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ABSTRACT

A REGIME SWITCHING MODEL FOR THE TEMPERATURE AND PRICING
WEATHER DERIVATIVES

Türkvatan, Aysun

Ph.D., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Azize Hayfavi

Co-Supervisor : Prof. Dr. Tolga Omay

August 2016, 81 pages

Weather has an enormous impact on many institutions, for example, in energy, agri-
culture, or tourism sectors. For example, a gas provider faces the reduced demand in
gas in case of hot winter. Weather derivatives can be used as a tool to manage the risk
exposure towards adverse or unexpected weather conditions. Weather derivatives are
the financial contracts with underlying depending on weather variables such as tem-
perature, humidity, precipitation or snow. Since the temperature is the most commonly
used weather variable, we consider the temperature based weather derivatives. These
are the financial contracts written on several temperature indices, such as the cumula-
tive average temperature (CAT), or the cooling degree days (CDD). We first propose a
regime-switching model for the temperature dynamics, where the parameters depend
on a Markov chain. Also, since the jumps in the temperature are directly related to
the regime switch, we model them by the chain itself. Morever, the estimation and
forecast of the proposed model is considered. It is shown that forecast performance
of the proposed model is in line with the existing models considered. After mod-
eling the temperature dynamics, to price the derivatives, the risk-neutral probability
is to be specified. Since temperature (and hence the index) is not a tradeable asset,
any probability measure being equivalent to the objective probability is a risk-neutral
probability. We consider a generalized version of the Esscher transform to select an
equivalent measure. Then we derive prices of weather derivatives written on several
temperature indices.
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ÖZ

HAVA SICAKLIĞI İÇİN REJİM DEĞİŞİM MODELİ VE HAVA DURUMU
TÜREVLERİNİN FİYATLAMASI

Türkvatan, Aysun

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Azize Hayfavi

Ortak Tez Yöneticisi : Prof. Dr. Tolga Omay

Ağustos 2016, 81 sayfa

Hava durumu birçok kuruluş üzerinde çok büyük bir etkiye sahiptir, örneğin, enerji,
tarım, veya turizm sektörlerindeki kuruluşlar. Örneğin, bir doğal gaz sağlayıcı kış
mevsiminin sıcak geçmesi durumunda doğal gaz talebinde azalış ile karşılacaktır. Hava
durumu türevleri olumsuz veya beklenmeyen hava koşullarına ilişkin riski yönetmek
için bir araç olarak kullanılabilir. Hava durumu türevleri sıcaklık, nem, yağış veya kar
gibi hava değişkenleri üzerine yazılan finansal sözleşmelerdir. En çok kullanılan hava
değişkeni sıcaklık olduğu için sıcaklığa dayalı hava türevleri ele alınmaktadır. Bun-
lar kümülatif ortalama sıcaklık (CAT) veya soğutma gün dereceleri (CDD) gibi çeşitli
sıcaklık endeksleri üzerine yazılan finansal sözleşmelerdir. Öncelikle, hava sıcaklığı
dinamikleri için parametrelerin Markov zincirine bağlı olduğu bir rejim-değişim mod-
eli önerilmektedir. Aynı zamanda, hava sıcaklığındaki sıçramalar, rejim değişimi ile
doğrudan ilişkili olduğu için, bunlar zincirin kendisi ile modellenmektedir. Ayrıca,
önerilen modelin parametre tahmini ve kestrimi ele alınmıştır. Önerilen modelin kestrim
performansının ele alınan var olan diğer modeller ile uyumlu olduğu gösterilmiştir.
Hava sıcaklığı dinamikleri modellendikten sonra, türevleri fiyatlamak için, risk-nötr
olasılık belirlenmelidir. Ancak, hava sıcaklığı (ve dolayısıyla endeks) ticarete konu bir
varlık olmadığından objektif olasılığa eşdeğer olan herhangi bir olasılık ölçüsü risk-
nötr olasılıktır. Eşdeğer ölçüyü seçmek için Esscher dönüşümünün genelleştirilmiş bir
versiyonu ele alınmıştır. Sonra çeşitli sıcaklık endeksleri üzerine yazılan hava durumu
türevlerinin fiyatları elde edilmiştir.
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x



Dedicated to My Family

xi



xii



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis supervisor, Assoc. Prof. Dr.
Azize Hayfavi, for her patient guidance, enthusiastic encouragement and motivation
throughout this study.

I would like to express my sincere gratitude to my thesis co-supervisor, Prof. Dr. Tolga
Omay, for his patient guidance, enthusiastic encouragement and motivation throughout
this study.

I am especially grateful to Prof. Dr. Gerhard-Wilhelm Weber for his enthusiastic en-
couragement, valuable advices and endless support.
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CHAPTER 1

INTRODUCTION

Weather derivatives provide a tool to manage the weather risk. Weather has an enor-
mous impact on many institutions, for example, in energy, agriculture, or tourism sec-
tors. For example, a gas provider faces the reduced demand in gas in case of hot winter.
Weather derivatives can be used as a tool to manage the risk exposure towards adverse
or unexpected weather conditions. Weather derivatives are the financial contracts with
underlying depending on weather variables such as temperature, humidity, precipita-
tion or snow. More information on weather derivatives can be found in [7] and [2].
Since the temperature is the most commonly used weather variable, we consider the
temperature based weather derivatives. These are the financial contracts written on
several temperature indices. The most common ones are the cumulative average tem-
perature (CAT), the cooling degree days (CDD) and the heating degree days (HDD)
indices.

The CAT, CDD and HDD indices over a measurement period [τ1, τ2] are defined as

CAT (τ1, τ2) =

∫ τ2

τ1

Ttdt,

CDD(τ1, τ2) =

∫ τ2

τ1

max(Tt − c, 0)dt,

and

HDD(τ1, τ2) =

∫ τ2

τ1

max(c− Tt, 0)dt,

respectively, where Tt is the temperature at time t and c is a constant and denotes the
threshold temperature, typically 18 degrees Celsius or 65 degrees Fahrenheit.

We consider futures written on CAT, CDD and HDD indices. To derive the futures
prices, we first model the temperature dynamics. In the literature, the mean-reverting
Ornstein–Uhlenbeck process in different forms is commonly used for modeling the
temperature. However, Elias et al.(2014) ([18]) state that abrupt changes in tempera-
ture, caused by a combination of several factors including latitude, intensity of solar

1



circulation, land and water surface areas, ocean currents, elevation, and clear skies,
induce the regime-switching behavior in temperature. Motivated by [18], we propose
a regime-switching model for the temperature dynamics, where the parameters depend
on a Markov chain. Also, since the jumps in the temperature are directly related to
the regime switch, we model them by the chain itself. The jumps can be considered
as the shifts in the level of the temperature due to the transitions of the state of the
atmospheric conditions. Moreover, the estimation and forecast of the proposed model
is considered. It is shown that forecast performance of the proposed model is in line
with the existing models considered.

The objective of the Markov regime-switching models is to represent the observed
stochastic behavior by at least two separate regimes with different underlying stochas-
tic processes. The switching mechanism between the regimes is an unobserved (la-
tent) Markov chain. One of the main features of Markov regime-switching models
is that the regime-switching mechanism allows for temporal changes of model dy-
namics. Markov regime-switching models can be considered as generalizations of
hidden Markov models (Cappé et al. 2005, [10]). [10] states that a hidden Markov
model is a doubly stochastic process with an underlying stochastic process that is not
directly observable (”hidden”) but can be observed only through another stochastic
process that produces the sequence of observations. For more information on hidden
Markov models, see Elliott et al. (1995)[19] and [10]. For the applications of hid-
den Markov models to finance, see [31] and [32]. Unlike the hidden markov models,
Markov regime-switching models allow for temporary dependence within the regimes,
in particular, for mean reversion, which is a characteristic feature the temperature.

There are also threshold type regime-switching models suc as threshold autoregressive
(TAR) model proposed by Tong (1983) [40], see [22]. The main difference between
the threshold type regime-switching models and Markov regime-switching models is
that in case of the former the switching mechanism between the regimes is observable,
while in case of the later it is latent. In this thesis, we focus on Markov regime-
swithcing models, we call the Markov regime-switching models simply the regime-
switching models.

For the regime-switching models, the type of dependence between the regimes, that is,
dependent regimes or independent regimes, is also an important issue. In the former
approach, depending on the state process values, only the model parameters change,
see Hamilton (1989) [24] and Hamilton (1990) [25]. On the other hand, in the latter,
the individual regimes are driven by independent processes. [28] states that depen-
dent regimes lead to computationally simpler models, on the other hand, independent
regimes allow for a greater flexibility and admit qualitatively different dynamics in
each regime.

After modeling the temperature dynamics, to derive the futures prices, the risk-neutral
probability is to be specified. Since the temperature (and hence the index) is not a
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tradeable asset, any probability measure being equivalent to the objective probability
is a risk-neutral probability. A generalized version of the Esscher transform is consid-
ered to select an equivalent measure. Then the prices of weather derivatives written on
several temperature indices are derived using the temperature model proposed.

The structure of this thesis is as follows. In Chapter 2, after giving the literature review,
a new model for the temperature dynamics is proposed. In Chapter 3, estimation and
forecast of the proposed model together with existing models are considered. In Chap-
ter 4, the proposed model under the equivalent measure is considered and the prices of
weather derivatives written on several temperature indices are derived. In Chapter 5,
the conclusion follows. In the Appendix, an overview of Markov chains is provided.
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CHAPTER 2

A REGIME SWITCHING MODEL FOR THE TEMPERATURE

In the literature, various models for the temperature dynamics are proposed. In this
part, after giving the literature review, a new model for the temperature dynamics is
proposed.

2.1 The Literature Review

In the literature, the Ornstein-Uhlenbeck mean-reverting process in different forms is
commonly used for modeling temperature. Dornier and Querel (2000) [16] propose
the temperature model

dTt = dSt + κ(St − Tt)dt+ σdWt,

where the seasonal mean St is given by

St = a+ bt+ c sin(ωt+ ϕ), (2.1)

with ω = 2π/365. Here, κ is the speed of mean reversion, σ is the volatility of temper-
ature and Wt is a Brownian motion. The term dSt expresses the seasonal variation and
ensures that the process tends to the seasonal mean in the long run, that is E(Tt) = St.

Alaton et al. (2002) [1] suggest the temperature model given by

dTt = dSt + κ(St − Tt)dt+ σtdWt, (2.2)

where the seasonal mean St is given by Equation (2.1) and σt is a piecewise constant
function, with a constant value during each month.

Benth and Benth (2007) [5] consider the model in Equation (2.2), where both St and
σ2
t are expressed by a truncated Fourier series, that is,

St = a+ bt+

I1∑
i=1

ai sin(ωi(t− fi)) +

J1∑
j=1

bj cos(ωj(t− gj))

5



and

σ2
t = c+

I2∑
i=1

ci sin(ωit) +

J2∑
j=1

dj cos(ωjt).

The authors of [5] state that it is sufficient to set I1 = 0, J1 = 1, I2 = J2 = 4.

Mraoua and Bari (2007) [33] consider the model in Equation (2.2), where St is given
by Equation (2.1) and

dσt = κσ (σtrend − σt) dt+ γσdWt,

where σtrend is assumed to be constant.

Zapranis and Alexandridis (2008) [41] extends the model suggested by [5]. A nonlin-
ear AR(1) model is estimated non-parametically with a neural network, which removes
the constraint of a constant mean-reverting parameter. The form of St and σ2

t are de-
termined by wavelet analysis.

Broady et al. (2002) [9] suggest the model given by

dTt = κ(St − Tt)dt+ σtdW
H
t ,

where WH
t is a fractional Brownian motion.

Benth and Benth (2005) [4] propose an Ornstein-Uhlenbeck model with seasonal mean
and volatility, where the residuals are generated by a Lévy process. In particular, it is
suggested to use the class of generalized hyperbolic Lévy processes. [4] suggest

dTt = dSt + κ(Tt − St)dt+ σtdLt,

where Lt is a pure-jump Lévy process, and

St = a0 + a1 cos(ω(t− a2)).

Benth et al. (2007) [8] consider a pth order continuous-time autoregressive (CAR(p))
model. Let Xt = (X1

t , . . . , X
p
t )
′ be a stochastic process in Rp for p ≥ 1 defined by

dXt = AXtdt+ epσtdWt,

where ek, k = 1, . . . , p, is the kth unit vector in Rp and σt > 0 is a real-valued and
square integrable function (over any finite time interval). The p×p matrix A is defined

6



by

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . · · ·

0 0 0
... 1

−αp −αp−1 −αp−2 · · · −α1

 ,
where αk, k = 1, . . . , p, are constants. [8] propose that

Tt = Λt + Yt,

where
Λt = a0 + a1t+ a2 cos(ω(t− a3))

is the deterministic seasonal mean function and Yt = e′1Xt = X1
t is the deseasonalized

temperature. [8] suggest that

σ2
t = b1 +

4∑
k=1

b2k cos(ωkt) +
4∑

k=1

b2k+1 sin(ωkt).

Benth and Benth (2011) [6] generalizes the CAR model proposed in [8]. The following
CAR(p) model with seasonal stochastic volatility is proposed:

dXt = AXtdt+ epφtdWt,

where φt = ζtσt. The deterministic seasonal function ζ2
t is given by a truncated Fourier

series of order four, having a yearly seasonality. For the stochastic volatility process
σt, the Barndorff-Nielsen and Shephard (BNS) model [3] is used.

σ2
t

4
= Vt,

with
dVt = −λVtdt+ dLt,

where λ > 0 and Lt is assumed to be a subordinator independent of Wt.
[6] propose that

Tt = Λt + Yt,

where
Λt = a+ bt+ c sin(ω(t− d)),

and the deseasonalized temperature Yt is given by Yt = e′1Xt = X1
t .

Swishchuk and Cui (2013) [38] extend the model proposed by [8] to the CAR model
driven by a Lévy process. [38] propose that

dXt = AXtdt+ epσtdLt,

7



where Lt is a Lévy process. [38] propose that

Tt = Λt + Yt,

where
Λt = a0 + a1 sin(ω(t− a2)),

and Yt = e′1Xt = X1
t . It is suggested that

σ2
t = b1 +

N∑
k=1

b2k sin(ωkt) +
N∑
k=1

b2k+1 cos(ωkt),

with N = 1.

