� �1✏
⇤
⌘

d�+

1

2l
�3 ✏

⇤dx = 0 .(4.177)

Repeating the same decomposition as before, ✏ = ⇠ + i⇣ , produces the following set

of equations

0 = d⇠1 +
1
2l ⇠1dx ,

0 = d⇠2 � 1
l
ex/l ⇠1dt+

1
l
ex/l ⇠1d�� 1

2l ⇠2dx ,

0 = d⇣1 � 1
l
ex/l ⇣2 dt� 1

l
ex/l ⇣2 d�� 1

2l ⇣1dx ,

0 = d⇣2 +
1
2l ⇣2 dx . (4.178)

Now, the good thing about these equations as opposed to the previous ones is the

decoupling of the ⇠ and ⇣ terms, which increases the number of independent solutions.

It is easy to show that the following is a solution

1. ⇠1 = 0, �2 = e
x
2l , ⇣1 = ⇣2 = 0,

2. ⇠1 = e�
x
2l , �2 =

1
l
e
x
2l
(t� �), ⇣1 = ⇣2 = 0,

3. ⇠1 = �2 = 0, ⇣1 = e
x
2l , ⇣2 = 0,

4. ⇠1 = �2 = 0, ⇣1 =
1
l
e
x
2l
(t+ �), ⇣2 = e�

x
2l ,

Therefore, the AdS3 spacetime is maximally symmetric, i.e. there are 4 non-trivial

spinor components, or to put it in a more fancy way AdS3 enjoys supersymmetry

enhancement with four Killing spinors.

4.6 The Timelike Killing Vector

In this section, we will consider the solutions with at least one timelike Killing vector

i.e. f 6= 0. With a strategy similar to the null case, we start by decomposing the off-

shell Killing spinor bilinears and try to come up with constraints on the metric and the
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auxiliary fields, which in turn will help us to track down the families of background

solutions.

We start by introducing a coordinate t such that Kµ@µ = @t. Our metric ansatze that

is compatible with this choice is the following [127]

ds2 = �e2'(x,y) (dt+B↵(x, y) dx
↵
)

2
+ e2�(x,y)(dx2

+ dy2) , (4.179)

where �(x, y) and '(x, y) are arbitrary functions and B↵ (↵ = x, y) is a vector with

two components. We also require that the functions appearing in the metric (4.180)

do not depend on t. A natural choice for the dreibein and its inverse components reads

et0 = f�1 , eti = �f 2Wi , e↵0 = 0 , e↵i = e���↵i , (4.180)

e0t = f , eit = 0 , e0↵ = f�1e�W↵ , ei↵ = e��i↵ , (4.181)

where we have defined f ⌘ e' and W↵ = e2'��B↵. During the analysis we will

jump from curved indices to flat ones back and forth, so we define µ = (t,↵) for the

curved indices and a = (0, i) for the flat ones, respectively. Rather than giving the

details, we prefer simply to state the components of the spin connection !abc in the

flat basis,

!00i = �e�� f�1@if ,

!0ij = �!ij0 = f e�2� @[i
�

Wj]e
�f�2

�

,

!ijk = 2e�� �i[j@k]� . (4.182)

Before delving into spinor bilinears, let us remember the Lorentz covariant derivative

and its action on dreibeins. We define Dµea⌫ ⌘ @µea⌫ + !µ
abe⌫b, anti-symmetrizing

in µ⌫ we have D[µea⌫] = 0 = Rµ⌫(P a
) where Rµ⌫(P a

), is the curvature of transla-

tions we have defined previously. The covariant derivative of eaµ is, rµea⌫ = Dµea⌫ +

�

r
µ⌫e

a
⇢ = 0, so that the Lorentz covariant derivative and the usual covariant derivative

are related by rµK⌫ = ea⌫DµKa.
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Now, consider the (4.127) projected to flat indices

eµi @µf =� i

2

(SLi � S⇤L⇤
i ) + eµi "µ⌫

⇢V ⌫K⇢,

e��@if =eti "t↵� V
↵K�

+ e↵i "↵⌫⇢V
⌫K⇢ � i

2

(SLi � S⇤L⇤
i ) ,

e��@if ="ij0fV
j � i

2

(SLi � S⇤L⇤
i ) ,

@if =e�


"ijfV
j � i

2

(SLi � S⇤L⇤
i )

