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ABSTRACT

DYNAMIC VOXELIZATION TO AID ILLUMINATION OF REAL-TIME
SCENES

Yalçıner, Bora

M.Sc., Department of Modelling and Simulation

Supervisor : Assist. Prof. Dr. Yusuf Sahillioğlu

August 2016, 79 pages

In this thesis, we focus on approximating indirect illumination on real-time appli-

cations to visualize realistic scenes. In order to approximate indirect illumination

we provide a fast sparse voxel tree structure for highly dynamic scenes. Our

system tries to cover traditional real-time animation methods including dynamic

non-deforming objects and objects that deform with bone transformations. The

voxel scene data structure is designed for fully dynamic objects and eliminates

the voxelization of the dynamic objects per frame which in turn facilitates effi-

cient realistic rendering. We combine this new scene information structure with

the widely used real-time rendering techniques and these techniques’ data struc-

tures such as shadow mapping and deferred rendering to provide an efficient cone

ray-casting algorithm that achieves global illumination in real-time.

Keywords: computer graphics, global illumination, cone-tracing
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ÖZ

GERÇEK ZAMANLI SAHNELERIN ISIKLANDIRILMASINA YARDIMCI,
DINAMIK VOXELLESTIRME TEKNIKLERI

Yalçıner, Bora

Yüksek Lisans, Oyun Teknolojileri

Tez Yoneticisi : Yrd. Doç. Dr. Yusuf Sahillioğlu

August 2016, 79 sayfa

Bu tezde, gerçek zamanlı sahnelerdeki dolaylı ışıklandırmayı yaklaşık olarak hesap-

lama üzerine bir çalışma gerçekleşmiştir. Dolaylı ışiklandırmayı gerçek zamanda

hesaplamak için hızlı hesaplanabilien ve çok sayıda dinamik objeleri destekleyen

bir voxel veri yapısı tekniği sunuyoruz. Bizim sunduğumuz bu sistem hali hazırda

gerçek zamanlı bilgisayar grafiği animasyon metodlarını; örnek olarak, dinamik

defrome olmayan objeleri ve iskelet deformasyonuna mağruz kalan objeleri kap-

samaktadır. Bizim ortaya koyduğumuz voxel veri yapısı baştan sona dinamik

objeler göz önünde tutularak tasarlanmıştır ve her karede dinamik objelerin vox-

elleştimesine gerek yoktur. Biz yukarıda bahsettiğimiz bu yeni veri yapısını

şuanda kullanılmakta olan gerçek zamanlı sahne gerçekleme teknikleri ile be-

raber elverişli bir koni şeklinde bir ışın fırlatma algoritması ile dolaylı işiklandırma

hesaplamısını gerçek zamanda gerçekleştirmeyi amaçlıyoruz.

Anahtar Kelimeler: bilgisayar grafiği, sahne aydınlatma, koni şeklinde ışın izleme
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dedicated to all game developers who create dreams while giving up on so many
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‘friend’ (unfortunately only friend) Cağıl Kirezci and Ebru Demirci (soon to be

Kirezci) to show me how a couple converges towards happiness;
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Main motivation of this thesis is to provide potential solution to the global il-
lumination problem in current games. Recently available graphics hardware is
extremely powerful and capable of rendering photo-realistic scenes with ease.
However, simulating indirect illumination in real-time is still a challenging task,
especially for dynamic lights and animated objects.

Most of the modern games use static light maps generated using off-line rendering
techniques. The light map quality is visually pleasing however it is nowhere near
fast enough to calculate in real-time, which makes the calculation static for both
the light and the objects. This kind of approach is beneficial if the scene light
is static and it can only be applied to static objects in the scene. For dynamic
objects different approaches can be applied and those will be discussed in Chapter
2.

Solving the rendering equation in real-time is plausible; anyhow, resolution and
polygon compromises will make the consumer shy away from playing the game.
Modern games rasterizes nearly millions of triangles and determine color of mil-
lions of pixels in mere milliseconds, which makes applying polygon or screen
space bound algorithms challenging task. Recently, 4K (3840 x 2160) resolution
displays have become available; thus this technological advancement indirectly
created demand to support it in respectable frame rates. Most of the today’s
games are pixel bound since most of scene rendering calculation done on screen
space. Deferred Rendering, ambient occlusion and reflections are all done in
screen space as a post processing effect in recent games. This sudden increase in
pixels made respectable drops of frame rates on games.

In this thesis we consider approximating the scene with voxels which introduces
voxel count bounded algorithm. Since the voxels are only used for indirect il-
lumination and reflection it can be adjusted to achieve the desired frame rates.
However, sampling the voxel structure is pixel bound because each pixel should
trace series of cones and combine the results of those cones. Still, reduction of
resolution will not be as noticeable because voxel structure is used to calculate
only the indirect lighting.
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1.2 Objective of the Study and Contribution

In this thesis we propose a more dynamic object firendly methodology on cone-
tracing method proposed by Cyril Crassin [1]. Crassin’s method relies on vox-
elizing dynamic objects in real-time, however our method introduce application
of traditional animation methods to the voxelized objects per-voxel basis. These
traditional animation methods include transformations and joint based deform-
ers. Our method is more huge scene friendly with its camera bound dynamic
voxel grids. In addition to that, supports multiple nested voxel grids which en-
ables higher fidelity near the camera and fidelity decreases with respect to the
distance of the camera. All of these multiple voxel cascades are included in the
single sparse voxel octree (SVO).

Proposed approach supports fully dynamic objects and lights as long as the light
has its shadow maps [2] generated. Using these shadow map info and voxel grid
structure, it traces series of cones per pixel in order to approximate a solution to
the rendering equation [3]. Cone tracing method is used for the SVO sampling
since it provides efficient memory access when cone ray is away from the shot
surface.

This methodology uses state of the art rendering techniques used by the modern
games which includes shadow mapping, deferred rendering and traditional joint
(bone) based deformers with animations. This enables fast integration with the
modern game engines since most of the data is already available. This solution
is designed to complement the traditional direct rendering pipeline which lacks
dynamic indirect illumination support. In current generation of hardware it is
not fast enough to entirely use this approach to calculate entire lighting of the
scene with plausible results, at least in commercial games.