Elias et al. (2014) [18] suggest the model given by

Tt = St +Xt,

where
St = a+ bt+ c sin(ω(t+ ϕ)), (2.3)

is the deterministic annual seasonality component and Xt is the deseasonalized tem-
perature. A two-state regime-switching model for Xt is represented by

Xt =

{
Xt,1, if Xt is in regime 1 with probability p1,

Xt,2, if Xt is in regime 2 with probability p2,

where p1 +p2 = 1. For the deseasonalized temperatureXt, different forms of two-state
regime-switching models are considered. [18] state that the model where one regime
is governed by a mean-reverting process and the other by a Brownian motion captures
the temperature dynamics more accurately than the other models considered. In fact,
the model suggested is given by

dXt,1 = κ(α−Xt,1)dt+ σ1dWt,

dXt,2 = µ2dt+ σ2dWt,

where κ is the speed and α is the mean of the mean-reverting process, Wt is a Brown-
ian motion, µ2 is the mean of the Brownian motion, σ1 and σ2 are the volatilities.

2.2 The Newly Proposed Model

In the literature, the Ornstein-Uhlenbeck mean-reverting process in different forms is
commonly used for modeling temperature. However, Elias et al. (2014) [18] examines
regime-switching behavior of the temperature. Abrupt changes in temperature, caused
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by a combination of several factors including latitude, intensity of solar circulation,
land and water surface areas, ocean currents, elevation, and clear skies, induce the
regime-switching behavior in temperature ([18]). In the following, motivated by [18],
a new regime-switching model for the temperature dynamics will be proposed.

We consider a complete probability space (Ω,F ,P) and let the time interval be [0,T],
where T < ∞. We consider a continuous-time, homogeneous, finite-state Markov
chain ζ := (ζt : t ∈ [0,T]) defined on (Ω,F ,P),with a state space Sζ = {s1, . . . , sN}.
Without loss of generality, we adopt the canonical state space representation of the
chain in [19] and identify the state space of the chain with a set of the standard unit
vectors E = {e1, . . . , eN} ⊂ RN , where the kth component of ej is the Kronecker
delta δjk, for each j, k = 1, . . . , N.

Let A = (ajl)j,l=1,...,N be the rate matrix of the chain ζ, where ajl is the transition
intensity of the chain ζ from state el to state ej. Note that for each j, l = 1, . . . , N, we
have ajl ≥ 0 with j 6= l, and all = −

∑N
j=1,j 6=l ajl. We suppose that ajl > 0, for all

j, l = 1, . . . , N, with j 6= l. With the canonical state space representation of the chain,
we have the following semimartingale representation for the chain ζ, given in Elliott
et al. (1994) [19]:

ζt = ζ0 +

∫ t

0

Aζs−ds+ Vt, t ∈ [0,T], (2.4)

where (Vt : t ∈ [0,T]) is an RN -valued (Fζ ,P)-martingale. Here, Fζ := (F ζt : t ∈
[0,T]) is the right-continuous, P-complete natural filtration generated by the chain ζ.

In the following, 〈X, Y 〉 = X ′Y denotes the inner product of X, Y ∈ RN . Then,
Xj = 〈X, ej〉 is the jth element of X ∈ RN .

Now we consider a set of jump processes associated with the chain ζ. For each l, j =
1, . . . , N, let N lj := (N lj

t : t ∈ [0,T]), where N lj
t denotes the number of jumps of

the chain ζ from state el to ej in [0, t], for each t ∈ [0,T] and l, j = 1, . . . , N. Then,

N lj
t :=

∑
0<s≤t

〈ζs−, el〉〈ζs, ej〉

=
∑

0<s≤t

〈ζs−, el〉〈∆ζs, ej〉

=

∫ t

0

〈ζs−, el〉〈dζs, ej〉

=

∫ t

0

〈ζs−, el〉〈Aζs−, ej〉ds+

∫ t

0

〈ζs−, el〉〈dVs, ej〉

=

∫ t

0

ajl〈ζs−, el〉ds+Mlj
t ,

9



where

Mlj
t :=

∫ t

0

〈ζs−, el〉〈dVs, ej〉.

Here, for each l, j = 1, . . . , N,Mlj := (Mlj
t : t ∈ [0,T]) is an (Fζ ,P)-martingale.

For each j = 1, . . . , N, let N j := (N j
t : t ∈ [0,T]), where N j

t counts the number of
jumps of the chain ζ into the state ej from the other states in [0, t]. Then,

N j
t :=

N∑
l=1,l 6=j

N lj
t

=
N∑

l=1,l 6=j

∫ t

0

ajl〈ζs−, el〉ds+Mj
t ,

(2.5)

where

Mj
t :=

N∑
l=1,l 6=j

Mlj
t

=
N∑

l=1,l 6=j

∫ t

0

〈ζs−, el〉〈dVs, ej〉.

(2.6)

Here, for each j = 1, . . . , N,Mj := (Mj
t : t ∈ [0,T]) is an (Fζ ,P)-martingale.

Thus, for each j = 1, . . . , N, the following representations follows:

N j
t =

∫ t

0

ajsds+Mj
t , (2.7)

or
dN j

t = ajtdt+ dMj
t , (2.8)

where

ajt :=
N∑

l=1,l 6=j

ajl〈ζt−, el〉. (2.9)

Let T := (Tt : t ∈ [0,T]), where Tt is the temperature at time t. We suggest the
temperature model given by

Tt = Λt + Yt, (2.10)

where Λt is the deterministic seasonal mean function and Y := (Yt : t ∈ [0,T])
is the deseasonalized temperature process. Here, Λt is assumed to be bounded and
continuously differentiable, can be taken as

Λt = a0 + a1t+ a2 cos(ω(t− a3)), (2.11)
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where ω = 2π/365. For the deseasonalized temperature Yt, we propose a regime-
switching model described below.

Let S̄ = (S1, . . . , SN)′ ∈ RN and σ̄ = (σ1, . . . , σN)′ ∈ RN with σj > 0 for j =
1, . . . , N. We define B := (βjl)j,l=1,...,N with βjj = 0, for j = 1, . . . , N. Let β̄j =
(βj1, . . . , βjN)′ ∈ RN , for j = 1, . . . , N, that is, β̄j is the transpose of the jth row of
B. We define

Sζt := 〈S̄, ζt〉 =
N∑
j=1

Sj〈ζt, ej〉,

σζt := 〈σ̄, ζt〉 =
N∑
j=1

σj〈ζt, ej〉,

βjζt := 〈β̄j, ζt−〉 =
N∑
l=1

βjl〈ζt−, el〉, for j = 1, . . . , N.

We propose that the dynamics of the deseasonalized temperature Yt is given by the
following regime-switching model

dYt = κ (Yt − Sζt) dt+ σζtdWt +
N∑
j=1

βjζtdN
j
t . (2.12)

Here, κ is the speed of mean reversion, assumed to be constant, Sζt and σζt are defined
above, and W := (Wt : t ∈ [0,T]) is a standard Brownian motion on (Ω,F ,P). We
assume thatW and ζ are independent. For each j = 1, . . . , N,N j := (N j

t : t ∈ [0,T])
is the counting process associated with chain, where N j

t denotes the number of jumps
of the chain into the state ej from the other states in [0, t], with the representation
of Equation (2.7). Since jumps in the temperature are directly related to the regime
switch, we model them by the chain itself. The jumps can be considered as the shifts
in the level of the temperature due to the transitions of the state of the atmospheric
conditions. The jump size of the temperature is determined by βjζt , j = 1, . . . , N, as
defined above. Notice that the jump size depends on the states of the chain before and
after a state transition, that is, when the chain jumps from the state el to the state ej,
the jump size of the temperature is given by βjl.

For notational convenience, we simply represent the model proposed in Equation (2.12)
as

dYt = κ (Yt − St) dt+ σtdWt +
N∑
j=1

βjt dN
j
t , (2.13)

where St = Sζt , σt = σζt and βjt = βjζt . Let F := (Ft : t ∈ [0,T]) be the right-
continuous, P-complete natural filtration generated by Y.We define for each t ∈ [0,T],

Gt := Ft ∨ F ζt , which represents the enlarged σ-field generated by Ft and F ζt . And
write G := (Gt : t ∈ [0,T]) for the corresponding complete enlarged filtration.
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Now, by Itô’s Formula, the deseasonalized temperature, given by Equation (2.13), with
the initial value Ys, is of the form

Yt = eκ(t−s)Ys − κ
∫ t

s

eκ(t−u)Sudu+

∫ t

s

eκ(t−u)σudWu

+

∫ t

s

eκ(t−u)

N∑
j=1

βjudN j
u .

(2.14)

Notice that by Equation (2.8), we can also write

Yt = eκ(t−s)Ys − κ
∫ t

s

eκ(t−u)Sudu+

∫ t

s

eκ(t−u)

N∑
j=1

βjua
j
udu

+

∫ t

s

eκ(t−u)σudWu +

∫ t

s

eκ(t−u)

N∑
j=1

βjudMj
u.

(2.15)

In the following we represent some useful results.

For A = (ajl)j,l=1,...,N , we denote A0 := A − diag[a], where diag[a] is the diagonal
matrix generated by a = (a11, . . . , aNN)′ ∈ RN . Also write I for the N × N identity
matrix, 1 = (1, . . . , 1)′ ∈ RN and 0 = (0, . . . , 0)′ ∈ RN .

Remark 2.1. Consider the semimartingale representation of the chain given by Equa-
tion (2.4). Then we have the following [17]:

1. 1′ζs = 1 and 1′A = 0′.

2. (I− diag[ζs])Aζs = A0ζs.

3. (I− ζs1′)(I− diag[ζs]) = I− ζs1′.

4. (I− diag[ζs])(I− ζs1′) = I− diag[ζs].

5. (I− ζs1′)A0ζs = Aζs.

Remark 2.2. As introduced by [17], the process N := (Nt : t ∈ [0,T]) given by

Nt =

∫ t

0

(I− diag[ζs−])dζs (2.16)

is a vector of counting process withNt = (N 1
t , . . . ,NN

t )′ ∈ RN , whereN j
t counts the

number of times ζ jumps to state ej, j = 1, . . . , N. Note that E(Nt) =
∫ t

0
A0ζs−ds.

Thus, the processM := (Mt : t ∈ [0,T]) given by

Mt = Nt −
∫ t

0

A0ζs−ds (2.17)

is a martingale withMt = (M1
t , . . . ,MN

t )′ ∈ RN , see Equation (2.7).
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Therefore, by Remark 2.1 and Remark 2.2, the chain given by Equation (2.4) can also
be represented as

ζt = ζ0 +

∫ t

0

(I− ζs−1′)dNs,

= ζ0 +

∫ t

0

Aζs−ds+

∫ t

0

(I− ζs−1′)dMt.

(2.18)
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CHAPTER 3

ESTIMATION AND FORECAST OF THE MODEL

In this part, the estimation and forecast of the proposed model together with the various
existing models is considered.

3.1 The Data

The daily temperature data (in degrees Celsius) for Chicago O’Hare International Air-
port, USA, over the period from 1 January 2001 to 31 December 2013 is considered.
The temperature data is provided by the National Climatic Data Center (NCDC) [34].
February 29 is removed from the sample in each leap year, resulting in 4745 obser-
vations. The data consists of the daily maximum and minimum temperatures. The
temperature futures are written on several temperature indices, where the temperature
is defined to be the average of the minimum and maximum temperatures over one day.
Hence, at day t, the maximum temperature is denoted by (Tmax)t and the minimum
temperature is denoted by (Tmin)t, and the daily average temperature is defined by
(Tav)t = 1

2
((Tmax)t + (Tmin)t). We denote the daily average temperature at time t

by Tt, and call it as the temperature.

Table 3.1: Descriptive statistics of the temperature.

Minimum -21.95
Maximum 33.6
Range 55.55
Mode 22.5
Median 11.1
Mean 10.377
Standart deviation 10.891
Skewness -0.23503
Kurtosis 2.0922
Jarque-Bera statistic 206.61
Jarque-Bera critical value 5.9804
Number of observations 4745
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The descriptive statistics of the temperature are presented in Table 3.1. The temper-
ature ranges from −21.95 to 33.6. In Figure 3.1, the temperature for the period of
2001-2013 is depicted.
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Figure 3.1: The temperature for the Chicago.

The mean, standard deviation, skewness, and kurtosis of the temperature for each day
of the year are displayed in Figure 3.2 and Figure 3.3. The mean fluctuates between
−6.83 and 26.02, with lowest in January and highest in August. The highest standard
deviation is observed in the winter, while the lowest is observed in the summer. In
Figure 3.4, the autocorrelation function (ACF) of the temperature is depicted.
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Figure 3.2: The mean and standard deviation of the temperature for each day of the
year.
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Figure 3.3: The skewness and kurtosis of the temperature for each day of the year.

0 100 200 300 400 500 600 700 800
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

Figure 3.4: ACF of the temperature.

3.2 The Deseasonalized Temperature

We model the temperature Tt by

Tt = Λt + Yt,

where Λt is the deterministic seasonal mean function and Yt is the deseasonalized
temperature.

Λt = a0 + a1t+ a2 cos(ω(t− a3)), (3.1)

where ω = 2π/365, is used to deseasonalize the temperature and the estimation results
are presented at the Table 3.2.
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Table 3.2: Estimation of Λt for the temperature.

Estimate Standard Error t-statistic p-value
a0 10.113 0.13774 73.425 0
a1 0.00011102 5.0293e-05 2.2074 0.027335
a2 13.863 0.097268 142.52 0
a3 -162.47 0.40817 -398.03 0

RMSE: 4.74 Adj.R2: 0.811 p-value: 0

In Figure 3.5 and Figure 3.6 the temperature with the fitted seasonality and deseason-
alized temperature are depicted, respectively.
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Figure 3.5: The temperature with the fitted seasonality.
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Figure 3.6: The deseasonalized temperature.

For the deseasonalized temperature Yt, we consider various existing models and the
proposed model. The last 3 years of data is reserved to be used for the forecast. Thus,
the estimation of the models is based on the deseasonalized temperature between 1
January 2001 to 31 December 2010. And the deseasonalized temperature between 1
January 2011 and 31 December 2013 is used for the forecast of the models.

Before we estimate the models for the deseasonalized temperature, we proceed with
the issues related with the estimation of regime-switching models.

