
A LOW LATENCY, HIGH THROUGHPUT AND SCALABLE HARDWARE
ARCHITECTURE FOR FLOW TABLES IN SOFTWARE DEFINED NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖKSAN ERAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2016

Approval of the thesis:

A LOW LATENCY, HIGH THROUGHPUT AND SCALABLE HARDWARE
ARCHITECTURE FOR FLOW TABLES IN SOFTWARE DEFINED

NETWORKS

submitted by GÖKSAN ERAL in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Tolga Çiloğlu
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Ece Güran Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Ece Güran Schmidt
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. İlkay Ulusoy Parnas
Electrical and Electronics Engineering Department, METU

Assoc. Prof. Dr. Ali Ziya Alkar
Electrical and Electronics Engineering Dept., Hacettepe Uni.

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: GÖKSAN ERAL

Signature :

iv

ABSTRACT

A LOW LATENCY, HIGH THROUGHPUT AND SCALABLE HARDWARE
ARCHITECTURE FOR FLOW TABLES IN SOFTWARE DEFINED NETWORKS

Eral, Göksan
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Ece Güran Schmidt

September 2016, 145 pages

Software Defined Networking (SDN) is a new paradigm which requires multi-field

packet classification for each received packet by looking up Flow Tables which con-

tain a large number of rules and corresponding actions. The rules are defined by upto

15 packet header fields including IP source and destination address. If more than

one rule rule matches then the action of the highest priority rule is executed. Fur-

thermore rules with wildcard fields are possible. The SDN Flow Table should scale

with the rule count while providing high throughput supporting the Gbps network

data rates. In addition, recent data center applications such as high frequency/speed

trading require ultra low latency. Motivated by these requirements, this thesis pro-

poses Fast Scalable SDN Table (FASST), a hardware architecture for a low latency,

scalable and high throughput SDN Flow Table Implementation. FASST provides a

high throughput up to 200 Mega-Packet-Per-Second (MPPS) while achieving a very

low average latency. To this end, FASST caches the frequently accessed rules exploit-

ing the known temporal locality in the network traffic. FASST is implemented and

evaluated on real hardware using Altera Stratix-V state-of-the-art FPGA. For a net-

v

work characteristics showing strong locality, FASST always achieves a lower average

latency compared to recent works with a decrease of up to %97.

Keywords: Software Defined Networks, Packet Classification, TCAM, Bit Vector,

Field Programmable Gate Array (FPGA)

vi

ÖZ

YAZILIM TANIMLI BİLGİSAYAR AĞLARI’NDAKİ AKIŞ TABLOLARI İÇİN
DÜŞÜK GECİKMELİ, YÜKSEK VERİ HACİMLİ VE ÖLÇEKLENDİRİLEBİLİR

BİR DONANIM MİMARİSİ

Eral, Göksan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Ece Güran Schmidt

Eylül 2016 , 145 sayfa

Yazılım tabanlı bilgisayar ağları, çoklu alanlı paket sınıflandırmaları için kullanılan

yeni bir yaklaşımdır. Bu sınıflandırma, yüksek sayıda kural içeren akış tabloları içe-

risinde gerçekleştirilmektedir. Akış tabloları içerisinde her bir kural, IP adreslerini

de içeren 15 paket başlığından ve bir aksiyon alanından oluşmaktadır. Bu aşamada,

SDN tanımlı ağ anahtarları, her bir alınan paketi bu kurallarla karşılaştırarak sınıflan-

dırma işlemlerini gerçekleştirmektedir. Eğer bir paket birden fazla kurala uyarsa, bu

paket için en yüksek öncelikli kuralın aksiyonu uygulanır. Ayrıca, akış tablosu içeri-

sindeki kurallar ’wildcard’ alanlarını da içerebilmektedir. Yazılım tabanlı bilgisayar

ağlarındaki akış tabloları, Gbps ağ hızlarını destekleyecek şekilde yüksek veri hacimi

sağlamalı ve artan kural sayılalarıyla ölçeklendirilebilir olmalıdır. Ayrıca, yüksek fre-

kans/hız işlemi gibi veri merkezleri uygulamaları için çok düşük gecikme zamanı

isterleri bulunmaktadır. Tüm bu motivasyonlar doğrultusunda, bu tez, yazılım tabanlı

bilgisayar ağları için düşük gecikmeli, yüksek veri hacimli ve ölçeklendirilebilir bir

vii

donanım mimarisi (FASST) sunmaktadır. Bu mimari, bir önbellek mekanizması kul-

lanarak, çok düşük gecikme zamanlarında saniyede 200 milyon paket sınıflandırma

yeteneğine sahiptir. Yüksek veri hacminde düşük gecikme zamanını sağlamanın ar-

kasındaki ana fikir, bilgisayar ağlarındaki geçiçi bölgeselliği kullanmaktır. Sunulan

mimari (FASST), Altera Stratix-V FPGA üzerinde entegre edilmiş ve performans de-

ğerlendirmeleri yapılmıştır. Güçlü geçici bölgesellik gösteren bilgisayar ağları için,

bu mimari %97 oranına varan oranlarda ortalama gecikme zamanını düşürebilmekte-

dir.

Anahtar Kelimeler: Yazılım tanımlı ağlar, paket sınıflandırma, TCAM, Bit vektör,

Alanda Programlanabilir Kapı Dizinleri

viii

To my family

ix

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest gratitude to my advisor, Assoc. Prof.

Dr. Ece Güran Schmidt, for her excellent guidance and continuous support of my

research. Besides my advisor, I would like to thank the rest of my thesis committee;

Prof. Dr. Gözde Bozdağı Akar, Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı, As-

soc. Prof. Dr. İlkay Ulusoy Parnas and Assoc. Prof. Dr. Ali Ziya Alkar for their

encouragement and insightful comments.

I wish to thank ASELSAN A.Ş. for giving me the opportunity of continuing my post-

graduate education and providing an appropriate environment to develop my studies.

I would also like to express my special appreciation to my colleagues and seniors

from workplace for their contributions on the improvement of my engineering skills.

I also thank TUBITAK for supporting my post-graduate thesis with a scholarship

program.

Last but not the least, I wish to thank my all friends who never hesitated from giving

their supports to me.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xiv

CHAPTERS

1 INTRODUCTION . 1

2 RELATED WORK . 7

2.1 Software Defined Networking 7

2.1.1 SDN Infrastructure 8

2.1.2 OpenFlow Protocol 9

2.2 SDN-Enabled Switches . 11

xi

2.2.1 SDN-Enabled Switches on the Market 11

2.2.2 Performance Requirements and Application Char-

acteristics . 12

2.3 Hardware Packet Classification 15

2.3.1 Problem Definition 15

2.3.2 Data Structures and Algorithms 16

2.3.3 Selected Works on Hardware Classification Algo-

rithms . 16

2.3.4 Implementations on Different Hardware Platforms 18

2.4 Works Closely Related To This Thesis 20

2.4.1 Bit Vector Based Pipelined SDN Flow Table Im-

plementation on FPGA 20

2.4.2 Rule Caching Algorithms By Exploiting Temporal

Locality For Flow Tables in SDN 23

2.4.3 Design Developments of FASST Compared To Re-

lated Works . 25

3 FASST: FAST SCALABLE SDN TABLE 29

3.1 FASST Overview . 29

3.2 FASST Operation . 31

3.3 Two Dimensional Bit Vector Machine 32

3.4 Ternary Content Addressable Memory (TCAM) 37

xii

3.5 Match Monitor (MM) – Locality Detection 38

3.6 Match Arbiter . 51

3.7 Analysis of Packet order in FASST and Correcting the Tran-

sient Packet Order Changes 53

4 FPGA IMPLEMENTATION OF FASST HARDWARE ARCHITEC-

TURE . 57

4.1 General View of FPGA Implementation 59

4.2 Input Packet Format for Rule Insertion and Rule Query Phases 62

4.3 Packet Parser . 65

4.4 Implementation Bit Vector Module (BVM) 67

4.4.1 Details of Stride-BVM Blocks 71

4.4.2 Pipeline Processing Sequence at Signal level in

FASST . 76

4.5 Implementation of TCAM 79

4.5.1 Details of Stride TCAM Blocks 79

4.5.2 Implementation of Priority Encoder in TCAM Cache 82

4.6 Implementation Match Monitor (MM) 85

4.6.1 Locality Detector 85

4.6.2 NIOS II Soft Processor System-on-Chip (SoC) De-

sign . 89

xiii

4.6.3 Implementation of TCAM Cache Interface (TCAM

Writer Block) . 91

5 PERFORMANCE EVALUATION OF FASST 95

5.1 Synthetic SDN Flow Table with 512 Rules 96

5.2 Synthetic Traffic Trace using Flow Table with 512 Rules . . . 100

5.3 Design Parameters Used in Performance Evaluation 102

5.4 Hardware Tests of Overall Design for 512 Rules 103

5.5 Monitoring Consumed Power for 512 Rules 110

5.6 Calculating Power Consumption Using Early Power Estima-

tor (EPE) . 112

5.7 Static Functional Simulation of Overall Design for 512 Rules 114

5.8 Synthetic Flow Table for 128 Rules, Traffic Sample and Hard-

ware Tests . 116

5.9 Power Consumption With Respect to Clock Rate and Rule Size120

5.10 Scalability of SRAM-based TCAM Design 122

5.11 Scalability of Clock Rate, Latency and Resource Consump-

tion of FASST with Rule Set Size 124

5.12 Comparison of Power, Latency and Throughput with Recent

Work . 125

5.13 FPGA Resource Utilization of FASST 129

6 TEST ENVIRONMENT OF FASST HARDWARE ARCHITECTURE 131

xiv

7 CONCLUSIONS AND FUTURE WORK 135

REFERENCES . 139

xv

LIST OF TABLES

TABLES

Table 2.1 Header fields for OpenFlow v.1.1.0 11

Table 3.1 Packet tracing flow inside BVM for 512 rules 36

Table 3.2 Rule query in steady state . 54

Table 3.3 Packet orders of same flow . 54

Table 3.4 Transient operation for rule disordering in same flow 55

Table 4.1 Packet format per flow entry for rule insertion phase 63

Table 4.2 Packet format per packet header for rule query phase 64

Table 5.1 Rule IDs and Rule Priorities for synthetic flow table with 512 rules . 98

Table 5.2 Rules with partial overlaps using mask bits 99

Table 5.3 Rules with containment relation using prefix lengths in IP fields . . . 99

Table 5.4 Sample traffic trace with 100% line utilization 101

Table 5.5 Power consumption of FASST for 512 rules at different phases . . . 112

Table 5.6 Power consumption using EPE for parallel processing of BVM and

TCAM . 113

Table 5.7 Details of Logic and RAM Power in FASST 115

Table 5.8 Rule IDs and Rule Priorities for synthetic flow table with 128 rules . 118

xvi

Table 5.9 Partial overlaps of two tules in Flow Table of 128 rules 118

Table 5.10 Power consumption for different clock rates for 128 Rules 121

Table 5.11 Power consumption and throughput comparison 127

Table 5.12 FPGA resource utilization for 512 and 128 rules 129

Table 5.13 FPGA resource utilization of main blocks 130

Table 6.1 RS-232 connection parameters . 132

xvii

LIST OF FIGURES

FIGURES

Figure 2.1 Layered architecture of SDN [1] 9

Figure 2.2 Flow entry format for OpenFlow v.1.1.0 [2] 10

Figure 2.3 Hardware and software switches for OpenFlow Protocol [1] 13

Figure 2.4 Connection of PEs in pipelined BV architecture 22

Figure 2.5 Internal structure of data-associative elements 23

Figure 2.6 Rule set with indirect dependencies 24

Figure 3.1 Block diagram of FASST architecture 30

Figure 3.2 2-D top level architecture of BVM 34

Figure 3.3 Internal pipelined architecture of Rule BVM 35

Figure 3.4 Internal parallel architecture of TCAM 38

Figure 3.5 Conceptual design of Match Monitor 40

Figure 3.6 Data organization in RAM-1 to detect popular rules 42

Figure 3.7 Data organization in RAM-2 and RAM-3 to observe dependencies . 44

Figure 3.8 Header space analysis for single bit intersection [3] 49

Figure 3.9 Example rule set consisting of 4 rules 50

Figure 3.10 Example dependency graph for 4 Rules 50

xviii

Figure 3.11 Process flow diagram in Match Monitor 51

Figure 3.12 Internal block diagram of Match Arbiter Block 52

Figure 4.1 General block diagram of FASST FPGA implementation 59

Figure 4.2 Order of incoming packets to FASST for rule query phase 65

Figure 4.3 Packet Parser Block . 66

Figure 4.4 Connection diagram of two Rule-BVMs and four Priority Encoders 68

Figure 4.5 Functional simulation of Rule-BVMs for pipeline connection . . . 70

Figure 4.6 Functional simulation of 4 Priority Encoders with vertical pipeline

connection . 71

Figure 4.7 Internal architecture of a Rule-BVM for FPGA implementation . . 72

Figure 4.8 Address - Data organization of Stride-BVM RAM 73

Figure 4.9 Signal level timing diagram for pipeline processing inside Rule-BVM 78

Figure 4.10 Functional simulation of 3 Stride-BVMs with pipeline connection . 79

Figure 4.11 Stride-TCAM design in TCAM 81

Figure 4.12 Functional simulation of Stride-TCAMs 82

Figure 4.13 PO-Enc design in TCAM . 84

Figure 4.14 Functional simulation of PO-Enc in TCAM 85

Figure 4.15 Internal architecture of Locality Detector 86

Figure 4.16 Output counter mapping in windowed rule block 88

Figure 4.17 Functional simulation of locality detection 89

Figure 4.18 SoC design of Nios II in MM . 90

Figure 4.19 System contents in MM Processor in Qsys 92

xix

Figure 4.20 Interface diagram of TCAM Cache Interface 93

Figure 5.1 Match results with no-caching phase 104

Figure 5.2 First round at locality detection for 7 rules 105

Figure 5.3 TCAM and BVM parallel lookup after first round of locality detection106

Figure 5.4 Second round at locality detection for 13 rules 109

Figure 5.5 TCAM and BVM parallel lookup after second round of locality

detection . 110

Figure 5.6 Cache Hit Rate(%) vs. Average Latency and Throughput 111

Figure 5.7 Functional simulation of FASST during second round on locality

detection . 115

Figure 5.8 Functional simulation of parallel processing of BVM and TCAM

after second round . 116

Figure 5.9 TCAM write sequence for popular rule with depth 2 119

Figure 5.10 Parallel processing of BVM and TCAM for 128 Rules 120

Figure 5.11 Power consumption for rule set size and clock rates 122

Figure 5.12 Scalability of embedded memory blocks (M20K) and logic gates

in TCAM design . 123

Figure 5.13 Scalability of power consumption in TCAM design 124

Figure 5.14 Clock rate and latency scalability of FASST with increasing rule

size . 125

Figure 5.15 Logic gate and memory bit scalability with increasing rule size . . 126

Figure 5.16 Latency comparison . 128

Figure 6.1 Altera SI development kit and Add-on interface board 133

xx

Figure 6.2 RS-232 Add-on interface board 134

xxi

LIST OF ABBREVIATIONS

FASST Fast Scalable Software Defined Network Flow Table

SDN Software Defined Networks

BVM Bit Vector Module

RAM Random Access Memory

TCAM Ternary Content Addressable Memory

FPGA Field Programmable Gate Array

SRAM Static Random Access Memory

NOS Network Operating System

API Application Programming Interface

QoS Quality of Service

GbE Gigabit Ethernet

MA Match Monitor

FIFO First In First Out

MAC Media Access Control

RTL Register Transfer Level

FSM Finite State Machine

SoC System on Chip

NoC Network on Chip

IP Intellectual Property

I2C Inter-Integrated Circuit

MPPS Mega Packet Per Second

EPE Early Power Estimator

DSP Digital Signal Processor

xxii

IO Input Output

LUT Look Up Table

xxiii

xxiv

CHAPTER 1

INTRODUCTION

In contemporary computer networks, network applications such as QoS (Quality of

Service) support or Access Control are realized by first classifying the packets into

flows based on multiple number of header fields and then taking flow based actions.

Packet classification is implemented in network nodes such as routers or firewalls

using a number of techniques including heuristic algorithms, basic search algorithms

or hardware-specific search algorithms. Packet classification is a difficult operation

because of the need for wire-speed processing, support of thousands of rules and

satisfying performance metrics such as latency, throughput and power.

Each network node is configured or reconfigured separately using device-specific in-

terfaces which result in a big inefficiency in network management [1] in traditional

IP networks. Software Defined Networking (SDN) is a new paradigm which aims

for the flexibility of network device programmability [4]. SDN promotes centraliza-

tion of network control by separating control and data planes in a forwarding device.

In other words, network nodes are data plane devices that are only responsible for

running classification algorithms on packet headers and applying related actions ac-

cording to the rules decided by control plane. This infrastructure introduces new

abstractions in networking by creating flexibility in layered architecture.

The communication between SDN control plane and data plane devices is provided

with a well-defined programming interface. Through this interface, control plane de-

vices (SDN controllers) send the set of rules for packet classification to SDN-enabled

data plane device (SDN switches). These set of rules are stored in tables named Flow

Tables in SDN switches. SDN Flow Table can have thousands of rules defined by

1

arbitrary combinations of up-to 15-tuple header fields. An SDN Flow is a group of

packets that match a given rule or a defined set of rules. Rules with widcard fields

are possible. If a packet matches more than one rule, then the rule with the highest

priority is selected.

The SDN Flow Table lookup is a data plane function that is executed for each received

packet. Hence, hardware implementations are required to support the high data rates

in the order of 10s Gbps. Scalability of the implementation is important as the Flow

Table sizes increase in time. In addition to such legacy metrics, the recent data center

applications such as high frequency/speed trading require ultra low packet processing

latencies. This new requirement is recognized by vendors [5] to produce specific low

latency hardware.

Ternary Content Addressable Memory (TCAM) chips with O(1) look-up time are

used in most of today’s commodity switches for IP networks, but they are expensive

[6] and consume a lot of power [7] in SDN applications due to the high number of

SDN rules. Well-known hardware-based classification algorithms such as SRAM-

based TCAMs, Parallel Bit Vector (BV), standard or parallel Bloom Filters (BF),

hash-based schemes present convincing performance results for different metrics.

Motivated by the performance requirements listed above, this thesis presents the de-

sign, implementation and evaluation of FASST (Fast Scalable SDN Table), a pure

hardware SDN Flow Table architecture, to be employed in SDN-enabled data plane

devices (switches). FASST provides a very high throughput while achieving a very

low average latency. The core idea behind scalability and achieving low average la-

tency is exploiting the known temporal locality in the network traffic and caching

the frequently accessed rules. To this end, we employ a Bit Vector Machine and an

SRAM-based TCAM cache to store the entire flow table and the frequently accessed

rules, respectively. A very recent work [8] proposes a complete hardware architecture

for SDN Flow Table look-up with very extensive pipelining to increase the through-

put. However, this design results in high packet latency. Caching frequently accessed

rules is explored in another recent work [9]. However, the design and implementation

of the lookup engine is in software.

The contributions of the thesis can be summarized as follows:

2

• FASST architecture and operation described with all details about gate-level

design justifying the design decisions.

– Development of novel hardware modules to run two matching engines

with different latencies concurrently and maintain the frequently accessed

rules in the TCAM.

– Implementing and programming the soft processor for the caching func-

tions.

• Design improvements of the relevant existing work.

– Adapting the Bit Vector architecture in [8] including hierarchical organi-

zation and different rule partitioning.

– Adapting the SDN rule dependency checking algorithm in [9] for hard-

ware implementation.

• Design and implementation of the SRAM-based TCAM for SDN rule lookup.

• Full scale implementation and functional verification of FASST on Altera Stratix-

V using Altera Signal Integrity (SI) Development Board. A detailed presenta-

tion of the implementation.

• Detailed performance evaluation of FASST with both simulation and on the de-

velopment board together with a test bench to generate packets. Measurement

of throughput, latency and power consumption and comparison with relevant

previous work.

• Discussion of the generalization of the design and implementation of compo-

nents that affect QoS performance for this generalization.

The results show that FASST can perform the lookup of 512 SDN rules reaching

a throughput of 200 Mega-Packet-Per-Second (MPPS) while achieving a very low

average latency down to 25 nsec. For these throughput and latency values, the power

consumption is monitored as 5.27 Watts in real time. We show that FASST offers a

tradeoff between average lookup latency and power consumption. Moreover, due to

SRAM-based infrastructure, our architecture is scalable with respect to clock speed

and SDN rule set size.

3

The rest of the thesis is organized as follows:

In Chapter 2, Software Defined Networking and packet classification techniques are

explained. For this manner, a vertical hierarchy between SDN-enabled control and

data plane devices is discussed. Moreover, packet classification concept regarding

flow tables and a well-known programming interface ,OpenFlow, are presented. The

literature overview on network packet classification techniques used in SDN are men-

tioned afterwards. Here, data structures and hardware-based classification algorithms

are presented. Among the existing algorithms, the hardware based parallel Bit Vector

(BV) algorithm is discussed in detail. Rule caching problem is also analyzed in this

chapter. The detailed improvements in this thesis regarding Bit Vector implementa-

tion and Rule Caching are discussed in Section 2.4.3.

In Chapter 3, the proposed hardware architecture FASST, which provides a high

throughput and very low average latency on SDN packet classification, is explained in

detail. For this manner, conceptual design details of all functional elements including

high speed engine Bit Vector Module (BVM), low-latency cache TCAM, and locality

detection units are presented. Adaptation of the rule-dependency algorithms to our

hardware-based platform is also given.

The hardware implementation of FASST is presented in Chapter 4. Design proce-

dure which is completely dependent on hardware resources on FPGA is shown by

demonstrating communication interfaces between blocks. Moreover, in this chapter,

the results of static (functional) tests of main hardware blocks inside FASST are given

to verify the functionality. Furthermore, System on Chip (SoC) design using a soft

processor in order to generate rule dependency graph and monitor power consumption

is given to provide a complete understanding.

In Chapter 5, performance evaluation of the complete design of FASST is provided.

For this purpose, synthetic rule sets and example traffic traces are generated and given

to FASST as input. For all these synthetic data traces, FASST is tested and verified

at each phase. Complete functional simulation models and real time hardware test re-

sults are presented. Achieved average latencies, throughput and power consumption

values are given with different cache hit rates. Moreover, scalability of our archi-

tecture with respect to clock rate, rule size and power consumption is analyzed with

4

real-time data. Furthermore, a comparison with recent works in terms of throughput,

latency and power consumption are made. Lastly, resource utilization on FPGA is

given for different rule-set size.

In Chapter 6, the environment for hardware tests and simulations is presented. Here;

a designed interface board, a FPGA developer kit, and utilized software tools are

explained. In order to give a comprehensive understanding of the verification and

implementation environment, the data flow between these components are stated.

The summary of this thesis and possible future works are presented and discussed in

Chapter 7.

5

6

CHAPTER 2

RELATED WORK

2.1 Software Defined Networking

The network device functionality is described as two planes; the data plane and the

control plane. Data plane is responsible for forwarding of each incoming packet.

Packet forwarding consists of table look-ups and accordingly switching of packets to

output ports and further processing. The control plane configures the look-up tables

of the data plane resulting in the desired forwarding behavior. On the one hand, packet

forwarding must be low complexity such that it can be implemented in hardware for

high throughput. On the other hand the control functions have high complexity and

involve communicating with the other devices and running certain algorithms. Hence,

they are implemented in software. In the traditional networking paradigm, these two

planes co-exist in the same network device resulting in fully distributed control.

Software Defined Networking (SDN) is a new approach to computer networking that

provides an abstraction of lower-level functionality in order to manage network ser-

vices. The architecture of SDN decouples the network control and forwarding func-

tions and enables the network control to become directly programmable through pro-

gramming interfaces. In Software Defined Networking, the packet forwarding tables

in the network devices are remotely configured by SDN controllers through a pro-

gramming interface. do not implement the control functions. Instead they are are

remotely controlled by Controllers, and only responsible for packet forwarding. The

SDN Controllers offer a centralized view of the overall network.

7

2.1.1 SDN Infrastructure

In traditional IP networks, each network switching node is loaded with its own fea-

tures, operating system and a specialized packet forwarding hardware. Due to this

existing bundle between operating system and forwarding hardware inside a node,

network manageability is very complex and hard. Each packet is processed individu-

ally by the switch.

Software Defined Networking breaks the vertical integration of control plane and

data plane on the same device. In other words, in order reconfigure the network

core, there is no need to manage each network node separately using vendor specific

configuration processes. By separating the control logic from switching hardware, a

flexibility is introduced while creating new abstractions and policies in networking.

Different than traditional IP networks, packets are classified into flows and processed

accordingly. An SDN flow is a group of packets some common features which are

determined by the SDN control logic together with the forwarding actions that should

be taken at the SDN switches.

SDN infrastructure includes a similar set of network devices such as routers and

switch except for the fact that physical devices in SDN are simple forwarding devices

without an embedded control and software to take autonomous decisions [1]. Overall

SDN architecture and building blocks are depicted in Fig. 2.1. Control logic is moved

to an upper level external module, the so-called SDN controllers or Network Oper-

ating System (NOS). The control logic is directly connected to simple forwarding

devices through a southbound Application Programming Interface (API) and sends a

set of instructions used in forwarding process. Therefore, southbound Programming

Interfaces defines the communication protocol between forwarding device and con-

troller. OpenFlow is the first and most common open standard southbound interface

among many others [2].

Control plane elements are connected to different application layers via a northbound

API. Hence, this northbound interface provides an abstraction for the low level in-

structions that control plane creates to program and manage data plane elements [1].

Although SDN can be adopted to traditional IP network environment such as enter-

8

Figure 2.1: Layered architecture of SDN [1]

prise networks and data centers, there are many other network applications that dic-

tate different QoS requirements. For example, traffic engineering and measurement,

traffic monitoring, security, firewall, data center networking require different type of

performance metrics. SDN applications can be deployed in all of these networks due

to its flexibility on configuration, reconfiguration and management. Moreover, from

the technical standpoint, most companies such as cloud providers and large enter-

prises with a significant data center investment regard SDN as one the most attractive

network infrastructure [10].

2.1.2 OpenFlow Protocol

OpenFlow is a pioneer and flexible protocol that can be used to manage network

traffic between the control plane and data plane in Software Defined Networking ap-

9

proach. Using OpenFlow protocol, packet processing policies and messages defined

by the control plane devices (SDN controllers) can be sent to forwarding devices. As

a result, it enables researchers to develop and run experimental protocols on a variety

of network environment.

OpenFlow defines two key SDN switch components: secure channel and Flow table

[2]. As long as the correct functionality is preserved, these two components can be

designed and developed in many ways by researchers. Secure channel is the com-

munication interface that connects an OpenFlow-enabled forwarding device to a con-

troller. In other words, secure channel is the implementation of configuration and

managing interface.

The flow table stores flow entries which define the packet features and the correspond-

ing action for the SDN flows. OpenFlow protocol has a flow entry format as seen in

Fig. 2.2. A flow entry basically consists of 3 distinct fields: Header fields, counters

and actions. Header fields are used in order to compare the incoming packet headers

and determine whether a match between packet and rule entry occurs. A flow entry

can have up to 15-tuple header fields, where any combination of wildcard fields exist.

It is possible that a packet conforms to more than one flow entry. OpenFlow enabled

devices, packets are matched against flow entries based on entry prioritization.

Figure 2.2: Flow entry format for OpenFlow v.1.1.0 [2]

Counters are used to record the conditions for the associated flow entries when a

match condition is observed on the header fields. For example, the number of received

packets or the number of received bytes can be updated by using counters in a flow

entry when a matching condition for that flow entry is identified. Each flow entry

has an action field associated with a header field. When the flow table identifies a

matching flow entry, the related action field is applied.

Table. 2.1 shows the match fields, or header fields, inside a flow entry formatted

according to OpenFlow v.1.1.0. There are a total of 15 match fields for packets.

10

These match fields are applicable for any incoming packet headers. Each flow entry

cell contains a specific value, or ANY, which matches any value [2]. Moreover, for

IPv4 source and IPv4 Destination fields, the prefix lengths for each entry should be

specifically defined.

Table 2.1: Header fields for OpenFlow v.1.1.0

Header Field Ingress Port Metadata Source MAC Dst MAC Eth. Type

Length 32 bits 64 bits 48 bits 48 bits 16 bits

Header Field VLAN ID
VLAN Prior-

ity
MPLS Label

MPLS Prior-

ity
IPv4 Src

Length 12 bits 3 bits 20 bits 3 bits 32 bits

Header Field IPv4 Dst IP Protocol ToS Src Port Dst Port

Length 32 bits 8 bits 6 bits 16 bits 16 bits

2.2 SDN-Enabled Switches

An SDN-enabled switch performs a matching process for each received packet and

takes the associated action for the matching flow table entry. A packet matches a flow

table entry if the headers fields of the incoming packets match the header fields of a

rule entry in flow table. During matching process, prefix lengths of IPv4 Src and IPv4

Dst and mask bits for other header fields are considered. For example, if a header field

in a rule entry has ANY value in flow table, which means a masked field, then, the

corresponding header fields of all incoming packets match this header field of the rule

entry. However, for a complete match, all header fields of incoming packets somehow

match all header fields of a rule entry in flow table. Checking a match condition of

header fields can be carried out either sequentially or concurrently.

2.2.1 SDN-Enabled Switches on the Market

There are many SDN compatible commercial and open source products on the mar-

ket. Most companies present hardware and software solutions for the current SDN

11

applications, ranging from small business equipments to the high processing data

center products. A list of OpenFlow-enabled devices from various companies or or-

ganizations are illustrated in Fig. 2.3 [1].