In this study, provided method tries to define real-time scene approximation us-
ing voxels. This voxel approximation, can be used to calculate first(or multiple if
computation unit is powerful) bounces of the global illumination. However, direct
illumination will still be calculated using traditional deferred lightning technique.
SVO structure will be used for ambient occlusion and real-time reflections. This
thesis mainly focuses on the scene approximation rather than usage of the struc-
ture. In addition, implementations and discussions of the both global illumination
and ambient occlusion are provided.

This study aims to improve on the solutions or define new solutions to the voxel-
cone tracing technique and sparse voxel octree structure [1] in following ways:

• Approximation of the rendering equation in real time

• Scalable support for dynamically movable objects including,

– Rigid dynamic objects

– Deforming objects with joint hierarchies (skeleton)

– Deforming objects with vertex morph targets

• Open world or big scene usable method

2



• Scalable for multiple dynamic lights

• Real-time dynamic reflection support

• Should incorporate with already well established real-time rendering meth-
ods such as,

– Shadow mapping [2], [4]

– Deferred rendering GBuffer [5]

– Physically based shading [6], [7]

– Screen space reflections [8]

Most of the objectives stated above are covered in this thesis however, deforming
objects with vertex morph targets, physically based voxels are not covered in this
thesis. This voxel hierarcy only supports dynamically transformed objects and
objects that are animated with joint hierarchies. Specular illumination is handled
by the Phong illumination model [9]. Other improvements which are not covered
by this thesis are stated as future work in the conclusion chapter.

1.3 Outline

Outline of this thesis is as follows:

Chapter 1 explains the motivation behind this research and briefly touches on
what improvements have been established over the existing cone tracing method.

Chapter 2 briefly reviews the literature and specifies the methods used in com-
puter graphics literature. Topics of the background work include global illumi-
nation methods, and computer animation methods. Illumination methods cover
both real-time and off-line approaches.

Chapter 3 throughly remarks the voxel cone tracing method [1] that this study
is based on.

Chapter 4 introduces the proposed method and discusses improvements and
limitations over the voxel cone tracing method.

Chapter 5 explains the results obtained by using the proposed method. Sponza
Atrium, Cornell Box and Sibernik cathedral scenes are chosen as test scenes.
Timing graphs are provided for each parameter such as resolution, voxel count,
cone angle and cone count per pixel.

Chapter 6 summarizes the proposed methodology and presents recommenda-
tions for further research.

Appendix A is the manual of the thesis source code, actual source can be
accessed from here [10].

Appendix B discusses GPU Friendly Graphics (GFG), the file format used
in the thesis, which is developed along with the thesis concurrently. GFG file

3



format supports skeletal animations, multi material meshes, mesh object space
axis aligned bounding boxes and pre-formatted meshes vertex data wich can
directly be used by the GPU. Source code; which includes Autodesk R© Maya
importer exporter and header libraries, can be found in [11].
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CHAPTER 2

BACKGROUND AND PREVIOUS WORK

In this chapter, research about interactive global illumination is provided. Meth-
ods that are discussed split into off-line and on-line solutions. Real-time solutions
are only covered if they are used by an actual commercial game. The reasoning be-
hind this is that many methodologies are considered real-time when they achieve
certain calculation time threshold. However, these methodologies are actually
real-time capable for simple test scenes but actual visual quality and geometric
complexity required by current potential games are much more higher and com-
petitive nature of the gaming industry market pushes the required visual fidelity
to the limit.

Global Illumination is a heavily focused research area and most of the topics
discussed here are only a small portion of the entire illumination field. Recently,
Ritschel et al. [12] did a comprehensive research about interactive global illumi-
nation and compiled research on a single paper. It is a very compact form of infor-
mation about interactive, real-time global-illumination. Most of the background
research discussed in this chapter can be considered as pillar methodologies of
indirect illumination.

2.1 Rendering Equation

Kajiya presented the rendering equation [3] which unified different rendering phe-
nomena and merged them into a single equation. Rendering equation simulates
the light which scatters from different surfaces in the scene. It is defined for per
surface patch in the entire scene since each object contributes to the illumina-
tion of other objects with either having emissive surface properties and applying
light directly or having reflective properties and indirectly transmitting light from
other potential luminance points in the scene.

The rendering equation is the current norm of physically simulating the light
in a scene. Most of the games and off-line applications approximates rendering
equation ultimately. Since it simulates light in an accurate way, most of the
rendering related research backtrack to this equation.

The rendering equation, in its original form, defined in the paper is as follows:

5



I(x, x′) = g(x, x′)

ε(x, x′) +

∫
S

ρ(x, x′, x′′)I(x′, x′′)dx′′

 (Equation 2.1)

Where:

– I(x, x′) is total intensity of light passing from point x to point x′

– g(x, x′) is geometry term.
– ε(x, x′) is light emitted x from to x′

– ρ(x, x′, x′′) is intensity of the light scattered from x′′ to x indirectly from x′.

Rendering equation can be written in terms of incoming radiance on a hemispher-
ical integral like this;

L0(p, w0) = Le(p, w0) +

∫
Ω

fr(p, wi, w0)Li(p, wi) cos θidwi (Equation 2.2)

Where:

– L0(p, w0) is total outgoing radiance from surface point p outward along the
direction w0

– Le(p, w0) is total emitted radiance from surface point p outward along the
direction w0

– fr(p, wi, w0) is the bidirectional reflectance distribution function which de-
fines the surface property of how much of the light incoming from the di-
rection wi is transferred towards w0 after surface reflection, refraction and
absorption.

–  Li(p, wi) is same as L0 but its direction is wi
– Ω term represents the positive hemisphere centred at surface point p.

In this thesis, the hemispherical form of the equation will be used since its defi-
nition is applicable to cone tracing method.

A can be see from the equation, its computation of is costly, it is a recursive
function in which number of calls that will happen recursively is determined by
the integral equation. In addition to that, function is defined for per visible
surface point initially and after first bounce of the light, equation will include
many other invisible surface points and will keep increasing exponentially up
until desired visuals are achieved [3].

Along with the equation, Kajiya introduced solution to integral part of the equa-
tion using a Neumann series method. Integral is approximated by summing
multiple rays of light for arbitrary number of wi for some dwi. Calculation is
stopped until desired amount of irradiance is gathered.

Rendering equation can be approximated by using the Monte Carlo methodology.
Monte Carlo method requires importance sampling methods in order to be prac-
tical. Kajiya introduces methods for sampling rays towards interesting parts of
the domain and sparse sample areas which have minimal contribution. Further-
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more, k-d space partitioning scheme is proposed to apply to the solution of the
integrand. The techniques that are provided in the section “Off-line Illumination
Methods” tackles the problem of solving the rendering equation in time intervals
that are not considered real-time.

