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ABSTRACT

A REGIME SWITCHING MODEL FOR THE TEMPERATURE AND PRICING
WEATHER DERIVATIVES

Tiirkvatan, Aysun
Ph.D., Department of Financial Mathematics
Supervisor : Assoc. Prof. Dr. Azize Hayfavi

Co-Supervisor : Prof. Dr. Tolga Omay

August 2016, [81| pages

Weather has an enormous impact on many institutions, for example, in energy, agri-
culture, or tourism sectors. For example, a gas provider faces the reduced demand in
gas in case of hot winter. Weather derivatives can be used as a tool to manage the risk
exposure towards adverse or unexpected weather conditions. Weather derivatives are
the financial contracts with underlying depending on weather variables such as tem-
perature, humidity, precipitation or snow. Since the temperature is the most commonly
used weather variable, we consider the temperature based weather derivatives. These
are the financial contracts written on several temperature indices, such as the cumula-
tive average temperature (CAT), or the cooling degree days (CDD). We first propose a
regime-switching model for the temperature dynamics, where the parameters depend
on a Markov chain. Also, since the jumps in the temperature are directly related to
the regime switch, we model them by the chain itself. Morever, the estimation and
forecast of the proposed model is considered. It is shown that forecast performance
of the proposed model is in line with the existing models considered. After mod-
eling the temperature dynamics, to price the derivatives, the risk-neutral probability
is to be specified. Since temperature (and hence the index) is not a tradeable asset,
any probability measure being equivalent to the objective probability is a risk-neutral
probability. We consider a generalized version of the Esscher transform to select an
equivalent measure. Then we derive prices of weather derivatives written on several
temperature indices.
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0z

HAVA SICAKLIGI ICIN REJIM DEGISIM MODELI VE HAVA DURUMU
TUREVLERININ FIYATLAMASI

Tiirkvatan, Aysun
Doktora, Finansal Matematik Bolimii
Tez YOneticisi : Doc. Dr. Azize Hayfavi
Ortak Tez Yoneticisi : Prof. Dr. Tolga Omay

Agustos 2016, 81| sayfa

Hava durumu bir¢ok kurulus iizerinde ¢ok biiyiik bir etkiye sahiptir, 6rne8in, enerji,
tarim, veya turizm sektorlerindeki kuruluslar. Ornegin, bir dogal gaz saglayici kis
mevsiminin sicak gegmesi durumunda dogal gaz talebinde azalis ile karsilacaktir. Hava
durumu tiirevleri olumsuz veya beklenmeyen hava kosullarina iligkin riski yonetmek
i¢in bir arag olarak kullanilabilir. Hava durumu tiirevleri sicaklik, nem, yagis veya kar
gibi hava degiskenleri iizerine yazilan finansal sozlesmelerdir. En ¢ok kullanilan hava
degiskeni sicaklik oldugu i¢in sicaklifa dayali hava tiirevleri ele alinmaktadir. Bun-
lar kiimiilatif ortalama sicaklik (CAT) veya sogutma giin dereceleri (CDD) gibi ¢esitli
sicaklik endeksleri iizerine yazilan finansal sozlesmelerdir. Oncelikle, hava sicakligi
dinamikleri i¢in parametrelerin Markov zincirine baglh oldugu bir rejim-degisim mod-
eli Onerilmektedir. Ayni zamanda, hava sicakligindaki si¢cramalar, rejim degisimi ile
dogrudan iligkili oldugu i¢in, bunlar zincirin kendisi ile modellenmektedir. Ayrica,
onerilen modelin parametre tahmini ve kestrimi ele alinmistir. Onerilen modelin kestrim
performansinin ele alinan var olan diger modeller ile uyumlu oldugu gosterilmistir.
Hava sicakligi dinamikleri modellendikten sonra, tiirevleri fiyatlamak i¢in, risk-notr
olasilik belirlenmelidir. Ancak, hava sicaklig1 (ve dolayisiyla endeks) ticarete konu bir
varlik olmadigindan objektif olasiliga esdeger olan herhangi bir olasilik olgiisii risk-
notr olasiliktir. Esdeger Ol¢iiyii secmek i¢in Esscher doniisiimiiniin genellestirilmis bir
versiyonu ele alinmistir. Sonra ¢esitli sicaklik endeksleri iizerine yazilan hava durumu
tiirevlerinin fiyatlar1 elde edilmistir.
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CHAPTER 1

INTRODUCTION

Weather derivatives provide a tool to manage the weather risk. Weather has an enor-
mous impact on many institutions, for example, in energy, agriculture, or tourism sec-
tors. For example, a gas provider faces the reduced demand in gas in case of hot winter.
Weather derivatives can be used as a tool to manage the risk exposure towards adverse
or unexpected weather conditions. Weather derivatives are the financial contracts with
underlying depending on weather variables such as temperature, humidity, precipita-
tion or snow. More information on weather derivatives can be found in [7] and [2].
Since the temperature is the most commonly used weather variable, we consider the
temperature based weather derivatives. These are the financial contracts written on
several temperature indices. The most common ones are the cumulative average tem-
perature (CAT), the cooling degree days (CDD) and the heating degree days (HDD)
indices.

The CAT, CDD and HDD indices over a measurement period 7, 75| are defined as

T2

OAT(Tl,TQ) == / Edt,

T1

T2
CDD(1,1m) = / max(7T; — ¢,0)dt,

and -
HDD(m,m) = / max(c — Ty, 0)dt,

respectively, where T; is the temperature at time ¢ and c is a constant and denotes the
threshold temperature, typically 18 degrees Celsius or 65 degrees Fahrenheit.

We consider futures written on CAT, CDD and HDD indices. To derive the futures
prices, we first model the temperature dynamics. In the literature, the mean-reverting
Ornstein—Uhlenbeck process in different forms is commonly used for modeling the
temperature. However, Elias et al.(2014) ([18]) state that abrupt changes in tempera-
ture, caused by a combination of several factors including latitude, intensity of solar



circulation, land and water surface areas, ocean currents, elevation, and clear skies,
induce the regime-switching behavior in temperature. Motivated by [18], we propose
a regime-switching model for the temperature dynamics, where the parameters depend
on a Markov chain. Also, since the jumps in the temperature are directly related to
the regime switch, we model them by the chain itself. The jumps can be considered
as the shifts in the level of the temperature due to the transitions of the state of the
atmospheric conditions. Moreover, the estimation and forecast of the proposed model
is considered. It is shown that forecast performance of the proposed model is in line
with the existing models considered.

The objective of the Markov regime-switching models is to represent the observed
stochastic behavior by at least two separate regimes with different underlying stochas-
tic processes. The switching mechanism between the regimes is an unobserved (la-
tent) Markov chain. One of the main features of Markov regime-switching models
is that the regime-switching mechanism allows for temporal changes of model dy-
namics. Markov regime-switching models can be considered as generalizations of
hidden Markov models (Cappé et al. 2005, [10]). [LO] states that a hidden Markov
model is a doubly stochastic process with an underlying stochastic process that is not
directly observable (hidden”) but can be observed only through another stochastic
process that produces the sequence of observations. For more information on hidden
Markov models, see Elliott et al. (1995)[19]] and [10]. For the applications of hid-
den Markov models to finance, see [31] and [32]]. Unlike the hidden markov models,
Markov regime-switching models allow for temporary dependence within the regimes,
in particular, for mean reversion, which is a characteristic feature the temperature.

There are also threshold type regime-switching models suc as threshold autoregressive
(TAR) model proposed by Tong (1983) [40], see [22]. The main difference between
the threshold type regime-switching models and Markov regime-switching models is
that in case of the former the switching mechanism between the regimes is observable,
while in case of the later it is latent. In this thesis, we focus on Markov regime-
swithcing models, we call the Markov regime-switching models simply the regime-
switching models.

For the regime-switching models, the type of dependence between the regimes, that is,
dependent regimes or independent regimes, is also an important issue. In the former
approach, depending on the state process values, only the model parameters change,
see Hamilton (1989) [24] and Hamilton (1990) [25]]. On the other hand, in the latter,
the individual regimes are driven by independent processes. [28]] states that depen-
dent regimes lead to computationally simpler models, on the other hand, independent
regimes allow for a greater flexibility and admit qualitatively different dynamics in
each regime.

After modeling the temperature dynamics, to derive the futures prices, the risk-neutral
probability is to be specified. Since the temperature (and hence the index) is not a



tradeable asset, any probability measure being equivalent to the objective probability
is a risk-neutral probability. A generalized version of the Esscher transform is consid-
ered to select an equivalent measure. Then the prices of weather derivatives written on
several temperature indices are derived using the temperature model proposed.

The structure of this thesis is as follows. In Chapter[2] after giving the literature review,
a new model for the temperature dynamics is proposed. In Chapter 3] estimation and
forecast of the proposed model together with existing models are considered. In Chap-
ter [ the proposed model under the equivalent measure is considered and the prices of
weather derivatives written on several temperature indices are derived. In Chapter [3]
the conclusion follows. In the Appendix, an overview of Markov chains is provided.






CHAPTER 2

A REGIME SWITCHING MODEL FOR THE TEMPERATURE

In the literature, various models for the temperature dynamics are proposed. In this
part, after giving the literature review, a new model for the temperature dynamics is
proposed.

2.1 The Literature Review

In the literature, the Ornstein-Uhlenbeck mean-reverting process in different forms is
commonly used for modeling temperature. Dornier and Querel (2000) [[16] propose
the temperature model

th = dSt + /Q(St — Tt)dt + O'th7
where the seasonal mean S, is given by
Sy = a+ bt + csin(wt + ), (2.1)

with w = 27/365. Here, & is the speed of mean reversion, o is the volatility of temper-
ature and W, is a Brownian motion. The term d.S; expresses the seasonal variation and
ensures that the process tends to the seasonal mean in the long run, that is E(7};) = S;.

Alaton et al. (2002) [1]] suggest the temperature model given by
dﬂ = dSt + K(St - ﬂ)dt + Uttha (22)
where the seasonal mean S; is given by Equation (2.1)) and o is a piecewise constant

function, with a constant value during each month.

Benth and Benth (2007) [5] consider the model in Equation (2.2)), where both .S; and
af are expressed by a truncated Fourier series, that is,

I J1
S, =a+ bt + Za,— sin(wi(t — f;)) + ij cos(wj(t — g;))

i=1 j=1



and

IQ JQ
ol =c+ Z ¢; sin(wit) + Z d; cos(wjt).

i=1 j=1

The authors of [5]] state that it is sufficienttoset [y =0, J; = 1, [, = Jy = 4.

Mraoua and Bari (2007) [33] consider the model in Equation (2.2), where S; is given
by Equation (2.1)) and

dat = R¢o (Utrend - Crt) dt + /YUde

where 0y,.c,,q 1S assumed to be constant.

Zapranis and Alexandridis (2008) [41] extends the model suggested by [5]. A nonlin-
ear AR(1) model is estimated non-parametically with a neural network, which removes
the constraint of a constant mean-reverting parameter. The form of S; and o7 are de-
termined by wavelet analysis.

Broady et al. (2002) [9] suggest the model given by

AT, = (S, — T,)dt + o, dW/[H,

where W is a fractional Brownian motion.

Benth and Benth (2005) [4] propose an Ornstein-Uhlenbeck model with seasonal mean
and volatility, where the residuals are generated by a Lévy process. In particular, it is
suggested to use the class of generalized hyperbolic Lévy processes. [4] suggest

dj—;g = dSt + /‘fl(ﬂ — St)dt + O-tsta
where L; is a pure-jump Lévy process, and

Sy = ag + a; cos(w(t — az)).

Benth et al. (2007) [8]] consider a pth order continuous-time autoregressive (CAR(p))
model. Let X, = (X, ..., X?)" be a stochastic process in R? for p > 1 defined by

dXt = AXtdt + epUtth7

where e;, k = 1,...,p, is the kth unit vector in R” and o; > 0 is a real-valued and
square integrable function (over any finite time interval). The p X p matrix A is defined

6



0 1 0 0
0 0 1 0
A= ' ,
0 0 0 1
L~ —p-1 —Qp2 O
where oy, k =1, ..., p, are constants. [8|] propose that
E - At + th

where
Ay = ag + a1t + ag cos(w(t — a3))

is the deterministic seasonal mean function and Y; = €,X; = X is the deseasonalized
temperature. [8] suggest that

4 4
ol = b + Z by, cos(wkt) + Z bog+1 sin(wkt).

k=1 k=1

Benth and Benth (2011) [6] generalizes the CAR model proposed in [8]. The following
CAR(p) model with seasonal stochastic volatility is proposed:

dXt - AXtdt + equtth,

where ¢; = (;0;. The deterministic seasonal function ¢? is given by a truncated Fourier
series of order four, having a yearly seasonality. For the stochastic volatility process
oy, the Barndorff-Nielsen and Shephard (BNS) model [3]] is used.