3.3 Estimation of Regime-Switching Models

Estimation of regime-switching models necessitates inferring the model parameters
and the states at the same time since the switching mechanism is unobservable. In
the rest of this section, we consider an application of the Expectation-Maximization
(EM) algorithm of Dempster et al. (1977) [13], which is given in Hamilton (1990)
[25] and later refined by Kim (1994)[30]. We first introduce the issues related with the
expectation step of the EM algorithm, then we give a detailed description of the EM
algorithm.
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3.3.1 Filtering

Consider an AR(1) model with first-order, N state Markov-switching mean and vari-
ance, that is,

yt − µζt = φ1(yt−1 − µζt−1) + εt, εt ∼ N(0, σ2
ζt),

with
µζt = µ1ζ1t + · · ·+ µNζNt,

σ2
ζt = σ2

1ζ1t + · · ·+ σ2
NζNt,

where for j = 1, . . . , N,

ζjt =

{
1, if ζt = j,

0, otherwise.

P[ζt = j|ζt−1 = i] = pji, i, j = 1, . . . , N,

N∑
j=1

pji = 1.

Then, the conditional density of yt given the past information Ft−1, that is, f(yt|Ft−1)
can be obtained by

f(yt|Ft−1) =
N∑
j=1

N∑
i=1

f(yt, ζt = j, ζt−1 = i|Ft−1)

=
N∑
j=1

N∑
i=1

f(yt|ζt = j, ζt−1 = i,Ft−1)P[ζt = j, ζt−1 = i|Ft−1],

where

f(yt|ζt = j, ζt−1 = i,Ft−1) =
1√

2πσ2
j

exp

(
−(yt − µj − φ1(yt−1 − µi))2

2σ2
j

)
.

Thus, the log-likelihood function is given by

lnL =
T∑
t=1

ln
(
f(yt|Ft−1)

)
=

T∑
t=1

ln

(
N∑
j=1

N∑
i=1

f(yt|ζt = j, ζt−1 = i,Ft−1)P[ζt = j, ζt−1 = i|Ft−1]

)
.

Notice that f(yt|Ft−1) is a weighted average ofN2 conditional densities, weights being
P[ζt = j, ζt−1 = i|Ft−1], for i, j = 1, . . . , N, see the following.
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The filtered probabilities refer to inferences about ζt conditional on information up
to time t, that is, Ft. The filtered probabilities, P[ζt = j|Ft], are obtained by the
following filter, see [35]. The following two steps are iterated for t = 1, . . . ,T, to
obtain P[ζt = j, ζt−1 = i|Ft−1] :

1. Given P[ζt−1 = i|Ft−1], i = 1, . . . , N, at the beginning of time t, calculate

P[ζt = j, ζt−1 = i|Ft−1] = P[ζt = j|ζt−1 = i]P[ζt−1 = i|Ft−1],

where P[ζt = j|ζt−1 = i] are the transition probabilities pji, for i, j = 1, . . . , N.

2. Once yt is observed at the end of time t, the probabilities are updated as follows:

P[ζt = j, ζt−1 = i|Ft]
= P[ζt = j, ζt−1 = i|Ft−1, yt]

=
f(yt, ζt = j, ζt−1 = i|Ft−1)

f(yt|Ft−1)

=
f(yt|ζt = j, ζt−1 = i,Ft−1)P[ζt = j, ζt−1 = i|Ft−1]∑N

j=1

∑N
i=1 f(yt|ζt = j, ζt−1 = i,Ft−1)P[ζt = j, ζt−1 = i|Ft−1]

with

P[ζt = j|Ft] =
N∑
i=1

P[ζt = j, ζt−1 = i|Ft]. (3.2)

To start the filter at time t = 1, the steady-state probabilities can be used. For a two-
state, first-order Markov switching, the steady-state probabilities are given by

π1 = P[ζ0 = 1|F0] =
1− p22

2− p22 − p11

and

π2 = P[ζ0 = 2|F0] =
1− p11

2− p22 − p11

.

3.3.2 Kim’s Smoothing Algorithm

Remember that the filtered probabilities refer to inferences about ζt conditional on
information up to time t, that is, Ft. However, the smoothed probabilities refer to
inferences about ζt conditional on all the information in the sample, that is, FT. The
smoothed probabilities, P[ζt = j|FT], are obtained as follows, see [35]:

P[ζt = j, ζt+1 = k|FT]

= P[ζt+1 = k|FT]P[ζt = j|ζt+1 = k,FT]

= P[ζt+1 = k|FT]P[ζt = j|ζt+1 = k,Ft],
(3.3)
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where for the last equality see [35]. Now, we can write

P[ζt = j|ζt+1 = k,Ft]

=
P[ζt = j, ζt+1 = k|Ft]

P[ζt+1 = k|Ft]

=
P[ζt = j|Ft]P[ζt+1 = k|ζt = j]

P[ζt+1 = k|Ft]
.

(3.4)

Then, by Equations (3.4) and (3.3), we have

P[ζt = j|FT] =
N∑
k=1

P[ζt = j, ζt+1 = k|FT]

=
N∑
k=1

P[ζt+1 = k|FT]P[ζt = j|Ft]P[ζt+1 = k|ζt = j]

P[ζt+1 = k|Ft]
.

(3.5)

Thus, given P[ζT = j|FT] at the last iteration of the filtering, Equation (3.5) is iterated
for t = T − 1, . . . , 1, to obtain the smoothed probabilities P[ζt = j|FT], for t =
T− 1, . . . , 1.

3.3.3 Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm, originally motivated by [13], is an al-
ternative method for maximizing the likelihood function for models with missing ob-
servations or unobserved variables. The EM algorithm is an iterative procedure con-
sisting of the following two steps at the (m + 1)th iteration [35]. Suppose that Θ is a
vector of the model’s unknown parameters.

1. Expectation Step (E-Step): Given the parameter estimates Θ(m) obtained from
the mth iteration, the expectation of the unobserved variables is formed.

2. Maximization Step (M-Step): Conditinal on the expectation of the unobserved
variables, the likelihood function is maximized with respect to the parameters of
the model, resulting in Θ(m+1).

Each iteration results in a higher value of the likelihood function, and thus, with arbi-
trary initial values of the parameters Θ(0), the above two steps are iterated until Θ(m+1)

converges.

In the following, we give the EM algorithm in detail. We consider the model

dYt = (α− βYt) dt+ σdWt. (3.6)
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Discretized version of this model with swithching parameters is given by [28]

Yt = αζt + (1− βζt)Yt−1 + σζtεt, (3.7)

where εt ∼ N(0, 1). Here, ζt is an N state Markov chain with transition matrix P =
(pji)i,j=1,...,N , where pji = P[ζt = j|ζt−1 = i]. Let η = (αj, βj, σj), ρj = P[ζ1 =
j|F0; Θ] and Θ = (η,P, ρj), for j = 1, . . . , N. The algorithm starts with an arbitrarily
chosen vector of initial parameters Θ(0) = (η(0),P(0), ρ

(0)
j ), for j = 1, . . . , N.

3.3.3.1 The E-Step

The E-Step is composed of filtering and smoothing [30]. Suppose that the parame-
ter vector calculated in the M-step during the previous iteration is given by Θ(m) =

(η(m),P(m), ρ
(m)
j ). Then,

1. Filtering: For t = 1, . . . ,T, iterate on

P[ζt = j|Ft,Θ(m)]

=
P[ζt = j|Ft−1,Θ

(m)]f(yt|ζt = j,Ft−1,Θ
(m))∑N

j=1 P[ζt = j|Ft−1,Θ(m)]f(yt|ζt = j,Ft−1,Θ(m))
,

where

f(yt|ζt = j,Ft−1,Θ
(m))

=
1

√
2πσ

(m)
j

exp

−
(
yt − (1− β(m)

j )yt−1 − α(m)
j

)2

2(σ
(m)
j )2

 (3.8)

and

P[ζt+1 = j|Ft,Θ(m)] =
N∑
i=1

p
(m)
ji P[ζt = i|Ft,Θ(m)]

until P[ζT = j|FT,Θ
(m)] is obtained. The starting point for the iteration is taken

as P[ζ1 = j|F0,Θ
(m)] = ρ

(m)
j .

2. Smoothing: For t = T− 1, . . . , 1, iterate on

P[ζt = i|FT,Θ
(m)]

=
N∑
j=1

P[ζt+1 = j|FT,Θ
(m)]P[ζt = i|Ft,Θ(m)]p

(m)
ji

P[ζt+1 = j|Ft,Θ(m)]
.

(3.9)
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3.3.3.2 The M-Step

Since each observation yt belongs to the jth regime with probability P[ζt = j|FT,Θ
(m)],

the maximum likelihood estimates are obtained maximizing the log-likelihood func-
tion of the form

ln
(
L(η(m+1))

)
=

N∑
j=1

T∑
t=1

P[ζt = j|FT,Θ
(m)] ln

(
f(yt|ζt = j,Ft−1, η

(m+1))
)
.

(3.10)

The explicit formulas for the estimates β̂j, α̂j, and σ̂j are given by

β̂j =

∑T
t=2 P[ζt = j|FT,Θ

(m)]yt−1B1∑T
t=2 P[ζt = j|FT,Θ(m)]yt−1B2

,

with

B1 = yt − yt−1 −
∑T

t=2 P[ζt = j|FT,Θ
(m)](yt − yt−1)∑T

t=2 P[ζt = j|FT,Θ(m)]
,

B2 =

∑T
t=2 P[ζt = j|FT,Θ

(m)]yt−1∑T
t=2 P[ζt = j|FT,Θ(m)]

− yt−1,

and

α̂j =

∑T
t=2 P[ζt = j|FT,Θ

(m)](yt − (1− β̂j)yt−1)∑T
t=2 P[ζt = j|FT,Θ(m)]

,

σ̂2
j =

∑T
t=2 P[ζt = j|FT,Θ

(m)](yt − α̂j − (1− β̂j)yt−1)2∑T
t=2 P[ζt = j|FT,Θ(m)]

.

Moreover, ρ(m+1)
j = P[ζ1 = j|FT,Θ

(m)], see [25]. Furthermore, the transition proba-
bilities are given by [30]

p
(m+1)
ji =

∑T
t=2 P[ζt = j, ζt−1 = i|FT,Θ

(m)]∑T
t=2 P[ζt−1 = i|FT,Θ(m)]

=

∑T
t=2 P[ζt = j|FT,Θ

(m)]
p
(m)
ji P[ζt−1=i|Ft−1,Θ(m)]

P[ζt=j|Ft−1,Θ(m)]∑T
t=2 P[ζt−1 = i|FT,Θ(m)]

,

(3.11)

where p(m)
ji is the transition probability P[ζt+1 = j|ζt = i] obtained in the previous

iteration. Then, all values obtained in the M-step are used as a new parameter vector
Θ(m+1) = (η(m+1),P(m+1), ρ

(m+1)
j ), j = 1, . . . , N, in the next iteration of the E-step.
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3.4 Estimation of the Existing Models

In this section, we consider various existing models to model the deseasonalized tem-
perature. For the estimation of the regime-switching models and threshold autoregres-
sive model model, the codes in [27] and [20] are utilised, respectively.

3.4.1 The Regime-Switching Model

We consider the regime-switching (RS) model [28]

yt = αζt + φζtyt−1 + σζtεt, (3.12)

where εt ∼ N(0, 1). Here, ζt is an N state Markov chain with transition matrix
P = (pji)i,j=1,...,N , where pji = P[ζt = j|ζt−1 = i]. The estimation the RS model
is conducted via the EM algorithm. The estimation results of the 2-state RS model for
the deseasonalized temperature are presented at the Table 3.3.

Table 3.3: Estimation of the RS model for the deseasonalized temperature.

αj φj σ2
j pjj

State1 -0.30393 0.60692 12.53070 0.75557
State2 0.60838 0.98778 4.09853 0.50202

After the estimation of the 2-state RS model, the data is classified as being in state 1 or
state 2, by using the commonly used rule based on the smoothed probabilities obtained
from the EM algorithm. Accordingly, if the smoothed probability for the state 2 at time
t is bigger than 0.5, that is, P[ζt = 2|FT] > 0.5, then the data is considered as being in
the state 2 at time t, otherwise the data is considered as being in the state 1 at time t.
The Figure 3.7 depicts classification of the data being in the state 1 or state 2, together
with the smoothed probabilities for the state 2, presented by P (State2). For a closer
inspection, Figure 3.8 shows the last 5 years part of the Figure 3.7.
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Figure 3.7: The RS model for the deseasonalized temperature.
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Figure 3.8: The RS model for the deseasonalized temperature (showing last 5 years).
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3.4.2 The Constant-Speed Regime-Switching Model

We consider the regime-switching model given by Equation (3.12) with the parameter
φ does not depend on the chain, that is,

yt = αζt + φyt−1 + σζtεt. (3.13)

We call this model as the constant-speed regime-switching (CRS) model. Since the
parameter φ does not depend on the chain, by fitting an AR(1) model to the desea-
sonalized temperature, φ = 0.72280 is obtained. The estimation the CSR model is
conducted via the EM algorithm with φ = 0.72280. The estimation results of the 2-
state CRS model for the deseasonalized temperature are presented at the Table 3.4.

Table 3.4: Estimation of the CRS model for the deseasonalized temperature.

αj φ σ2
j pjj

State 1 -1.28239 0.72280 9.71535 0.61346
State 2 1.03188 0.72280 8.91050 0.67930

After the estimation of the 2-state CRS model, the data is classified as being in state
1 or state 2, by using the commonly used rule mentioned in the previous subsection.
The Figure 3.9 depicts classification of the data being in the state 1 or state 2, together
with the smoothed probabilities for the state 2, presented by P (State2). For a closer
inspection, Figure 3.10 shows the last 5 years part of the Figure 3.9.
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Figure 3.9: The CRS model for the deseasonalized temperature.
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Figure 3.10: The CRS model for the deseasonalized temperature (showing last 5
years).
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3.4.3 The Threshold Autoregressive Model

We consider the 2-state version of the threshold autoregressive (TAR) model proposed
by Tong (1983) [40] given by

yt = (1− It)(α1 + φ1yt−1) + It(α2 + φ2yt−1) + εt,

with

It =

{
1, if yt−1 ≥ τ,

0, if yt−1 < τ,

where τ is the value of the threshold. The estimation results of the 2-state TAR model
for the deseasonalized temperature are presented at the Table 3.5. The Figure 3.11
shows the deseasonalized temperature together with the TAR model threshold obtained
from the estimation of the TAR model.

Table 3.5: Estimation of the TAR model for the deseasonalized temperature.