Most of the OpenFlow-enabled hardware switches perform packet classification us-

ing Ternary Content Addressable Memories (TCAM). This is because using TCAMs

supports a big set of policy based features while maintaining line rate forwarding. For

example, Exchip NP-4 provides a TCAM memory that stores from 125K to 1000K

flow table entries and can process packets at wire speed for 100 Gigabit Ethernet

(GbE) [11]. Similarly, NoviFlow offers an OpenFlow version 1.3 compatible switch

called NoviSwitch-1248 with wire-speed performance for a 200 Gbps throughput

[12]. NoviSwitch-1248 has a TCAM memory that supports up to 1 million wildcard

or 3 million exact match flow entries. However, both of these switches suffer from

high power consumptions due to TCAMs being power-hungry devices. Moreover,

the power consumption increases linearly with the size of stored flow entries. For

example, typical power consumption of NoviSwitch is around 500 W, which is high

value for many network providers aiming to meet strict requirements for power [12].

There are also specialized programmable hardware switches such as NetFPGA in or-

der to overcome some of the restrictions composed by TCAM chips [13]. NetFPGA is

an hardware implementation of OpenFlow switch on a Xilinx Vertex-II Pro 50 FPGA.

This switch implements SDN flow tables by using a series of on-chip TCAMs and

off-chip Static Random Access Memories (SRAMs). In contrast to native TCAMs

utilized in most commercial switches, NetFPGA gives a RAM-based TCAM archi-

tecture that supports wildcard and exact look-up features. A remote controller can

manage NetFPGA via OpenFlow API.

2.2.2 Performance Requirements and Application Characteristics

SDN is first proposed for and still frequently employed in data centers. Recently,

applications such as high frequency/performance trading (HF/PT) are introduced to

be implemented in data centers. These applications require ultra-low latency under 1

usec in addition to the high throughput of 100s of MPPS. Prominent network equip-

ment manufacturers already take this trend into consideration in their products [1]. In

12

Figure 2.3: Hardware and software switches for OpenFlow Protocol [1]

OpenFlow enabled data plane devices, using cut through switches in order to meet

strict latency requirements is not as effective as in conventional network equipments

[14]. This is due to the fact that the number of OpenFlow enabled packet headers can

reach up to 15 distinct fields, which must be assembled to generate a flow identifier.

The contemporary network implementations and network applications define the per-

formance requirements of a SDN-enable forwarding device as follows:

• Throughput: Throughput is defined as the packet processing rate in computer

networks. Today, most commercial SDN switches is designed to achieve high

throughput of 100s of MPPS. In order to meet the needs of high performance

networks such as data centers, pipelined architectures [15], [8], or new flow

schedulers [16] are developed. As a result, desired line rate operations can be

achieved.

• Latency: Latency is the amount of delay experienced by a packet inside a

switch. In SDN environment, low latency lookup processing is preferred due to

the nature and criticality of the applications [17]. Recently, applications such as

high frequency/performance trading (HF/PT) are introduced to be implemented

13

in data centers. These applications require ultra-low latency under 1 µsec in ad-

dition to the high throughput of 100s of Mpps. Prominent network equipment

manufacturers already take this trend into consideration in their products [5].

• Power: Certain network environments require low power consumption during

look up process. While TCAMs, which are mostly utilized in today’s commer-

cial SDN switches, provide O(1) performance, they are power hungry devices.

Some power-gating techniques in recent works using activation schedulers [18],

or prediction circuitry [14] are developed to meet power requirements.

• Scalability: Scalability of designs in SDN environment is very important due

to newly emerged applications. OpenFlow provides a flexible environment in

SDN that evolves very quickly. This results in new applications that impose

different number of match fields, or rule entries. As a result, scalability of

designs with respect to certain parameters such as rule size, header size and

throughput is desired.

• Flow Table Size: The number of entries/rules in the flow tables in SDN-enabled

switches is growing in order to meet the needs of future SDN deployments [1].

Most of the fast classification engines such as TCAMs have a small size of flow

tables due to high number of wildcard entries. There are studies to decompose

large SDN tables into small ones and distribute them across the network [19].

However, a stand alone classification engine that stores a high number of rule

entries in flow table is always desired for manageability purposes.

Among the performance requirements described above, there is a strict correlation

between throughput and latency. To increase the throughput, the lookup process can

be pipelined, which causes an increase in latency. On the other hand, to keep the

latency at a reasonable value, packet processing rates can be decreased. Therefore,

achieving high throughput and low latency design is desirable for high performance

and latency sensitive data centers.

Our work in this thesis exploits the temporal locality of packet flows created by net-

work applications. [9] reports a 97% of look ups match 10% of the rules based on real

network trace experiments. Furthermore, it is found that 55% to 80% of the traffic

14

consists of large volume (elephant) flows [20] that match the same entries in the SDN

flow table.

2.3 Hardware Packet Classification

2.3.1 Problem Definition

Packet classification is performed on packet headers, which consist of single-field or

multi-field bit arrays. A classifier includes rules or policies [21], where each rule

has multiple fields if multi-field classification is considered. A packet is regarded to

match a rule if each individual field of the packet matches each field in the rule.

Different from single-field packet classification, multi-field packet classification in-

duces partial overlapping conditions between rules. In other words, a single packet

can match two or more rules in a classifier at the same time. This is basically caused

from various matching criteria in multiple fields in rules using mask bits or IP prefix

lengths. As the number of individual fields in rules increase, the probability of con-

fronting overlapping conditions also increase. Therefore, priority based classification

is performed in multi-field classifiers. As a result, lookup performance is directly

affected.

Considering the recent capabilities of OpenFlow in SDN, there is a rapid increase

in the number of supported header fields and flow table numbers inside a classifier

[22]. For example, OpenFlow v.1.3.0 describes the flow match fields as OpenFlow

Extensive Match (OXM) format, which is a typer-length-value (TLV) format [23].

The length of OXM TLV can reach up to 40 distinct header fields with 259 bytes.

This high number of fields of rules in flow table will require excessive amount of

processing capabilities in order to cope with too much overlapping conditions with

priorities. Therefore, designing a classifier with the optimum capabilities such as

high throughput and and scalability with the newly emerged SDN applications is the

problem of multi-field packet classification problem.

15

2.3.2 Data Structures and Algorithms

Packet classification algorithms considering hardware platforms are categorized into

several classes in [24], including basic data structures and hardware based classifica-

tion algorithms.

Basic data structures includes linear search, hierarchical tries and set-pruning tries

[25]. Linear search basically performs lookup operation for the incoming packet

header sequentially for the linked-listed rules. For multi-field packet headers as in

SDN OpenFlow protocol, this search provides poor scalability in terms of field num-

bers. Hierarchical trie, or multi-level trie, is a recursively constructed data structure,

which can be multi-dimensional. Multi-dimension tries are constructed by regarding

prefix rules. A traversal algorithm can be utilized to perform classification for the

incoming packet. The query complexity of a multi-level trie is O(Wd, where W is the

dimension range as [0,2W-1], and d is the number of dimensions. For 15-tuple SDN

rules where each header consists of at least 356 bits, this query time introduces high

latencies for the incoming packets. Set-pruning tries [25] is very similar to multi-level

tries with a lower query time, which is O(dW). This is accomplished by replicating

the rules during traversal. However, this process increases the memory storage utiliza-

tion, which is inapplicable for finite-storage switches. Moreover, O(dW) query time is

still too much for latency sensitive applications such as high frequency/performance

trading (HF/PT).

Hardware based algorithms include TCAMs, bit-map intersection [26], bit vector al-

gorithm [8], [15], [27], [28], bloom filters [29], [30], [31] as decomposition-based

algorithms, and other decision-tree-based algorithms such as HyperCuts [32].

2.3.3 Selected Works on Hardware Classification Algorithms

Most of the hardware packet classification algorithms are considered in two cate-

gories: Decomposition-based and decision-tree-based algorithms.

In decomposition-based packet classification, each fields in a packet header is searched

independently, and final result is obtained by combining these each search result. Dis-

16

tributed Crossproducting of Field Labels (DCFL) is one of the decomposition-based

algorithm [33]. In this approach, independent lookup processes on each field in a

multi-field packet header are performed. After that, a multi-stage aggregation net-

work is utilized in order to combine each lookup result for the purpose of avoiding

huge number of combinations in matching fields. This method is impractical for the

classification of multi-field headers. For example, for SDN OpenFlow v.1.0.0 pack-

ets, the existing 15-tuple headers leads to an exponential increase on the resource

consumption together with latency.

Using Parallel Bit Vector (BV) algorithm is another example of decomposition-based

approaches. This method is proposed by Lakshman et al. [27], and presents parallel

lookups on each individual field first. The result of each lookup process is a bit

vector, where each bit in this bit vector represents a rule. A Bitwise AND operation

of each local bit vector results gives the final matched rule index in bit vector. Due

to abundant parallelism in FPGAs, BV algorithm provides high throughput as well

as low resource utilization. In [15], [28], pipelined architecture of BV approach is

developed and implemented on FPGAs. A two-dimensional pipelined architecture on

BV is proposed to increase the achieved throughput value [8].

Bloom filters are mostly used in packet classification algorithms with new adaptations

such as parallel bloom filters [29], dynamic bloom filters [30], compressed bloom fil-

ters [31]. Bloom filters possess high query efficiency and very low resource consump-

tion for hardware based classifications. However, bloom filters do not store the actual

data on memory, instead, they use independent hash functions to map the packet fields

into linear vectors. Therefore, due to collisions in hash functions, there exist false

positives, which means a match condition although there is no match at all. In or-

der to minimize the probability of false positives, parallel bloom filters are proposed,

which is actually a decomposition-based algorithm. In [29], data of multiple-fields

are stored in independent bloom filters and parallel lookup is performed in each of

them. Relevance information between independent lookup processes are handled by

using twice verification hash functions. Since each bloom filter has a probability of

false positive, using independent bloom filters decrease overall false positive prob-

ability (FPP) because of exponential degree resulted from parallelism. However, as

the number of individual fields increase, the required hash functions should be recon-

17

figured to optimize FPP at each time. Moreover, this approach is not convenient for

the networks that force priority based classification due to the fact that no priority

information is utilized in these data structures.

TCAMs are employed in many multi-field classification solutions [34], [35], [36] due

to their O(1) lookup performance. However, TCAMs are not scalable with respect to

clock rates and rule set sizes. Moreover, rapid increase in flow table size in SDN costs

too much resource and power consumption. In order to optimize TCAM approach in

terms of scalability and power, SRAM-Based TCAM implementations on hardware

utilized [37], [38]. Moreover, the combination of TCAM-BV architecture is proposed

in [39].

Decision-tree-based algorithms deals with a search space, which is cut recursively

into smaller spaces by using the information of header fields in packets. In decision

based algorithms, each rule defines a hypercube in a n-dimension space, where n is the

number of header fields in packet. HiCuts [40] and HyperCuts [32] are two similar

examples of decision-tree based hardware classification algorithms. While HiCuts

constructs a decision tree to determine next dimension to cut and the number of cuts

in this dimension, HyperCuts provides an independent cutting process for each field,

which leads to a shorter decision tree.

2.3.4 Implementations on Different Hardware Platforms

Field Programmable Gate Arrays (FPGA) are widely used in order to develop and

evaluate packet classification algorithms. Due to existing abundant parallelism, FP-

GAs can provide an appropriate platform to design low power, high throughput, low

latency classification engines. Furthermore area/delay/power gaps between FPGA–ASIC

platforms are closing increasing the viability of FPGA for fast hardware implementa-

tions [41].

FPGAs have limited on-chip resources which leads to small rule set implementations.

Although using off-chip memories can solve this problem, additional latency and

power introduced by these off-chip resources and decreased clock rate cause poor

performance during lookup process [8].

18

Naous et al. implement an OpenFlow switch on NetFPGA [13], which is a Xilinx

Virtex-2 Pro 50 FPGA board. Classification is performed for 10-tuple OpenFlow

headers using a combination of on-chip TCAMs and an off-chip SRAM. The overall

design can handle 1 Gbps line rate, together with 32K exact match entries and 32

wildcards entries. This sustained throughput, 1 Gbps, is very small compared to

recent studies. Moreover, since TCAMs are not scalable with clock rate and header

size, NetFPGA does not provide a flexible architecture to further increase rule set and

header size.

Jiang et al. uses a SRAM-based TCAM classifier and implements the architecture in

Xilinx Virtex 7 FPGA [37]. The design can support 1K rules with 150-bits headers

in TCAM with sustaining a throughput of 200 MPPS. The latency exposed by each

packet is about 6 clock cycles. Due to SRAM-based TCAM approach, low power

dissipation is achieved at the desired throughput. However, in [37], while power

consumption is linearly scalable with TCAM width, the the results are obtained by

estimation. Real-time power measurement can give nonlinear relations with respect

to increasing header bits.

In [42], hardware implementation of a pipelined decision tree approach is performed

on Xilinx Vertex 5 FPGA. This design can store 1K 12-tuple rules in a single FPGA

by achieving a throughput of 40 Gbps for the minimum size (40 bytes) packets. How-

ever, this decision tree approach is rule-set dependent, which may lead to rule set

expansion and excessive utilization of resource utilization. Taylor et al. propose an

architecture named Distributed Crossproducting of Field Labels (DCFL) and imple-

ment the architecture on Xilinx Virtex-II Pro FPGA [33]. An optimized implementa-

tion of DCFL is predicted to achieve 100 MPPS throughput while supporting 200K

rules. However, in this approach, standard 5-tuple match is utilized. In SDN, the

number of individual fields in headers can reach up to 15 in our case, which leads

to an exponential increase in matching combinations in aggregation network used

to combine individual field results. Moreover, using Bloom Filters results in false

positives, which can be undesirable in specific applications.

Song et.al [39] propose an architecture called BV-TCAM for multi-match packet clas-

sification and implement the design on Xilinx XCV2000E FPGA. In this work, while

19

TCAM performs prefix match or exact match, a tree-bitmap implementation of the

BV algorithm handles source and destination port lookup. However, in [39], overall

FPGA implementation details and results are not provided. Furthermore, the esti-

mated sustainable throughput, which is 10 Gbps, is very low compared to other BV

[8], [15], [28] approaches.

In [8], [15], [28], pipelined architecture of Bit Vector Algorithm is proposed and

implemented in Xilinx FPGAs. Although pipelining provides high throughput and

scalability with respect to rule size, the latency introduced by these design is quite

high due to high number of pipeline stages.

2.4 Works Closely Related To This Thesis

The motivation of FAAST is achieving a very small overall latency during SDN

packet classification together with sustaining very high throughput. Moreover, while

satisfying these performance requirements, we also study on the scalability of the

design for future needs of SDN environment such as increasing flow table size or in-

creasing field size for packets. For this purpose, we mostly focus on two recent works

[8], [9]. In order to achieve high throughput, a two-dimensional pipelined architecture

using bit vector algorithm is proposed in [8]. However, due to high number of pipeline

stages, this design introduces too much latency for the incoming packets in lookup.

As a result, we used the idea of caching frequently used rules in a fast and separate

lookup engine to decrease this latency. Caching popular rules in network classifiers

is not new. However, compared to traditional IP networks, for newly-emerged SDN

classification, there are multiple requirements that must be considered such as partial

overlapping. In [9] a different caching scheme for SDN OpenFlow is proposed by

taking these concepts into account.

2.4.1 Bit Vector Based Pipelined SDN Flow Table Implementation on FPGA

Among hardware packet classification algorithms, bit vector is a specific technique,

where a lookup process for each field or a partition of field in a packet header is

performed separately. The result of each lookup is N-bit vector. The bit-wise AND

20

operation for all fields give the final match result. Bit Vector algorithm is very suit-

able due to the abundant parallelism of hardware in FPGA. There are many FPGA

implementations of BV algorithm [8], [43], [15], [28]. In [8], a different approach

to BV algorithm is proposed: Two dimensional Pipelined Architecture of Bit Vector

for SDN packet classification. Main reason of this architecture is to achieve very

high throughput by decreasing the routing delays on FPGA. Hence, two dimensional

pipeline architecture can be considered as a FPGA-optimization of BV algorithm.

This approach claims that instead of performing lookup in overall packet header in a

complete rule set, modular units that are responsible for specific field bits and rules

can be designed. This can be achieved by dividing packet headers consisting of L

bits into small partitions called strides of s bits, and dividing total rule set of N rules

into smaller n groups. After that, all these modular units that are responsible for a

specific header stride and group of n rules can be connected in a pipelined fashion in

both horizontal and vertical direction. The block diagram of this proposed approach

can be seen in Fig. 2.4. For example, dividing N rules into small groups constitutes

the vertical pipeline, whereas diving header bits into strides constitutes horizontal

pipeline.

The query operation is performed by firstly splitting the header bits into constant s-bit

strides. After that, a lookup is performed on the first processing element (PE), which

is shown as PE(0,0). The result of this lookup process is n-bit BV. Thereafter, this BV

result is sent to next PEs in both horizontal and vertical direction. At this time, these

next PEs perform lookup for their related header stride and rule set and apply bit-wise

AND operation with the previous n-bit BV. This process continues until PE(N/n,L/s)

provides the final bit result. Therefore, n-bit BVs travel in both horizontal and vertical

direction throughput the two dimensional pipeline architecture.

The lookup process in each PE is carried out using data-associative element. In [8],

these elements are designed using logic gates. Fig. 2.5 illustrates two PEs with two

data-associate elements for a rule set consisting of 4 -rules with one Header(7:0).

Stride size s is selected as 4-bits. Therefore Header(7:0) is divided into two 4-bit

strides; Header(7:4) and Header(3:0). When R1 with ’0101_1100’ is inserted, the

contents of data-associate memories are changed depending on the stride value. For

21

Figure 2.4: Connection of PEs in pipelined BV architecture

example, since Header(7:4) of R1 is ’0101’, the second bit (R1 bit) at the address

’0101’ is set to 1 for the first data-associative memory. Similarly, the second bit at

the address ’1100’ is set to 1 for the second data associative memory for Header(3:0)

of R1. As observed, when a rule with wildcard match is inserted, then, corresponding

bits at all addresses are set to 1. For example, Bit 3 (R3 bit) at all addresses is set

to ’1’ due to wildcard match of R3 Lookup operation is mainly searching the ’1’s in

data associative memories for the incoming strides. For example, when a packet with

’0101_1100’ arrives, BV result of first and second element will be ’1010’ and ’1010’

respectively. Bit-wise ANDing these two BVs will result in ’1010’ which means that

packet with header of ’0101_1100’ has match with R1 and R3 at the same time. If

priority-based classification is utilized, then a priority encoder can be utilized to select

only one of the rules. In [8], this is achieved by designing a rule-decoder entity inside

each PE.

Two dimensional architecture in [8] is implemented in high performance Xilinx Vir-

tex 7 FPGA. Due to pipelining connections, the routing delays are decreased signif-

icantly and 324 MPPS peak throughput is sustained. However, dividing rule set and

header bits into smaller parts leads to a significant increase in latency. This is because,

in order to obtain a final BV result, this architecture has to wait for a total of (N/n +

L/s) cycles. As n and s decreases, routing delays are further minimized, but, in turn,

latencies are further increased.

22

Figure 2.5: Internal structure of data-associative elements

As a result, decreasing the latencies introduced by this pipelined BV architecture is

required. In FASST, this is solved by using a separate, fast classification engine,

SRAM-based TCAM. TCAM is used as a cache in our application, where popular

rules are dynamically stored.

2.4.2 Rule Caching Algorithms By Exploiting Temporal Locality For Flow Ta-

bles in SDN

In [9], a caching scheme is proposed in order cache popular rules for OpenFlow

enabled SDN packets. Rather than traditional caching solutions where individual

rules or compressed-version of rules are cached, in this scheme, a rule dependency

graph is generated. In this dependency graph, rules are cached with their dependent

rules in order preserved the network semantics.

Different from IP networks where there are only containment relations between IP

fields, in [9], partial overlap conditions are also considered during computing rule de-

pendencies. Since there are distinct header fields (15-tuple headers) in SDN packets,

there exist many combinations of partial overlaps between rules. An example of rule

set and the corresponding dependency graph is illustrated in Fig. 2.6. In this rule set,

there are 6 rules with 4 distinct header fields. Furthermore, R1 has higher priority and

23

R6 has the lower priority.

Figure 2.6: Rule set with indirect dependencies

For example, partial overlaps can be observed between R2 and R6. Direct overlap

condition between R2 and R4 can be detected simply by computing intersections of

fields between these rules (R4 is dependent on R2). However, the matches of R2 and

R6 do not intersect. However, if a dependency graph is constructed, then, indirect

dependency between R2 and R6 should be detected. This is because the matches of

R4 and R6 are dependent on R2. While caching popular rules; R2, R4 and R6 are stored

in cache as a group.

The requirement of caching dependent rules comes from the priority based classifi-

cation in SDN. Consider that R6 is popular rule and indirect dependencies are not

computed. Therefore, only R4 and R6 are stored in cache by computing only direct

24

dependencies. A packet with header 1*1* that should match R2, would match R4 in

this case, which causes a malfunction in classification.

In [9], computing rule dependencies are carried using a recursive algorithm. The

input of the algorithm is a rule set with different priorities, and the output of the

algorithm is the prioritized list of ordered rules as seen in Fig. 2.6. Algorithm starts to

generate graph by firstly sorting all rules based on priorities. After that, for each rule,

it checks the intersection conditions recursively. For example, firstly R6 is captured

and intersection operation is performed, and R4 is detected. From that point, the

intersection checking continues from R4 to find R2.

There are additional algorithms in order to increase the effectiveness of the caching

scheme in [9]. For example, in order to provide caching on large flow tables, splicing

rule dependency graph into smaller groups are proposed. Moreover, at each rule in-

sertion, overall rule dependency is graph is not cleared. Instead, incremental updates

are performed.

The evaluation of the caching scheme in [9] indicated that, for network behaviors with

strong temporal locality, up to 97% cache hit rates can be achieved due to caching

dependent rules. This outcome is very useful for our proposed architecture FASST

that aims to decrease overall latency of packets during classification.

2.4.3 Design Developments of FASST Compared To Related Works

At this point, it is important to specify that we did not blindly apply these existing

works to our proposed architecture FASST by simply combining them, which is im-

possible to achieve indeed. The adaptation and developments of the existing proposed

works in FASST can be summarized listed as in the following:

• The hardware platform for FASST and the work in [8] are completely different;

hence, the design stages of two dimensional bit vector architecture show a lot

of variations. For example, in [8], overall architecture is developed using logic

gates, which is simpler to manage and control to increase throughput. However,

in FASST, embedded memory blocks are used, which gives us a more scalable

25

solution for increasing flow table size and packet header size. The design steps

of managing these embedded memory blocks are more sophisticated.

• The partitions of rules and headers in FASST and [8] are completely different.

In other words, while [8] uses a one level design hierarchy to design overall

two dimensional pipeline architecture by partitioning rule set size and headers,

we developed FASST by designing a two-level hierarchy. This means that we

did not partition the rule set size and headers in the same design level. At top

level, we split the rule set size first by dividing overall rule set into 32 rules, and

at second hierarchy level, we split the header bits into different stride numbers.

This modular and two level design provides us a more manageable and scalable

solution in terms of flow table sizes.

• While [8] uses a constant stride size s for header partitions throughout the de-

sign, FASST utilizes different stride sizes, which are determined and configured

depending on the field type.

• FASST extracts locality information from two level bit vector design, which is

not applied in [8].

• In [9], the proposed caching scheme named CacheFlow is a complete software-

based approach. In other words, prototype and evaluations of the caching algo-

rithms are all carried out in high-level software environment. There is no design

step for hardware switches. A commercial hardware switch Pica8 is utilized to

be used as a cache. However, in FASST, all operations of lookup and caching

popular rules are performed on o single-hardware, which is Altera FPGA. A

SRAM-based TCAM is designed to be use as a cache in FASST.

• Different from [9], in which there is no software memory limitation, we adopted

and optimized caching algorithms to be able to fit a System on Chip (SoC)

design in FASST. Since we use a soft processor inside FPGA by designing a

SoC platform, there are limited embedded (on-chip) memory blocks that this

soft processor can utilize as program memory. For example, we did not support

incremental updates and operation of splicing long chains presented in [9].

• Moreover, we did not apply recursive algorithms provided in [9] due to the

fact that recursive operations of the algorithm for SDN 15-tuple headers in-

26

crease the stack memory utilization exponentially in our SoC design. Instead,

we changed these algorithms to iterative versions. This enables us to have more

stack memory area at the expense of longer generation time of the rule depen-

dency graph. However, execution time on rule dependency generation is not

our focus in this thesis. As a result, we generated the rule dependency graph by

considering each rule separately, which is different from [9]. For example, for

the example rule set given in Fig. 2.6, indirect dependencies between R2 and

R6 are not found at the time of generating rule dependency graph. In our graph,

R6 is only connected to R4 and R4 is only connected to R2. However, adapting

a graph searching algorithm, the indirect relation between R2 and R6 can be ob-

served. This is because, we deployed a depth-first search on dependency graph,

which provides a search on R6, R4 and R2 in order. Hence, all dependent rules

including direct and indirect dependencies are detected during graph traversal.

• In [9], the details of SDN rule headers are not given in detail due to using high-

level software environment. In FASST, all design steps are provided regarding

partial overlaps and IP containment relationships during lookup process.

• In [9], when a packet arrives to be classified, lookup operation is only per-

formed on cache. If it is found in cache, the result is provided. On the other

hand, if packet does not match any rule in cache, hardware switch sends this

packet to a software agent, which stores overall rule set in a software environ-

ment. This causes high trip delays for packets when packets are actually found

in software agent. In FASST, we perform parallel lookup process in BVM and

TCAM Cache, which has no effect on overall design when a packet is not found

in cache.

27

28

CHAPTER 3

FASST: FAST SCALABLE SDN TABLE

3.1 FASST Overview

SDN switches look up every packet in a flow table of rules that are defined by 15 fields

in the packet headers at 10s of Gbps line rates. Our proposed hardware architecture

FASST always achieves a very low average latency as well as high throughput. The

core idea in FASST is to exploit the well known temporal locality in the network traf-

fic and to offer a tradeoff between average look up latency and power consumption.

FASST hardware architecture can be deployed in SDN applications where ultra-low

latency and high bandwidth are the primary concern such as data centers. Compared

to previous studies, there is an increasing interest in latency for mainstream applica-

tions in data centers with tens of thousands of servers. This is because a significant

amount of computing, storage and communication is shifting to current data centers

[44]. Moreover, ultra-low latency applications in data centers such as high-frequency

trading, high performance computing require operations of request-response loop and

overall operation is completed in case all requests are satisfied [45]. Therefore, end-

end latency for these applications in data centers should be very low to provide the

quality of service. Furthermore, achieving very low latency will have a significant

positive effect for existing applications such as Google’s statistical machine transla-

tion [46]. Improving the latency performance will enable these applications to be

developed in a faster and more scalable way as well as more data-exploration in real

time [47].

To this end, we define the entire flow table as a set of rules R = {R1, R2, . . .} with

29

size (number of rules) |R|. We define a time varying set of frequently accessed rules

in this flow table F ⊂ R with size |F|. By the results of [9, 20] we assume |F| <<
|R|. The throughput, latency and power metric values for packet look-up as defined

in Section 2.2.2 decline with increasing size of flow table. To this end, one can adopt

a fast lookup engine that stores F returns most of the match results and R is stored

in a slower engine for infrequent references whenever required.

FASST realizes this cache-like approach with two hardware-based classification en-

gines named Bit Vector Module (BVM) and Ternary Content Addressable Memory

(TCAM) as seen in Fig. 3.1. Bit Vector is a decomposition-based architecture that

performs parallel look-ups on each individual field, and it provides a scalable and high

throughput classification solution in recent work [8], [43], [15]. In our architecture,

BVM storesR in the table as bit vector arrays and produces partial matches between

input strides and corresponding bit arrays. Moreover, 2D pipeline architecture in

BVM is implemented with particular updates similar to the recent work to concate-

nate the partial results at high clock rates [8]. The latency of the BVM is tslow clock

cycles because of pipeline stages in BVM. This latency increases with the number of

pipeline stages, which are determined by the number of rules |R| and header size of

the rules. The FASST TCAM is deployed as a flow cache for a fast look up in order

to decrease the average latency of SDN packets. In this sense, TCAM cache only

stores F and produces matches in tfast clock cycles latency, where tfast << tslow. In

our current implementation, tslow = 80 cycles and tfast = 3 cycles. Both BVM and

TCAM return Rule IDs as match results.

Figure 3.1: Block diagram of FASST architecture

30

3.2 FASST Operation

We represent SDN rules in FASST as <Rule ID><List of Header fields to match><Rule

Priority>. The input to FASST is the extracted list of header fields of the incoming

packet. If there is at least one matching rule to the input header list, we call this result

a positive. In this case, the output is the Rule ID of the matching rule with the highest

Rule Priority. We assume that the corresponding actions for the matching rule are

stored in an on-chip RAM which can be accessed with a simple address mapping. If

there are no matching rules the result is a negative. In this case, the output is a default

value.

Multi-field packet classification in FASST begins with a Packet Parser (PP) functional

unit. PP extracts different types of packet headers up to 15-fields, which are compat-

ible with Openflow protocol. By the definition in Section 2.1.2, we define flow Fj as

the group of packets that match to Rule ID j. The ith packet arriving on Fj is denoted

Pi,j .

Following the field extraction by packet parser, the list of headers is processed by both

BVM and TCAM. It is important to note that TCAM might return a false negative

result for a given packet as it only stores F while BVM does give any false negative

result as it stores R. To this end, Match Monitor (MM) continuously traces BVM

match results and dynamically updates TCAM with the current F .

While BVM result arrives in tslow clock cycles, TCAM cache produces a result in tfast

clock cycles. The lookup is finished in tfast clock cycles for packets with positive

result from the TCAM. If Rule ID j is stored in TCAM, all packets on flow Fj are

matched by TCAM in tfast clock cycles. The corresponding match results for the

same packets to Rule j from BVM arrive in tslow clock cycles. The Match Monitor

(MM) eliminates the duplicate late positive results from BVM at the output. Note

that all packets of Fj are matched by TCAM with the same latency and their order is

preserved at the output. The lookup finishes in tslow clock cycles with a positive or

negative result for packets that did not produce a positive result from the TCAM.

