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ABSTRACT 

 

METASTASIS DETECTION AND LOCALIZATION IN LYPMH NODES BY 

USING CONVOLUTIONAL NEURAL NETWORKS 

 

Öner, Mustafa Ümit 

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Uğur Halıcı 

 

September 2016, 120 pages 

 

Breast cancer digital histopathology is a new application area of deep learning. 

Breast cancer was the leading cause of cancer death among women with 15.1% 

death rate among all cancer deaths in the world in 2012. Insufficient number of 

pathologists is one of the key factors in that situation. There were 5.7 pathologists 

per 100.000 people in USA in 2013 and this value was 1.56 in Turkey in 2011. It is 

possible to increase the number of slide analysis made by the pathologists within the 

same period by developing deep learning based systems to assist them. 

In this thesis, a convolutional neural networks based system is introduced. This 

system accepts the whole slide images of lymph node excisions from breast cancer 

patients as input and detects and localizes metastasis regions on these images 

automatically. In this system, performance values of 0.9259 and 0.8669 for slide-

based evaluation and 0.5349 and 0.4060 values for the lesion based evaluation are 

achieved on CAMELYON16 training and test sets, respectively. 

Keywords: Deep Learning, Convolutional Neural Networks, Metastasis Detection in 

Lymph Nodes, Breast Cancer Digital Histopathology 
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ÖZ 

 

EVRİŞİMSEL SİNİR AĞLARI KULLANILARAK LENF DÜĞÜMLERİNDE 

METASTAZ TESPİTİ VE KONUMLANDIRILMASI 

 

Öner, Mustafa Ümit 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

 

Eylül 2016, 120 sayfa 

 

Meme kanseri dijital histopatolojisi, derin öğrenme algoritmaları için yeni bir 

uygulama alanıdır. Dünyada 2012 yılı itibarıyla kadınlar arasında kanser kaynaklı 

ölümlerin başında, ölümlerin %15’inden sorumlu olan meme kanseri gelmektedir. 

Yetersiz patolog sayıları bu durumda önemli bir rol oynamaktadır. 2013 yılında 

Amerikada 100.000 kişiye 5.7 patolog düşerken bu sayı Türkiye’de 2011 yılında 

1.56 olmuştur. Bu noktada, birçok alanda en iyi çözümleri sunan derin öğrenme 

yöntemleri tabanlı sistemlerle patologların birim zamanda inceledikleri slayt 

görüntülerinin sayısını artırmak mümkün olabilir. 

Bu çalışmada evrişimsel sinir ağları tabanlı bir yöntem geliştirilmiştir. Bu yöntem, 

meme kanseri hastalarının lenf düğümlerinden alınan biyopsi örneklerinin bütün 

slayt görüntülerini girdi olarak almakta ve bu görüntüler üzerinde metastaz 

bölgelerini tespit ederek bu bölgelerin konumlarını otomatik olarak belirlemektedir. 

Bu sistemde slayt seviyesi ve lezyon seviyesi performans ölçüm değerlerinde 

CAMELYON16 öğretme setinde 0.9259 ve 0.8669, test setinde ise 0.5349 ve 0.4060 

değerlerine ulaşılmıştır. 

Anahtar Kelimeler: Derin Öğrenme, Evrişimsel Sinir Ağları, Lenf Düğümlerinde 

Metastaz Tespiti, Meme Kanseri Dijital Histopatolojisi  



 vii   

 

 

 

 

 

 

 

 

 

To My Parents 

  



 viii   

ACKNOWLEDGEMENTS 

 

 

 

I would like to express my gratitude and deep appreciation to my supervisor Prof. 

Dr. Uğur Halıcı for her guidance, valuable suggestions and contributions. 

I would like to express my thanks to Assoc. Prof. Dr. Rengül Çetin Atalay for her 

contributions in the medical side of this study. 

I would like to express my thanks and appreciation to CAMELYON16 organizing 

team for the database they provided and for their efforts to organize this challenge. 

I would also like to thanks to TUBİTAK 2210-A General Domestic Master of 

Science Scholarship Program (TUBİTAK 2210-A Genel Yurt İçi Yüksek Lisans 

Burs Programı) for partial scholarship support. 

I would like to express my thanks to ODTÜ BAP since this study was partially 

supported under grant BAP-03-01-2016-002. NVidia TitanX GPU card funded by 

this  

BAP project is used for CUDA GPU implementation of CNN architecture. 

Finally, I must express my very profound gratitude to my parents Eda Öner and 

Necdet Öner for providing me with unfailing support and continuous encouragement 

throughout my years of study. This accomplishment would not have been possible 

without them. Thank you. 

  



 ix   

 

 

TABLE OF CONTENTS 

 

 

 

ABSTRACT ...................................................................................................................... v 

ÖZ  ................................................................................................................................... vi 

ACKNOWLEDGEMENTS .......................................................................................... viii 

TABLE OF CONTENTS ................................................................................................. ix 

LIST OF TABLES ........................................................................................................ xiii 

LIST OF FIGURES ........................................................................................................ xv 

CHAPTERS 

1. INTRODUCTION ..................................................................................................... 1 

1.1. Motivation ...................................................................................................... 2 

1.2. Scope .............................................................................................................. 2 

1.3. Contribution ................................................................................................... 3 

1.4. Organization ................................................................................................... 3 

2. BACKGROUND INFORMATION .......................................................................... 5 

2.1. Breast Cancer ................................................................................................. 5 

2.1.1. How does breast cancer spread? ............................................................. 6 

2.1.2. What are the key statistics about breast cancer? ..................................... 8 

2.1.3. Computer-aided Assisting Services ........................................................ 9 

2.2. Breast Cancer Digital Histopathology.......................................................... 11 

2.2.1. Tissue Preparation and Imaging ............................................................ 13 

2.2.2. CAMELYON16: ISBI Challenge on Cancer Metastasis Detection in 

Lymph Node WSI Dataset .................................................................................. 14 

2.2.3. Related Work on Automated Breast Cancer Assesment ....................... 19 

2.3. Deep Learning and Convolutional Neural Networks ................................... 23 



 x   

2.3.1. Convolutional Neural Networks Architecture Overview ...................... 25 

2.3.2. Convolutional Layer .............................................................................. 27 

2.3.3. Pooling Layer ........................................................................................ 42 

2.3.4. Normalization Layer.............................................................................. 43 

2.3.5. Fully Connected Layer .......................................................................... 44 

2.3.6. Convolutional Neural Network Layer Patterns ..................................... 44 

2.3.7. Training of Convolutional Neural Networks......................................... 46 

2.4. Performance Measures ................................................................................. 48 

2.4.1. True Positive Rate ................................................................................. 48 

2.4.2. False Negative Rate ............................................................................... 48 

2.4.3. False Positive Rate ................................................................................ 49 

2.4.4. True Negative Rate ................................................................................ 49 

2.4.5. Accuracy ................................................................................................ 49 

2.4.6. Performance Measures Used in CAMELYON16 ................................. 49 

3. PROPOSED APPROACH ....................................................................................... 51 

3.1. Block Schema ............................................................................................... 51 

3.2. Pre-processing .............................................................................................. 52 

3.3. Classification ................................................................................................ 55 

3.3.1. Dataset for Supervised Training of Convolutional Neural Network ..... 55 

3.3.2. CNN Structure and Training ................................................................. 56 

3.4. Post-processing ............................................................................................. 57 

4. EXPERIMENTAL RESULTS ................................................................................. 63 

4.1. Development Platforms and Environments .................................................. 63 

4.2. Layer Selection ............................................................................................. 64 

4.3. Parameter Selection for Pre-processing Operations ..................................... 65 

4.3.1. Median Filter Size ................................................................................. 65 



 xi   

4.3.2. Connected Component Elimination Threshold Value .......................... 66 

4.4. Classification Stage CNN Architectures ...................................................... 69 

4.4.1. CNN Architecture: Model 0 .................................................................. 70 

4.4.2. CNN Architecture: Model 1 .................................................................. 72 

4.4.3. CNN Architecture: Model 2 .................................................................. 74 

4.4.4. CNN Architecture: Model 3 .................................................................. 76 

4.4.5. CNN Architecture: Model 4 .................................................................. 78 

4.4.6. CNN Architecture: Model 5 .................................................................. 80 

4.4.7. Comparison of CNN Architectures ....................................................... 83 

4.5. Decision Fusion ............................................................................................ 85 

4.5.1. Fusion Filters ......................................................................................... 85 

4.5.2. Performance Comparison of Post-processing Operations..................... 87 

4.6. Performance of Proposed Approach ............................................................ 88 

5. CONCLUSION ........................................................................................................ 97 

REFERENCES .............................................................................................................. 101 

APPENDICES 

APPENDIX A: PERFORMANCE MEASURE PLOTS OF HARVARD MEDICAL 

SCHOOL AND MASSACHUSETTS INSTITUTE OF TECHNOLOGY TEAM ...... 107 

APPENDIX B: PERFORMANCE MEASURE PLOTS OF EXB RESEARCH AND 

DEVELOPMENT TEAM ............................................................................................. 108 

APPENDIX C: PERFORMANCE MEASURE PLOTS OF INDIVIDUAL 

PARTICIPANT QUINCY WONG ............................................................................... 109 

APPENDIX D: PERFORMANCE MEASURE PLOTS OF METU TEAM ............... 110 

APPENDIX E: PERFORMANCE MEASURE PLOTS OF NLP LOGIX TEAM ...... 111 

APPENDIX F: PERFORMANCE MEASURE PLOTS OF RADBOUD 

UNIVERSITY MEDICAL CENTER TEAM ............................................................... 112 



 xii   

APPENDIX G: TRAINING HISTOGRAMS OF CAMELYON16 CHALLENGE 

MODEL ......................................................................................................................... 113 

 

  



 xiii   

 

 

LIST OF TABLES 

 

 

 

TABLES 

Table 2.1: Convolutional Layer and Fully-Connected Layer Comparison ............... 31 

Table 2.2: Convolutional Layer Hyperparameters Relation Summary ..................... 34 

Table 2.3: Convolution Operation to Compute the Output Activation Value of 

O[0,0,0] ..................................................................................................................... 37 

Table 2.4: Convolution Operation to Compute the Output Activation Value of 

O[1,0,0] ..................................................................................................................... 38 

Table 2.5: Convolution Operation to Compute the Output Activation Value of 

O[2,0,0] ..................................................................................................................... 39 

Table 2.6: Convolution Operation to Compute the Output Activation Value of 

O[2,2,0] ..................................................................................................................... 40 

Table 2.7: Convolution Operation to Compute the Output Activation Value of 

O[3,3,1] ..................................................................................................................... 41 

Table 2.8: Classification Error Rate and Cross Entropy Error Rate Comparison ..... 47 

Table 2.9: Basic Statistical Definitions Contingency Table ..................................... 48 

Table 4.1: Workstation Technical Specifications ..................................................... 64 

Table 4.2: Desktop Computer Technical Specifications ........................................... 64 

Table 4.3: Summary of CNN Architectures of Models ............................................ 69 

Table 4.4: Confusion Matrix for CCN Model 0 ........................................................ 72 

Table 4.5: Confusion Matrix for CNN Model 1 ....................................................... 74 

Table 4.6: Confusion Matrix for CNN Model 2 ....................................................... 76 

Table 4.7: Confusion Matrix for CNN Model 3 ....................................................... 78 

Table 4.8: Confusion Matrix for CNN Model 4 ....................................................... 80 

Table 4.9: Confusion Matrix for CNN Model 5 ....................................................... 82 

Table 4.10: Accuracy Values Obtained with Six Different CNN Architectures ...... 83 

Table 4.11: First Decision Fusion Filter (FILTER1) Weights .................................. 86 

Table 4.12: Second Decision Fusion Filter (FILTER2) Weights ............................. 86 



 xiv   

Table 4.13: Third Decision Fusion Filter (FILTER3) Weights................................. 87 

Table 4.14: Performance Comparison of Fusion Filters and Erosion Disk Sizes ..... 88 

Table 4.15: Confusion Matrix of Final Trained Model over Training Set ................ 88 

Table 4.16: Color Coding Scheme in Evaluation Images ......................................... 89 

Table 4.17: Performance Comparison Among Top 10 Ranked Teams in Slide Based 

Category .................................................................................................................... 95 

 

 

  



 xv   

 

 

LIST OF FIGURES 

 

 

 

FIGURES 

Figure 2.1: Breast profile ............................................................................................ 6 

Figure 2.2: Breast Profile with surrounding lymph system components .................... 7 

Figure 2.3: Sentinel lymph node biopsy illustration ................................................... 8 

Figure 2.4: Digital histopathology pyramidal image storage: z-stack structure ....... 12 

Figure 2.5: Images from different levels of an example WSI ................................... 12 

Figure 2.6: Tumor_110 sub-images from different magnification levels on which 

metastasis regions are enclosed by blue dotted curves: (a) 2944x2240 image at level 

5, (b) 3840x2160 image at level 4, (c) 3840x2160 image at level 3, (d) 3840x2160 

image at level 2, (e) 3840x2160 image at level 1, (f) 3840x2160 image at level 0 .. 16 

Figure 2.7: Normal_076 sub-images from different magnification levels: (a) 

1390x1770 image at level 5, (b) 1390x1770 image at level 4, (c) 1390x1770 image 

at level 3, (d) 1390x1770 image at level 2, (e) 1390x1770 image at level 1, (f) 

1390x1770 image at level 0 ...................................................................................... 16 

Figure 2.8: Tumor_110 whole slide image - 3840x2160 sub-image from layer 0 ... 17 

Figure 2.9: Normal_076 whole slide image – 1390x1770 sub-image from layer 0 . 18 

Figure 2.10: Top 10 ranked Teams in CAMELYON16 Slide-based Evaluation 

Category - https://grand-challenge.org/site/camelyon16/results/ ............................. 20 

Figure 2.11: a) Regular Neural Network Structure, b) Convolutional Neural Network 

Structure .................................................................................................................... 26 

Figure 2.12: Neuron Activation Scheme ................................................................... 27 

Figure 2.13: Weight Sharing in a Depth Slice or Feature Map ................................. 30 

Figure 2.14: Visualization of Convolutional Layer Hyperparameters ...................... 33 

Figure 2.15: Visualization of Elements in Convolution Operation........................... 35 

Figure 2.16: Non-Overlapping and Overlapping Max Pooling Examples ................ 43 

Figure 3.1: Block schema of the proposed method ................................................... 51 



 xvi   

Figure 3.2: Effects of Preprocessing Operations on Tumor_009 Image: a) Original 

image, b) Otsu thresholding, c) Median filtering, d) Small connected component 

elimination (mask), e) Final output of preprocessing stage (masked image), f) 

Metastasis region boundaries shown on original image and g) Metastasis region 

boundaries shown on masked image. ........................................................................ 53 

Figure 3.3: Example Dataset Images - First row: Samples with label “normal”, 

Second row: Samples with label “Tumor” ................................................................ 55 

Figure 3.4: Convolutional Neural Network Architecture .......................................... 56 

Figure 3.5: Calculation of Probability of Belonging to Metastasis Region for a Pixel 

at (I,J)......................................................................................................................... 61 

Figure 3.6: Post Processing Stages for Tumor_009 Image: a) Binary image showing 

metastasis regions constructed from CNN output labels, b) Eroded binary image 

eliminating small regions, c) Probability image obtained after Confidence Filtering 

(green area), d) Metastasis representative points shown on probability image, e) 

Metastasis representatives shown on evaluation mask image ................................... 62 

Figure 4.1: The Effect of Median Filter Size on Pre-processed Image: a) Pre-

processed image with filter size of 2, b) Pre-processed image with filter size of 5, c) 

Pre-processed image with filter size of 10 ................................................................ 66 

Figure 4.2: Result of connected component elimination with 800 pixels threshold 

value: a) Metastasis boundaries shown on original WSI, b) Metastasis boundaries 

shown on pre-processed WSI with 800 pixels connected component elimination 

threshold value .......................................................................................................... 68 

Figure 4.3: Learning Rate Update Graph during Training of the Models ................. 70 

Figure 4.4: First Convolutional Layer Filter Images of Challenge Model ................ 72 

Figure 4.5: Block Diagram of Model 1 CNN Architecture ....................................... 73 

Figure 4.6: First Convolutional Layer Filter Images of Model 1 .............................. 74 

Figure 4.7: Block Diagram of Model 2 CNN Architecture ....................................... 75 

Figure 4.8: First Convolutional Layer Filter Images of Model 2 .............................. 76 

Figure 4.9: Block Diagram of Model 3 CNN Architecture ....................................... 77 

Figure 4.10: First Convolutional Layer Filter Images of Model 3 ............................ 78 

Figure 4.11: Block Diagram of Model 4 CNN Architecture ..................................... 79 

Figure 4.12: First Convolutional Layer Filter Images of Model 4 ............................ 79 



 xvii   

Figure 4.13: Block Diagram of Model 5 CNN Architecture .................................... 81 

Figure 4.14: First Convolutional Layer Filter Images of Model 5 ............................ 82 

Figure 4.15: Color Coded Evaluation Image of Tumor_089 WSI ............................ 90 

Figure 4.16: False Positive Image Patches from Tumor_089 WSI ........................... 90 

Figure 4.17: Color Coded Evaluation Image of Normal_066 WSI .......................... 91 

Figure 4.18: False Positive Image Patches from Normal_066 WSI ......................... 91 

Figure 4.19: ROC Curve of Proposed Approach on Training Set ............................ 92 

Figure 4.20: FROC Curve of Proposed Approach on Training Set .......................... 93 

Figure 4.21: ROC Curve of Proposed Approach on Test Set ................................... 94 

Figure 4.22: FROC Curve of Proposed Approach on Test Set ................................. 94 

Figure A.1: ROC Curve of Harvard Medical School and Massachusetts Institute of 

Technology Team.................................................................................................... 107 

Figure A.2: FROC Curve of Harvard Medical School and Massachusetts Institute of 

Technology Team.................................................................................................... 107 

Figure B.1: ROC Curve of ExB Research and Development ................................. 108 

Figure B.2: FROC Curve of ExB Research and Development ............................... 108 

Figure C.1: ROC Curve of Individual Participant Quincy Wong ........................... 109 

Figure C.2: FROC Curve of Individual Participant Quincy Wong ......................... 109 

Figure D.1: ROC Curve of METU Team................................................................ 110 

Figure D.2: FROC Curve of METU Team ............................................................. 110 

Figure E.1: ROC Curve of NLP LOGIX Team ...................................................... 111 

Figure E.2: FROC Curve of NLP LOGIX Team .................................................... 111 

Figure F.1: ROC Curve of Radboud University Medical Center Team ................. 112 

Figure F.2: FROC Curve of Radboud University Medical Center Team ............... 112 

Figure G.1: Convolutional Layer 1 Sparsity ........................................................... 113 

Figure G.2: Convolutional Layer 2 Sparsity ........................................................... 113 

Figure G.3: Fully Connected Layer 1 Sparsity ....................................................... 114 

Figure G.4: Fully Connected Layer 2 Sparsity ....................................................... 114 

Figure G.5: Cross Entropy Error per Image Plot .................................................... 115 

Figure G.6: Total Loss Plot ..................................................................................... 115 

Figure G.7: Convolutional Layer 1 Histogram Plots for Biases, Activations and 

Weights ................................................................................................................... 116 



 xviii   

Figure G.8: Convolutional Layer 2 Histogram Plots for Biases, Activations and 

Weights .................................................................................................................... 117 

Figure G.9: Fully Connected Layer 1 Histogram Plots for Biases, Activations and 

Weights .................................................................................................................... 118 

Figure G.10: Fully Connected Layer 2 Histogram Plots for Biases, Activations and 

Weights .................................................................................................................... 119 

Figure G.11: Softmax Layer Histogram Plots for Biases, Activations and Weights

 ................................................................................................................................. 120 

 

  



1 

 

 

CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

Machine learning technology eases our lives in a wide range of application areas. It 

provides us with the most relevant content through our web searches, recommends 

goods according to our interests during online shopping, enables us with automatic 

picture tagging in social media, presents the opportunity of voice control and speech 

recognition on mobile devices. Moreover, it is used in the fields of object detection 

and recognition, natural language processing, in medical applications, in driverless - 

autonomous cars, etc. In most of these technologies, the techniques used belong to 

the deep learning class and they are growing in terms of application areas (LeCun, 

Bengio, & Hinton, 2015). 