αj φj τ

State1 0.024384 0.74528 2.75
State2 0.71011 0.59864 2.75
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Figure 3.11: The TAR model for the deseasonalized temperature together with the
TAR model threshold.
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3.5 Estimation of the Newly Proposed Model

For the deseasonalized temperature Yt, we consider discretized version of proposed
model given by Equation (2.12). We consider the model given by

Yt = −κSζt + (1 + κ)Yt−1 + σζtεt +
N∑
j=1

βjζt∆N
j
t ,

where εt ∼ N(0, 1) and ∆N j
t = N j

t − N
j
t−1. Here, ζt is an N state Markov chain

with transition matrix P = (pji)i,j=1,...,N , where pji = P[ζt = j|ζt−1 = i], and N j
t

counts the jumps of the chain into the state j from the other states in time t. With the
convention αζt = −κSζt and φ = 1 + κ, we can write

Yt = αζt + φYt−1 + σζtεt +
N∑
j=1

βjζt∆N
j
t . (3.14)

Figure 3.12 depicts daily mean deseasonalized temperature, that is, the normal of the
each day of the year, and Figure 3.13 displays the difference from the daily mean de-
seasonalized temperature. The figures give an idea of how to define the regimes. For
example, one can consider the cold and hot fronts, that is, we sometimes have hot win-
ters due to the hot fronts.
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Figure 3.12: The daily mean deseasonalized temperature.
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Figure 3.13: Difference from the daily mean deseasonalized temperature.

We consider the case N = 2. We denote the parameters by α1, σ1, and β1 if we are in
the state 1, and by α2, σ2, and β2 if we are in the state 2. Notice that the jump part of
Equation (3.14),

∑2
j=1 β

j
ζt

∆N j
t , equals β1 if the regime changes from state 2 to state

1, equals β2 if the regime changes from state 1 to state 2, and equals zero otherwise. It
can be shown that we can write

β2 = −β1 =
φ(α2 − α1)

1− φ
,

and thus

φ =
β2

α2 − α1 + β2

.

To estimate the model given by Equation (3.14), we modify the EM algorithm men-
tioned previously. We apply repeatedly the modified EM algorithm until the jump
times and transition times coincide, see Figure 3.14. In the following we will call
the model Equation (3.14) as the double regime-switching (DRS) model, with double
referring to coincidence of jump and transition times. The estimation results of the
2-state DRS model for the deseasonalized temperature are presented at the Table 3.6.
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Table 3.6: Estimation of the DRS model for the deseasonalized temperature.

αj φ σ2
j βj pjj

State1 -0.66115 0.72107 8.92121 -6.55048 0.82458
State2 1.87273 0.72107 10.75911 6.55048 0.48448
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Figure 3.14: The jump time and the transition time.

Figure 3.15 depicts classification of the data being in the state 2 or state 1,, together
with the smoothed probabilities for the state 2, presented by P (State2). For a closer
inspection, Figure 3.16 shows the last 5 years part of the Figure 3.15.
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Figure 3.15: The DRS model for the deseasonalized temperature.
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Figure 3.16: The DRS model for the deseasonalized temperature (showing last 5
years).
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Notice that with the estimation of the DRS model, we are also able to obtain a thresh-
old, called the DRS threshold, for the temperature such that we are in the state 2 at
day t, if the temperature exceeds that day’s normal temperature by an amount b > 0,
otherwise we are in the state 1. We find that b = 5.8292. However, the DRS thresh-
old is different from the constant threshold obtained from the TAR model. Our DRS
threshold makes use of the smoothed probabilities and for each day of the year it is
different. The obtained DRS threshold together with deseasoanalized temperature is
presented in Figure 3.17.
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Figure 3.17: The DRS model for the deseasonalized temperature together with the
DRS model threshold.

3.6 Forecast of the Newly Proposed Model

In this section, the 1-step ahead forecast of the proposed model together with the ex-
isting models will be given. Remember that for the forecast of the models, we use the
deseasonalized temperature between 1 January 2011 and 31 December 2013.

The h-step ahead predicted probabilities can be calculated by

P[ζt+h = j|Ft] = PhP[ζt = j|Ft], (3.15)

where P = (pji)i,j=1,2, is the transition matrix of the chain with pji = P[ζt = j|ζt−1 =
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i], and Ph is the hth power of the transition matrix. For h = 1, we obtain

P[ζt+1 = 1|Ft] = p11P[ζt = 1|Ft] + p12P[ζt = 2|Ft]

and

P[ζt+1 = 2|Ft] = p21P[ζt = 1|Ft] + p22P[ζt = 2|Ft].

For the proposed DRS model, see Section 3.5, the 1-step ahead forecast of Yt is calcu-
lated as

E [Yt+1|Ft] = (α1 + φYt)p11P[ζt = 1|Ft] + (α2 + φYt)p22P[ζt = 2|Ft]

+ (α2 + β2 + φYt)p21P[ζt = 1|Ft] + (α1 + β1 + φYt)p12P[ζt = 2|Ft].
(3.16)

Moreover, we also consider the 1-step ahead forecasts of existing models considered
in Section 3.4. 1-step ahead forecasts of RS, CRS, TAR and DRS models for the
deseasonalized temperature are depicted from Figure 3.18 to Figure 3.21, respectively.
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Figure 3.18: 1-step ahead forecast of the RS model for the deseasonalized temperature.
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Figure 3.19: 1-step ahead forecast of the CRS model for the deseasonalized tempera-
ture.
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Figure 3.20: 1-step ahead forecast of the TAR model for the deseasonalized tempera-
ture.
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Figure 3.21: 1-step ahead forecast of the DRS model for the deseasonalized tempera-
ture.

We compare the forecast performance of the proposed DRS model with the existing
models. The forecast error ek is the difference between the actual value Yk and the
forecast value Fk, that is, ek = Yk − Fk, for k = 1, . . . ,M. The most widely used
forecast error measures are the Mean Square Error (MSE), Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE), given by [26]

MSE =
1

M

M∑
k=1

(Yk − Fk)
2

=
1

M

M∑
k=1

(ek)
2

,

RMSE =

√√√√ 1

M

M∑
k=1

(Yk − Fk)2 =

√√√√ 1

M

M∑
k=1

(ek)
2 ,

MAE =
1

M

M∑
k=1

|Yk − Fk| =
1

M

M∑
k=1

|ek|.

The forecast performance of the models are represented in Table 3.7. According to
the table, DRS model has MSE of 10.896, while RS, CRS and TAR models have
MSE of 10.926, 10.928 and 10.953, respectively. Moreover, DRS model has RMSE of
3.3009, while RS, CRS and TAR models have RMSE of 3.3055, 3.3057 and 3.3096,
respectively. That is, the proposed DRS model has the smallest MSE and RMSE values
among all the existing models considered. On the other hand, TAR model has MAE
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of 2.5431, while DRS, RS and CRS models have MAE of 2.5453, 2.5463 and 2.5476,
respectively. The question is whether the differences in the respective MSE and MAE
values are significant. In the following, we perform the Diebold-Mariano test, see [15],
[14], to further assess the (relative) forecast performance of the models.

Table 3.7: Forecast performance of the models.

RS model CRS model TAR model DRS model
MSE 10.926 10.928 10.953 10.896
RMSE 3.3055 3.3057 3.3096 3.3009
MAE 2.5463 2.5476 2.5431 2.5453

The Diebold-Mariano test has the null hypothesis that two models have equal forecast
accuracy and thus the difference of their forecast errors is not statistically significant.
The alternative hypothesis is that one model produces better forecasts than the other.
For both MSE and MAE criteria, we apply three times the Diebold-Mariano test with
the alternative hypothesis that the proposed DRS model produces better forecasts than
the RS, CRS and TAR models, respectively.

The results of the test are given in Table 3.8 and Table 3.9, respectively. According to
the tables, we cannot reject the null hypothesis with the 5% significance level. Thus,
we can say that none of the forecasting errors are significantly differrent from the other.
Therefore, we can conclude that the forecast performance of the proposed DRS model
is in line with the RS, CRS and TAR models.

Table 3.8: Diebold-Mariano test (MSE).

Test Stat. (MSE) p-value (MSE)
DRS model vs RS model 0.9013 0.18371
DRS model vs CRS model 1.1113 0.13321
DRS model vs TAR model 0.9325 0.17554
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Table 3.9: Diebold-Mariano test (MAE).

Test Stat. (MAE) p-value (MAE)
DRS model vs RS model 0.3523 0.36229
DRS model vs CRS model 1.0671 0.14297
DRS model vs TAR model -0.3320 0.63007
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CHAPTER 4

PRICING WEATHER DERIVATIVES

At the Chicago Mercantile Exchange (CME), various weather derivatives are offered
for trade. In 1999, the CME launched its first weather derivatives, which are the futures
and options on temperature indices for several United States cities. Nowadays, the
weather derivatives for various cities around the world are offered (see [12]). At the
CME, in addition to the temperature futures written on several indices, and there are
also call and put options written on these futures. In this part, the proposed model under
the equivalent measure is considered and the prices of weather derivatives written on
several temperature indices are derived.

4.1 The Newly Proposed Model Under the Equivalent Measure

In the following section, we will derive prices of temperature futures written on several
temperature indices using the temperature model proposed in Section 2.2. To derive
the futures prices, the risk-neutral probability Q is to be specified. Since tempera-
ture (and hence the index) is not a tradeable asset, any probability measure Q being
equivalent to the objective probability is a risk-neutral probability. In the following,
a generalized version of the Esscher transform is considered to select an equivalent
measure by following [37].

Let L(Y ) be the space of all processes θ := {θt, t ∈ [0,T]} such that

1. For each t ∈ [0,T], θt := 〈θ̄, ζt〉, where θ̄ := (θ1, . . . , θN)′ ∈ RN ,

2. θ is integrable with respect to Y in the sense of stochastic integration.

For each θ ∈ L(Y ), we define (θ · Y ) := ((θ · Y )t : t ∈ [0,T]), where

(θ · Y )t :=

∫ t

0

θsdYs

is the stochastic integral of θ with respect to Y. In the following, θ is called as the
Esscher transform parameter. For each θ ∈ L(Y ), a G-adapted process Dθ := (Dθ

t :
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t ∈ [0,T]) is defined in the following way.

Dθ
t := exp ((θ · Y )t) .

Then, by Itô’s Formula, we can write

Dθ
t = 1 +

∫ t

0

Dθ
sθsκ(Ys − Ss)ds+

∫ t

0

Dθ
sθsσsdWs

+
1

2

∫ t

0

Dθ
sθ

2
sσ

2
sds+

∫ t

0

Dθ
s−

N∑
j=1

(eθsβ
j
s − 1)dN j

s .

Thus, we obtain

Dθ
t = 1 +

∫ t

0

Dθ
s−dU

θ
s ,

where U θ := (U θ
t : t ∈ [0,T]) is given by

U θ
t :=

∫ t

0

θsκ(Ys − Ss)ds+
1

2

∫ t

0

θ2
sσ

2
sds

+

∫ t

0

θsσsdWs +

∫ t

0

N∑
j=1

(eθsβ
j
s − 1)dN j

s

=

∫ t

0

θsκ(Ys − Ss)ds+
1

2

∫ t

0

θ2
sσ

2
sds+

∫ t

0

N∑
j=1

(eθsβ
j
s − 1)ajsds

+

∫ t

0

θsσsdWs +

∫ t

0

N∑
j=1

(eθsβ
j
s − 1)dMj

s.

Thus, Dθ is the Doléans-Dade exponential of U θ, that is,

Dθ
t = E(U θ

t ), t ∈ [0,T].

Consequently, the Laplace cumulant process (see [29]), Lθ := (Lθt : t ∈ [0,T]) of the
stochastic integral process (θ · Y ) is given by

Lθt :=

∫ t

0

θsκ(Ys − Ss)ds+
1

2

∫ t

0

θ2
sσ

2
sds+

∫ t

0

N∑
j=1

(eθsβ
j
s − 1)ajsds,

which is the predictable finite variation part of U θ. The Doléans-Dade exponential
E(Lθt ) of Lθt is the unique solution of

E(Lθt ) = 1 +

∫ t

0

E(Lθs)dL
θ
s, t ∈ [0,T].
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Since Lθ is a finite variation process, we have

E(Lθt ) = exp(Lθt ).

Thus, for each θ ∈ L(Y ), the logarithmic transform L̃θ := (L̃θt : t ∈ [0,T]) is given
by

L̃θt := log(E(Lθt )) = Lθt , t ∈ [0,T]. (4.1)

Let Zθ := (Zθt : t ∈ [0,T]) be a G-adapted process associated with θ ∈ L(Y ) as
follows:

Zθt := exp
(

(θ · Y )t − L̃θt
)
, t ∈ [0,T].

Then by Equations (2.13) and (4.1), we get

Zθt = exp(

∫ t

0

θsσsdWs −
1

2

∫ t

0

θ2
sσ

2
sds+

∫ t

0

N∑
j=1

θsβ
j
sdMj

s

−
∫ t

0

N∑
j=1

(eθsβ
j
s − 1− θsβjs)ajsds).

(4.2)

Then, Zθ is a (G,P)-(local) martingale, see [37]. Notice that by Itô’s Formula, we
have

Zθt = 1 +

∫ t

0

Zθs θsσsdWs +

∫ t

0

Zθs−
N∑
j=1

(eθsβ
j
s − 1)dMj

s. (4.3)

For each θ ∈ L(Y ), we define a new probability measure Qθ equivalent to P on GT by
a generalized version of the regime-switching Esscher transform as follows:

dQθ

dP
|GT := ZθT. (4.4)

The following lemma follows from [37].

Lemma 4.1. For each t ∈ [0,T], let

W θ
t := Wt −

∫ t

0

θsσsds (4.5)

and

Mθj
t := N j

t −
∫ t

0

aθjs ds, (4.6)

where

aθjt : = eθtβ
j
t ajt

=
N∑

l=1,l 6=j

eθlβjlajl〈ζt−, el〉.
(4.7)
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Then, W θ := (W θ
t : t ∈ [0,T]) is a standard Brownian motion under Qθ, and

Mθj := (Mθj
t : t ∈ [0,T]) is an (Fζ ,Qθ)-martingale, for each j = 1, . . . , N.

Furthermore, suppose Aθ := (aθjl)j,l=1,...,N , where

aθjl :=


eθlβjlajl, if l 6= j

−
∑N

j=1,j 6=l e
θlβjlajl, if l = j.