22V,
with
AV, = —\Vydt + dL,,

where A > 0 and L; is assumed to be a subordinator independent of W;.
[6] propose that
Crt = At + }/tv

where
Ay = a + bt + csin(w(t — d)),

and the deseasonalized temperature Y; is given by Y; = ¢, X, = X}

Swishchuk and Cui (2013) [38] extend the model proposed by [8] to the CAR model
driven by a Lévy process. [38] propose that

dXt = AXtdt + epO'tst,

7



where L, is a Lévy process. [38] propose that
E = At + th

where
Ay = ag + ag sin(w(t — ag)),

and Y; = €,X; = X/ It is suggested that

N N
ol = by + Z bay sin(wkt) + Z bok+1 cos(wkt),

k=1 k=1

with N = 1.

Elias et al. (2014) [18] suggest the model given by
Ty = S + Xy,

where
Sy = a+ bt + csin(w(t + ¢)), (2.3)

is the deterministic annual seasonality component and X; is the deseasonalized tem-
perature. A two-state regime-switching model for X, is represented by

X X1, if X;isin regime 1 with probability p;,

b X2, if X, 1s in regime 2 with probability p,
where p; +po = 1. For the deseasonalized temperature X, different forms of two-state
regime-switching models are considered. [18] state that the model where one regime
is governed by a mean-reverting process and the other by a Brownian motion captures

the temperature dynamics more accurately than the other models considered. In fact,
the model suggested is given by

dXt’l = KZ(O& — Xt’l)dt + Ulth,

dXt’Q = /Lgdt + O'Qth,

where « is the speed and « is the mean of the mean-reverting process, W, is a Brown-
ian motion, u5 is the mean of the Brownian motion, o, and o5 are the volatilities.

2.2 The Newly Proposed Model

In the literature, the Ornstein-Uhlenbeck mean-reverting process in different forms is
commonly used for modeling temperature. However, Elias et al. (2014) [[18] examines
regime-switching behavior of the temperature. Abrupt changes in temperature, caused

8



by a combination of several factors including latitude, intensity of solar circulation,
land and water surface areas, ocean currents, elevation, and clear skies, induce the
regime-switching behavior in temperature ([[18]]). In the following, motivated by [18]],
a new regime-switching model for the temperature dynamics will be proposed.

We consider a complete probability space (2, F,[P) and let the time interval be [0, T],
where T < oo. We consider a continuous-time, homogeneous, finite-state Markov
chain ¢ := ((; : t € [0, T]) defined on (2, F,P), with a state space S¢ = {s1,...,Sn}.
Without loss of generality, we adopt the canonical state space representation of the
chain in [19]] and identify the state space of the chain with a set of the standard unit
vectors £ = {e1,...,exy} C RY, where the kth component of e; 1s the Kronecker
delta oz, foreach j,k =1,..., N.

Let A = (aj;)ju=1,. ~n be the rate matrix of the chain ¢, where a;; is the transition
intensity of the chain ¢ from state ¢, to state e;. Note that for each 5,/ = 1,..., N, we
have aj; > 0 with j # [, and ay = — Z?;L#Z a;. We suppose that a; > 0, for all
j,l=1,..., N, with j # [. With the canonical state space representation of the chain,
we have the following semimartingale representation for the chain ¢, given in Elliott
et al. (1994) [19]:

t
G=Go+ / A ds+Vi, e[0T, 2.4)
0

where (V; : t € [0, T]) is an RN-valued (F¢, P)-martingale. Here, F¢ := (Fr : t €
[0, T]) is the right-continuous, P-complete natural filtration generated by the chain (.

In the following, (X,Y) = X'Y denotes the inner product of X,Y € RY. Then,
X7 = (X e;) is the jth element of X € RY.

Now we consider a set of jump processes associated with the chain ¢. For each [, j =
1,...,N, let NV := (N} : t € [0,T]), where N}’ denotes the number of jumps of
the chain ¢ from state e; to e; in [0, ¢], foreach ¢ € [0, T] and /,j = 1,..., N. Then,

N = 3 (G e (Ganey)

0<s<t

= Y (G e (A e)

0<s<t

:/<Cs—7€l><d€57ej>

0

— [Cmeac epds + [ (Goepiavie)
0 0

:/ ajl<<s—>6l>d3+M7lfj’
0

9



where

MY ::/<Cs—7el><d‘/;’ej>'
0

Here, foreach ,j = 1,..., N, MY := (MY : t € [0, T]) is an (F¢, P)-martingale.

Foreachj =1,...,N,let N7 := (N7 : t € [0,T]), where N/ counts the number of
jumps of the chain ( into the state e; from the other states in [0, ¢]. Then,

N
Mj — Z Mlj
1=1,1#j
N : | (2.5)
= Z / (ljl<<57, €l>d5 -+ M%,
1=1,15 70
where
M= 3 M
I=1,l#]
N . (2.6)
= > [
I1=1,1#5 70
Here, foreachj = 1,..., N, M7 := (MJ] : t € [0, T]) is an (F¢, P)-martingale.
Thus, foreach 7 = 1, ..., N, the following representations follows:
N/ :/ alds + Mj, (2.7)
0
dN7 = aldt + dM, (2.8)
where
A N
aj = Z aji{G—,er). (2.9)
I=1,l#j

Let T := (T; : t € [0, T]), where T} is the temperature at time t. We suggest the
temperature model given by
Th =AM+ Y, (2.10)

where A; is the deterministic seasonal mean function and Y := (Y; : t € [0, T))
is the deseasonalized temperature process. Here, A; is assumed to be bounded and
continuously differentiable, can be taken as

Ay = ag + art + ag cos(w(t — as)), (2.11)
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where w = 2m/365. For the deseasonalized temperature Y;, we propose a regime-
switching model described below.

Let S = (S1,...,9%) € RN and ¢ = (01,...,0n) € RY witho; > 0 for j =
1,. .. ,N. We define B = (le)j,l:l ..... N with ﬁjj_ = 0, fOI'j = 1, R ,N. Let Bj =
(Bj1,---,Bin) € RY, forj = 1,..., N, thatis, 37 is the transpose of the jth row of
8. We define

Se, = 1(5,¢) = Zs (Gre5),
Gt U Ct ZU] <t76]

= (¥, ¢) Zﬁﬂg,ez forj=1,...,N.

We propose that the dynamics of the deseasonalized temperature Y; is given by the
following regime-switching model

N
dY, = k (Y, — S) dt + o¢, dW, + Y BLANT. (2.12)
j=1
Here,  is the speed of mean reversion, assumed to be constant, S, and o, are defined
above, and W := (W, : t € [0, T]) is a standard Brownian motion on (2, F,P). We
assume that W and C are independent. Foreachj = 1,... , N, N7 := (N} : t € [0, T])
is the counting process associated with chain, where N/ denotes the number of jumps
of the chain into the state e; from the other states in [0,¢], with the representation
of Equation (2.7). Since jumps in the temperature are directly related to the regime
switch, we model them by the chain itself. The jumps can be considered as the shifts
in the level of the temperature due to the transitions of the state of the atmospheric
conditions. The jump size of the temperature is determined by Bét, j=1,...,N,as
defined above. Notice that the jump size depends on the states of the chain before and
after a state transition, that is, when the chain jumps from the state ¢; to the state e;,
the jump size of the temperature is given by 3;;.

For notational convenience, we simply represent the model proposed in Equation (2.12))
as

dY, = k (Y, — S,) dt + o, dW, + Z BIANY (2.13)

j=1
where S, = S;,, 0, = o¢, and 3] = ﬁgt. Let F := (F, : t € [0,T]) be the right-
continuous, P-complete natural filtration generated by Y. We define for each ¢ € [0, T/,

G = F V ff, which represents the enlarged o-field generated by F; and ]-"f. And
write G := (G, : t € [0, T]) for the corresponding complete enlarged filtration.

11



Now, by It0’s Formula, the deseasonalized temperature, given by Equation (2.13), with
the initial value Y5, is of the form

t t
Y, = ")y, — /1/ e”(t_“)Sudu + / "t g AW,

¢ N (2.14)
+ / "N " BIAN.
S jzl
Notice that by Equation (2.8)), we can also write
t
Yg—e"‘(t‘s)Y;—/i/ t“Sdu—i—/ t“Zﬁjajdu
(2.15)

+/ wt=w) g AW, +/ w(t= “)Zﬂfd/\/li.

In the following we represent some useful results.

For A = (aj;);=1,. n, we denote Ay := A — diag[a], where diag[a] is the diagonal
matrix generated by a = (ay,...,ayy) € RY. Also write I for the N x N identity
matrix, 1 = (1,...,1) € R and 0 = (0,...,0) € RV,

Remark 2.1. Consider the semimartingale representation of the chain given by Equa-
tion (2.4). Then we have the following [17]]:
1. ¢, =1land ’A =0'.
2. (I — diag[¢s])A¢s = ApCs.
3. (I—-(,1)(I— diag[¢s)) =1— (1.
(I - diag[¢,)) (T — ¢,1) = T — diag[¢,),
5. (T—(1)Ap(s = A
Remark 2.2. As introduced by [17], the process N := (N; : ¢ € [0, T]) given by

e

t
Ni= [ (1 dinglé. ])ac, 216
0
is a vector of counting process with Ay = (N}, ..., N;N) € RN, where N} counts the
number of times ¢ jumps to state e;, j = 1,.. N Note that E(N;) = fo Ao, _ds.
Thus, the process M := (M, : t € [0, T]) given by
t
Mt = M - / AQCS_dS (217)
0
is a martingale with M; = (M}, ..., MY) € R", see Equation (2.7).
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Therefore, by Remark 2.1} and Remark [2.2] the chain given by Equation (2.4) can also
be represented as

t
G =t / (- ¢ _1)dN,
0 (2.18)

:§0+/0 ACs—d5+/0 (I— ¢ 1')dM,.

13
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CHAPTER 3

ESTIMATION AND FORECAST OF THE MODEL

In this part, the estimation and forecast of the proposed model together with the various
existing models is considered.

3.1 The Data

The daily temperature data (in degrees Celsius) for Chicago O’Hare International Air-
port, USA, over the period from 1 January 2001 to 31 December 2013 is considered.
The temperature data is provided by the National Climatic Data Center (NCDC) [34]].
February 29 is removed from the sample in each leap year, resulting in 4745 obser-
vations. The data consists of the daily maximum and minimum temperatures. The
temperature futures are written on several temperature indices, where the temperature
is defined to be the average of the minimum and maximum temperatures over one day.
Hence, at day ¢, the maximum temperature is denoted by (7'maz); and the minimum
temperature is denoted by (7'min),, and the daily average temperature is defined by
(Tav); = 2((T'max); + (T'min);). We denote the daily average temperature at time ¢
by 7}, and call it as the temperature.

Table 3.1: Descriptive statistics of the temperature.

Minimum -21.95
Maximum 33.6
Range 55.55
Mode 22.5
Median 11.1
Mean 10.377
Standart deviation 10.891
Skewness -0.23503
Kurtosis 2.0922
Jarque-Bera statistic 206.61
Jarque-Bera critical value 5.9804
Number of observations 4745
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The descriptive statistics of the temperature are presented in Table 3.1] The temper-
ature ranges from —21.95 to 33.6. In Figure [3.1] the temperature for the period of
2001-2013 is depicted.

40
30F

20

“THAN

Temperature

o
=

-3
2001 2003 2005 2007 2009 2011 2013
Time

Figure 3.1: The temperature for the Chicago.

The mean, standard deviation, skewness, and kurtosis of the temperature for each day
of the year are displayed in Figure [3.2] and Figure 3.3] The mean fluctuates between
—6.83 and 26.02, with lowest in January and highest in August. The highest standard
deviation is observed in the winter, while the lowest is observed in the summer. In
Figure [3.4] the autocorrelation function (ACF) of the temperature is depicted.

30 T T T T T T T T T T T 8

Mean
Standard deviation

—1 I I I I I I I I I I I 1 I I I . . . . . . . .
Janl Febl Marl Aprl Mayl Junl Jull Augl Sepl Octl Novl Decl Janl Febl Marl Aprl Mayl Junl Jull Augl Sepl Octl Novl Decl
Time Time

Figure 3.2: The mean and standard deviation of the temperature for each day of the
year.
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Figure 3.3: The skewness and kurtosis of the temperature for each day of the year.

Sample Autocorrelation Function

Sample Autocorrelation

Figure 3.4: ACF of the temperature.