Furthermore, developments in Information Technologies (IT) transform the 

workflow in all around the world. Almost all of the paper work becomes digital. 

Medical institutions are also the ones that are affected from these transformations. 

Management of patient related record keepings, laboratory test results, radiology 

images, pathology reports and many other medical instruments become digital. 

Pathology laboratories, as a part of medical institutions, are also going through these 

transformations towards fully digital processes. The processes like tissue sample 

management, tracing pathology orders, and management of reports have already 

been digitized. What is occurring recently is the transformation of histopathology 

slides to digital with the help of whole slide image (WSI) scanners and analyzing 

them through digital screens. 

At this point, there is a chance of aggregating the developments in two different 

sides of the technology. We can use deep learning techniques to process the digital 

WSIs and assist the pathologist during their daily work routines. 
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1.1. Motivation 

According to the Global Health Estimates 2014 (GHE, 2014) statistics reported by 

World Health Organization (WHO), breast cancer is the leading cause of cancer 

death among women. In the same report, it is declared that low and middle income 

regions are responsible nearly 62% of the breast cancer deaths in the world. 

Moreover, according to (IARC, 2013) 52.8% of the incidences of breast cancer cases 

occurred in less developed regions around the world in 2012. Although the incidence 

rates show up nearly 5% difference, the death rates differ nearly 24% between more 

developed and less developed countries.  

In the paper (Robboy, et al., 2013), it is declared that weekly average working hours 

of a pathologist was 49.2 hours and there were 5.7 pathologists per 100.000 people 

in 2010 in the United States. Moreover, this is estimated to drop down to the 3.7 per 

100.000 in 2030. In Turkey, there were 1.56 pathologists per 100.000 people in 2011 

(Alper, et al., 2011). 

These facts shows us that there is a need to create automatic systems to assist the 

pathologists such that the time of per slide analysis is shortened and the pathologist 

can serve more patients in the same amount of time. Therefore, an autonomous 

system based on deep learning will be introduced to detect and localize the 

metastases regions in lymph nodes in this study. 

1.2. Scope 

CAMELYON16 challenge is organized in the context of International Symposium 

on Biomedical Imaging (ISBI). The goal of this challenge is to evaluate new and 

existing algorithms for automated detection of metatasis in hematoxylin and eosin 

(H&E) stained whole-slide images of lymph node sections. This is the first challenge 

using whole-slide images in histopathology and focuses on sentinel lymph nodes of 

breast cancer patients. 

In the context of this study, a fully automated detection and localization system is 

developed based on the convolutional neural network architecture. We used the 

dataset provided in the context of CAMELYON16 challenge to train the network. 
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The input to the system is whole slide image and the outputs are whole slide image 

probability of containing metastasis in this image and if the whole slide image 

contains metastasis regions, representatives for metastasis regions and corresponding 

probability values.  

1.3. Contribution 

We have participated to the CAMELYON16 challenge and ranked as fourth team in 

both categories: slide based evaluation and lesion based evaluation. Hence, we are 

one of the leading teams that develop a fully automated machine learning 

architecture to detect and localize metastasis regions in sentinel lymph node sections 

of breast cancer patients first time in the world. 

We have showed that convolutional neural networks can be used in metastasis 

detection and localization in breast cancer, i.e. metastasis detection can be a new 

application area for deep learning algorithms. In this study, we have studied with 

whole slide images which have huge sizes in the order of gigapixels. We have 

achieved to use such big images in our proposed system. 

We have achieved to decrease the classification error rate to nearly 15% over the 

whole training dataset supplied in CAMELYON16. Moreover, the area under the 

receiver operating characteristics (ROC) curve (AUC), which is the evaluation 

criteria of slide based evaluation category, value of 0.9259 and 0.8669 are reached in 

CAMELYON16 challenge training and test sets, respectively. For the lesion based 

evaluation category, free-response receiver operating characteristics curve is used. 

The final score that ranks teams in the second leaderboard is defined as the average 

sensitivity at 6 predefined false positive rates: 1/4, 1/2, 1, 2, 4, and 8 false positives 

per whole slide image. In this category we have reached the values of 0.5349 and 

0.4060 for training and test sets of CAMELYON16 challenge, respectively. 

1.4. Organization 

This thesis contains five chapters, namely, introduction, background information, 

proposed approach, experimental results and conclusion. 
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In Chapter 1, the motivation that thrills us to work on this topic, fully automated 

metastasis detection in sentinel lymph nodes of breast cancer patients, is presented. 

Moreover, the scope of the thesis, contributions made by this work and the 

organization of the thesis is explained. 

In Chapter 2, background information related to both medical side and engineering 

side of the topic is given. In medical side, statistics and necessary information 

related to breast cancer around the world is presented. The need of such an 

autonomous system in digital histopathology field is justified with statistics. In 

engineering side, a comprehensive chronological overview of the developments in 

deep learning is summarized. Convolutional neural network structure, which is a 

special form of deep learning, is explained in a very detailed manner with all of its 

components. Moreover, performance measures to evaluate the developed system are 

defined in this chapter. 

In Chapter 3, the proposed solution is introduced. First, overview of the system is 

presented as a whole, and then components of the system are explained one by one 

in a detailed way. 

In Chapter 4, different stages of development process are presented with tabulated 

data. The process of obtaining final proposed solution through iterations on model is 

documented. 

In Chapter 5, the insights gained during this study and the prospective future work in 

this area is presented.  
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CHAPTER 2 

 

 

2. BACKGROUND INFORMATION 

 

 

 

In this chapter, background information related to both medical side and the 

technical side is presented. In medical side, breast cancer definition, spreading of 

breast cancer and statistical information in the literature are given. Moreover, 

developments in digital histopathology are introduced. In technical side, a 

chronological development of deep learning techniques is presented. More 

specifically, convolutional neural network architecture with all of its components is 

explained in a detailed manner.  

2.1. Breast Cancer 

Breast cancer is an uncontrolled growth of breast cells. The cell division is 

controlled by the genes that are stored in the nucleus of the cell to sustain the healthy 

cycle inside the body; however, some mutations may occur inside the nucleus that 

cause the genes responsible from cell division to be turned off and let some other 

genes to take control of the division process. At that point, division process goes on 

in an uncontrolled manner and the same type of cells begins to form tumors 

(Breastcancer.org, 2015). 

Tumors are defined as benign or malignant. Benign tumors are not dangerous to the 

health and they are not considered as cancerous. They are not so strange in 

appearance when compared to normal cell structures, growth rate is low and they do 

not spread beyond the tissues they are originated from. On the other hand, malignant 

tumors are cancerous. If they are not kept under control, the cells of these types of 

tumors eventually can spread beyond the original tumor region. This constitutes a 

risk for whole body. Therefore, breast cancer as a term is used for the malignant 

tumors that are constituted by the cells in the breast. 
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In this study, the term breast cancer will be used to refer to female breast cancer. In 

Figure 2.1, profile of breast is shown: the major parts are the lobules where the milk 

is produced, ducts through which the milk is transferred to the nipple and the fatty 

and fibrous connective tissues. Breast cancer mostly starts in the ducts or in the 

lobules. The cases that start in the other parts of breast are rare issues. 

 

Breast Profile 

A Ducts 

B Lobules 

C Dilated section of duct to hold 

milk 

D Nipple 

E Fat 

F Pectoralis major muscle  

G Chest wall/rib cage 

Enlargement 

A Normal duct cells 

B Basement membrane 

C Lumen (center of duct) 

Figure 2.1: Breast profile 

2.1.1. How does breast cancer spread? 

Malignant tumor cells have the tendency of spreading to nearby healthy breast tissue 

from where they are originated from, and invade the other parts of the body. The 

way to travel other parts of the body for the cancer cells go through the lymph 

system. Since underarm lymph nodes constitute a bridge the other parts of the body, 

the cancer cells mostly try to reach to the underarm lymph nodes. Therefore, the 

stage of the breast cancer also refers to the spreading distance of the cancer cells 

from the original malignant tumor region (Breastcancer.org, 2015). 

Lymph system has mainly three components: lymph nodes, lymph vessels and 

lymph fluid. This system is distributed throughout the whole body and can carry the 

tissue fluid from one part of the body to the other parts. In this distributed system, 

the lymph nodes consist of immune system cells and have the shape of beans, and 

lymph nodes are connected to each other by lymph vessels in which the lymph fluid 

is carried. Since lymph fluid contains waste products and fluids from tissues, cancer 
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cells can go into the lymph fluid and locate into the lymph nodes through lymph 

vessels. Once located, they can grow in the lymph nodes (Cancer.org, 2014). In 

Figure 2.2, the breast profile with surrounding lymph system components is shown. 

 

Figure 2.2: Breast Profile with surrounding lymph system components 

After reaching to the lymph nodes, the chance of cancer cells to spread (metastasize) 

to the other part of the body increases. In other words, as the number of affected 

lymph nodes increases, the probability of the cancer cells spreading to the other 

parts of the body increases. Therefore, further investigations of the prospective 

breast cancer patients are done on the samples of breast tumor excisions from lymph 

nodes. 

In this study, the whole slide images (WSIs) of sentinel lymph node biopsy (SLNB) 

samples are used. “A sentinel lymph node is defined as the first lymph node to 

which cancer cells are most likely to spread from a primary tumor” (Bejnordi, 2016). 

Since they are the most probable points that the cancer cells may spread, the 

excisions are performed on those nodes. In Figure 2.3, sentinel lymph node biopsy is 

illustrated. 
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Figure 2.3: Sentinel lymph node biopsy illustration 

2.1.2. What are the key statistics about breast cancer? 

According to the Global Health Estimates 2014 (GHE 2014) statistics reported by 

World Health Organization, breast cancer is the leading cause of cancer death 

among women. In 2012, there were 536.521 women death due to breast cancer in all 

around the world and a total of 3.544.914 women deaths caused by all cancer types 

(WHO, 2014). This corresponds to the 15.1% breast cancer death rate among all 

cancer deaths which makes the breast cancer the top cause in women death due to 

cancer.  

Another important breast cancer statistics is the distribution of the breast cancer 

deaths among high income (more developed) and low-middle income regions (less 

developed regions) around the world. According to the GHE 2014, 332.925 of 

536.521 breast cancer deaths occurred in low and middle income countries. This 

constitutes nearly 62% of the breast cancer deaths in the world in 2012, i.e. low and 

middle income regions are responsible nearly 62% of the breast cancer deaths in the 

world. Again as it is indicated in the same report, this value was 56.31% in 2000. 

Moreover, International Agency for Research on Cancer reported estimated cancer 

incidence, mortality and prevalence worldwide in 2012 in the report of 

GLOBOCAN 2012 (IARC, 2013). According to this report, there were 1.671.000 

breast cancer cases in the world and 883.000 of these cases occurred in less 

developed regions. This makes 52.8% of the incidences around the world. Although 
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the incidence rates show up nearly 5% difference, the death rates differ nearly 24% 

between more developed and less developed countries. Moreover the death rates 

with respect to the incidences are 25.1% and 36.7% for more developed and less 

developed regions, respectively. 

Both the region based death rates in 2000 and 2012 and region based survival rates 

among incidence cases show that the more developed regions can cope up with 

breast cancer better than less developed regions by making use of the comprehensive 

early detection programs and adequate diagnosis and treatment facilities although 

the people in more developed regions are more prone to breast cancer due to their 

lifestyles.  

At this point, there is a chance of using the advantages of the technology. With the 

advents in the digital pathology, it may be possible to increase the survival rates both 

in more and less developed regions by decreasing the workload of the health 

professionals and make use of the existing facilities in developed regions by 

reaching from less developed regions. 

2.1.3. Computer-aided Assisting Services 

Developments in analog to digital conversion technology have made the slide 

scanners a promising alternative against the conventional microscopes commonly 

used by pathologists (Al-Jabani, Huisman, & Van Diest, 2011). By using the slide 

scanners, whole slide images (WSIs) of glass slides are produced and then can be 

viewed with the help of the image viewers. WSIs are used for educational purposes, 

diagnostic purposes and archiving. Since they are constructed at very high physical 

resolution values (0.50 μm/pixel and 0.25 μm/pixel for x20 and x40 magnification 

values, respectively), the size of the WSIs can be several gigabytes which makes the 

use of WSIs in daily clinical usages challenging. However, with the advents in 

compression, storage and transfer technologies, it seems to be commonly used in 

daily routines. 

Digital pathology makes remote pathological meetings, consultations, revisions, 

diagnosis and computer-aided expert assisting services possible. Although they are 
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complementary of each other, what is the most important feature among these in the 

context of this study is the digital structure of WSIs. WSIs’ digital structure makes it 

possible to process them in computers and construct human expert systems to assist 

the pathologists. 

In the paper (Robboy, et al., 2013), it is declared that there were approximately 

18.000 pathologists actively working in 2010 in the United States. 75% of those 

were over 45 years or older and 41% are 55 years or older. Moreover, weekly 

average working hours of a pathologist is declared as 49.2 hours which is a heavy 

workload that stealing from their family lives. Another key statistics is that there 

were 5.7 pathologists per 100.000 people, and this is estimated to drop down to the 

3.7 per 100.000 in 2030. When the population growth and the increase in the 

diseases that require pathological analysis are taken into account, the services given 

by the medical facilities to their patients re estimated to be negatively affected from 

these changes.  

When compared to the United States, the situation in Turkey in terms of average 

number of pathologists per 100.000 people is worse. There were 1131 pathologists 

actively participating to the workload and this correspond to the 1.56 pathologists 

per 100.000 people (Alper, et al., 2011). 

These facts shows us that there is a need to create human expert systems to assist the 

pathologists such that the time of per slide analysis is shortened and the pathologist 

can serve more patients in the same amount of time. With the advents of digital 

pathology and computer technologies, it is possible to create such computer-aided 

systems to assist the medical experts. Moreover, it may also make contributions to 

increase the survival rates in less developed regions by the help of both remote 

diagnosis and consultation. 

Based on these observations, the need of such human expert systems is obvious. 

Therefore, a human expert system based on deep learning will be introduced to 

detect the metastases regions in lymph nodes in this study. 
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2.2. Breast Cancer Digital Histopathology 

The transformation of histopathology slides to digital with the help of whole slide 

image (WSI) scanners provides the pathologist with the opportunity of analyzing 

scanned slides through digital screens. With this transformation, digital 

histopathology images are aimed to be the primary tool of pathologists instead of 

optical microscopes (Veta, Pluim, van Diest, & Viergever, 2014). 

WSI scanners have been developing rapidly and make the process efficient. They 

enable to scan whole glass slide at once in 30-60 seconds duration and loading 

multiple slides in a batch so that they can be scanned consecutively without human 

intervention. WSI scanners have the ability of scanning at multiple magnification 

levels up to the resolution of 0.25 μm/pixel for 40x magnification level. At its 

highest magnification level a WSI consists of nearly 20 gigapixels and contains 65 

gigabyte of raw data. With this ability, it is possible to store images from different 

magnification levels in a pyramidal structure, which is called as z-stack structure. Z-

stack structure provides users (pathologists) with the ability of zoom-in and zoom-

out similar to optical microscopes. Z-stack structure is visualized in Figure 2.4. 

Moreover, example images of a WSI from different magnification levels are shown 

in Figure 2.5. 
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Figure 2.4: Digital histopathology pyramidal image storage: z-stack structure  

 

Figure 2.5: Images from different levels of an example WSI 
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2.2.1. Tissue Preparation and Imaging 

Breast cancer histopathology imaging consists of four stages: breast tumor excision, 

formalin fixation and embedding in paraffin, staining and coverslipping, and slide 

digitization (Veta, Pluim, van Diest, & Viergever, 2014). 

i. Breast tumor excisions or biopsies 

Breast tumor excisions are performed in operating room and then the sample 

is sent to the pathology laboratory to be examined. In Figure 2.3, excision 

operation from a sentinel node is visualized. 

ii. Formalin fixation and embedding in paraffin blocks 

This is the first step of the tissue preparation. Formalin fixation and 

embedding in paraffin blocks processes are applied to the tissue samples in 

order to preserve the structure and cellular details of samples (Kokkat, Patel, 

McGarvey, LiVolsi, & Baloch, 2013). From the paraffin blocks, nearly 

15mm x 15mm sections with a thickness of 3-5 μm are cut and placed on 

glass slides. 

iii. Staining and coverslipping 

Mostly, the necessary parts of the tissue for the analysis are nuclei and 

cytoplasm, but they cannot be viewed easily without staining process. 

Therefore, the tissue sample is first dyed with stains to highlight nuclei and 

cytoplasm. Hematoxylin and eosin (H&E) are used in standard staining 

protocol. While hematoxylin interacts with DNA and dyes nuclei 

blue/purple, eosin interacts with proteins and dyes cytoplasm pink. After 

staining process is completed, glass slide is coverslipped and ready to be 

analyzed by the pathologist in the normal pathology laboratory workflow. 

However, digital pathology puts one more step onto the standard workflow; 

slide digitization. 

iv. Slide digitization 

Slide digitization is the last step of the imaging process. Prepared glass slides 

are mounted to the WSI scanners and digitized. Currently, commercial WSI 

scanners make it possible to load multiple slides at once and scan them 

automatically as a batch. Beyond that by using image processing techniques, 
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they can differentiate background and tissue sample regions and choose 

focus points, capture whole image, compress and store data, and register the 

processed slides to the information system of the laboratory.  