�

, (4.183)

where we have used K⇢
= (1, 0, 0) and "ij0 = "ij . The second equation which will

help us to relate the components of the vector Lµ is the eµi e
⌫
0 projection of (4.125)

eµi e
⌫
0 @[µK⌫] = D[iK0] = eµi e

⌫
0 "µ⌫

↵



V↵f +

1

2

(S⇤L⇤
↵ + SL↵)

�

. (4.184)

The derivative terms on the left hand side read

DiK0 =eµi @µK0 + !i00K
0
= �e��@if, (4.185)

D0Ki =eµ0@µKi + !0i0K
0
= e�l@if, (4.186)

where K0
= e0µK

µ
= f and Ki

= eiµK
µ
= 0 are used. Plugging those in (4.184)

�e�� @if ="i0j



V jf +

1

2

(S⇤L⇤j
+ SLj

)

�

,

@if =e�"ij



V jf +

1

2

(S⇤L⇤j
+ SLj

)

�

. (4.187)

Comparing (4.183), (4.187) we see that the components of La in the flat basis are

related as

L1 = iL2. (4.188)

With this relation and the Levi-Civita contraction of Lµ’s (4.136), it is easy to show

that

e0µ"
µ⌫⇢L⌫L

⇤
⇢ =2ife0µK

µ,

"0ijLiL
⇤
j = 2if 2

=2i|L1|2,
f 2

= |L2|2 = |L1|2. (4.189)

Therefore, we can choose La to be

La = e'+ic

0

B

B

@

0

1

�i

1

C

C

A

, (4.190)
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where c is a time independent real function. We also deduce the fact that L0 = 0

from the orthogonality of KµLµ = 0. Let us now try to find the components of the

auxiliary vector Vµ. To that end, it is sufficient to invert (4.187) by multiplying "ij

with it

V k
= f�1



�e��"ki(@if) +
1

2

(S⇤L⇤k
+ SLk

)

�

. (4.191)

From the components V1 and V2 one can define

V+ ⌘ V1 + iV2 = 2ie��f�1@z̄f � f�1SL1, (4.192)

where z = x+ iy, z̄ = x� iy is the usual complex variables, and @z = 1
2(@x � i@y),

@z̄ =

1
2(@x + i@y) are the holomorphic and anti-holomorphic derivatives. The defi-

nition (4.192) boils down to a first order differential equation between the auxiliary

fields and the metric components, by using the explicit form of L1 (4.190)

V+ =2ie��e�'
(@z̄e

'
)� e�'Se'+ic,

=2ie��
(@z̄')� ie��@z̄('+ �� ic),

=ie��@z̄('� �+ ic). (4.193)

There is one last spinor bilinear identity (4.126) that we haven’t utilised. It is suitable

to project this into the flat basis i, j

DiLj = �iViLj � iVjLi + i�ijLaV
a
+ S⇤"ij0K

0
+ ifS⇤�ij. (4.194)

Let us first focus on the left hand side of the equation (4.194) and employ spin con-

nections (4.182) we have computed before

DiLj = e��
⇥

@iLj + �ij(@k�)L
k � Li(@j�)

⇤

. (4.195)

For completeness, let us display all of the components of (4.195)

D1L1 = e��
[@1L1 � iL1(@2�)] , (4.196)

D2L2 = e��
[@2L1 + iL1(@1�)] , (4.197)

D1L2 = e��
[@1L2 � L1(@2�)] , (4.198)

D2L2 = e��
[@2L2 + L1(@1�)] , (4.199)
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where we have used the equality of L1 = iL2. The useful components will be again

holomorphic and anti holomorphic combinations as follows

DzL1 =
1

2

(D1 � iD2)L1,

=

1

2

⇥

e��
(@1L1 � iL1(@2�)� i@2L1 + L1(@1�)

⇤

,

=

1

2

⇥

e��{(@1 � i@2)L1 + L1(@1 � i@2)�}
⇤

,

DzL1 =e��
(@zL1 + L1�@z�) = e�2�@z(L1e

�
), (4.200)

Dz̄L1 =
1

2

(D1 + iD2)L1,

=

1

2

⇥

e��
(@1L1 � iL1(@2�) + i@2L1 � L1(@1�)