31

3.3 Two Dimensional Bit Vector Machine

FASST utilizes a Bit Vector Machine (BVM) in order to perform parallel lookups

on header fields for each incoming packet. BVM is implemented in a 2-dimensional

pipelined fashion in order to minimize the routing delay and achieve high clock rate in

hardware [15]. Two dimensional pipeline architecture is observed to provide efficient

QoS regarding rule set size and the number of header fields at high clock rates [8].

Vertical pipeline enables BVM to become scalable with respect to rule set size F ,

whereas horizontal pipelining provides scalable solutions for high number of fields in

a multi-field header.

In FASST, BVM is designed as a two-level hierarchy of pipelines, which is different

from [8]. Two level hierarchy enables FASST to support different rule set size in a

more modular way. In other words, a modular PE in [8] only produces the match

result for exactly 1 rule, and overall 2D pipelined architecture is constructed by con-

necting these 1-rule PEs. If rule set size is required to increase or decrease, then

reconfiguring the connections between these PEs take time at top design. However,

in FASST, PEs are gathered in a pipelined manner to create a higher level PE, which

is responsible for the match results of more rules. At top design, these higher level

PEs are also connected as pipelined manner and utilized. As a result, changing the

rule set size |R| is more easy by simply adding and removing higher level PEs. In

FASST, lower level PEs are named as Stride BVM and higher level PEs are named as

Rule BVM. Each level has its own 2-dimensional architecture. Top level design con-

sists of 2 horizontal and 32 vertical pipeline stages as illustrated in Fig. 3.2. At top

level, there exists a 16 Rule BVM. Moreover, there is another 2-dimensional pipeline

architecture inside each Rule BVM, which constitutes the second hierarchy. Each

Rule BVM is connected to two priority encoders (POEnc) and an another Rule BVM.

Since each Rule BVM has also 2 stage vertical internal pipeline, total vertical pipeline

stages are equal to 32, which can also be seen by observing the number of POEnc.

Rule BVM is a modular architecture and supports a look up operation of 32 flow en-

tries among total rule set size F . There are two match outputs for 32 rules stored in

a Rule BVM: match result for the former 16 rules, and match result for the latter 16

rules. FASST has n = 16 for our implementation where n is the number of rules that

32

can be connected in a pipelined fashion in both horizontal and vertical direction as

defined in 2.4.1. The algorithmic latency between these two outputs is a single clock

cycle due to internal pipeline architecture of Rule BVM. For example, consider |R|
rules are stored in FASST BVM. If a Rule BVM at top hierarchy is responsible for the

classification of rules between (Ri, Ri+31), then first match result of a modular Rule

BVM is for the rules (Ri, Ri+15) and asserts at t clock cycle, and the second match re-

sult is for the rules (Ri+16, Ri+31) and asserts at t+1 clock cycle. Each of these match

results is a parallel bit vector of length 16, where each bit denotes a match condition

for a particular rule entry if the value is logic 1. The structure of bit locations in a

bit vector is similar to Fig. 2.5 in Section. 2.4.1. Since Rule BVM has two match

outputs, there are two POEnc to report highest-priority match associated for that Rule

BVM. Therefore, each POEnc is responsible for 16 rule entries. The match result of

POEnc is 16-bit vector, similar to Rule BVM. However, since POEnc finds the high-

est priority match among multiple match results, only a single bit can be logic 1 at

the output of POEnc. Each POEnc gives the result to another POEnc. As a result,

priority encoding is also carried out in a pipelined manner in our work.

In FASST hardware architecture, the number of rules of which each POEnc is respon-

sible can be decreased and increased. However, the change of the rule number in each

POEnc leads to a trade-off between throughput and latency due to hardware consid-

erations in pipelined design. In other words, if the number of rules in each POEnc

is increased to 32 instead of 16, then the maximum achieved throughput in FASST

BVM design decreases due to the fact that the combinational processes carried out

in each POEnc can only meet the timing requirements in a lower frequency. On the

other hand, since the overall number of POEnc units are decreased at top level hier-

archy , the latency of FASST BVM is decreased. Similarly, if the number of rules of

which each POEnc is responsible is decreased, then priority encoding can be carried

out within a narrow clock period, which results higher clock rates. However, in this

case, pipeline latency in FASST BVM is increased based on the overall number of

POEnc units.

Internal architecture of a Rule BVM consists of 47 horizontal and 2 vertical pipeline

stages. For each direction, a total of 94 modular units called Stride BVM is imple-

mented as seen in Fig. 3.3. Stride BVM is the basic unit of classification process

33

Figure 3.2: 2-D top level architecture of BVM

inside BVM. Two horizontal pipelines are responsible for lookup process of the first

16 rules and the second 16 rules, respectively. We can use a coordinate system to

map each Stride BVM. For example, for RuleBVMi, Stride BVM units at the up-

per horizontal pipeline can be named as RuleBVMi(0, 0), RuleBVMi(0, 1) up to

RuleBVMi(0, 46). Similary, Stride BVM units at the lower horizontal pipeline will

be RuleBVMi(1, 0), RuleBVMi(1, 1) up to RuleBVMi(1, 46).

The input to each Stride BVM is a header stride of s bits, as defined in Section. 2.4.1.

In FASST BVM, s can be 3, 4, 6 or 8 bits depending on the header type. For example,

for 6-bit ToS field, a single Stride BVM is enough to perform look-up. On the other

hand, splitting 64-bit Metadata field into 8 subfields is required. Therefore, there are

identical 8 Stride BVM units for Metadata field and s is 8 bits for each of these Stride

BVM units. As a result, the focus of each Stride BVM on horizontal direction is to

look-up for distinct patterns of header strides.

Stride BVM units at the same vertical stage are responsible for the same header stride

patterns. However, the rule entries which they are responsible for are different. For

instance, 47 Stride BVM units at upper horizontal pipeline produce parallel bit vectors

for a 15-tuple packet P for rules (Ri, Ri+15). After single clock cycle, 47 Stride BVM

34

units at lower horizontal pipeline produce bit vectors for rules (Ri+16, Ri+31) for the

same packet P . For example,RuleBVMi(0, 0) andRuleBVMi(1, 0) performs look-

up for header stride s0 in Fig. 3.3. However, the lookup time of RuleBVMi(1, 0) is

delayed with single clock cycle from the lookup time of RuleBVMi(0, 0).

Stride BVM has access a data associative on-chip Random Access Memory (RAM) to

generate a match or no-match result. Each result of Stride BVM is a parallel bit vector

of length 16, where each bit indicates the corresponding rule entry number. The local

bit vectors of each Stride BVM are bit-wise ANDed with bit vectors provided from

previous Stride BVM. As a result there is total of 47 logical AND gates in horizontal

pipeline.

Figure 3.3: Internal pipelined architecture of Rule BVM

In FASST, BVM stores and performs look-up for 512 flow table entries; hence |R|
is 512. Considering 2-dimensional pipeline in two-level hierarchy, overall design can

be labeled as RuleBVMl(i, j) and POEnck; where l labels the Rule BVM number at

top level for 0 ≤ l ≤ 16 and 0 ≤ k ≤ 31. Note that, if RuleBVMl(i, j) is connected

to POEnck and POEnck+1, then l=k. Moreover, i and j denotes 2-dimensional

coordinate system for Stride BVM inside Rule BVMs; where 0 ≤ i ≤ 1, 0 ≤ j ≤ 46.

Consider two SDN packets with 15-tuple headers arrive to FASST BVM. The total

number of header bits in a 15-tuple packet is 356 bits as defined in Section. 2.1.2. We

split 356 bit header into subfields of s bits, where s can be 3, 4, 6, and 8. This splitting

35

of header bits results in 47 horizontal stages in each Rule BVM. Hence, if we label

the subfields as si, 0 ≤ i ≤ 46, the look-up process flow inside BVM for packets P

occurs as illustrated in Table. 3.1 with respect to clock cycles. For this packet flow,

we assume that a new packet Pi arrives to FASST BVM at each clock cycle.

Table 3.1: Packet tracing flow inside BVM for 512 rules

Clock Cycle Look-up Phase

n
s0 of P0 arrives to RuleBVM0(0, 0)

s1 of P0 passes to RuleBVM0(0, 1) by RuleBVM0(0, 0)

s0 of P0 passes to RuleBVM0(1, 0) by RuleBVM0(0, 0)

n+1

BV match result from RuleBVM0(0, 0) for s0 of P0

s0 of P1 arrives to RuleBVM0(0, 0)

s1 of P1 passes to RuleBVM0(0, 1) by RuleBVM0(0, 0)

s0 of P1 passes to RuleBVM0(1, 0) by RuleBVM0(0, 0)

n+2

BV match result from RuleBVM0(0, 1) for s0 ,and s1 of P0

BV match result from RuleBVM0(1, 0) for s0 of P0

BV match result from RuleBVM0(0, 0) for s0 of P1

s0 of P1 passes to RuleBVM1(0, 0) by RuleBVM0(1, 0)

n+48
BV match result from RuleBVM0(0, 46) for s0, s1 up to s46 for P0

BV match result from RuleBVM0(1, 45) for s0, s1 up to s45 for P0

BV match result from RuleBVM1(0, 44) for s0, s1 up to s44 for P0

n+49
BV match result from POEnc0 for the rules (R0, R15) using BV from

RuleBVM0(0, 46) for P0

n+50
BV match result from POEnc1 for the rules (R0, R31) using BV from

POEnc0 and RuleBVM0(1, 46) for P0

n+51
BV match result from POEnc2 for the rules (R0, R47) using BV from

POEnc1 and RuleBVM1(0, 46) for P0

n+80
BV match result from POEnc31 for the rules (R0, R511) using BV from

POEnc30, and RuleBVM15(1, 46) for P0

Final result obtained from the last POEnc, which is POEnc31, is 16-bit parallel bit

vector. However, in order to determine the Rule ID of the matched rule, we need

group information of the matched bit in parallel bit vector. In other words, since

we split 512 rules into small groups of 32 rules, a 32 bit register is defined. Each

bit in this register defines the group number. For example, bit 0 in this register de-

notes (R0, R15), whereas bit 1 denotes (R16, R31). This register is set by all POEnc

units during lookup process with a pipelined manner. If current POEnc observes the

36

highest priority match for its rule range, then it clears all bits in this register, and

sets the corresponding bit, which it is responsible for. For this purpose, at the end

of POEnc31, FASST provides 16-bit match vector, and 32-bit group register infor-

mation. If final bit vector 0x0008 and final register content is 0x00000002, then the

address of the matched rule is determined as 19. Using this address, we can simply

figure out the Rule ID of the matched rule by using a <Address><Rule ID> on chip

memory. Hence, the output of BVM is Rule ID of the matched rule.

3.4 Ternary Content Addressable Memory (TCAM)

In FASST, TCAM is utilized to generate match results for frequently accessed rules

over the recent past. Due to TCAMs superbly fast O(1) look-up, the match result for

these frequently accessed rules is produced in a 3 clock cycles, tfast = 3 cycles. The

implementation details of FPGA-based TCAM in FASST is given in Fig. 3.4.

TCAM design has similar implementation structure with BVM except for 2-dimensional

pipeline architecture. It can be considered as a single Rule BVM with no vertical or

horizontal pipelining. Instead of passing input strides si, 0 ≤ i ≤ 46 to Stride TCAM

units in a pipelined fashion, each input stride si goes to all Stride TCAM units concur-

rently for lookup process. In other words, StrideTCAM0 outputs the match result

for s0 at the same with StrideTCAM46, which outputs the match vector for s46. In

a Rule BVM, RuleBVM0(0, 46) produces match vector for s46, 46 clock cycles after

RuleBVM0(0, 0) outputs the match result for s0.

Due to exploiting extreme amount of parallel computation during TCAM look-up, the

number of stored rules are kept as minimum as possible in order to avoid clock rate

deterioration. Therefore, at the first stage of FASST design, TCAM supports 32 SDN

flow entries, which means |F| = 32. While a single Rule BVM searches over 16 rules

with 2-dimensional pipeline architecture, TCAM cache searches over 32 rules with

no pipelining at all. Moreover, different from Rule BVM, TCAM has its own internal

priority encoder POEnc-TCAM to return highest priority match.

When a packet arrives FASST, it is routed to both BVM and TCAM. At this point,

37

Figure 3.4: Internal parallel architecture of TCAM

TCAM splits the 15-tuple (356 bits) header into 47 subfields with same stride con-

figuration of s as Rule BVM and sends all of these distinct subfields to Stride TCAM

units concurrently. After two clock cycles, bit vectors from each Stride TCAM assert

to report matching status over 32 rules. After one clock cycle, POEnc-TCAM gener-

ates 32-bit highest priority match vector. As a result, end to end algorithmic latency

of TCAM is 3 clock cycles.

Since there is no rule splitting as in BVM (splitting R to groups of n = 16), there

is no need for a register for group information. 32-bit final parallel bit vector result

provided by POEnc-TCAM gives directly the matched rule address. Using a similar

<Address><Rule ID> embedded memory, FASST provides Rule ID of the matched

packet in TCAM.

3.5 Match Monitor (MM) – Locality Detection

Match monitor (MM) measures the network traffic over the recent past by analyz-

ing matched results asserted by BVM continuously. Note that, the input to MM is

the BVM address of the matched rule entries, but BVM output is the Rule ID of the

matched packets. However, as explained in Section. 3.3, 16-bit final bit vector and

32-bit group information are also asserted by BVM, which helps to find BVM address

of matched rule. Actually Rule ID is found by using BVM address. As a result of

38

this measurement, MM detects the most popular BVM addresses of rules by exploit-

ing well known temporal locality. Instead of traditional caching solutions, MM also

computes a dependency chain similar to the method as introduced in Section 2.4.2 to

respect rule dependencies between these frequently accessed rules. As a result, MM

caches the rules together with their dependencies.

While IP route caching with rule dependencies is considered on earlier works, IP pre-

fixes only have simple containment relationships [48], [49]. However, in OpenFlow

enabled SDN, partial overlaps may exist due to any match combination of multiple

fields including exact match and wildcard match, which can result in indirect de-

pendencies. Naga et al. proposes rule-caching algorithms for SDN called Infinite

CacheFlow; however, implementation and evaluation of these algorithms are carried

out only in software environment [9]. Cache misses are directed to a external software

agent that searches the entire flow table, which corresponds to BVM in FASST. For

low cache hit rates, this leads to long round trip delays for packets. MM in FASST

implements an adapted and developed version of Infinite CacheFlow for hardware-

based applications considering both containment relationships for IP fields and partial

overlaps for other header fields.

Detailed block diagram for MM to handle locality detect and caching is shown in Fig.

3.5. The input to MM is BVM address of the matched entries. BVM address is 9 bits

long in our case, since |R| = 29 = 512. Locality Detection unit measures the traffic

over a time window Ws that is used to catch legitimate changes in network load.

The choice of Ws is extremely dependent upon the network characteristics. In other

words, Ws should be long enough to prevent thrashing and short enough to adopt

new changes [9]. Moreover, we employ another parameter named Threshold Size

Thr used in locality detection. If incoming packets match a flow entry Fj k times

with k > Thrs in BVM over the time window Ws, Fj is considered as a frequently

used rule and BVM address j of Fj is stored in RAM-1 by Locality Detection. Note

that Locality Detection unit stores BVM address j to RAM-1 instead of list of header

fields to match.

Locality Detection unit only detects a specific number of frequently used rules due

to limited storage capacity of RAM-1, which is 512x9. Moreover, since FASST also

39

Figure 3.5: Conceptual design of Match Monitor

computes the rule dependency chains, rule depth of the detected popular rules should

also be taken into consideration while maintaining rule detection. Rule depth is the

maximum number of rules that are dependent on a popular rule. In FASST, this pa-

rameter is considered as constant, which is 7. This means that, FASST flow table can

store SDN rule entries which have dependency chains with maximum depth 7. Flow

entries in REANNZ research and education network for an SDN-enabled Internet eX-

change Point (IXP) show that most dependency chains have depth 1 [50]. However,

to be on the safe side, we split RAM-1 into subparts of 8-words, where each subpart

stores a popular rule and its maximum dependent rules.

The organization of RAM-1 is depicted in Fig. 3.6. Address0 and Address511 are

used for handshaking operations between Locality Detection, Processor and TCAM

Cache Update Interface units for process scheduling. Detected popular BVM ad-

dresses of rules are written to Addressi, where i = 8k+1, for 0 ≤ k ≤ 31, by Local-

ity Detection Unit. After all popular BVM addresses are written to RAM-1, Locality

Detection unit sets bit 0 at Address0 to inform the completion of rule detection. At

this time, processor continuously polls bit 0 at of Address0. After completion of rule

detection, processor reads popular BVM addresses from RAM-1, determines the cor-

responding dependent rules by inspecting BVM addresses of them, writes them back

to RAM-1 again. Each BVM address of a dependent rule is written to the particular

subpart of RAM-1 of the associated popular rule in a prioritized order. Address257 to

40

Address510 in RAM-1 are reserved addresses for future purposes.

The processor in MM has two functions in FASST: Generating a rule dependency

graph for BVM rules as soon as rules are inserted to BVM, and searching the rule

dependency graph in order to find rule dependencies among these rules at run time.

Generating the rule dependency graph is an independent process from searching the

graph. In other words, as soon as Packet Parser (PP) completes the writing of rule

entries to BVM, processor starts to generate this graph. While generating the graph,

the processor needs <Rule ID><Rule Priority><Rule Header Content> information.

This information is provided by PP during rule insertion phase. RAM-2 stores <Rule

ID><Rule Priority>, and RAM-3 stores <Rule Header Content>. While rules are

written to BVM addresses, PP also extracts <Rule ID><Rule Priority> information

of these rules at this time, and writes <Rule ID><Rule Priority> pairs to RAM-2 .

BVM address is used as address bus of RAM-2 for the beginning. In other words,

<Rule ID><Rule Priority> pair at Address0 of RAM-2 is <Rule ID><Rule Priority>

content of the rule located at Address0 of BVM. Moreover, while PP writes the rule

contents to BVM, it also writes them to RAM-3 at the same time. However, although

rules are written to BVM as rule-expansion (expanding wildcard entries using data

associative memory), RAM-3 stores the rules without expanding the rules. In other

words, rule contents are stored in RAM-3 with the information of mask bits. Proces-

sor can read <Rule Header Content> from RAM-3 using BVM addresses later. As a

result; content of RAM-2 and RAM-3 is provided to processor by PP at rule inser-

tion phase. Before building dependency graph, processor also reads <Rule ID><Rule

Priority> from RAM-2 and creates an internal array. This internal array stores 512

elements, and each element stores <BVM address>. The index of this internal array

is Rule IDs of the rules. As a result, mapping of <Rule ID> to <BVM Address> is

achieved, where index 0 means Rule ID=0, and content at index=0 is BVM address

of the rule with Rule ID=0. Remember that address bus of RAM-2 is BVM address at

the beginning. Therefore, <BVM address> and <Rule ID> information can be traced

for this case. To this end, in order to generate a dependency graph, we have two

on-chip RAM, RAM-2 and RAM-3, and an internal array.

For dependency graph generation, processor firstly sorts <Rule ID><Rule Priority>

pairs in RAM-2 with descending priority order. In other words, after sorting process,

41

Figure 3.6: Data organization in RAM-1 to detect popular rules

42

Address0 of RAM-2 stores <Rule ID><Rule Priority> pair with the least priority

value (lower priority value means higher priority). Note that Rule ID can be anything

at Address0 of RAM-2 after sorting, because sorting is carried out on priority fields.

Therefore, the order of RAM-2 is changed by processor after PP fills it. After that,

processor starts to read Address0 of RAM-2, where Rule ID of highest priority rule

exists. Since processor knows Rule ID of highest priority at this time, now it can use

internal array to find out BVM address of this rule. After obtaining BVM address,

processor can read <Rule Header Content> from RAM-3. Because address bus of

RAM-3 is actually BVM address. As a result, rule content of the rule with highest

priority is obtained. After all contents are acquired, FASST creates a linked list data

structure consisting of 512 nodes. Nodes are named from 0 to 511, where node 0 cor-

responds the rule at Address0 of BVM. Therefore, each node in linked list denotes a

rule in BVM and has <Rule ID>, <Rule Priority> and <Pointer Array of Dependent

Rules>. Hence, while building dependency graph, firstly data at Address0 of RAM-2

is read, and Rule ID of the highest priority rule is obtained. After that, using internal

array and this Rule ID, BVM address of the highest priority rule is acquired. There-

after, using this BVM address, rule content of the highest priority rule is read from

RAM-3. This procedure continues for all rules with descending priority. After ob-

taining rule content at RAM-3, containment and overlap conditions are investigated

to build dependency graph. Checking these relations is carried out between one rule

against all other rules with lower priorities. For example, when Address0 of RAM-2

is read, data of highest priority rule is obtained from RAM-3. After that, Address1 to

Address511 of RAM-2 is read consecutively and rule contents are obtained. Checking

is made between the rule for Address0 and other rules from Address1 to Address511

at RAM-2. Note that we modify the rule dependency computation in [9] as presented

in Algorithm 1 for feasible hardware implementation as discussed in Section 2.4.3.

Rule priorities in RAM-2 are used because input to rule-dependency chain algorithm

are n rules R1, R2, ..., Rn, where rule Ri has a higher priority than Rj for i ≤ j as

in [9]. The output of the algorithm is the prioritized list of n rules, where n = 512

in our case. If Rj is dependent on Ri, then the Rule Priority of Rj is smaller than

Ri. The purpose of using rule contents in RAM-3 is to identify partial overlap or

containment conditions between rule entries. RAM-3 stores the rule entry contents

43

in a specific format such that FASST hardware architecture determines dependencies

on multiple fields easily. The format of RAM-2 and RAM-3 is illustrated in Fig.

3.7. In RAM-2, processor stores < RuleIDi >< RulePrioritym > pairs for all

rules in the descending priority order where 0 ≤ i ≤ 511 and 0 ≤ m ≤ 511.

In Fig. 3.7, RuleIDi has highest priority and RuleIDk has lowest priority where

RulePrioritym ≤ RulePriorityn ≤ RulePriorityl. In RAM-3, rule header fields

are stored without expanding wildcards, instead, mask fields and prefix lengths are

investigated to compute header overlaps. In other words, the contents in RAM-3 is

a special copy of rule headers in BVM. Moreover, RAM-3 is organized in such a

format that first address stores the rule content with BVM address =0. Both RAM-2

and RAM-3 have depths of |R|, which is equal to 512 for our implementation.

Figure 3.7: Data organization in RAM-2 and RAM-3 to observe dependencies

The pseudo code for rule dependency graph generation on processor can be found

in Algorithm 1. Note that, Rule dependency graph is generated for one time for a

static 512 rules. While generating dependency graph, processor first sorts 512 rules

based on their 9-bit Rule Priority values from 0 to 511 in RAM-2, then it writes the

prioritized list of the Rule IDs into RAM-2 as < RuleIDi >< RulePrioritym >

pairs. Thereafter, processor reads the Rule IDs from RAM-2 starting from the highest

priorities at Address0 and Address1. Algorithm 1 considers dependencies for each

44

rule separately. As the algorithm proceeds, it determines whether the next rule read

from RAM-2 has a dependency for the current highest priority rule for that round.

If it does, then current highest priority rule is added to dependency list of the next

read rule from RAM-2. Note that for dependency check, run contents are required.

When RAM-2 is read, Rule ID is acquired. Furthermore; using internal array; BVM

address is accessed for this Rule ID and using RAM-3; content of the rule at this

BVM address is obtained. Dependency list of a rule is actually <Pointer Array of

Dependent Rules> of each node. Remember that, nodes are named from 0 to 511 and

node 0 denotes the rule at Address0 of BVM. For example, consider that the rules

are ordered from highest to lowest priority as R0, R1, R2, ..., R511 in RAM-2. At

the same time, linked list consisting of 512 nodes is created. Node 0 does not have

to be R0. Because, in this example, R0 denotes the rule with highest priority, not

the rule at Address0 of BVM. Then, for the first round (line 14), processor in MM

firstly reads BVM Addresses of R0 and R1 from internal array and header fields of

R0 and R1 from RAM-3 and checks whether R1 has dependent on R0. At this case,

assume that node m corresponds to R0 and node n corresponds to R1. In case of a

dependency, R0 is added to the first place of R1’s dependency list. In other words,

first data at <Pointer Array of Dependent Rules> of node n is the pointer address of

node m. After that, algorithm proceeds with R2, R3, R4, ..., R511 in order to check

if these prioritized rules have dependencies on R0. Dependency checking between

R0 and R511 concludes the first round of the graph. Thereafter, processor reads the

next highest priorities, which are R1 and R2 in our case, and tracks all rules from

R2 to R511 to observe dependencies of these rules on R1. The same situation repeats

until Rule IDs and header fields of R510 and R511 are read from RAM-2 and RAM-3

to perform a dependency check. Current FASST design does not support dynamic

rule updates. However, if rule entries in BVM are required to change at run time,

then processor takes the new rule contents from RAM-3, new priorities from RAM-

2 and constructs the dependency graph from the beginning. Moreover, incremental

algorithms to build the graph without destroying the previous one can be employed

as in [9]. Support for dynamic rule update on FASST BVM and dependency graph

will be designed as a future work.

While constructing the rule dependency graph, the core idea is to figure out the par-

45

Algorithm 1 Generating Direct Acyclic Graph for 512 Rules
1: for all i such that 0 ≤ i ≤ 511 do

2: for all i such that 0 ≤ i ≤ 511 do

3: if Priorityj greater than Priorityj+1 then

4: store(RuleIDj , Priorityj) at address j+1 of RAM-2

5: store((RuleIDj+1 , Priorityj+1)) at address j of RAM-2

6: end if

7: end for

8: end for

9: int FirstRound =0

10: int SecondRound =1

11: int IndexBase =1

12: int RuleIDFirst =READ(RuleID at Address(FirstRound) at RAM-2)

13: int RuleIDSecond =READ(RuleID at Address(SecondRound) at RAM-2)

14: int BVMAddressFirst =Internal Array (RuleIDFirst);

15: int BVMAddressSecond =Internal Array (RuleIDSecond);

16: while FirstRound is less than 511 do

17: RuleFirst =READ(Address(BVMAddressFirst) at RAM-3)

18: for all SecondRound such that IndexBase ≤ SecondRound ≤ 512 do

19: RuleSecond =READ(Address(BVMAddressSecond) at RAM-3)

20: if RuleSecond is dependent on RuleFirst then

21: Add RuleFirst to Dependency Chain of RuleSecond

22: end if

23: SecondRound =SecondRound+1

24: RuleIDSecond =READ(RuleID at Address(SecondRound) at RAM-2)

25: BVMAddressSecond =Internal Array (RuleIDSecond);

26: end for

27: FirstRound =FirstRound+1

28: SecondRound =FirstRound+1

29: IndexBase =FirstRound+1

30: RuleIDFirst =READ(RuleID at Address(FirstRound) at RAM-2)

31: RuleIDSecond =READ(RuleID at Address(SecondRound) at RAM-2)

32: BVMAddressFirst =Internal Array (RuleIDFirst);

33: BVMAddressSecond =Internal Array (RuleIDSecond);

34: end while

46

tial overlaps or containment relationships between the rules. Algorithm 2 shows the

pseudo-code for the algorithm to determine such a relationship. Since FASST deals

with 15-tuple OpenFlow-enabled SDN packet format, there can be matches on multi-

ple header fields that result in indirect dependencies. In order to manage these match

combinations, each field in header must be examined separately by analyzing mask

fields. While 13 fields in our case have exact match and wildcard match, IP source

and IP destination fields have prefix lengths. Checking the intersection for 13 fields

separately is easy: For the same header field; if at least one of the header fields be-

tween two rule entries has a wildcard, then there is an intersection. Similarly, for

the same header field, if both of the header fields do not have wildcard, but if they

are equal, then there is also an intersection. However, regarding IP Source and IP

destination fields, for two headers to have a non-empty intersection, both fields must

have the same bit value at every position if this bit is not a wildcard. If a bit at a

particular location is wildcard, then intersection for this bit always occurs. In header

space analysis [3], single bit intersection rule is presented, which is illustrated in Fig.

3.8. Same rule is applied in FASST to find out intersection between IP fields. Hence,

32 bits IP fields are firstly encoded to 64 bits by mapping ‘0’ = 01, ‘1’ = 10 and ‘x’

=11. For this mapping, IP prefix lengths are used. After that, simply a bit-wise AND

operation is applied on the encoded headers between two IP fields for two different

rule entries. At the end of bit-wise AND operation, if two consecutive bits are “00”

for (bit0, bit1), (bit1, bit2), ..., (bit62, bit63) pairs in 64-bit encoded pattern, then

there is no intersection. “00” means a ‘Z’ in our encoded scheme, which means no

intersection.

After processor constructs the dependency graph, it waits for Locality Detection unit

to write BVM addresses of the popular rules to RAM-1, as explained earlier. After

that, processor reads these BVM addresses and searches for the dependent rules for

each of them. Note that since BVM addresses are written to RAM-1, processor use

these BVM addresses in linked list. In other words, in linked list, nodes are named

from 0 to 511 and node 0 corresponds to rule at Address0 of BVM. As a result, when

processor reads BVM addresses of popular rules in RAM-1, it can directly access

<Pointer Array of Dependent Rules> field of the corresponding node in linked list.