2.2.2. CAMELYON16: ISBI Challenge on Cancer Metastasis Detection in 

Lymph Node WSI Dataset 

CAMELYON16 challenge is organized in the context of International Symposium 

on Biomedical Imaging (ISBI). The goal of this challenge is to evaluate new and 

existing algorithms for automated detection of metatasis in hematoxylin and eosin 

(H&E) stained whole-slide images of lymph node sections. This task has a high 

clinical relevance but requires large amounts of reading time of pathologists. 

Therefore, a successful solution would hold great promise to reduce the workload of 

the pathologists while at the same time reduce the subjectivity in diagnosis. This is 

the first challenge using whole-slide images in histopathology and focuses on 

sentinel lymph nodes of breast cancer patients. 

The data in this challenge contains a total of 400 whole-slide images (WSIs) of 

sentinel lymph nodes from two independent datasets collected in Radboud 

University Medical Center (Nijmegen, the Netherlands), and the University Medical 

Center Utrecht (Utrecht, the Netherlands) (CAMELYON16, 2015). 270 of 400 WSIs 

is provided as training dataset with ground truth data masks and 130 of them 

provided as test dataset without ground truth data. In the training dataset, there are 

160 normal slides and 110 tumor slides which contain metastasis regions. Naming 

convention in the provided dataset is as follows: Normal_001 to Normal_160, 

Tumor_001 to Tumor_110, and Test_001 to Test_130 for normal, tumor and test 

whole slide images, respectively. 

Sub-image samples from normal and tumor WSIs are shown in Figure 2.6, Figure 

2.7, Figure 2.8, and Figure 2.9. In Figure 2.6, sub-images of Tumor_110 WSI from 

different magnification levels are shown with center pixel pointing to the same 

physical position on the tissue sample. Moreover, the metastasis regions are also 

marked with blue dotted curves on the sub-images of WSI. Similarly, sub-images of 

Normal_076 WSI from different magnification levels are shown with center pixel 
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pointing to the same physical position on the tissue sample in Figure 2.7. In order to 

see the differences between the normal and tumor WSIs, high resolution sub-images 

of Tumor_110 and Normal_076 WSIs in a large size are given in Figure 2.8 and 

Figure 2.9, respectively. 

  



 

 
     

(a) (b) (c) (d) (e) (f) 

      
Figure 2.6: Tumor_110 sub-images from different magnification levels on which metastasis regions are enclosed by blue dotted curves: (a) 2944x2240 image at level 

5, (b) 3840x2160 image at level 4, (c) 3840x2160 image at level 3, (d) 3840x2160 image at level 2, (e) 3840x2160 image at level 1, (f) 3840x2160 image at level 0 

      
(a) (b) (c) (d) (e) (f) 

      
Figure 2.7: Normal_076 sub-images from different magnification levels: (a) 1390x1770 image at level 5, (b) 1390x1770 image at level 4, (c) 1390x1770 image at 

level 3, (d) 1390x1770 image at level 2, (e) 1390x1770 image at level 1, (f) 1390x1770 image at level 0 
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Figure 2.8: Tumor_110 whole slide image - 3840x2160 sub-image from layer 0 
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Figure 2.9: Normal_076 whole slide image – 1390x1770 sub-image from layer 0 
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2.2.3. Related Work on Automated Breast Cancer Assesment 

So far, the researchers have concentrated on the individual components of the 

histological grading of breast cancer separately: assessment of nuclear atypia (nuclei 

detection and segmentation), tubule formation and mitotic activity. In each of these 

areas some automated algorithms have been developed and proposed. However, 

none of them has concentrated on whole slide image level automated analysis of 

breast cancer assessment yet. 

In the field of nuclei detection and segmentation, many different techniques have 

been proposed. Active contours (Ali & Madabhushi, 2012) and watershed based 

techniques are popular (Veta, Pluim, van Diest, & Viergever, 2014). 

Literature related to the tubule segmentation is not so rich. One of the methods 

proposed in (Xu, Janowczyk, Chandran, & Madabhushi, 2010) is based on gradient-

based geodesic active contour model. 

In mitotic figures detection and assessment of proliferation part, many algorithms 

can be seen in literature. However, the best methods appear to be the convolutional 

neural network based ones that operate on raw RGB images (Cireşan, Giusti, 

Gambardella, & Schmidhuber, 2013), (Malon & Cosatto, 2013) and (Malon, et al., 

2012). In (Cireşan, Giusti, Gambardella, & Schmidhuber, 2013), there is no initial 

candidate detection stage, it works on pixel values directly and gives excellent 

results. 

Within the past few years, digital histopathology has been moving towards grand 

goals with strong potential diagnostic impact: (fully) automated analysis of whole-

slide images to detect or grade cancer, to predict prognosis or identify metastases. 

CAMELYON16 was the first challenge using whole-slide images in histopathology. 

The list of top ten teams in slide-based evaluation category is shown in Figure 2.10. 

Proposed approaches of top five ranked teams will be given in this part. 
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Figure 2.10: Top 10 ranked Teams in CAMELYON16 Slide-based Evaluation Category - 

https://grand-challenge.org/site/camelyon16/results/ 

Harvard Medical School (BIDMC) and Massachusetts Institute of Technology 

(CSAIL) joint team from USA was the first ranked team in both of the categories. 

They tackled the problem by integrating deep learning and traditional machine 

learning algorithms. They used a deep convolutional neural network with a CNN 

architecture that was based on the 22-layer GoogLeNet. Then, the trained deep 

model was applied to partially overlapping patches from each WSI at Layer 0 to 

create tumor prediction heatmaps. For the slide-based tumor classification task, they 

extracted a set of geometric features from each tumor probability heatmap in the 

training set, and trained a random forest classifier to estimate the probability that 

each slide contained metastatic cancer. They then applied this combined model 

(CNN and random forest classifier) to the test images to provide a slide-based 

estimate of the probability of cancer metastases. For the lesion-based tumor region 

segmentation task, they applied a threshold of 0.90 to the tumor probability 

heatmaps and predicted tumor location as the center of each predicted tumor region 

(Wang, Khosla, Gargeya, Irshad, & Beck, 2016). Slide-based and lesion-based 

performance measure plots and values for the test set are shown in Figure A.1 and 

Figure A.2 in Appendix A, respectively. 

ExB Research and Development team from Germany is the second ranked team in 

slide-based category and third ranked team in lesion-based category. Their method 

consists of a tile-wise binary classification based on deep residual networks 
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(ResNet). Each whole slide image from Layer 0 is splitted into non-overlapping tiles 

and the tiles are assigned the class tumor if the tile contains tumor pixels, non-tumor 

otherwise. This setting was used to train a deep neural network on the corresponding 

binary classification task. Moreover, they normalized input images to have zero 

mean and unit variance. The architecture of proposed model consists of a 34-layers 

deep ResNet. They aggregated the results of two different networks as well as 

applied simple post-processing in order to further increase the performance of their 

algorithm (Hass, Sanchez, Vasilev, Mey, & Bruni, 2016). Slide-based and lesion-

based performance measure plots and values for the test set are shown in Figure B.1 

and Figure B.2 in Appendix B, respectively. 

The third ranked participant in slide-based category is an individual participant, 

Quincy Wong, from Germany. VGG- net architecture was used in the proposed 

solution (Wong, 2016). Used method is not explained in the competition. Slide-

based and lesion-based performance measure plots and values for the test set are 

shown in Figure C.1 and Figure C.2 in Appendix C, respectively. 

The forth ranked team in both categories is our team, METU team. The input of our 

method is whole slide images (WSIs) and outputs are metastasis region 

representatives together with their probabilities and whole slide probabilities. The 

method has mainly three steps, which are preprocessing, classification and post 

processing. Preprocessing was applied on Layer 7 images in order to determine 

lymph node sections and then only these sections were considered. A training set 

consisting of 64x64 RGB subimages from Layer 2 of original WSIs was 

constructed. Negative samples in the training set were selected from slides with label 

“normal” and positive samples from metastasis regions of slides with label “Tumor”. 

A CNN having two convolutional layers for feature extraction and two fully 

connected layer and a softmax for classification was trained with these samples and 

used for classification of subimages of Layer 2 in the test set. After determining the 

labels of windowed image regions, we constructed two matrices: one for labels and 

the other for model outputs, i.e. class probability output of CNN for subimages in 

windows. In fact, label matrix is a binary image having the same size with Layer 7 

images. Then, post-processing operations of elimination of small regions and 
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confidence filtering were applied and metastasis region representatives were 

extracted for Evaluation 2 and whole slide probabilities were decided for Evaluation 

I (Halıcı, Öner, & Çetin Atalay, 2016). Slide-based and lesion-based performance 

measure plots and values for the test set are shown in Figure D.1 and Figure D.2 in 

Appendix D, respectively. 

The fifth ranked team in slide-based category is NLP LOGIX from USA. To solve 

the cancer metastasis detection in lymph node challenge, NLP Logix used a seven 

layer neural network. The first five layers were convolutional and the last two layers 

were fully connected. A cross entropy cost function was minimized using gradient 

descent. To train the network, roughly 250,000 image patches were extracted from 

the labeled slides at Layer 0, each of these image patches were 256 by 256 pixels. 

The network saw each of the training images approximately ten times. An image 

patch was labeled as a positive class if more than 50% of the pixels overlapped with 

the masked region. During training, example patches were rotated and/or flipped 

randomly. Training and scoring were done using the GPU functionality of Google's 

TensorFlow machine learning library, running on NVidia graphic cards. The scoring 

process was distributed across multiple machines. For the localization submission, a 

combination of watershed and grab-cut algorithms were used to identify pixels that 

were within likely tumor regions. For the whole slide submission, each of the slides 

was sliced into eight regions and the Random Forest algorithm was used to assign a 

probability a slice contained one or more tumor regions. For each of the slides, the 

slice with the maximum probability was assigned to the slide (Berseth, 2016). Slide-

based and lesion-based performance measure plots and values for the test set are 

shown in Figure E.1 and Figure E.2 in Appendix E, respectively. 

Radbound University Medical Center team is the second ranked team in lesion-

based category. They implemented two convolutional neural networks to solve the 

tasks proposed in the ISBI challenge 2016 on cancer metastasis detection in lymph 

node. For the lesion-based detection task, they proposed a two-step solution. First, a 

fully convolutional network trained on whole-slide image (WSI) patches from the 

Challenge dataset was used to generate likelihood maps for tumor areas for each 

WSI. Second, these likelihood maps were post-processed to locate individual tumor 
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lesions. For the whole-slide classification task, they applied a second convolutional 

network to the previously generated likelihood maps, classifying them as tumorous 

or healthy image samples (Martin, 2016). Slide-based and lesion-based performance 

measure plots and values for the test set are shown in Figure F.1 and Figure F.2 in 

Appendix F, respectively. 

2.3. Deep Learning and Convolutional Neural Networks 

In classical machine learning techniques, to design a machine learning system in 

order to achieve a specific task, considerable domain expertise and careful 

engineering study are required. This is because of the fact that the conventional 

machine learning systems are not capable of processing natural data in their raw 

format. For example, it may be required to extract features such as edges or blobs for 

images rather than using the raw pixel values directly. After a hard feature extraction 

study, it is decided what to use as feature vector. Then, feature vector is supplied to a 

classifier for pattern recognition on the input. 

On the other hand, deep learning methods are representation learning methods in 

which the machines can be supplied directly with raw data and discover the 

representations required for detection or classification automatically (LeCun, 

Bengio, & Hinton, 2015). In deep learning methods, there are a stack of 

representation layers those are produced by simple non-linear modules that 

transform the output of one layer at their input to a more abstract level of 

representation at their outputs. In these methods, raw data is supplied at the input of 

the system and goes through simple non-linear module transformations. By passing 

through enough number of those transformations, i.e. stacking more layers on top of 

each other; it is possible to learn very complex functions. 

If we supply an image as an input to such a system, raw pixel values will be the 

input of the first layer, and the presence or absence of edges at particular orientations 

and locations will be represented by the features learned by the first layer of 

representation. In the second layer, motifs constructed by particular positioning of 

edges are detected regardless of small variations in the edge positions. Motifs may 

be assembled into different combinations corresponding to the parts of some objects 



24 

in the third layer and the objects as combinations of these parts may be detected at 

upper layers. “The key aspect of deep learning is that these layers of features are not 

designed by human engineers; they are learned from data using a general purpose 

learning procedure (LeCun, Bengio, & Hinton, 2015). 

From the very beginning of the machine learning/pattern recognition studies in 1957 

and 1958, (Rosenblatt, 1957) and (Selfridge, 1958), researchers have been looking 

for trainable networks in order to replace hand-engineered features. It was the time 

that it was understood clearly by the statement of backpropagation method in 1986 

(Rumelhart, Hinton, & Williams, 1986). The backpropagation is an application of 

the chain rule for derivatives on the multilayer stack of modules which is called as 

multi-layer perceptron (MLP), or regular networks. The gradient of an objective 

function can be calculated with respect to output of a module and it can also be 

computed with respect to input of the module by using the relation of input and 

output in this module. Similarly, it is also possible back-propagate the gradients 

through top of the network (output of the network) to the bottom of the network 

(input to the network) by using chain rule. Once calculated these gradients, the 

gradients with respect to weights of the network can also be computed. This 

constitutes the base of the learning procedure in deep learning architectures. 

Although the fundamentals of deep learning methods were constructed in 1980s and 

1990s, they could not been so popular and widely used until 2006 (LeCun, et al., 

1990), (LeCun, Bottou, Bengio, & Haffner, 1998) and (Hinton, Osindero, & Teh, 

2006). In 2006, the researchers introduced and used unsupervised learning 

procedures to create layers of feature detectors without requiring labeled data for 

Restricted Boltzmann Machine  . By using unsupervised learning procedures, they 

could initialize the weights of the networks to sensible values and add output layer 

on top of previously initialized network and fine-tune all network with standard 

backpropagation method by using limited number of labeled data. 

There are two major developments that make deep learning methods applicable and 

state-of-the-art technologies in the last decade: the availability of powerful 

computers and the availability of large datasets (LeCun, The AI Arms Race, 2016). 
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With the development of graphics processing units (GPUs), it became possible to 

train networks 10x or 20x times faster. This enables researchers to train very large 

and deep architectures in a limited time. Availability of large datasets comes from 

the developments in the information technology and infrastructure. It becomes 

possible to store all the data related to a digital process, for example, the trace of a 

user on a website, the interests of social media users through their sharings or 

profiles. With the availability of large datasets it becomes possible to train deep 

architectures in a supervised manner easily, so leads to state-of-the-art achievements 

in the literature. 

2.3.1. Convolutional Neural Networks Architecture Overview 

A specific type of deep feedforward architecture that is much easier to train and has 

better generalization ability than networks with fully connected layers is the 

convolutional neural networks (CNNs) (LeCun, et al., 1990), (LeCun, Bottou, 

Bengio, & Haffner, 1998). 

Similar to regular neural networks, CNNs are also made up of layers. Different than 

regular networks, the form and functions of the layers are different. In regular 

networks, layers are one dimensional and neurons in these layers are fully 

connected. On the other hand, the form of layers in CNNs is usually three 

dimensional: width, height and depth (Karpathy, 2016). Such an input preserves 

neighborhood relation in data which is important for natural signals like images. In 

Figure 2.11, general architectures of regular neural networks (MLP) and 

convolutional neural networks are shown. 

Convolutional neural networks are designed to be fed by data that is organized in the 

form of multiple arrays which provides the CNN structure with special advantages. 

When we consider an RGB image as input to the network, there are four essential 

properties of convolutional neural networks that enable them to exploit the 

properties of the input images: local connections, shared weights, pooling and many 

layer stack structure (LeCun, Bengio, & Hinton, Deep Learning, 2015). First three of 

these properties will be explained in the following sections.  
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Many layer stack structure provides CNNs with that different features from raw data 

can be extracted autonomously in CNNs’ representation layers. If the input is image 

pixel values to a CNN, most likely the edge properties will be extracted in the first 

convolutional layer, motifs in the second layer, sub-parts in the third layer, parts in 

the fourth layer and it can go up to 20 layers in these days. This property of CNNs 

makes them capable to extract very complex patterns inside the data array. 

    

 

Figure 2.11: a) Regular Neural Network Structure, b) Convolutional Neural Network Structure 

Inputs to the CNNs are usually three dimensional RGB images and the output layer 

gives the class scores of the input images. Layers between the input and output 
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layers can be convolutional layers, pooling layers, normalization layers and fully 

connected layers. These layers are stacked on top of each other to construct the CNN 

structure. 

2.3.2. Convolutional Layer 

This layer type is the core of CNN structure. A convolutional layer consists of 

multiple feature maps (or depth slices) which consist of the collection of neurons. 

The neurons in a feature map are similar to the neurons that are used in regular 

neural networks except that the neurons in a feature map of a convolutional layer are 

not fully connected to the neurons of the previous layer, i.e. local connections exist 

between the layers. Activation of a neuron is illustrated in Figure 2.12. The 

activation value of the neuron is go through a non-linear transformation and 

computes the output value of the neuron. Usually, Rectified linear units (RELU – 

max(0,x) ) are used as activation functions since they are more efficient in terms of 

training time (Krizhevsky, Sutskever, & Hinton, 2012). 

 

Figure 2.12: Neuron Activation Scheme 

Trainable filters of the convolutional layer link the neurons of that layer to the 

neurons of previous layer. The size of the filter is actually the receptive field of a 

neuron and it determines the connections of the neuron from previous layer. 

Moreover, a filter is shared through a feature map of a convolutional layer and this is 

called as parameter (or weight) sharing which is one of the advantages of CNNs 

because such a property decreases the number of parameters. 

𝑎 =  𝑤𝑖𝑥𝑖
𝑖

+ 𝑏 
𝑤𝑖𝑥𝑖 

𝑤0𝑥0 

𝑤𝑛𝑥𝑛 

𝑓(𝑎) 
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Volume 
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How to apply convolution operation by using filters of the layer is a matter of 

spatial arrangement in that layer. Size of filters, size of zero padding, size of stride 

and number of filters are the hyperparameters that shape the output volume of the 

convolutional layer. 

Local connections 

When the characteristics of the natural signals are considered, it can be easily seen 

that the localization is an important aspect. For example, the edges in an image may 

form a motif at some local parts or the words and the sentences that come one after 

the other in language make sense for human beings. Hence, localization of features 

is a distinctive property in natural signal data structures and they can be captured by 

local connections in many layer stack structure. 