(4.8)

Then, the chain ζ has the following semimartingale decomposition under Qθ.

ζt = ζ0 +

∫ t

0

Aθζs−ds+ V θ
t , t ∈ [0,T], (4.9)

where V θ := (V θ
t : t ∈ [0,T]) is an RN -valued (Fζ ,Qθ)-martingale.

Note that, by the above lemma, the number of jumps of the chain ζ into the state ej, for
each j = 1, 2, . . . , N, from the other states in [0, t], denoted by N j

t , has the following
representation under Qθ :

N j
t =

N∑
l=1,l 6=j

∫ t

0

aθjl〈ζs−, el〉ds+Mθj
t , (4.10)

where

Mθj
t =

N∑
l=1,l 6=j

∫ t

0

〈ζs−, el〉〈dV θ
s , ej〉. (4.11)

Here, for each j = 1, 2, . . . , N,Mθj := (Mθj
t : t ∈ [0,T]) is an (Fζ ,Qθ)-martingale.

Thus, for each j = 1, 2, . . . , N, under Qθ we have

dMθj
t = dN j

t − a
θj
t dt, (4.12)

where

aθjt =
N∑

l=1,l 6=j

aθjl〈ζt−, el〉

=
N∑

l=1,l 6=j

eθlβjlajl〈ζt−, el〉.

(4.13)

Now, we give the dynamics of the deseasonalized temperature under Qθ.
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Lemma 4.2. Let R̄ = (R1, . . . , RN)′ ∈ RN , where

Rl = θlσ
2
l +

N∑
j=1,j 6=l

eθlβjlβjlajl, (4.14)

for l = 1, . . . , N. We define

Rt := 〈R̄, ζt〉 =
N∑
l=1

Rl〈ζt, el〉.

Then, under Qθ the deseasonalized temperature Yt, given by Equation (2.13), has the
dynamics

dYt = (κ (Yt − St) +Rt) dt+ σtdW
θ
t +

N∑
j=1

βjt dM
θj
t . (4.15)

Moreover, the solution of Equation (4.15) with the initial value Ys is given by

Yt = eκ(t−s)Ys − κ
∫ t

s

eκ(t−u)Sudu+

∫ t

s

eκ(t−u)Rudu+

∫ t

s

eκ(t−u)σudW
θ
u

+

∫ t

s

eκ(t−u)

N∑
j=1

βjudMθj
u .

(4.16)

Proof. Remember that, by Equation (2.13), under P,

dYt = κ (Yt − St) dt+ σtdWt +
N∑
j=1

βjt dN
j
t .

By Lemma 4.1,
dW θ

t = dWt − θtσtdt (4.17)

and
dMθj

t = dN j
t − eθtβ

j
t ajtdt. (4.18)

Hence, under Qθ we can write

dYt = κ (Yt − St) dt+

(
θtσ

2
t +

N∑
j=1

eθtβ
j
tβjt a

j
t

)
dt+ σtdW

θ
t +

N∑
j=1

βjt dM
θj
t

= κ (Yt − St) dt+Rtdt+ σtdW
θ
t +

N∑
j=1

βjt dM
θj
t ,

and by applying Itô’s Formula, the result follows.
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Lemma 4.3. Under Qθ,

∫ τ2

τ1

Ttdt = κ−1
(
eκ(τ2−s) − eκ(τ1−s)

)
Ys +

∫ τ2

τ1

Λudu

−
∫ τ2

s

(
eκ(τ2−u) − 1

)
Sudu+

∫ τ1

s

(
eκ(τ1−u) − 1

)
Sudu

+ κ−1

∫ τ2

s

(
eκ(τ2−u) − 1

)
Rudu− κ−1

∫ τ1

s

(
eκ(τ1−u) − 1

)
Rudu

+ κ−1

∫ τ2

s

(
eκ(τ2−u) − 1

)
σudW

θ
u − κ−1

∫ τ1

s

(
eκ(τ1−u) − 1

)
σudW

θ
u

+ κ−1

∫ τ2

s

(
eκ(τ2−u) − 1

) N∑
j=1

βjudMθj
u

− κ−1

∫ τ1

s

(
eκ(τ1−u) − 1

) N∑
j=1

βjudMθj
u .

(4.19)

Proof. By Equation (2.10), we have

∫ τ2

τ1

Ttdt =

∫ τ2

τ1

Λudu+

∫ τ2

τ1

Yudu. (4.20)

From Equation (4.15), we can write

Yτ2 = Yτ1 + κ

∫ τ2

τ1

Yudu− κ
∫ τ2

τ1

Sudu+

∫ τ2

τ1

Rudu

+

∫ τ2

τ1

σudW
θ
u +

∫ τ2

τ1

N∑
j=1

βjudMθj
u

and, thus,

∫ τ2

τ1

Yudu = κ−1 (Yτ2 − Yτ1) +

∫ τ2

τ1

Sudu− κ−1

∫ τ2

τ1

Rudu

− κ−1

∫ τ2

τ1

σudW
θ
u − κ−1

∫ τ2

τ1

N∑
j=1

βjudMθj
u .

(4.21)
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Now, by Equation (4.16), we have

κ−1 (Yτ2 − Yτ1) = κ−1
(
eκ(τ2−s) − eκ(τ1−s)

)
Ys

−
∫ τ2

s

eκ(τ2−u)Sudu+

∫ τ1

s

eκ(τ1−u)Sudu

+ κ−1

∫ τ2

s

eκ(τ2−u)Rudu− κ−1

∫ τ1

s

eκ(τ1−u)Rudu

+ κ−1

∫ τ2

s

eκ(τ2−u)σudW
θ
u − κ−1

∫ τ1

s

eκ(τ1−u)σudW
θ
u

+ κ−1

∫ τ2

s

eκ(τ2−u)

N∑
j=1

βjudMθj
u − κ−1

∫ τ1

s

eκ(τ1−u)

N∑
j=1

βjudMθj
u .

(4.22)

Hence, by Equation (4.22), we can write Equation (4.21) as∫ τ2

τ1

Yudu = κ−1
(
eκ(τ2−s) − eκ(τ1−s)

)
Ys

−
∫ τ2

s

(
eκ(τ2−u) − 1

)
Sudu+

∫ τ1

s

(
eκ(τ1−u) − 1

)
Sudu

+ κ−1

∫ τ2

s

(
eκ(τ2−u) − 1

)
Rudu− κ−1

∫ τ1

s

(
eκ(τ1−u) − 1

)
Rudu

+ κ−1

∫ τ2

s

(
eκ(τ2−u) − 1

)
σudW

θ
u − κ−1

∫ τ1

s

(
eκ(τ1−u) − 1

)
σudW

θ
u

+ κ−1

∫ τ2

s

(
eκ(τ2−u) − 1

) N∑
j=1

βjudMθj
u

− κ−1

∫ τ1

s

(
eκ(τ1−u) − 1

) N∑
j=1

βjudMθj
u .

(4.23)

Therefore, by putting Equation (4.23) into Equation (4.20), the result follows.

We denote the expectation under Qθ by Eθ[·]. We now give a useful result.

Lemma 4.4. Consider the chain ζ of which the semimartingale decomposition under
Qθ is given by Equation (4.9). Then we have

Eθ [ζt|Gs] = eA
θ(t−s)ζs. (4.24)

Proof. By Itô’s Formula we have

d
(
e−A

θtζt

)
= −Aθe−A

θtζtdt+ e−A
θtdζt

= e−A
θtdV θ

t ,
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since by Equation (4.9)
dζt = Aθζt−dt+ dV θ

t .

Hence, we can write

e−A
θtζt = e−A

θsζs +

∫ t

s

e−A
θudV θ

u .

Thus,
Eθ
[
e−A

θtζt|Gs
]

= e−A
θsζs,

since by the martingale property

Eθ
[∫ t

s

e−A
θudV θ

u |Gs
]

= 0.

Therefore, the result follows.

Remark 4.1. Notice that

1. By Lemma 4.4, we have

Qθ [ζu = ej|ζs] = Eθ
[
I{ζu=ej}(u)|ζs

]
= Eθ [〈ζu, ej〉|ζs]
= 〈Eθ [ζu|ζs] , ej〉
= 〈eAθ(u−s)ζs, ej〉.

2. For any square matrix Q,

eQ :=
∞∑
k=0

Qk

k!
.

In the following, we give another representation of the chain under Qθ, which will be
useful later on.
Remark 4.2. Remember that Nt = (N 1

t , . . . ,NN
t )′ ∈ RN , given by Equation (2.16),

is a vector of counting proces, see Remark 2.2. Notice that we have Eθ(Nt) =∫ t
0

Aθ
0ζs−ds. Thus, the processMθ := (Mθ

t : t ∈ [0,T]) given by

Mθ
t = Nt −

∫ t

0

Aθ
0ζs−ds (4.25)

is a martingale withMθ
t = (Mθ1

t , . . . ,MθN
t )′ ∈ RN (see Equation (4.6)).

By Remarks 2.1 and 4.2, under Qθ the chain, given by Equation (4.9), can also be
represented as

ζt = ζ0 +

∫ t

0

(I− ζs−1′)dNs,

= ζ0 +

∫ t

0

Aθζs−ds+

∫ t

0

(I− ζs−1′)dMθ
t .

(4.26)
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4.2 Pricing Temperature Futures

In this section, we derive prices of temperature futures written on CAT, CDD and
HDD indices using the temperature model proposed in Section 2.2. Remember that
the cumulative average temperature (CAT), the cooling degree days (CDD) and the
heating degree days (HDD) indices over a measurement period [τ1, τ2] are defined as

CAT (τ1, τ2) =

∫ τ2

τ1

Ttdt. (4.27)

CDD(τ1, τ2) =

∫ τ2

τ1

max(Tt − c, 0)dt (4.28)

and
HDD(τ1, τ2) =

∫ τ2

τ1

max(c− Tt, 0)dt, (4.29)

respectively, where c is a constant and denotes the threshold temperature, typically, 18
degrees Celsius or 65 degrees Fahrenheit.

Consider a futures contract written on a CAT index over the measurement period
[τ1, τ2]. By definition of a futures contract, it is costless to enter. At the end of the mea-
surement period, the buyer of the contract receives the amount in Equation (4.27) and
pays the CAT futures price FCAT(s, τ1, τ2;T ) if the contract was entered time s ≤ τ1.
Therefore, from arbitrage theory, we must have

0 = e−r(τ2−s)Eθ
[∫ τ2

τ1

Ttdt− FCAT(s, τ1, τ2;T )|Gs
]
,

where r > 0 is a constant risk-free rate of return. Assuming that the futures prices is
adapted, the CAT futures price is defined by

FCAT(s, τ1, τ2;T ) = Eθ
[∫ τ2

τ1

Ttdt|Gs
]
. (4.30)

Similarly, the CDD and HDD futures prices are defined by

FCDD(s, τ1, τ2;T ) = Eθ
[∫ τ2

τ1

max(Tt − c, 0)dt|Gs
]
, (4.31)

and

FHDD(s, τ1, τ2;T ) = Eθ
[∫ τ2

τ1

max(c− Tt, 0)dt|Gs
]
, (4.32)

respectively.

Moreover, since
max(c− x, 0) = max(x− c, 0) + c− x,

the following CDD-HDD parity follows:

FHDD(s, τ1, τ2;T ) = FCDD(s, τ1, τ2;T ) + c(τ2 − τ1)− FCAT(s, τ1, τ2;T ). (4.33)
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4.2.1 The CAT Futures

The CAT futures price is given by the following Theorem.

Theorem 4.5. The futures price FCAT(s, τ1, τ2;T ) at time s ≤ τ1 written on a CAT
index over the interval [τ1, τ2] is

FCAT(s, τ1, τ2;T ) =

∫ τ2

τ1

Λudu+ κ−1
(
eκ(τ2−s) − eκ(τ1−s)

)
Ys

+ S(s, τ1, τ2) +Θ(s, τ1, τ2),

(4.34)

where

S(s, τ1, τ2) = −
∫ τ2

s

(
eκ(τ2−u) − 1

)
〈S̄, eAθ(u−s)ζs〉du

+

∫ τ1

s

(
eκ(τ1−u) − 1

)
〈S̄, eAθ(u−s)ζs〉du

(4.35)

and

Θ(s, τ1, τ2) = κ−1

∫ τ2

s

(
eκ(τ2−u) − 1

)
〈R̄, eAθ(u−s)ζs〉du

− κ−1

∫ τ1

s

(
eκ(τ1−u) − 1

)
〈R̄, eAθ(u−s)ζs〉du.

(4.36)

Proof. Remember that by Equation (4.30)

FCAT(s, τ1, τ2;T ) = Eθ
[∫ τ2

τ1

Ttdt|Gs
]
. (4.37)

By Equation (4.19) and Fubini’s Theorem, we have

Eθ
[∫ τ2

τ1

Ttdt|Gs
]

=

∫ τ2

τ1

Λudu+ κ−1
(
eκ(τ2−s) − eκ(τ1−s)

)
Ys

−
∫ τ2

s

(
eκ(τ2−u) − 1

)
Eθ [Su|Gs] du

+

∫ τ1

s

(
eκ(τ1−u) − 1

)
Eθ [Su|Gs] du

+ κ−1

∫ τ2

s

(
eκ(τ2−u) − 1

)
Eθ [Ru|Gs] du

− κ−1

∫ τ1

s

(
eκ(τ1−u) − 1

)
Eθ [Ru|Gs] du,

(4.38)

since by the martingale property

Eθ
[∫ τ2

s

(
eκ(τ2−u) − 1

)
σudW

θ
u |Gs

]
= 0,
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Eθ
[∫ τ1

s

(
eκ(τ1−u) − 1

)
σudW

θ
u |Gs

]
= 0,

Eθ
[∫ τ2

s

(
eκ(τ2−u) − 1

) N∑
j=1

βjudMθj
u |Gs

]
= 0,

Eθ
[∫ τ1

s

(
eκ(τ1−u) − 1

) N∑
j=1

βjudMθj
u |Gs

]
= 0.

Remember that by Lemma 4.4

Eθ [ζu|Gs] = eA
θ(u−s)ζs.

Thus, we have

Eθ [Su|Gs] = Eθ
[
〈S̄, ζu〉|Gs

]
= 〈S̄,Eθ [ζu|Gs]〉
= 〈S̄, eAθ(u−s)ζs〉

(4.39)

and

Eθ [Ru|Gs] = Eθ
[
〈R̄, ζu〉|Gs

]
= 〈R̄,Eθ [ζu|Gs]〉
= 〈R̄, eAθ(u−s)ζs〉.