Depth-first search is used in MM processor to find out dependencies using <Pointer

47

Algorithm 2 Finding Dependecies Between Two Rules
1: bool InterSection =true

2: int RuleHeaderFirst, RuleHeaderSecond =0 {Header fields without IP fields}

3: int ExpIPSrcFirst, ExpIPSrcSecond=0 {63-bit expanded Source IP fields}

4: int ExpIPDstFirst, ExpIPDstSecond=0 {63-bit expanded Dest IP fields}

5: RuleHeaderFirst =READ(Address(BVMAddressFirst) at RAM-3)

6: RuleHeaderSecond =READ(Address(BVMAddressSecond) at RAM-3)

7: RuleIPSrcFirst =READ(Address(BVMAddressFirst) at RAM-3)

8: RuleIPSrcSecond =READ(Address(BVMAddressSecond) at RAM-3)

9: RuleIPDstFirst =READ(Address(BVMAddressFirst) at RAM-3)

10: RuleIPDstSecond =READ(Address(BVMAddressSecond) at RAM-3)

11: for all i such that 0 ≤ i ≤ 12 do

12: if RuleHeaderFirst[i] is not masked and RuleHeaderSecond[i] is not masked

then

13: if RuleHeaderFirst[i] is not equal to RuleHeaderSecond[i] then

14: bool InterSection =false

15: end if

16: end if

17: for all i such that 0 ≤ i ≤ 63 do

18: ExpIPSrcFirst =ExpIPSrcFirst AND ExpIPSrcSecond

19: ExpIPDstFirst =ExpIPDstFirst AND ExpIPDstSecond

20: end for

21: for all i such that 0 ≤ i ≤ 63 do

22: if ExpIPSrcFirst[i]==0 and ExpIPSrcFirst[i+1]==0 then

23: InterSection =false

24: else if ExpIPDstFirst[i]==0 and ExpIPDstFirst[i+1]==0 then

25: InterSection =false

26: end if

27: end for

28: end for

48

Figure 3.8: Header space analysis for single bit intersection [3]

Array of Dependent Rules>. Due to using depth-first search, indirect dependencies

are also computed. Consider three rules are R1, R2 and R3, where priorities are

R1 > R2 > R3. If we assume R2 dependency on R1, and R3 dependency on R2,

but not on R1, and if we assume that R3 is a popular rule, then processor starts to

trace starting from top rule R3 in depth-first search. After that, processor visits R2,

which R3 depends on, and visits R1, which R2 depends on. As a result, all depen-

dent rules of R3, which are R1 and R2 are computed. Processor writes the BVM

addresses of dependent rules to the particular subparts of RAM-1, and sets bit-0 at

Address511 in RAM-1. Assertion of bit-0 at Address511 is a handshaking process

between processor and TCAM Cache Writer Interface, which means that writing the

BVM addresses of dependent rules for each popular rule is completed by processor.

After this point, TCAM Cache Writer Interface reads the most frequently used BVM

addresses together with their dependencies from RAM-1, and accesses the header

fields of all these rules from RAM-3. Note that address bus of RAM-3 is actually

BVM addresses of rules. TCAM Cache Writer Interface deals with the problem of

overwriting the same rules to TCAM by using another on-chip memory named Flag-

RAM. TCAM Cache Writer Interface always stores a temporary copy of written Rule

IDs in Flag-RAM, and constantly checks whether it writes the current Rule to TCAM

previously.

TCAM Cache Writer Interface informs other functional blocks in MM when it com-

49

pletes the writing process. After that, another round on the detection of popular and

dependent rules can begin. Note that, when new popular rules and dependent rules are

written to RAM-1 by Locality Detection and processor, respectively, TCAM Cache

Writer Interface deletes all cache contents and fills it with the new rules. This oper-

ation is actually required in order to support dynamic updates on R in BVM. If an

incremental update on TCAM is carried out instead of deleting all rules, then, new

dependencies on dependency graph cannot be determined at run-time.

An example of a rule set consists of 4 rules with 4 header fields are given in Fig. 3.9.

In this set, each header field is demonstrated by a single bit. If we consider the order

of rule priorities as R0 > R1 > R2 > R3, then the generated rule dependency graph by

processor will be as in Fig. 3.10. If we defineR2 as a popular rule, then the dependent

rules ofR2, which areR0 andR1 , are also written to RAM-1 in the respective 8-words

subpart. If we only storeR2 to TCAM, then an packet of header “1011” matches with

R3 in TCAM instead of R0 which leads to a mismatch in classification.

Figure 3.9: Example rule set consisting of 4 rules

Figure 3.10: Example dependency graph for 4 Rules

Overall flow diagram between functional units in FASST MM is given in Fig. 3.11

50

for the example case of R2 to be the only popular rule detected over the time window

Ws for the example the rule set in Fig 3.9.

Figure 3.11: Process flow diagram in Match Monitor

3.6 Match Arbiter

FASST Match Arbiter (MA) continuously monitors TCAM and BVM results, which

are Rule IDs of matched entries. Thereafter, it discards late duplicate match results of

BVM if the same match is obtained from TCAM. Same match result (Rule ID) can

be provided by both of these modules because of parallel processing, as explained in

Section. 3.1. For example, consider a packet P matches a flow entry Fj with Rule

ID j in both BVM and TCAM. The match result of Rule ID j from BVM asserts 80

clock cycles after P enters the pipeline, whereas TCAM provides the result of Rule

ID j in 3 clock cycles. Therefore, MA discards this particular match of BVM, 80

clock cycles + processing delay after P enters BVM. Processing delay is the internal

delay of MA.

Detailed block diagram that shows the data flow in MA is illustrated in Fig. 3.12. MA

handles this discarding process by using a First-In First-out (FIFO) data structure in-

51

side Controller unit in MA. Each match result of TCAM fills this FIFO in Controller.

Controller unit in MA ,which receives match results from BVM directly, checks

whether the current matched Rule ID is already written to this FIFO by TCAM. If

it is written, current Rule ID from BVM is ignored and the copy of Rule ID in FIFO

is removed. The output of Controller unit in MA and the output of TCAM fills an-

other two end FIFOs, namely FIFO-1 and FIFO-2. These FIFOs are basically used

to perform fair scheduling process. Note that, FASST utilized every matched result

of TCAM, which is Rule ID of matched rule. Therefore, output of TCAM is directly

connected to FIFO-2. However, match Rule IDs of BVM should be filtered to re-

move late duplicates. For this purpose, filtering is performed by Controller unit, and

the output of Controller, which is again Rule ID, is connected to FIFO-1. Note that,

in order to avoid overflow conditions in FIFO-1 and FIFO-2, End Arbiter unit in MA

is run at 400 MHz, which is twice of the running frequency of FASST.

Figure 3.12: Internal block diagram of Match Arbiter Block

To this end, the packets that match to F are processed with tfast latency while the

packets that match R − F and the packets that do not match any rule in R are

processed with tslow latency. Consequently the arrival order of packets is altered at

FASST output. Distinct rule entries can have different action fields in OpenFlow pro-

tocol [2] and disordering of packets belonging to different flows is not a big problem.

This is because out-of-order arrival of packets at the destination is a common situa-

tion in IP networks due to parallelism in network components or configuration [51],

[52], [53]. Reordering is carried out at higher layers of network protocol stack as in

Transport Layer in TCP/IP. All packets in a stream which are members of same flow

require the same forwarding treatment in any SDN-enabled data plane switches [14].

52

As a result, packet order in same flow is a desired property.

3.7 Analysis of Packet order in FASST and Correcting the Transient Packet

Order Changes

Altering the order of packets belonging to same flow is a transient operation that lasts

a maximum of tslow = 80 clock cycles inside FASST. Packet ordering is corrected

automatically within this time interval using a tag field for each packet during query

phase. In other words, when a packet matches a flow entry Fj with Rule ID j in

TCAM, Rule ID j and a corresponding tag field are written to FIFO inside Controller

unit in MA. Writing a tag field provides an additional information for the packet

number within the same flow. That is to say; while Controller Unit in MA checks

the FIFO content to discard the late duplicates of TCAM results, it reads both rule

ID j and a tag field. As a result, it can separate the packets of same flow and make

a correction in the order within a small interval. Tag field in our situation is a simple

7-bit counter value that counts up to 127 with overflow capability. FASST assigns

increasing counter value to packets before sending them BVM and TCAM at the

same time. Since tslow = 80 clock cycles, 7-bit counter assures unique values within

processing delay of BVM.

Table. 3.2 shows a query operation at the steady state condition of FASST. Steady

state condition can be defined as a network idle condition for a limited time. For our

work, when network line is idle for any 400 ns at run-time, which means no packet

arrives to FASST within 400 ns for query, then BVM pipeline will be empty and

steady state condition will be accomplished. For this case, packet orders of same flow

are preserved. Consider that rule entries A and B, which correspond to flows of FA

and FB, are stored in TCAM, BVM pipeline is empty at this time and the packets

arriving to FASST at time [0,7] in terms of clock cycles are A1, B1, C1, D1, A2, B2,

C2, where (A1,A2), (B1,B2), (C1,C2) and D1 belongs to flows of FA, FB, FC and FD

respectively. Moreover, end to end latency of BVM is 80 clock cycles, and TCAM

outputs the match results in 3 clock cycles. As observed from MA output, the order

of packets for (A2,B2) and (C1,D1) are different from the arriving order, which means

a disorder in different flows. Packet orders of same flow are preserved. For example,

53

the order of A1 and A2 is the same for FA.

Table 3.2: Rule query in steady state

Time

(Clk)
0 1 2 3 4 5 6 7 8 . 80 81 82 83 84 85 86 87

Packets A1 B1 C1 D1 A2 B2 C2

BVM A1 B1 C1 D1 A2 B2 C2

TCAM A1 B1 A2 B2

MA A1 B1 A2 B2 C1 D1 C2

In order to demonstrate transient packet disordering of same flow, the situation in

Table. 3.3 can be analyzed. This situation illustrates that at t=0, packets A1, A2 and

B1 arrive to FASST for query. At t=73, writing the popular rules to TCAM, which

are A and B in this case, is completed. This means that, after t=73, all packets are

sent to BVM and TCAM concurrently. However, at t=73, packets B1, A2 and A1 are

at stage 71, 72 and 73 in two dimensional pipeline, respectively. Therefore, there are

another 7 clock cycles to output a match result for A1 from BVM. Similar situation

can be applied for B1 and A2. Consider that, at t=73 and t=74, A3 and B2 arrives to

FASST. As a result, before BVM, TCAM outputs the Rule IDs of A3 and B2 which

belong to the same flow with A1, A2 and B1. As a result, packet orders of same flows

at the outputs are different from the order at the beginning .

Table 3.3: Packet orders of same flow

Time

(Clk)
0 1 2 . 73 74 75 76 77 78 79 80 81 82 . 153 154

Packets A1 A2 B1 A3 B2

BVM A1 A2 B1 A3 B2

TCAM A3 B2

MA A3 B2 A1 A2 B1

Packet disordering of same flow lasts only 5 clock cycles for example given in Table.

3.3. Consider that, after t=73, all packets are in the format Ai and Bi from t=73 to

54

t=tx, such as A3, B2, A4, B3, A5, B4, ..., An, Bn. Such a characteristics on network

traffic causes the worst case transient time in FASST. Hence, at time t=80, Controller

in MA reads A1 from BVM and checks FIFO. At this time, FIFO is field with [A3,

B2, A4, B3] where A3 is the first data. Controller reads the first data, which is A3, and

observes that tag field ’3’ is incompatible with A1. At the same time, TCAM provides

match result for A5. Hence, at t=80, there are two match results for FA, which are A1

and A5. Therefore, using a two times faster End Arbiter Module, at t=80, both A1 and

A5 are provided from hardware as match results. Same procedure can be applied to

A2 and B4 at t=81, and B1 and A6 at t=82. Hence, the order of same flow is preserved

after t=82. The illustration of this sequence is given in Table. 3.4. Note that, after

t=153, match results from BVM for the packets for FA and FB are discarded, because

these match results are already written to FIFO by TCAM.

Table 3.4: Transient operation for rule disordering in same flow

Time

(Clk)
0 1 2 . 73 74 75 76 77 78 79 80 81 82 83 84 85

Packets A1 A2 B1 A3 B2 A4 B3 A5 B4 A6 B5 A7

BVM A1 A2 B1

TCAM A3 B2 A4 B3 A5 B4 A6 B5 A7 B6

MA A3 B2 A4 B3
A1

A5

A2

B4

B1

A6
B5 A7 B6

Time

(Clk)
153 154 155 156 157 158

Packets B41 A43 B42 A44

BVM A3 B2 A4 B3 A5 B4

TCAM B40 A42 B41 A43 B42 A44

MA B40 A42 B41 A43 B42 A44

Worst case transient time for correction of the packet ordering in same flow occurs

when there are packets at the first stage of BVM pipeline at the same time of the

completion of writing rules to TCAM Cache. Moreover, the packets in this first stage

should match rule entries that are also stored in cache. For this case, transient time

55

lasts 80 clock cycles (400 ns) in worst time. After 400 ns, packets in same flow

will output from FASST in correct order. However, 400 ns is a very small interval

compared to real world network characteristics. According to the prior study [20],

80% of the flow inter-arrival times are between 4 ms and 40 ms in university data

centers. Moreover, across these data centers, 80% of these flows are smaller than 10

KB in size. This means that for a 10 GbE, most of the flows in data centers lasts only

about 1000 ns, and there are big intervals of 4 ms - 40 ms among these flows. As a

result, the probability of observing a flow on network line is 1/4000, which is roughly

0.025% in best case if we take inter arrival times of flows as 4 ms. Therefore, most of

the time BVM pipeline will be in steady state, and even though FASST corrects the

order of packets in same flow in 400 ns in worst case, this correction process will not

be required in most of the time.

56

CHAPTER 4

FPGA IMPLEMENTATION OF FASST HARDWARE

ARCHITECTURE

The proposed hardware architecture FASST is designed and implemented on a state-

of-the-art FPGA in order to provide a low latency, high throughput and scalable SDN

Flow Table. FASST supports a strictly positive edge triggered synchronous design

and portable HDL source code.

Bit Vector algorithms are currently used in FPGAs by exploiting massive parallelism

[8], [43], [15]. Due to concurrent processing in FPGAs, the partial bit vector re-

sults on local functional units are bit-wise ANDed at a single clock cycle. How-

ever, based on SDN Flow Table implementations, as the rule set size increases, the

clock rate deteriorates significantly due to the limited on-chip resources. Therefore,

two-dimensional pipeline architecture together with bit vector approach has been pro-

posed [8]. In this architecture, functional blocks process in a pipelined fashion such

that computational operations are divided into multiple clock cycles, which provides

a scalable solution in terms of clock rate in FPGAs.

In FASST FPGA implementation, bit vector algorithm is used in both BVM and

TCAM design. All functional elements in BVM are connected in a pipelined fash-

ion, including priority encoders due to high number of stored rules |R| which is 512.

On the other hand, TCAM design is completely run with parallel processing due to

less number of stored rules |F|, which is 32 in our case. Moreover, both BVM and

TCAM are implemented as a modular architecture that enables the design to support

different number of rule sets, or different number of header fields for a variety of

configurations. In other words, simply changing the number of Rule BVMs, Stride

57

BVM or Stride TCAM functional units provides lookup on different number of rule

sets including |R| and |F|.

FASST FPGA implementation presents a hardware-based approach to rule caching

problem considering dependencies, compared to software-related approaches in ear-

lier work [9]. All operations including generation of rule dependency graph, search-

ing the graph with depth-first-search (DFS) and sorting rule priorities are completely

carried out on a single hardware. Match Monitor (MM) in FASST can be reconfig-

ured to support different types of dependency graphs in terms of rule depths or rule

size.

All on-chip memory units such as RAM-1 in FASST are implemented using dual port

or single port on-chip memory blocks of FPGA. These are FPGA specific embedded

memory units called M20K and can be configurable for different depth x width se-

lections. In BVM and TCAM, Stride BVM and Stride TCAM units have access to a

series of these memory blocks for lookup process. As a result, different from recent

work [8], our proposed architecture utilizes only embedded memory blocks instead

of logic gates for the data-associative elements of bit vector approach. At normal

conditions, maximum clock rates of embedded memory blocks is much more higher

than logic gates inside FPGA, which enables us to reach high throughput values while

maintaining classification. However, depth x width selection of these on-chip memory

resources is crucial in order to minimize the resource usage on hardware and satisfy

the timing requirements with respect to clock rate.

The design of overall architecture FASST is implemented on FPGA using VHDL

hardware design language except for the processor unit in MM, which is run at a rel-

atively lower clock frequency with respect to hardware blocks. Since latency is not a

performance requirement while generating and searching dependency graph, FPGA-

based soft processor called NIOS II is implemented inside FASST MM processor

unit. This soft processor delivers an ideal embedded solution in terms of flexibility,

high performance and low cost. NIOS II processor in our architecture communicates

with the necessary blocks described in Section. 3.5 at real time.

58

Figure 4.1: General block diagram of FASST FPGA implementation

4.1 General View of FPGA Implementation

The general view of FASST FPGA implementation can be seen in Fig. 4.1. Based on

the description in Chapter 3, there is one BVM unit which supports look up for 512

rules with tslow = 80 clock cycles latency, and there is one TCAM unit which supports

look up for 32 rules with tfast = 3 clock cycles latency. Locality Detector, TCAM

Cache Interface, NIOS II as processor unit, RAM-1, RAM-2, RAM-3 and RAM-PO

are the blocks of Match Monitor (MM) in FASST. RAM-PO is a on-memory that is

used to store <Rule Priority> information of the rule entries in BVM.

Input to FASST is a specific data format that supports OpenFlow v1.1.0 rule entry

content [2]. For testing purposes, FASST communicates with external world through

RS-232 serial interface to get the input. An external serial interface controller writes

the input data to two FIFOs named Input FIFO. Firstly, flow table entries, R, are

written to Upper Input FIFO, which means rule insertion phase. Afterwards, Lower

Input FIFO is filled with network characteristic information through serial interface,

which is used for query phase. Network characteristics in Lower Input FIFO is ba-

sically a data format that includes <Packet Header><Packet Count>. In other words,

Lower Input FIFO gives the information of packet arrival process. Upper Input FIFO

59

stores the relevant content for 512 flow entries to be written to BVM at configuration,

which includes <BVM Address><Rule ID><Rule Priority><List of Header fields to

match><List of Mask bits of each field>. Lower Input FIFO stores a network scenario

information which includes the similar content as in Upper Input FIFO. However, in

lower Input FIFO there is no information for Rule ID, Rule Priority, BVM address,

or mask bits, which are unnecessary data for query phase. However, there is an addi-

tional packet number information in this lower Input FIFO to indicate the number of

packets that is requested to be classified in a time window. In summary, while upper

FIFO gives total rule set content, R, in SDN Flow table, lower Input FIFO stores the

characteristic of network traffic (packet information P) for query.

Firstly, Packet Parser (PP) reads the upper Input FIFO to insert to rule entries to BVM.

This is called as Rule Insertion Phase. PP writes the rules to BVM using header bits,

mask bits and other control and selection bits such as bvm_wr_en, bvm_wr_addr(3:0)

and bvm_wr_addr_en(31:0). At the same time, the corresponding < RuleIDi ><

RulePrioritym > pairs are written to on-chip embedded memory RAM-2 by PP.

Note that these pairs are not ordered. Later, processor in MM sorts these pairs in order

to generate dependency graph. Moreover, the copy of the inserted rules are also stored

in RAM-3 in rule insertion phase such that processor reads them while generating

rule dependency graph. At rule insertion phase, PP has no effect on TCAM. Rule

insertion to TCAM is carried out by TCAM Cache Interface dynamically depending

on the locality information on network traffic. After rule insertion phase is completed,

PP latches the network characteristic information from lower Input FIFO and sends

series of packets P to BVM and TCAM for query phase. Hence, bwm_rd_en and

packet_header(355:0) signals are also routed to TCAM in addition to BVM.

At rule insertion phase, FASST BVM receives the content of header list of rule entries

from PP via a memory-mapped interface and stores its internal on-chip memories

with rule header contents. These on-chip memories inside BVM are actually data-

associative memories rather than address mapped memories as described in Section.

2.4.1. A total of 512 rule entries with 15-tuple headers with 356 bits are stored in

BVM. During query phase, BVM receives the series of packet headers and outputs

the match results as Rule ID named rule_id_bvm (8:0). The start of query phase in

BVM is signaled with bwm_rd_en from PP.

60

Locality Detect communicates with BVM and has access to RAM-1 during run-time.

It continuously tracks the BVM addresses of matched rules and checks whether the

number of matches for a particular BVM address exceeds the threshold level Thr.

In case of a locality detection, the associated BVM addresses of rules are written to

RAM-1 through addr_1(8:0) and BVM_addr_cache (8:0).

Processor unit is implemented as a SoC in Match Monitor (MM) in FASST. It has

direct access to RAM-1, RAM-2 and RAM-3. However, as seen in Fig. 4.1, one-side

of memory mapped interface of RAM-1 and RAM-3 are shared between Processor

and TCAM Cache Interface. This sharing is performed in order to reduce the memory

utilization of on-chip resource in FPGA. Processor has no functionality during rule

insertion phase. After rule insertion is completed by PP, it automatically constructs

the dependency graph for the current rule set R in BVM. In query phase, processor

reads RAM-1 to receive popular BVM addresses written by Locality Detector. Then,

it computes the dependent rules of popular rules and rewrites the BVM addresses

of dependent rules to RAM-1. At the same time, processor writes the associated

<Rule Priority> of all popular and dependent rules to RAM-PO such that TCAM

Cache Interface can read and send them to TCAM. The connection of processor to

RAM-PO is not shown in Fig. 4.1. Furthermore, since FASST is a purely hardware

architecture and tested on run-time, power consumption by FPGA core is constantly

read by processor unit communication blocks and the values are reported to host PC

via serial interface.

TCAM Cache Interface has access to RAM-PO, RAM-1 and RAM-3. The connection

to RAM-3 is not shown in Fig. 4.1 due to complex wiring on diagram. TCAM Cache

Interface only performs in query phase, similar to processor and Locality Detector

units. If a temporal locality is observed on network traffic, this interface reads the

BVM addresses from RAM-1, the Rule Priorities from RAM-PO and rule contents

from RAM-3. After that, it writes the frequently used rules to TCAM. Rule priorities

are also needed while inserting rules to TCAM due to implementation of POEnc-

TCAM.

Two on-chip RAM blocks that are not illustrated in Fig. 4.1 are Chain_RAM and

Flag_RAM embedded memories. Flag_RAM is only accessed by TCAM Cache In-

61

terface to ensure that each rule is written to TCAM only once. In other words, TCAM

Cache Interface stores a log data while maintaining a write operation to TCAM.

Chain_RAM, on the other hand, is the on-chip memory block that is used to store

the number of dependent rules for each popular rule inside RAM-1. Chain_RAM is

written by NIOS II and read by TCAM Cache Interface. When a rule insertion to

TCAM occurs, TCAM Cache Interface needs this information in order not to exceed

the size of TCAM in FASST.

TCAM is implemented as a parallel bit vector approach in FPGA similar to BVM

design. However, instead of pipelined architecture, all header strides in a packet P

are classified concurrently within a single clock cycle. Rule insertion to TCAM is

conducted only by TCAM Cache Interface.

The output of both BVM and TCAM Cache is sent to Match Arbiter (MA) through

match_valid_bvm, rule_id_bvm(8:0), match_valid_tcam and rule_id_tcam (8:0). The

final result from Match Arbiter unit is signaled with match valid and Rule ID outputs.

In FPGA, overall architecture of FASST is run at a frequency of 200 MHz except

for NIOS II processor. Due to the limitations caused by execution of instructions-

per-cycle parameters in NIOS II, it is run at a frequency of 100 MHZ. However, this

relatively lower frequency has no effect on run-time throughput and latency, because

both BVM and TCAM Cache classifies the incoming packets at 200 MHz.

4.2 Input Packet Format for Rule Insertion and Rule Query Phases

In FASST, PP identifies only a specific packet format in order to start rule insertion

and rule query. Packet format for a single rule entry at rule insertion phase is given

in Table. 4.1. There is a total of 59 bytes to define a single rule entry in BVM. As

a result, in order to store 512 rules, a total of 59 x 512 = 30208 bytes should be

written to upper Input FIFO. Since the number of bits in headers are mostly dividable

by 8, data width for Upper Input FIFO is 8-bits (1 byte). For the fields whose bit

widths are not multiple of 8, remaining bits are ignored in rule insertion phase. For

example, <Rule ID> and <Rule Priority> for 512 rules are defined with 9 bits, which

are Rule_ID(8:0) and Priority (8:0), in the range (0, 511). Hence, least significant

62

bits (LSB) for <Rule ID> and <Rule Priority> are stored as single bytes in Byte 1 and

Byte 3, respectively. On the other hand, the most significant bits (MSB), which are

Rule_ID(8) and Priority(8), are stored in Byte 2 and Byte 4 using only a single bit at

the lowest bit location. Hence, remaining bits of Byte 2 and Byte 4 are ignored during

rule insertion. Same situation is valid for Vlan_Id (3:0), Vlan_Po (2:0), Mpls_Label

(3:0), Mpls_Po (2:0), Tos (5:0), Mask (4:0) and Write_Address(8) fields.

Table 4.1: Packet format per flow entry for rule insertion phase

Byte 1 Rule_ID(7:0) Byte 2 Rule_ID(8) Byte 3 Priority(7:0)

Byte 4 Priority(8) Byte 5 Ingress(31:24) Byte 6 Ingress(23:16)

Byte 7 Ingress(15:8) Byte 8 Ingress(7:0) Byte 9 Metadata(63:56)

Byte 10 Metadata(55:48) Byte 11 Metadata(47:40) Byte 12 Metadata(39:32)

Byte 13 Metadata(31:24) Byte 14 Metadata(23:16) Byte 15 Metadata(15:8)

Byte 16 Metadata(7:0) Byte 17 Src_MAC(47:40) Byte 18 Src_MAC(39:32)

Byte 19 Src_MAC(31:24) Byte 20 Src_MAC(23:16) Byte 21 Src_MAC(15:8)

Byte 22 Src_MAC(7:0) Byte 23 Dst_MAC(47:40) Byte 24 Dst_MAC(39:32)

Byte 25 Dst_MAC(31:24) Byte 26 Dst_MAC(23:16) Byte 27 Dst_MAC(15:8)

Byte 28 Dst_MAC(7:0) Byte 29 Eth_Type(15:8) Byte 30 Eth_Type(7:0)

Byte 31 Vlan_Id(11:4) Byte 32 Vlan_Id(3:0) Byte 33 Vlan_Po(2:0)

Byte 34 Mpls_Label(19:12) Byte 35 Mpls_Label(11:4) Byte 36 Mpls_Label(3:0)

Byte 37 Mpls_Po(2:0) Byte 38 Src_IP(31:24) Byte 39 Src_IP(23:16)

Byte 40 Src_IP(15:8) Byte 41 Src_IP(7:0) Byte 42 Dst_IP(31:24)

Byte 43 Dst_IP(23:16) Byte 44 Dst_IP(15:8) Byte 45 Dst_IP(7:0)

Byte 46 Protocol(7:0) Byte 47 Tos(7:0) Byte 48 Src_Port(15:8)

Byte 49 Src_Port(7:0) Byte 50 Dst_Port(15:8) Byte 51 Dst_Port(7:0)

Byte 52 Mask(12:5) Byte 53 Mask(4:0) Byte 54 Src_IP_Mask_1(7:0)

Byte 55 Src_IP_Mask_2(7:0) Byte 56 Dst_IP_Mask_1(7:0) Byte 57 Dst_IP_Mask_2(7:0)

Byte 58 Write_Address(7:0) Byte 59 Write_Address(8)

In query phase, packet format for a single packet is given in Table. 4.2. This format

is stored in Lower Input FIFO and very similar to the content in Upper Input FIFO.

The difference is that BVM and TCAM need only <List of header bits> for look up

63

process in query phase. Therefore, <Rule ID>, <Rule Priority>, mask bits, prefix

lengths, or address bits are removed from this format. Moreover, due to exploiting

temporal locality in FASST, an additional information which gives the number pack-

ets to be queried successively is added to the format. The size of Lower Input FIFO

depends on the network scenario determined by an external controller via serial in-

terface. For example, consider that, there is a network characteristics consisting of

two input packets P1, and P2. If Packet_Count(15:0) is set to 0x000A for P1 and

Packet_Count(15:0) is set to 0x0032 for P2, and if P1 information is written to Lower

Input FIFO first, then the order in query phase will be as in Fig. 4.2. For this sce-

nario, the size of Lower Input FIFO is 49 bytes x 2 = 98 bytes. As network scenario

becomes more complex, the size of Lower Input FIFO increases.

Table 4.2: Packet format per packet header for rule query phase

Byte 1 Packet_Count(15:8) Byte 2 Packet_Count(7:0) Byte 3 Ingress(31:24)

Byte 4 Ingress(23:16) Byte 5 Ingress(15:8) Byte 6 Ingress(7:0)

Byte 7 Metadata(63:56) Byte 8 Metadata(55:48) Byte 9 Metadata(47:40)

Byte 10 Metadata(39:32) Byte 11 Metadata(31:24) Byte 12 Metadata(23:16)

Byte 13 Metadata(15:8) Byte 14 Metadata(7:0) Byte 15 Src_MAC(47:40)

Byte 16 Src_MAC(39:32) Byte 17 Src_MAC(31:24) Byte 18 Src_MAC(23:16)

Byte 19 Src_MAC(15:8) Byte 20 Src_MAC(7:0) Byte 21 Dst_MAC(47:40)

Byte 22 Dst_MAC(39:32) Byte 23 Dst_MAC(31:24) Byte 24 Dst_MAC(23:16)

Byte 25 Dst_MAC(15:8) Byte 26 Dst_MAC(7:0) Byte 27 Eth_Type(15:8)

Byte 28 Eth_Type(7:0) Byte 29 Vlan_Id(11:4) Byte 30 Vlan_Id(3:0)

Byte 31 Vlan_Po(2:0) Byte 32 Mpls_Label(19:12) Byte 33 Mpls_Label(11:4)

Byte 34 Mpls_Label(3:0) Byte 35 Mpls_Po(2:0) Byte 36 Src_IP(31:24)

Byte 37 Src_IP(23:16) Byte 38 Src_IP(15:8) Byte 39 Src_IP(7:0)

Byte 40 Dst_IP(31:24) Byte 41 Dst_IP(23:16) Byte 42 Dst_IP(15:8)

Byte 43 Dst_IP(7:0) Byte 44 Protocol(7:0) Byte 45 Tos(7:0)

Byte 46 Src_Port(15:8) Byte 47 Src_Port(7:0) Byte 48 Dst_Port(15:8)

Byte 49 Dst_Port(7:0)

64

Figure 4.2: Order of incoming packets to FASST for rule query phase

4.3 Packet Parser

In FPGA implementation of FASST, Packet Parser (PP) has two functions: Reading

the Upper Input FIFO to insert 512 rules to BVM over a memory mapped structure,

and reading the Lower Input FIFO to send a series of packets to both BVM and

TCAM for classification. Therefore, PP in Fig. 4.3 has a FIFO interface to read the

contents of these FIFOs.