In convolutional layer, the units in a feature map are connected to a local region in 

the previous layer with a set of weights which is called as filter. The localization of 

connectivity is defined in width and height dimensions, i.e. each filter affects to a 

local region in width and height dimensions but it uses all the depth slices. 

Therefore, the size of the filter is defined as receptive field of a neuron. In other 

words, connection region of a neuron in the input volume (in previous layer) defined 

by the filter size along width and height and it always goes over all the depth slices. 

The three different colored layers (red, green and blue) in Figure 2.12 correspond to 

the feature maps of the input volume. The highlighted region on these layers is the 

receptive field of the neuron that is in red color in the output volume. All the 

neurons in the receptive field of the red neuron in the input volume through all depth 

slices are connected to red neuron through filter weights. Together with bias term 

the weighted sum of neuron states in the receptive of input volume determine the 

state of the red neuron in the output volume. If we have a 48x48x3 input volume 

(RGB image) and 5x5 filter size (receptive field), neuron will have 5x5x3 

connection through the filter, i.e. 75 weights and a bias parameter. On the other 

hand, if this was a fully connected layer, the same neuron would have 6912 

(48x48x3) connections, so weights, and a bias. CNN structure reduces drastically the 

number of weights by exploiting the local connectivity structure of inputs. 
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Parameter (or Weight) sharing 

Parameters in a feature map of a representation layer are shared by all units in that 

feature map. That provides the structure with the ability of revealing similar motifs 

in a feature map at different local regions, i.e. distinctive local features that emerge 

at different parts of the input can be detected. Moreover, the weights in different 

feature maps of a convolutional layer are different in order to detect different motifs 

over the input. 

In Figure 2.13, red and green neurons are in the same depth slice while the purple 

neuron is in another depth slice. This means that red and green neurons use the same 

filter, so sharing the weights. However, purple neuron will use different connection 

weights. There are two highlighted regions on the input volume. Red and green 

neurons are connected to the corresponding regions, and purple neuron is connected 

to the same region with the red neuron. The difference of the filters used by red and 

purple neurons is illustrated by different colored connection lines: yellow and black 

for purple and red neurons, respectively. Moreover, the connection lines of the green 

neuron are also drawn in black to emphasize the sharing of weights with red neuron 

in the same depth slice. 
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Figure 2.13: Weight Sharing in a Depth Slice or Feature Map 

If we continue to explain the benefits of weight sharing on the same example in local 

connections part, we have 48x48x3 input volume and 5x5x3 filters. Moreover, 

assume that the output volume size is 48x48x64. In Table 2.1, the comparison of 

convolutional layer and fully connected layer structure is shown with the assumption 

that both of the layer types have the same number of neurons in their input and 

output volumes. There are 6912 neurons in the input volume and 147456 neurons in 

the output volume for both of the layer types. However, these neurons in the 

convolutional layer are organized in a stack of 64 feature maps each of which 

contains 2304 neurons. As we have mentioned previously, convolutional layers 

employ a local connection scheme rather than using fully-connected scheme. Due to 

this property of convolutional layer, there are only 76 parameters (75 for connection 

weights and 1 for bias term) of a neuron in the output volume of convolutional layer. 

On the other hand, there are 6913 parameters (6912 for connection weights and 1 for 

bias term) dedicated to single neuron in the output volume of a fully-connected 

layer. Furthermore, weight sharing property of convolutional layer drastically 

decreases the number of parameters used by neurons in a feature map when 

compared with the number of parameters used by equal number of neurons in fully-

connected layer. 2304 neurons in a feature map in the convolutional layer share the 

Output 

Volume 
Input 

Volume 
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parameters and use only 76 parameters; however, 2304 neurons in fully connected 

layer use nearly 16 million parameters. The number of parameters for entire layers 

sum up to the values of nearly 5 thousand for convolutional layer and 1 billion for 

fully-connected layer. In terms of memory usage, there is no difference between 

convolutional layer and fully-connected layer since in both of them one unit of 

memory is required to store activation value of a neuron. 

Table 2.1: Convolutional Layer and Fully-Connected Layer Comparison 

  Convolutional 

Layer 

Fully-Connected 

Layer 

Input 

Volume 

(48x48x3) 

Number of neurons 6.912 6.912 

Output 

Volume 

(48x48x64) 

Number of neurons in a feature map 48x48 = 2.304 - 

Number of feature maps 64 - 

Total number of neurons 147.456 147.456 

Layer 

Properties 

Filter Size 5x5x3 - 

Parameters used by a single neuron 

(Connection weights + 1 bias) 
75+1=76 6.912+1=6.913 

Parameters used by neurons in a 

feature map 
76 

6.913 x 2.304=15.927.552 

≈ 16M 

Parameters used by layer 76 x 64=4.864 

15.927.552 x 

64=1.019.363.328 

≈ 1B 

Memory usage for output 147.456 147.456 

 

We have seen that the neurons in the same depth slice in CNN use the same set of 

weights; it means that the activation values of the neurons in each depth slice can be 

computed as a convolution operation and addition of bias term, so this is where the 

name of convolutional layer derives from. Moreover convolution operation is 

nothing but the filtering operation, so the set of connection weights is called as filter 

or kernel. 

Spatial Arrangement 

We have analyzed the connection and weight properties of a neuron in a feature map 

of output layer; however, we have not seen yet the parameters that affect the shape 

of the output volume, i.e. the size of feature maps and the depth of the output 

volume. There are actually three hyperparameters that affect the size of the output 

volume: number of filters, stride and zero-padding. 
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The connections of a neuron is determined by the receptive field of that neuron, i.e. 

filter size that used in the feature map that the neuron resides on, in width and height 

dimensions and they go through all the feature map layers in the input volume. Since 

each neuron in the same feature map of output volume uses the same filter, the 

number of filters used in a convolutional layer determines the number of feature 

maps in the output volume, so the depth of the output volume. This structure ensures 

that the neurons at different depth slices can detect different motifs at the same 

spatial point of input in the width and height dimensions. 

The second hyperparameter is the stride value. Stride value is defined as the number 

of pixels that the filter is shifted at each step during the convolution operation. This 

value determines the size of the output volume in width and height dimensions. If 

the stride value is 1, it means that the filter is shifted 1 pixel at each step of 

convolution operation. If the stride value is 2, the filter is shifted by 2 pixels and this 

goes on like that. The importance of the stride value is that as the value increases the 

size of the output volume decreases. 

The last hyperparameter is zero-padding operation at the boundaries of the input 

volume. This hyperparameter is used for to control the size of the output volume. 

The value of the zero-padding is chosen in such a way that the size of the input 

volume is preserved in the output volume in terms of width and height dimensions. 

If we use 3x3 filters, one pixel zero padding (with the stride value of 1) assures us 

the sizes of input and output volumes will be the same. Zero-padding value should 

be 2 for the filter size of 5x5 for that purpose. 

In Figure 2.14, hyperparameters of the convolutional layer is visualized to derive 

some fundamental relations between hyperparameters for the proper convolution 

operation. Note that the input volume and filter size height and width dimensions are 

assumed to be equal, i.e. square inputs and filters. 
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W : Input volume size (width and height) 

D1 : Input volume depth size (not shown on the figure) 

D2 : Output volume depth size (not shown on the figure) 

F : Filter size 

K : Number of filters (not shown on the figure) 

S : Stride 

P : Padding 

N : Number of shift steps in one dimension (must be integer) 

   

Figure 2.14: Visualization of Convolutional Layer Hyperparameters 

We know that the filter is shifted by S units in each step, so the total distance 

traveled in one row of input volume can be calculated as in Equation (2.1). For 

proper convolution operation we should choose the hyperparameter values 

appropriately. For example, if the input volume is an RGB image of size 48x48x3, 

filter size is 5x5x3 and stride value is 1, we can use or not zero-padding for proper 

operation. P must be chosen as 2 in order to preserve the input volume size of 48x48 

at the output. On another configuration, if we decide to use stride value 2 and 

padding 0, we must shift the filter 22.5 steps which is not possible and this will give 

erroneous results during learning. 

(𝑁 − 1) ∗ 𝑆 = 𝑊 + 2𝑃 − 𝐹  

𝑁 = 
𝑊+2𝑃−𝐹

𝑆
 + 1         (2.1) 

F 

S 

P 

W 

1 2 N 
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Most of the times, the general convention is to choose the stride value of 1 and 

preserving the input volume throughout the convolution operation. In other words, 

the number of filter shifting steps must be equals to the input volume size. For such 

a construction padding value must be chosen according to the Equation (2.2). 

𝑁 = 
𝑊+2𝑃−𝐹

𝑆
+ 1   

𝑊 = 𝑊 + 2𝑃 − 𝐹 + 1  

𝑃 =  
𝐹−1

2
          (2.2) 

Dimensions of the output volume are also determined by the Equation (2.1). N is 

also the dimension value for the width and height of the output volume. Depth value 

equals to the value of number of filters which is K. In Table 2.2, the 

hyperparameters relations in a convolutional layer are summarized. 

Table 2.2: Convolutional Layer Hyperparameters Relation Summary 

Input volume size WxWxD1 

Filter size FxFxD1 

Number of filters K 

Stride value S 

Zero-Padding P 

Output volume size ( 
𝑊+2𝑃−𝐹

𝑆
+ 1)x( 

𝑊+2𝑃−𝐹

𝑆
+ 1)xK 

Number of weights per filter FxFxD1 

Total number of weights (FxFxD1)xK 

Number of biases K 

 

The convolution operation can be explained as follows: If we want to compute the 

activation value of a neuron located at the position of (𝑥2, 𝑦2) in the d
th

 depth slice 

of the output volume and the corresponding receptive field center coincides to the 

location of (𝑥1, 𝑦1) in the input volume which is visualized in Figure 2.15, the 

convolution operation will be the dot product (‘*’ symbol is used for dot product) of 
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input volume and the filter weights and addition of bias term which is shown in 

Equation (2.3). 

𝑂[𝑥2, 𝑦2, 𝑑] = 𝑋 [𝑥1 −
𝐹−1

2
: 𝑥1 +

𝐹−1

2
, 𝑦1 −

𝐹−1

2
: 𝑦1 +

𝐹−1

2
, : ] ∗ 𝑊𝑑[: , : , : ] + 𝐵𝑑  (2.3) 

O : Output volume activation values 

X : Input volume values 

Wd : Weights of 𝑑𝑡ℎ filter 

Bd : 𝑑𝑡ℎ bias 

        

Figure 2.15: Visualization of Elements in Convolution Operation 

The application of convolution operation is shown on an example setup that has 

7x7x3 input volume size (5x5x3 input + 1 zero-padding), 2 filters with the size of 

3x3x3 and stride of 1. Step by step computation of output activation value for 

O[0,0,0] is shown below. Moreover, the active parts of input volume, filters, biases 

and output volume for the convolution operations to compute the values of O[0,0,0], 

O[1,0,0], O[2,0,0], O[2,2,0] and O[3,3,1] are shown in Table 2.3, Table 2.4, Table 

2.5, Table 2.6 and Table 2.7, respectively. 
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𝑜[0 , 0 , 0] = 𝑿[0: 2 , 0: 2 , ∶] ∗  𝑾𝟎 + 𝒃𝟎  

𝑜[0 , 0 , 0] =  𝑥[0: 2 , 0: 2 , 0] ∗  𝑤0[: , ∶ , 0]  +  

         𝑥[0: 2 , 0: 2 , 1] ∗  𝑤0[: , ∶ , 1]  +   

         𝑥[0: 2 , 0: 2 , 2] ∗  𝑤0[: , ∶ , 2] + 1  

𝑜[0 , 0 , 0] = [
0 0 0
0 2 1
0 2 2

] ∗ [
1 1 −1
0 −1 0
0 1 0

] +   

        [
0 0 0
0 0 0
0 2 0

] ∗ [
1 0 −1
0 0 1
−1 0 1

] +   

        [
0 0 0
0 0 2
0 0 0

] ∗ [
1 1 −1
−1 0 1
0 0 1

] + 1  

𝑜[0 , 0 , 0] = 0 + 0 + 2 + 1  

𝑜[0 , 0 , 0] = 3  

  



 

Table 2.3: Convolution Operation to Compute the Output Activation Value of O[0,0,0] 

Input Volume + 1 Padding (7x7x3)  Filter W0 

(3x3x3) 

 Filter W1 

(3x3x3) 

 Output Volume O 

(3x3x2) x[ : , : , 0 ]    

0 0 0 0 0 0 0             

0 2 1 1 1 0 0  w0[ : , : , 0 ]  w1[ : , : , 0 ]     

0 2 2 2 0 0 0  1 1 -1  1 0 0     

0 1 1 0 1 0 0  0 -1 0  0 0 -1     

0 2 2 0 0 1 0  0 1 0  1 1 -1     

0 2 0 1 1 0 0             

0 0 0 0 0 0 0          o[ : , : , 0 ] 

                3 4 -1 

x[ : , : , 1 ]          6 4 2 

0 0 0 0 0 0 0          -3 8 1 

0 0 0 2 1 0 0  w0[ : , : , 1 ]  w1[ : , : , 1 ]     

0 2 0 1 1 0 0  1 0 -1  1 0 -1     

0 0 0 2 1 0 0  0 0 1  0 -1 1     

0 1 2 0 1 1 0  -1 0 1  0 0 -1     

0 2 0 1 2 0 0             

0 0 0 0 0 0 0          o[ : , : , 1 ] 

                -3 -4 -1 

x[ : , : , 2 ]          -5 -3 -2 

0 0 0 0 0 0 0          -4 -2 -2 

0 0 2 1 1 0 0  w0[ : , : , 2 ]  w1[ : , : , 2 ]     

0 0 0 0 1 1 0  1 1 -1  0 -1 1     

0 0 1 1 2 1 0  -1 0 1  -1 -1 -1     

0 0 1 1 0 0 0  0 0 1  0 0 -1     

0 0 1 1 2 1 0             

0 0 0 0 0 0 0             

        Bias B0 (1x1x1)  Bias B1 (1x1x1)     

        b0[ : , : , 0 ]  b1[ : , : , 0 ]     

         1    0      

3
7
 



 

Table 2.4: Convolution Operation to Compute the Output Activation Value of O[1,0,0] 

Input Volume + 1 Padding (7x7x3)  Filter W0 

(3x3x3) 

 Filter W1 

(3x3x3) 

 Output Volume O 

(3x3x2) x[ : , : , 0 ]    

0 0 0 0 0 0 0             

0 2 1 1 1 0 0  w0[ : , : , 0 ]  w1[ : , : , 0 ]     

0 2 2 2 0 0 0  1 1 -1  1 0 0     

0 1 1 0 1 0 0  0 -1 0  0 0 -1     

0 2 2 0 0 1 0  0 1 0  1 1 -1     

0 2 0 1 1 0 0             

0 0 0 0 0 0 0          o[ : , : , 0 ] 

                3 4 -1 

x[ : , : , 1 ]          6 4 2 

0 0 0 0 0 0 0          -3 8 1 

0 0 0 2 1 0 0  w0[ : , : , 1 ]  w1[ : , : , 1 ]     

0 2 0 1 1 0 0  1 0 -1  1 0 -1     

0 0 0 2 1 0 0  0 0 1  0 -1 1     

0 1 2 0 1 1 0  -1 0 1  0 0 -1     

0 2 0 1 2 0 0             

0 0 0 0 0 0 0          o[ : , : , 1 ] 

                -3 -4 -1 

x[ : , : , 2 ]          -5 -3 -2 

0 0 0 0 0 0 0          -4 -2 -2 

0 0 2 1 1 0 0  w0[ : , : , 2 ]  w1[ : , : , 2 ]     

0 0 0 0 1 1 0  1 1 -1  0 -1 1     

0 0 1 1 2 1 0  -1 0 1  -1 -1 -1     

0 0 1 1 0 0 0  0 0 1  0 0 -1     

0 0 1 1 2 1 0             

0 0 0 0 0 0 0             

        Bias B0 (1x1x1)  Bias B1 (1x1x1)     

        b0[ : , : , 0 ]  b1[ : , : , 0 ]     

         1    0      

3
8
 



 

Table 2.5: Convolution Operation to Compute the Output Activation Value of O[2,0,0] 

Input Volume + 1 Padding (7x7x3)  Filter W0 

(3x3x3) 

 Filter W1 

(3x3x3) 

 Output Volume O 

(3x3x2) x[ : , : , 0 ]    

0 0 0 0 0 0 0             

0 2 1 1 1 0 0  w0[ : , : , 0 ]  w1[ : , : , 0 ]     

0 2 2 2 0 0 0  1 1 -1  1 0 0     

0 1 1 0 1 0 0  0 -1 0  0 0 -1     

0 2 2 0 0 1 0  0 1 0  1 1 -1     

0 2 0 1 1 0 0             

0 0 0 0 0 0 0          o[ : , : , 0 ] 

                3 4 -1 

x[ : , : , 1 ]          6 4 2 

0 0 0 0 0 0 0          -3 8 1 

0 0 0 2 1 0 0  w0[ : , : , 1 ]  w1[ : , : , 1 ]     

0 2 0 1 1 0 0  1 0 -1  1 0 -1     

0 0 0 2 1 0 0  0 0 1  0 -1 1     

0 1 2 0 1 1 0  -1 0 1  0 0 -1     

0 2 0 1 2 0 0             

0 0 0 0 0 0 0          o[ : , : , 1 ] 

                -3 -4 -1 

x[ : , : , 2 ]          -5 -3 -2 

0 0 0 0 0 0 0          -4 -2 -2 

0 0 2 1 1 0 0  w0[ : , : , 2 ]  w1[ : , : , 2 ]     

0 0 0 0 1 1 0  1 1 -1  0 -1 1     

0 0 1 1 2 1 0  -1 0 1  -1 -1 -1     

0 0 1 1 0 0 0  0 0 1  0 0 -1     

0 0 1 1 2 1 0             

0 0 0 0 0 0 0             

        Bias B0 (1x1x1)  Bias B1 (1x1x1)     

        b0[ : , : , 0 ]  b1[ : , : , 0 ]     

         1    0      

3
9
 



 

Table 2.6: Convolution Operation to Compute the Output Activation Value of O[2,2,0] 

Input Volume + 1 Padding (7x7x3)  Filter W0 

(3x3x3) 

 Filter W1 

(3x3x3) 

 Output Volume O 

(3x3x2) x[ : , : , 0 ]    

0 0 0 0 0 0 0             

0 2 1 1 1 0 0  w0[ : , : , 0 ]  w1[ : , : , 0 ]     

0 2 2 2 0 0 0  1 1 -1  1 0 0     

0 1 1 0 1 0 0  0 -1 0  0 0 -1     

0 2 2 0 0 1 0  0 1 0  1 1 -1     

0 2 0 1 1 0 0             

0 0 0 0 0 0 0          o[ : , : , 0 ] 