3.2 The Deseasonalized Temperature

We model the temperature 7; by

E:At_‘_}/;v

where A, is the deterministic seasonal mean function and Y; is the deseasonalized
temperature.

Ay = ag + art + as cos(w(t — ag)), 3.1

where w = 27/365, is used to deseasonalize the temperature and the estimation results
are presented at the Table[3.2]
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Table 3.2: Estimation of A, for the temperature.

Estimate | Standard Error t-statistic p-value

aop 10.113 0.13774 73.425 0
a; | 0.00011102 5.0293e-05 2.2074 | 0.027335
as 13.863 0.097268 142.52 0
as -162.47 0.40817 -398.03 0
RMSE: 4.74 | Adj.R?: 0.811 | p-value: 0

In Figure 3.5 and Figure 3.6 the temperature with the fitted seasonality and deseason-

alized temperature are depicted, respectively.

Temperature
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Figure 3.5: The temperature with the fitted seasonality.
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Figure 3.6: The deseasonalized temperature.

For the deseasonalized temperature Y;, we consider various existing models and the
proposed model. The last 3 years of data is reserved to be used for the forecast. Thus,
the estimation of the models is based on the deseasonalized temperature between 1
January 2001 to 31 December 2010. And the deseasonalized temperature between 1
January 2011 and 31 December 2013 is used for the forecast of the models.

Before we estimate the models for the deseasonalized temperature, we proceed with
the issues related with the estimation of regime-switching models.

3.3 Estimation of Regime-Switching Models

Estimation of regime-switching models necessitates inferring the model parameters
and the states at the same time since the switching mechanism is unobservable. In
the rest of this section, we consider an application of the Expectation-Maximization
(EM) algorithm of Dempster et al. (1977) [13], which is given in Hamilton (1990)
[25] and later refined by Kim (1994)[30]. We first introduce the issues related with the
expectation step of the EM algorithm, then we give a detailed description of the EM
algorithm.
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3.3.1 Filtering

Consider an AR(1) model with first-order, N state Markov-switching mean and vari-
ance, that is,

e — e, = O1(ye—1 — pig,) + &, €~ N(0,02,),
with
pe, = G + -+ pnCnes
Ua =07C + -+ + oalae,
where for j =1,... N,

Com L, if ¢ =7,
700, otherwise.

PG = j|G—1 =i =pji, t,7=1,...,N,

N
j=1

Then, the conditional density of y, given the past information F;,_1, that is, f(y;|F;_1)
can be obtained by

N N
f (el Fi1) ZZf Y G = J, G—1 = i[Fi-1)

j=1 =1

N N
D> FwilG = 4,6 = i, Fea)PG = 5, G = il Fial,

Jj=1 =1

where

. 2
flGe=134,G-1 =1, F1) = b exp <_(yt i — O1(Ye—1 — i) ) '

DN

2
2ro 2Uj

<

Thus, the log-likelihood function is given by

InL = Zln (yelFi_)))

T N
=Y In (ZZf(ytm = j,Go1 = i, Fo)) PG = j, G = zm_l]) .
1

t= =1 i=1

Notice that f(y;|F;_1) is a weighted average of N? conditional densities, weights being
P[¢; = J, (-1 = | Fe_q], fori,5 = 1,..., N, see the following.
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The filtered probabilities refer to inferences about ¢; conditional on information up
to time t, that is, J;. The filtered probabilities, P[(; = j|F;], are obtained by the
following filter, see [35]. The following two steps are iterated for ¢ = 1,...,T, to
obtain ]P)[Ct = j, thl = ’L"thl] :

1. Given P[(; 1 = i|F;_1], i = 1,..., N, at the beginning of time ¢, calculate

Pl¢ = J, G—1 = i[Fema] = PG = j[Ge—1 = i|P[Ge—1 = i|Fo—1],
where P[(; = j|(;—1 = 7| are the transition probabilities pj;, fori,7 =1,..., N.

2. Once y; is observed at the end of time ¢, the probabilities are updated as follows:

P¢ = J, Go1 = 1| F]
= P[Ct =7,G-1= i|ft—1, yt]
 fWe G =, G =i Fa)
f (el Fi1)
_ fWelG = 7, G1 =4, Fe 1)P[G = 3§, G1 = 1| Fi ]
S SN F WG = . Gor = 6, Fe1)P[G = 5, Gt = i) Fid]

with

N
PG, = jIF) = > PG = 4, &1 = il F. (3.2)

=1

To start the filter at time ¢ = 1, the steady-state probabilities can be used. For a two-
state, first-order Markov switching, the steady-state probabilities are given by

1 —pa

Ty [Co | Fo] 2 — pas — P11

and
1 —pn

=Pl =2|F)) = —.
P’ [Co | Fo) 2 — oy — P11

3.3.2 Kim’s Smoothing Algorithm

Remember that the filtered probabilities refer to inferences about (; conditional on
information up to time t, that is, F;. However, the smoothed probabilities refer to
inferences about (; conditional on all the information in the sample, that is, F7. The
smoothed probabilities, P[(; = j|F7], are obtained as follows, see [35]:

P[Ct = j7 Ct+1 = k|]:T]
= P[Cer1 = k|FTIP[G = jlGar = K, Fr] (3.3)
= P[C+1 = k[FFIP[G = jlCt1 = K, Tl
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where for the last equality see [35]. Now, we can write

P[Ct - j|§t+1 = k?7~7:t]
_ P[Ct = 7,Gt11 = k|]:t]

PlCs1 = kI ) (3.4
_ PG = jIFIP[Gr = kG = ]
P[Ct+1 = k"]’—t]

Then, by Equations ((3.4) and (3.3), we have

N

PlG = jIFr] = Y PG = j, G1 = k| F7]

i
I

3.5
PlCi1 = K| FT]P[G = j|FP[Cra = k|G = ]
P[Ctﬂ = k|Ft]

] =

b
Il
—

Thus, given P[(t = j|F7] at the last iteration of the filtering, Equation (3.3)) is iterated
fort = T —1,...,1, to obtain the smoothed probabilities P[(; = j|F7]|, for t =
T—1,...,1

3.3.3 Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm, originally motivated by [[13], is an al-
ternative method for maximizing the likelihood function for models with missing ob-
servations or unobserved variables. The EM algorithm is an iterative procedure con-
sisting of the following two steps at the (m + 1)th iteration [35]. Suppose that © is a
vector of the model’s unknown parameters.

1. Expectation Step (E-Step): Given the parameter estimates ©(™) obtained from
the mth iteration, the expectation of the unobserved variables is formed.

2. Maximization Step (M-Step): Conditinal on the expectation of the unobserved
variables, the likelihood function is maximized with respect to the parameters of
the model, resulting in ©("+1).

Each iteration results in a higher value of the likelihood function, and thus, with arbi-
trary initial values of the parameters ©(%), the above two steps are iterated until @+
converges.

In the following, we give the EM algorithm in detail. We consider the model

dY; = (o — BY,) dt + cdW,. (3.6)
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Discretized version of this model with swithching parameters is given by [28]]
Yy =aq + (1 —Bq) Y1+ oge, 3.7

where €, ~ N(0,1). Here, (; is an N state Markov chain with transition matrix P =

(Pji)ij=t,...n, Where pj; = P[¢, = j|G—1 = i]. Let n = (ay, B;,05), p; = PG =
J|Fo;©]and © = (n, P, p;),for j =1,...,N. The algorithm starts with an arbitrarily

chosen vector of initial parameters O = (n© PO p ) forj=1,...,N.

3.3.3.1 The E-Step

The E-Step is composed of filtering and smoothing [30]. Suppose that the parame-
ter vector calculated in the M-step during the previous iteration is given by (™) =

(77(m)7 P(m)7 pgm))' Then,

1. Filtering: Fort = 1,..., T, iterate on

_ PlG = gl O] f(yil G = 4, Fia, ©™)
Z;V:l P[¢, = jIFie1, O] f (¢ = J, Fior, ©0™)

where
FlG = j, Fioa, ©)
(m) (m))?
1 (?/t —(1- 5]' Vi1 — Q; ) (3.8)
T agm P T (m)2
2mo; 2(0;)
and
P[Gi1 = j|F, © }:ml Pl¢ = il F, ©)]
until P[¢t = j|F7, ©™)] is obtained. The starting point for the iteration is taken

as P[¢; = j|Fp, 0] = p§m).
2. Smoothing: Fort =T —1,..., 1, iterate on

PlG = i|Fr, 0]

_ ZN: [Cie1 = j|Fr, OM]PG = Z|]:t ]pﬁl") (3.9)
P[Ciy1 = jIFi, ©m)] .
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3.3.3.2 The M-Step

Since each observation y, belongs to the jth regime with probability P[¢, = j|Fr, ©™)],
the maximum likelihood estimates are obtained maximizing the log-likelihood func-
tion of the form

N T
I (L) = 3 > PG = il Fr, 0" n (f(wlGe = j. Fier,n™*Y)) -

7j=1 t=1

(3.10)

The explicit formulas for the estimates Bj, &, and ¢; are given by

oo 22—2 [Ct—.ﬂ]:T, ]yt 1Bl

B =
! 22:2 [Ct = ]|fT, ]%—132
with
B _ S PIG = 51 Fr, 0 (e — 1)
1 =Yt — Yt—1 — T X )
Zt:2 IP’[Q = J’]:T’ @(m)]
-
= 7| F ,
B, = Zt 2 [Ct J’ T ]yt 1 .
Zt:Q [Ct = ]‘«FT, om) ]
and

b = ZtT 2 [Ct = J|fT7 ](’yt (1 - Bj)ytfﬁ
! s P[G = j|Fr, 0] ’

£2 ZtT:2 (G = j|F7,© ](yt - CYJ (1- Bj)yt—1)2‘

! s PIG = j|Fr, 0]

Moreover, pg mH) = = P[¢; = j|Fr, 0], see [25]. Furthermore, the transition proba-

bilities are given by [30]

(m+1) _ S PG =4, Gy = i| Fr, 0]
" Sy PGy = i Fr, ©0m)]

(m) . m (3.11)
T . Py PG —1=i| Fr—1,0(™)]
_ thz]PKt = Jj|FT, @(m)] ! P[ctt:j\fmfew}

S, PGy = i Fr, 0] ’

where pﬁ") is the transition probability P[(;11 = j|(; = 7] obtained in the previous
iteration. Then, all values obtained in the M-step are used as a new parameter vector

QU+l = (ylm+D) plmt pim Y 5 — 1 N, in the next iteration of the E-step.
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3.4 Estimation of the Existing Models

In this section, we consider various existing models to model the deseasonalized tem-
perature. For the estimation of the regime-switching models and threshold autoregres-
sive model model, the codes in [27] and [20] are utilised, respectively.

3.4.1 The Regime-Switching Model

We consider the regime-switching (RS) model [28]]

Yo = o, + OgYi—1 + 06, (3.12)

where ¢, ~ N(0,1). Here, (; is an N state Markov chain with transition matrix
P = (pji)ij=1,..~, Where p;; = P[(; = j|¢;—1 = i]. The estimation the RS model
is conducted via the EM algorithm. The estimation results of the 2-state RS model for
the deseasonalized temperature are presented at the Table|3.3

Table 3.3: Estimation of the RS model for the deseasonalized temperature.

2
o ?; o Djj

Statel | -0.30393 | 0.60692 | 12.53070 | 0.75557
State2 | 0.60838 | 0.98778 | 4.09853 | 0.50202

After the estimation of the 2-state RS model, the data is classified as being in state 1 or
state 2, by using the commonly used rule based on the smoothed probabilities obtained
from the EM algorithm. Accordingly, if the smoothed probability for the state 2 at time
t is bigger than 0.5, that is, P[(; = 2|F7] > 0.5, then the data is considered as being in
the state 2 at time ¢, otherwise the data is considered as being in the state 1 at time ¢.
The Figure depicts classification of the data being in the state 1 or state 2, together
with the smoothed probabilities for the state 2, presented by P(State2). For a closer
inspection, Figure [3.8] shows the last 5 years part of the Figure
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Figure 3.8:
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Figure 3.7: The RS model for the deseasonalized temperature.
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The RS model for the deseasonalized temperature (showing last 5 years).

26



3.4.2 The Constant-Speed Regime-Switching Model

We consider the regime-switching model given by Equation (3.12]) with the parameter
¢ does not depend on the chain, that is,

Ye = Qg + QY1 + 0¢ 64

(3.13)

We call this model as the constant-speed regime-switching (CRS) model. Since the
parameter ¢ does not depend on the chain, by fitting an AR(1) model to the desea-
sonalized temperature, ¢ = (.72280 is obtained. The estimation the CSR model is
conducted via the EM algorithm with ¢ = 0.72280. The estimation results of the 2-
state CRS model for the deseasonalized temperature are presented at the Table [3.4]

Table 3.4: Estimation of the CRS model for the deseasonalized temperature.