(4.40)

Therefore, by inserting Equations (4.39) and (4.40) into Equation (4.38), the result
follows.

Proposition 4.6. The futures price FCAT(s, τ1, τ2;T ) at time s, with τ1 ≤ s ≤ τ2,
written on a CAT index over the interval [τ1, τ2] is

FCAT(s, τ1, τ2;T ) =

∫ s

τ1

Tudu+ FCAT(s, s, τ2;T ).

Proof. By Equation (4.30),

FCAT(s, τ1, τ2;T ) = Eθ
[∫ τ2

τ1

Tudu|Gs
]

=

∫ s

τ1

Tudu+ Eθ
[∫ τ2

s

Tudu|Gs
]
.

Therefore, the result follows.
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4.2.2 The CDD and HDD Futures

The following lemma is necessary to price the CDD futures.

Lemma 4.7. Let ΦYt|Gs(u) be the characteristic function of Yt conditional on Gs, where
s ≤ t. Then, with i =

√
−1,

ΦYt|Gs(u) := Eθ
[
eiuYt|Gs

]
= 〈ζs exp

(
iueκ(t−s)Ys +

∫ t

s

(
diag[g(r, uekt)] + Bθ(r)

)
dr

)
,1〉,

(4.41)

where
g(t, u) := (g1(t, u), . . . , gN(t, u))

′
,

gl(t, u) := iue−κt(−κSl +Rl)−
1

2
u2e−2κtσ2

l

+
N∑

j=1,j 6=l

eθlβjl(eiue
−κtβjl − 1− iue−κtβjl)ajl

for each l = 1, . . . , N, and Bθ(t) := (bθjl(t))j,l=1,...,N with

bθjl(t) =

{
eiue

−κtβjlaθjl, for l 6= j,

−
∑N

j=1,j 6=l e
iue−κtβjlaθjl, for l = j.

Proof. Let be
Zt := e−κtYt

and apply Itô’s Formula to eiuZt . Then,

eiuZt = eiuZs +

∫ t

s

eiuZr
(
iue−κr(−κSr +Rr)−

1

2
u2e−2κrσ2

r

)
dr

+

∫ t

s

eiuZr
N∑
j=1

eθrβ
j
r(eiue

−κrβjr − 1− iue−κrβjr)ajrdr

+

∫ t

s

eiuZriue−κrσrdW
θ
r +

∫ t

s

eiuZr−
N∑
j=1

(eiue
−κrβjr − 1)dMθj

r

= eiuZs +

∫ t

s

eiuZr〈g(r, u), ζr〉dr

+

∫ t

s

eiuZriue−κrσrdW
θ
r +

∫ t

s

eiuZr−
N∑
j=1

(eiue
−κrβjr − 1)dMθj

r .

We define for each s ≤ t ∈ [0,T], Ḡs,t := Fs ∨ F ζt , which represents the enlarged
σ-field generated by Fs and F ζt . Moreover, write Ḡ := (Ḡs,t : s, t ∈ [0,T]) for the
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corresponding complete enlarged filtration. Let ΦZt|Ḡs,t(u) denote the characteristic
function of Zt conditional on Ḡs,t, that is,

ΦZt|Ḡs,t(u) := Eθ
[
eiuZt |Ḡs,t

]
. (4.42)

Then, from above we obtain

dΦZt|Ḡs,t(u) = ΦZt|Ḡs,t(u)

(
〈g(t, u), ζt〉dt+

N∑
j=1

(eiue
−κtβjt − 1)dMθj

t

)
. (4.43)

Let Dθ(t) := (dθjl(t))j,l=1,...,N , where

dθjl(t) =


eiue

−κtβjl , for l 6= j,∑N
j=1,j 6=l e

iue−κtβjlaθjl∑N
j=1,j 6=l a

θ
jl

, for l = j.

Notice that dθjl(t) = bθjl(t)/a
θ
jl, for each j, l = 1, . . . , N. Define Dθ

0(t) := Dθ(t) −
diag[dθ(t)], where dθ(t) = (dθ11(t), . . . , dθNN(t))′ ∈ RN . Then, we can write

N∑
j=1

(eiue
−κtβjt − 1)dMθj

t =
(
Dθ

0(t)ζt− + ζt− − 1
)′
dMθ

t , (4.44)

whereMθ
t = (Mθ1

t , . . . ,MθN
t )′ ∈ RN . Remember that by Remark 4.2, we have

ζt = ζ0 +

∫ t

0

(I− ζs−1′)dNs

with

Mθ
t = Nt −

∫ t

0

Aθ
0ζs−ds.

Therefore, Equation (4.43) can be written as

dΦZt|Ḡs,t(u) = ΦZt|Ḡs,t(u)
(
〈g(t, u), ζt〉dt+

(
Dθ

0(t)ζt− + ζt− − 1
)′
dMθ

t

)
. (4.45)

We define

h(t, u) := ζtΦZt|Ḡs,t(u), t ∈ [0,T]. (4.46)
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By Itô’s Formula we obtain

h(t, u) = h(s, u) +

∫ t

s

ΦZr|Ḡs,r(u)
(
Aθζr−dr + dV θ

r

)
+

∫ t

s

ζr−dΦZr|Ḡs,r(u) +
∑
s<r≤t

∆ζr∆ΦZr|Ḡs,r(u)

= h(s, u) +

∫ t

s

(
diag[g(r, u)] + Aθ

)
h(r, u)dr

+

∫ t

s

ΦZr|Ḡs,r(u)dV θ
r

+

∫ t

s

h(r−, u)
(
Dθ

0(r)ζr− + ζr− − 1
)′
dMθ

r

+
∑
s<r≤t

∆ζr∆ΦZr|Ḡs,r(u).

(4.47)

Here, we used ΦZt|Ḡs,t(u)ζt〈g(t, u), ζt〉 = diag[g(t, u)]ζtΦZt|Ḡs,t(u).

Now, by using

(I− ζt1′)diag[∆Nt]ζt = 0,

we can write

∑
s<r≤t

∆ζr∆ΦZr|Ḡs,r(u)

=
∑
s<r≤t

(I− ζr−1′)∆NrΦZr|Ḡs,r(u)
(
Dθ

0(r)ζr− + ζr− − 1
)′

∆Nr

=
∑
s<r≤t

ΦZr|Ḡs,r(u)(I− ζr−1′)diag[∆Nr]
(
Dθ

0(r)ζr− + ζr− − 1
)

=
∑
s<r≤t

ΦZr|Ḡs,r(u)(I− ζr−1′)diag[∆Nr]
(
Dθ

0(r)ζr− − 1
)

=

∫ t

s

ΦZr|Ḡs,r(u)(I− ζr−1′)diag[Aθ
0ζr−]

(
Dθ

0(r)ζr− − 1
)
dr

+

∫ t

s

ΦZr|Ḡs,r(u)(I− ζr−1′)diag[dMθ
r]
(
Dθ

0(r)ζr− − 1
)
.

(4.48)

It can be easily shown that

diag[Aθ
0ζt]
(
Dθ

0(t)ζt − 1
)

=
(
Bθ

0(t)−Aθ
0

)
ζt.
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Hence, we can write∫ t

s

ΦZr|Ḡs,r(u)(I− ζr−1′)diag[Aθ
0ζr−]

(
Dθ

0(r)ζr− − 1
)
dr

=

∫ t

s

ΦZr|Ḡs,r(u)(I− ζr−1′)
(
Bθ

0(r)−Aθ
0

)
ζr−dr

=

∫ t

s

(
Bθ(r)−Aθ

)
h(r, u)dr,

(4.49)

since
(I− ζt1′)Bθ

0(t)ζt = Bθ(t)ζt

and
(I− ζt1′)Aθ

0ζt = Aθζt.

Thus by combining Equations (4.48) and (4.49), we get

∑
s<r≤t

∆ζr∆ΦZr|Ḡs,r(u)

=

∫ t

s

(
Bθ(r)−Aθ

)
h(r, u)dr

+

∫ t

s

ΦZr|Ḡs,r(u)(I− ζr−1′)diag[dMθ
r]
(
Dθ

0(r)ζr− − 1
)
.

(4.50)

Thus, by Equation (4.50), Equation (4.47) becomes

h(t, u) = h(s, u) +

∫ t

s

(
diag[g(r, u)] + Bθ(r)

)
h(r, u)dr

+

∫ t

s

ΦZr|Ḡs,r(u)dV θ
r

+

∫ t

s

h(r−, u)
(
Dθ

0(r)ζr− + ζr− − 1
)′
dMθ

r

+

∫ t

s

ΦZr|Ḡs,r(u)(I− ζr−1′)diag[dMθ
r]
(
Dθ

0(r)ζr− − 1
)
.

(4.51)

Therefore, by Fubini’s Theorem and using the martingale property, we have

Eθ [h(t, u)|Gs] = h(s, u) +

∫ t

s

(
diag[g(r, u)] + Bθ(r)

)
Eθ [h(r, u)|Gs] dr.

Thus, we get

dEθ [h(t, u)|Gs] =
(
diag[g(t, u)] + Bθ(t)

)
Eθ [h(t, u)|Gs] dt

55



and after solving we have

Eθ [h(t, u)|Gs] = eiuZsζs exp

(∫ t

s

(
diag[g(r, u)] + Bθ(r)

)
dr

)
. (4.52)

Notice that

ΦZt|Ḡs,t(u) = 〈ζtΦZt|Ḡs,t(u),1〉
= 〈h(t, u),1〉,

(4.53)

since 〈ζt,1〉 = 1.

Now, by the tower property and Equation (4.53), we have

Eθ
[
eiuYt |Gs

]
= Eθ

[
Eθ
[
eiuYt |Ḡs,t

]
|Gs
]

= Eθ
[
Eθ
[
eiue

ktZt |Ḡs,t
]
|Gs
]

= Eθ
[
ΦZt|Ḡs,t(ue

κt)|Gs
]

= Eθ
[
〈h(t, ueκt),1〉|Gs

]
= 〈Eθ

[
h(t, ueκt)|Gs

]
,1〉.

Therefore the result follows by Equation (4.52).

To price the CDD futures, we apply Fourier transform techniques. We denote the space
of integrable functions on R by L1(R). For f ∈ L1(R), the Fourier transform of f is
defined by

f̂(u) =

∫
R
f(x)e−ixudx.

And if, also f̂ ∈ L1(R), then the inverse Fourier transform is given by [21]

f(x) =
1

2π

∫
R
f̂(u)eixudu.

We have the following lemma from [7].

Lemma 4.8. For the function f given by

f(x) = max(x− c, 0),

with c > 0, define
fε(x) := e−εxf(x).

Then, fε ∈ L1(R) for all ε > 0.
Moreover, for any ε > 0, the Fourier transform of fε is given by

f̂ε(u) =
1

(ε+ iu)2
e−(ε+iu)c

and f̂ε ∈ L1(R).
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Now, we are ready to give the CDD futures price.

Theorem 4.9. The futures price FCDD(s, τ1, τ2;T ) at time s ≤ τ1 written on a CDD
index over the interval [τ1, τ2] is

FCDD(s, τ1, τ2;T ) =
1

2π

∫
R
f̂ε(u)

∫ τ2

τ1

Ψ(s, t, u)dtdu, (4.54)

where for ε > 0,

Ψ(s, t, u) = $(s, t, u)〈ζs exp

(∫ t

s

(
diag[g(r, (u− iε)eκt)] + Bθ(r)

)
dr

)
,1〉,

with
$(s, t, u) = exp

(
(ε+ iu)(Λt + eκ(t−s)Ys)

)
and

f̂ε(u) =
1

(ε+ iu)2
e−(ε+iu)c.

Proof. Remember that by Equation (4.31)

FCDD(s, τ1, τ2;T ) = Eθ
[∫ τ2

τ1

max(Tt − c, 0)dt|Gs
]
.

Now by Lemma 4.8, we can write

max(Tt − c, 0) =
1

2π

∫
R
f̂ε(u) exp ((ε+ iu)Tt) du. (4.55)

Thus, by Equation (4.55) and Fubini’s Theorem,

Eθ [max(Tt − c, 0)|Gs]

=
1

2π

∫
R
f̂ε(u)Eθ [exp ((ε+ iu)Tt) |Gs] du

=
1

2π

∫
R
f̂ε(u) exp ((ε+ iu)Λt)Eθ [exp ((ε+ iu)Yt) |Gs] du

=
1

2π

∫
R
f̂ε(u) exp ((ε+ iu)Λt)Eθ [exp (i(u− iε)Yt) |Gs] du

=
1

2π

∫
R
f̂ε(u) exp ((ε+ iu)Λt) ΦYt|Gs(u− iε)du,

(4.56)

where ΦYt|Gs(u) = Eθ
[
eiuYt |Gs

]
is given by Equation (4.41).
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Therefore, by Fubini’s Theorem and Equation (4.56), we obtain

Eθ
[∫ τ2

τ1

max(Tt − c, 0)dt|Gs
]

=

∫ τ2

τ1

Eθ [max(Tt − c, 0)|Gs] dt

=

∫ τ2

τ1

1

2π

∫
R
f̂ε(u) exp ((ε+ iu)Λt) ΦYt|Gs(u− iε)dudt

=
1

2π

∫
R
f̂ε(u)

∫ τ2

τ1

exp ((ε+ iu)Λt) ΦYt|Gs(u− iε)dtdu.

We notice that, by Lemma 4.7,

ΦYt|Gs(u− iε)

= 〈ζs exp

(
(ε+ iu)eκ(t−s)Ys +

∫ t

s

(
diag[g(r, (u− iε)ekt)] + Bθ(r)

)
dr

)
,1〉.

Therefore, the result follows.

The CDD futures price can be computed by the fast Fourier transform method [11].
Remember that by Equation (4.32), the futures price FHDD(s, τ1, τ2;T ) at time s ≤ τ1

written on a HDD index over the interval [τ1, τ2] is given by

FHDD(s, τ1, τ2;T ) = Eθ
[∫ τ2

τ1

max(c− Tt, 0)dt|Gs
]
.

Since we have already found the CDD and CAT futures prices, the HDD futures price
can be easily derived by the CDD-HDD parity, given by Equation (4.33). That is,

FHDD(s, τ1, τ2;T ) = FCDD(s, τ1, τ2;T ) + c(τ2 − τ1)− FCAT(s, τ1, τ2;T ),

whereFCDD(s, τ1, τ2;T ) andFCAT(s, τ1, τ2;T ) are given by Equations (4.54) and (4.34),
respectively.