                3 4 -1 

x[ : , : , 1 ]          6 4 2 

0 0 0 0 0 0 0          -3 8 1 

0 0 0 2 1 0 0  w0[ : , : , 1 ]  w1[ : , : , 1 ]     

0 2 0 1 1 0 0  1 0 -1  1 0 -1     

0 0 0 2 1 0 0  0 0 1  0 -1 1     

0 1 2 0 1 1 0  -1 0 1  0 0 -1     

0 2 0 1 2 0 0             

0 0 0 0 0 0 0          o[ : , : , 1 ] 

                -3 -4 -1 

x[ : , : , 2 ]          -5 -3 -2 

0 0 0 0 0 0 0          -4 -2 -2 

0 0 2 1 1 0 0  w0[ : , : , 2 ]  w1[ : , : , 2 ]     

0 0 0 0 1 1 0  1 1 -1  0 -1 1     

0 0 1 1 2 1 0  -1 0 1  -1 -1 -1     

0 0 1 1 0 0 0  0 0 1  0 0 -1     

0 0 1 1 2 1 0             

0 0 0 0 0 0 0             

        Bias B0 (1x1x1)  Bias B1 (1x1x1)     

        b0[ : , : , 0 ]  b1[ : , : , 0 ]     

         1    0      

4
0
 



 

Table 2.7: Convolution Operation to Compute the Output Activation Value of O[3,3,1] 

Input Volume + 1 Padding (7x7x3)  Filter W0 

(3x3x3) 

 Filter W1 

(3x3x3) 

 Output Volume O 

(3x3x2) x[ : , : , 0 ]    

0 0 0 0 0 0 0             

0 2 1 1 1 0 0  w0[ : , : , 0 ]  w1[ : , : , 0 ]     

0 2 2 2 0 0 0  1 1 -1  1 0 0     

0 1 1 0 1 0 0  0 -1 0  0 0 -1     

0 2 2 0 0 1 0  0 1 0  1 1 -1     

0 2 0 1 1 0 0             

0 0 0 0 0 0 0          o[ : , : , 0 ] 

                3 4 -1 

x[ : , : , 1 ]          6 4 2 

0 0 0 0 0 0 0          -3 8 1 

0 0 0 2 1 0 0  w0[ : , : , 1 ]  w1[ : , : , 1 ]     

0 2 0 1 1 0 0  1 0 -1  1 0 -1     

0 0 0 2 1 0 0  0 0 1  0 -1 1     

0 1 2 0 1 1 0  -1 0 1  0 0 -1     

0 2 0 1 2 0 0             

0 0 0 0 0 0 0          o[ : , : , 1 ] 

                -3 -4 -1 

x[ : , : , 2 ]          -5 -3 -2 

0 0 0 0 0 0 0          -4 -2 -2 

0 0 2 1 1 0 0  w0[ : , : , 2 ]  w1[ : , : , 2 ]     

0 0 0 0 1 1 0  1 1 -1  0 -1 1     

0 0 1 1 2 1 0  -1 0 1  -1 -1 -1     

0 0 1 1 0 0 0  0 0 1  0 0 -1     

0 0 1 1 2 1 0             

0 0 0 0 0 0 0             

        Bias B0 (1x1x1)  Bias B1 (1x1x1)     

        b0[ : , : , 0 ]  b1[ : , : , 0 ]     

         1    0      

4
1
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2.3.3. Pooling Layer 

Pooling is used in CNN architecture to summarize the outputs of neighboring units 

of feature map. Usually the most distinctive features are transferred to the next layer 

in a neighborhood to assure invariance of motifs or sub-elements. Furthermore, by 

applying stride of more than one row or column during the pooling process reduces 

the data dimension in the next layer. Data dimension reduction both decreases the 

computation time and number of parameters in the network, so avoid over-fitting. 

The pooling operation operates over each depth slice of input independently and it 

does not change the number of depth slices. 

There are two hyperparameters to define the pooling operation: the size or the spatial 

extent of the pooling window (F) and the stride value (S). Stride value determines 

downsampling coefficient in width and height dimension. If we use, for example, 

stride value of 2 and have input volume of size 48x48x64, input volume will be 

downsampled by 2 along width and height dimensions and produces the output 

volume of size 24x24x64. 

Generally, max pooling is the preferred operation in the pooling layers since it 

outperforms the other alternatives, such as average pooling, in practice. Moreover, 

the hyperparameters also have some well-known and commonly used values in 

practice: one of the F=2, S=2 or F=3, S=2 pairs are preferred by the practitioners. 

The first one, F=2, S=2 is known as non-overlapping pooling while the second one, 

F=3, S=2, is called as overlapping-pooling which is claimed to avoid overfitting in 

(Krizhevsky, Sutskever, & Hinton, 2012). Non-overlapping and overlapping max 

pooling examples are shown in Figure 2.16. Blue shaded cells and yellow shaded 

cell in the overlapping pooling example mean that they are shared by two and three 

pooling windows during pooling operation, respectively. Although larger values for 

spatial extent (window size or receptive size) and stride value are not so common, 

they are used in some applications. 

  



43 

   Non-Overlapping Max Pooling    

                   

 1 1 2 4               

 5 6 7 8   
Max Pooling: F=2 – S=2 

 6 8  

 3 2 1 0    3 4  

 1 2 3 4               

                   

                   

   Overlapping Max Pooling    

                   

 1 1 2 4 5              

 5 6 7 8 1  
Max Pooling: F=3 – S=2 

 7 8  

 3 2 1 0 3   9 6  

 1 2 3 4 0              

 9 0 1 2 6              

                   

Figure 2.16: Non-Overlapping and Overlapping Max Pooling Examples 

Recently, there are some research papers that suggest to eliminating the pooling 

layers, instead using convolutional layers (Springenberg, Dosovitsky, Brox, & 

Riedmiller, 2014). They suggest that removing pooling layers does not degrade the 

performance of the network and it simplifies the network architecture since the 

network consists of only the stack of convolutional layers. Moreover, they suggest 

using larger stride convolutional layers to reduce the dimensions. 

2.3.4. Normalization Layer 

Normalization layers are usually used to bound the output values of neurons so that 

they do not saturate. However, there exist a common thought that the effect of 

normalization layer is so small or none, so the usage of normalization layers in state 

of the art networks are very limited or none, e.g. (Szegedy, et al., 2015). 
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2.3.5. Fully Connected Layer 

Neurons in a fully connected layer are connected to all neurons in the previous layer, 

as seen in regular neural networks. Their activations can hence be computed with a 

matrix multiplication followed by a bias offset. Fully connected layers are used to 

compute the class scores for each class. 

2.3.6. Convolutional Neural Network Layer Patterns 

General trend is using a structure that multiple number of pairs of convolutional 

layer with rectified linear unit on top (Conv – ReLU pairs) which is followed by 

pooling layer. At some point on the network transition to the fully connected layer is 

made. Fully connected layers also have ReLU on top except the last fully connected 

layer. At the very end of the network, there is the last fully connected layer that 

usually produces the class scores. General structure can be formulated as in Equation 

(2.4). In the structure superscripts indicates repetition of layers. Usually, N value is 

chosen in between 0 and 3 (0 ≤ N ≤ 3), M value is chosen as positive (0 ≤ M) and K 

value is chosen in between 0 and 3 (0 ≤ K ≤ 3). Furthermore, in Equation (2.5) and 

(2.6), two different convolutional neural network architectures are given as 

examples. 

Conv : Convolutional layer 

ReLU : Rectified linear unit 

Pool : Optional pooling layer 

FC : Fully-connected layer 

N : number of (Conv - ReLU) structures 

M : number of [(Conv - ReLU)
N
 + Pool] structures 

K : number of (FC - ReLU) structures 

𝐼𝑛𝑝𝑢𝑡 → [[𝐶𝑜𝑛𝑣 → 𝑅𝑒𝐿𝑈]𝑁 → 𝑃𝑜𝑜𝑙]𝑀 → [𝐹𝐶 → 𝑅𝑒𝐿𝑈]𝐾 → 𝐹𝐶   (2.4) 

𝐼𝑛𝑝𝑢𝑡 → [𝐶𝑜𝑛𝑣 → 𝑅𝑒𝐿𝑈 → 𝑃𝑜𝑜𝑙]2 →  𝐹𝐶 → 𝑅𝑒𝐿𝑈 → 𝐹𝐶   (2.5) 

𝐼𝑛𝑝𝑢𝑡 → [𝐶𝑜𝑛𝑣 → 𝑅𝑒𝐿𝑈 → 𝐶𝑜𝑛𝑣 → 𝑅𝑒𝐿𝑈 → 𝑃𝑜𝑜𝑙]3 → [𝐹𝐶 → 𝑅𝑒𝐿𝑈]2 → 𝐹𝐶  (2.6) 
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It is recommended to use a stack of small receptive field filters instead of large 

receptive field single filter. This is mainly due to the fact that when the number of 

convolutional layers is increased, data goes through more non-linear operations and 

the features obtained at the output of a stack of layers are richer than the ones at the 

output of single layer (Karpathy, 2016). If we use, for example 3x3 filters with a 

stride of 2, we need three convolutional layers to obtain an effective receptive field 

of 7x7 on input data and the features produced from that structure at the output of 

the network. Single convolutional layer of 7x7 filters has also the same effective 

receptive field on input that produces feature vectors at the output, but the number of 

non-linear transforms that data pass through is different for two structures. In the 

first one with a stack of layers, feature vector encodes more sophisticated 

information compared to the second one. Moreover, the number of parameters used 

in two networks changes drastically. If the number of filters used in two structures is 

the same and the value is C and the depth of input volume is also C, then 27C
2
 

(3x(Cx(3x3xC))=27C
2 

) and 49C
2
 (Cx(7x7xC)=49C

2
) parameters are used in stack 

structured network and single layer network, respectively. As a result, we can obtain 

richer feature vectors by using less number of parameters with stack of 

convolutional layers with small filter sizes. The drawback is that we need more 

memory in stack structure. If we have an input volume size of WxW in width and 

height dimensions, we need 3xCxWxW units of memory for stack structure and 

CxWxW units of memory for single layer structure. 

In practice, the input volume size in width and height dimensions is preferred to be 

the multiples of 2 and the values of 32, 64, 96, 224, 384 and 512 are used 

commonly. Moreover, the size of filters (F) is usually chosen as 3x3 and at most 5x5 

with a stride (S) of 1 in convolutional layers. Zero-padding is also employed in 

convolutional layers to preserve the input size at the output and to prevent the data 

loss at the boundaries of the input volume. In pooling layers, data dimension 

reduction is achieved by using stride values greater than one. The common form of 

pooling layer is max pooling with 2x2 receptive size and stride value of 2. This 

structure achieves a downsampling rate of 2, i.e. 75% of data is discarded at that 

layer. Pooling layers with 3x3 receptive fields and stride value of 2 is also used but it 
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is not so common. Larger than 3x3 receptive sizes are hardly preferred since the 

pooling will be too lossy and aggressive. 

2.3.7. Training of Convolutional Neural Networks 

Supervised learning is the most common form of the machine learning, whether it is 

deep or not (LeCun, Bengio, & Hinton, 2015). We can explain supervised learning 

as providing a machine with samples and with their corresponding class labels and 

adjusting the machine’s parameters according to the error between the machine 

output and the sample class label. 

In its simplest form, we want to build a system that can tell us the class of given 

image sample, i.e. classify the image sample. In order to achieve that it is required to 

train the machine. During training process, the machine is supplied with image 

sample and it generates a score vector as an output that has a value for each class 

label. By comparing the category score values, the class label of the input sample 

image is decided. The class label of the category with the highest value in the score 

vector is assigned as the class label of the input image. 

Ultimate goal of the system is to classify all input images correctly but this is not the 

case at the beginning of the training process. Therefore, an objective function (or 

cost function) to measure the error is required so that we can adjust the parameters 

of the machine in a way that the machine gives the closest output scores to the 

desired values for the input samples, i.e. minimizes the error. Cross entropy error is 

a good alternative to evaluate the training process since it includes information 

related to the class probability values besides the class assignments (McCaffrey, 

2013). Cross entropy is a measure of similarity between two probability 

distributions. In training process, it can be constructed in such a way that it measures 

the similarity between true label probability distribution and model output 

probability distribution. Cross entropy error for single sample in the training set is 

defined in Equation (2.7) and an example cost function is defined as average cross 

entropy error for a batch of N samples in Equation (2.8). A comparison of 

classification error rate and cross entropy error is shown in Table 2.8. There are two 

models (M1, M2), three labels (L1, L2, L3) and three samples (S1, S2, S3). Both of 
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the models produces the same classification error rate of 1/3, however, when we 

analyze the class probability values for two models, we see that model M2 is much 

better than M1. On the other hand, the average cross entropy values gives the clue 

that M2 classifies the samples better than M1.  

𝑝 ∶ 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ)  

𝑞 ∶ 𝑚𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)  

𝐻(𝑝, 𝑞): 𝑐𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑒𝑟𝑟𝑜𝑟  

𝑯(𝒑, 𝒒) =  − ∑ 𝒑𝒊𝒍𝒐𝒈(𝒒𝒊)𝒊         (2.7) 

𝑳(𝒘) =  
𝟏

𝑵
 ∑ 𝑯(𝒑𝒏, 𝒒𝒏)
𝑵
𝟏         (2.8) 

Table 2.8: Classification Error Rate and Cross Entropy Error Rate Comparison 

  
Model 

Output 

Probabilities 

True Label 

Probabilities Correct? 
Error 

Rate 
Cross Entropy Error 

Avg. 

Cross 

Entropy 

Error   L0 L1 L2 L0 L1 L2 

M1 

S1 0.3 0.3 0.4 0 0 1 Yes 

1/3 

-(ln(0.3)*0)+ln(0.3)*0+ln(0.4)*1)=-ln(0.4) 

1.378 S2 0.3 0.4 0.3 0 1 0 Yes -(ln(0.3)*0)+ln(0.4)*1+ln(0.3)*0)=-ln(0.4) 

S3 0.1 0.2 0.7 1 0 0 No -(ln(0.1)*1)+ln(0.2)*0+ln(0.7)*0)=-ln(0.1) 

M2 

S1 0.1 0.2 0.7 0 0 1 Yes 

1/3 

-(ln(0.1)*0)+ln(0.2)*0+ln(0.7)*1)=-ln(0.7) 

0.639 S2 0.1 0.7 0.2 0 1 0 Yes -(ln(0.1)*0)+ln(0.7)*1+ln(0.2)*0)=-ln(0.7) 

S3 0.3 0.4 0.3 1 0 0 No -(ln(0.3)*1)+ln(0.4)*0+ln(0.3)*0)=-ln(0.3) 

 

The method used for training convolutional neural networks is stochastic gradient 

descent (SGD). SGD is a form of backpropagation such that the weight updates are 

done after a batch of inputs are fed to the network and average gradient value for 

those inputs are calculated. Since the weight updates are done over average gradient 

values of batch inputs and each batch produces noisy estimate of average gradient 

this process is called as stochastic gradient descent (LeCun, Bengio, & Hinton, Deep 

Learning, 2015). The process goes over many small data batches even many times 

until the cost function no longer decreases. Then, model is tested on ‘Test Set’ that 

the machine has not seen before. 
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If we think the convolutional layers, single set of weight values, i.e. the same filter, 

is used in a feature map. The update of filter values are done once for a feature map 

and this is done by using the gradient averages of neurons in that feature map 

(Karpathy, 2016). 

2.4. Performance Measures 

In binary classification systems, performance measures of the system can be defined 

based on some basic statistical definitions, such as accuracy, sensitivity, specificity, 

fall-out etc. It is possible to summarize these basic definitions over a contingency 

table or confusion matrix shown in Table 2.9. 

Table 2.9: Basic Statistical Definitions Contingency Table 

  Predicted Condition 

  
Predicted condition 

positive 

Predicted condition 

negative 

True Condition 
Condition positive True Positive False Negative 

Condition negative False Positive True Negative 

 

2.4.1. True Positive Rate 

True positive rate is also called as sensitivity or recall rate and defined as the ratio 

of the number of true positives to total number of condition positives. 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =  
∑𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  

2.4.2. False Negative Rate 

False negative rate is also called as miss rate and defined as the ratio of the number 

of false negatives to total number of condition positives. 

𝐹𝑎𝑙𝑠𝑒 Nega𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =  
∑𝐹𝑎𝑙𝑠𝑒 nega𝑡𝑖𝑣𝑒

∑𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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2.4.3. False Positive Rate 

False positive rate is also called as fall-out and defined as the ratio of the number of 

false positives to total number of condition negatives. 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =  
∑𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 negati𝑣𝑒
  

2.4.4. True Negative Rate 

True negative rate is also called as specificity and defined as the ratio of the number 

of true negatives to total number of condition negatives. 

𝑇𝑟𝑢𝑒 Nega𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =  
∑𝑇𝑟𝑢𝑒 negat𝑖𝑣𝑒

∑𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 negati𝑣𝑒
  

2.4.5. Accuracy 

Accuracy is defined as the ratio of total number of correct predictions to total 

number in population. 

Accuracy (Acc) =  
∑True 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ ∑𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
  

2.4.6. Performance Measures Used in CAMELYON16 

In CAMELYON16 ISBI Challenge, two performance measures are used to evaluate 

the performance of the algorithms since this challenge evaluates algorithms for both 

1) WSI classification and 2) metastasis detection and localization. These 

performance measures are defined in the following subsections. 

Slide-based Evaluation: The merits of the algorithms are assessed for 

discriminating between slides containing metastasis and normal slides. Receiver 

operating characteristic (ROC) analysis at the slide level is performed and the area 

under the ROC curve (AUC) is used as the performance measure for comparing the 

algorithms in this category. ROC curve is defined as the plot of true positive rate 

(TPR) versus false positive rate (FPR) for different discriminating threshold values 

of the binary classifier. 
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Lesion-based Evaluation: For the lesion-based evaluation, free-response receiver 

operating characteristic (FROC) curve is used. FROC curve is a graphical plot that is 

drawn with true positive rate on the y axis and average false positive rate per image 

on the x axis for different discriminating threshold values of the binary classifier. 

The final score that ranks teams in the second leaderboard is defined as the average 

sensitivity at 6 predefined false positive rates: 1/4, 1/2, 1, 2, 4, and 8 false positives 

per whole slide image. In this category, representative points for metastasis regions 

with their corresponding probability values are submitted. These points are 

evaluated according to the ground truth data of the dataset, so true positive rate and 

false positive rate values are determined. If more than one point inside the same 

metastasis region is submitted as prospective representative points, the one with the 

highest probability among those is chosen as representative during the evaluation 

process and the others are ignored. 
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CHAPTER 3 

 

 

3. PROPOSED APPROACH 

 

 

 

In this section, block schema of the proposed solution for CAMELYON16 challenge 

will be presented, and each step of the solution will be explained in separate sub-

sections. 