⇤

,

=

1

2

⇥

e��{(@1 + i@2)L1 � L1(@1 + i@2)�}
⇤

,

Dz̄L1 =@z̄(e
��L1). (4.201)

Having dealt with the left hand side of (4.194), we now concentrate on the right hand

side for the components of holomorphic and anti-holomorphic combinations

D1L1 =� iV1L1 + iV2L
⇤
2 + ifS⇤,

=L1(V2 � iV1) + ifS⇤,

=� iV+L1 + ifS⇤, (4.202)

D2L1 =� iV2L1 � iV1L2 � fS⇤,

=� V+L1 � fS⇤. (4.203)

It is now easy to see that Dz̄L1 = �iV+L1 and DzL1 = ifS⇤. Plugging in the explicit

expression for V+ (4.193), the anti-holomorphic derivative amounts to

Dz̄L1 =� iL1V+,

=� ie'+ic
⇥

2if�1e�l@z̄f � f�1SL1

⇤

,

=2eic��
(@z̄f) + ife2icS. (4.204)

In order to get a constraint on S, replace the left hand side with (4.200)

@z̄(e
��L1) =2eic��

(@z̄f) + ife2icS. (4.205)

Now, the left hand side can also be written as

@z̄(fe
ic��

) = �e2(ic��)@z̄(fe
��ic

) + 2(@z̄f)e
ic��, (4.206)
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combining with right hand side

@z̄(fe
��ic

) =� ife2�S,

@z̄(e
'+��ic

) =� ie2�+'S,

e'+��ic@z̄('+ �� ic) =� ie2�+'S,

S =ie���ic@z̄('+ �� ic). (4.207)

There are still two unconstrained functions we need to discuss, the metric function

B↵(x, y) and the V0 component of the auxiliary vector field. From the i, j component

of (4.125) it is easy to see that

r[iKj] ="ij
0V0f,

e��@iKj + ![ij]0K
0
="ij

0V0f,

V0 =� 1

2

"ij![ij]0. (4.208)

The explicit form of (4.182) will help to bridge B↵(x, y) and V0 as

!ij0 =� fe�2�@[i(Wj]e
�f�2

),

=fe�2�@[iBj],

"ij@iBj =2e2��'V0. (4.209)

Let us now restate all of the ingredients that will be used in the search of solutions

with a timelike vector [127]

V0 = �1

2

✏ij !ij0 , (4.210)

V1 + iV2 = ie�� @z̄ ('� �+ ic) , (4.211)

S = ie���ic @z̄ ('+ �� ic) , (4.212)

✏ij@iBj = 2V0 e
2��' . (4.213)

There remains now to make an ansatz for the vector field Vµ, so that we can solve

eqs. (4.210)–(4.213) and determine the metric functions � and '. In the next section,

following the same logic in [127], we will look for background solutions.
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4.6.1 Classification of Supersymmetric Background Solutions

In order to solve the set of conditions on auxiliary fields and the metric functions, we

will take the vector field and the complex scalar to be

S = ⇤ , Va = const , V2 = 0 , c = 0 . (4.214)

These choices will lead to the following components of the spin connection given in

(4.182) in a flat basis

!002 = �(⇤+ V1) , !112 = ⇤� V1 ,

!120 = !201 = �!012 = V0 . (4.215)

After setting V2 = c = 0, we can solve for � and ' by decomposing eqs. (4.211)

and (4.212) into real and imaginary parts. The function By can be set to zero by a

gauge choice. These simple manipulations will amount to the following differential

equations for ', � and Bx

e��@y' = �(V1 + ⇤), (4.216)

e��@y� = V1 � ⇤, (4.217)

@yBx = �2V0 e
2��', (4.218)

with @x' = @x� = 0.

Up until this point, we have not used the equations of motion, we have just considered

the set of fields that close the off-shell supersymmetry algebra. From the transforma-

tion of gravitino, we have defined a Killing spinor equation and from the bilinear

constructed out of Killing spinors, a Killing vector is defined. Remarkably, we have

reduced the problem of finding metric functions into a first order differential equa-

tions. The solutions of eqs. (4.216)–(4.218) will not be the complete solution. At the

end of the day, we have to use the field equations in order to fix the couplings and find

the final form of the solution.