4.3 Monte Carlo Simulation

In this section, the Monte Carlo simulation, see [23], will be considered to price tem-
perature futures written on CDD and HDD indices using the proposed model. We begin
with some information about the temperature futures trading at CME for Chicago, of
which we have the temperature data.

For Chicago, there are monthly CDD index futures and HDD index futures. While the
monthly CDD contract periods are May, June, July, August and September, monthly
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HDD contract periods are November, December, January, February and March. In ad-
dition to the monthly contracts, CDD May-September and CDD July-August seasonal
strip futures, and HDD November-March and HDD February-March seasonal strip fu-
tures are also available.

The trading schedule of the contracts are determined by the CME. The temperature
futures are not settled on the index value for a particular day, but the aggregated index
value over an measurement period, typically a month or several consecutive months,
referred as seasonal strips. The accumulation period of each contract begins with the
first calendar day of the contract period and ends with the last calendar day of the
contract period. The CDD and HDD indices over a measurement period [τ1, τ2] are
calculated as

CDD(τ1, τ2) =

τ2∑
t=τ1

max(Tt − c, 0) (4.57)

and

HDD(τ1, τ2) =

τ2∑
t=τ1

max(c− Tt, 0), (4.58)

respectively. Here, we take the threshold temperature c as 18 degrees Celsius.

All futures are settled immediately after the measurement period has terminated. A
futures contract on an index over a given measurement period is settled against the
index value times a cash amount. For the United States cities, this cash amount is
USD 20 per index point. We assume that the cash amount is USD 1 per index point.
Remember that by definition of a futures contract, it is costless to enter. At the end of
the measurement period, the buyer of the CDD futures contract receives the amount in
Equation (4.57) and pays the CDD futures price. Similarly, the buyer of the HDD fu-
tures contract receives the amount in Equation (4.58) and pays the HDD futures price.

Now, the Monte Carlo simulation is done as follows: For the daily average deseason-
alized temperature Yt, we consider the proposed DRS model given in (3.14). First,
10000 trajectories for the daily average deseasonalized temperature Yt are simulated
by using the parameter estimates in Table 3.6. The simulated trajectories begins at 1
January 2011 and ends at 31 March 2013, that is, they are of length 820. Remember
that the data from 1 January 2001 to 31 December 2010 is used for estimation. Then,
the daily average temperature Tt is obtained by adding the seasonality component to
Yt. That is, Tt = Λt + Yt, where Λt is given by (3.1). Then, the corresponding payoff,
see Section 4.2, is calculated for each trajectory and averaging over all trajectories, the
corresponding futures prices are found. The results together with a comparison of RS
and CRS models, see Section 3.4, are given below.

Figure 4.1 to Figure 4.3 display the expected CDD index value obtained via RS, CRS
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and DRS models together with the actual CDD index from May to September, re-
spectively. Moreover, Figure 4.4 to Figure 4.6 depict the expected HDD index value
obtained via RS, CRS and DRS models together with the actual HDD index from
November to March, respectively.
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Figure 4.1: RS model expected CDD index value, 2011(left) and 2012(right).
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Figure 4.2: CRS model expected CDD index value, 2011(left) and 2012(right).
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Figure 4.3: DRS model expected CDD index value, 2011(left) and 2012(right).

Nov1 Dec1 Jan1 Feb1 Mar1
0

500

1000

1500

2000

2500

3000

Time

H
D

D
 In

de
x 

V
al

ue

 

 

actual
expected (RS)

Nov1 Dec1 Jan1 Feb1 Mar1
0

500

1000

1500

2000

2500

3000

Time

H
D

D
 In

de
x 

V
al

ue

 

 

actual
expected (RS)

Figure 4.4: RS model expected HDD index value, 2011(left) and 2012(right).
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Figure 4.5: CRS model expected HDD index value, 2011(left) and 2012(right).
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Figure 4.6: DRS model expected HDD index value, 2011(left) and 2012(right).

Table 4.1 to Table 4.3 and Table 4.4 to Table 4.6, display the futures prices obtained
and actual index values together with difference. The difference is defined as the value
obtained from the model minus the actual value. It can be said that while in 2011, the
obtained CDD prices are very close to the actual values, in 2012, the obtained HDD
prices are very close to the actual values.

As it can be seen from Table 4.1 to Table 4.3, in 2011 and 2012, for each CDD month
and July-August seasonal strip, all the models considered give very close values. How-
ever, for the 2011 May-September seasonal strip, the actual value is 586.25, while the
CRS, RS and DRS models produce a value of 599.2, 611.5 and 639.27, respectively.
On the other hand, for the 2012 May-September seasonal strip, the actual value is
730.7, while the DRS, RS and CRS models produce a value of 642.88, 617.4, and
602.52, respectively.

Table 4.1: CDD futures prices based on the RS model.

RS model Actual Diff. RS model Actual Diff.
(2011) (2011) (2011) (2012) (2012) (2012)

May 41.523 35.95 5.5725 42.323 74.25 -31.927
Jun 132.73 99.9 32.833 133.71 165.8 -32.088
Jul 200.29 252.45 -52.157 202.87 286.15 -83.279
Aug 168.48 156.25 12.226 168.8 153 15.796
Sep 68.471 41.7 26.771 69.695 51.5 18.195
Jul-Aug 368.77 408.7 -39.931 371.67 439.15 -67.483
May-Sep 611.5 586.25 25.245 617.4 730.7 -113.3
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Table 4.2: CDD futures prices based on the CRS model.

CRS model Actual Diff. CRS model Actual Diff.
(2011) (2011) (2011) (2012) (2012) (2012)

May 39.817 35.95 3.8669 40.346 74.25 -33.904
Jun 130.05 99.9 30.151 130.56 165.8 -35.238
Jul 197.19 252.45 -55.256 199.51 286.15 -86.638
Aug 164.77 156.25 8.5242 165.25 153 12.253
Sep 67.36 41.7 25.66 66.845 51.5 15.345
Jul-Aug 361.97 408.7 -46.732 364.76 439.15 -74.385
May-Sep 599.2 586.25 12.946 602.52 730.7 -128.18

Table 4.3: CDD futures prices based on the DRS model.

DRS model Actual Diff. DRS model Actual Diff.
(2011) (2011) (2011) (2012) (2012) (2012)

May 53.394 35.95 17.444 53.826 74.25 -20.424
Jun 136.87 99.9 36.968 138.72 165.8 -27.082
Jul 199.92 252.45 -52.525 200.77 286.15 -85.382
Aug 170.25 156.25 14.001 170.13 153 17.134
Sep 78.837 41.7 37.137 79.435 51.5 27.935
Jul-Aug 370.18 408.7 -38.524 370.9 439.15 -68.248
May-Sep 639.27 586.25 53.024 642.88 730.7 -87.819

As it can be seen from Table 4.4 to Table 4.6, in 2011 and 2012, for each HDD month
and December-February seasonal strip, all the models considered give very close val-
ues. However, for the 2011 November-March seasonal strip, the actual value is 2126.1,
while the RS, DRS and CRS models produce a value of 2659.4, 2679.6 and 2680.1, re-
spectively. On the other hand, for the 2012 November-March seasonal strip, the actual
value is 2679, while the CRS, DRS and RS models produce a value of 2671.9, 2671.8
and 2653.1, respectively.

63



Table 4.4: HDD futures prices based on the RS model.

RS model Actual Diff. RS model Actual Diff.
(2011) (2011) (2011) (2012) (2012) (2012)

Nov 397.85 325.05 72.795 396.08 398.1 -2.0239
Dec 578.09 502.65 75.442 576.49 487.15 89.344
Jan 651.63 588.9 62.733 651.3 651.15 0.15055
Feb 554.44 498.25 56.193 552.43 595.7 -43.27
Mar 477.36 211.2 266.16 476.78 546.95 -70.169
Dec-Feb 1784.2 1589.8 194.37 1780.2 1734 46.225
Nov-Mar 2659.4 2126.1 533.32 2653.1 2679 -25.968

Table 4.5: HDD futures prices based on the CRS model.

CRS model Actual Diff. CRS model Actual Diff.
(2011) (2011) (2011) (2012) (2012) (2012)

Nov 401.47 325.05 76.421 399.33 398.1 1.2285
Dec 582.41 502.65 79.764 581.83 487.15 94.68
Jan 657.53 588.9 68.63 654.48 651.15 3.3254
Feb 557.44 498.25 59.189 557.09 595.7 -38.611
Mar 481.26 211.2 270.06 479.16 546.95 -67.789
Dec-Feb 1797.4 1589.8 207.58 1793.4 1734 59.394
Nov-Mar 2680.1 2126.1 554.06 2671.9 2679 -7.1662

Table 4.6: HDD futures prices based on the DRS model.

DRS model Actual Diff. DRS model Actual Diff.
(2011) (2011) (2011) (2012) (2012) (2012)

Nov 402.9 325.05 77.848 401.44 398.1 3.3392
Dec 580.88 502.65 78.227 580.8 487.15 93.647
Jan 656.06 588.9 67.16 653.77 651.15 2.6189
Feb 558.06 498.25 59.809 556.68 595.7 -39.02
Mar 481.72 211.2 270.52 479.1 546.95 -67.851
Dec-Feb 1795 1589.8 205.2 1791.2 1734 57.246
Nov-Mar 2679.6 2126.1 553.56 2671.8 2679 -7.2656
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CHAPTER 5

CONCLUSION AND OUTLOOK

Weather derivatives can be used as a tool to manage the risk exposure towards adverse
or unexpected weather conditions. We consider the temperature based weather deriva-
tives. These are the financial contracts written on several temperature indices such as
CAT, CDD and HDD.

To derive derivatives prices, we first model the temperature dynamics. In the litera-
ture, the mean-reverting Ornstein–Uhlenbeck process in different forms is commonly
used for modeling the temperature. We propose a regime-switching model for the tem-
perature dynamics, where the parameters depend on a Markov chain. Also, since the
jumps in the temperature are directly related to the regime switch, we model them by
the chain itself. The jumps can be considered as the shifts in the level of the tempera-
ture due to the transitions of the state of the atmospheric conditions.

Moreover, the estimation of the proposed model is considered. The daily tempera-
ture data (in degrees Celsius) for Chicago O’Hare International Airport, USA, over
the period from 1 January 2001 to 31 December 2013 is analysed. We consider vari-
ous existing models and the proposed model. The models are estimated for the period
from 1 January 2001 to 31 December 2010. The EM algorithm, which is an alternative
method for maximizing the likelihood function for models with missing observations
or unobserved variables, is considered. To estimate the proposed model, we modify
the EM algorithm. We apply repeatedly the modified EM algorithm until the jump
times and transition times coincide. And we forecast the models for the period from
1 January 2011 to 31 December 2013. We compare forecast performance of the pro-
posed model with the existing models and conclude that the forecast performance of
the proposed model is in line with existing models considered..

After modeling the temperature dynamics, to price the derivatives, the risk-neutral
probability is to be specified. Since temperature (and thus the index) is not a tradeable
asset, any probability measure being equivalent to the objective probability is a risk-
neutral probability. A generalized version of the Esscher transform is considered to
select an equivalent measure. Then the prices of weather derivatives written on several
temperature indices are derived using the temperature model proposed.
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As a further study, the proposed model can be extended by allowing the speed of mean-
reversion parameter to depend on the Markov chain. Moreover, in the proposed model
dynamics the rate matrix of the chain can be taken as time varying.
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APPENDIX A

AN OVERVIEW OF MARKOV CHAINS

We work throughout with a probability space (Ω,F ,P). This part mainly follows from
[39] and [36].

A.1 Discrete-Time Markov Chains

A Markov process (ζt)t≥0 is a stochastic process with the property that, given the value
of ζt, the values of ζs for s > t are not influenced by the values of ζu for u < t. That is,
the probability of any particular future behavior of the process, when its current state
is known exactly, is not altered by additional knowledge concerning its past behavior.
A discrete-time Markov chain is a Markov process whose state space is a finite or
countable set, and whose (time) index set is {0, 1, 2, ...}. In formal terms, the Markov
property is that

P[ζn+1 = j|ζ0 = i0, . . . , ζn−1 = in−1, ζn = i]

= P[ζn+1 = j|ζn = i],
(A.1)

for all time points n and all states i0, . . . , in−1, i, j.
It is frequently convenient to label the state space of the Markov chain by {0, 1, 2, ...},
and it is customary to speak of ζn as being in state i if ζn = i.
The probability of ζn+1 being in state j given that ζn is in state i is called the one-step
transition probability and is denoted by pn,n+1

ij . That is,

pn,n+1
ij = P[ζn+1 = j|ζn = i]. (A.2)

In general, the transition probabilities are functions of not only the initial and final
states, but also the time of transition as well. When the one-step transition probabilities
are independent of the time variable n, it is said that the Markov chain has stationary
transition probabilities. We consider Markov chains having stationary transition prob-
abilities. Then pn,n+1

ij = pij is independent of n, and pij is the conditional probability
that the state value undergoes a transition from i to j in one trial. It is customary to
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arrange these numbers pij in a matrix, in the infinite square array

P =



p00 p01 p02 p03 · · ·
p10 p11 p12 p13 · · ·
p20 p21 p22 p23 · · ·
...

...
...

...
pi0 pi1 pi2 pi3 · · ·
...

...
...

...


and refer to P = [pij] as the Markov matrix or transition probability matrix of the
process.

The (i + 1)th row of P is the probability distribution of the values of ζn+1 under the
condition that ζn = i, for i = 0, 1, . . . . If the number of states is finite, then P is a
finite square matrix whose order (the number of rows) is equal to the number of states.
Clearly, the quantities pij satisfy the conditions

pij ≥ 0, for i, j = 0, 1, 2, . . . , (A.3)
∞∑
j=0

pij = 1, for i = 0, 1, 2, . . . . (A.4)

The condition given by Equation (A.4) merely expresses the fact that some transition
occurs at each trial. (For convenience, one says that a transition has occurred even if
the state remains unchanged.)

We write pinin+1 = P[ζn+1 = in+1|ζn = in].