2.2 Off-line Illumination Methods

In this section, we will explain the off-line solutions that are considered core
solutions to the rendering equation. Those techniques include Mote Carlo Path
Tracing, Radiosity and Virtual Point Lights, Photon Mapping.

2.2.1 Monte Carlo Path Tracing

Monte Carlo Path tracing solves rendering equation by launching rays arbitrarily
and bounces them on the scene up until enough illumination is gathered for
each each surface (Figure 2.1). Illumination is generated by reaching to a light
source. In order to achieve high quality results, a high number of rays needs to
be sampled. As discussed above, instead of arbitrarily shooting rays, rays can
be send with a logic by looking where its integrand has high values. This is
called importance sampling. Importance sampling can be applied by looking to
the bidirectional reflectance distribution function (BRDF)fr or by looking at the
incoming light term Li and launch outgoing rays according. However, doing this
is not a trivial task since it is not computationally easy to determine where the
largest contribution of irradiance is coming from.

Figure 2.1: Monte Carlo method illustration for solving rendering equation. Dark red surface
point starts to shoot rays (coloured with dark red) until it finds the light source. Yellow coloured
ray is light ray. Notice hight amount of rays require to render a single surface if the rays
launched arbitrarily.
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That being said, to reduce time of calculation; in adition to the improtance sam-
pling, other methods can be used. Bi-directional path tracing method launches
rays from light sources as well as surfaces to make the Monte Carlo solution
to converge faster [13]. Metropolis light transport algorithm [14], introduces a
metropolis sampling method; which is initially proposed for handling sampling
problems in computational physics, to sample the paths contributions to the im-
age by tying to define a function f, which represents and records paths towards
the image plane from light sources.

Even though Monte Carlo path tracing method provides photo-realistic imagery,
itself and its improved forms are not applicable to the real-time solutions.

2.2.2 Radiosity and Virtual Point Lights

Firstly introduced by Goral et al. [15], radiosity method defines surfaces which
have uniform reflectance distribution function, makes its BRDF output to be
uniformly distributed over the hemisphere. Although radiosity research was con-
ducted before the rendering equation paper, it can be considered as an approx-
imative solution of the Rendering Equation. Perfectly diffuse functions have
constant hemispherical BRDF, which simplifies some portion of the rendering
equation. Moreover, solution consists of dividing scene as surfaces and deter-
mining the light interraction between those surfaces via links, and computing
the interaction between the surfaces. Furthermore, radiosity solution applied to
non-diffuse environments [16].

Common usage of radiosity is by deploying many points that served as virtual
point lights (VPL) throught the scene [17]. Then, each surface point accumu-
lates lighting in its vicinity by using generated points. Modern approaches utilize
shadow mapping to sample VPL towards the scene [18]. Ritschel uses imperfect
shadow maps [19] to use sample instant radiosity in real time speeds. Further-
more, Ritschel improves his own solution by making indirect shadows more ac-
curate by viewpoint occluder adaptation [20]. Recently, Sun et al. [21] combined
many light approach with sparse voxel octree structure and accelerated virtual
point light solution SVO traversal.

2.2.3 Photon Mapping

Photon mapping [22] approaches the light transport problem differently. Photon
mapping firstly launches series of photons from the lights sources of the scene and
stores the bounced photons in a photon map. After photon generation, surface
irradiance is calculated from those photons by either determining photon density
near the surface area or doing a final gathering which illumination data gathered
from each visible surface point by tracing the length (Figure 2.2).

Photon mapping relates to bi-directional path tracing when we consider the final
gathering version. Instead of sending light rays towards the scene from light
sources, for each iteration it sends photons and stores them in a map. Difference
here is that the photons can also bounce; in contrast, bi-directional path tracing
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is calculated from light source and the initial contact point. The photon map
information can be cached and does not required to be calculated every frame,
until either light or one of the objects of the scene is moved. Moving anything
on the scene invalidates the cached data. Cached data is valid as long as every
object and light is stationary.

Figure 2.2: Photon Mapping illustration for solving rendering equation. First step is the
splat series of photons through the entire scene (yellow rays). Second part is to either doing a
proximity check to determine total irradiance (left surface) or to sending rays to neighbouring
photons (right surface).

Photon mapping initial photon splat can be computed on the GPU using raster-
ization [23]–[25]. But these approaches only use for initial transfer from light to
the surface. Yao et al. [26] incorporates secondary bounces using special environ-
ment maps from the scene rendered with position, normal and color data. After
photon splatting, indirect illumination is calculated using deferred shading and
shadow mapping.

2.3 Real-time Illumination Methods

Rendering equation represents most of the physical phenomena such as reflections,
ambient occlusion and shadows; on the other hand, real-time rendering methods
have separate algorithms for each phenomenon. Because of the real-time require-
ment of the approach, most of these algorithms are pre-calculated and stored in a
cache; thus, making the solutions to work only for static objects and lights. How-
ever with additional cost, most of these algorithms are applicable to the dynamic
object and dynamic light. Some of these algorithms complement each other with
respect to scene dynamism. In short, we will explain the techniques that modern
games use to partially solve the rendering equation with respect to reflections,
illumination and shadowing.
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2.3.1 Global Illumination

In this section, indirect illumination methods; which are used in modern games,
will be explained. Section also covers the most used direct lighting methodology
in today’s games which is deferred lighting. Most of the remaining algorithms
cover only diffuse indirect illumination however, glossy reflections can also be
approximated. Off-line methods that are explained below can cover both direct
and indirect illumination.

2.3.1.1 Light Maps

Earlier games fully relied on pre-calculated lighting, which were stored in form of
a light map [27]. Still, light mapping is used for static objects and static lights
because light mapping has high quality results for both static objects and lights.
Only drawback is that light maps have memory requirements which can be a
limitation for low memory GPUs. Most of the memory requirements are not as
important as the performance and quality gain over the real-time methods unless
the scene that is being rendered is large.