Before we move on with the solutions, let us summarise the results of this section. The

solutions will bifurcate depending on the value of the vector component V1 and V0.

For the sake of clarity, we have tabulated all supersymmetric background solutions

allowed by the theory (4.102) in Table 4.1.
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Table 4.1: Classification of supersymmetric background solutions of the N = (1, 1)
CNMG. The solutions are categorized with respect to the values of the components
of the auxiliary vector Va.

V 2 V0 V1 Equation
Round AdS3 0 0 0 4.221
AdS2 ⇥ R > 0 0 ⇤ 4.224

Null-Warped AdS3 0 ±⇤ ⇤ 4.227
Spacelike Squashed AdS3 > 0 < ⇤ ⇤ 4.231
Timelike Streched AdS3 < 0 > ⇤ ⇤ 4.233

AdS3 pp-wave 0 V0 "V0 4.240
Lifshitz > 0 0 6= 0 and 6= ⇤ 4.245

4.6.1.1 The case V1 = 0

Let us start with the basic case, i.e. V1 = 0. The supersymmetry constraint equations

(4.216)–(4.218) yield

� = � log(⇤y), ' = log(

1

⇤y
), Bx =

2V0

⇤

log(⇤y). (4.219)

Then it is simpler to invoke vector equation (4.103), which implies V0 = 0 for ⇤ 6= 0.

Finally, in order to fix the coupling M , we employ the scalar equation

M = � ⇤

3

6m2
+ ⇤�. (4.220)

Thus, the metric reads

ds2 =
l2

y2
(�dt2 + dx2

+ dy2) , (4.221)

which describes the round AdS3 spacetime with l = �1/⇤, see Table 4.1.

4.6.1.2 The case V1 = ⇤ 6= 0

Setting V1 = ⇤, we obtain

� = 0, ' = �2⇤y, Bx = �V0

⇤

e2⇤y . (4.222)

This time the vector and the scalar field equation lead to the different choices of

parameters which we investigate in subclasses A, B and C.
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A. V0 = 0, ⇤ = �2

r

m2�

7

, M =

7⇤

3

12m2
+ ⇤�

This set of parameters will lead to the metric

ds2 = �e4⇤ydt2 + dx2
+ dy2 . (4.223)

A simple coordinate transformation y =

log r

2⇤

, x =

x0

2⇤

will bring the metric into a

more recognisable form

ds2 =
l2

4

(�r2dt2 +
dr2

r2
+ dx2

), (4.224)

which is AdS2 ⇥ R. Although appeared in different coordinates, this background is

also given in the bosonic version of NMG, [133, 134].

B. V0 = ±⇤, ⇤ = �
r

�2m2�

7

, M = � ⇤

3

6m2
+ ⇤�

The second set of parameters leads to the metric

ds2 = �e4⇤ydt2 ± 2e2⇤ydtdx+ dy2 . (4.225)

After a coordinate transformation

y = l log u, t = lx�, x = ± lx+

2

, (4.226)

the metric (4.225) can be cast in a more familiar form [135]

ds2 = l2
"

du2
+ dx+dx�

u2
�
✓

dx�

u2

◆2
#

, (4.227)

which is null warped AdS3.

C. V0 = ±
r

7⇤

2 � 4m2�

21

, M = � ⇤

3

3m2
+

8⇤�

7

In this subclass, we first fix the value of V0 from the vector equation then the field

equation for the metric will fix the value of the parameter M . Using these values for

the parameters, we have the following form for the metric

ds2 =
V 2

⇤

2

⇣

dx+

V0⇤

V 2
e2⇤y dt

⌘2

� ⇤

2

V 2
e4⇤y dt2 + dy2 . (4.228)
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After making a coordinate transformation
V0⇤

V 2
e2⇤y =

1

z
, the metric reads

ds2 =
V 2

⇤

2

⇣

dx+

dt

z

⌘2

� 1

z2
V 2

⇤

2

dt2

⌫2
+

dy2

4⇤

2z2
, (4.229)

where ⌫2 = 1� V 2

⇤2 < 1.