2

o ¢ o7 Pjj
State 1 | -1.28239 | 0.72280 | 9.71535 | 0.61346
State 2 | 1.03188 | 0.72280 | 8.91050 | 0.67930

After the estimation of the 2-state CRS model, the data is classified as being in state
1 or state 2, by using the commonly used rule mentioned in the previous subsection.
The Figure [3.9)depicts classification of the data being in the state 1 or state 2, together
with the smoothed probabilities for the state 2, presented by P(State2). For a closer
inspection, Figure [3.10] shows the last 5 years part of the Figure [3.9]
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Figure 3.9: The CRS model for the deseasonalized temperature.
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Figure 3.10: The CRS model for the deseasonalized temperature (showing last 5
years).
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3.4.3 The Threshold Autoregressive Model

We consider the 2-state version of the threshold autoregressive (TAR) model proposed
by Tong (1983) [40] given by
Y = (1 = 1) (o + d1ye—1) + I(oa + doyi—1) + €,

with

L, ify.q >,
I = .
07 if Yp—1 < T,

where 7 is the value of the threshold. The estimation results of the 2-state TAR model
for the deseasonalized temperature are presented at the Table [3.5] The Figure [3.11]
shows the deseasonalized temperature together with the TAR model threshold obtained
from the estimation of the TAR model.

Table 3.5: Estimation of the TAR model for the deseasonalized temperature.

O{j ¢j T
Statel | 0.024384 | 0.74528 | 2.75
State2 | 0.71011 | 0.59864 | 2.75
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Figure 3.11: The TAR model for the deseasonalized temperature together with the
TAR model threshold.
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3.5 Estimation of the Newly Proposed Model

For the deseasonalized temperature Y;, we consider discretized version of proposed
model given by Equation (2.12). We consider the model given by

N
Vi = —kSe, + (1 4+ k)Y + o6 + Zﬁé’tm\/g,

J=1

where ¢, ~ N(0,1) and AN = N/ — N/ |. Here, (; is an N state Markov chain
with transition matrix P = (pj;); j=1..n, Where p;; = P[¢; = j|G—1 = i], and N/
counts the jumps of the chain into the state j from the other states in time ¢. With the

convention a¢, = —KkS¢, and ¢ = 1 + k, we can write
N . .
Yi =g, + Vi +oge+ Y BLANT. (3.14)
j=1

Figure [3.12] depicts daily mean deseasonalized temperature, that is, the normal of the
each day of the year, and Figure displays the difference from the daily mean de-
seasonalized temperature. The figures give an idea of how to define the regimes. For
example, one can consider the cold and hot fronts, that is, we sometimes have hot win-
ters due to the hot fronts.

Daily Mean Deseasonalized Temperature
=

?]La'ml Febl Marl Aprl Mayl Junl Jull Augl Sepl Octl Novl Decl
Time

Figure 3.12: The daily mean deseasonalized temperature.
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Figure 3.13: Difference from the daily mean deseasonalized temperature.

We consider the case N = 2. We denote the parameters by oy, oy, and 3, if we are in
the state 1, and by «w, 03, and 3, if we are in the state 2. Notice that the jump part of
Equation (B;M[), Z?:} BLANY, equals By if the regime changes from state 2 to state
1, equals (3, if the regime changes from state 1 to state 2, and equals zero otherwise. It
can be shown that we can write

62 - _/81 - qb(a%—q?l)v
and thus
B B2
¢= as —ag + fa

To estimate the model given by Equation (3.14), we modify the EM algorithm men-
tioned previously. We apply repeatedly the modified EM algorithm until the jump
times and transition times coincide, see Figure [3.14] In the following we will call
the model Equation (3.14) as the double regime-switching (DRS) model, with double
referring to coincidence of jump and transition times. The estimation results of the
2-state DRS model for the deseasonalized temperature are presented at the Table 3.6
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Table 3.6: Estimation of the DRS model for the deseasonalized temperature.

Y ¢ Zi Bi Pij

Statel | -0.66115 | 0.72107 | 8.92121 | -6.55048 | 0.82458
State2 | 1.87273 | 0.72107 | 10.75911 | 6.55048 | 0.48448

400 T T T T T T T T T
Jump - — — Transition

350

300

250

200

150

Number of Regime Change

100

50

Figure 3.14: The jump time and the transition time.

Figure depicts classification of the data being in the state 2 or state 1,, together
with the smoothed probabilities for the state 2, presented by P(State2). For a closer
inspection, Figure [3.16]shows the last 5 years part of the Figure [3.15]
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Figure 3.16: The DRS model for the deseasonalized temperature (showing last 5
years).
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Notice that with the estimation of the DRS model, we are also able to obtain a thresh-
old, called the DRS threshold, for the temperature such that we are in the state 2 at
day ¢, if the temperature exceeds that day’s normal temperature by an amount b > 0,
otherwise we are in the state 1. We find that b = 5.8292. However, the DRS thresh-
old is different from the constant threshold obtained from the TAR model. Our DRS
threshold makes use of the smoothed probabilities and for each day of the year it is
different. The obtained DRS threshold together with deseasoanalized temperature is
presented in Figure [3.17

20

actual DRS threshold

15f b

1 AL b "
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Deseasonalized Temperature

_15,

-2
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Time

Figure 3.17: The DRS model for the deseasonalized temperature together with the
DRS model threshold.

3.6 Forecast of the Newly Proposed Model

In this section, the 1-step ahead forecast of the proposed model together with the ex-
isting models will be given. Remember that for the forecast of the models, we use the
deseasonalized temperature between 1 January 2011 and 31 December 2013.

The h-step ahead predicted probabilities can be calculated by
PGin = jIF) = P"P[G = jIF], (3.15)
where P = (p;;); j=1,2, is the transition matrix of the chain with p;; = P[(; = j|(;—1 =
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i], and P" is the hth power of the transition matrix. For h = 1, we obtain
PlCer1 = 1| F] = puP[¢ = 1| F] + p12P[¢: = 2| F]
and
PlGi1 = 2|F] = pauP[G = 1|FR] + p2P[¢: = 2|A].

For the proposed DRS model, see Section [3.5] the 1-step ahead forecast of Y} is calcu-
lated as

E [Yi1|F] = (o + oY) puP[G = 1|1 F + (o + Y1) paolP (¢ = 2| F]
+ (a2 + B2 + oY) parP[¢ = 1| F] + (o1 + 1 + oY) p12P[¢ = 2| F.
(3.16)

Moreover, we also consider the 1-step ahead forecasts of existing models considered
in Section @ 1-step ahead forecasts of RS, CRS, TAR and DRS models for the
deseasonalized temperature are depicted from Figure [3.18]to Figure [3.21] respectively.

25
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20t RS forecast |
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Figure 3.18: 1-step ahead forecast of the RS model for the deseasonalized temperature.

35



Figure 3.19
ture.

Deseasonalized Temperature

Figure 3.20
ture.

25

20F

15¢

10f

(4]
T

Deseasonalized Temperature
o

actual
CRS forecast |

2012

2013
Time

: 1-step ahead forecast of the CRS model for the deseasonalized tempera-
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: 1-step ahead forecast of the TAR model for the deseasonalized tempera-
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Figure 3.21: 1-step ahead forecast of the DRS model for the deseasonalized tempera-
ture.

We compare the forecast performance of the proposed DRS model with the existing
models. The forecast error e, is the difference between the actual value Y, and the
forecast value Fj, thatis, e = Y, — Fy, for k = 1,..., M. The most widely used
forecast error measures are the Mean Square Error (MSE), Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE), given by [26]

1 & 1
MSE = M;(Yk —F) =

Ms

(er),

e
Il
—

Sy

k=1 =1

M
M 1 M
RMSE = > (Y- F) = MZek ,

=

MAE = 3" Vi~ Fi| = MZlekl

k=1

The forecast performance of the models are represented in Table [3.7] According to
the table, DRS model has MSE of 10.896, while RS, CRS and TAR models have
MSE of 10.926, 10.928 and 10.953, respectively. Moreover, DRS model has RMSE of
3.3009, while RS, CRS and TAR models have RMSE of 3.3055, 3.3057 and 3.3096,
respectively. That is, the proposed DRS model has the smallest MSE and RMSE values
among all the existing models considered. On the other hand, TAR model has MAE
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of 2.5431, while DRS, RS and CRS models have MAE of 2.5453, 2.5463 and 2.5476,
respectively. The question is whether the differences in the respective MSE and MAE
values are significant. In the following, we perform the Diebold-Mariano test, see [[15],
[14], to further assess the (relative) forecast performance of the models.

Table 3.7: Forecast performance of the models.

RS model | CRS model | TAR model | DRS model

MSE 10.926 10.928 10.953 10.896
RMSE 3.3055 3.3057 3.3096 3.3009
MAE 2.5463 2.5476 2.5431 2.5453

The Diebold-Mariano test has the null hypothesis that two models have equal forecast
accuracy and thus the difference of their forecast errors is not statistically significant.
The alternative hypothesis is that one model produces better forecasts than the other.
For both MSE and MAE criteria, we apply three times the Diebold-Mariano test with
the alternative hypothesis that the proposed DRS model produces better forecasts than
the RS, CRS and TAR models, respectively.

The results of the test are given in Table [3.8|and Table |3.9] respectively. According to
the tables, we cannot reject the null hypothesis with the 5% significance level. Thus,
we can say that none of the forecasting errors are significantly differrent from the other.
Therefore, we can conclude that the forecast performance of the proposed DRS model
is in line with the RS, CRS and TAR models.

Table 3.8: Diebold-Mariano test (MSE).

Test Stat. (MSE) | p-value (MSE)

DRS model vs RS model 0.9013 0.18371
DRS model vs CRS model 1.1113 0.13321
DRS model vs TAR model 0.9325 0.17554
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Table 3.9: Diebold-Mariano test (MAE).

Test Stat. (MAE) | p-value (MAE)

DRS model vs RS model 0.3523 0.36229
DRS model vs CRS model 1.0671 0.14297
DRS model vs TAR model -0.3320 0.63007
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CHAPTER 4

PRICING WEATHER DERIVATIVES

At the Chicago Mercantile Exchange (CME), various weather derivatives are offered
for trade. In 1999, the CME launched its first weather derivatives, which are the futures
and options on temperature indices for several United States cities. Nowadays, the
weather derivatives for various cities around the world are offered (see [12]). At the
CME, in addition to the temperature futures written on several indices, and there are
also call and put options written on these futures. In this part, the proposed model under
the equivalent measure is considered and the prices of weather derivatives written on
several temperature indices are derived.

4.1 The Newly Proposed Model Under the Equivalent Measure

In the following section, we will derive prices of temperature futures written on several
temperature indices using the temperature model proposed in Section [2.2] To derive
the futures prices, the risk-neutral probability Q is to be specified. Since tempera-
ture (and hence the index) is not a tradeable asset, any probability measure (Q being
equivalent to the objective probability is a risk-neutral probability. In the following,
a generalized version of the Esscher transform is considered to select an equivalent
measure by following [37].

Let £(Y) be the space of all processes 6 := {6, ¢ € [0, T|} such that

1. Foreacht € [0, T], 0, := (0,¢,), where § := (0y,...,0xn) € RV,

2. 6 is integrable with respect to Y in the sense of stochastic integration.
For each § € £(Y), we define (0 -Y) :=((0-Y),: t €[0,T]), where

t
(9 . Y)t = / ede;
0

is the stochastic integral of ¢ with respect to Y. In the following, 6 is called as the
Esscher transform parameter. For each § € £(Y'), a G-adapted process DY := (D? :

41



€ [0, T]) is defined in the following way.
DY = exp ((6-Y)y).

Then, by It6’s Formula, we can write

t t
DY =1+ / DY0,k(Y, — Sy)ds + / DY9,0,dW,
0

N
1 092 2 ! 0 0552 j
+2/ D%’ Sds—l—/ DS_Z(e — 1)dN7.
Jj=1
Thus, we obtain

t
Df:1+/ D?_duy,
0
where U? := (U : t € [0, T]) is given by
t 1 t
U’ ::/ 95/43(}/;—55)(18—{—5/ 0202ds
0
t t N
+/ 0,0, dW, +/Z (%% — 1)dN?
0 :
1 t j ;
:/0 95/41(5/;—55)618—1-5/0 anfds—l—/o Z(easﬁs —1)alds

j=1
t
+ / 0.0.dW, + / Z 05 _ 1)d M.
0

Thus, DY is the Doléans-Dade exponential of U? that is,

Dl =W,  telo,T)

Consequently, the Laplace cumulant process (see [29]), L? := (LY : t € [0, T]) of the
stochastic integral process (0 - Y') is given by

L{ ::/ 05k (Ys — Sy)ds + = /92 2ds+/ Z(e”sﬂﬁ—nagds,
0 =1

which is the predictable finite variation part of U?. The Doléans-Dade exponential
E(LY) of LY is the unique solution of

t
5(Lf):1+/0 E(LNdLS,  te0,T].
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Since L? is a finite variation process, we have

E(L{) = exp(Ly).