Lightmaps have heavy memory constraints and it has become harder to incor-
porate it with open world scenes. Stefanov explained the solution used in the
Far Cry 3 game [28] which defines a method to work on large dynamic scenes.
Based on the Sloan et al. [29] and Kirstensen et al.’s approach [30], they use
pre-computed light probes which hold radiance transfer and using this data to
update camera centric volume texture dynamically. They also update light probe
values depending on time of day change. Their light probe approach holds only
couple of megabytes of memory on the CPU. Even though entire map of the Far
Cry is vast, their approach achieved minimal memory requirements. However,
like other light map approaches; dynamic objects only receive light and do not
contribute global illumination.

2.3.1.2 Light Propagation Volumes

Light propogation volumes (LPV) approximates the scene with a volumetric
structure [31]. Direct light is sampled to this volumetric structure using Reflec-
tive Shadow Maps (RSM) [18]. This provides simple light transport calculation
between grids of the volumetric structure, which makes the algorithm to be par-
allel for each volume grid. Moreover, it makes the algorithm to be able to work
on the GPU pretty well. Furthermore, Kaplanyan et al. introduces the cascaded
approach, in this approach scene is divided in to more fine grids near the camera
and coarser grids away from the camera [31]. Cascaded voxel structure which
will be explained in this thesis was inspired from this paper. Multiple cascades
concentrates the quality near the camera, where players attention will be focused
on most of the time.

Light propagation volumes have two steps. First scene geometry density is cal-
culated for each volumetric location, using depth peeling from the camera and
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reflective shadow maps. In the propagation section of the algorithm, light prop-
agates based on its initial reflection direction (Figure 2.3).

Light propagation volume method is designed to compute low-frequency lighting
in a scene like indirect illumination. It mostly covers diffuse indirect illumination,
in addition to that, Kaplanyan et al. [31] discusses visually acceptable approxi-
mations on specular indirect illumination.

Computationally LPV algorithm is designed for fully dynamic lights and scenes.
RSM generation is more or less like shadow-map generation with additional data.
Today’s modern games have very efficient shadow map rendering pipelines and
thus those optimized pipelines can be used to generate RSM as well. Only data
difference is here that RSM has normal information as well as depth information.

Figure 2.3: First 4 propogation step and initial light injection step from reflective shadow
maps. Images generated using ligh propogation volumes demo by Benjamin Thaut [32].

Limitation of this approach is that LPV suffers from light bleeding since it has
limited information about the geometric density of each grid. Since it has used
already generated data; i.e. RSMs and Camera Depth buffer, it may not fully
cover the scene with this limited geometric density data.

This approach is computationally fast for both dynamic lights and scenes. Light
propagation volumes are camera centric and dynamically updated every frame
and works fast on previous generation consoles (Sony Playstation R© 3, Microsoft R©

Xbox360).

2.3.1.3 Voxel Cone Tracing

Since this research is heavliy based on this approach, voxel cone tracing method
will thoroughly be explained in upcoming chapter. In short voxel cone tracing
method approximates the scene geometry using voxels and storing voxel in the
sparse voxel octree(SVO) structure [1], [33]. Then initial light information is
splattered using hardware rasterizer using a shadow-map. Then radiance infor-
mation is averaged through the top levels for higher cone angles. Finally for each
screen pixels, couple of cones traverse the scene and gather illumination data for
each pixel.

2.3.1.4 Light Probes

Inb real-time engines dynamic objects indirect illumination is often captured in
a low-frequency solutions. Many game engines use a form of pre-calculated light
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data in cache. Unity R©; up until Unity R© 5, used light probes [34], [35] for il-
luminating the dynamic objects. Unreal Engine R© uses similar approach called
Indirect Lighting Cache [36]. Although named differently, both implementations
sample pre-calculated data on places near the scene. Cache data generated near
the surfaces is finer and on other regions of the scene generation is done coarsely.

Middleware indiect illumination solution company, Enlighten, is also using light
probes for dynamic objects [37]. Enlighten is integrated with most of the modern
real-time rendering engines such as Dice R© Frostbite and Unity R©. Enlighten also
uses light probes and store the outgoing radiance in frequency domain using
spherical harmonics [38].

2.3.2 Deferred Lighting

Deferred rendering is not a recent discovery [5]. But only in the recent years it is
started to be utilized by the game engines. One of the first implementation of the
deferred shading is on Kill Zone 2 [39]. Up until late 2000s, hardware limitations
prevented implementation on the GPU up until OpenGL and DirectX exposed
frame buffer objects. This enabled rendering into multiple render targets, each
render target holds a required information about lighting calculation. Moreover,
memory cost can be quite memory intensive if illuminated material is required
to have various material information. Packing screen space data increases perfor-
mance since each light will fetch entire G-Buffer data for that pixel and bandwidth
of that texture fetch is the main bottleneck in the deferred rendering algorithm.

This completely eliminates unnecessary calculations since you only illuminate
the pixels that are already rasterized. Normal, position, color or any other value
required by the lighting calculation are stored in the textures. Combination of
this texture cache is called Geometry Buffer, in short G-Buffer.

Figure 2.4: Sponza scene G-Buffer. G-Buffer holds world space normals, unlit color and
depth information in screen space. From left to right, color normal and depth values of the
G-Buffer is shown.

G-Buffer can change depending on the illumination method. Physically based
material may require more data than simple illumination methods like Phong
Illumination Model. In addition, all rendered pixels are required to hold normals;
which can be either in screen space or in world space, pixel position and pixel
albedo (unilluminated color value) (Figure 2.4). Pixel position is stored as a
depth buffer value since depth buffer value can be used to determine the screen
space or world space position of the pixel by unprojecting the pixel.

G-Buffer enables many other rendering algorithms like screen-space reflections.
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Since G-Buffer holds position and normal data. Those two can be used to start
tracing algorithms directly from the hit surface since by definition camera rays
will hit those location. This accelerates initial setup of cone tracing method and
increases performance.

Just like any other screen space method lighting calculation overhead is decoupled
from the scene complexity. In deferred shading algorithm, lighting calculation is
only bounded by pixel count on the screen.

2.3.3 Ambient Occlusion

Ambient occlusion method is first proposed by Zhukov et al.[40]. It defines equa-
tion independent from the light source, which resolves the ambient illumination
by looking obscurance of vision on the scene. Below, you can find some of the
implementations of this phenomenon on screen space.

2.3.3.1 Screen Space Ambient Occlusion(SSAO)

Screen Space Ambient Occlusion (SSAO) is first introduced to gaming insdustry
by Crytek [41]. Crytek’s implementation uses depth buffer discrepancy between
neighbouring pixels by sampling multiple points around the pixel thus, deter-
mining the pixel occlusion. Implementation requires high amount of samples per
pixel in order to be visually acceptable. To increase performance, implementa-
tion randomly rotates the sampling kernel, then blurs the noisy result. Method
generates shadows near the contact points of the neighbouring objects (Figure
2.5).