However, these solutions do not cover the whole story for this subclass: provided that

V 2 > 0, which implies 7⇤2
+ 2m2� > 0, we have 1 > ⌫2 > 0. After a coordinate

transformation

x =

x0⌫

2V
, t =

t0⌫

2V
, (4.230)

the metric (4.228) can be cast into the following form

ds2 =

l2

4

h�dt2 + dz2

z2
+ ⌫2

⇣

dx+

dt

z

⌘2i

, (4.231)

which is the metric of spacelike squashed AdS3 with squashing parameter ⌫2.

The second branch is V 2 < 0, i.e. 7⇤2
+ 2m2� < 0, performing a coordinate trans-

formation

x =

x0

2

r

�⌫2
V 2

, t =
t0

2

r

�⌫2
V 2

, (4.232)

after which the metric (4.228) can be written in the following form

ds2 =
l2

4

hdt2 + dz2

z2
� ⌫2

⇣

dx+

dt

z

⌘2i

, (4.233)

where ⌫2 > 1. The metric (4.233) is one of the manifestations of the timelike

stretched AdS3 background.

4.6.1.3 The case V1 6= ⇤ and V1 6= 0

This class of solutions have V1 6= ⇤ and V1 6= 0. Following the same steps as before,

we compute the metric functions as follows

� = � log(z), ' = log(z↵), Bx = �V0

V1
z�(1+↵), (4.234)

where

z ⌘ (⇤� V1)y, ↵ ⌘ V1 + ⇤

V1 � ⇤

. (4.235)

Using the components of the vector equation, we find

V0(V
2
0 � V 2

1 )(⇤� V1) = 0 . (4.236)
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From (4.236) it is straightforward to see that this subclass has two different branches,

i.e. V0 = 0 and V1 = "V0 with "2 = 1.

A. V1 = "V0 , " = ±1 , V0 = �"⇤±
r

⇤

2 � 2m2�

2

Plugging in the values of parameters, the vector equation leads to

2V 2
0 + 4"V0 + ⇤

2
+ 2m2� = 0 . (4.237)

After solving the field equation for A, we find parameter M to be

M =

�⇤

3

6m2
+ ⇤� . (4.238)

Finally plugging in the metric functions, the metric reads

ds2 = �z2↵(�dt+ 2"z�1�↵dx)dt+
1

(V1 � ⇤)

2

dz2

z2
.

After a coordinate transformation [127]

z = u
(⇤�V1)

⇤ , t = lx� , x =

"lx+

2

, (4.239)

this metric can be recast as follows

ds2 = l2
"

du2
+ dx+dx�

u2
� u2(

⇤�V1
⇤ )

✓

dx�

u2

◆2
#

. (4.240)

This is the metric of a AdS3 pp-wave. Note that the limit V1 ! ⇤ will lead us to the

minus null warped AdS3 metric of (4.227), as expected.

B. V0 = 0, V1 =
↵ + 1

↵� 1

, M =

⇤(9V 2
1 �2⇤2)

12m2 + ⇤�

The final spacetime we consider appears for V0 = 0. Rather than solving the vector

equation for V1 as we did in the previous cases, we set V1 =

↵ + 1

↵� 1

using (4.235).

The field equations further imply that

(1� 14↵� 7↵2
)⇤

2
+ 4m2

(�1 + ↵)2� = 0, (4.241)

whose solution is given by

⇤ = �
s

4m2�(↵� 1)

2

(1� 14↵� 7↵2
)

. (4.242)
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Here, we would like to restrict our attention to ↵ < 0, as ↵ will be the minus of the

Lifshitz exponent, thus giving rise to spacetimes with positive Lifshitz exponent

(1) ↵ <
1

7

(�7� 2

p
14) then m2� > 0,

(2)
1

7

(�7� 2

p
14) < ↵ < 0 then m2� < 0,

Provided that the vector field components are chosen as discussed, we obtain the

Lifshitz metric

ds2 = l2
h

� y2↵dt2 +
1

y2
(dx2

+ dy2)
i

, (4.243)

where l is the Lifshitz radius which is defined as

l2 =
1

(V1 � ⇤)

2
. (4.244)

We have redefined t as t ! (V1 � ⇤)

2↵+2t. Note that in the limit V1 ! 0 one obtains

the round AdS3 metric given in eq. (4.221). Taking y = 1/r gives the metric in the

standard form

ds2 = l2
⇣

� r�2↵dt2 + r2dx2
+

1

r2
dr2
⌘

, (4.245)

where l2 and V1 are given in terms of ↵ and ⇤ as 6

l2 =
⇣↵� 1

2⇤

⌘2

. (4.246)

As shown in [127], all the supersymmetric backgrounds that we have found in this

section except the AdS3 metric preserve 1/4 of the supersymmetries.