Thus, for each § € £(Y"), the logarithmic transform L? := (L¢ : t € [0, T]) is given
by

LY = log(E(L) =L,  tel0,T]. (4.1)

Let 2% := (2! : t € [0,T]) be a G-adapted process associated with § € £(Y) as
follows:

Z¥ = exp ((H-Y)t—f/f>, t €0, T].
Then by Equations (2.13)) and (.1]), we get

¢ 1 [t t N ' ‘
2! = exp( / 0.0, — 5 / 0%02ds + / > 0.81dM]

LN | “4.2)
— / Z(eesﬁg —1—0,87)alds).
0 =

Then, Z% is a (G, P)-(local) martingale, see [37]. Notice that by It6’s Formula, we
have

t t N _
Z0 =1+ / 2%,0,dW, + / 203 (™% — 1)dMi. (4.3)
0 0 j=1

For each § € £(Y'), we define a new probability measure Q equivalent to P on Gt by
a generalized version of the regime-switching Esscher transform as follows:

dQ’

W\QT = (4.4)

The following lemma follows from [37].
Lemma 4.1. For eacht € |0, T], let

t
Wl .=Ww, — / 0,04ds (4.5)
0
and .
fj = Mj —/ a¥ds, (4.6)
0
where
afj = eefﬁga{
N
. 4.7
= > Iau(Ge,e).
=115
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Then, W = (Wf . t € [0,T)) is a standard Brownian motion under Q°, and
MO = (M¥ . t €[0,T)) is an (FC, Q%)-martingale, for each j =1,. .., N.

,,,,,

et if l#]
af = (4.8)
— Y € Pag, if 1=

Then, the chain C has the following semimartingale decomposition under Q°.
t
G=G+ [ Alds+Vl teT], @9)
0
where V0 .= (V9 : t €[0,T]) is an RN -valued (F¢,Q%)-martingale.

Note that, by the above lemma, the number of jumps of the chain ¢ into the state e;, for

each j = 1,2,..., N, from the other states in [0, ¢], denoted by ./\/tj , has the following
representation under Q :

N t
NP =Y /a§l<(s,el>ds+./\/lfj, (4.10)
1=1,1#5 V0
where
Y= /(cs,elxdm@,ejy (4.11)
1=1,1#5 V0

Here, foreach j = 1,2,..., N, M% := (M% . t € [0, T]) is an (F¢, Q%)-martingale.
Thus, foreach j = 1,2, ..., N, under Q% we have

dMP = aN? — ¥ at, (4.12)
where
' N
a?]: Z a?l<(tf;€l>
I1=1,1#j
N (4.13)

- Z e"Piay (G-, ).

1=1,I#j

Now, we give the dynamics of the deseasonalized temperature under Q°.
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Lemma4.2. Let R = (Ry,...,Ry) € RY, where

N
Ri=60r+ Y "Bay, (4.14)
j=Lj#

forl=1,... N. We define

R = (R,¢) = ZRZ G, €r).

Then, under QY the deseasonalized temperature Yy, given by Equation (2.13)), has the
dynamics

N
dY, = (k (Y; = S) + Ry) dt + oo d Wi + > BldM’. (4.15)

J=1

Moreover, the solution of Equation (4.15|) with the initial value Y is given by

t t t
Y, = "0y, — /{/ "G du + / IR du + / e“(t_“)audwg
N ’ ’ (4.16)

t
+ / e " BIAMY.

Jj=1

Proof. Remember that, by Equation (2.13), under P,

dY, = k (Y, — Sy) dt + o dW, + Z BLdNT.

j=1

By Lemma4.1}
dWP = dW, — 0,0,dt (4.17)
and ' o
MY = AN — P gl dt. (4.18)

Hence, under QY we can write
dY; = k (Y; — Sy) dt + (@at + Z 0.5 B at> dt 4 o dW/ + Z B dMPi
Jj=1 j=1

N
=k (Y, — 8)) dt + Rydt + o, d W) + > pld My,

J=1

and by applying 1t6’s Formula, the result follows. 0
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Lemma 4.3. Under Q°,

T2

T2
/ Tidt = k1 (e“(TZ_S) — e“(“_s)) Y, —I—/ Aydu

71 T1

/ (6'{ To—u) )S du—l—/ ' (65(7'1—11) _ 1) S,du

"“(72 u) ) R,du — k™ /T1 (e”(”_“) — 1) Ry,du

/ n(‘rg u) 1) Uude . lil/ L (en(Tl—u) _ 1) Uudwg 4.19)
/ N

I{(TQ u) 1) ZﬁidMZ]

J=1
N

(e —1) Y " BldMY.

j=1

Proof. By Equation (2.10), we have

/ Ttdt:/ Audu—l—/ Y.du. (4.20)
™ 1 m

From Equation (4.13)), we can write

T2 T2 T2
Y., =Y, —I—/@/ Yudu—m/ Sudu+/ R, du

T1 T1 T1

+ / o dWo + Zﬁﬂd/wf

T1 ] 1

and, thus,

T2 T2 T2
/ Yydu = k= (Y, — Y;) —I—/ Sydu — li_l/ R, du

T1 T1 T1

— k! / o dW? — K~ Z BLdmMY%,

T1 T =1

(4.21)
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Now, by Equation (4.16), we have
Ii_l (Y;—Q . le) _ li_l (en(’rg—s) _ 6/4(71—5)) Y,

T2 T1
—/ e”(TQ_“)Sudu+/ M= S du

T2 T1
+xt / R du — kT / MR du
S S

+ g1 /72 en(rz—u)gudwg _ kL /T1 en(ﬂ—u)o-udWS
+r / e N "Bl AMY — k! / i Zﬁﬂd/ufg.

j=1 j=1
(4.22)

=

Hence, by Equation (4.22)), we can write Equation (4 as

/ 2 Y, du = k1 (eﬁ(‘rz—s) _ eﬁ(‘rl—s)) Y,

T1
/ en To—u) )S du+/ ' (eli(nfu) _ 1) S, du

/ erlm—w) _ ) Rydu — k™ / 1 (e”(ﬁ_“) — 1) Ry,du
- / ") 1) oy dW) — k7 / 1 (") — 1) g, dW]

N
0 1) S g

j—l

_,il/ (en(n u) _ ZB]dMGJ

(4.23)
Therefore, by putting Equation (4.23)) into Equation (4.20)), the result follows. O

We denote the expectation under Q? by E’[-]. We now give a useful result.

Lemma 4.4. Consider the chain ¢ of which the semimartingale decomposition under
QY is given by Equation (#.9). Then we have

E’ [(,|G,] = e2" 9. (4.24)

Proof. By It6’s Formula we have
d <e—A9tg) — _ A% AN dE 4 AT
— €_A9td‘/te,

47



since by Equation (4.9)
d¢, = A%_dt + avy.

Hence, we can write

t
—_A? _A9 _ A0
e =e ASC5+/6 Aluqy?
S

Thus, )
E@ efAetCt|gsi| — efAGSCS’

since by the martingale property

t
E’ / eA"“de\gs] = 0.

Therefore, the result follows. ]

Remark 4.1. Notice that

1. By Lemmai4.4] we have
QH [Cu - €j|Cs] = Ee [H{Cuzej'}(u)K—s}
=E’ [<<ua ejHCS]
= <E6 [Cule] 7€j>

0 u—s
= <€A ( )C876j>'

2. For any square matrix Q,

00 Qk
€Q = Z ?
k=0

In the following, we give another representation of the chain under Q?, which will be
useful later on.

Remark 4.2. Remember that N; = (A}, ..., NY) € RY, given by Equation (2.16),
i1s a vector of counting proces, see Remark Notice that we have E/(N;) =

f(f Af(, ds. Thus, the process MY := (MY : t € [0, T]) given by
t
M =N, — / AfCs-ds (4.25)
0
is a martingale with M? = (M%', ... M) € RY (see Equation (#.6)).

By Remarks and under QY the chain, given by Equation (#.9), can also be
represented as

t
=t / (I ¢ _1)dN,
0 (4.26)

t
0

:C0+/0 AGCs_d8+/ (I_Cs_]_’>d./\/lf
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4.2 Pricing Temperature Futures

In this section, we derive prices of temperature futures written on CAT, CDD and
HDD indices using the temperature model proposed in Section Remember that
the cumulative average temperature (CAT), the cooling degree days (CDD) and the
heating degree days (HDD) indices over a measurement period [y, 75| are defined as

T2
CAT(Tl, 7'2) = / ,I;gdt (427)
CDD(m,7m2) = / max(7T; — ¢, 0)dt (4.28)
T1
and .
HDD(m,1) = / max(c — Ty, 0)dt, (4.29)

respectively, where c is a constant and denotes the threshold temperature, typically, 18
degrees Celsius or 65 degrees Fahrenheit.

Consider a futures contract written on a CAT index over the measurement period
[T1, T2|. By definition of a futures contract, it is costless to enter. At the end of the mea-
surement period, the buyer of the contract receives the amount in Equation and
pays the CAT futures price Fcar(s, 71, 72; 1) if the contract was entered time s < 7.
Therefore, from arbitrage theory, we must have

T2
0 = ()b [/ T,dt — FCAT(S,Tl,TQ;T)|g5:| ,

T1

where > 0 is a constant risk-free rate of return. Assuming that the futures prices is
adapted, the CAT futures price is defined by

Fear(s,m,79;T) = E [ / b Ttdt]gsl : (4.30)
Similarly, the CDD and HDD futures prices are delﬁned by
Fepp(s,m,m2;T) = E? / max (T} — c, O)dt|gs- , (4.31)
and )
Fupp(s, 7, 7;T) = E° / N max(c — T}, 0)dt|G, | , (4.32)
respectively. o _

Moreover, since
max(c — x,0) = max(z — ¢,0) + ¢ — x,
the following CDD-HDD parity follows:

FHDD(3>Tla T2; T) = FCDD(3>Tla T2; T) + C(TQ - Tl) - FCAT(Sa T1,T2; T)- (4.33)
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4.2.1 The CAT Futures

The CAT futures price is given by the following Theorem.

Theorem 4.5. The futures price Fear(s, 71, 72;T) at time s < 1, written on a CAT
index over the interval |1y, 5| is

T2
Fear(s,m,10;T) = Aydu + k71 ef(m2=s) _ oh(mi—s) )
carls, 7, 7 1) /T ( ) (4.34)

+ S(s, 11, 72) + O(s, 11, T2),

where
T2
S(s,11,7) = —/ (e“(TQ_“) — 1) (S, eAg("_s)Cs>du
5° (4.35)
+/ (e”(n_“) — 1) (S, eAe(“_s)Cs>du
and
T2
O(s,11,m) = /1_1/ (e"(”_“) — 1) (R, eAe(“_S)Cs)du
- (4.36)
. /4;_1/ (en(Tl—u) . 1) <R7 eAG(u—s)Cs>du
Proof. Remember that by Equation (4.30))
T2
Fear(s, 11, 79;T) = E? { / Ttdtygs} : (4.37)
T1
By Equation (4.19) and Fubini’s Theorem, we have
T2 T2
E? {/ Ttdt|gs} = / Aydu+ k71 (e“(”_s) — 65(71_5)) Y,
T1 T1
T2
_/ ( k(T2—u) )]EG [Su|gs} du
/ (6“ nY = 1) E'[S.IG) du (438)

-1 HTQ u) )EO[R ’gs]

/ Kk(T1—u) )EG [ R ‘ gs] u,
since by the martingale property

EG |:/T2 (en(Tg—u) — 1) OudW3|g5:| = 0,
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E? [/Tl (en(n—u) — 1) UudW3|gs:| =0,

N

E’ / 2 (e —1) Y~ BldMYP|G,| =0,

L J=1 N

T N 7
1% / 1 (en(Tl—u) _ 1) Zﬂid/\/lﬁjlgs = 0.
s =1 ]

Remember that by Lemma 4.4

EG [Culgs] _ eAG(ufs)Q“s.

Thus, we have

E9 [Su’gs] = Ee [<‘§7 Cu>|gs]
= <ga eAg(u_S)§s>

and

Ee [Ru|gs] - Ee [<R7 C’u,>|gsj|
= (R,E’[¢.|GJ]) (4.40)
—_ <R7 eAe(ufs)<s>.