Figure 2.5: SSAO example from Cry Engine 2. Notice the darkened pixels near hard edges
[41].

Limitation of this method comes from its screen space nature, only close hight-
frequency ambient occlusion can be calculated since it checks neighbouring pixels
for occlusion. For high-frequency occlusion more broader scene information is
required and screen space information does not provide that.
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2.3.3.2 Horizon-based Ambient Occlusion(HBAO)

Shanmugam and Arıkan [42] introduced the idea to incorporate normals to the
ambient occlusion calculation on screen space. This requires normals of the
screen-space pixels which is provided by the deferred rendering technique. First
they treat each pixel as a surface defined by point and a normal hence the need
of normal and position for each pixel. Then each pixel samples other pixels and
try to estimate occlusion.

HBAO technique further improves on that by ray marching on horizons on a
radius r sphere [43]. Sphere radius is proportional to the pixel size, and horizon
ray is generated by looking at tangent plane. Horizon is incremented by an angle
towards the surface normal and sampled multiple times.

Iteration times can still be quite high for current generation hardware. Instead of
fully sampling each pixel, sampling is done sparsely then blur pass is incorporated.
Since ambient occlusion is low-frequency illumination it does not necessarily de-
grade visual quality as much. HBAO technique is more accurate than SSAO
technique since it also incorporates surface normals into the equation. Just like
SSAO, HBAO can only calculate close distance occlusion since distant occlusion
information may not be available since only screen space data is available.

2.3.4 Reflection

Another phenomenon that can be achieved by the rendering equation is the object
reflections. Glossy or mirror-like objects reflect incoming light away from their
surfaces with minimal absorption. This creates the reflection phenomenon and
it is a product of rendering equation. However, real-time applications cover this
phenomenon specifically by using screen space to sample reflection points or using
static environment maps to specifically sample from pre-calculated and cached
data.

2.3.4.1 Screen Space Reflection

Firstly introduced by CryEngine [8], screen space local reflections method utilizes
pre-generated geometry buffer; which is mainly used by deferred lighting, to trace
rays from the screen space mainly using geometry buffer position and normal
data. Tracing direction is towards reflection vector and tracing is done by doing
ray-marching algorithm (Figure 2.6.

Ray traversing can be accelerated by using hierarchical depth buffer which is
mipmapped depth buffer and each parent holds the most close distance among
its children [45]. After that ray traversing is not necessarily required to march
in constant steps and rays can skip multiple depth sample points with one mip-
mapped depth buffer lookup. Moreover, neighbouring rays can be used to reduce
number of rays required to be traced in order to get realistic results [44]. Cone
tracing method can also be incorporated for sampling the reflection vector [45],
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Figure 2.6: Screen Space Reflection implementation by Stachowiak et al. [44]. Notice that
camera is specifically put on a place to perfectly cover surfaces reflection points by the screen
space.

[46]. Geometry buffer color values are convolved in to lower mipmap chains of the
texture then sampled from appropriate level of mipmap depending on the cone
opening.

Most important fact about screen space reflection is that it supports dynamic
geometry in high-frequency form. Because of that even mirror like objects can
be approximated with this approach with minimal computational cost.

2.3.4.2 Environment Probes (Environment Map)

Environment mapping is a solution to the specular reflections on the scene. Most
of the objects in the scenes require reflection effects in order to be visually com-
pelling. Debevec’s method proposed image based lighting method which is base-
line of this approach [47]. Today’s modern games render static objects in the
scene into a cube map. There are multiple cube maps laid out on the scene
which is used by the GPU to approximate reflections on the object. Limitation
of this method is that only static object’s reflection can be stored on the image
since environment cube maps are pre-calculated. Secondly cube maps require
high amounts of memory and in order to be visually consistent with the scene,
environment maps are required to be probed to various places of the scene. This
improves the memory cost.

Another limitation of this method is that it is not pixel perfect accurate since
environment probe is sampled from a space that is not exactly used by the sur-
face. This introduces inaccuracies however for low-frequency reflections method
is usable.

2.4 Computer Animation Methods

In this section we will provide traditional animation methods that re used in
today’s modern games. These methods provided here are supported by the sparse
voxel octree structure provided in this thesis.
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2.4.1 Non-Deformed Objects with Transformations

This is the most basic animation technique. Single transformation is applied to
the entire rigid body, transformation is changed per frame by a key-frame chain
interpolated to the current time-step. In addition to key-frame chain, this kind
of animation can be triggered by physics system.

Non-deformed animation is mostly used by rigid bodies, like bullets or scene solid
moving objects like barrels and boxes.

2.4.2 Bone Deformed Objects

Used in mostly humanoid objects, bone deformed objects are animated by a bone
or joint chain. Each object vertex has weights of adjacent bones. Each vertex
holds constant amount of weights and all of the weights adds up to one. For each
frame, weighted transformation occurs for each vertex per time frame. Skeleton
structure holds key-frame chain for each of its joint rotation, in addition to that
root translation key-frame chain is also stored.

Transforming vertices using multiple bone transformation is called skinning. Skin-
ning results in organic transformations near the skeleton joints which makes the
method suitable for organic objects (Figure 2.7).

Figure 2.7: Nyra character; which is used in the thesis, doing her jumping animation.
Coloured hierarchy formed by joints and drives the movement of the base character. All of
the vertices of the object has four weights which is used to deform the object using the most
influencing nearby joints.

Just like non-deformed object animation, physics system can solve bone trans-
formation and trigger animations in this system. This is called rag-doll physics.
Most of the modern games uses deformed objects not only for humanoid but also
rigid object with moving parts like cars, helicopters. It is more convenient to use
single modelled object than constructing the scene hierarchy in the engine.
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2.4.3 Vertex Morph Targets

Even though it can be applied to many different animation problems, vertex
morph targets are mostly used for facial animation in real-time graphics. Instead
of having third party helpers like joints, each vertex holds their position as a
key-frame. Then interpolation occurs between those key-frames.

For real-time graphics its operation is costly and has high memory constraints if
vertex size is high. Because of these reasons it is used for facial animations in
games, more high-quality version of morph targets used in cinematic cut-scenes.