PP is implemented as a state machine design similar to all functional units. This state

machine basically two phases: rule insertion phase and rule query phase. In rule in-

sertion phase, PP waits for 59 bytes to be written to Upper Input FIFO by polling

fifo_wrused(14:0) input port. This port constantly gives the number of stored data in

FIFO in FPGA. As soon as it detects 59 bytes, it reads the data from Upper Input

FIFO via fifo_data_in(7:0) in the received order as described in section. 4.2. There-

after, PP asserts enable and address signals such as bvm_wr_en, bvm_wr_addr(3..0)

and bvm_wr_addr_en(31:0). Moreover, packet_header(355:0), mask(12:0) are as-

serted by PP at this time. After a single clock cycle, it deasserts these signals to their

default value, because BVM has the capability of receiving the rule contents in a sin-

gle clock cycle due to its internal registers. At this point, bvm_wr_addr_en(31:0)

means the selection of the corresponding Rule BVM block as explained in Section.

3.3. For example, if Write_Address(8:0) in Table. 4.1 is equal to 000010001, PP

sets bvm_wr_addr_en(31:0) to 0x00000002 to select second horizontal pipeline of

RuleBVM0, which includes RuleBVM0(1, 0), ..., RuleBVM0(1, 46). This is be-

cause address of 000010001 means address 17 and rules from address 16 to address 31

65

are stored in second horizontal pipeline of RuleBVM0. Hence, the selection bits for

each horizontal pipeline of Rule BVM are one-hot encoded in bvm_wr_addr_en(31:0).

The address bit of bvm_wr_addr(3:0) are actually the subaddress in the correspond-

ing Rule BVM, which is Write_Address(3:0) in Table. 4.1. Before inserting a new

flow entry, PP waits for busy_bvm signal to check whether BVM is ready to store

next rule entry. Therefore, a handshaking process is performed during rule insertion

phase. This cycle lasts until all 512 rules are received from Upper Input FIFO and

written to BVM.

Figure 4.3: Packet Parser Block

When rule insertion phase is completed, PP waits for n x 49 bytes to be written

to Lower Input FIFO to start the query phase by polling fifo_wrused(14:0) again,

where n denotes for the number of packets with different headers. This n value is a

generic constant for PP, and it can be changed at synthesis level. After all network

characteristics are written to Lower Input FIFO, PP reads all contents first, fills its

internal registers and asserts read enable signal bvm_rd_en and header data signal

packet_header(355:0). The purpose of storing all PP internal registers with network

characteristics from Lower Input FIFO is to achieve the desired line rate while main-

taining classification.

66

4.4 Implementation Bit Vector Module (BVM)

Bit Vector Module (BVM) is one of the two hardware based classification engines

implemented in FASST. BVM is implemented as a two dimensional pipelined archi-

tecture to achieve high clock rates while maintaining classification. The main differ-

ence of 2D pipelined architecture of BVM from other packet classification techniques

is that pipeline architecture in BVM enables the lookup module to receive incoming

packets in every clock cycles. In other words, incoming packets for query are not

waited. After pipeline is full, BVM outputs the match results at every clock cycle if

line utilization is 100%. Therefore, throughput is achieved at maximum value.

The implementation details of BVM in FPGA are exactly compatible with the con-

ceptual design described in section. 3.3. Firstly, BVM is designed and implemented

as a modular architecture. In other words, in order to store and query 512 rules, BVM

architecture is divided to 16 exact functional elements called Rule BVM, where each

Rule BVM has the capability of storing 32 rules. Moreover, each Rule BVM has a

connection to an another Rule BVM and two POEnc units. The connection of using

two encoders for one Rule BVM is due to the fact that POEnc units implemented in

FASST are designed and configured to find highest priority match among 16-rules to

minimize logic gate delays.

For a clear understanding, connection diagram and interface details of two Rule BVM

and four POEnc units are given in Fig. 4.4. The structure given in Fig. 4.4 stores a

total of 64 rules, whereRuleBVM0 stores the first 32 rules (0 to 31) andRuleBVM1

stores the next 32 rules (32 to 64). Note that rule numbers here are defined as BVM

address. For example, rule 5 means the rule at BVM address 5. Dashed lines represent

the interface signals which are only used in rule insertion phase by PP. Other signals

such as packet_header(355:0) and bvm_rd_en are used in query phase. bvm_rd_en

denotes the read enable active signal in query phase. Note that, packet_header(355:0)

signal is utilized in both rule insertion and rule query phase. Moreover, 32-bit register

signal, which represents the group information among 512 rules to find out Rule IDs

as defined in Section. 3.3, is not shown in Fig. 4.4. This register is a part of POEnc

units. Rule BVM units have nothing to do with this register signal.

67

Figure 4.4: Connection diagram of two Rule-BVMs and four Priority Encoders

Moreover, since Rule BVM units have vertical pipeline connection between each

other, read enable and output data ports of Rule BVM, which are next_bvm_read_enable

and next_bvm_data(355:0), are directly routed to next Rule BVM for pipeline process-

ing. Hence, in query phase, the header bits of packets are only sent to RuleBVM0

through packet_header(355:0). After this time, all read enable and data bits are de-

layed by Rule BVM by insertion Flip-Flops (FF) in design and sent to other Rule BVM

units to continue classification. Passing of read enable and data bits are for next Rule

BVM in horizontal and next Rule BVM in vertical direction. Hence, since the routing

delays on header bits, which are packet_header(355:0), are significantly decreased

due to insertion of FFs, high clock rates are achieved in this design.

Since FASST BVM is implemented as a two-level hierarchy, each Rule BVM has also

internal 2D pipelined structure as described in Section. 3.3. This internal architecture

of a Rule BVM consists of two horizontal pipelines, where each pipeline contains a

total of 47 pipeline stages. Pipeline stages at the same horizontal level are responsible

for the same set of 16 rules among 512 rules. Hence, each Rule BVM has 2-bit enable

signal, bvm_wr_addr_en(1:0), and this signal is used to select one of the horizontal

pipelines to store rules in rule insertion phase. For example, if write address enable

signal, bvm_wr_addr_en(1:0), is equal to 0, upper horizontal pipeline is selected to

68

store the first 16 rules. In query phase, there is no functionality of bvm_wr_addr_en

(1:0). Upper and lower horizontal pipelines are connected to each other vertically to

construct 2D pipeline architecture.

Signals of upper_pipeline_valid and upper_pipeline_match(15:0) represent the query

result for the upper horizontal pipeline. The same situation is valid for lower horizon-

tal pipeline signals, which are lower_pipeline_valid and lower_pipeline_match(15:0).

16-bit BV (match results) has a meaning of one-hot encoding. For RuleBVM0, if

lower_pipeline_valid is ‘1’ and lower_pipeline_match(15:0) is equal to 0x0004, then

there is a match for the rule at BVM address 18. Inside a Rule BVM, upper and lower

horizontal pipelines are connected to each other as described in section. 3.3 to de-

crease routing delays on high number of header bits by dividing them into strides of

s bits. Therefore, the output lower_pipeline_valid asserts one clock cycle later than

upper_pipeline_valid due to this internal connection.

The simulation results of RuleBVM0 and RuleBVM1 are illustrated in Fig. 4.5.

The read enable signal from top level, bvm_rd_en is only routed to RuleBVM0.

After 2 clock cycles, RuleBVM0 asserts next_bvm_read_enable to drive the read

enable signal of RuleBVM1.

Moreover, as observed in Fig. 4.5, all match valid signals assert to HIGH with in-

tervals of single clock cycle. In other words, lower_pipeline_valid of RuleBVM0

is HIGH one clock cycle after upper_pipeline_valid of RuleBVM0 is HIGH. This

demonstrates the internal two dimensional pipeline architecture ofRuleBVM0. Sim-

ilarly, upper_pipeline_valid of RuleBVM1 asserts HIGH one clock cycle after valid

signal lower_pipeline_valid of RuleBVM0 asserts HIGH. This timing verifies the

top level vertical pipeline connection of Rule BVM units. The interval between the

the first assertion of bvm_rd_en and upper_pipeline_valid of RuleBVM0 is 48 clock

cycles due to 47 horizontal stages inside Rule-BVMs. Additional clock cycle comes

from the read latencies of data-associative memories inside Rule-BVMs. Since there

are 32 POEnc units in overall design, 48+32 gives tslow = 80 cycles, which is the

latency of FASST BVM.

As seen in Fig. 4.4, the match results of upper and lower horizontal pipelines are

69

Figure 4.5: Functional simulation of Rule-BVMs for pipeline connection

sent to two POEnc units. Each POEnc reports the highest priority match between

16 rules and sends the local result to another POEnc. Therefore POEnc receives two

bit vectors (match results): bit vector from previous POEnc, and bit vector from a

horizontal pipeline of a Rule BVM. Since first POEnc, called POEnc-1 in Fig. 4.4,

has no interface connection to a previous POEnc, pre_po_enc_match_bv(15:0) port is

set to ’1’ in order to indicate All Match condition. Moreover, POEnc units need <Rule

Priority> information. These priorities are written to POEnc by PP over rule_po(8:0)

port in rule insertion phase.

Simulation results of POEnc blocks are depicted in Fig. 4.6. Each Rule BVM is

connected to two POEnc blocks through the match valid signals of two horizontal

pipelines. These are upper_pipeline_valid for upper pipeline and lower_pipeline_valid

for lower pipeline from RuleBVM0 for POEnc-1 and POEnc-2, respectively. The

arrival interval between these valid signals is also single clock cycle due to internal

pipeline connection of Rule BVM. Moreover, the latency of POEnc is single clock

cycle. In other words, bit vector output port po_enc_match_bv (15:0) provides new

bit vector results only 1 clock cycle after previous bit vector, pre_po_enc_match_bv

(15:0), input arrives. As a result, using 4 POEnc blocks, 64 rules can be priority en-

coded in a pipelined manner. For this example, encoding process lasts only 4 clock

cycles, from the first match bit vector, upper_pipeline_valid of RuleBVM0, to the

70

first encoded bit vector provided by POEnc-4, po_enc_match_bv(15:0). Note that,

Rule ID mapping of these bit vectors are carried out after final match result from

the last POEnc is obtained. Using final BV and a 32-bit group information register,

BVM address of the matched rule can be found. Using a <Address><Rule ID> em-

bedded memory, FASST provides Rule ID of the matched packet in BVM as defined

in Section. 3.3.

Figure 4.6: Functional simulation of 4 Priority Encoders with vertical pipeline con-

nection

4.4.1 Details of Stride-BVM Blocks

Implementation of internal architecture ofRuleBVM0 is given in Fig. 4.7. RuleBVM0

consists of 47 Stride BVM units in upper horizontal pipeline, and 47 Stride BVM units

in lower horizontal pipeline. Note that only first two Stride BVM units in upper and

lower horizontal pipelines are illustrated in Fig. 4.7. Same connection flow can be

applied to all units in upper and lower pipelines. Each Stride BVM includes a Stride

BVM Controller and Stride BVM RAM. The width of Stride BVM RAM is 16 bits

because each Stride BVM RAM stores 16 flow rules. Moreover, the depth of Stride

71

BVM RAM is 256 because FASST uses 3-bit, 4-bit, 6-bit and 8-bit strides (s) accord-

ing to type of header field, and it takes the maximum bits in these strides, which is

28 = 256. In other words, FASST implements a fixed depth of Stride BVM RAM

for a consistency in FPGA implementation. For example, 6-bit strides are used with

Tos(5:0) header field, however, the depth of Stride BVM RAM is still 256. The only

difference is that addresses from 26 = 64 to 256 are not used for Tos(5:0) field.

Furthermore, as seen in Fig. 4.7, Stride BVM RAM is implemented as a dual-port

memory in FPGA, which is shown as PORT_A and PORT_B. There are two possible

applications of using an on-chip dual-port memory in BVM: Doubling the throughput

by reading the query data from two ports at the same time, and supporting simulta-

neous rule insertion/rule query operation. Different from [8], the support for simul-

taneous rule insertion/rule query operation is chosen in FASST by considering future

work. For this purpose, PORT_A is used for rule insertion and PORT_B is used for

rule query in FASST.

Figure 4.7: Internal architecture of a Rule-BVM for FPGA implementation

In rule insertion phase, the function of Stride BVM Controller is to write rule en-

tries to Stride BVM RAM through ram memory mapped interface, which consists of

the signals Ram_port_b_addr, Ram_port_b_wren, Ram_port_b_rden, 16-bit data bus

72

Ram_port_b_data_out and Ram_port_b_data_in. The utilization purpose of ram read

enable signal, Ram_port_b_rden, and 16-bit ram data input port, Ram_port_b_data_in,

is because of the fact that rule entries in Stride BVM RAM are stored in a data-

associative manner. Address bits of Stride BVM RAM are actually the header bits

for the associated header stride, which makes Stride BVM RAM a data-associative

memory. Hence, in order to write a rule entry to Stride BVM RAM, Stride BVM Con-

troller firstly reads the corresponding data from Ram_port_b_data_in at address of

header stride, then sets a single bit to HIGH determined by rule number (BVM ad-

dress), without changing other bits. For example, in Fig. 4.7, Stride BVM Controller

of RuleBVM0(0, 0) is responsible for writing the first 16 rules (rule 0 to rule 15) to

connected Stride BVM RAM for header stride of ingress(31:24). If we assume a rule

entry insertion at BVM address 3 (rule 3), where ingress(31:24) is 0x05 with exact

match (unmasked), then, Stride BVM Controller ofRuleBVM0(0, 0) firstly reads the

data at address 0x05 from Stride BVM RAM and writes ”XXXXXXXX_XXXX1XXX”

to address of 0x05. ”X” in write data means the unchanged bits at address 0x05.

The organization of Stride BVM RAM for RuleBVM0(0, 0) is depicted in Fig. 4.8.

The least significant bits at all addresses give information of the rule number 0 ,

where most significant bits give the information of rule number 15. Similarly, for

RuleBVM0(0, 1), least significant bits give the information of rule 0. However, for

RuleBVM0(1, 0), LSB gives the information for rule 16.

Figure 4.8: Address - Data organization of Stride-BVM RAM

In rule insertion phase, storing masked header fields to Stride BVM RAM is quite

different from exact (unmasked) case. Wildcard match for a header field is signaled

73

with mask_in input port. For this case, Stride BVM Controller reads all data from

all addresses from 0 to 255 at Stride BVM RAM, sets a single bit location at all these

addresses again, without changing other bits.

The signals utilized in rule insertion phase are write enable signal, bvm_wr_en, write

address signal, bvm_wr_addr(3:0), address enable signal, bvm_wr_addr_en(1:0) and

packet header information, packet_header(355:0). As seen in Fig. 4.7, these signals

are routed to all Stride BVM Controller inside RuleBVM0 without pipelining. This

routing indicates that rule insertion phase is carried out at the same time in all Stride

BVM units without pipelining, which is different from query phase. Since the focus of

this thesis is achieving a high throughput with a very low latency, rule updates such

as inserting a new rule to BVM are performed in a multi-cycle process. Inserting

a single rule to BVM takes a maximum of 256 cycles, because maximum bits in a

header stride s is 8. For a masked header stride, 28 = 256 gives the worst case rule

insertion time.

Hardware architecture of internal Rule BVM is optimized to achieve high through-

put in rule query phase. As described above, in query phase, local bit vector re-

sults are passed and bit-wise ANDed from one Stride BVM to another. For this pur-

pose, read enable signal received from top level, which is bvm_rd_en, is only routed

to Stride BVM Controller of RuleBVM0(0, 0). After this time, each Stride BVM

Controller passes the local bit vector results to another Stride BVM Controller hor-

izontally and vertically at the same time. For this reason, Stride BVM Controller

has vertical_en, horizontal_en, bv_result_in(15:0) input ports and Ram_port_a_rd,

bv_result(15:0) output ports to perform pipelining. Input port vertical_en denotes a

read enable signal received from a upper located Stride BVM Controller in vertical

direction and input port horizontal_en denotes a read enable signal received from a

previously located Stride BVM Controller in horizontal direction. Hence the con-

nection diagram in Fig. 4.7 shows a direct connection from Ram_port_a_rd port

of Stride BVM Controller of RuleBVM0(0, 0) to vertical_en port of Stride BVM

Controller of RuleBVM0(1, 0) to indicate vertical pipelining. Similarly, connec-

tion from Ram_port_a_rd port of Stride BVM Controller of RuleBVM0(1, 0) to

vertical_en port of RuleBVM1(0, 0) indicates the top level vertical pipeline con-

nection between Rule BVM units. This connection is compatible with Fig. 4.4,

74

which shows the connection between RuleBVM0 and RuleBVM1. Moreover, for

horizontal pipelining, direct connection from Ram_port_a_rd port of Stride BVM

Controller of RuleBVM0(0, 0) to horizontal_en port of Stride BVM Controller of

RuleBVM0(0, 1) is demonstrated in Fig. 4.7. In a similar manner, Ram_port_a_rd

port of Stride BVM Controller of RuleBVM0(0, 1) is connected to horizontal_en

port of Stride BVM Controller of RuleBVM0(0, 2) to proceed in horizontal direc-

tion. One important note to mention here is that horizontal and vertical pipeline

connection between Stride BVM units in a Rule BVM is made only at the first ver-

tical stage. For example, connection of horizontal pipelines for RuleBVM0 is made

between Stride BVM Controller of RuleBVM0(0, 0) and Stride BVM Controller of

RuleBVM0(1, 0). After that point, all horizontal read enable signals are connected

between each other.

Furthermore, together with these pipeline connection of read enable signals, there are

Flip-Flops(FF) located at each horizontal and vertical direction. FFs perform delaying

operation on header strides. In other words, they provide the corresponding header

stride to correct Stride BVM Controller at the correct time. This correct time means

the assertion of corresponding read enable signal for a Stride BVM Controller. Since

there must be a unique FF for each Stride BVM, there are 94 FFs in a Rule BVM. In

horizontal direction, these FFs delay the header strides in packet_header(355:0) to

meet timings.

At the same with delaying, these FFs also split packet_header(355:0) into header

strides, which the next horizontal Stride BVM Controller is responsible for. For

example, in Fig. 4.7, Stride BVM Controller of RuleBVM0(0, 0) is responsible

for Ingress(31:24) and Stride BVM Controller of RuleBVM0(0, 1) is responsible

for Ingress(23:16). As a result, FF delays the subset of overall packet header in-

stead of whole 356 bits at horizontal pipeline stages, which results in a delaying on

packet_header(347:0) at the first stage in our case. Most significant 8-bits in header

is Ingress(31:24). This is because Ingress(31:24) will never be used in the following

Stride BVM Controller units in horizontal direction, and there is no need to delay

these bits. However, Ingress(31:24) will be used in other Stride BVM units located

in lower vertical connection. Hence, FFs located between upper horizontal and lower

horizontal pipeline perform one clock cycle delay for the same header strides. For

75

example, FF between Stride BVM Controller of RuleBVM0(0, 0) and Stride BVM

Controller of RuleBVM0(1, 0) delays Ingress(31:24).

Each Stride BVM Controller has bv_result_in(15:0) port to receive bit vector re-

sult from previous Stride BVM Controller. While maintaining pipeline processing,

bv_result(15:0) is bit-wise ANDed with bv_result_in(15:0) to generate local bit vec-

tor match results, and the final bit vector is sent to bv_result_in(15:0) port of next

Stride BVM Controller. This processing continues at each horizontal pipeline un-

til upper_pipeline_match(15:0) and lower_pipeline_match(15:0) is provided. Note

that; upper_pipeline_match(15:0) is actually bv_result(15:0) port of Stride BVM Con-

troller of RuleBVM0(0, 46) and lower_pipeline_match(15:0) is actually the output

bv_result(15:0) of Stride BVM Controller of RuleBVM0(1, 46), which is illustrated

in Fig. 4.4.

4.4.2 Pipeline Processing Sequence at Signal level in FASST

In consideration of the information described in Section. 4.4 and Section. 4.4.1,

pipeline processing sequence at signal level is explained below. For this processing

sequence, it is assumed that; rule insertion is completed, BVM is already in query

phase, Ingress(31:24) is 0x04 and Ingress(23:16) is 0xF1 for the first packet header.

Moreover, it is assumed that only a single packet arrives to BVM for classification.

Moreover, signal naming in sequence is completely compatible with Fig. 4.4 and Fig.

4.7. Therefore:

• At Clock_cycle =n, firstly, header bits arrive to RuleBVM0(0, 0). Header bits

packet_header(355:348) are equal to Ingress(31:24) and the value is 0x04. At

the same time, bvm_rd_en port, which is horizontal_ren input port of Stride

BVM Controller of RuleBVM0(0, 0), is set to ’1’.

• At Clock_cycle =n+1, Stride BVM Controller of RuleBVM0(0, 0) immedi-

ately drives its output ports as in the following, at the same time:

– Ram_port_a_addr = 0x04

– Ram_port_a_rd = ’1’

76

• Furthermore, at Clock_cycle =n+1, packet_header(355:0) is also delayed and

split into packet_header(347:0) by the first horizontal FF. Hence the assertion

Ram_port_a_rd = ’1’ and Ingress(23:16), which is packet_header(347:340)

occurs at the same clock cycle. In other words, Stride BVM Controller of

RuleBVM0(0, 1) detects the assertion of horizontal_ren and Ingress(23:16)

header stride at the same time.

• Similarly, at Clock_cycle =n+1, packet_header(355:348), which is header stride

of Ingress(31:24), is delayed by the first FF in vertical direction. Hence, Stride

BVM Controller of RuleBVM0(1, 0) detects the assertion of vertical_ren port

and Ingress(31:24) header stride at the same time.

• At Clock_cycle =n+2 Stride BVM Controller of RuleBVM0(0, 0) receives the

data content at address 0x04 via Ram_port_a_data_in. This content provides a

16-bit data for rule 0 to rule 15 to indicate whether any of the rules in this range

has Ingress(31:24) = 0x04 value.

• At Clock_cycle =n+2, Stride BVM Controller of RuleBVM0(0, 0) performs

bit-wise AND operation between the read data through Ram_port_a_data_in

and bv_result_in(15:0) and sends the results over bv_result.

• At Clock_cycle =n+2, Stride BVM Controller of RuleBVM0(0, 1) immedi-

ately drives its output ports as in the following, at the same time:

– Ram_port_a_addr = 0xF1

– Ram_port_a_rd = ’1’

• At Clock_cycle =n+2, Stride BVM Controller of RuleBVM0(1, 0) immedi-

ately drives its output ports as in the following, at the same time:

– Ram_port_a_addr = 0x04

– Ram_port_a_rd = ’1’

• At Clock_cycle =n+3, Stride BVM Controller of RuleBVM0(0, 1) performs

bit-wise AND operation between the read data through Ram_port_a_data_in

and bv_result_in(15:0) and sends the results over bv_result. Note that; pre-

vious match result, bv_result_in(15:0), comes from Stride BVM Controller of

RuleBVM0(0, 0) for this case.

77

• At Clock_cycle =n+3, Stride BVM Controller of RuleBVM0(1, 0) performs

bit-wise AND operation between the read data through Ram_port_a_data_in

and bv_result_in(15:0) and sends the results over bv_result.

• The processing sequence for one Rule BVM continues until Stride BVM Con-

troller of RuleBVM0(1, 46) performs bit-wise AND operation between the

read data of Ram_port_a_data_in and bv_result_in(15:0) and sends the results

to POEnc units.

The timing diagram for the processing processing sequence explained above is de-

picted in Fig. 4.9. Since Stride BVM Controller of RuleBVM0(0, 0) and Stride BVM

Controller of RuleBVM0(1, 0) are the first Stride BVM units in horizontal pipeline

stages, then bv_result is bit-wise ANDed with 0xFFFF for these blocks.

Figure 4.9: Signal level timing diagram for pipeline processing inside Rule-BVM

Functional simulation results for 3 Stride BVM units are presented in Fig. 4.10. The

signals presented here are actually the ports of Stride BVM Controllers of the units

RuleBVM0(0, 0), RuleBVM0(0, 1) and RuleBVM0(1, 0). As observed in Fig.

4.10, top level read enable signal, bvm_rd_en, is directly connected to horizontal_ren

of RuleBVM0(0, 0). After a single clock cycle, horizontal_ren of RuleBVM0(0, 1)

78

and vertical_ren of RuleBVM0(1, 0) assert HIGH, which is compatible with the

connection diagram depicted in Fig. 4.7. As a result, the interval between the as-

sertion of bv_result(15:0) of Stride BVM units is only one clock cycle. Since both

RuleBVM0(0, 1) and RuleBVM0(1, 0) is connected to RuleBVM0(0, 0) with a

single pipeline stage, bv_result(15:0) for these two blocks asserts at the same time.

Figure 4.10: Functional simulation of 3 Stride-BVMs with pipeline connection

4.5 Implementation of TCAM

4.5.1 Details of Stride TCAM Blocks

FPGA implementation of TCAM in FASST is very similar to the design of a sin-

gle Rule BVM except for some minor differences. Similar to Stride BVM units in

BVM, there are Stride TCAM blocks inside TCAM to store and query rules. Each

Stride TCAM consists of one Stride TCAM Controller and one Stride TCAM RAM.

However, different from Stride BVM, (Stride TCAM Controller, Stride-TCAM RAM)

design shows variations based on the header fields. The depth of Stride BVM RAM is

independent of header stride size including IP fields in BVM, and it is always 256. In

TCAM; however, header strides of IP fields are taken as single bits (s=1). This varia-

tion is caused from abundant parallelism in FPGA, as well as different combinations

79

of prefix lengths on IP fields during query phase. Hence, a total of 64 Stride TCAM

units is used for 32-bit IP source and 32-bit IP Destination fields, where the depth of

Stride TCAM RAM for these fields is 21 = 2: one for logic ’0’ and one for logic ’1’.

Other remaining 13 fields in a 15-tuple SDN packet, (Stride TCAM Controller, Stride

TCAM RAM) design is the same as (Stride BVM Controller, Stride-BVM RAM). A

total of 39 Stride TCAM units is implemented for these 13 fields. The width of Stride

TCAM RAMs in TCAM is 32, since TCAM can store and classify 32 rules.

Detailed implementation diagram of TCAM except for Stride TCAM units for IP

fields is presented in Fig. 4.11. TCAM implementation can be regarded as a single

horizontal stage of Rule BVM without pipelining. In order to preserve design in-

tegrity, same functional blocks are used for Stride TCAM Controller and Stride BVM

Controller with small modifications. The differences are given as in the following:

• Compared to Stride BVM in BVM, each Stride TCAM receives the header stride

at the same time in TCAM. In other words, there is no pipeline connection of

read enable signals. For this purpose, read enable signal tcam_rd_en from top

level is routed to all horizontal_ren ports of Stride TCAM Controller units. At

this point, vertical_ren can also be utilized. However, in our implementation,

we set vertical_ren to ’1’ in all Stride-TCAM Controller units.

• There are no FFs to delay the packet headers in query phase due to the fact that

all header strides are queried at the same time.

• Since there is no pipelined connection of read enable signals, Ram_port_a_rd

output port is only routed to the associated Stride TCAM RAM.

• The width of bit vector match results is changed to 32-bits instead of 16-bits,

which are bv_result_in(31:0) and bv_result(31:0)

• There is no bit-wise ANDed local bit vectors in pipeline stages. Therefore,

bv_result_in(31:0) is set to default value 0xFFFFFFFF.

• Since Stride TCAM Controller units are only lying in the horizontal direction

without pipelining connection, then, address enable port, bvm_wr_addr_en, to

select between upper and lower horizontal stages is set to ’1’ to activate the

blocks.

80

• Input port tcam_wr_en and tcam_wr_addr in Fig. 4.11 denote bvm_wr_en and

bvm_wr_addr in Fig. 4.7. However, tcam_wr_addr is 5-bits long instead of

4-bits.

Figure 4.11: Stride-TCAM design in TCAM

The process of rule insertion to TCAM is the same as in BVM. Port_A and Port_B

of Stride TCAM RAM are used for rule insertion and rule query phases, respectively.

During rule insertion, each Stride TCAM Controller firstly reads the data from Port_A,

modifies it by setting a single bit to ’1’ for each rule and writes the modified data back

to Stride TCAM RAM. Similarly, masking fields are signaled with mask_in input port.

In rule query, all Stride TCAM Controller blocks assert read enable and address

ports, which are Ram_port_a_rd and Ram_port_a_addr, at the same time. Note that

Ram_port_a_addr is the header stride of the incoming packets, and different for all

Stride TCAM Controller blocks. After a single clock cycle, Stride TCAM Controller

units assign the value of Ram_port_a_data_in to the output port bv_result(31:0) at the

same time. Hence, after one clock cycle, the bit vector results for all header strides

are obtained.

Stride TCAM Controller blocks for IP fields perform similarly in rule insertion and

rule query phase. The only difference is that the depth of Stride TCAM RAM is 2 due

to 1 bit header stride, s=1. In FPGA, Stride TCAM RAM is implemented using logic

81

gates instead of embedded memory blocks. This is due to the fact that there is no

2x32 embedded on-chip ram block inside FPGA.

Functional simulation results for Stride TCAM-0, Stride TCAM-4 and Stride TCAM-

76 are illustrated in Fig. 4.12. Stride TCAM-0 and Stride TCAM-4 are for the header

strides of Ingress(31:24) and Metadata(63:56), respectively. Stride TCAM-76 is for

bit 0 of IP Destination field. Different from Stride BVM, horizontal_ren ports of all

Stride TCAM units assert at the same time without pipeline connection. As a result,

bv_result(31:0) ports provide the bit vector match results at the same time except

for Stride TCAM-76 for Destination IP. This is due to logic gate implementation of

Stride TCAM RAM for IP fields. Since logic gates are used for IP fields instead of

embedded memory blocks, additional clock cycle coming from the read latency of

embedded memory blocks is avoided. While logic gate-based memories can provide

the data in single clock cycle, embedded memory blocks can provide in 2 clock cycles.