Therefore, by inserting Equations (4.39) and (#.40) into Equation (4.38), the result
follows. ]

Proposition 4.6. The futures price Fcar(s, 71,70, T) at time s, with 1 < s < Ty,
written on a CAT index over the interval [T, 5] is

FCAT<87T177—2;T) = / Tudu+FCAT(87877_2;T)'

T1
Proof. By Equation (4.30),

™2
FCAT(S; T1, T2, T) = Ee |:/ TudU|gs:|

:/ T.du + E° [/ Tudu\gs}.
T1 s

Therefore, the result follows. O]
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4.2.2 The CDD and HDD Futures

The following lemma is necessary to price the CDD futures.

Lemma 4.7. Let Oy, g, (u) be the characteristic function of Y; conditional on G, where
s < t. Then, withi = +/—1,

yg, (u) =B [e"]G]

= (G o (2'“6’””“‘5’%+ / (diaglg(r, ue™)] + BY(r ))d),1>, (“441)

where

’

g(t,u) == (g1(t,u),...,gn(t,u)),

1
gi(t,u) == iue " (—kS; + Ry) — §u26’2"‘tgl2

N
. iue Rt 3. . —
+ g PP (ee™ "Bt — 1 — jue™ B;)ay
J=1#l

Joreachl=1,...,N,and B°(t) := (b5,(t));=1,..n with
Wy = 4 forl # j
j = N iue Ft3,; .
gt — ijl’#le ﬁﬂaﬁl, forl=j.

Proof. Let be
Zy = e "y,

and apply It6’s Formula to e™#t. Then,
t
, : , 1
ezuZt — est _|_/ ezuZT (’LU ( IiS 4 R) 2 26—2ﬁr0,3> dr

N
uZ 0 B zue_"““ﬂJ R Y AP
+ [ e E e’r — 1 —due " p))aldr

J=1

+/ ezqu dw9 / zuZT_Z iue "Tﬁj MG]
e / £ g, ), G

t
+/ wZT dW@ / uZy_ Z iue "",BJ dMGj

We define for each s < t € [0,T], Gy == F, V ]-'f, which represents the enlarged
o-field generated by F, and F;. Moreover, write G := (G, : s,t € [0, T]) for the
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corresponding complete enlarged filtration. Let @, 5 ,(u) denote the characteristic
function of Z; conditional on G, that is,

D6, (u) :=E" [¢"7|G,,] . (4.42)

Then, from above we obtain

N . '
d(I)Zt\gs,t(u) = ®Zt|gs,t (U) <<g(t7 u>’ Ct>dt —+ Z(eiue—ntﬁg B 1)deJ> ' (443)
j=1

Let D°(t) := (d%(t)).=1....n, where

—KktQ. .
e b, for [ # j,
0 _ N iue*“tﬁjl 6
dj(t) = § 2jm1m © @ji
Sl
J=1j#1 75l

, forl=1j.

Notice that d%(t) = 0%,(t)/a, for each j,I = 1,..., N. Define D{(t) := D°(t) —
diag[d®(t)], where d°(t) = (df,(t), ..., d%x(t)) € RY. Then, we can write

e 1) MY = (DY(1)¢ + ¢ — 1) dMY, (4.44)

||Mz

where MY = (M, ..., MIN) € RN. Remember that by Remark [4.2] we have

t
G=Gt [ (1= Cr)an;
0
with
- i [ Afgas.
Therefore, Equation (4.43)) can be written as

d(I)Zt\gs,t (u) - (I)Zt|gs,t (U,) <<g(t7 u)7 <t>dt + (Dg(t)Ct— + Ct— - 1),dM?> . (445)

We define
h(t,u) := Py, g, (u), te0,T]. (4.46)
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By It6’s Formula we obtain
t
h(t,u) = h(s,u) + / O, 6., (u) (A’ _dr +aV))

/ Gody g (W) + 3 AGAD, g (u)

s<r<t

= h(s,u) + / (diag[g(r, u)] + A?) h(r,u)dr

4.47)
+ / 716, (W) V!
hir— uw) (DY) + G — 1) dM?
+ Z AGAD, g, (u).
s<r<t
Here, we used (I)Zt|Gs,t(U>Ct<9(ta w), () = diaglg(t, u)]Ct‘I)ng’S,t (u).
Now, by using
(I — Ctll)d/lag[AM]Ct = 07
we can write
D AGAD, g, (u)
s<r<t
= > (I-G_1)AN, @y 5, (u) (DY) + = — 1) AN,
s<r<t
= Y ¥z, (W) = ¢ 1)diag[AN,] (D§(r)G— + ¢ — 1)
s<r<t (448)
= Y Py, (W) (I = ¢ 1)diag[AN;] (DY (r)¢— — 1)
s<r<t

~ [ ®a, (0~ V) diagl AL ] (DEr)G- — 1) dr

+ [ g, ()T - (V) diagla M) (D)6~ 1).

It can be easily shown that

diag[ASG] (Dh(H)G — 1) = (Bh(t) — Af) G
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Hence, we can write
[ i 00 G Viag AL (DG~ 1)
= [ @ 00— G0 (B) - AY G (4.49)
_ / C(BY(r) — A%) h(r, ),

since
(I - G1)By(t)¢ = B ()¢,
and
(T G1)AGG = A%G
Thus by combining Equations (4.48) and (4.49), we get
> AGAD, G, (u)

s<r<t

-/ (BY(r) — A) h(r, u)dr (4.50)

t
+ [ @, ()T - G )diagid M) (DG~ 1).
Thus, by Equation (4.50), Equation becomes
t
h(t,u) = h(s,u) + / (diaglg(r, u)] + BP(r)) h(r,u)dr

+ / Z0(Gor dVe
/ 4.51)

+ h )C,,, + Crf )/dM?ﬂ

" / @ ,16.. () (1 — G 1)diag[dM?] (DY(r)G, — 1)

Therefore, by Fubini’s Theorem and using the martingale property, we have

E? [h(t,u)|Gs] = h(s,u) + / (diaglg(r,w)] + B (r)) E [h(r, u)|G,] dr
Thus, we get
dE’ [h(t,u)|Gs] = (diag[g(t,u)] + B(t)) E [h(t, u)|G,] dt
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and after solving we have
t
E? [h(t,u)|Gs] = ™% (s exp </ (diaglg(r,u)] + B(r)) dr) : (4.52)

Notice that

(I)Zt@s,t (U) = <th)Zt\Gs,t (U), 1>

— (h(t, ), 1), (4:33)

since ((;,1) = 1.

Now, by the tower property and Equation (4.53)), we have
E? [¢7G,] = E° [8 [¢¥(G,] 6.
_ R [Ee [ wektzt|gs t] |g8]
=R’ [(]? 701G, (ue” |Qs]
R’ [(h(t,ue™),1)|G,]
= (E’ [n(t, ue”t |gs] 1),

Therefore the result follows by Equation (#.52). O

To price the CDD futures, we apply Fourier transform techniques. We denote the space
of integrable functions on R by L'(R). For f € L*(R), the Fourier transform of f is

defined by
:/f(x)em“dx.
R

And if, also f € L*(R), then the inverse Fourier transform is given by [21]]

1 A )
= %/Rf(u)e””“du.

We have the following lemma from [7].
Lemma 4.8. For the function f given by
f(z) = max(z — ¢,0),
with ¢ > 0, define
fe(x) == e f(x).

Then, f. € L'(R) for all ¢ > 0.
Moreover, for any € > 0, the Fourier transform of f. is given by

A 1 )
— —(etiu)e
fe(u) (€ +iu)? ¢

and f. € L'(R).
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Now, we are ready to give the CDD futures price.

Theorem 4.9. The futures price Fcpp(s, 1, 72; 1) at time s < T, written on a CDD
index over the interval Ty, T5] is

T2
T1

1 ~
FCDD(S,Tl,TQ;T) = %/‘]2(16)/ ‘If(s,t,u)dtdu, (454)
R

where for € > 0,

U(s,t,u) =w(s,t, u){(sexp (/ (diag[g(r, (u —ie)e™)] + Be(r)) dr) 1),

with
@ (s, t,u) = exp ((e+ tu) (A + e“(t_s)Y;))
and
A 1 .
- - —(E—Hu)c.
Jelw) = e

Proof. Remember that by Equation (4.31)

T2
Fepp(s, 11,70, T) = E? [/ max(T; — ¢,0)dt|Gs | .
T1

Now by Lemma[.8] we can write

max(Ty — ¢, 0) = % / £ () exp (e + iu)T}) du 4.55)
R

Thus, by Equation (4.55)) and Fubini’s Theorem,
E? max(7T; — ¢,0)|Gs]

= % /R Fe(W)E [exp ((€ + ) T}) |Gs) du
- % /Rfe(u) exp (e + i) A) B [exp (e + iw)Y3) (Gl du ) 50
- % /R few) exp ((e + iu)Ay) E? [exp (i(u — i€)Y)) |G,] du

= % /R Fo(u) exp ((€ + iu)Ay) Py, 6, (u — i€)du,

where @y, g, (u) = E? [e™Y]G,] is given by Equation @.4T).
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Therefore, by Fubini’s Theorem and Equation (4.36)), we obtain

E’ { max (T}, — c, O)dt|gs}

T1

_ /7-2 o [max(T; — ¢,0)|G,] dt

T1

T2 1 .
- / L / £.(u) exp (€ + i) Ay) Brig, (u — ic)dudt
1 27 R
1 A m
= —/fe(u)/ exp ((e + tu)\y) Py, 6, (u — ie)dtdu.
2m R 1
We notice that, by Lemma@4.7}
Dy;jg. (u — i€)

= ((sexp ((6 + iu)e" Y, + / (diag[g(r, (u — i€)eM)] + Be(r)) dr) 1),

Therefore, the result follows. L]

The CDD futures price can be computed by the fast Fourier transform method [11]].
Remember that by Equation (4.32)), the futures price Fupp(s, 71, 72; 1) at time s < 7
written on a HDD index over the interval [, 73] is given by

FHDD(S7T17 T2, T) = Ee |:/ max(c — E, O)dt’gs

Since we have already found the CDD and CAT futures prices, the HDD futures price
can be easily derived by the CDD-HDD parity, given by Equation (4.33)). That is,

FHDD(3771,72§T) = FCDD(3>7—1a7—2§T) + C(TQ - Tl) - FCAT(SaTlaT2§T)7

where Fepp (s, 71, 72; T') and Fear(s, 71, 72; T') are given by Equations (4.54) and (d.34)),
respectively.

4.3 Monte Carlo Simulation

In this section, the Monte Carlo simulation, see [23]], will be considered to price tem-
perature futures written on CDD and HDD indices using the proposed model. We begin
with some information about the temperature futures trading at CME for Chicago, of
which we have the temperature data.

For Chicago, there are monthly CDD index futures and HDD index futures. While the
monthly CDD contract periods are May, June, July, August and September, monthly
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HDD contract periods are November, December, January, February and March. In ad-
dition to the monthly contracts, CDD May-September and CDD July-August seasonal
strip futures, and HDD November-March and HDD February-March seasonal strip fu-
tures are also available.

The trading schedule of the contracts are determined by the CME. The temperature
futures are not settled on the index value for a particular day, but the aggregated index
value over an measurement period, typically a month or several consecutive months,
referred as seasonal strips. The accumulation period of each contract begins with the
first calendar day of the contract period and ends with the last calendar day of the
contract period. The CDD and HDD indices over a measurement period [y, 75| are
calculated as

T2
CDD(r1,7) =Y max(T; — ¢,0) (4.57)
t=71
and
HDD(r1,7) = Y _max(c—T;,0), (4.58)

respectively. Here, we take the threshold temperature c as 18 degrees Celsius.

All futures are settled immediately after the measurement period has terminated. A
futures contract on an index over a given measurement period is settled against the
index value times a cash amount. For the United States cities, this cash amount is
USD 20 per index point. We assume that the cash amount is USD 1 per index point.
Remember that by definition of a futures contract, it is costless to enter. At the end of
the measurement period, the buyer of the CDD futures contract receives the amount in
Equation (4.57)) and pays the CDD futures price. Similarly, the buyer of the HDD fu-
tures contract receives the amount in Equation (4.58)) and pays the HDD futures price.