2.5 Importance of Screen Space in Real-Time Graphics

Screen space effects enabled visually complex scenes, since all of the screen-space
effects are independent from the scene geometry. As long as program pushes
triangles to the hardware efficiently, modern graphics hardware do not choke
under high triangle loads. Screen space algorithmic complexity depends on the
screen pixel counts because of that, sudden increase in pixel density; i.e. 4K
displays, greatly effects performance of modern games. Other limitations of the
screen space implementations are that they do have limited information about
the scene. Only visible pixels hold information in screen space and with this
limited information, algorithms cannot completely solve the rendering problems
that it is designed for, thus making screen space effects reliable for close distance
interactions between surfaces.

If we summarize;

Pros:

– Independent from scene complexity
– Inherently acceleratable by the GPU
– No redundant calculations needs to be made

Cons:

– Pixel bound
– only visible data is available for calculation
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CHAPTER 3

VOXEL CONE TRACING

3.1 Overview

All of this chapter is about Crassin’s PhD thesis [1] which is about the voxel octree
structure and voxel cone tracing method. Cone tracing method is first introduced
by Amantadies et al. [48]. In the original paper, intersection of the cones are
done between objects and the cone and each intersection provides coverage ratio
and intersection boolean result. Crassin’s approach provides cone tracing method
which is accelerated by sparse voxel octree (SVO) structure.

Other key points of the proposed method which will be discussed in this chapter
are hardware linear interpolation support, anisotropic voxels and N3-tree [49]
utilization.

3.2 Voxel Information

Crassin’s method splits voxel information into two separate parts. Brick maps
and node pointers. Node pointers are in the form of N3-tree. N3-tree is generic
form of octree. Octree is the special case of N3-tree where n = 2. N3-tree is
very useful for holding voxel corner data in the brick structure since it prevents
memory repetition.

Brick map portion of the data structure holds the actual surface parameters.
In order to utilize hardware trilinear interpolation, bricks are stored in texture
memory. Brick resolution is determined by the N value of the N3-tree. For
N = 2 each brick holds 2 × 2 × 2 voxel data. Brick map resolution here plays
a important role about data redundancy. In his thesis, Crassin analysed the
memory cost of the different N values, and different voxel storage schemes. These
schemes are about storing voxels at he center of the nodes or the corner of the
nodes and storing these nodes with or without having border values. Border
values are required to sample consistently in run-time without tracing the tree
for the neighbouring values. Increasing the N value of the N3-tree also reduces
the data dependency between bricks in terms of averaging and sampling.

However, utilizing higher N counts increases the averaging complexity since in-
stead of using box filter N covered Gaussian filter is required to be used. In
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contrast, having higher N values reduces the construction complexity since voxels
that are not at the border of the brick are not required to be exchanged between
brick nodes in order to get correct linear interpolation results.

Crassins method constructs the tree off-line for static objects and utilizes fast
dynamic voxelization method for dynamic objects [33]. Dynamic objects then
are splattered into the static octree in run-time.

Choice of illumination method in the Crassins PhD thesis was Phong illumination
[9]. In order to represent the surface normal over a voxel volume, normals are
defined using a normal distribution function (NDF). Based on Toksvig’s approach
[50], normals are filtered as Gaussian normal distribution with a direction vector
~D and a standard deviation of σ.

3.2.1 Anisotropic Voxels

Crassin suggested the usage of anisotropic voxels for internal nodes of the tree.
For thin objects; i. e. wall with a single voxel depth, averaging will result on
same value for all the directions of the voxels but in the example above thin wall
should still have same color value for the direction that the wall is facing. In order
to accomplish that, voxel holds its information anisotropically by holding a value
for all directions of the voxel and interpolates them according to the incoming
direction.

Storing voxels anisotrophically means additional memory cost. To be precise,
voxels will store six times more data than a isotropic version since each voxel
has six faces. However this is required only for the intermediate levels because
bottom level does not undergo averaging process.

Anisotropic voxels increase memory cost of each voxel by six. However for thin
layer objects (i.e. walls, thin cloth) this approach greatly increases visual fidelity.
In our method anisotropic voxel was not adopted since we construct the tree per
frame.

Linear interpolation friendly tree requires different averaging process in order to
be visually consistent. Each node is required to fetch 8 neighbouring voxels on
the different bricks. This means 8x more tree traversal for each average process.
In construction time Crassin uses neighbouring pointers for each brick to traverse
to the neighbouring nodes fast. Still this means extra process if we consider per
frame voxel octree construction. However tracing has to be done in every frame
but SVO construction can be done per multi-frame. It will introduce delayed
indirect lighting effects however, those effects only complement the main image
hence results should be visually acceptable.

3.3 Cone Tracing

Another novel approach in Crassin’s thesis is instead of launching rays through
the scene, method launches cones instead of rays. Cones have useful properties
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to take advantage of SVO structure. First, cones have increasing aperture when
the length of the cone increases. This enables to sample lower levels of the SVO
when the cone has higher heights which enables reduction of tree traversal. Since
cones have actual volumes; unlike rays, minimal amount of cones will be required
to cover most half sphere needed to be integrated per surface. Amount of cones
required depends on the cone angle. Only couple of high angle cones are needed
to cover entire half sphere.

Now, we will explain problems that can be solved by using voxel cone tracing
technique. Voxel cone tracing technique accelerates light ray tracing because
of that, it can be used to cover entire rendering equation phenomena including
reflections, ambient light occlusion, indirect diffuse lighting.

3.3.1 Ambient Occlusion

First we start by examining ambient occlusion equation, because it is simpler
case than rendering equation. We take the hemispherical version of the Zhukov’s
equation [40].

A(p) =
1

π

∫
Ω

V (p, w) cos θdw (Equation 3.1)

Where:

– A(p) is total occlusion at the surface point p
– V (p, w) is visibility term which returns zero or one depending on the rays

occlusion.
– θ is angle between the ray and the surface point normal

In order to compute integral efficiently, integral is split into smaller integrals
where each resembles a cone [1].