Therefore, bit vector match results for IP fields are provided one clock cycle before

other match results for 13-fields. End to end latency of lookup process in TCAM

without priority encoding is 2 clock cycles.

Figure 4.12: Functional simulation of Stride-TCAMs

4.5.2 Implementation of Priority Encoder in TCAM Cache

Priority Encoder in TCAM cache is implemented to obtain the index value in the

matching bit vector with the highest priority. The increased number of rules stored

in a TCAM results in a significant degradation in the achievable clock rate due to

encoder functionality [37]. Therefore, TCAM size is limited to 32 rules. As seen in

82

Fig. 4.11, bv_result(31:0) ports of all Stride TCAM Controller units are connected to

priority encoder in TCAM, named POEnc-TCAM.

In order to find highest priority match, POEnc-TCAM needs two inputs of rule infor-

mation: <Rule ID><Rule Priority> pairs of the rules in TCAM and bit-wise ANDed

bit vector match results from (39+64) Stride TCAM Controller units. As stated above,

64 of these Stride TCAM Controller blocks perform look up for IP Source and IP

Destination fields with a single bit stride, and 39 of Stride TCAM Controller blocks

perform lookup for other 13-fields with different header strides.

The implementation of POEnc-TCAM is designed as a state machine to make a sep-

aration between configuration and run-time encoding processes. Configuration of

POEnc-TCAM is necessary because during a rule insertion to TCAM, POEnc-TCAM

sorts the <Rule ID>s of the rules based on their priorities in descending order. Hence,

there are two on-chip RAMs dedicated to 32 <Rule ID><Rule Priority> pairs in

TCAM. The width of these RAMs is 9-bits, because both <Rule ID> and <Rule Pri-

ority> are represented as 9-bits, within the range (0,511). The depth of these RAMs

is 32 words, which is the maximum number of rules that can be written to TCAM.

Note that, there is no need to fill all 32 words in these RAMs, because the number of

rules that are written to TCAM are determined by the number of popular rules and

their dependent rules, as explained in section. 3.5.

Sorting of 32 rules takes a maximum of 32x32 = 1024 clock cycles due to imple-

mentation of fully synchronous bubble sorting algorithm in FPGA. After rule sort-

ing, run-time encoding phase begins. In this phase, after bit-wise ANDing of all

bv_result(31:0) ports is performed to obtain final bit vector, highest priority match

index is found. Total end to end latency of POEnc-TCAM is 1 clock cycle, which

results in tfast = 3 cycles for TCAM lookup.

Highest priority match is found by analyzing HIGH bits in the final bit-wise ANDed

bit vector. Since, priorities are sorted in descending order, the index values of the

highest priority rules are already known by POEnc-TCAM. Therefore, starting from

highest index, a match result (HIGH bit) is checked inside bit vector. In case of a bit

match (HIGH) at this highest index, all other bits except for this bit are set to logic

LOW, and the output bit vector is sent from POEnc-TCAM. If bit value is LOW at

83

the highest index, then other indexes with lower priorities are searched to observe a

match. Implementation details of POEnc-TCAM is demonstrated in Fig. 4.13.

Figure 4.13: PO-Enc design in TCAM

Simulation waveform for POEnc-TCAM is given in Fig. 4.14. Note that, in Fig. 4.14,

bit-wise ANDing is performed as a sequential clocked process in order to demon-

strate the timings in a more clear way. This sequential process leads to an extra

clock cycle delay. However, in current design of FASST, bit-wise ANDing is car-

ried out using combinational gates. BitWise_AND_valid denotes the output of ’and’

gate implementation inside POEnc-TCAM. This signal asserts HIGH one clock cy-

cle after local bit vectors arrive to POEnc-TCAM due to sequential clocked process.

After a single clock cycle, POEnc-TCAM provides the encoded bit vector result by

setting TCAM_match_valid to HIGH. In Fig. 4.14, final bit vector result is shown

84

as TCAM_Matched_Bit_Vector(31:0). Moreover, the associated <Rule ID> of the

matched rules in TCAM is given as TCAM_Matched_Rule_ID(8:0). For example,

there are 4 match results for the rule with <Rule ID> =7. Mapping of bit vectors to

<Rule ID>s is performed using a <Address><Rule ID> embedded memory. <Ad-

dress> is actually the bit index in the final bit vector provided by POEnc-TCAM.

Figure 4.14: Functional simulation of PO-Enc in TCAM

4.6 Implementation Match Monitor (MM)

4.6.1 Locality Detector

In FASST, Locality Detector in Match Monitor (MM) checks whether the number

of matches for a particular rule exceeds a predetermined threshold value Thr. If

threshold value is exceeded, then, this rule is identified as a popular rule by MM and

corresponding BVM address is written to RAM-1 as depicted in Fig. 4.1.

FPGA design of Locality Detector is given in Fig. 4.15. Since FASST stores 512

rules in BVM, each of these rules has to be analyzed to be identified as popular rules.

Therefore, blocks named windowed_rule_block count the number of matches of each

rule over a time window. Since locality information in a network traffic can change,

windowed_rule_block updates the match results at two points in time window. Fur-

thermore, the input to these blocks is BVM addresses of rule entries. For example,

when windowed_rule_block(2) outputs a match count that exceeds threshold, it means

85

that entry Fj at BVM address=2 is a frequently accessed rule.

Figure 4.15: Internal architecture of Locality Detector

The duration of time window is expressed with respect to total match counts. A

time_window_counter is used for this purpose. In other words, when a packet, P ,

matches a rule entry, then time_window_counter in each windowed_rule_block in-

crements its value regardless of the BVM address of the matched rule. This matching

is signaled with match_valid in Fig. 4.15. However, if the associated rule for win-

dowed_rule_block has a match, then, particular counters for this rule increment their

values to make a comparison with threshold level. The matching with a particular

rule for each windowed_rule_block is signaled via match_bv_valid. The top level

decoders designed to obtain this valid signal are not shown here. Basically these de-

coders takes 16-bit final bit vector and 32-bit group information register as described

in Section. 3.3, and outputs a single valid signal for each rule at a time.

In windowed_rule_block, using only one counter to determine match counts can cause

several inefficiencies. This is because, in FASST, sampling point to detect popu-

lar rules can be anywhere in time window. If the sampling point time and dynamic

counter initialization overlap, then, it will be impossible to detect popular rules. This

is because, dynamic counter is initialized to 0 to start a new time window at this time.

Therefore, in windowed_rule_block, there are two implemented counters, counter_1

and counter_2, to count the match numbers of the associated rule number. The incre-

86

mentation of these two counters is managed with a simple finite state machine (FSM)

such that sampling point always observes a match count for the recent past.

Moreover, since windowed_rule_block has only one counter value as an output, the

assignment of two counters to this output counter has to be managed in a controlled

way. Hence, an example scenario for the assignment of output counter is illustrated in

Fig. 4.16. For this scenario, time window duration is assumed to 2000 match counts.

Hence upper limit on time_window_counter is 2000. Moreover, linear increase in

match counts for the associated <BVM address> is assumed. Therefore, first counter

and second counter increment their values linearly throughout the time window. The

description of the assignments is given below:

• Only counter_1, which is first counter, is assigned to output counter value

throughout the first time window.

• Second counter, counter_2, waits until the middle point of first time window,

where time_window_counter is 1000. After that middle point, counter_2 starts

to increment its value.

• At the end of first time window, where time_window_counter reaches to 2000,

counter_1 initializes to 0. At that time, counter_2 is assigned to output counter

value. This assignment continues until the middle point of second time window.

• At the middle point of second time window, counter_2 is initialized to 0, and

counter_1 is assigned to output counter value until the starting point of third

time window. At this time, counter_2 starts to count from 0 again.

• At the beginning of third time window (or at the end of second time window),

counter_1 is again initialized to 0, and starts to count from 0. At this time,

counter_2 is assigned to output counter value until middle of third time window.

• The assignment process proceeds similarly for each time window. In summary,

except for the first time window, assignment order changes at starting and mid-

dle points of time windows. Therefore, any sampling point in time windows

observes a traffic measurement over the recent past, where this recent past de-

notes 1000 match results in our case.

87

Figure 4.16: Output counter mapping in windowed rule block

A rule is identified as a popular rule when the match count exceeds the predetermined

threshold level Thr. This count can be observed by analyzing the output counter

value for each rule as seen in Fig. 4.16. Locality Detect checks each output counter

in order, and writes the BVM address to RAM-1 at the associated location, if current

value of output counter exceeds Thr. This checking process begins from BVM ad-

dress=0. The match count for the rule Fj , with at BVM address=0, is provided by

windowed_rule_block(0).

Functional simulation result in Fig. 4.17 provides an example of writing popular

BVM addresses to RAM-1. In this example, BVM addresses of the popular rules are

5, 9, 62 and 135. As observed, all output counter values for these BVM addresses

exceed Thr, which is 100 match counts. Hence, Locality Detect writes the BVM

addresses of these rules to on-chip RAM-1 through write enable signal ram_1_wren,

address bus ram_1_addr(8:0), and data bus ram_1_data(9:0). Note that, after writing

BVM address of 9, the match count for BVM address of 22 is observed as 51, which

is below the threshold level Thr. Hence, Locality Detect unit skips this address and

proceeds to write BVM address of 62. Moreover, address of RAM-1 is incremented

by 8 bytes for each popular rule due to subparts of 8-words in RAM-1. For example,

BVM addresses of 5, 9 and 62 are written to addresses of 1, 9, and 17 at RAM-1. The

88

remaining addresses are filled with dependent BVM addresses of rules.

Figure 4.17: Functional simulation of locality detection

4.6.2 NIOS II Soft Processor System-on-Chip (SoC) Design

The function of processor block in MM is to determine the dependent BVM addresses

of the popular rules written to RAM-1. For FPGA implementation, this processor is

designed using a System-on-Chip (SoC) integration tool named Qsys, which is spe-

cific to FPGA vendor Altera. This SoC tool provides a flexible and efficient environ-

ment to connect different intellectual property (IP) functions and subsystems. More-

over, interconnection logic is automatically generated by this integration. Therefore,

complex network on chip (NoC) architectures are designed and verified using Qsys

in many fields.

Processor unit in MM performs a variety of algorithmic functions at run time such

as rule dependency graph generation and depth first searching as described in sec-

tion. 3.5. Using a hardware description language (HDL) for these functions is re-

dundant and time-consuming. For this reason, a soft processor, called Nios II IP, is

implemented using Qsys. Nios II IP is 32-bit RISC soft processor core architecture

designed specifically for the FPGA families of Altera. This processor architecture

is named as soft processor core due to the fact that it can fit anywhere in FPGA

programmable logic. Similar to conventional processor cores, Nios II IP provides

support for embedded computing applications using high level languages, command

shells, and memory management units .

89

Nios II IP provides only a soft processor core in FASST. However, as described in

Fig. 4.1, a SoC is implemented in MM processor unit to make connections for on

chip RAMs. As a result, custom peripherals are connected to Nios II soft core in

order to communicate with external RAMs. These custom peripherals are specifically

designed to FASST regarding timing constraints and on chip RAM size. The interface

diagram of processor SoC, consisting of Nios II IP and custom peripherals, is given

in Fig. 4.18.

Figure 4.18: SoC design of Nios II in MM

The custom interfaces, called RAM Interface, provide a memory mapped access be-

tween Nios II IP soft processor core and external on chip RAMs. Each RAM Inter-

face has a number of parameters such as number of pipeline transfers, required read

latency and required write latency. As a result, 4 RAM Interface units are utilized and

configured in order to communicate with RAM-1, RAM-2, RAM-3 and chain_RAM.

Moreover, clock and reset signals generated outside MM is sent to Nios II IP through

Clock&Reset Bridges in order to make an isolation. Nios II IP has direct connection

to system memory, which is used to store data and instructions. Regarding FASST

90

algorithms, the size of system memory is set to 256 Kb. Processor SoC also has

a custom interface called JTAG UART. This interface is added for debug purposes

of the FASST architecture on run time. JTAG UART provides a convenient way to

communicate with host PC’s console in order to display real time test results.

Since FASST is a stand-alone hardware architecture that is implemented on FPGA,

power consumption is monitored at run time. For this reason, there is a custom in-

terface called I2C, which means Inter-Integrated Circuit. I2C is a common protocol

used in industry in order to communicate with a variety of devices including sen-

sors, actuators over a serial interface. There two signals utilized in I2C protocol:

clock signal, named as scl, and bidirectional data signal, named as sda. Since our

targeted development board includes power monitor devices that are compatible with

I2C communication protocol, Nios II IP continuously reads power measurements and

reports them to host PC. The signals used for I2C communication are power_mnt_scl

and power_mnt_sda.

In order to generate rule dependency graph, and determine dependent rules, Algo-

rithm 1 and Algorithm 2 are run in Nios II IP. According to the results, 78Kb system

memory is used for all these algorithms, and the remaining 256−78 = 178Kb is free

for stack and heap memory.

The connection diagram of processor SoC in Qsys, excluding I2C interface, is given in

Fig. 4.19. All interfaces are connected to each other through Altera specific memory

mapped protocol called Avalon Memory Mapped Interface. Nios II IP is the only

master in SoC that sends instructions to other custom interfaces.

4.6.3 Implementation of TCAM Cache Interface (TCAM Writer Block)

In FASST, TCAM Cache Interface is responsible for writing the popular rules and

their dependent rules to TCAM at run-time. This block has 5 ram interfaces to per-

form rule insertion process as illustrated in Fig. 4.20. FPGA implementation of

TCAM Cache Interface is designed as a series of sequential processes using finite

state machines. The process sequence, starting from the completion of writing popu-

lar BVM addresses to RAM-1, is explained in detailed below:

91

Figure 4.19: System contents in MM Processor in Qsys

• TCAM Cache Interface polls bit 0 at Address0 of RAM-1 in order to deter-

mine whether completion of writing popular BVM addresses is completed by

Locality Detect. A HIGH value at bit 0 means a completion of writing.

• Following the completion of writing popular BVM addresses, TCAM Cache

Interface cleans bit 0 atAddress0 of RAM-1 and waits for Nios II IP to identify

dependent rules of BVM addresses for each popular rule. This waiting process

is done by polling bit 0 at Address511 of RAM-1. Note that rule dependency

graph is already generated by Nios II IP following the insertion of all 511 rules

to BVM. Hence, it only performs depth-first searching on the graph to find

92

Figure 4.20: Interface diagram of TCAM Cache Interface

dependencies at this time.

• After that, when bit 0 at Address511 of RAM-1 asserts HIGH, TCAM Cache

Interface cleans this bit, and starts to read BVM addresses from RAM-1 starting

from Address1. At this time, it searches Flag_RAM to figure out whether

this rule is written to TCAM before. This is done by analyzing flag bits in

Flag_RAM. For each rule in BVM, there is a unique flag bit in Flag_RAM,

which indicates the status of rules in TCAM. If flag bit for rule entry Fj is

HIGH, it means that Fj is written to TCAM before. Moreover, if Fj is written, it

means that all dependent rules are also written. Hence, TCAM Cache Interface

skips this rule and its dependent rules and it reads the next popular rule, if it

exists, at Address9 of RAM-1.

• Searching process in Flag_RAM lasts only single clock cycle, because BVM

addresses are used as address bits in Flag_RAM.

• If the current popular rule at Address1 is not written to TCAM before, then

93

TCAM Cache Interface reads the number of dependent rules of this current

popular rule from chain_RAM. This information is needed in order not to make

an overflow in TCAM. In other words, if the number of dependent rules of the

current popular rule exceeds the number of available empty locations in TCAM

at some time, then, this current rule and its dependent rules are skipped and they

are not stored. In order to preserve locality information, popular rules must be

stored in TCAM together with all their dependent rules.

• If the number of dependent rules is less than the number of available slots in

TCAM, then current popular rule and its dependent rules are written through

TCAM Cache Write Interface. At this time, Flag_RAM is again accessed for

each dependent rule. This is because, in depth first search, some rules can be

visited more than once, and a labeling is necessary to avoid overwriting.

• Before reading next popular rule and its dependent rules, TCAM Cache Inter-

face waits for busy signal, busy_tcam, to deassert LOW. This signal is driven

by TCAM internal logic. Since the rules in TCAM can have wildcard match

fields, this waiting time can take up to 256 clock cycles due to using 8 bit header

strides.

• The produce of writing rules to TCAM continues until either TCAM is full or

there are no popular rules left in RAM-1.

• Before new locality information, TCAM Cache Interface passes read enable

signal bvm_rd_en, and packet headers, packet_header(355:0) to TCAM in or-

der to perform rule query. This is because, BVM and TCAM perform lookup

process in parallel in query phase. When locality information is updated in

FASST, TCAM Cache Interface cleans Flag_RAM, and polls bit 0 of the data

at the Address0 of RAM-1 again.

94

CHAPTER 5

PERFORMANCE EVALUATION OF FASST

The overall design FASST is functionally verified at the end of design procedure. For

this purpose, all functional blocks and Nios II SoC are simulated using QuestaSim,

which is an advanced simulator for verification. Moreover, since FASST is imple-

mented in real hardware using Altera FPGA development kit, hardware tests are also

carried out in order to indicate that overall design works under targeted clock fre-

quencies to achieve the desired throughput and latencies. Most of the hardware based

SDN classification algorithms proposed in previous works are only implemented in

FPGA and the results are presented by estimation [8], [15]. However, in our work,

run-time debugging tools on real hardware are used.

The obtained results are used in order to calculate the throughput and average latency

of packets in rule query phase. These two parameters are strictly dependent on clock

rate in FPGA and cache hit rate in TCAM as described in chapter. 3 and chapter 4.

Therefore, while carrying out static (functional) and dynamic (hardware) tests, the

network characteristics including BVM rule setR and TCAM rule set F is extremely

important to verify the overall design at each phase. For this purpose, sample traffic

traces and SDN rules are generated and sent to FASST. While generating these traffic

traces and SDN rules, packet formats in Table. 4.1 and Table. 4.2 are taken into

account. MATLAB environment is utilized to generate these synthetic data traces.

After that, traces are sent to FPGA via serial interface to load Upper Input FIFO and

Lower Input FIFO as stated in section. 4.1.

After generating synthetic data traces, FASST is analyzed at two operation phases.

Throughout the chapter. 5, these phases are:

95

• No rule caching phase, where cache_hit_rate = 0%

• Partially rule caching phase, where cache_hit_rate = x%, 0 ≤ x ≤ 100

At each phase, we evaluate average packet latencies and throughput values for static

(functional) and dynamic (hardware) tests.

Furthermore, this thesis provides the results of power consumption at run time. Since

SRAM-based TCAMs are power consuming architectures, as cache hit rate increases,

power rates are expected to increase in FASST. In order to verify the power consump-

tion of FASST, real-time results are compared with the results of Altera Early Power

Estimator (EPE) Tool. This tool (EPE) gives the ability to estimate power consump-

tion of designs without actual implementation on real hardware with a good accuracy.

Moreover, power values are provided at different clock values in order to indicate the

scalability of FASST. Power consumption, latency and throughput analysis of FASST

with previous work are also given in this chapter.

After all functional and hardware tests are carried out, FPGA resource utilization is

given for different parameters. For this purpose, resource utilization of FASST for

|R|=512 and |R|=128 is provided in order to observe the scalability of FASST with

respect to rule set size.

5.1 Synthetic SDN Flow Table with 512 Rules

A synthetic flow table is generated using MATLAB. The rules in this flow table must

satisfy certain characteristics to prove the functionality of FASST, which can be listed

below:

• Req.1: Some rules in BVM must have wildcard match fields including ingress

(31:0), metadata (63:0), source mac (47:0), destination mac (47:0), eth_type

(15:0), vlan_id (11:4), vlan_po (2:0), mpls_label (19:0), mpls_po (2:0), proto-

col (7:0), tos (5:0), source port (15:0) and destination port (15:0). This is re-

quired to verify the rule insertion and rule query processes for wildcard match

entries in BVM and TCAM.

96

• Req.2: Some rules in BVM must have prefix lengths which are different from 0

for Source IP(31:0) and Destination IP(31:0). This is required to verify the rule

insertion and rule query processes for IP fields having different prefix lengths.

• Req.3: Some rules must have containment relationships regarding Source IP

and Destination IP. The definition of containment in FASST is given such that

two rules have containment relationship if all header fields, excluding Source

IP or Destination IP, are same. However, by the arrangement of prefix lengths

of IP fields, a packet, P matches both of the rules. This is required to verify the

dependency graph with respect to IP fields.

• Req.4: Some rules must have partial overlaps between each other. Two rules

have partial overlaps if some of the header fields are different between these

rules; but, by a proper arrangement of mask bits, a packet P matches both of

the rules. This is required to verify the dependency graph with respect to header

fields excluding IP fields.

• Req.5: All 512 rules must have different <Rule ID> and <Rule Priority> values

within the range (0,511) in order to verify overall design.

• Req.6: Some rules must have exactly same header fields, where all fields are

unmasked and prefix lengths are 0. This is required to verify priority based

query in FASST.

Based on rule characteristics stated above, an example rule set is generated for 512

rules. Consider that, rules are named as Ri, 0 ≤ i ≤ 511. Ri is the rule located at

address i in BVM. Moreover, Rule IDs are given to rules such that; if RuleIDi is

the rule ID of Ri, then RuleIDi =i. Regarding priorities, if Priorityi is the priority

of Ri, then Priorityi = i + 256 for 0 ≤ i ≤ 255, and Priorityi = i − 256 for

256 ≤ i ≤ 511. Moreover, Ri has higher priority than Rj if i < j.

The configuration of Rule IDs and Rule Priorities are illustrated in Table. 5.1. The

reason of giving distinct values of Rule IDs and Rule Priorities is to satisfy Req.5.

Most of the rules have distinct header patterns in this synthetic flow table. However,

in order to satisfy Req.6 stated above, exactly same header bits are assigned to some

97

Table 5.1: Rule IDs and Rule Priorities for synthetic flow table with 512 rules

Rule Number Rule ID Rule Priority

R0 0 256

R1 1 257

R2 2 258

. . .

R255 255 511

R256 256 0

R257 257 1

. . .

R511 511 255

rules. All fields for these rules are unmasked and prefix lengths of IP fields are set to

0. Therefore, according to our synthetic flow table, Ri and Ri−1 have exactly same

header bits for i = 16k+15, 0 ≤ k ≤ 31. For example; pairs of (R14, R15), (R30, R31),

..., (R510, R511) have exactly same header contents. Hence, according to priorities in

Table. 5.1, it can be deduced that R15 is dependent on R14, R31 is dependent on R30

and similarly R511 is dependent on R510.

Furthermore, in order to support Req.1, and Req.4 together, the header and mask bits

for 4 rules among 512 rules are specially assigned. Table. 5.2 demonstrates the header

bits for these 4 rules, which are R24, R338, R467 and R490. As seen in Table. 5.2, R24,

R338, R467 andR490 are dependent on each other. If we consider priorities, a packet P

that matches all 4 rules will result in a final match result of R338, where Rule Priority

of R338 is the lowest value among them, which is 82.

Lastly, in order to satisfy Req.2, and Req.3 together, IP fields of 3 rules are arranged

such that a containment relationship can be observed among these rules. These rules

are R67, R98, and R263. Table. 5.3 shows the Source IP and Destination IP field

contents of these 3 rules, together with prefix lengths. Note that, other fields of these

3 rules have the same header content. Proper arrangement of prefix lengths for both

IP fields enables 3 rules to have dependency relation between each other. However,

since R263 has highest priority, a packet P that matches all 3 rules will result in a final

98

Table 5.2: Rules with partial overlaps using mask bits

Header

Field
R24 R338 R467 R490

Ingress * 01:23:45:67 01:23:45:67 01:23:45:67

Metadata
01:23:45:67:

89:AB:CD:EF

01:23:45:67:

89:AB:CD:EF

01:23:45:67:

89:AB:CD:EF

01:23:45:67:

89:AB:CD:EF

Source

MAC
01:23:45:67:89:AB 01:23:45:67:89:AB 01:23:45:67:89:AB 01:23:45:67:89:AB

Dest MAC 01:23:45:67:89:AB 01:23:45:67:89:AB * 01:23:45:67:89:AB

Eth Type F1:23 F1:23 F1:23 F1:23

Vlan ID 0:12 0:12 0:12 *

Vlan Po 2 2 2 2

MPLS Lbl 0:12:34 0:12:34 0:12:34 0:12:34

MPLS Po 2 2 2 2

Src IP 01:23:45:67 01:23:45:67 01:23:45:67 01:23:45:67

Dst IP 01:23:45:67 01:23:45:67 01:23:45:67 01:23:45:67

Protocol 01 01 01 01

ToS 09 09 09 09

Src Port 01:23 * 01:23 01:23

Dst Port 01:23 * 01:23 01:23

Src IP Pre-

fix
0 0 0 0

Dst IP

Prefix
0 0 0 0

match result of R263.

Table 5.3: Rules with containment relation using prefix lengths in IP fields

Header Field R67 R98 R263

Src IP 0B:5B:05:11 05:5B:05:1E 0B:5B:05:11

Dst IP 0D:5B:05:10 0D:5B:05:10 0D:5B:0A:EE

Src IP Prefix 0 4 0

Dst IP Prefix 0 0 12

99

The remaining rule entries have distinct header fields, except for rules in Table. 5.2,

Table. 5.3 and rules with same header fields, Ri : Ri−1, i = 16k + 15, 0 ≤ k ≤ 31.

Hence, there is no dependency relation among them.

This example flow table is generated by MATLAB source code, and written to Upper

Input FIFO via RS232 serial interface. After that Packet Parser (PP) reads all 512

rules from FIFO and writes to BVM in order.

5.2 Synthetic Traffic Trace using Flow Table with 512 Rules

After defining a flow table of 512 rules for BVM, it is required to generate a sample

traffic trace in order to verify rule query phase, temporal locality detection and cache

hit rates. As described in section. 4.2, network characteristics are stored in Lower

Input FIFO with a specific packet format in FASST. Hence, a series of packets with

15-tuple SDN headers is generated and sent to Lower Input FIFO. While generating

these packets, we assume a line utilization of 100%, which makes BVM 2D pipeline

always full. This is because, maximum throughput is achieved when line utilization

is 100% at the targeted clock rate. Moreover, in order to verify the timing constraints

at high clock rates, 100% line utilization is required.

Moreover, packet headers for this traffic trace are generated by considering flow table

in BVM. In other words, matching packet headers are same with the matched rule

headers located in BVM. This approach is carried in order to make the verification

process in rule query phase in a more controlled and efficient way. Table. 5.4 illus-

trates generated series of packets, together with the order and the packet numbers.

For example, 30 packets having the same header fields with R1 are sent to FASST for

rule query phase. Right after this, 100 packets having the same headers with R5 are

sent. Therefore, we expect 30 final match results of R1, and 100 final match results

of R5 from BVM in order.

In order to verify the priority-based query, we also send packets having the same

contents with at least two rules in BVM. For example, for Packet Sequence =13 and

Packet Sequence =15, packets having same header contents with R127 are sent. Since

R127 has a dependency on R126 as stated in section. 5.1, then the expected final match

100

Table 5.4: Sample traffic trace with 100% line utilization

Sequence Packet Number
Rule of Same

Content

Expected BV Re-

sult(s)

Expected Final BV

result

1 30 R1 R1 R1

2 100 R5 R5 R5

3 20 R1 R1 R1

4 200 R5 R5 R5

5 90 R9 R9 R9

6 50 R22 R22 R22

7 210 R9 R9 R9

8 10 R65 R65 R65

9 150 R24 R24, R338, R467, R490 R338

10 40 R65 R65 R65

11 150 R24 R24, R338, R467, R490 R338

12 300 R98 R67 R98, R263 R263

13 30 R127 R126, R127 R126

14 50 R200 R200 R200

15 20 R127 R126, R127 R126

16 50 R63 R62, R63 R62

17 150 R135 R135 R135

18 100 R62 R62, R63 R62

19 30 R244 R244 R244

20 10 R245 R245 R245

21 10 R304 R304 R304

22 10 R339 R339 R339

23 10 R452 R452 R452

24 10 R502 R502 R502

25 20 R244 R244 R244

26 150 R276 R276 R276

2000

result must be for R126.

Moreover, in order to verify overlap conditions for the rules, some packets have same

101

header fields with particular rules as in the case of Packet Sequence =9 and Packet

Sequence =11. Note that, R24, R338, R467, and R490 have dependencies among each

other with overlap condition. Hence, when 150 packets are sent with same header

content with R24, the final match result must be R338 due to lowest priority. The same

procedure is applied for containment relations in IP fields for Packet Sequence =12.

When a whole sequence is completed in Table. 5.4, packets are continued to be sent

by PP starting from beginning where Packet Sequence =1. As a result, 100% line

utilization is achieved.

5.3 Design Parameters Used in Performance Evaluation

While performing overall verification of FASST, some design parameters should be

set at synthesis level. First of all, for 512 rules, overall design in FPGA is run at 200

MHz clock rate. This clock rate is the maximum value for FASST hardware architec-

ture for the target FPGA after a number of iterations. Moreover, time window size,

Ws, is set to 20000. In other words, time_window_counter in windowed_rule_block

stated in section. 4.6.1 counts up to 20000 at the end of each time window. After that

it is initialized to 0. The selection of Ws is strictly dependent on the sample network

traffic. In order to achieve increasing cache hit rates at run time, Ws should be long

enough to catch the localities for the recent past. Our sample network traffic consists

of about 2000 match counts for different SDN packets at each round. After 2000

match counts, same series of packets arrives to FASST for another round of look up

process due to 100% line utilization. Therefore; Ws = 20000, which is ten times of

match counts in each round, is long enough to catch different cache hit rates inside

each time window.