4.6.2 Killing Spinor Analysis for the Lifshitz Solution

In order to construct the Killing spinor explicitly for the Lifshitz solution, we intro-

duce the following orthonormal frame for the metric

e0 = lr�↵dt , e1 = lrdx , e2 = � l

r
dr , (4.247)

where the minus sign in e2 is due to transformation r = 1/y in (4.245). It follows that

the components of the spin-connection are given by

!02 = �↵r�↵dt , !12 = �rdx . (4.248)
6 Note that the standard Lifshitz exponent z in the literature is given by z = �↵.
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For the timelike case, the Killing spinor equation is given by

d✏+
1

4

!ab�
ab✏� 1

2

i�b�aVbe
a✏� 1

2

(A+ iB)�ae
a✏⇤ = 0 . (4.249)

By the following choice of the � matrices

�0 = i�2 , �1 = �1 , �2 = �3 , (4.250)

where �i are the standard Pauli matrices, the Killing spinor equation reads

0 = d✏+
1

4r

⇣

(↵ + 1)�2✏+ (↵� 1)�3✏
⇤
⌘

dr

�1

4

r
⇣

� 2i�2✏+ i(↵ + 1)✏+ (↵� 1)�1✏
⇤
⌘

dx

+

1

4

r�↵
⇣

� 2↵�1✏+ i(↵ + 1)�3✏� i(↵� 1)�2✏
⇤
⌘

dt , (4.251)

where we have used the relations

V1l =
↵ + 1

2

, Al =
↵� 1

2

. (4.252)

Decomposing the Dirac spinor into two Majorana spinor as ✏ = ⇠ + i⇣ , the Killing

spinor equation gives rise to the following four equations

0 = d⇠1 +
1

4

r�↵
⇣

� (↵ + 1)⇣1 + (1� 3↵)⇠2
⌘

dt+
1

4

r
⇣

(↵ + 1)⇣1 � (↵� 3)⇠2
⌘

dx

+

1

4r

⇣

(↵ + 1)⇣2 + (↵� 1)⇠1
⌘

dr ,

0 = d⇠2 +
1

4

(↵ + 1)r�↵
(⇣2 � ⇠1)dt+

1

4

r(↵ + 1)(⇣2 � ⇠1)dx

+

1

4r

⇣

(1� ↵)⇠2 � (↵ + 1)⇣1
⌘

dr ,

0 = d⇣1 +
1

4

r�↵
(↵ + 1)(�⇣2 + ⇠1)dt+

1

4

r(↵ + 1)(⇣2 � ⇠1)dx

+

1

4r

⇣

(1� ↵)⇣1 � (↵ + 1)⇠2
⌘

dr ,

0 = d⇣2 +
1

4

r�↵
⇣

(1� 3↵)⇣1 � (↵ + 1)⇠2
⌘

dt+
1

4

r
⇣

(↵� 3)⇣1 � (↵ + 1)⇠2
⌘

dx

+

1

4r

⇣

(↵� 1)⇣2 + (↵ + 1)⇠1
⌘

. (4.253)

Setting ⇠1 = ⇣2 we observe that we can consistently set ⇠2 = ⇣1 = 0 by their equa-

tions. Noticing that ⇠2 and ⇣1 equations remain the same under the identification

⇠1 = ⇣2 and ⇠2 = �⇣1, whereas there is a remaining �r↵(↵ � 1)⇠2dt term for ⇠1
and ⇣2 equations under this identification, we impose ⇠1 = ⇣2 and ⇠2 = �⇣1 and set

⇠2 = ⇣1 = 0. Note that the first condition corresponds to �2✏ = ✏ and the second

114



constraint corresponds to �1✏⇤ = �i✏. Imposing this constraint the Killing spinor

equations reduce to

0 = d⇠1 +
1

2r
↵⇠1dr , 0 = d⇣2 +

1

2r
↵⇣2dr . (4.254)