A(p) =
1

N

N∑
i=1

∫
Ωi

V (p, θ) cos θdθ (Equation 3.2)

In this equation each integration represents a cone with aperture of θ. In closer
distances from the surface, we can consider the cos θ term constant since angle
difference is minimal[33]. Visibility function now takes θ instead of w. Resulting
integral will return a value between zero and one. One meaning fully visible and
zero meaning fully occluded. Even though this equation does not have distance
factor incorporated to it Crassin suggested that enclosed scenes visibility is limited
by the distance and should be incorporated into the equation. Therefore, each
sample decays over the distance 1

1+λr
[33].
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3.3.2 Smooth Shadows

Direct light shadowing can be achieved with cone tracing. For each surface point,
Crassin expressed that sending a single cone towards to the light source from the
surface will be enough for testing light occlusion. Just like ambient occlusion we
trace the visibility by sampling voxel density of each cone throughout the scene.
Result of the shadows will be smooth and seamless.

3.3.3 Global Illumination

Just like ambient occlusion evaluating the integrand with accumulation of multi-
ple cones can be used for rendering equation. Rendering equation;

L0(p, w0) = Le(p, w0) +

∫
Ω

fr(p, wi, w0)Li(p, wi) cos θdwi (Equation 3.3)

can be expressed as series of summations just like ambient occlusion equation;

L(p, w0) = Le(p, w0) +
1

πN

N∑
i=1

∫
Ωi

fr(p, θ, w0)Lθ(p, θ) cos θdθ (Equation 3.4)

Emitting light is kept as a ray since implementation will only approximate the ini-
tial bounce from the surfaces. Outgoing ray will go towards the camera pixel. One
of the limitations of the cone tracing is expressed here. It is good for low-frequency
illumination, like indirect illumination. It is still usable for high-frequency illu-
mination but resulting image will be blurry. In order to apply high-frequency il-
lumination, i.e. specular lighting, more narrow cones are required to be launched
which impacts performance. By definition, cone-tracing converges to ray tracing
if limit of cone angle goes to zero. Because of that we apply most appropriate
amount of cones and angles to achieve real-time frame rates.

Initial bounce from the camera can be done with standard tracing which is centred
from each pixel. To improve that, Crassin preferred using deferred rendering G-
buffer which can be used to start rays from the visible surface points directly
[1].

In practice cone tracing method will not have a contact point of reflection /
refraction since sampling point covers a volume. Reflecting from a volume can
be a complex task since it is not clear to simulate how the volume interacts with
the incoming light source.

Illumination also requires light injection pass in order to sample voxels faster in
run-time. Light injection pass determines lit voxels by using calculating lighting
for each voxel. This pass is only required to be done when the light moves since
most of the voxels are static.
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Light injection is done using a data structure similar to the reflective shadow
maps (RSM) [18]. However, it only holds world position data. Using this world
position, SVO is traversed and found leaf voxel is lit using light direction and
stored normal and color value. Calculated luminance is then stored on the voxel
tree then distributed through the higher levels of the tree structure. Theni the
entire SVO is illuminated which makes it ready for sampling.
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CHAPTER 4

PROPOSED METHOD

4.1 Overview and Differences over Voxel Cone Tracing

Our proposed method differs from Crassin’s Method in multiple ways. Firstly,
our method is designed to be dynamic object friendly from ground up. Crassin’s
method for dynamic objects is not scalable for many complex dynamic objects[33].
His algorithm relies on dynamically voxelized objects in runtime. Our solution
perceives voxelization as a modelling tool and assumes all models come with their
voxel model in addition to the traditional triangle model.

Secondly, voxel grid(s) follows the camera which requires octree reconstruction
every frame. Since the system built to support extreme amounts of dynamic
objects, anchoring octree to the camera was the probable choice. In addition,
camera anchored octree enabled other advantages since the system can support
an extremely large scene with a small octree depth by only tracing the near
vicinity of the camera. Also, required voxel models can be streamed and used
when they are about to be included in sparse voxel octree (SVO) as needed.

Thirdly, octree structure is dense up to a certain point (level 6, 643 in our case),
memory constraints are rather low up to a certain point and we wanted to utilize
hardware linear interpolation on lower levels of the tree. In addition to that, it
simplifies SVO reconstruction since only the levels after the dense portion required
to be constructed every frame.

Lastly, our voxel octree representation is quite different. In order to achieve
real-time frame rates, our octree structure does not support fast hardware inter-
polation on its sparse nodes. The reason for that is during construction, entire
voxel transform pool will be injected 8 times(one for each potential neighbour-
ing corner) for interpolation to be consistent between nodes. this makes SVO
construction rather slow. Interpolation will be employed differently on the cone
tracing portion of the algorithm.

Cone-tracing algorithm is also different since our structure does not support fast
linear interpolatable layout. In order to simulate hemispherical integral, multiple
cones are needed to be sampled from the SVO and each cone will require 8 SVO
fetches to interpolate linearly. This has heavy memory bandwidth requirements
and not real-time applicable on current hardware. To achieve visually smooth
results, we still relied on linear interpolation. In order to simulate faster, more
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efficient sampling solutions are introduced. However accuracy of the trace is
reduced since the sample count for each surface patch is reduced. In addition to
interpolating in the level for smoother results, interpolation between levels should
also be considered. To simulate interpolation between levels our approach uses
previously sampled result to simulate the interpolation of between the depths of
the tree.

4.2 Voxelization

Before runtime, we need to generate voxel representation of each object. Vox-
elization process is done by rendering each object into a series of 3D textures with
a given voxel span. Voxel span is the width, height and depth of the voxel which
will be used to sample the object. Because of the structure limitations, voxel
representation cannot exceed 10243 (see fig. 4.2). Object’s axis aligned bound-
ing box (AABB) is used to determine if the object can be covered with at most
10243 dimensioned grid and the given span. If model’s axis-aligned bounding box
cannot fit into the voxel grid coverage; which is determined by span and voxel
grid dimensions, that model is skipped for that span. However, this does not
mean that this object will not contribute to the voxelized scene. Since our sys-
tem utilizes multiple cascades, skipping is done only for that level of the cascade
and potentially that object can appear on other cascades. If the object is large
enough to be skipped by all of the voxel caches, that object will not contribute
to the indirect illumination of the scene.

Our voxelization scheme is similar to the algorithm discussed by Crassin [51].
We choose to utilize surface voxelization algorithm to further reduce the amount
of voxels on the scene since most of our algorithm is bound to the voxel size.
However, surface voxelization creates sampling artefacts if cone tracing samples
are distant from each other. The reason for that is, it may skip the thin surface
layer of the object on the lover levels of the octree.