In order to identify a rule as a popular rule, threshold level Thr is set as 100. Hence,

if the value of match count of a particular rule is higher than or equal to 100 at the

sampling time, then this rule is identified as popular rule and corresponding BVM

address is written to RAM-1 by Locality Detector. The selection of threshold level

Thr can be changed at pre-synthesis level before FPGA fitter operation, and it exactly

depends on the incoming network traffic. In other words, the value of Thr should be

low enough to determine elephant or large volume flows inside the run-time network

102

traffic. However, if it is too low, then TCAM Cache will be filled with unnecessary

rule entries with short-term durations. Similarly, if Thr is set to a very high value, no

popular rules will be detected inside a time shifting window at the sampling points.

Our sample network traffic consists of SDN packets whose durations are between

10-300 match counts, and the sequence number in each round is 26 as seen in Table.

5.4. Therefore, the value of Thr is determined as 100 match counts using a discrete

uniform distribution for each round. In other words; when a uniform distribution is

considered, the average match count for each sequence will be about 12. Therefore,

about a ten times higher value of the average number of match counts for Thr is an

optimal value. This is because, as stated in[9], 97% of the matches in a SDN traffic

are to 10% of the rules.

The sampling points in FASST are chosen to be the points that time_window_counter

value is integer multiples of 1900k, k > 0. For example, Locality Detect takes first

locality samples when time_window_counter reaches to 1900, and second locality

samples when time_window_counter reaches to 3800. The selection is of sampling

points is made by considering the size of time window, which is 20000 match counts.

In order to observe increasing cache hit rates in each time window, the sampling

points are set to lower value than time window size.

As observed from Table. 5.4, one round for traffic trace consists of 2000 match

counts, which is very close to sampling point time. Hence, at first round where first

sampling occurs in time window, some of the rules are expected to be identified as

popular rules.

5.4 Hardware Tests of Overall Design for 512 Rules

The results of FASST hardware tests are carried out by using Altera Signal Tap II

Embedded Logic Analyzer tool, which helps debugging of FASST by probing the

state of internal signals in FPGA at run-time.

Since Altera Signal Tap II Embedded Logic Analyzer consumes limited embedded

memories in FPGA, it is not possible to probe all signals at all time instants. For

this purpose, hardware test results are given in 2 phases: no-caching phase where

103

Figure 5.1: Match results with no-caching phase

cache_hit_rate = 0% and partially rule caching phase where cache_hit_rate = x%,

0 ≤ x ≤ 100.

In Fig. 5.1, matched Rule IDs of BVM for the sample traffic trace are illustrated.

These signals are probed in hardware before the first sampling point in time window.

Therefore, cache_hit_rate is equal to 0% in this case and no popular rules are ob-

served yet. Furthermore, tcam_output_valid is 0, which is the output valid signal of

FASST TCAM.

The signals rule_id_out(8:0) and match_valid_out indicate matched Rule IDs pro-

vided by BVM in rule query phase. These match results are observed to be com-

pletely compatible with the sample traffic trace given in Table. 5.4. Moreover, there

is no blanking intervals between match results due to 100% line utilization. As seen

in Fig. 5.1, output match results with rule_id_out =276 are followed by results with

rule_id_out =1 immediately. The packet numbers are also equal to the input packet

numbers, For example, match count for rule_id_out =5 is observed as 100.

The match result with rule_id_out =338 verifies the functionality of overlap condi-

tions. Note that, input packet content for this match is same with the content of R24.

However, since R24 is dependent on R338, and R338 has highest priority, final match

result becomes R338 with rule_id_out =338.

Since TCAM does not have any rules to perform lookup at this time, average latencies

104

Figure 5.2: First round at locality detection for 7 rules

of the packets are equal to deterministic end-to-end latency of BVM, which is 80

clock cycles. Since our clock frequency is 200 MHz, average latency value for all

packets is 400 ns.

Fig. 5.2 shows the data samples at the end of first locality detection round. At the end

of first sampling, where total match counts are 1900, match counts for rules R5, R9,

R62, R135, R263, R276, and R338 are 300, 300, 150, 150, 300, 150 and 300, respec-

tively. These values are higher than or equal to determined Thr value at synthesis

level. Hence, TCAM Cache Interface writes these popular rules to TCAM using

write enable signal tcam_write_out. Moreover, Rule IDs of popular rules are writ-

ten to TCAM using tcam_writer_rule_id_out(8:0). Due to limited on chip resources

in FPGA; only write enable and Rule ID signals are sampled. As a result, a total

of 7 rules are written to TCAM at this time. Furthermore, as observed from Fig.

5.2, BVM continues to generate match results for the sample traffic trace. Therefore,

writing rules to TCAM is completely independent of rule query phase in BVM.

Note that, since the matched rules have highest priorities among their dependent rules,

105

Figure 5.3: TCAM and BVM parallel lookup after first round of locality detection

no other dependent rules are written to TCAM. In other words, R24 is not written to

cache although R338 is written. This is because BVM already generates match results

for R338, not for R24.

The situation after writing 7 rules to TCAM is depicted in Fig. 5.3. TCAM out-

put signals, tcam_output_valid and tcam_output_rule_id(8:0) start to assert after this

point. In Fig. 5.3, bv_valid_fifo_wren_out and bv_valid_fifo_rule_id_out(8:0) denote

the outputs of BVM Match Controller in MA explained in section. 3.6. As observed,

this controller does not generate Rule IDs which are already provided from TCAM.

For example, there is no match result for bv_valid_fifo_rule_id_out(8:0) =135, or

bv_valid_fifo_rule_id_out(8:0)= 62. On the other hand, for the rules that are not

stored in TCAM, BVM Match Controller in MA continues to generate Rule IDs in

rule query phase. For example, R244 and R245 are not stored in TCAM and match re-

sults of bv_valid_fifo_rule_id_out(8:0) =244 or bv_valid_fifo_rule_id_out(8:0) =245

are still provided by BVM Match Controller.

Since 7 rules are written to TCAM for a faster lookup process, the average latencies

for the packets that match 7 rules will be far less than the packets which do not

match. For example, the clock cycle duration between the first match result of R62

106

in Sequence =18 and the first match result of R244 is about 180 clock cycles. Note

that match result for R62 is generated by TCAM with tcam_output_rule_id(8:0), and

match result for R244 is generated by 2D BVM with bv_valid_fifo_rule_id_out(8:0)

=244. If no rules are cached in TCAM, then the first match result for R62 must

arise 100 clock cycles before the first match result of R244 when BVM pipeline is

full. However, first match result of R62 is observed about 80 clock cycles before that

point. This time difference is mainly results from tfast = 3 cycles lookup of TCAM.

TCAM provides Rule ID of R62 about 80 clock cycles before BVM.

In Table. 5.4, there are 18 packets which have exactly different header contents.

Since 7 of these 18 rules are written to TCAM, cache_hit_rate can be calculated

with equation. 5.1. Therefore, for first round of locality detection, cache_hit_rate is

found as 1650/2000 ≈82.5% for parallel processing of BVM and TCAM. In order to

calculate the overall average latency for the traffic trace, equation. 5.2 can be used.

CacheHitRate =
Total BV match results by TCAMCache

Total BV match results by BVM
(5.1)

Overall AverageLatency =

∑n
i=1 Packet_Counti × Average_Latencyi

TotalPacketCount
(5.2)

AverageLatencyi in Equation. 5.2 is strictly dependent on cache hit rate. For the first

round where cache_hit_rate ≈82.5%, overall average latency is found by ≈16 clock

cycles, which is 80 ns. If all packets are classified using only BVM, then overall av-

erage latency will be 80 clock cycles, which is 400 ns. Therefore, for cache_hit_rate

≈82.5%, FASST achieves a reduction of 80.00% in overall average latency in ns for

this traffic trace.

At this point, a relation between cache_hit_rate and reduction in overall average

latency can be deduced. As observed above, two values, 82.5% and 80.00%, are

very close to each other. This relation mainly caused from 3 clock cycles lookup

of TCAM. This is because TCAM lookup provides a constant 3 in equations, which

has small effect on overall latency equation. For example, assume that, there are A

packets, whose match results are produced by BVM Controller in MA, and there are B

107

packets, whose match results are produced by TCAM. Hence, all of A packets observe

an average latency of 80 clock cycles due to BVM, and all of B packets observe an

average latency of 3 clock cycles due to TCAM. For this case, cache_hit_rate and

overall average latency in terms of clock cycles will be as in Equation. 5.3, and

Equation. 5.4, respectively. Hence, the reduction in overall average latency will as in

Equation. 5.5 in terms of clock cycles. The results in equation. 5.3 and equation. 5.5

are almost same if we ignore 77 and 80. Therefore, as the cache_hit_rate increases,

the overall average latency decreases at same percentage.

CacheHitRate =
B

A+B
(5.3)

Overall AverageLatency =
80A+ 3B

A+B
in clock cycles (5.4)

Reduction inLatency =
80− 80A+3B

A+B

80
=

77B

80(A+B)
in clock cycles (5.5)

After giving data samples at the end of first round where time_window_counter is

1900, Fig. 5.4 shows the rules written to TCAM at second round of locality detec-

tion. At this second round, 6 new rules are added to TCAM in addition to previous

7 rules. This is due to the fact that, when time_window_counter reaches to 3800, the

sequence of packets in Table. 5.4 is almost sent twice. Hence, match counts for each

rule increase. In other words, total match counts for R1, R5, R9, R22, R62, R65, R126,

R135, R200, R244, R263, and R338 will be 100, 600, 600, 100, 300, 100, 100, 300,

100, 100, 600, 300, and 600, respectively. As observed, all total match counts are

higher than or equal to Thr. Moreover, as seen in Fig. 5.4, the old rules are rewrit-

ten to TCAM at second round, because TCAM content is cleared by TCAM Cache

Interface at the beginning of each locality detection. Note that, TCAM match output

valid signal, which is tcam_output_valid, is 0, which indicates that TCAM does not

perform classification during rule insertion. Actually, just before rule insertion phase,

TCAM is empty.

The situation after writing these 13 rules to TCAM is depicted in Fig. 5.5. As ob-

served, match results for 13 rules out of 18 rules are generated by TCAM. BVM

108

Figure 5.4: Second round at locality detection for 13 rules

Match Controller in MA only generates the match results for the rules that are not

stored in TCAM, which areR245, R304, R339, R452, andR502. Due to fast clock lookup

process in TCAM, match result of R276 is produced before the match result of R245

Using equation. 5.1, cache_hit_rate for the second round of temporal locality is found

as 1950/2000 =97.5%. Similarly, using equation. 5.2, for this cache_hit_rate, overall

average latency is found as ≈5 clock cycles, which is 25 ns. Therefore, reduction in

overall average latency is ≈93.75%.

For synthetic SDN flow table in section 5.1 and sample traffic trace in section. 5.2,

Fig. 5.6 demonstrates the relation between cache_hit_rate and overall_average_latency

in FASST. Moreover, during query operation, achieved throughput is always 200

Mega Packet Per Second (MPPS) due to the 200 MHz clock rate in FASST.

109

Figure 5.5: TCAM and BVM parallel lookup after second round of locality detection

5.5 Monitoring Consumed Power for 512 Rules

The hardware platform, where FASST architecture is implemented, has Octal Digital

Power Supply Monitor Devices, named LTC2978 [54], in order to monitor voltages

and currents of the components on board. Each LTC2978 has an I2C communication

interface used for configuration and data transfer. As explained in section 4.6.2, I2C

custom interfaces in processor SoC are utilized for this purpose. Since configuration

of LTC2978 devices is not in the scope of this thesis, it is not given.

While analyzing power consumption of FASST, the only required information is the

current drawn by the core voltage of FPGA. FPGAs have many voltage rails such

as core voltages, transceiver voltages and I/O voltages. However, since FASST is a

purely on-chip architecture on FPGA without using any transceivers and I/Os, core

voltage, which is 0.85 V, is the primary focus in this power consumption. When we

read the voltage value across the current sense resistor connected to the core volt-

age power rail of FPGA, we obtain the current value for this power rail. After that,

multiplying the core voltage and current gives us the power consumption of FPGA in

Watts.

LTC2978 provides the voltage values over the current sense resistor as L11 data for-

110

Figure 5.6: Cache Hit Rate(%) vs. Average Latency and Throughput

mat, which is a format defined by Linear Technologies. This format consists of a total

of 16-bits, which encapsulates 5-bit signed exponent and 11-bit signed mantissa [54].

L11 format is mainly utilized in order to provide current values in high precision and

high dynamic range. Therefore, Nios II IP soft processor core reads current value in

L11 format and converts it to floating values with the help of high level programming

language.

Current values are read at three different phases. One of them is the idle condition

where there is no rule query. For this case, BVM and TCAM has no functionality

for classification of packets. Since majority of power is consumed by these modules,

the current drawn by FPGA core is quite small at this idle condition, which is 1.29 A.

Hence, total power consumed for this phase equals to 0.85V × 1.29A = 1.1 Watts.

Second phase at monitoring power consumption occurs when cache_hit_rate equals

to 0%. At this phase, only BVM performs lookup process for the packets at 200

MHz. Since line utilization is 100% in our traffic trace, two dimensional pipeline in

BVM is always full, and all Stride BVM units do read and write transactions using

data associative memories. Hence, due to 100% utilization of on-chip ram blocks in

BVM at 200 Mhz, the current value read from LTC2978 is about 6.18 A, which gives

111

the power value of 5.253 Watts.

Third phase of power monitoring is carried out when both BVM and TCAM perform

lookup in parallel. Current values at third phase are sampled after the point of second

locality detection in Fig. 5.5. At this time, there are 13 rules are stored in TCAM. The

current value for this case is calculated as 6.20 A, which is very close to the value in

second phase. Therefore total power consumed by FPGA core with parallel operation

BVM-TCAM at 200 MHz is 5.27 Watts. Obtaining close values between second

phase and third phase is mainly caused from the fact that TCAM size is relatively

small (32 rules) compared to the size of BVM (512 rules). Moreover, since utilization

percentage of on-chip RAMs inside Stride BVM is 100%, BVM dominates the power

consumption. Table. 5.5 summaries all power values for three phases.

Table 5.5: Power consumption of FASST for 512 rules at different phases

Phase Description Current(A) Power(W)

1
Idle Phase: BVM and TCAM does not perform

classification
1.29 1.1

2
Only BVM performs lookup for packets. TCAM

Cache is empty
6.18 5.253

3
Both BVM and TCAM Cache perform lookup.

There are 13 rules stored in TCAM Cache.
6.20 5.27

5.6 Calculating Power Consumption Using Early Power Estimator (EPE)

Altera Early Power Estimator (EPE) tool provides estimation of power consumption

in complete FPGA designs without actual implementation on real hardware. There-

fore, a comparison between the power values presented in section. 5.5, and the output

of this tool is made in order to verify the power consumption rates for a certain accu-

racy.

To determine the power consumption, Altera Early Power Estimator Tool uses the

targeted FPGA family information, total resource utilization, toggle rates, clock fre-

112

quencies of logic units and on-chip memories M20K, and percentages of write and

read modes for embedded memories with respect to each other [55]. For 512 rules

and 200 MHz clock rate, this information is entered to EPE tool.

Total power consumption is observed to be 5.502 W as seen in Table. 5.6, which is

very close to the power value, 5.27 W, presented in section. 5.5. Note that, this power

consumption is for parallel processing of BVM and TCAM at 200 MHz after the

second round of locality detection. Moreover, power consumption at idle state, 1.1 W,

is similar to PStatic, which is 1.156 W. Since FASST does not utilize any transceiver

(XCVR,PCS), hard IP (HIP), Digital Signal Processor (DSP) block, or I/O in FPGA,

the associated power values for these components are 0. Logic power, which is 2.039

W and RAM power, which is 2.306 W, are the sources of total consumed power.

Table 5.6: Power consumption using EPE for parallel processing of BVM and TCAM

INPUT PARAMETERS

Family Stratix V

Device 5SGXEA7N

Package F40

Temperature Grade Commercial -2L/-3/-4 (0.85V)

Power Characteristics Typical

Power Model Status FINAL

THERMAL POWER (W)

Logic 2.039

RAM 2.306

DSP 0.000

I/O 0.000

XCVR 0.000

PCS and HIP 0.000

Pstatic 1.156

TOTAL FPGA 5.502

Details of parameters used to calculate logic and RAM power consumptions are pre-

113

sented in Table. 5.7. For logic power, the number of combinational look up table

(LUT) and the number of flip flops (FF) are entered. Moreover, clock frequency is

set as 200 MHz. Average fan out value is set as 1 due to the fact that BVM consumes

most of the logic inside FASST. Since Stride BVM and POEnc units are connected in

a two dimensional pipelined fashion in BVM , each block only communicates with

single block. This results in a fan out value of 1 for all functional blocks. Toggle rate

is assumed as 12.5%, which is the typical value for most logic inside FPGA as pre-

sented in [55]. This toggle rate can be considered as the toggle percentage of 16-bit

counter.

For RAM power, total number of RAM blocks, which are actually the number of

on-chip embedded blocks called M20K to generate on chip RAMs such as RAM-1,

RAM-2 and RAM-3, are given as input parameter to EPE. Moreover, RAM Mode is

selected as true dual port memory, which means that memory has two independent

read and write interfaces that provide simultaneous transfers. The selection of dual

port RAM Mode is due to the fact that Stride BVM RAM blocks in section. 4.4.1

and Stride TCAM RAM blocks in section. 4.5.1 have two ports, namely PORT_A

and PORT_B. In Table. 5.7 PORT_A denotes write interface and PORT_B denotes

read interface in EPE, which is a reverse order given in Fig. 4.7 and Fig. 4.11. For

PORT_A, percentage of write mode versus read mode is set as 1%, which is a very

small value. This is because, FASST is in rule insertion phase only at the beginning of

the operation. Overall architecture mostly performs rule query. Moreover, for PORT

B, percentages of read mode, which are R/W% and Enable%, is set as 100%. This

is because line utilization in rule query phase is 100% for the sample traffic trace.

Lastly, clock frequency and toggle rates for RAM blocks are again set as 200 MHz,

and 12.5%, respectively.

5.7 Static Functional Simulation of Overall Design for 512 Rules

Simulation results for the sample traffic trace given in Table. 5.4 are exactly compat-

ible with the hardware results presented in section. 5.4. These results are illustrated

in Fig. 5.7. In addition to Rule IDs of the written rules, output counter values are also

114

Table 5.7: Details of Logic and RAM Power in FASST

LOGIC POWER

Combina-

tional LUT
#FFs

Clock Freq.

(MHZ)
Toggle (%)

Avg. Fan

Out

Est. LUT

Utilization

(%)

Total Power

(W)

331474 349578 200 12.5% 1 70.6% 2.039

RAM POWER

of RAM

Blocks
RAM Mode

Clock Freq.

(MHZ)
Toggle (%)

Port A Write

(%)

Port B En-

able and

R/W (&)

Total Power

(W)

1740
True Dual

Port
200 12.5% 1% 100% 2.306

provided in simulation result. As observed, for the second round of locality detection,

output counter values for Rule IDs of 245, 304, 339, 452 and 502 are below threshold

level Thr. Hence rules with these Rule IDs are not stored in TCAM at second round

of locality detection.

Figure 5.7: Functional simulation of FASST during second round on locality detec-

tion

The functional simulation waveform after writing popular rules to TCAM is pre-

sented in Fig. 5.8. This is the situation where BVM and TCAM perform lookup

in parallel, cache_hit_rate equals to≈97.5% and reduction in overall average latency

is ≈96.25%. As seen in Fig. 5.8, read enable signal, tcam_read_out, toggles peri-

115

odically in rule query phase. The period of this toggling depends on the sampling

window size, 1900k, in FASST. This is due to the fact, FASST TCAM is updated

dynamically. In other words, whenever a sampling occurs inside the sliding time

window, new popular rules are detected by Locality Detect unit and new dependent

rules are computed by Nios II IP soft processor core. Therefore, at the beginning of

each new locality round, TCAM Cache Interface terminates the rule query phase by

deasserting tcam_read_out to LOW. After that, it cleans TCAM, writes the new rules

and continues query process by asserting tcam_read_out to HIGH again. In Fig. 5.8,

matched rule IDs provided by TCAM can also be seen.

Figure 5.8: Functional simulation of parallel processing of BVM and TCAM after

second round

5.8 Synthetic Flow Table for 128 Rules, Traffic Sample and Hardware Tests

After verifying the functionality of FASST for 512 15-tuple SDN rules, another sam-

ple of flow table with consists of 128 15-tuple rules is generated. Moreover, a similar

traffic trace is again provided for this rule set. The purpose of using a smaller rule set

size is both seeing the scalability of FASST with respect to rule set size, and verifying

116

the process of writing popular rules having depth of 2.

For the flow table of 512 rules and generated traffic trace, all popular rules written to

TCAM have a depth of 1. In other words, for that scenario, packets arriving to FASST

for classification already match the rules having the highest priorities in flow table.

As a result, there is no need to take precautions to store other lower priority dependent

rules. For example, packets that match R67, R98 and R263 result in a final bit vector

match of R263, which has higher priority than R67 and R98. Therefore, lower priority

rules R67 and R98 are not stored in TCAM.

In order to verify that rules are written to TCAM with correct functionality in terms

of rule depth, flow table with 128 rules and a corresponding traffic trace are gener-

ated. Note that, FASST BVM is designed as a modular architecture, which provides

flexibility in terms of rule set size. In other words, by simply removing Rule BVM

blocks from top design, a new architecture that supports a small rule set siz can be

created. Moreover, since FASST also has a flexible architecture that supports any

combination of header fields, only 3 header fields are used for classification in this

flow table: ToS (5:0), Protocol (7:0) and IP Destination (31:0). In other words, mask

bits of all remaining header fields are set to ’1’, which means ANY value for these

fields.

Synthetic Flow Table with 128 rules is constructed as a similar way with the construc-

tion of flow table for 512 rules. Table. 5.8 shows <Rule ID><Rule Priority> pairs of

the rules using the same convention. Different from the flow table of 512 rules, Rule

Priorities are also given in ascending order in Table. 5.8.

Header bits of R13 and R14 are specially assigned to create a partial overlap between

these two rules. Table. 5.9 shows the contents of these two rule entries stored in BVM.

Regarding priority fields, R14 depends on R13. Note that, there are other dependen-

cies for other rules; but, the details are not given for the sake of avoiding repetitive

information.

A traffic sample is generated to verify the functionality of writing popular rules with

117

Table 5.8: Rule IDs and Rule Priorities for synthetic flow table with 128 rules

Rule Number Rule ID Rule Priority

R0 0 0

R1 1 1

R2 2 2

. . .

R62 62 62

R63 63 63

R64 64 64

. . .

R127 127 127

Table 5.9: Partial overlaps of two tules in Flow Table of 128 rules

Header Field R13 R14

Protocol * 05

ToS 02 *

Dst IP 00:00:00:1f 00:00:00:1f

Dst IP Prefix 0 0

depth 2. The sequence of packets consists of many different header contents. How-

ever some of the packets have Protocol value of 0x05, Tos value of 0x01 and Dst IP

value of 00:00:00:1f. As expected, these packets must match only R14 in flow table.

Moreover, the packet count for this specific content is arranged such that R14 will be

identified as a popular rule in every rounds of locality detection. Therefore, R14 and

the rules it has dependent on must be stored in TCAM Cache. At this point, according

to functionality of FASST,R13 must also be written to TCAM. If we assume that only

R14 is stored in TCAM, late arriving packets with Protocol value of 0x05, ToS value

of 0x02 and Dst IP value of 00:00:00:1f result in a TCAM match with R14 instead

of R13, which is a malfunction in classification due to priority-based classification.

Even though BVM presents the correct rule ID for these packets, there will be two

match results for a single packet, because BVM Match Controller in Match Arbiter

Unit cannot determine a late duplicate match for R13, which is provided by TCAM.

118

Figure 5.9: TCAM write sequence for popular rule with depth 2

Hardware test results that present writing popular rules to TCAM at some time of

locality detection are shown in Fig. 5.9. TCAM Cache Interface writes the popular

rules to TCAM such as R0, R1, and R2. The Rule IDs of the popular rules are ar-

ranged in the sample traffic trace. As observed,R13 is also written TCAM Cache after

R14 is stored, even though there are no match results for R13 for this sample traffic

trace. This preserves the correct functionality of FASST lookup sequence. Moreover,

the order of ascending Rule IDs while writing TCAM is not applicable for R13 and

R14. Furthermore, the latency of writing R14 to cache is quite higher than writing

other popular rules. This is due to the fact that TCAM Cache Interface unit carries

out additional checks for the popular rules with rule depths rather than 1.

Run time rule query in hardware is illustrated in Fig. 5.10. As seen, tcam_output_valid

and tcam_output_rule_id(8:0) denote the match outputs for TCAM Cache. Similarly,

bv_valid_fifo_wren_out denotes the match result for BVM Match Controller in Match

Arbiter Unit with rule ID port shown as bv_valid_fifo_rule_id_out(8:0).

119

Figure 5.10: Parallel processing of BVM and TCAM for 128 Rules

5.9 Power Consumption With Respect to Clock Rate and Rule Size

Compilation time for the FPGA implementation of overall design for 512 rules is ob-

served to be very long compared to 128 rules case. As a result, scalability analysis

of power with respect to different clock rates is carried out with the design that stores

128 rules in FASST. Table. 5.10 shows the consumed power for three clock rates

of 100 MHz, 200 MHz, and 250 MHz. Moreover, while monitoring power values,

three phases are considered, which are idle phase, only BVM processing phase and

parallel processing phase of BVM and TCAM Cache, similar to phase 1, phase 2 and

phase 3 given in Table. 5.5. In phase 3, where BVM and TCAM performs paral-

lel lookup, Cache_hit_rate is observed to be 71% at maximum. However, cache hit

rate has no effect on the consumed power due to the that TCAM Cache obviously

performs classification even for the packets that are not stored in cache. That means

that all units inside TCAM Cache operates at the clock rate for all incoming packets

whether they match a rule entry inside cache or not, which is an independent process

from Cache_hit_rate. Cache_hit_rate only causes a significant reduction in average

latency. The reason of close values of power consumption in idle phases is because

of the fact that this power is actually the static power being consumed by the device

with a ’zero’ frequency just after programming FPGA. In other words, this power con-

120

sumption cannot be considered of a dynamic power component. However, different

clock rates costs different RTL designs on FPGA, which induces minor differences

on static power.

Table 5.10: Power consumption for different clock rates for 128 Rules

Clock Rate: 100 MHz

Phase Description Current(A) Power(W)

1
Idle Phase: BVM and TCAM does not perform

classification
1.14 0.969

2
Only BVM performs lookup for packets. TCAM

Cache is empty
1.81 1.539

3

Both BVM and TCAM Cache perform lookup.

Cache Hit Rate is at 71%5 at maximum for the

traffic trace of 128 rules.

1.87 1.59

Clock Rate: 200 MHz

Phase Description Current(A) Power(W)

1
Idle Phase: BVM and TCAM does not perform

classification
1.16 0.991

2
Only BVM performs lookup for packets. TCAM

Cache is empty
2.66 2.261

3

Both BVM and TCAM Cache perform lookup.

Cache Hit Rate is at 71%5 at maximum for the

traffic trace of 128 rules.

2.75 2.338

Clock Rate: 250 MHz

Phase Description Current(A) Power(W)

1
Idle Phase: BVM and TCAM does not perform

classification
1.17 1.002

2
Only BVM performs lookup for packets. TCAM

Cache is empty
3.05 2.6

3

Both BVM and TCAM Cache perform lookup.

Cache Hit Rate is at 71%5 at maximum for the

traffic trace of 128 rules.

3.14 2.67

The comparison of power consumption between FASST designs that stores 512 rules

and 128 rules is illustrated in Fig. 5.11. As observed, consumed power values during

idle phase (phase 1) are very close to each other for each case due to static power

121

Figure 5.11: Power consumption for rule set size and clock rates

description. However, for phase 2 and phase 3, power values shows variations. More-

over, the difference between the power values in phase 2 and phase 3 for 128 rules

case is higher than 512 rules case. This is mainly resulted from the cache size ratio to

the overall rule set size. Since TCAM cache only stores 32 SDN rules with 15-tuple

headers, the ratio of 32/512 is quite smaller than 32/128. Furthermore, Altera EPE

power consumption results are given for 512 rules for FASST design in Fig. 5.11. As

seen, our monitored power consumption and Altera EPE results are almost same for

512 rules in BVM, which verifies our power values.

5.10 Scalability of SRAM-based TCAM Design

In FASST, TCAM is designed and implemented considering on-chip resources such

as embedded memory bits and logic gates compared to native TCAMs. In some SDN

applications where higher cache rates are desired, TCAM size is needed to be in-

creased. Therefore, scalability performance of TCAM Cache has a significant effect

in our hardware architecture FASST. Fig. 5.12 shows the scalability of embedded

memory blocks (M20K) and logic gates in our TCAM design with respect to increas-

122

ing number of rules. As observed, memory blocks increase sublinearly for different

TCAM rules. This is mainly due to fact that the number of data-associate memo-

ries used in each Stride TCAM increases with discrete numbers, where each memory

block can store 20Kbits. On the other hand, logic gate consumption increases at high

rates. This results from the concurrent lookup operation of all Stride TCAM units

inside TCAM design. This is because, as rule size increases, logic interface in each

Stride TCAM becomes more complex to meet the timing requirements at the targeted

clock rate.

Figure 5.12: Scalability of embedded memory blocks (M20K) and logic gates in

TCAM design

Fig. 5.13 shows the scalability of power consumption in TCAM design with respect

to increasing rule size. As seen, most of the total power is consumed by RAM blocks

instead of logic gates. Since RAM blocks usage (M20K) increases sublinearly with

increasing rule size, power consumption does not increase rapidly, which leads to a

satisfied scalability.

123

Figure 5.13: Scalability of power consumption in TCAM design

5.11 Scalability of Clock Rate, Latency and Resource Consumption of FASST

with Rule Set Size

Clock rate and latency scalability performance of FASST hardware architecture with

respect to increasing rule set size is given in Fig. 5.14. With increasing rule set size,

FASST does not suffer from clock rate deterioration due to two dimensional pipeline

architecture in BVM design. For example, even though rule size doubles at each

phase, the clock rate does not decrease sharply. Blue columns and green columns in

Fig. 5.14 show the BVM pipeline latency and the achieved average packet latency

for 97.5% cache hit rate, respectively. The reason of the increase in BVM pipeline

latency with different rule set size is due to the increase in the number of pipeline

stages in BVM for fixed number of rule-set divisions (n=32). At high cache hit rates,

overall average packet latencies are very low and they are very close to each other.