These equations imply one Killing spinor with

⇠2 = ⇣1 = 0, ⇠1 = ⇣2 = r�↵/2 (4.255)

Therefore, we conclude that 1/4 of the supersymmetries are preserved for the Lifshitz

solution. Note that the case ↵ = �1 has a supersymmetry enhancement with four

Killing spinors, which corresponds to the maximally symmetric AdS3.
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CHAPTER 5

COMMENTS AND DISCUSSIONS

In this work anisotropic solutions for different matter coupled models have been

studied. Our main focus was on the solutions with a Lifshitz background. The

“anisotropy” stems from the scaling difference between time and radial components

of the metric which is the reason for naming these solutions as non-relativistic space-

times. However, they are pseudo-Riemannian metrics constructed using a fully co-

variant procedure. These spacetimes are important playgrounds for the extension of

holography beyond AdS and as we have seen in Chapter 2 they do not share the unique

properties of AdS. Inspecting particle geodesics and tidal forces, we have seen that the

bulk-boundary communication is problematic and the Lifshitz spacetime is geodesi-

cally incomplete. The non-relativistic algebra which exhibits a conserved particle

number also differs significantly from the AdS one. Because of this central charge

and the distinct nature of space and time, the construction of the non-relativistic field

theory on a Newton-Cartan background is quite peculiar.

In the second part, we have investigated a possible non-abelian matter configuration

that supports Lifshitz background. As we have discussed, there should be matter

couplings in order to break the symmetries of Einstein space and generate solutions

with non-relativistic symmetries. The most studied models include Proca and scalar

fields that are easy to control and investigate holographically. Other than those, the

higher curvature models have attracted lots of attention. Since, it is easier to find

black hole solutions on top of these backgrounds. The downside of these theories is

that, they are not wieldy for the applications of holography.

One might think that it would have been harder to find the correct non-abelian con-
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figuration. However, after gauge fixing the planar ansatz using the procedure defined

in Sec. 3.1, it is just a matter of solving a simple differential equation. On the other

hand, dressing this background with a black hole is a formidable task. As a com-

mon characteristic of Einstein-Yang-Mills (EYM) system, there is no exact solution

and we had to resort to numerical methods to find black holes with different horizon

topologies. We have also analysed the thermal behaviour of the numerical solutions

by computing the Hawking temperature for all types of black holes. We have found

that there is a rapid decay in temperature as the black hole radius gets smaller, and

moreover black holes do not display Hawking-Page transition. In this respect, the

EYM black holes and the abelian counterparts [113, 114] have quite similar charac-

teristics, but they both differ considerably from their conformal cousins and some of

the Lifshitz black hole solutions to string theory [136].

Along these lines, it is reasonable to ask whether the Schrödinger spacetime (2.75)

is supported by a non-abelian matter configuration (preferably SU(2)). However,

before writing down the field equations, one should look for an SU(2) ansatz that

respects the part of the symmetries of spacetime we consider. In Lifshitz problem

we have worked with a planar symmetric metric (2.52), so the ansatz was the planar

symmetric SU(2) and given in [67, 66]. On the other hand, the Schrödinger space-

time (2.75) has a planar symmetry and a null Killing direction, therefore we expect

to use a different ansatz for that problem. The procedure we have reviewed can be

used to find the most general SU(2) ansatz that respects null+planar symmetries of

(2.75). Another related problem is the uplift of the Lifshitz solution we have found.

It was shown that the four-dimensional EYM theory with SU(2) gauge group can be

obtained by a dimensional reduction of 11-dimensional SUGRA model [137]. There-

fore, the Lifshitz solutions must have an uplift that may be important for understand-

ing the higher dimensional origins of these spacetimes. Having a Lifshitz solution in

hand, a holographic study on the EYM action can be performed. Employing the uplift

we’ve discussed, it may be possible to extract information about the field theory on

the boundary with a reduction akin to [11]. Otherwise, the method of [19] must be

applicable to this case, since it is quite general.

In the last part of the thesis we have investigated the supersymmetric backgrounds of

the 3-dimensional N = (1, 1) Cosmological New Massive Gravity (CNMG) model
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with the Lagrangian (4.102). At the beginning of the chapter we have given numerous

tools and identities for the study of supersymmetry. We have also given the procedure

for defining covariant derivatives and the algorithm for gauging the Poincare algebra.