3.1. Block Schema 

The block schema of the proposed method is shown in Figure 3.1. The input is 

whole slide images (WSIs) and outputs are metastasis region representatives 

together with their probabilities and whole slide probabilities. The method has 

mainly three steps, which are preprocessing, classification and post processing. 

Details of these steps are explained in the following sections. 

 

Figure 3.1: Block schema of the proposed method 

Preprocessing: determining lymph 

node sections on Layer 7 images 

Classification: CNN on sliding 

windows on Layer 2 images 

Whole Slide Images  

Post Processing: Decision fusion for 

metastasis regions and slides 

Whole Slide 

probabilities  

Metastasis Region 

Representatives and 

Probabilities  
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3.2. Pre-processing 

In the training and test sets, WSIs do not contain only the lymph node sections but 

the majority of the slide area consists of background, which is unnecessary to be 

included in the analysis of the metastasis detection. In order to speed up the analysis, 

it is required to apply preprocessing to define the lymph node sections. 

Preprocessing operations are conducted in MATLAB. For preprocessing, we used 

Layer 7 images of the given datasets, which are the 128x down sampled versions of 

the original images. We applied OTSU thresholding, median filtering and connected 

component analysis (elimination of small noisy parts) to these images and converted 

them to binary. As the output of these processes, we obtained the mask of lymph 

node sections in the WSIs. The effects of these operations are illustrated in Figure 

3.2, considering Tumor_009 image of given dataset. From left to right, images are 

given in the order that original image, OTSU thresholded, median filtered, small 

connected components eliminated (Mask), and final image (masked image) as 

output. Moreover, it can be seen in Figure 3.2 that the necessary information related 

to the lymph node sections in the WSI is not lost. 

  



 

       
(a) (b) (c) (d) (e) (f) (g) 

       
Figure 3.2: Effects of Preprocessing Operations on Tumor_009 Image: a) Original image, b) Otsu thresholding, c) Median filtering, d) Small connected component 

elimination (mask), e) Final output of preprocessing stage (masked image), f) Metastasis region boundaries shown on original image and g) Metastasis region 

boundaries shown on masked image. 

5
3
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OTSU method is a statistical, automatic thresholding method to determine the 

threshold value to separate the pixels of the intensity image into groups such that the 

variance between the groups is maximized (Otsu, 1979). The two important features 

of OTSU thresholding method in this application are automatic and unsupervised 

usage. In (Jassim & Altaani, 2013), OTSU thresholding is hybridized with median 

filtering. First each channel of RGB images is thresholded by using OTSU method 

and then all the thresholded channels are merged and median filtered in order to 

remove the unwanted distortions. Similar to this method, we also hybridize the 

OTSU method and median filtering. Different from that, we have used OTSU 

thresholding over all channels by concatenating them side by side to determine 

threshold value and used this threshold value to obtain binary image from (weighted 

sum grayscale version of) RGB image. 

Lymph node metastases are divided into three categories based on the largest tumor 

deposit on the tissue: Isolated tumor cells, Micro metastases, Macro metastases 

(CAMELYON16, 2015). 

 Isolated tumor cells: Isolated tumor cells are defined as small clusters of 

cells not greater than 0.2 mm. Many studies have shown that isolated tumor 

cells do not have negative prognostic value. Therefore this category is not 

included in the provided dataset’s ground truth annotations. 

 Micro-metastases: Micro-metastatic lymph nodes have cluster of cancer 

>0.2 mm but no greater than 2.0 mm. 

 Macro-metastases: Macro-metastatic involvement of the axillary (under-

arm lymph nodes) is defined by any tumor cell cluster >2.0 mm. 

On the other hand, normal slides (diagnosis) means the slide does not contain any 

tumor cells and the slide is completely free of metastases. So whatever sample you 

take from normal slides is 100% normal. 

The tumor slides in CAMELYON16 challenge contain either micro-metastases or 

macro-metastases. Removing connected components that have diameter less than 0.2 

mm does not contribute to the false positive rate of the system. However, the 

connected components’ sizes are already greater than 0.2mm in diameter in WSIs. 
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Therefore, dominant factor affecting the connected component elimination threshold 

value is the necessity of removal of the background at this stage. 

3.3. Classification 

In this section, dataset preparation for supervised training of the convolutional 

neural network, structure of the model and its training scheme will be presented. 

3.3.1. Dataset for Supervised Training of Convolutional Neural Network 

Supervised learning requires a dataset with huge number of labeled samples. 

Therefore, we constructed a dataset consisting of 64x64x3 RGB images from Layer 

2 of original WSIs. Our dataset contains 480000 randomly selected images in total. 

244366 of these images are selected from slides with label “normal” and the 

remaining 235634 are selected from metastasis regions of slides with label “Tumor”. 

The mask images obtained by preprocessing are showing the lymph node sections in 

the WSIs. These masks that we obtained from Layer 7 were used to crop the dataset 

images from Layer 2. This means that each of 2x2 regions in mask image from 

Layer 7 corresponds to 64x64 image sections in Layer 2. By cropping these sections 

we obtained 64x64x3 tensors with R, G, and B layers to construct the dataset. While 

choosing the cropped dataset images from tumor WSIs, we used the sub-images 

coming completely from the metastasis regions, that is, we eliminated the image 

sections coming from normal regions and also from normal-metastasis boundaries. 

Furthermore, we did not use images that contain background pixels more than 75% 

in their binary histograms. In Figure 3.3, sample dataset images from “Normal” and 

“Tumor” classes are shown. 

          

          
          

Figure 3.3: Example Dataset Images - First row: Samples with label “normal”, Second row: Samples 

with label “Tumor” 
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3.3.2. CNN Structure and Training 

In order to classify the subimages of WSIs, we used a CNN structure, which is 

similar to Google TensorFlow CNN example structure to classify Cifar10 images 

(TensorFlow). The CNN structure that we used is shown in Figure 3.4. 

 

Figure 3.4: Convolutional Neural Network Architecture 

The CNN that we used has 2 convolutional layers with RELU (Rectified Linear 

Units – max(0,x) ) outputs since it takes less training time with gradient descent to 

train the networks with RELU outputs, which is a non-saturating non-linearity, 

compared to saturating linearities (Krizhevsky, Sutskever, & Hinton, 2012). The 

output of first convolution layer is max-pooled, normalized, and fed to the input of 

the second convolution layer. The output of second layer is first normalized, and 

then max-pooled and fed to the two fully connected layers on the top of 

convolutional layers. Finally, the output of the last fully connected layer is fed to the 

2-way softmax to generate a probability distribution, so classify the input images. 

For overlapping and pooling, a filter size of 5x5 and stride value of 2 is applied since 

it is declared in (Krizhevsky, Sutskever, & Hinton, 2012) that structures with this 

type of pooling avoids overfitting and gives the same data dimension at the output 

when compared to non-overlapping techniques. 
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Dataset images of size 64x64x3 are not fed directly to the network. First, they are 

cropped randomly to the size of 48x48x3 in order to prevent rapid over-fitting of the 

model and then the means of the images are subtracted from them and they are 

divided by their variances to normalize the dynamic range of the images.  

At the first convolutional layer 64 kernels of size 5x5x3 are used. At the output of 

this layer, there exists a normalization and max-pooling layer with a stride of 2, so 

the tensor at the input of the second convolutional layer has a 24x24x64 structure. 

Second layer has 64 kernels of size 5x5x64 to filter its inputs. Following it, there is a 

max-pooling and normalization block with a stride of 2 again, and this reduces the 

tensor dimension to 12x12x64. This last tensor is converted to a vector having 9216 

feature components and fed to the fully connected layers. Fully connected layers 

have 384 and 192 nodes, respectively. Outputs of the second max-pooling, 

normalization block, and nodes of fully connected layers construct a classification 

network of structure 9216x384x192. At the top of this network there is a softmax 

classifier generating the probability distributions for class values, which will be used 

to detect and localize the metastasis regions in WSIs. 

After we have trained the model, we have cropped all of the WSIs in the test set 

64x64x3 sub-images in the same way that we have prepared the dataset to train the 

model. Then, we have fed all sub-images of each WSI to the network and obtain the 

probability value that the sub-image contains the metastasis. A small patch of CNN 

model output is illustrated in Figure 3.5. 

3.4. Post-processing 

To obtain the required performance measures by CAMELYON16, it is required to 

process the model outputs for sub-images of WSIs further. The outputs of the CNN 

provide us with the class labels and probabilities of 64x64x3 WSI regions in Layer 

2.  By using the labels and the probabilities of these sub-image regions, we have 

constructed two matrices for Layer 2: a label matrix and a coefficient matrix. The 

class label of a 64x64x3 region in Layer 2 is mapped to a 2x2 region in Layer 7 with 

the same label. Mapping of label assignments constructs a binary image in Layer 7 

with white pixels (1) representing metastasis class label and black (0) pixels 
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representing normal class label. Similarly, we have also constructed a coefficient 

matrix for each WSI by using the CNN probability output values of the 

corresponding regions. While constructing this matrix, the model output probability 

values of the metastasis regions are recorded as positive, but the values of normal 

regions are recorded as negative. The 0 values in coefficient matrix represent that 

the regions corresponding to that pixels do not contain lymph node components, i.e. 

these are background regions. Binary image and coefficient matrix are used together 

to detect the metastasis regions and compute the corresponding probability of these 

regions. 

The constructed binary image is eroded with a disk shaped structuring element to 

eliminate the small metastasis regions. We know that each white pixel in the binary 

image corresponds to a metastasis region. Moreover, we have a coefficient matrix 

with positive values for metastasis regions and negative values for normal regions. 

In order to aggregate this information with the ultimate goal of detecting metastasis 

regions and localizing them, we have employed a confidence filter on the coefficient 

matrix. 

Confidence filter has a size of 7x7 and the values of the filter has a Gaussian-like 

shape with symmetry axis on the center of the filter and tails decreasing towards the 

boundaries of the filter which is shown in Figure 3.5. This filter is applied to the 

coefficient matrix in a sliding window fashion. Let CNN(I,J) be the value of the 

CNN output at the center of the window where the filter is applied. The filtered 

result for the center is calculated using Equation (3.1). 

𝐶𝑁𝑁𝐶𝐹(𝐼, 𝐽) = (∑ ∑ 𝐶𝑁𝑁(𝐼 + 𝑖, 𝐽 + 𝑗)𝐶𝐹(𝑖, 𝑗)𝑗𝑖 )/𝐶𝐹𝑠𝑢𝑚   (3.1) 

where CFsum is the sum of the components of Confidence Filter. 

If both CNN(I,J) and CNNCF(I,J) are positive, the center pixel is recorded as 

belonging to metastasis region with a probability P(I,J) that is calculated using 

Equation (3.2). 

𝑃(𝐼, 𝐽) =  {
𝐶𝑁𝑁(𝐼, 𝐽) ∗ 𝐶𝑁𝑁𝐶𝐹(𝐼, 𝐽) 𝑖𝑓 𝐶𝑁𝑁(𝐼, 𝐽) > 0 𝑎𝑛𝑑 𝐶𝑁𝑁𝐶𝐹(𝐼, 𝐽) > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.2) 
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An example step by step calculation of probability of belonging to metastasis region 

for the pixel at the center of a small patch is shown in Figure 3.5. Illustrative model 

output values for small patch, filter coefficients used in post-processing and other 

steps are illustrated. 

After processing the whole image, we have obtained a probability image with 

positive values for metastasis pixels and 0 for normal pixels. Over this image, we 

conducted a connected component analysis to determine the metastasis regions as a 

whole so that we can provide a single point inside a metastasis region and single 

probability value for that region. While determining the point that is the 

representative of the corresponding metastasis region and the probability value that 

the region contains metastasis, first, the maximum probability value of metastasis 

pixels inside the connected component is determined. Then, the pixels that have the 

probability value between [max value – 0.2, max value] within the connected 

component are searched. Among these pixels, the one farthest to the connected 

component boundaries is chosen as the representative of that region (location of that 

pixel at Layer 0 is given as the metastasis region location) and the probability value 

of that pixel as the probability of that region. 

After determining and localizing the metastasis regions inside the WSIs, the highest 

probability value inside a WSI is assigned as the probability that the WSI may 

contain metastasis for slide level evaluation. 

Post processing stages for Tumor_009 image are shown in Figure 3.6. In (a) binary 

image constructed from the CNN output labels is shown. On this image, an erosion 

operation is conducted with a disk-shaped structuring element to eliminate the small 

metastasis regions and image in (b) is obtained as a result. By using the eroded 

image and the corresponding probability matrix, confidence filtering operation is 

done and color coded probability image shown in (c) is obtained. Probability 

distribution is given in the green channel of the image, i.e. the bright green regions 

are the regions that have the highest probability to contain metastasis and color goes 

to black as probability decreases. Representative points obtained from this 
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probability map are shown on that probability image and evaluation mask image of 

Tumor_009 WSI in (d) and (e), respectively. 

  



 

Model Output Values Around (I,J): CNN(I+i,J+j) 

0.000 0.800 0.820 0.850 0.800 0.800 0.700     

0.000 0.800 0.800 0.850 0.700 0.700 0.750  Value < 0 Normal  

0.000 0.000 0.900 0.850 0.900 0.900 0.900     

-0.900 0.000 0.520 0.820 0.900 0.600 0.900  Value = 0 No Decision  

-0.900 0.000 0.000 0.900 -0.900 0.700 0.900     

-0.900 0.000 0.000 0.700 -0.900 0.900 0.000  Value > 0 Metastasis  

-0.950 -0.700 0.000 0.000 0.000 0.900 0.000     

CNN(I,J) = 0.820 
 

Filter: CF(i,j) 
0.004 0.004 0.004 0.004 0.004 0.004 0.004 
0.004 0.054 0.054 0.054 0.054 0.054 0.004 
0.004 0.054 0.242 0.242 0.242 0.054 0.004 
0.004 0.054 0.242 0.399 0.242 0.054 0.004 
0.004 0.054 0.242 0.242 0.242 0.054 0.004 
0.004 0.054 0.054 0.054 0.054 0.054 0.004 
0.004 0.004 0.004 0.004 0.004 0.004 0.004 

CF
sum

 = 3.295 
 

 

Model Output * Filter: CNN(i,j) * CF(i,j) 

0.000 0.003 0.003 0.003 0.003 0.003 0.003 

0.000 0.043 0.043 0.046 0.038 0.038 0.003 

0.000 0.000 0.218 0.206 0.218 0.049 0.004 

-0.004 0.000 0.126 0.327 0.218 0.032 0.004 

-0.004 0.000 0.000 0.218 -0.218 0.038 0.004 

-0.004 0.000 0.000 0.038 -0.049 0.049 0.000 

-0.004 -0.003 0.000 0.000 0.000 0.004 0.000 

∑ ∑ 𝑪𝑵𝑵(𝑰 + 𝒊, 𝑱 + 𝒋)𝑪𝑭(𝒊, 𝒋)𝒋𝒊 = 𝟏. 𝟔𝟗𝟔  
 

Calculation for P(I,J) 

CNN(I,J) = 0.820 

CF
sum

 = 3.295 

𝑪𝑵𝑵𝑪𝑭(𝑰, 𝑱) =
(∑ ∑ 𝑪𝑵𝑵(𝑰+𝒊,𝑱+𝒋)𝑪𝑭(𝒊,𝒋)𝒋𝒊 )

𝑪𝑭𝒔𝒖𝒎
 =  
𝟏.𝟔𝟗𝟔

𝟑.𝟐𝟗𝟓
= 𝟎. 𝟓𝟏𝟓  

𝑷(𝑰, 𝑱) =  𝑪𝑵𝑵(𝑰, 𝑱) ∗  𝑪𝑵𝑵𝑪𝑭(𝑰, 𝑱) = 𝟎. 𝟖𝟐𝟎 ∗ 𝟎. 𝟓𝟏𝟓 = 𝟎. 𝟒𝟐𝟑  
 

 

Figure 3.5: Calculation of Probability of Belonging to Metastasis Region for a Pixel at (I,J) 

6
1
 



 

     
(a) (b) (c) (d) (e) 

     
Figure 3.6: Post Processing Stages for Tumor_009 Image: a) Binary image showing metastasis regions constructed from CNN output labels, b) Eroded binary image 

eliminating small regions, c) Probability image obtained after Confidence Filtering (green area), d) Metastasis representative points shown on probability image, e) 

Metastasis representatives shown on evaluation mask image 

6
2
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CHAPTER 4 

 

 

4. EXPERIMENTAL RESULTS 

 

 

 

In this chapter, the experimental work done during the development phase of this 

thesis will be explained. Development platforms and development environments 

used during this process will be defined. The justification of selected parameters of 

methods for each step of the proposed solution will be done based on experimental 

results. Finally, the results of the experimental studies will be presented. 

4.1. Development Platforms and Environments 

Different stages of the processing steps are executed on different platforms and in 

different environments. Two different platforms are used during the experiments of 

this thesis: a workstation and a desktop computer. The specifications of the 

platforms are given in Table 4.1 and Table 4.2 for workstation and desktop, 

respectively. 

Pre-processing operations on whole slide images, dataset preparation for supervised 

training of the convolutional neural network model and post-processing operations 

to obtain slide based and lesion based performance measures have been done in 

MATLAB R2013b environment on desktop computer. Classification of whole slide 

images according to the trained model is also done on desktop computer but in the 

Tensorflow/Python environment. The only operation conducted on workstation is 

training of the convolutional neural network in Tensorflow/Python environment on 

TitanX GPUs in parallel fashion. 
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Table 4.1: Workstation Technical Specifications 

CPU 

Specifications 

CPU Model Intel Core i7-5820 

CPU frequency 3.3 GHz 

Number of CPUs 12 

Number of cores per CPU 6 

RAM 32 GB 

GPU 

Specifications 

GPU Model NVIDIA TITAN X 

CUDA cores 3584 

Base Clock 1417 MHz 

Boost Clock 1531 MHz 

Memory Speed 10 Gbps 

Standard Memory Configuration 12 GB DDR5X 

Memory Interface Width 384-bit 

Memory Bandwidth 480 GB/sec 

 

Table 4.2: Desktop Computer Technical Specifications 

CPU model Intel Core i7-3770 

CPU frequency 3.4 GHz 

Number of cores 4 

RAM 8 GB 

 

4.2. Layer Selection 

Pre-processing and post-processing operations are executed on Layer 7 while dataset 

images to train machine are extracted from Layer 2 images. Layer 2 is chosen 

heuristically based on medical knowledge related to metastasis detection. 