This is because, at high cache hit rates, TCAM cache design with tfast = 3 cycles,

dominates the overall average latency.

Resource consumption scalability of FASST in terms of logic gates (ALM) and mem-

ory bits (Kbits) with respect to increasing rule set size is given in Fig. 5.15. Even

though rule size doubles at each time from 64 to 512, memory bit consumption

124

Figure 5.14: Clock rate and latency scalability of FASST with increasing rule size

increases sub-linearly. On the other hand, logic gate consumption increases more

rapidly. This is due to the fact that, as rule size increases, more memory blocks are

used in each Stride BVM and the increase in these memory blocks is discrete due to

more flow entries. However, since number of rules in BVM is doubled at each phase,

the logic interface between Stride BVM Controller and Stride BVM RAM can nearly

meet the timing requirements at the targeted clock rate. Therefore, in order to achieve

the clock rate operation, more logic gates are utilized such as inserting more FFs for

these interfaces. However, compared to other classification engines such as cross-

producting of field labels, the logic gate consumption does not increase exponentially

in FASST.

5.12 Comparison of Power, Latency and Throughput with Recent Work

Our proposed design FASST is compared with the recent study that performs packet

classification with similar approach. For a fair classification, the method in dynami-

cally updatable pipelined bit vector algorithm [8] is hardware based and implemented

on FPGA. Moreover, since power consumption, throughput and latency are strictly

dependent of rule set size and header width, the comparison is made for 1024 15-

tuple OpenFlow rule entries. Dynamically updatable pipelined bit vector algorithm

125

Figure 5.15: Logic gate and memory bit scalability with increasing rule size

is implemented in a Xilinx Virtex 7 FPGA and the test results are given for 1024

rules. Hence, no scaling operation is made. The main result of performing compar-

ison with 1024 is that, FASST is a pure hardware architecture and implemented in

Altera Stratix V FPGA, which is a completely different hardware platform from other

platform, Xilinx Virtex 7. Since power consumption scaling operations of dynami-

cally updatable pipelined bit vector algorithm in [8] require Xilinx Power analyzer

tools that we are not familiar with, our approach FASST is linearly scaled up to 1024

rules using Altera Early Power estimator tool.

The comparison of power consumption and throughput is shown in Table. 5.11. We

observe that:

• FASST power consumption is higher than other pipeline implementation. In

dynamically updatable pipelined bit vector algorithm, distributed-RAM blocks

in Xilinx FPGAs are used in implementation. By using distributed-RAMs, rout-

ing delays between data associative elements for BV algorithm and logic gates

are decreased leading a decrease in power consumption. However, in FASST,

memory block RAMs in FPGA are used instead of logic gates in order to im-

126

plement data associative functional elements. This is a complete different im-

plementation technique from other study. This is due to the fact that there is a

high number of embedded (on chip) memory blocks that can be used to store

1024 SDN rules in Altera Stratix V FPGAs, compared to logic gates. Morever,

FASST has a variety of management and control blocks due to utilization of

an extra TCAM Cache, such as locality detection units. Such functions do not

exist in other implementation. Therefore, logic gates are separated for other

functions in FASST design. Logic gate term in Altera FPGAs corresponds dis-

tributed RAM term in Xilinx FPGAs.

• Power consumption can vary for different hardware platforms due to SoC de-

sign inside FPGAs. In other words, there are different number of hard IPs,

embedded transceiver blocks or DSP blocks for Altera and Xilinx series FP-

GAs. This variety leads to different values of static power consumption.

• FASST can achieve a throughput value of 200 MPPS. Dynamically updatable

pipelined bit vector algorithm achieves a throughput value of 324 MPPS if the

clock rate in implementation is 324 MHz. However, resource utilization is

given in [8] such that 95% of distributed RAMs are consumed for the compila-

tion at 324 MHz. This high ratio of utilization can cause static timing errors at

slightly different operation conditions.

Table 5.11: Power consumption and throughput comparison

Power Consumption (Watts) Throughput (MPPS)

FASST 8.3 200

Dynamically Updat-

able BVM
5.2 324

The latency comparison of FASST is given in Fig. 5.16. The latency of FASST is

given by considering a cache hit rate of 0%, 82.5% and 97.5%. For cache hit rate

with 0%, the comparison is carried out with dynamically updatable BV approach,

where there is no parallel TCAM cache effect in FASST. Moreover, for higher cache

hit rates, there is a shard decrease in FASST overall latency as shown in right part of

in Fig. 5.16. Therefore;

127

• In [8], stride size s and bit vector length n is taken as 4 and 8, respectively,

which is the optimum configuration for this study in terms of clock rate and

power. As a result, since 1024 rules are stored with 356-bits headers, latency is

given as 1024/4 + 356/8 = 217 clock cycles.

• Since FASST is a completely modular and pipelined architecture, latency can

be scaled by adding extra Rule-BVMs. For 512 rules, each horizontal latency

inside a Rule-BVM is 48 clock cycles, where stride size s is configurable with

3, 4, 6 and 8 bits. Moreover, each Rule-BVM has two internal pipelines, where

each pipeline stores 16 rules. As a result, bit vector length is taken as 16.

Therefore, for 512 rules; 48 + (512/16) = 80 clock cycles latency is achieved. If

we scale this modular architecture to 1024 rules, then 32 Rule-BVMs are used

instead of 16 Rule-BVMs. Moreover, each of these 32 Rule-BVM units again

stores 32 rules with internal two dimensional horizontal pipelines. As a result,

end to end latency will be 48 + (1024/16) =112 clock cycles. For cache_hit_rate

values calculated based on hardware test results, an average latency of 5.7 clock

cycles is achieved when cache_hit_rate equals to 97.5%.

• For networks with strong locality, FASST supports very low latency compared

to other FPGA-based SDN classification implementation. Since other architec-

ture does not provide a parallel caching mechanism, end to end latency of [8]

is deterministic and independent of cache_hit_rate.

Figure 5.16: Latency comparison

128

5.13 FPGA Resource Utilization of FASST

Overall architecture of FASST is implemented on Altera Stratix-V FPGA, whose

device number is (5SGXEA7N2F40C2). Altera FPGAs consists of basic building

blocks known as Adaptive Logic Modules (ALMs) that can be configured to imple-

mented logic functions, register functions and arithmetic functions [56]. Each ALM

consists of a 6-input Look up Tables (LUT), 2 adders and 4 registers. Moreover, there

are embedded memory blocks named M20K that can be used for on-chip RAMs.

FASST mainly uses these two building blocks, ALM and M20K, to implement the

required functionality. Table . 5.12 shows the utilization of FPGA resources for 512

and 128 rules, in terms of ALMs, registers, block memory bits and Digital Signal

Processor (DSP) Blocks. As observed, resource consumption in FASST is linearly

scalable with rule set size N.

Table 5.12: FPGA resource utilization for 512 and 128 rules

FASST 512 Rules (15-tuple) FASST 128 Rules (15-tuple)

ALM 165,737 (71%) 51,694 (22%)

Registers 349578 107368

Block Memory Bits 9,333,248 (18%) 5,736,960 (18%)

M20K 1740 (67.9%) 660 (25.7%)

DSP 2 (< 1%) 2 (< 1%)

For the case of storing 512 rules, resource utilization for the main units inside FASST

is given in Table. 5.13. Nios II SoC design utilizes all of the DSP blocks, which are 2,

during generation of dependency graph. Almost all of the block memory bits inside

Nios II SoC are used for processor program memory. Moreover, most of the resources

are utilized by BVM due to high number of SDN rule set. TCAM Cache, on the other

hand, consumes quite low resources with respect to BVM because of storing a small

set of rule entries.

Depending on these rule consumption values, FASST hardware architecture con-

sumes most of ALM resources. On the other hand, utilization of block memory bits

129

Table 5.13: FPGA resource utilization of main blocks

BVM TCAM Nios II SoC

ALM 117376(51%) 6705 (3%) 1395(< 1%)

Registers 285584 10177 1753

Block Memory Bits 6,160,384 (12%) 319,488 (0.61%) 2,143,232(4%)

DSP 0 0 2(< 1%)

is around 18%. Hence, scaling of FASST to support 1024 rules can be accomplished

by applying some optimization techniques during designing RTL.

ALM and registers correspond to logic gate consumption in Altera Stratix V FPGA,

and block memory bits correspond to embedded memory blocks. Each embedded

memory block can store up to 20Kbits. Moreover, using discrete memory blocks

results in an overhead usage of memory in term of bits. This is the main reason of the

fact that the utilization of M20K blocks is higher than the utilization of total memory

block memory bits in terms of percentages.

130

CHAPTER 6

TEST ENVIRONMENT OF FASST HARDWARE

ARCHITECTURE

FASST is designed and implemented on Altera Stratix-V, which is a high performance

FPGA in Altera FPGA families. For this purpose, Altera Signal Integrity (SI) Devel-

opment Board is used. On this board, there is one Altera Stratix V FPGA, memory

devices such as 128 MB flash memory, high speed serial interfaces, power monitor

devices (LTC2978), temperature sensors, general I/O pins and clock generators [57].

We utilized Stratix V FPGA to implement our architecture, power monitor devices to

measure current drawn by FASST at different operation phases, and some of I/O pins

to connect the board to a PC in order generate syntetic rule set, and traffic traces.

Moreover, a serial interface add-on board is specifically designed for our architec-

ture in order test and verification steps. On this designed board, there is RS-232

transceiver, voltage regulators and level shifters. Using this board, we can make a

connection to a host PC through RS-232 interface. Therefore, synthetic rule sets and

traffic traces can be sent to development board through this interface. Furthermore,

run time power values are received from the receive channel of RS-232 interface.

Fig. 6.1 shows Altera SI Development board with the add-on interface board con-

nected to it. As seen, the connection to host PC is made from add-on interface board.

The purpose of using voltage regulators and levels shifter on this board is that all

I/O pins of Stratix V FPGA is 2.5V, which causes an incompability with 5V RS-232

transmit and receive channels. Therefore, converting 5V signals to 2.5V is performed

using these components.

131

A detailed illustration of the designed RS-232 Interface board is given in Fig. 6.2.

All synthetic rule sets and traffic traces described in section. 5.1 and section. 5.2

are generated in Matlab Environment. After that, MATLAB serial interface library is

used to send all these traces to development kit. Similarly, run-time power values are

read using serial interface library in MATLAB. RS-232 connection properties for the

testing purposes is given in Table. 6.1.

Table 6.1: RS-232 connection parameters

Baudrate Data bits Stop Bit Parity Buffer Size

115200 8 1 None 1024 Bytes

The reason of using a slow interface such RS-232 is that there is no available high

speed interfaces in order to test FASST at line rate. In other words, we tested and

verified FASST at 200 MHz clock rate with 100% line utilization. Moreover, since

each packet header is 356 bits, then 71.2 Gbps line rate is required to test our hardware

architecture. As a result, using a slower interface, RS-232, we firstly load our traffic

trace to lower INPUT FIFO as described in section. 4.1. After that, we send a query

command through RS-232 interface to start the rule query phase inside FASST. Since

Stratix-V FPGAs can provide high bandwidth due to abundant parallelism, a line rate

operation is achieved.

132

Figure 6.1: Altera SI development kit and Add-on interface board

133

Figure 6.2: RS-232 Add-on interface board

134

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this work, Fast Scalable SDN Table (FASST), a complete hardware architecture

for SDN flow table look up is proposed. The complete design of FASST at gate level

detail together with full scale implementation on Altera Stratix V development board

and performance evaluation results are presented.

FASST combines the throughput advantage of pipelined design with ultra low latency

lookup time of TCAM by exploiting the network traffic locality. To this end, the

frequently matched rules are dynamically determined and stored in the TCAM to

decease the average look-up latency. The entire rule set is stored in a Bit Vector

Machine with large pipeline latency. Hence, required control modules to run these

two engines concurrently are also integrated in FASST.

In order to determine popular rules, our work exploits temporal locality dynamically

with a shifting time window. Proposed architecture stores the frequently used rules

together with their dependent rules. This is achieved by computing direct or indirect

rule dependencies with an algorithm that is appropriate to run on the soft processor

and generate an acyclic graph. Match results of frequently used rules and their depen-

dent rules are provided in 15 ns due to fast lookup in TCAM Cache. For a network

traffic that shows strong locality, match results are mostly provided by TCAM Cache

and FASST achieves very low average latency. Hardware test results demonstrate that

for an example of synthetic traffic trace, when cache hit rate is observed as 97.5%,

the overall latency is decreased by 93.75%.

Based on real-time hardware tests, FASST achieves 200 MPPS throughput at run time

135

for 15-tuple headers with 512-rules flow table. If 356 bits in each packet header is

considered, 71.2 Gbps throughput is achieved using BVM in FASST. For this through-

put and rule set size, BVM consumes about 5.253 W in FASST if TCAM does not

perform any lookup. When cache hit rate is observed as 97.5% for sample traffic

trace, parallel processing of BVM and TCAM leads to a power consumption of 5.27

W. Moreover, if FASST stores 128 rules, |R|=128, power consumption is monitored

as 2.338 W for the parallel processing of BVM and TCAM at the same cache hit rate

of 97.5% and clock rate of 200 MHz.

Compared to recent works that deploys hardware based classification for SDN en-

vironment, FASST presents real-time power monitoring instead of estimation tech-

niques. It is observed that, consumed power is linearly scalable with respect to in-

creasing rule size and clock rates.

The future work of FASST includes several developments regarding both BVM, TCAM

Cache and SoC design. First of all, current FASST architecture does not support dy-

namic rule insertions during query operation. Instantaneous rule insertion and rule

query operations will be supported at the future version of FASST by managing dual

port on chip RAMs. Moreover, flow table size will be increased by optimizing em-

bedded memory blocks (M20K) in our hardware platform. Using off-chip SRAMs

or SDRAMs can be another option to store rule set at the expense of increasing la-

tency. Furthermore, hardware test will be carried out using real-world network traffic

in order to observe the cache hit rates and average latencies achieved by FASST at

run-time. Furthermore, in order to design a overall SDN switch, FASST will be re-

organized to preserve OpenFlow semantics by designing a memory mapped software

agent interface in order to communicate a SDN controller outside.

Lastly, sequential processing of BVM and TCAM can be considered for scalability

issues. Assume that, packets arriving to FASST are firstly sent to TCAM in order find

a match. In case of TCAM match with tslow = 3 cycles, these packets are routed to

output without using BVM. For the packets that do not produce a positive match in

TCAM, BVM can perform with tslow = 80 cycles. For a network with 10 Gbps, if

%90 of the packets produce a positive match in TCAM, then there will be no need

to use a high latency classification engine such as BVM. However, for %10 of the

136

packets, the average latencies are further increases. The focus of this thesis is to

decrease the high latencies introduced by high throughput two dimensional pipeline

engines as in [8]. However, for the network applications where scalability is the

primary concern, then our proposed architecture can be reconfigured for sequential

processing of BVM and TCAM.

137

138

REFERENCES

[1] P. Veríssimo C. Rothenberg S. Azodolmolky D. Kreutz, F. Ramos and S. Uh-

lig. Software-defined networking: A comprehensive survey. Proceedings of the

IEEE, 103:14–76, January 2013.

[2] N. Mckeown. How sdn will shape networking. http://www.comsnets.

org/archive/2014/doc/NickMcKeownsSlides.pdf. Accessed on

October 2011.

[3] Algo Speed High Frequency Trading Solution. http://www.cisco.

com/c/en/us/solutions/industries/financial-services/

financial-markets/algo-speed-solution.html.

[4] Pica8. Sdn system performance. http://pica8.org/blogs/?p=201.

Accessed on October 2012.

[5] D. Taylor E. Spitznagel and J. Turner. Packet classification using extended

tcams. page 120, 4th November 2003.

[6] Y. R Qu and V.K. Prasanna. High-performance and dynamically updatable

packet classification engine on fpga. IEEE Transactions on Parallel and Dis-

tributed Systems, 27:197–209, January 2016.

[7] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. Infinite

cacheflow in software-defined networks. In Proceedings of the Third Workshop

on Hot Topics in Software Defined Networking, HotSDN ’14, pages 175–180,

2014.

[8] OpenFlow archive. Openflow switch specification version 1.1.0 (wire protocol

0x02). https://www.opennetworking.org/images/stories/

downloads/sdn-resources/onf-specifications/openflow/

openflow-spec-v1.1.0.pdf#page=24. Accessed on December 2011.

139

http://www.comsnets.org/archive/2014/doc/NickMcKeownsSlides.pdf
http://www.comsnets.org/archive/2014/doc/NickMcKeownsSlides.pdf
http://www.cisco.com/c/en/us/solutions/industries/financial-services/financial-markets/algo-speed-solution.html
http://www.cisco.com/c/en/us/solutions/industries/financial-services/financial-markets/algo-speed-solution.html
http://www.cisco.com/c/en/us/solutions/industries/financial-services/financial-markets/algo-speed-solution.html
http://pica8.org/blogs/?p=201
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf#page=24
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf#page=24
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.1.0.pdf#page=24

[9] E. Reinecke. Mapping the future of software-defined networking. http://

goo.gl/fQCvRF. Accessed on 2014.

[10] I. Yokneam. Ezchip announces openflow 1.1 implementations on its np-4 100-

gigabit network processor. http://www.ezchip.com/pr110713.htm.

Accessed on 2011.

[11] NoviFlow. Noviswitch 1248 high performance openflow switch. http:

//205.236.122.20/gestion/NoviSwitch1248Datasheet.pdf.

Accessed on 2013.

[12] G. A. Covington G. Appenzeller J. Naous, D. Erickson and N. McKeown. Im-

plementing an openflow switch on the netfpga platform. Proceedings of the 4th

ACM/IEEE Symposium on Architectures for Networking and Communications

Systems, pages 1–9, 2008.

[13] P. T. Congdon, P. Mohapatra, M. Farrens, and V. Akella. Simultaneously reduc-

ing latency and power consumption in openflow switches. IEEE/ACM Transac-

tions on Networking, 22(3):1007–1020, June 2014.

[14] W. Jiang and V. K. Prasanna. Field-split parallel architecturefor high perfor-

mance multi-match packet classification using fpgas. pages 188–196, August

2009.

[15] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula,

Puneet Sharma, and Sujata Banerjee. Devoflow: Scaling flow management for

high-performance networks. SIGCOMM Comput. Commun. Rev., 41(4):254–

265, August 2011.

[16] S. Banerjee and K. Kannan. Tag-in-tag: Efficient flow table management in sdn

switches. In 10th International Conference on Network and Service Manage-

ment (CNSM) and Workshop, pages 109–117, Nov 2014.

[17] S. Zhou, S. Zhao, and V. K. Prasanna. 400 gbps energy-efficient multi-field

packet classification on fpga. In 2014 International Conference on ReConFig-

urable Computing and FPGAs (ReConFig14), pages 1–6, Dec 2014.

140

http://goo.gl/fQCvRF
http://goo.gl/fQCvRF
http://www.ezchip.com/pr 110713.htm
http://205.236.122.20/gestion/NoviSwitch1248Datasheet.pdf
http://205.236.122.20/gestion/NoviSwitch1248Datasheet.pdf

[18] Y. Kanizo, D. Hay, and I. Keslassy. Palette: Distributing tables in software-

defined networks. In INFOCOM, 2013 Proceedings IEEE, pages 545–549,

April 2013.

[19] Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic charac-

teristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM

Conference on Internet Measurement, IMC ’10, pages 267–280, New York, NY,

USA, 2010. ACM.

[20] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. SIG-

COMM Comput. Commun. Rev., 29(4):147–160, August 1999.

[21] A. Lara, A. Kolasani, and B. Ramamurthy. Network innovation using openflow:

A survey. IEEE Communications Surveys Tutorials, 16(1):493–512, First 2014.

[22] OpenFlow Switch Specification. Openflow switch specification version 1.3.0 (

wire protocol 0x02). https://www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-specifications/

openflow/openflow-spec-v1.3.0.pdf#page=40. Accessed on

December 2012.

[23] P. Gupta and N. McKeown. Algorithms for packet classification. Netwrk. Mag.

of Global Internetwkg., 15(2):24–32, March 2001.

[24] Paul Francis Tsuchiya and Paul F. Tsuchiya. A search algorithm for table entries

with non-contiguous wildcarding, 1991.

[25] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding

using efficient multi-dimensional range matching. In Proceedings of the ACM

SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, SIGCOMM ’98, pages 203–214, New

York, NY, USA, 1998. ACM.

[26] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding

using efficient multi-dimensional range matching. In Proceedings of the ACM

SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, SIGCOMM ’98, pages 203–214, New

York, NY, USA, 1998. ACM.

141

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf#page=40
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf#page=40
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf#page=40

[27] T. Ganegedara and V. K. Prasanna. Stridebv: Single chip 400g+ packet clas-

sification. In 2012 IEEE 13th International Conference on High Performance

Switching and Routing, pages 1–6, June 2012.

[28] D. Yuan, X. Yang, X. Shi, B. Tang, and Y. Liu. Multi-protocol query struc-

ture for sdn switch based on parallel bloom filter. In 2014 International Con-

ference on Information and Communication Technology Convergence (ICTC),

pages 206–211, Oct 2014.

[29] J. Aguilar-Saborit, P. Trancoso, V. Muntes-Mulero, and J. L. Larriba-Pey. Dy-

namic count filters. SIGMOD Rec., 35(1):26–32, March 2006.

[30] Michael Mitzenmacher. Compressed bloom filters. In Proceedings of the Twen-

tieth Annual ACM Symposium on Principles of Distributed Computing, PODC

’01, pages 144–150, New York, NY, USA, 2001. ACM.

[31] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet clas-

sification using multidimensional cutting. In Proceedings of the 2003 Confer-

ence on Applications, Technologies, Architectures, and Protocols for Computer

Communications, SIGCOMM ’03, pages 213–224, New York, NY, USA, 2003.

ACM.

[32] D. E. Taylor and J. S. Turner. Scalable packet classification using distributed

crossproducting of field labels. In INFOCOM, 2005 Proceedings IEEE, pages

269–280, 2005.

[33] F. Yu, R. H. Katz, and T. V. Lakshman. Efficient multimatch packet classifica-

tion and lookup with tcam. IEEE Micro, 25(1):50–59, Jan 2005.

[34] Karthik Lakshminarayanan, Anand Rangarajan, and Srinivasan Venkatachary.

Algorithms for advanced packet classification with ternary cams. In Proceed-

ings of the 2005 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, SIGCOMM ’05, pages 193–204,

New York, NY, USA, 2005. ACM.

[35] F. Zane, Girija Narlikar, and A. Basu. Coolcams: power-efficient tcams for for-

warding engines. In INFOCOM 2003. Twenty-Second Annual Joint Conference

142

of the IEEE Computer and Communications. IEEE Societies, volume 1, pages

42–52 vol.1, March 2003.

[36] Weirong Jiang. Scalable ternary content addressable memory implementation

using fpgas. In Proceedings of the Ninth ACM/IEEE Symposium on Architec-

tures for Networking and Communications Systems, ANCS ’13, pages 71–82,

Piscataway, NJ, USA, 2013. IEEE Press.

[37] J. Fong, X. Wang, Y. Qi, J. Li, and W. Jiang. Parasplit: A scalable architecture

on fpga for terabit packet classification. In 2012 IEEE 20th Annual Symposium

on High-Performance Interconnects, pages 1–8, Aug 2012.

[38] Haoyu Song and John W. Lockwood. Efficient packet classification for network

intrusion detection using fpga. In Proceedings of the 2005 ACM/SIGDA 13th In-

ternational Symposium on Field-programmable Gate Arrays, FPGA ’05, pages

238–245, New York, NY, USA, 2005. ACM.

[39] P. Gupta and N. McKeown. Classifying packets with hierarchical intelligent

cuttings. IEEE Micro, 20(1):34–41, Jan 2000.

[40] T. J. Lin, W. Zhang, and N. K. Jha. A fine-grain dynamically reconfigurable

architecture aimed at reducing the fpga-asic gaps. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 22(12):2607–2620, Dec 2014.

[41] W. Jiang and V. K. Prasanna. Scalable packet classification on fpga. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 20(9):1668–1680,

Sept 2012.

[42] V.K. Prasanna S. Zhou, W. Jiang. A flexible and scalable high-performance

openflow switch on heterogeneous soc platforms. volume 27, pages 1–8, De-

cember 2014.

[43] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin

Vahdat, and Masato Yasuda. Less is more: Trading a little bandwidth for ultra-

low latency in the data center. In Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation, NSDI’12, pages 19–19, Berke-

ley, CA, USA, 2012. USENIX Association.

143

[44] Ramana Rao Kompella, Kirill Levchenko, Alex C. Snoeren, and George Vargh-

ese. Every microsecond counts: Tracking fine-grain latencies with a lossy dif-

ference aggregator. SIGCOMM Comput. Commun. Rev., 39(4):255–266, Au-

gust 2009.

[45] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, Jeffrey Dean, and

Google Inc. Large language models in machine translation. In In EMNLP,

pages 858–867, 2007.

[46] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and

John K. Ousterhout. It’s time for low latency. In Proceedings of the 13th

USENIX Conference on Hot Topics in Operating Systems, HotOS’13, pages 11–

11, Berkeley, CA, USA, 2011. USENIX Association.

[47] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin Huang.

Leveraging zipf’s law for traffic offloading. SIGCOMM Comput. Commun.

Rev., 42(1):16–22, January 2012.

[48] Willibald Doeringer, Günter Karjoth, and Mehdi Nassehi. Routing on longest-

matching prefixes. IEEE/ACM Trans. Netw., 4(1):86–97, February 1996.

[49] REANZZ. http://reannz.co.nz/.

[50] Peyman Kazemian, George Varghese, and Nick McKeown. Header space anal-

ysis: Static checking for networks. In Proceedings of the 9th USENIX Confer-

ence on Networked Systems Design and Implementation, NSDI’12, pages 9–9,

2012.

[51] Jon C. R. Bennett, Craig Partridge, and Nicholas Shectman. Packet reordering

is not pathological network behavior. IEEE/ACM Trans. Netw., 7(6):789–798,

December 1999.

[52] Vern Paxson. Automated packet trace analysis of tcp implementations. SIG-

COMM Comput. Commun. Rev., 27(4):167–179, October 1997.

[53] Piet Van Mieghem Xiaoming Zhou. Passive and Active Network Measurement,

volume 3015. Springer Berlin Heidelberg, 2004.

144

http://reannz.co.nz/

[54] LTC2978 Octal Digital Power Supply Manager with EEPROM. http://

www.linear.com/product/LTC2978.

[55] Altera Early Power Estimator Tool. https://www.altera.com/

content/dam/altera-www/global/en_US/pdfs/literature/

ug/ug_epe.pdf.

[56] Stratix V Device Handbook. https://www.altera.com/en_US/

pdfs/literature/hb/stratix-v/stx5_core.pdf.

[57] Stratix SI Development Kit. https://www.altera.

com/products/boards_and_kits/dev-kits/altera/

kit-transceiver-si-stratix-v.html.

145

http://www.linear.com/product/LTC2978
http://www.linear.com/product/LTC2978
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_epe.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_epe.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_epe.pdf
https://www.altera.com/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.altera.com/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-transceiver-si-stratix-v.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-transceiver-si-stratix-v.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-transceiver-si-stratix-v.html

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Related Work
	Software Defined Networking
	SDN Infrastructure
	OpenFlow Protocol

	SDN-Enabled Switches
	SDN-Enabled Switches on the Market
	Performance Requirements and Application Characteristics

	Hardware Packet Classification
	Problem Definition
	Data Structures and Algorithms
	Selected Works on Hardware Classification Algorithms
	Implementations on Different Hardware Platforms

	Works Closely Related To This Thesis
	Bit Vector Based Pipelined SDN Flow Table Implementation on FPGA
	Rule Caching Algorithms By Exploiting Temporal Locality For Flow Tables in SDN
	Design Developments of FASST Compared To Related Works

	FASST: FAst Scalable SDN Table
	FASST Overview
	FASST Operation
	Two Dimensional Bit Vector Machine
	Ternary Content Addressable Memory (TCAM)
	Match Monitor (MM) – Locality Detection
	Match Arbiter
	Analysis of Packet order in FASST and Correcting the Transient Packet Order Changes

	FPGA Implementation of FASST Hardware Architecture
	General View of FPGA Implementation
	Input Packet Format for Rule Insertion and Rule Query Phases
	Packet Parser
	Implementation Bit Vector Module (BVM)
	Details of Stride-BVM Blocks
	Pipeline Processing Sequence at Signal level in FASST

	Implementation of TCAM
	Details of Stride TCAM Blocks
	Implementation of Priority Encoder in TCAM Cache

	Implementation Match Monitor (MM)
	Locality Detector
	NIOS II Soft Processor System-on-Chip (SoC) Design
	Implementation of TCAM Cache Interface (TCAM Writer Block)

	Performance Evaluation of FASST
	Synthetic SDN Flow Table with 512 Rules
	Synthetic Traffic Trace using Flow Table with 512 Rules
	Design Parameters Used in Performance Evaluation
	Hardware Tests of Overall Design for 512 Rules
	Monitoring Consumed Power for 512 Rules
	Calculating Power Consumption Using Early Power Estimator (EPE)
	Static Functional Simulation of Overall Design for 512 Rules
	Synthetic Flow Table for 128 Rules, Traffic Sample and Hardware Tests
	Power Consumption With Respect to Clock Rate and Rule Size
	Scalability of SRAM-based TCAM Design
	Scalability of Clock Rate, Latency and Resource Consumption of FASST with Rule Set Size
	Comparison of Power, Latency and Throughput with Recent Work
	FPGA Resource Utilization of FASST

	Test Environment of FASST Hardware Architecture
	Conclusions and Future Work
	REFERENCES