Now, the Monte Carlo simulation is done as follows: For the daily average deseason-
alized temperature Y;, we consider the proposed DRS model given in (3.14). First,
10000 trajectories for the daily average deseasonalized temperature Y; are simulated
by using the parameter estimates in Table The simulated trajectories begins at 1
January 2011 and ends at 31 March 2013, that is, they are of length 820. Remember
that the data from 1 January 2001 to 31 December 2010 is used for estimation. Then,
the daily average temperature 7; is obtained by adding the seasonality component to
Y;. Thatis, T, = A; + Y;, where A, is given by (3.1I). Then, the corresponding payoff,
see Section[4.2] is calculated for each trajectory and averaging over all trajectories, the
corresponding futures prices are found. The results together with a comparison of RS
and CRS models, see Section [3.4] are given below.

Figure 4.1 to Figure [4.3] display the expected CDD index value obtained via RS, CRS
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and DRS models together with the actual CDD index from May to September, re-
spectively. Moreover, Figure .4] to Figure [4.6| depict the expected HDD index value
obtained via RS, CRS and DRS models together with the actual HDD index from

November to March, respectively.
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Figure 4.1: RS model expected CDD index value, 2011(left) and 2012(right).

600 800
700+
500
600 .
400 e
E] 3 500
o <
> >
x x
2 300 8 400t
£ £
8 8
300+
o [8)
200
200+
100+
100+
actual — actual
= — expected (CRS) o — expected (CRS)
0 — . . . 0 . . .
May1 Junl Jull Augl Sepl Mayl Junl Jull Augl Sepl
Time Time

Figure 4.2: CRS model expected CDD index value, 2011(left) and 2012(right).
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Figure 4.3: DRS model expected CDD index value, 2011(left) and 2012(right).
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Figure 4.5: CRS model expected HDD index value, 2011 (left) and 2012(right).
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Figure 4.6: DRS model expected HDD index value, 2011(left) and 2012(right).

Table [4.1] to Table {.3] and Table [4.4] to Table .6} display the futures prices obtained
and actual index values together with difference. The difference is defined as the value
obtained from the model minus the actual value. It can be said that while in 2011, the
obtained CDD prices are very close to the actual values, in 2012, the obtained HDD
prices are very close to the actual values.

As it can be seen from Table to Table in 2011 and 2012, for each CDD month
and July-August seasonal strip, all the models considered give very close values. How-
ever, for the 2011 May-September seasonal strip, the actual value is 586.25, while the
CRS, RS and DRS models produce a value of 599.2, 611.5 and 639.27, respectively.
On the other hand, for the 2012 May-September seasonal strip, the actual value is
730.7, while the DRS, RS and CRS models produce a value of 642.88, 617.4, and
602.52, respectively.

Table 4.1: CDD futures prices based on the RS model.

RS model | Actual Diff. | RS model | Actual Diff.

(2011) | (2011) | (2011) (2012) | (2012) | (2012)

May 41.523 | 3595 | 5.5725 42.323 | 74.25 | -31.927
Jun 132.73 999 | 32.833 133.71 | 165.8 | -32.088
Jul 200.29 | 252.45 | -52.157 202.87 | 286.15 | -83.279
Aug 168.48 | 156.25 | 12.226 168.8 153 | 15.796
Sep 68.471 41.7 | 26.771 69.695 51.5 | 18.195
Jul-Aug 368.77 | 408.7 | -39.931 371.67 | 439.15 | -67.483
May-Sep 611.5 | 586.25 | 25.245 617.4 | 730.7 | -113.3
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Table 4.2: CDD futures prices based on the CRS model.

CRS model | Actual Diff. | CRS model | Actual Diff.

(2011) | (2011) | (2011) (2012) | (2012) | (2012)

May 39.817 | 35.95 | 3.8669 40.346 | 74.25 | -33.904
Jun 130.05 99.9 | 30.151 130.56 | 165.8 | -35.238
Jul 197.19 | 252.45 | -55.256 199.51 | 286.15 | -86.638
Aug 164.77 | 156.25 | 8.5242 165.25 153 | 12.253
Sep 67.36 41.7 25.66 66.845 51.5| 15.345
Jul-Aug 361.97 | 408.7 | -46.732 364.76 | 439.15 | -74.385
May-Sep 599.2 | 586.25 | 12.946 602.52 | 730.7 | -128.18

Table 4.3: CDD futures prices based on the DRS model.

DRS model | Actual Diff. | DRS model | Actual Diff.

(2011) | (2011) | (2011) (2012) | (2012) | (2012)

May 53.394 | 3595 | 17.444 53.826 | 74.25 | -20.424
Jun 136.87 99.9 | 36.968 138.72 | 165.8 | -27.082
Jul 199.92 | 252.45 | -52.525 200.77 | 286.15 | -85.382
Aug 170.25 | 156.25 | 14.001 170.13 153 | 17.134
Sep 78.837 41.77 | 37.137 79.435 51.5 | 27.935
Jul-Aug 370.18 | 408.7 | -38.524 370.9 | 439.15 | -68.248
May-Sep 639.27 | 586.25 | 53.024 642.88 | 730.7 | -87.819

As it can be seen from Table [4.4] to Table [4.6] in 2011 and 2012, for each HDD month
and December-February seasonal strip, all the models considered give very close val-
ues. However, for the 2011 November-March seasonal strip, the actual value is 2126.1,
while the RS, DRS and CRS models produce a value of 2659.4, 2679.6 and 2680.1, re-
spectively. On the other hand, for the 2012 November-March seasonal strip, the actual
value is 2679, while the CRS, DRS and RS models produce a value of 2671.9, 2671.8

and 2653.1, respectively.
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Table 4.4: HDD futures prices based on the RS model.

RS model | Actual Diff. | RS model | Actual Diff.
(2011) | (2011) | (2011) (2012) | (2012) (2012)

Nov 397.85 | 325.05 | 72.795 396.08 | 398.1 | -2.0239
Dec 578.09 | 502.65 | 75.442 576.49 | 487.15 | 89.344
Jan 651.63 | 588.9 | 62.733 651.3 | 651.15 | 0.15055
Feb 554.44 | 498.25 | 56.193 55243 | 595.7 | -43.27
Mar 47736 | 211.2 | 266.16 476.78 | 546.95 | -70.169

Dec-Feb 1784.2 | 1589.8 | 194.37 1780.2 1734 | 46.225
Nov-Mar 2659.4 | 2126.1 | 533.32 2653.1 2679 | -25.968

Table 4.5: HDD futures prices based on the CRS model.

CRS model | Actual Diff. | CRS model | Actual Diff.

(2011) | (2011) | (2011) (2012) | (2012) | (2012)

Nov 401.47 | 325.05 | 76.421 399.33 | 398.1 | 1.2285
Dec 582.41 | 502.65 | 79.764 581.83 | 487.15 94.68
Jan 657.53 | 5889 | 68.63 654.48 | 651.15 | 3.3254
Feb 557.44 | 498.25 | 59.189 557.09 | 595.7 | -38.611
Mar 481.26 | 211.2 | 270.06 479.16 | 546.95 | -67.789
Dec-Feb 1797.4 | 1589.8 | 207.58 1793.4 1734 | 59.394
Nov-Mar 2680.1 | 2126.1 | 554.06 2671.9 2679 | -7.1662

Table 4.6: HDD futures prices based on the DRS model.

DRS model | Actual Diff. | DRS model | Actual Diff.

(2011) | (2011) | (2011) (2012) | (2012) | (2012)

Nov 402.9 | 325.05 | 77.848 401.44 | 398.1 | 3.3392
Dec 580.88 | 502.65 | 78.227 580.8 | 487.15 | 93.647
Jan 656.06 | 588.9 | 67.16 653.77 | 651.15 | 2.6189
Feb 558.06 | 498.25 | 59.809 556.68 | 595.7 | -39.02
Mar 481.72 | 211.2 | 270.52 479.1 | 546.95 | -67.851
Dec-Feb 1795 | 1589.8 | 205.2 1791.2 1734 | 57.246
Nov-Mar 2679.6 | 2126.1 | 553.56 2671.8 2679 | -7.2656
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CHAPTER 5

CONCLUSION AND OUTLOOK

Weather derivatives can be used as a tool to manage the risk exposure towards adverse
or unexpected weather conditions. We consider the temperature based weather deriva-
tives. These are the financial contracts written on several temperature indices such as
CAT, CDD and HDD.

To derive derivatives prices, we first model the temperature dynamics. In the litera-
ture, the mean-reverting Ornstein—Uhlenbeck process in different forms is commonly
used for modeling the temperature. We propose a regime-switching model for the tem-
perature dynamics, where the parameters depend on a Markov chain. Also, since the
jumps in the temperature are directly related to the regime switch, we model them by
the chain itself. The jumps can be considered as the shifts in the level of the tempera-
ture due to the transitions of the state of the atmospheric conditions.

Moreover, the estimation of the proposed model is considered. The daily tempera-
ture data (in degrees Celsius) for Chicago O’Hare International Airport, USA, over
the period from 1 January 2001 to 31 December 2013 is analysed. We consider vari-
ous existing models and the proposed model. The models are estimated for the period
from 1 January 2001 to 31 December 2010. The EM algorithm, which is an alternative
method for maximizing the likelihood function for models with missing observations
or unobserved variables, is considered. To estimate the proposed model, we modify
the EM algorithm. We apply repeatedly the modified EM algorithm until the jump
times and transition times coincide. And we forecast the models for the period from
1 January 2011 to 31 December 2013. We compare forecast performance of the pro-
posed model with the existing models and conclude that the forecast performance of
the proposed model is in line with existing models considered..

After modeling the temperature dynamics, to price the derivatives, the risk-neutral
probability is to be specified. Since temperature (and thus the index) is not a tradeable
asset, any probability measure being equivalent to the objective probability is a risk-
neutral probability. A generalized version of the Esscher transform is considered to
select an equivalent measure. Then the prices of weather derivatives written on several
temperature indices are derived using the temperature model proposed.
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As a further study, the proposed model can be extended by allowing the speed of mean-
reversion parameter to depend on the Markov chain. Moreover, in the proposed model
dynamics the rate matrix of the chain can be taken as time varying.
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APPENDIX A

AN OVERVIEW OF MARKOV CHAINS

We work throughout with a probability space (€2, F, IP). This part mainly follows from
[39] and [36].

A.1 Discrete-Time Markov Chains

A Markov process ((;)+>o is a stochastic process with the property that, given the value
of (;, the values of (, for s > ¢ are not influenced by the values of (, for u < ¢. That is,
the probability of any particular future behavior of the process, when its current state
is known exactly, is not altered by additional knowledge concerning its past behavior.
A discrete-time Markov chain is a Markov process whose state space is a finite or
countable set, and whose (time) index set is {0, 1,2, ...}. In formal terms, the Markov
property is that

]P)[Cn-‘rl = j|€0 = i07 ceey Cn—l = Z.n—la Cn = Z]

A.l
:P[gn-i-l :]|Cn :i]v ( )

for all time points n and all states 7, . . ., 7,1, ¢, J.

It is frequently convenient to label the state space of the Markov chain by {0, 1,2, ...},
and it is customary to speak of (,, as being in state ¢ if (,, = ¢.

The probability of ¢, being in state j given that ¢, is in state ¢ is called the one-step

transition probability and is denoted by p%’"“. That is,

P = PlCar1 = 4[G = i]. (A.2)

In general, the transition probabilities are functions of not only the initial and final
states, but also the time of transition as well. When the one-step transition probabilities
are independent of the time variable n, it is said that the Markov chain has stationary
transition probabilities. We consider Markov chains having stationary transition prob-
abilities. Then p%’”“ = p;; 1s independent of n, and p;; is the conditional probability
that the state value undergoes a transition from ¢ to j in one trial. It is customary to
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arrange these numbers p;; in a matrix, in the infinite square array

Poo Po1 Po2 Po3
Pio P11 P12 P13
P20 P21 P22 P23

Dio DPir DPi2 Pi3

and refer to P = [p;;] as the Markov matrix or transition probability matrix of the
process.

The (i + 1)th row of P is the probability distribution of the values of (,,,; under the
condition that (,, = ¢, for ¢ = 0,1,.... If the number of states is finite, then P is a
finite square matrix whose order (the number of rows) is equal to the number of states.
Clearly, the quantities p;; satisfy the conditions

piy >0,  fori,j=0,12..., (A.3)
d py=1, fori=0,1,2,.... (A.4)
j=0

The condition given by Equation (A.4) merely expresses the fact that some transition
occurs at each trial. (For convenience, one says that a transition has occurred even if
the state remains unchanged.)

We write Pinini1 = P[Cn+1 = in—l—llgn = Zn]

It can be easily shown that

P[CO =19, C1 = 11, . - . ’Cn = Zn] = PigPioir * " " Pin—2in—1Pin_1in> (A.5)

where p; = P[(y = ¢]. Thus, a Markov process is completely defined once its transition
probability matrix and initial state ;, (or, more generally, the probability distribution
of () are specified.