Pathologists are interested in some specific features of the nuclei in hematoxylin and 

eosin stained slides. The size, shape, texture of nuclei and the special arrangements 

and organization into tubules are the most valuable feature to pathologists (Veta, 

Pluim, van Diest, & Viergever, 2014). In other words dataset images must be chosen 

from a certain layer with a certain size so that the nuclei features can be observed by 
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the machine during the training. Another concern is that the size of images should be 

small to train machine in minimum time period and with minimum resources. 

Therefore, Layer 2 is chosen as source layer to the dataset sample images with a size 

of 64x64 pixels. In Figure 3.3, the sample images from both normal and metastasis 

classes are shown and the discrimination of two classes can be done visually. Layer 

7 is chosen because of the fact that it is meaningful to choose the highest layer 

common among the whole slide images to eliminate the background in pre-

processing and to localize the metastasis regions in post-processing stages within 

minimum computation time. 

4.3. Parameter Selection for Pre-processing Operations 

Selection of median filter size and connected component elimination threshold value 

is explained in this part. 

4.3.1. Median Filter Size 

Median filter size of 5-pixel is used while filtering images after OTSU thresholding. 

The filter size values of 2, 5 and 10 is tried on Tumor_009 image and results after 

pre-processing are shown in Figure 4.1 (a), (b) and (c), respectively. As it is seen in 

(a), lines belonging to the background remain around the boundaries of the image 

after pre-processing. In case of (c), median filtering becomes destructive and some 

necessary parts begin to vanish around lymph node sections. Therefore, the filter 

size of 5 is chosen. 
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(a) (b) (c) 

   
Figure 4.1: The Effect of Median Filter Size on Pre-processed Image: a) Pre-processed image with 

filter size of 2, b) Pre-processed image with filter size of 5, c) Pre-processed image with filter size of 

10 

4.3.2. Connected Component Elimination Threshold Value 

The connected component elimination threshold value is chosen by considering 

metastasis region size constraints and the necessity of removing background from 

whole slide images so as to obtain lymph node section samples while constructing 

the database.  

As it is explained in pre-processing section, micro and macro metastasis regions, i.e. 

the tumors that have diameter greater than 0.2mm, are taken into consideration while 

detecting the metastasis regions in this study. The physical size value of metastasis 

regions corresponds to 64 pixels in Layer 7 images as it is calculated in Equation 

(4.1). 

Level-0 Physical Spacing = 0.243 μm⁄pixel 

Level-7 Physical Spacing = 0.243 * 2^7 = 31.104 μm⁄pixel 
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Level-7 Physical Spacing Threshold = (2000 μm) / (31.104 μm⁄pixel) = 64 pixels

 (4.1) 

Since metastasis regions are contained within the lymph node sections and the glass 

slides contains approximately 15mmx15mm biopsy samples, the connected 

components’ sizes are already greater than 0.2mm in diameter. The dominant factor 

affecting the connected component elimination threshold value is the necessity of 

removal of the background. Therefore, the threshold value is chosen as 800 pixels 

for 4-neighborhood connected component analysis. As a result of this operation, all 

the necessary parts of the whole slide images are preserved. The result of connected 

component elimination with a threshold value of 800 pixels is shown for Tumor_089 

WSI in Figure 4.2. In (a), metastasis regions’ boundaries are drawn on original WSI 

in Layer 7 while they are drawn on pre-processed WSI with the threshold value of 

800 pixels in (b). 
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(a) 

 
(b) 

 
Figure 4.2: Result of connected component elimination with 800 pixels threshold value: a) Metastasis 

boundaries shown on original WSI, b) Metastasis boundaries shown on pre-processed WSI with 800 

pixels connected component elimination threshold value  
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4.4. Classification Stage CNN Architectures 

Six different convolutional neural network architectures were designed, trained and 

compared with each other in the context of this dissertation. All of them consist of 

convolutional and max-pooling layers but no normalization layers except the one 

that was used in CAMELYON16 challenge. This model contains normalization 

layers also. Each of the models is explained in the following sub-sections in a 

detailed manner and the summary of the structures of the models are given in Table 

4.3. The models are named from Model 0 to Model 5. The model that we have used 

for CAMELYON16 Challenge is named as Model 0 and the others are named 

consecutively. In table Table 4.3, C is used for convolutional layer, P for pooling 

layer, N for normalization layer, F for fully-connected layer and SM for softmax 

layer. Superscripted numbers mean the repetition of the corresponding structure and 

it is represented with xN (N: number of repetitions) in the block diagrams of the 

models in the following sections. 

Table 4.3: Summary of CNN Architectures of Models 

Model 0 C – P – N – C – N – P – (F)
2
 – SM 

Model 1 (C – P)
2
 – (F)

2
 – SM 

Model 2 (C – C – P)
2
 – (F)

2
 – SM 

Model 3 (C – C – C – P)
2
 – (F)

2
 – SM 

Model 4 (C – C – C – P)
3
 – (F)

2
 – SM 

Model 5 (C – P)
2
 – (F)

2
 – SM 

 

All of the models share the same input data structure: 64x64x3 RGB images are 

randomly cropped to 48x48x3 images and dynamic range normalization is applied 

on these images. They also share the same fully connected and softmax layers stack 

at the top of the network to classify the samples. The different part of the networks is 

the feature extraction parts, i.e. the convolutional layers. Moreover, weights of the 

models Model 1 to Model 5 are initialized similar to method given in (Glorot & 

Bengio, 2010). On the other hand, weight initialization of Model 0 is the same with 

the model given in (TensorFlow). 
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To train and test the performances of these six models we have constructed training 

and test set from CAMELYON16 training set WSIs. We have constructed a training 

set with 40000 samples, 20000 of them normal and 20000 of them metastasis. 

Training set samples are chosen from Normal_001 - Normal_120 and Tumor_001 - 

Tumor_079 WSIs. The test set is constructed from the remaining WSIs and it 

contains 10000 samples with equal number of normal and metastasis samples. 

We have trained each model with 288 epochs (90000 steps) and we have updated 

learning weight at the 200 epochs (62500 steps). Learning rate update graph is given 

in Figure 4.3.  

 

Figure 4.3: Learning Rate Update Graph during Training of the Models 

4.4.1. CNN Architecture: Model 0 

This is the architecture that we have used to classify the test set in CAMELYON16 

challenge and this architecture is also similar to Google TensorFlow CNN example 

structure to classify Cifar10 images (TensorFlow). Block diagram of this model is 

shown in Figure 3.4. Input image goes through first convolutional layer of 64 

kernels with 5x5 filter size and stride of 1 with zero padding, i.e. the size of the data 

volume in width and height dimensions does not change at the output of the 

convolutional layer. After the first convolutional layer, overlapping pooling scheme 

is applied on data with filter size of 3x3 and stride of 2. This reduces the data 

dimension by 2 in width and height dimensions. Then, normalization is done. The 



71 

output of normalization layer goes through convolutional layer, normalization layer 

and max-pooling layer one more time and fed to the fully connected and softmax 

layers to be classified. The important properties of this model are the filter sizes of 

the convolutional layers and the overlapping pooling scheme in max-pooling layers. 

5x5 filter size can be said to be large when compared to contemporary convolutional 

network models but it enables the model to extract motifs with less number of 

convolutional layers. 

In Figure 4.4, filter images of first convolutional layer are shown. The motifs 

learned by the filters are not so obvious but if we think that the dark pixels 

correspond to nucleus and around light pixels to stroma, then the motifs are 

consistent with the medical insights related to the tubule formation of nuclei. We can 

see that the filters commonly have dark pixels surrounded by light pixels and dark 

pixels construct some patterns. 

When the model is trained over the training set and evaluated on the test set, 

confusion matrix shown in Table 4.4 is obtained. Accuracy value of 0.8683 is 

obtained. 

Histograms related to the training of this model are given in APPENDIX G. 
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Figure 4.4: First Convolutional Layer Filter Images of Challenge Model 

 

Table 4.4: Confusion Matrix for CCN Model 0 

  
Estimated Labels 

  
NORMAL METASTASIS 

Known 

Classes 

NORMAL 4920 80 

METASTASIS 1237 3763 

Accuracy 0.8683 

4.4.2. CNN Architecture: Model 1 

In this model, we have used 3x3 filters in convolutional layers and 2x2 filters in 

max-pooling layers. Stride values of 1 and 2 are used in convolutional layers and 
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pooling layers, respectively. We have also used zero padding in convolutional layers 

to preserve the data dimensionality throughout the convolutional layers. In feature 

extraction section of the CNN, we have only used convolutional layers and max-

pooling layers. Base structure of one convolutional layer followed by one max-

pooling layer is used and two of these base structures are stacked on top of each 

other, i.e. two convolutional layers and two max-pooling layers are used in (Conv  

Max-pool) fashion. Block diagram of the architecture is presented in Figure 4.5. 

The images of filters that have been learned in the first convolutional layer of this 

model are shown in Figure 4.6. This time it is harder to see the patterns in the filter 

images. However, the performance of the model is close to the model used in 

challenge. Confusion matrix of the model is given in Table 4.5. Accuracy value of 

0.8562 is achieved. 

 

Figure 4.5: Block Diagram of Model 1 CNN Architecture 
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Figure 4.6: First Convolutional Layer Filter Images of Model 1 

 

Table 4.5: Confusion Matrix for CNN Model 1 

  
Estimated Labels 

  
NORMAL METASTASIS 

Known 

Classes 

NORMAL 4894 106 

METASTASIS 1332 3668 

Accuracy 0.8562 

 

4.4.3. CNN Architecture: Model 2 

This architecture contains one more convolutional layer in its base structure, so there 

are two convolutional layer followed by a max-pooling layer and this structure 

repeated twice in the feature extraction section. The importance of this model is that 

it has filters with sizes 3x3 in convolutional layers which is smaller than 

CAMELYON16 challenge model but two convolution layers per max-pooling layer 

exists. Hence, the effective receptive field obtained on the input image at the end of 

first max-pooling layer is 5x5. Moreover, the feature maps go through more non-
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linear transforms, so the features should be richer that the CAMELYON16 challenge 

model. The block diagram of Model 2 is given in Figure 4.7. 

 

Figure 4.7: Block Diagram of Model 2 CNN Architecture 

In Figure 4.8, filter images of first convolutional layer of the second model is shown. 

Tetragonal patterns again emerge in the filter images but it is hard to match these 

patterns with some physical observations we have done for the challenge model. It 

becomes harder and harder as the number of layers increases. 
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Figure 4.8: First Convolutional Layer Filter Images of Model 2 

When we analyzed the confusion matrix table of the model, which is shown in Table 

4.6, we have seen that the accuracy of the system has increased as it is expected. 

Although the difference less than 1%, it shows us that using small filters with more 

convolutional layers improves the system performance. Furthermore, we can infer 

that removing the normalization layers does not degrade the system performance. 

We have attained the accuracy value of 0.8751 in this model. 

Table 4.6: Confusion Matrix for CNN Model 2 

  
Estimated Labels 

  
NORMAL METASTASIS 

Known 

Classes 

NORMAL 4905 95 

METASTASIS 1154 3846 

Accuracy 0.8751 

 

4.4.4. CNN Architecture: Model 3 

To increase the number of convolutional layers one more in base structure of the 

feature extraction section, we have constructed Model 4. Three convolutional layers 
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are followed by a max-pooling layer and this scheme repeated twice. Hence, we 

have 6 convolutional layers and two max pooling layers. Filter sizes of the 

convolutional layers are again 3x3 similar to the previous models. With this model, 

we have again preserved the data dimension supplied to the fully connected layer in 

the architecture. The block diagram of the model is shown in Figure 4.9. We have 

constructed this model to test the effect of number of convolutional layers on the 

performance of the system. 

 

Figure 4.9: Block Diagram of Model 3 CNN Architecture 

In Figure 4.10, filter images of the first convolutional layer of Model 3 is given. 

Although, there are no special patterns different than previous models, we have seen 

similar filter images in this model also. 
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Figure 4.10: First Convolutional Layer Filter Images of Model 3 

We have also given the confusion matrix of Model 3 in Table 4.7. We have achieved 

accuracy value of 0.8728 which is slightly less than the value of Model 2. 

Table 4.7: Confusion Matrix for CNN Model 3 

  
Estimated Labels 

  
NORMAL METASTASIS 

Known 

Classes 

NORMAL 4891 109 

METASTASIS 1163 3837 

Accuracy 0.8728 

 

4.4.5. CNN Architecture: Model 4 

This model has the same base structure with Model 3 but this has three times 

repeated version of base structure rather than two in Model 3. Hence, this model has 

nine convolutional layers each three of which is followed by a max-pooling layer. 

Since we have three max-pooling layers with stride of 2, data dimension fed to fully 

connected layer is halved both in width and height dimensions. In other words, while 

we are increasing the number of non-linearities data goes through network, we are 
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decreasing size of feature vector fed to the fully connected layer, i.e. loose some of 

the features. Block diagram of Model 4 is given in Figure 4.11. 

 

Figure 4.11: Block Diagram of Model 4 CNN Architecture 

In Figure 4.12, first convolutional layer filter images of Model 4 is presented. 

Similar patterns to previous models also exist in this model. 

 

Figure 4.12: First Convolutional Layer Filter Images of Model 4 
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In Table 4.8, confusion matrix of Model 4 is given. Accuracy value of 0.8624 has 

been reached with this model. The value again decreases, but this may be due to the 

reduction in the dimension of the feature vector supplied to the fully convolutional 

layers of the network. 

Table 4.8: Confusion Matrix for CNN Model 4 

  
Estimated Labels 

  
NORMAL METASTASIS 

Known 

Classes 

NORMAL 4905 95 

METASTASIS 1281 3719 

Accuracy 0.8624 

 

4.4.6. CNN Architecture: Model 5 

This is the last model we have constructed to test the effect of removing 

normalization layer in CNN model. This model is the normalization layers removed 

version of the Model 0 architecture. Block diagram of this model is shown in Figure 

4.13. Input image goes through first convolutional layer of 64 kernels with 5x5 filter 

size and stride of 1 with zero padding. After the first convolutional layer, 

overlapping pooling scheme is applied on data with filter size of 3x3 and stride of 2. 

This reduces the data dimension by 2 in width and height dimensions. The output of 

first pooling layer goes through second convolutional layer and max-pooling layer 

one more time and fed to the fully connected and softmax layers.  
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Figure 4.13: Block Diagram of Model 5 CNN Architecture 

The images of filters that have been learned in the first convolutional layer of this 

model are shown in Figure 4.14. Moreover, confusion matrix of the model is given 

in Table 4.9. Accuracy value of 0.8768 is achieved. 
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Figure 4.14: First Convolutional Layer Filter Images of Model 5 

 

Table 4.9: Confusion Matrix for CNN Model 5 

  
Estimated Labels 

  
NORMAL METASTASIS 

Known 

Classes 

NORMAL 4906 94 

METASTASIS 1138 3862 

Accuracy 0.8768 
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4.4.7. Comparison of CNN Architectures 

We have constructed six different convolutional neural network structure and we 

have especially concentrated on the feature extraction stage, i.e. the convolutional 

layers, max-pooling layers and normalization layers of the network. We have kept 

fixed the input side and the fully connected layers and softmax layer side in order to 

make meaningful and consistent inferences. While we are introducing the 

convolutional neural network structures, we have mentioned about some common 

approaches in the contemporary CNN architectures. Based on these approaches, we 

have constructed different architectures and compare them. In Table 4.10, accuracy 

values obtained with six different CNN architectures are presented. Structures of the 

models are also given for ease of comparison. 

Table 4.10: Accuracy Values Obtained with Six Different CNN Architectures 

 Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 

Accuracy 0.8683 0.8562 0.8751 0.8728 0.8624 0.8768 

Structure CPNCNP(F)
2 

(CP)
2
(F)

2
 (CCP)

2
(F)

2
 (CCCP)

2
(F)

2
 (CCCP)

3
(F)

2
 (CP)

2
(F)

2
 

 

In the original model that we have used in CAMELYON16 challenge, the network 

has all three types of layers in its structure: convolutional layers, max-pooling layers 

and normalization layers. We have removed the normalization layers from the 

structures of the remaining five models as it is a common approach recently. 

Another thing that we have employed in our four models, Model 0 to Model 4, is 

decreasing the filter sizes to 3x3. Difference among the four models comes from the 

number of convolutional layers followed by a max-pooling layer and number of 

repetitions of stacked structure of convolutional layers and max-pooling layer. 

When we have compared the CAMELYON16 challenge model (Model 0) and 

Model 5, we have observed a slight increase in the accuracy of the system. The 

difference between two models is that Model 5 does not contain normalization 

layers while the remaining structure is the same for two models. This is consistent 

with the claim of recent architectures that removing the normalization layers does 
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not degrade the system performance. On the contrary, it improved the performance 

in our case. 

Performances of Model 1 and Model 5 are close to each other. This shows us that 

decreasing the filter sizes and increasing the number of convolutional layers gives 

almost the same accuracy values. Even, it may improve the performance of the 

system with further training. Although the effective receptive field obtained on the 

input image at the end of first pooling layer is the same for both of the models, the 

non-linear transform effect of the ReLU units at the top of the convolutional layers 

may improve the performance since more non-linear transforms mean richer feature 

vectors. 

Comparison of Model 1 and Model 2 revealed the fact that the number of 

convolutional layers is important and increasing the number of convolutional layers 

may improve the performance of the network. The reason of the performance 

decrease in Model 1 may be that inadequate number of convolutional layers could 

not reveal the required motifs in the input image as good as the Model 2 did, so the 

accuracy of the classification decreased. 

We have tested the effect of number of convolutional layers one more step further in 

Model 3. We have increased the convolutional layers per max-pooling layer one 

more unit and tested the system performance in terms of classification accuracy. We 

did not observed further increase in the accuracy value of the system. However, we 

cannot say that increasing the number of convolutional layers further does not 

improve the system performance since it may contribute to system performance 

when the model is trained with a larger data set and with more number of epoch 

values. We can surely say that we need to employ sufficient number of 

convolutional layers to have a good system performance based on the observations 

from Model 1 to Model 3. We have observed nearly 2% increase in accuracy from 

Model 1 to Model 2 and decrease from Model 2 to Model 3 is so small that it can be 

negligible under these circumstances. 

In Model 4, we have repeated three times the three convolutional layer followed by 

one max-pooling layer structure. In this model, we have increased both the 
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convolutional layers and the max-pooling layers. This change has two main effects 

on the network. First, the number of non-linearities through the network has 

increased so we can extract higher level features. Second, the data dimension fed to 

the fully connected layers and softmax layer stack has halved in both width and 

height dimensions, so the feature vector size drops to one fourth of Model 3 at the 

input of the fully connected layer. When we looked at the accuracy value obtained 

with this configuration, we have seen that value decreased nearly 1% compared to 

Model 3. Reason of that drop in accuracy value may be the reduction of the feature 

vector size at the input of fully connected layer. It may require to increase the 

number of kernels while increasing the number of max-pooling layers to amortize 

the feature vector size reduction, so the feature loss. 