It can be easily shown that

P[ζ0 = i0, ζ1 = i1, . . . , ζn = in] = pi0pi0i1 · · · pin−2in−1pin−1in , (A.5)

where pi = P[ζ0 = i]. Thus, a Markov process is completely defined once its transition
probability matrix and initial state ζ0 (or, more generally, the probability distribution
of ζ0) are specified.
Moreover, Equation (A.1) is equivalent to the Markov property in the form

P[ζn+1 = j1, . . . , ζn+m = jm|ζ0 = i0, . . . , ζn = in]

= P[ζn+1 = j1, . . . , ζn+m = jm|ζn = in],
(A.6)

for all time points n,m and all states i0, . . . , in, j1, . . . , jm. In other words, once Equa-
tion (A.6) is established for the value m = 1, it holds for all m ≥ 1.

The formal definition of a Markov chain is given below.

Definition A.1. Let I be a countable set. Each i ∈ I is called a state and I is called the
state-space. (ζn)n≥0 is a Markov chain with initial distribution λ and transition matrix
P = (pij)i,j∈I if
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(i) ζ0 has distribution λ,

(ii) for n ≥ 0, conditional on ζn = i, ζn+1 has distribution pij, j ∈ I, and is inde-
pendent of ζ0, . . . , ζn−1.

More explicitly, these conditions state that for n ≥ 0 and i0, . . . , in+1 ∈ I,

(i) P[ζ0 = i0] = λi0 ,

(ii) P[ζn+1 = in+1|ζ0 = i0, . . . , ζn = in] = pinin+1 .

We say that (ζn)n≥0 is Markov(λ,P) for short. If (ζn)0≤n≤N is a finite sequence of
random variables satisfying (i) and (ii) for n = 0, 1, . . . , N − 1, then we again say
(ζn)0≤n≤N is Markov(λ,P).

Theorem A.1. A discrete-time random process (ζn)0≤n≤N is Markov(λ,P) if and
only if for all i0, . . . , iN ∈ I

P[ζ0 = i0, ζ1 = i1, . . . , ζN = iN ] = λi0pi0i1pi1i2 . . . piN−1iN , (A.7)

where λi0 = P[ζ0 = i0].

The analysis of a Markov chain concerns mainly the calculation of the probabilities
of the possible realizations of the process. Central in these calculations are the n-step
transition probability matrices P(n) = [p

(n)
ij ]. Here, p(n)

ij denotes the probability that the
process goes from state i to state j in n transitions. Formally,

p
(n)
ij = P[ζm+n = j|ζm = i]. (A.8)

Observe that we are dealing only with temporally homogeneous processes having sta-
tionary transition probabilities, since otherwise the left side of Equation (A.8) would
also depend on m.
The Markov property allows us to express Equation (A.8) in terms of [pij] as stated in
the following theorem.

Theorem A.2. The n-step transition probabilities of a Markov chain satisfy

p
(n)
ij =

∞∑
k=0

pikp
(n−1)
kj , (A.9)

where we define

p
(0)
ij =

{
1, if i = j,

0, if i 6= j.

Remark A.1. We recognize the relation given by Equation (A.9) as the formula for
matrix multiplication, so that P(n) = P ·P(n−1). By iterating this formula, we obtain

P(n) = P ·P · · · · ·P︸ ︷︷ ︸
n factors

= Pn. (A.10)

That is, the n-step transition probabilities p(n)
ij are the entries in the matrix Pn, the nth

power of P.
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We write p(n)
ij for the (i, j) entry in the matrix Pn, the nth power of P = [pij].

Example A.1. Let

P =

[
1− a a
b 1− b

]
,

where 0 < a, b < 1, be the transition matrix of a two-state Markov chain (ζn)n≥0.
When a = 1 − b, so that the rows of P are the same, then ζ1, ζ2, . . . are independent
identically distributed random variables with P[ζn = 0] = b and P[ζn = 1] = a. When
a 6= 1− b, the probability distribution for ζn varies depending on the outcome ζn−1 at
the previous stage.
For the two-state Markov chain, the n-step transition matrix is given by

Pn =
1

a+ b

[
b a
b a

]
+

(1− a− b)n

a+ b

[
a −a
−b b

]
.

Note that |1− a− b| < 1 when 0 < a, b < 1, and thus |1− a− b|n → 0 as n→∞ and

lim
n→∞

Pn =

 b

a+ b

a

a+ b
b

a+ b

a

a+ b

 .
That is, such a system, in the long run, will be in state 0 with probability b/(a+ b) and
in state 1 with probability a/(a+b), irrespective of the initial state in which the system
started.

Definition A.2. State j is said to be accessible from state i if for some integer n ≥ 0,

p
(n)
ij > 0, that is, there is positive probability that state j can be reached starting from

state i in some finite number of transitions. Two states i and j, each accessible to
the other, are said to communicate, and we write i ↔ j. If two states i and j do not
communicate, then either

p
(n)
ij = 0, for all n ≥ 0,

or
p

(n)
ji = 0, for all n ≥ 0,

or both are true. A Markov chain is irreducible if all states communicate with each
other.

A.2 Continuous-Time Markov Chains

A continuous-time Markov chain (ζt)t>0 is a Markov process on the states 0, 1, 2, . . . .
The exponential distribution plays a fundamental role in continuous-time Markov chains
because of the memorylessness property.
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Definition A.3. A random variable X : Ω → [0,∞] has exponential distribution of
parameter λ, 0 ≤ λ <∞, if

P(X > t) = e−λt, for all t ≥ 0.

If λ > 0, then X has density function

fX(t) = λe−λt1t≥0.

The mean of X is given by
E(X) = λ−1.

Theorem A.3. (Memorylessness property) A random variable X : Ω → (0,∞] has
exponential distribution if and only if it has the following memoryless property:

P[X > s+ t|X > s] = P(X > t), for all s, t ≥ 0.

Definition A.4. Let I be a countable set. A Q-matrix on I is a matrix Q = (qij)i,j∈I
satisfying the following conditions:

(i) 0 ≤ −qii <∞, for all i,

(ii) qij ≥ 0, for all i 6= j,

(iii)
∑

j∈I qij = 0, for all i.

Note that in each row of Q we can choose the off-diagonal entries to be any nonnega-
tive real number, subject only to the constraint that the off-diagonal row sum is finite,
that is,

qi =
∑
j 6=i

qij <∞.

The diagonal entry qii is then −qi, making the total row sum zero.

We set qi = −qii.

For the state space {0, 1, 2, . . . , N}, we have

Q =


−q0 q01 · · · q0N

q10 −q1 · · · q1N
...

...
...

...
qN0 qN1 · · · −qN

 .
We call each off-diagonal entry qij the rate of going from i to j, and qi the rate of
leaving i. A convenient way to present the data for a continuous-time Markov chain is
by means of a diagram. Each diagram then corresponds to a unique Q-matrix.
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Example A.2. Consider the following diagram.

The associated Q-matrix is given by

Q =

−2 1 1
1 −1 0
2 1 −3

 .
Theorem A.4. Let Q be a matrix on a finite set I. Set P(t) = etQ. Then P(t), t ≥ 0,
has the following properties:

(i) P(s+ t) = P(s)P(t), for all s, t,

(ii) P(t), t ≥ 0, is the unique solution to the forward equation

dP(t)

dt
= P(t)Q, P(0) = I,

(iii) P(t), t ≥ 0, is the unique solution to the backward equation

dP(t)

dt
= QP(t), P(0) = I,

(iv) for k = 0, 1, 2, . . . , we have

dkP(t)

dtk
|t=0= Qk.

Definition A.5. A matrix P = (pij)i,j∈I is stochastic if it satisfies

(i) 0 ≤ pij <∞, for all i, j,

(ii)
∑

j∈I pij = 1, for all i.

Theorem A.5. A matrix Q on a finite set I is a Q-matrix if and only if P(t) = etQ is
a stochastic matrix for all t ≥ 0.
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Definition A.6. The jump matrix Π = (πij)i,j∈I of aQ-matrix Q = (qij)i,j∈I is defined
by

πij =

{
qij/qi, if i 6= j and qi 6= 0,

0, if i 6= j and qi = 0,

πii =

{
0, if qi 6= 0,

1, if qi = 0.

Note that Π is a stochastic matrix.

Definition A.7. (ζt)t≥0 is called a right-continuous process if for all ω ∈ Ω and t ≥ 0
there exists ε > 0 such that

ζs(ω) = ζt(ω), for t ≤ s ≤ t+ ε.

The jump times J0, J1, . . . of (ζt)t≥0 are given by

J0 = 0, Jn+1 = inf{t ≥ Jn : ζt 6= ζJn},

for n = 0, 1, . . . and inf{∅} =∞.
The holding times S1, S2, . . . of (ζt)t≥0 are given by

Sn =

{
Jn − Jn−1, if Jn−1 <∞,
∞, otherwise,

for n = 1, 2, . . . . The right-continuity forces Sn > 0 for all n. If Jn+1 = ∞ for some
n,we define ζ∞ = ζJn , the final value, otherwise ζ∞ is undefined. The (first) explosion
time ϑ is defined by

ϑ = sup
n
Jn =

∞∑
n=1

Sn.

The discrete-time process (ξn)n≥0 given by ξn = ζJn is called the jump process of
(ζt)t≥0, or the jump chain if it is a discrete-time Markov chain. This is simply the
sequence of values taken by (ζt)t≥0 up to explosion.

Example A.3. Poisson processes are some of the simplest examples of continuous-
time Markov chains. A right-continuous process (ζt)t≥0 with values in {0, 1, 2, . . . }
is a Poisson process of rate λ, 0 < λ < ∞, if its holding times S1, S2, . . . are inde-
pendent exponential random variables of parameter λ and its jump chain is given by
ξn = n. For the diagram given below
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the associated Q-matrix is given by

Q =


−λ λ

−λ λ
. . . . . .

 ,
where the entries off the diagonal and super-diagonal are all zero. A simple way to
construct a Poisson process of rate λ is to take a sequence S1, S2, . . . of independent
exponential random variables of parameter λ to set J0 = 0, Jn = S1 + · · · + Sn and
then set

ζt = n, if Jn ≤ t < Jn+1.

Remark A.2. f(t) = o(t) means f(t)
t
→ 0 as t→ 0.

Theorem A.6. Let (ζt)t≥0 be a right-continuous process with values in a finite set I
and λ be the distribution of ζ0. Let Q = (qij)i,j∈I be a Q-matrix on I with jump matrix
Π = (πij)i,j∈I . Then the following three conditions are equivalent:

1. (jump chain/holding time definition) the jump chain (ξn)n≥0 of (ζt)t≥0 is discrete-
time Markov(λ,Π) and for each n ≥ 1, conditional on ξ0, . . . , ξn−1, the holding
times S1, . . . , Sn are independent exponential random variables of parameters
qξ0 , . . . , qξn−1 , respectively;

2. (infinitesimal definition) for all t, h ≥ 0, conditional on ζt = i, ζt+h is indepen-
dent of ζs, s ≤ t, and as h ↓ 0, uniformly in t, for all j

P[ζt+h = j|ζt = i] = δij + qijh+ o(h);

3. (transition probability definition) for all n = 0, 1, 2, . . . , all times 0 ≤ t0 ≤ t1 ≤
· · · ≤ tn+1 and all states i0, . . . , in+1

P[ζtn+1 = in+1|ζt0 = i0, . . . , ζtn = in] = pinin+1(tn+1 − tn), (A.11)

where pij(t), i, j ∈ I, t ≥ 0, is the solution of the forward equation

P′(t) = P(t)Q, P(0) = I.

If (ζt)t≥0 satisfies any of these conditions, then it is called a Markov chain with initial
distribution λ and generator matrix Q. We say that (ζt)t≥0 is Markov(λ,Q) for short.

Remember that, by Theorem A.4, for I finite, the forward and backward equations
have the same solution. So in the above theorem, the forward equation can be replaced
with the backward equation. Thus, we have

P′(t) = P(t)Q = QP(t), (A.12)
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where P′(t) denotes the matrix whose elements are p′ij(t) =
dpij(t)

dt
. Then with the

initial condition P(0) = I, we have

P(t) = etQ = I +
∞∑
n=1

tnQn

n!
(A.13)

and Q is the matrix derivative of P(t) at t = 0, that is, Q = P′(0). Notice that for
a continuous-time finite-state Markov chain (ζt)t≥0 with Q-matrix Q, the transition
probability from i to j in time t is given by

pij(t) = P[ζt = j|ζ0 = i], (A.14)

where pij(t) is (i, j) entry in P(t) = etQ.
Moreover, the holding time definition can also be expressed as follows: Starting in state
i, the process waits there for a duration that is exponentially distributed with parameter
qi. The process then jumps to state j 6= i with probability qij/qi; the waiting time in
state j is exponentially distributed with parameter qj, and so on. The sequence of states
visited by the process, denoted by ξ0, ξ1, . . . , is a Markov chain with discrete parame-
ter, called the embedded Markov chain. Conditioned on the state sequence ξ0, ξ1, . . . ,
the successive holding times S1, S2, . . . are independent exponentially distributed ran-
dom variables with parameters qξ0 , qξ1 , . . . , respectively.

Example A.4. Consider a Markov chain (ζt)t≥0 with states {0, 1} with generator ma-
trix

Q =

[
−α α
β −β

]
.

The process alternates between states 0 and 1. The holding times in state 0 are indepen-
dent and exponentially distributed with parameter α. Those in state 1 are independent
and exponentially distributed with parameter β. It can be shown that

Qn = (−(α + β))n−1Q.

Then, by Equation (A.13), we have

P(t) =

[
1− π π
1− π π

]
+

[
π −π

−(1− π) 1− π

]
e−τt,

where π = α/(α + β) and τ = α + β.

When a Markov chain on states {0, 1, . . . , N} is irreducible (all states communicate),
then pij(t) > 0 for i, j = 0, 1, . . . , N and limt→∞ pij(t) = πj > 0 exists independently
of the initial state i. The limiting distribution may be found by passing to the limit
in Equation (A.12), noting that limt→∞P′(t) = 0. The resulting equations for π =[
π0 π1 . . . πN

]
are

0 = πQ =
[
π0 π1 . . . πN

] 
−q0 q01 · · · q0N

q10 −q1 · · · q1N
...

...
...

...
qN0 qN1 · · · −qN

 ,
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which is the same as

πjqj =
∑
i 6=j

πiqij, j = 0, 1, . . . , N. (A.15)

Then, the limiting distribution is determined by Equation (A.15) together with

π0 + π1 + · · ·+ πN = 1. (A.16)
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