Moreover, Equation is equivalent to the Markov property in the form

]P)[Cn+1:jh""gn“rm:jm|<-0:i07"'7€n:in] (A6)
- PK"JFI =J15- - Gnam = Jm,Cn = in]a

for all time points n, m and all states g, . .., %, j1, - - - , Jm. In Other words, once Equa-
tion (A.6) is established for the value m = 1, it holds for all m > 1.

The formal definition of a Markov chain is given below.

Definition A.1. Let [ be a countable set. Each ¢ € [ is called a state and [ is called the
state-space. ((,)n>o i1s @ Markov chain with initial distribution A and transition matrix

P = (pij>i,jel if
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(1) (o has distribution A,

(i1) for n > 0, conditional on ¢,, = 4, (41 has distribution p;;, 7 € I, and is inde-
pendent of (o, ..., (u 1.

More explicitly, these conditions state that for n > 0 and g, ..., 7,41 € I,

(i) P[¢o = i0] = Ny,

(i) PlCos1 = int1|Co =90, - Cn = i) = Pipinis-

We say that ((,),>0 is Markov(\, P) for short. If ((,)o<n<n is a finite sequence of
random variables satisfying (i) and (ii) for n = 0,1,..., N — 1, then we again say
(Cn)o<n<n is Markov(A, P).

Theorem A.1. A discrete-time random process ((,)o<n<n is Markov(\,P) if and
only if forall iy, ..., iy € 1

P[Co = @0, Gt = i1, ..., (N = in] = NigDigis Pinis - - - Din_yin s (A7)
where \;, = P[(y = i)

The analysis of a Markov chain concerns mainly the calculation of the probabilities
of the possible realizations of the process. Central in these calculations are the n-step

transition probability matrices P(") = [pz(;l)] Here, pz(;L) denotes the probability that the
process goes from state 7 to state j in n transitions. Formally,

pf—?) = P[Cnin = JlGm = 1]. (A.8)

Observe that we are dealing only with temporally homogeneous processes having sta-
tionary transition probabilities, since otherwise the left side of Equation (A.8]) would
also depend on m.

The Markov property allows us to express Equation in terms of [p;;] as stated in
the following theorem.

Theorem A.2. The n-step transition probabilities of a Markov chain satisfy
p = pariy Y, (A9)
k=0

where we define
2O _ L ifi=y,
N 0, ifi#J.
Remark A.1. We recognize the relation given by Equation as the formula for
matrix multiplication, so that P(®) = P . P("~1)_ By iterating this formula, we obtain

PO _p.P..... P — P (A.10)
e ——
n factors

(n)

That is, the n-step transition probabilities p;;

power of P.

are the entries in the matrix P", the nth
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We write pg?) for the (7, j) entry in the matrix P, the nth power of P = [p;;].

Example A.1. Let
l—a a
b= { boo1- b] ’
where 0 < a,b < 1, be the transition matrix of a two-state Markov chain ((,),>o0-
When a = 1 — b, so that the rows of P are the same, then (3, (5, ... are independent
identically distributed random variables with P[(,, = 0] = b and P[(,, = 1] = a. When
a # 1 — b, the probability distribution for (,, varies depending on the outcome ¢, at

the previous stage.
For the two-state Markov chain, the n-step transition matrix is given by

b _ 1 [b a}+(1—a—b)n{a —a}_

a+blb a a+b =b b

Note that |1 —a —b| < 1when0 < a,b < 1, and thus |1 —a —b|" — 0 asn — oo and

b a
: n_ |lad+b a+b
I Pyt
a+b a+b

That is, such a system, in the long run, will be in state 0 with probability b/(a + b) and
in state 1 with probability a/(a+b), irrespective of the initial state in which the system
started.

Definition A.2. State j is said to be accessible from state ¢ if for some integer n > 0,
pgb) > 0, that is, there is positive probability that state j can be reached starting from
state ¢ in some finite number of transitions. Two states ¢+ and j, each accessible to
the other, are said to communicate, and we write ¢ <> j. If two states ¢ and j do not

communicate, then either
pg-L) =0, forall n > 0,

or
pg-?) =0, for all n > 0,

or both are true. A Markov chain is irreducible if all states communicate with each
other.

A.2 Continuous-Time Markov Chains

A continuous-time Markov chain ((;);~¢ is a Markov process on the states 0,1,2, .. ..
The exponential distribution plays a fundamental role in continuous-time Markov chains
because of the memorylessness property.
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Definition A.3. A random variable X :  — [0, co] has exponential distribution of
parameter A\, 0 < \ < oo, if

P(X >t)=e ™, forall ¢ > 0.
If A > 0, then X has density function
fx(t> = )\€_>\t1t20.

The mean of X is given by
E(X)=\"

Theorem A.3. (Memorylessness property) A random variable X : Q0 — (0, 00| has
exponential distribution if and only if it has the following memoryless property:

PX >s+tX > s =P(X > 1), forall s,t > 0.

Definition A.4. Let [ be a countable set. A ()-matrix on [ is a matrix Q = (¢;;)i jer
satisfying the following conditions:

(1) 0 < —q;; < o0, for all 7,
(11) qij Z 0, for all 7 # j,

(iii) Zje] ¢ij = 0, for all <.

Note that in each row of Q we can choose the off-diagonal entries to be any nonnega-
tive real number, subject only to the constraint that the off-diagonal row sum is finite,

that is,
q; = Z qi; < O0.
J#i

The diagonal entry ¢;; is then —¢;, making the total row sum zero.

We set ¢; = —q;;.

For the state space {0, 1,2, ..., N}, we have

—qo do1 - QoN

qio —q¢1 *° QN
Q= | . ) ) .

gno N1t —gN

We call each off-diagonal entry ¢;; the rate of going from i to j, and g; the rate of
leaving i. A convenient way to present the data for a continuous-time Markov chain is
by means of a diagram. Each diagram then corresponds to a unique ()-matrix.
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Example A.2. Consider the following diagram.

The associated ()-matrix is given by

Theorem A.4. Let Q be a matrix on a finite set 1. Set P(t) = e!Q. Then P(t),t > 0,
has the following properties:

(i) P(s+t) =P(s)P(t), for all s,t,

(ii) P(t),t > 0, is the unique solution to the forward equation

dP(t) _
- P(t)Q, P(0) =1,

(iii) P(t),t > 0, is the unique solution to the backward equation

dP(t) _
TR QP(t), P(0) =1,

(iv) fork =0,1,2,..., we have

d*P(t)
dt*

Definition A.5. A matrix P = (p;;); jes is stochastic if it satisfies

‘t:OZ Qk

(1) 0 < p; < oo, forallq,y,
(11) Z]GIpU = 1, for all 7.

Theorem A.5. A matrix Q on a finite set I is a Q-matrix if and only if P(t) = €!Q is
a stochastic matrix for all t > 0.

76



Definition A.6. The jump matrix IT = (7;;); je; of a Q-matrix Q = (g;;); jer is defined
by

= ij/qi, ifi7# jandg # 0,
“ 0, ifi#jand g =0,

P — 07 if 4q; # Oa
"1, ifg=0.
Note that IT is a stochastic matrix.

Definition A.7. ((;):>o is called a right-continuous process if for allw € Q and ¢ > 0
there exists € > 0 such that

(s(w) = G(w), fort <s<t+e.
The jump times Jy, Ji, ... of ((;):>0 are given by
JO = O, Jn+1 = mf{t 2 Jn . Ct 7& Cjn},

forn =0,1,... and inf{0} = co.
The holding times S, Sa, ... of ((;):>o are given by

g — Jp — Jnfl, if J,_1 < o0,
" 00, otherwise,

forn = 1,2,.... The right-continuity forces S,, > 0 for all n. If J,,;; = oo for some
n, we define (., = (;, , the final value, otherwise (., is undefined. The (first) explosion
time ¢ is defined by

¥ =supJ, = iSn.
n n=1

The discrete-time process (&,),>0 given by &, = (j, is called the jump process of
(Ct)t>0, or the jump chain if it is a discrete-time Markov chain. This is simply the
sequence of values taken by ((;):>o up to explosion.

Example A.3. Poisson processes are some of the simplest examples of continuous-
time Markov chains. A right-continuous process ((;);>o with values in {0,1,2,...}
is a Poisson process of rate \, 0 < A\ < oo, if its holding times S, Sy, ... are inde-
pendent exponential random variables of parameter A and its jump chain is given by
&, = n. For the diagram given below

A A A A
> ° 3o o 3> ® >
1 2 3 4

0
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the associated ()-matrix is given by

A A

where the entries off the diagonal and super-diagonal are all zero. A simple way to
construct a Poisson process of rate \ is to take a sequence S, S5, ... of independent
exponential random variables of parameter A to set Jy = 0, J, = S1 + --- + .5, and
then set

Remark A.2. f(t) = o(t) means @ —0ast — 0.

Theorem A.6. Let ((;):>o0 be a right-continuous process with values in a finite set |
and X be the distribution of (. Let Q = (q;;): je1 be a Q-matrix on I with jump matrix
IT = (7i;)i jer- Then the following three conditions are equivalent:

1. (jump chain/holding time definition) the jump chain (§,,)n>0 of ((;)i>0 is discrete-
time Markov(\, I1) and for each n > 1, conditional on &y, . . . , &, 1, the holding
times Si,...,S, are independent exponential random variables of parameters

Qeo» - - - » Qe » Fespectively;

2. (infinitesimal definition) for all t,h > 0, conditional on (; = i, (;1, is indepen-
dent of (s, s < t,and as h | 0, uniformly in t, for all j

P[Csn = j|G = 1] = 6ij + qizh + o(h);

3. (transition probability definition) for alln = 0,1,2, ..., all times 0 <ty < t; <
oo < tnaq and all states i, . . ., ipy1

Pl = int1|Co = @05+ - Ctn = tn) = Pininsr (tng1 — tn), (A.11)

where p;;(t),i,j € I,t >0, is the solution of the forward equation

If (Ct)t>0 satisfies any of these conditions, then it is called a Markov chain with initial
distribution \ and generator matrix Q. We say that ((;)i>o is Markov(\, Q) for short.

Remember that, by Theorem @, for [ finite, the forward and backward equations
have the same solution. So in the above theorem, the forward equation can be replaced
with the backward equation. Thus, we have

P'(t) = P(1)Q = QP (1), (A.12)
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dpi;(t)

where P’(t) denotes the matrix whose elements are p;;(t) = prad Then with the
initial condition P(0) = I, we have
> Qm
P(t)=eQ=1+ (‘? (A.13)
n!
n=1

and Q is the matrix derivative of P(¢) at t = 0, that is, Q = P’(0). Notice that for
a continuous-time finite-state Markov chain ((;);>¢ with Q-matrix Q, the transition
probability from ¢ to j in time ¢ is given by

pii(t) = PG = jlCo = 1], (A.14)

where p;;(t) is (i, j) entry in P(¢) = ¢'9.

Moreover, the holding time definition can also be expressed as follows: Starting in state
1, the process waits there for a duration that is exponentially distributed with parameter
¢;- The process then jumps to state j # ¢ with probability ¢;;/¢;; the waiting time in
state j is exponentially distributed with parameter g;, and so on. The sequence of states
visited by the process, denoted by &y, &y, . . ., is a Markov chain with discrete parame-
ter, called the embedded Markov chain. Conditioned on the state sequence &g, &1, . . .,
the successive holding times 57, S, . .. are independent exponentially distributed ran-
dom variables with parameters g, ¢¢, , - . ., respectively.

Example A.4. Consider a Markov chain ((;);>¢ with states {0, 1} with generator ma-
trix
—a «
2= [ 5
The process alternates between states 0 and 1. The holding times in state 0 are indepen-
dent and exponentially distributed with parameter «. Those in state 1 are independent
and exponentially distributed with parameter 3. It can be shown that

Q"= (—(a+5)"'Q.
Then, by Equation (A.T3)), we have

P(t) = H :z ﬂ + {—(171 ) 1_—7T7r] e,
where 7 = a/(a + ) and 7 = a + f.

When a Markov chain on states {0, 1,..., N} is irreducible (all states communicate),

then p;;(¢t) > 0fori,j =0,1,..., N and lim; , p;;(t) = m; > 0 exists independently

of the initial state 7. The limiting distribution may be found by passing to the limit

in Equation (A.12), noting that lim,;_,,, P'(¢) = 0. The resulting equations for 7 =
o 71 ... 7TN- are

—qo qo1 ' qoN

qio —q1 - QN
OZWQ:[WO T .. 7TN] : : : : ,

gno 9Nt c —gN
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which is the same as

TG =Y may,  j=01,... N (A.15)
i#]

Then, the limiting distribution is determined by Equation (A.15) together with
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