The observations that we have done throughout the comparison of the models are 

generally promising in the favor of common approaches in the contemporary 

convolutional neural network architectures. However, some further analyses are 

required to validate all of the effects of common approaches used in contemporary 

CNN architectures. 

4.5. Decision Fusion 

We have explained the post-processing operations we have conducted on the 

classification stage outputs. Two important components of the post-processing stage 

are filters and the erosion disk size. We have checked for three different filters and 

two different disk sizes the performance of the model on training set of 

CAMELYON16 Challenge. 

4.5.1. Fusion Filters 

We have used three different filters to process CNN model outputs in order to obtain 

slide-based and lesion-based performance measures. All of three filters are chosen in 

such a way that they give priority to the central pixel and the closest neighborhood 

of the central pixel. All the filters have common size of 7x7. 

Shape of the first filter with its weights is given in Table 4.11. The filter is 

constructed according to Equation (4.2). 
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𝑊𝑖 = 𝑀 − 𝐷𝑖          (4.2) 

𝑀 =
𝐹𝑖𝑙𝑡𝑒𝑟 𝑆𝑖𝑧𝑒+1

2
=
7+1

2
= 4  

𝑊𝑖:𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖
𝑡ℎ 𝑝𝑖𝑥𝑒𝑙  

𝐷𝑖: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖
𝑡ℎ 𝑝𝑖𝑥𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑖𝑥𝑒𝑙  

Table 4.11: First Decision Fusion Filter (FILTER1) Weights 

 
1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 

2 1 2 2 2 2 2 1 

3 1 2 3 3 3 2 1 

4 1 2 3 4 3 2 1 

5 1 2 3 3 3 2 1 

6 1 2 2 2 2 2 1 

7 1 1 1 1 1 1 1 

 

Second fusion filter is also constructed in a similar way, but this time the number of 

pixels at the same distance from the central pixel is taken in to account. The filter is 

constructed according to Equation (4.3) and the filter is shown in Table 4.12. 

𝑊𝑖 =
1

𝑁𝑖
          (4.3) 

𝑁𝑖: 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐷𝑖 𝑓𝑟𝑜𝑚 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑝𝑖𝑥𝑒𝑙  

𝑊𝑖:𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖
𝑡ℎ 𝑝𝑖𝑥𝑒𝑙  

𝐷𝑖: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖
𝑡ℎ 𝑝𝑖𝑥𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑖𝑥𝑒𝑙  

Table 4.12: Second Decision Fusion Filter (FILTER2) Weights 

 
1 2 3 4 5 6 7 

1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

2 0.04 0.06 0.06 0.06 0.06 0.06 0.04 

3 0.04 0.06 0.13 0.13 0.13 0.06 0.04 

4 0.04 0.06 0.13 1.00 0.13 0.06 0.04 

5 0.04 0.06 0.13 0.13 0.13 0.06 0.04 

6 0.04 0.06 0.06 0.06 0.06 0.06 0.04 

7 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
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Third decision fusion filter is a Gaussian like filter that is sampled at discrete 

instances of standard normal distribution. Weights of the filter are obtained from 

Equation (4.4) and the corresponding filter is given in Table 4.13. 

𝑊𝑖 =
1

2𝜋
𝑒−
𝐷𝑖
2

2           (4.4) 

𝑊𝑖:𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖
𝑡ℎ 𝑝𝑖𝑥𝑒𝑙  

𝐷𝑖: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖
𝑡ℎ 𝑝𝑖𝑥𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑖𝑥𝑒𝑙  

Table 4.13: Third Decision Fusion Filter (FILTER3) Weights 

 
1 2 3 4 5 6 7 

1 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

2 0.004 0.054 0.054 0.054 0.054 0.054 0.004 

3 0.004 0.054 0.242 0.242 0.242 0.054 0.004 

4 0.004 0.054 0.242 0.399 0.242 0.054 0.004 

5 0.004 0.054 0.242 0.242 0.242 0.054 0.004 

6 0.004 0.054 0.054 0.054 0.054 0.054 0.004 

7 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

 

4.5.2. Performance Comparison of Post-processing Operations 

For three different fusion filters and two different erosion disk sizes ( DISK1: 

strel(‘disk’,1) and DISK2: strel(‘disk’,2) in MATLAB ), the post processing 

operations were conducted over the outputs of the CAMELYON16 Challenge CNN 

architecture. Performance measures of the challenge were used in comparison, i.e. 

the area under the ROC curve for slide-based evaluation category and average score 

value at some pre-defined points on the FROC curve. The performance comparison 

is given in Table 4.14. Best results were obtained with (FILTER3, DISK1) and 

(FILTER1, DISK2) combinations in lesion based and slide based evaluation 

categories, respectively. We have preferred to use (FILTER3, DISK1) combination 

in challenge for better results in lesion based category. 



88 

Table 4.14: Performance Comparison of Fusion Filters and Erosion Disk Sizes 

 Area Under ROC Curve Average Score on FROC Curve 

FILTER1, DISK1 0.9359 0.5178 

FILTER2, DISK1 0.9282 0.5219 

FILTER3, DISK1 0.9259 0.5349 

FILTER1, DISK2 0.9514 0.4918 

FILTER2, DISK2 0.9402 0.4966 

FILTER3, DISK2 0.9380 0.5079 

 

4.6. Performance of Proposed Approach 

We have trained the CAMELYON16 Challenge model with a large dataset that was 

introduced in ‘Proposed Approach’ section and used this model in the classification 

stage of the proposed approach. Then, we have processed the outputs of that model 

in post-processing stage with (FILTER3, DISK1) combination to obtain the 

performance measure values required by the challenge. 

We have obtained the confusion matrix given in Table 4.15 with the final model we 

have trained. Both training and the evaluation were done over the training set while 

we were obtaining the given confusion matrix because of the lack of the ground 

truth data for test set in the challenge. Therefore, model has seen some of the 

samples during the training process. However, when we compared the size of 

training dataset, 480000 samples in total, with the size of classified samples set, 

6039875 in total, two sets can be said to be isolated. We have achieved accuracy 

value of 0.948 with this model. 

Table 4.15: Confusion Matrix of Final Trained Model over Training Set  

  
Estimated Labels 

  
NORMAL METASTASIS 

Known 

Classes 

NORMAL 5498523 305718 

METASTASIS 8041 227593 

Accuracy 0.9480 

 

We have visualized the classification performance of the model with color coded 

evaluation images of WSIs. Color coding scheme is given in Table 4.16. Moreover, 
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we have given one example color coded evaluation image of WSIs from both 

classes. We have also shown some image patches that are classified as ‘False 

Positive’ for those WSIs. In Figure 4.15 and Figure 4.16, color coded evaluation 

image and image patches classified as false positive are given for Tumor_089 WSI, 

respectively. Similarly, two components for Normal_066 WSI are presented in 

Figure 4.17 and Figure 4.18, respectively. 

Table 4.16: Color Coding Scheme in Evaluation Images 

  Estimated Labels 

  NORMAL METASTASIS 

Known 

Classes 

NORMAL Blue Yellow 

METASTASIS Red Green 

BOUNDARY or BACKGROUND Turquoise Blue Pink 
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Figure 4.15: Color Coded Evaluation Image of Tumor_089 WSI 

              

Figure 4.16: False Positive Image Patches from Tumor_089 WSI 
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Figure 4.17: Color Coded Evaluation Image of Normal_066 WSI 

               

Figure 4.18: False Positive Image Patches from Normal_066 WSI 

We have also tested our proposed approach on the training set according to the 

required performance measures by CAMELYON16 Challenge. We have drawn 
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ROC and FROC curves of our approach for training set in Figure 4.19 and Figure 

4.20, respectively. We have obtained area under the receiver operating characteristic 

curve (AUC) value of 0.9259 and average score (FROC Score) of 0.5349 at 0.25, 

0.5, 1, 2, 4, 8 average numbers of false positive locations on the FROC curve. 

Moreover, after the results of the challenge were declared, performances of our 

approach on test set were published in the challenge website. They are also given in 

Figure 4.21 and Figure 4.22. 

 

Figure 4.19: ROC Curve of Proposed Approach on Training Set 
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Figure 4.20: FROC Curve of Proposed Approach on Training Set 
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Figure 4.21: ROC Curve of Proposed Approach on Test Set 

 

Figure 4.22: FROC Curve of Proposed Approach on Test Set 

Finally, the performance comparison of the proposed approach on test set among the 

top 10 ranked teams’ performances in slide based evaluation category is given in 
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Table 4.17: Performance Comparison Among Top 10 Ranked Teams in Slide Based 

Category. Moreover, performance measure plots of five leading teams in both 

categories are given in Appendix A to Appendix F. In slide based category, AUC 

performance of our proposed approach is not so bad and it is promising for further 

improvements. However, lesion based performance of our approach (FROC score) is 

not compatible enough when it is compared with top ranked team’s performance. 

Hence, some radical improvements are required at that stage of the proposed 

approach. This stage should also be trainable, i.e. it should be included in the 

training process for better performance. 

Table 4.17: Performance Comparison Among Top 10 Ranked Teams in Slide Based Category 

Rank Team AUC 
FROC 

Score 

1 
Harvard Medical School and Massachusetts Institute 

of Technology, USA 
0.9250 0.7051 

2 EXB Research and Development co., Germany 0.9173 0.5192 

3 Independent participant - Quincy Wong, Germany 0.8680 0.3964 

4 
Middle East Technical University, Departments of 

EEE, NSNT and HS, Turkey 
0.8669 0.4060 

5 NLP LOGIX co., USA 0.8332 0.4040 

6 
University of Toronto, Electrical and Computer 

Engineering, Canada 
0.8181 0.3615 

7 The Warwick-QU Team, United Kingdom 0.7999 0.3155 

8 
Radboud University Medical Center (DIAG), 

Netherlands 
0.7828 0.5761 

9 HTW-BERLIN, Germany 0.7717 0.1770 

10 
University of Toronto, Electrical and Computer 

Engineering, Canada 
0.7666 0.3944 
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CHAPTER 5 

 

 

5. CONCLUSION 

 

 

 

In this dissertation, a convolutional neural networks based system is developed to 

detect and localize the metastasis regions automatically on whole slide images of 

lymph node excisions taken from breast cancer patients. The proposed approach 

mainly consists of three steps: pre-processing, classification and post-processing. In 

the pre-processing stage, the lymph node sections of the whole slide images are 

extracted from background and prepared to be used in the construction of the 

supervised training dataset of the classification stage. In order to classify the input 

images, a convolutional neural network structure is designed and a dataset is 

constructed, which is used to train the developed network in supervised manner. 

After design and training of the network, all the patches that are extracted from the 

lymph node sections of the whole slide image are fed to the network and the class 

labels are obtained in the classification stage. The last stage is the post-processing 

stage that is used for decision fusion. We have proposed a sliding window based 

filtering system to fuse the label data of patches on whole slide image in order to 

obtain metastasis region level and slide level performance measure values. 

Performance analyses of different network architectures are analyzed in this study to 

be used in the classification stage of the proposed solution. Moreover, different filter 

structures are used in post-processing stage to obtain better performance values. The 

comparison of network structures and the filter performances are done throughout 

this dissertation. Lastly, the performance comparison analysis at system level is done 

for the best 10 solution submitted to the CAMLEYON16 challenge is presented. The 

performance of the solution proposed in this thesis is promising for future 

development when it is compared with other solutions. 

In the proposed solution, training dataset of the classification stage CNN 

architectures was constructed from Normal and Tumor WSIs with nearly equal 



98 

number of ‘normal’ and ‘tumor’ samples. However, all normal samples are taken 

from Normal WSIs, i.e. we have not chosen any normal image samples from the 

normal regions of Tumor WSIs. Choosing normal samples from Tumor WSIs may 

also contribute to the system performance, so it should be done in the future work. 

Furthermore, we have used only the image samples completely coming from the 

metastasis regions of Tumor WSIs as ‘tumor’ samples. Normal – Tumor boundary 

samples in Tumor WSIs were not included in the training dataset and this may cause 

the model to misclassify the boundary samples in the dataset. The solutions 

proposed by some top ranked teams contain the boundary images as ‘tumor’ samples 

and it is reasonable since it can contribute to generalization ability of the model, so 

this is another important issue that must be considered in future work.  

We have used Layer 7 and Layer 2 images during the operations of our proposed 

solution to exploit short training and processing time advantages of working with 

small size images at the expense of low resolution quality. We have used 64x64 

images from Layer 2 in the training of the model; however, teams ranked above our 

team in the challenge have used 256x256 images from Layer 0. Although 

corresponding physical sizes in both of the choices are the same, we may lose some 

of the details due to resolution constraints in Layer 2. Therefore, it is worth to try to 

use Layer 0 image samples in future work. 

Furthermore, training the model in a single pass may not be the best choice. In other 

words, we have constructed training dataset at the beginning and use this dataset to 

train the model. Then, we have used the trained model to classify CAMELYON16 

Test set. This may not be sufficient to obtain the best performance from the model. 

We have already separated a set of samples from the training set to validate the 

performance of the trained model (hold-out cross validation). While classifying this 

set, some of the samples are misclassified. By adding these samples to the training 

dataset and training the model further with new enlarged dataset should contribute to 

performance of the model. This approach is used in the literature and by some of the 

teams in the challenge also. Therefore, this additional step is important to improve 

the weak sides of the model and must be used in model training. 
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In this study, we have trained six different CNN models for the classification stage. 

We have analyzed the effects of different architecture elements such as filter sizes, 

number of convolutional layers, effect of normalization layers, etc. We have 

observed that while we are using two convolutional layers, 5x5 filters give better 

results than 3x3 filters. This is mainly due to the fact that the large receptive fields in 

5x5 filters can capture more distinctive features than smaller receptive field 3x3 

filters in two layer structure, which can be said to be shallow. However, when we 

have employed four convolutional layers with 3x3 filters and obtained the same 

effective receptive field area on the input image, performance of the system is 

almost the same. Moreover, it may even be improved with further training, so 3x3 

filters (small size filters) in deep architectures are better in CNN structures since 

they can capture more complex features by using more non-linear transforms by 

employing a simpler architecture. 

We have also observed that increasing the number of convolutional layers up to a 

point may contribute to the system performance but it gets saturated after some 

point. We have obtained better results with 4 and 6 convolutional layers and the 

performances of these two are close to each other. Increasing the number of 

convolutional layers to 9 has not increased the performance but decreased. This may 

be caused by additional pooling layer coming with last three convolutional layers. 

Addition of one more pooling layer with stride 2 decreases the feature vector size 

fed to the fully connected layer by four, so we may lose some of the features. 

Additional layers may require some further modifications on the structure of the 

network, such as increasing the number of filters 4 times to compensate reduction in 

the feature vector size. 

One of the most important insights gained during this study is that initialization of 

the weights of the networks is an important and critical issue. We have observed that 

if we have initialized all of the models with the same weights, some of the models 

learn nothing. Data and structure dependent initialization of weights in the models 

changes the situation completely. Weights of the models Model 1 to Model 5 are 

initialized similar to method given in (Glorot & Bengio, 2010). Furthermore, some 

new publications related to data-dependent weight initialization of networks are 
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emerging recently. Two of them are given in (Krahenbühl, Doersch, Donahue, & 

Darrell, 2016) and (Mishkin & Matas, 2016). 

Lastly, the classification stage of the proposed solution is based on a convolutional 

neural network, so further development both in the structure and the training of the 

network can be done in the future. Moreover, improvement in the post-processing 

stage to obtain better fusion results, so performances, is also possible. However, 

what is more promising than improving two stages separately is handling 

classification and decision fusion both in the same network architecture. In the 

literature the examples of such architectures emerge recently (Ronneberger, Fischer, 

& Brox, 2015). Both the classification and the localization of metastasis regions on a 

whole slide image can be done in one convolutional neural network. 
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APPENDIX A 

 

 

APPENDIX A: PERFORMANCE MEASURE PLOTS OF HARVARD MEDICAL 

SCHOOL AND MASSACHUSETTS INSTITUTE OF TECHNOLOGY TEAM 

 

 

 

 

Figure A.1: ROC Curve of Harvard Medical School and Massachusetts Institute of Technology Team 

 

Figure A.2: FROC Curve of Harvard Medical School and Massachusetts Institute of Technology 

Team 
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APPENDIX B 

 

 

APPENDIX B: PERFORMANCE MEASURE PLOTS OF EXB RESEARCH AND 

DEVELOPMENT TEAM 

 

 

 

 

Figure B.1: ROC Curve of ExB Research and Development 

 

Figure B.2: FROC Curve of ExB Research and Development 
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APPENDIX C 

 

 

 

APPENDIX C: PERFORMANCE MEASURE PLOTS OF INDIVIDUAL PARTICIPANT 

QUINCY WONG 

 

 

 

 

Figure C.1: ROC Curve of Individual Participant Quincy Wong 

 

Figure C.2: FROC Curve of Individual Participant Quincy Wong 
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APPENDIX D: PERFORMANCE MEASURE PLOTS OF METU TEAM 

 

 

 

 

Figure D.1: ROC Curve of METU Team 

 

Figure D.2: FROC Curve of METU Team 
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APPENDIX E: PERFORMANCE MEASURE PLOTS OF NLP LOGIX TEAM 

 

 

 

 

Figure E.1: ROC Curve of NLP LOGIX Team 

 

Figure E.2: FROC Curve of NLP LOGIX Team 
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APPENDIX F: PERFORMANCE MEASURE PLOTS OF RADBOUD UNIVERSITY 

MEDICAL CENTER TEAM 

 

 

 

 

Figure F.1: ROC Curve of Radboud University Medical Center Team 

 

Figure F.2: FROC Curve of Radboud University Medical Center Team 
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APPENDIX G 

 

 

APPENDIX G: TRAINING HISTOGRAMS OF CAMELYON16 CHALLENGE MODEL 

 

 

 

 

Figure G.1: Convolutional Layer 1 Sparsity 

 

Figure G.2: Convolutional Layer 2 Sparsity 
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Figure G.3: Fully Connected Layer 1 Sparsity 

 

Figure G.4: Fully Connected Layer 2 Sparsity 
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Figure G.5: Cross Entropy Error per Image Plot 

 

Figure G.6: Total Loss Plot 
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Figure G.7: Convolutional Layer 1 Histogram Plots for Biases, Activations and Weights 



117 

 

Figure G.8: Convolutional Layer 2 Histogram Plots for Biases, Activations and Weights 
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Figure G.9: Fully Connected Layer 1 Histogram Plots for Biases, Activations and Weights 
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Figure G.10: Fully Connected Layer 2 Histogram Plots for Biases, Activations and Weights 
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Figure G.11: Softmax Layer Histogram Plots for Biases, Activations and Weights 