The conformal construction of supergravity (SUGRA) theories is itself a separate

topic so we have shortly discussed the multiplets that are used in constructing the

CNMG model and other incarnations of N = 2 SUGRA theories.

Our weapon of choice to attack the problem was off-shell Killing spinor analysis,

which proved to be a very efficient one. We have seen that the background solutions

are classified according to the norm of the Killing vector constructed out of Killing

spinors. In the first case, when the Killing vector is null, the N = (1, 1) analysis

reduces to that of the N = 1 CNMG model. Since, the matter fields, i.e. the aux-

iliary massive vector Vµ and the auxiliary pseudo-scalar B vanishes. Therefore, the

solution boils down to same pp-wave type that is found in N = 1, which preserves

1/4 of the supersymmetries. We have also shown that in the AdS3 limit, there is a

supersymmetry enhancement.

The timelike case was much more richer. In particular, we did consider a special class

of solutions in which the pseudo-scalar B vanishes. Then, all the supersymmetric

solutions can be classified in terms of the components Va of the massive vector in the

flat basis. A subclass of these solutions, with different parameters, are also solutions

of the supersymmetric TMG model, as we have tabulated in the section. In addition

to these solutions, we found that the N = (1, 1) CNMG model possesses a Lifshitz

solution. All these background solutions preserve 1/4 of the supersymmetries. Note

that the bosonic NMG also supports Lifshitz solutions and even has an exact black

hole solution for z = 3 [80]. However, despite our efforts we were not able to find a

supersymmetric Lifshitz black hole solution.

A possible extension to what we have done in here can also be applied to the N =

(2, 0) CNMG model. This time the model accommodates two auxiliary vectors and

a real scalar as well as the graviton and the gravitino. Given that the N = (2, 0)

theory with matter couplings has new supersymmetric solutions, we also expect that

the N = (2, 0) CNMG model exhibits different supersymmetric solutions. Therefore,

it would be interesting to see what the consequences of the different field content is
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for the supersymmetric solutions of the model.
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APPENDIX A

SHOOTING METHOD

In this section we will try to give a pedagogical explanation of the shooting method.

Our discussion will not be rigorous or even complete. However, it will throw light on

certain transformations we made on the field equations (3.69), (3.70), (3.71), (3.72),

how numerical study follows from these equations and the significance of the shooting

parameter h0.

Consider a second order boundary value problem as follows

d2y(x)

dx2
= F (x, y(x),

dy(x)

dx
) (A.1)

with the boundary values

y(a) = ya, y(b) = yb. (A.2)

which is actually quite similar to the problem we have. Assuming that, one already

knows the value of the gauge or metric function at the horizon and at infinity, the

question is to find what happens in between. In the shooting method, one tries to

reduce the boundary value problem to an initial value problem, which one can solve

with the known methods like Euler, Runge-Kutta and so on. By the initial value

problem, one means that one has the value of function at one point y(a) = ya and its

derivative dy(a)/dx = Ya. However, for our problem we only have the information

about the boundary values, i.e. y(a) = ya, y(b) = yb.

What we do is, we assign a reasonable value for the derivative of the function at

dy(a)/dx = Ya, then try to see with the numerical methods, whether we can reach

the point x = b with the value y(b) = p. Obviously, we can’t hit the value yb at the

first trial, then with a second choice of the value of derivative dy(a)/dx = Za we
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may hit the value at y(b) = q. Now, by interpolating with the values p and q we can

approach to the actual yb value as close as we like. Because of this trial and error of

hitting a boundary value, this numerical method is called the shooting method.

The reason we have reduced the second order equations to first order ones is to apply

the numerical methods of Euler or Runge-Kutta. After a definition of the first deriva-

tive of y(x) with dy(x)/dx = g(x), we reduce the second order problem to a system

of first order differential equations

dy(x)

dx
= g(x) = f1(x, y, g),

dg(x)

dx
= f2(x, y, g), (A.3)

with the initial values y(a) = ya and g(a) = Ya. After this, we can attack the problem

with the usual methods we have pointed out in the main body.
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