We purposely did not choose the sparse solid voxelzation technique discussed by
Schwarz et al. [52], since our voxel transformation process cannot necessarily
guarantee model-voxel consistency which may lead to voxel overlapping between
bigger inner voxels and smaller outer voxels. However, combining more advanced
transformation method which will be proposed as a future work this approach
can be more applicable.

In voxelization process, all triangles are rasterized and fragments are generated
as if we are rendering the triangle to the screen (Figure 4.1). Before rasterization
however, triangle dominant axis is determined in order to prevent voxelization
gaps in the triangle. Dominant axis is determined by looking up the vertex
normals of the triangle and choosing direction that has the highest pixel coverage
of that triangle. This is done in the geometry shader, since in geometry shader
hardware exposes all the vertex values from a single invocation. After dominant
axis selection, triangle is rotated towards that axis to increase pixel coverage of
that triangle.

For edge cases, rasterization may still introduce voxel gaps on the triangle. This
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can be prevented by using conservative rasterization [53] as discussed in [1]. In
our approach, we used multi-sample anti-aliasing (MSAA) rasterization discussed
in here [54]. MSAA is generally used for anti-aliasing but in our case it provides
the necessary samples to fill the potential gaps around neighbouring voxels.

Figure 4.1: Each triangle is rasterized as if it is being rendered in to a screen then from the
fragment position the model space position of the pixel is determined. Then voxel position is
determined.

Our method requires two passes and we use accurate high precision data struc-
tures for voxelization. Since our voxelization method is done before runtime,
limitation of the multi-pass and high memory bandwidth required voxelization
costs were irrelevant. Voxelization occurs on a dense 3D texture which has a
dimensions 2563. We Sample the portion of the geometry on each pass in order
to work for on small memory devices. Moreover, floating point precision of three
dimensional memory requires high amount of memory and may not work on even
high-end GPUs. Geometry voxelization for each node can require up to 64 passes
(10243/2563 = 43 = 64). However, these bottlenecks are trivial since all of the
calculations are done before run-time.

Depending on the rasterization resolution, more than one pixel may sample each
voxel. Our voxelization implementation atomically averages fragments generated
by the shader in per voxel basis by adding each channel of color, normal and
specular values and then dividing it when voxel packaging occurs. This requires
higher byte requirements to prevent data loss because each voxel can be sampled
by multiple fragments. We use three single precision floating point number for
both normal and color values and a one floating point number for specular values.

After each sub-voxelization process, second pass on the three dimensional textures
takes place. Each sampled voxel is packed and added to the voxel cache. Voxel
cache structure holds multiple mesh’s voxels in order provide batching on the
CUDA kernel calls which will be explained in the later parts of the thesis. Packing
converts floating point colors, normals and specular value into the 8 bit per-
channel fixed point precision format.
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4.3 Cascaded Voxel Grid

Now we will explain the run-time algorithm. Algorithm starts with pre-voxelized
geometry explained on the previous part. Each mesh comes up with have its
unique voxel representation for each cascade. We used struct of arrays approach
in order to increase coalesced access on the GPU. We cache the pre-voxelized data
on the GPU memory and transform from this data as needed when an object is
included by the voxel grid system.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

X Y Z Mip

NormalX NormalY NormalZ Empty

ColorR ColorG ColorB Specular

Weight0 Weight2 Weight3 Weight4

Weight Index0 Weight Index1 Weight Index2 Weight Index3

Figure 4.2: Voxel cache data structure. Data is laid out as array of struct method thus each
row is laid out on a different array in order to increase GPU memory access efficiency. Voxel
weights and weight indices are only available for joint deformed objects.

Last 8 bits of word that stores the normal is empty but when the voxel is trans-
formed into world space position it holds density data of the voxel (Figure 2.2).
In voxel cache, all voxels fully occlude by definition thus there is no reason to
hold density information.

Our cache structure holds voxel position relative to the object axis-aligned bound-
ing box (AABB). As stated above, according to the AABB size and bit limitations
of the structure; which can only hold 10243 length grid, mesh may not have a
voxel representation for that resolution. Because of that, last two bits of the word
that holds the voxel indices is used to represent that whether this level of voxels
are considered as a base level or not (Figure 4.2). This information is used to
determine culling process handled if there is multiple cascades. Culling process
is explained at the voxel transformation part algorithm explanation.

Our system may have multiple voxel grids that cover one level of the sparse voxel
octree with reduced resolution. This idea is inspired from Kaplanyan et al.[31]
approach. Each voxel structure implicitly positioned inside of the other cascade.
Our implementation has 3 cascades with 5123 nests. Even though voxel structure
holds only 10243 voxels by bit limitations, each inner voxels’ actual position can
be derived by using voxel grid structure layout. Our implementation doubles the
resolution while maintaining the cascade size. Figure4.3 shows our nested grid
approach. Notice that each cascade relative position can be derived by function
x = (2n − 1) ∗ cascadeSize

2n
where n is the current cascade number, x is the starting

location of the cascade.

Each voxel grid system is responsible for; including excluding voxels, transforming
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Figure 4.3: Cascaded Voxel Grid Representation in 2D. Each cascade has same actual reso-
lution 5122 with different voxel spans. This enables virtual resolution of 20482 and only nearby
objects use highest resolution.

included voxels and culling voxels if the transformed voxel is out of bounds.
Each cascade does these operations only for their own resolution of voxels. This
operations are split into two parts, first part is about including and excluding
voxels and second part is about transformation and culling of the voxels.

Before explaining those algorithms we need to explain how voxel system stores its
data. Algorithm is designed to support as many dynamically input and output
operations as possible. To achieve this requirement, memory is divided into two
separate divisions called pages and segments (Figure 4.4). Segments are fixed
size groups of voxels that are owned by the same object. Objects can have
multiple segments and each segment will be full, unless it is the last segment.
This segmented approach enables to reduce atomic operations per inclusion of
the object.

Figure 4.4: Voxel grid page system uses memory system that removes or add pages. n is the
segment count and m is the page count. Each segment is fix sized.

The first iteration of the algorithm had single atomic add for each potential voxel
that will be included in each frame that had a high performance cost. Current
iteration of the algorithm has one atomic add operation per object segment, thus
relieving atomic operation serialization on the GPU. Each object segment tries
to find a location in the page system by starting from the first page and iterating
through the last page. Each page has a stack of available segment locations and
a stack index variable which points at the top of the stack. Each segment tries
to atomically allocate location on the segment using the index variable. If it cant
find a position, it moves to the next page. If all pages are full, all remaining
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segments are dropped and memory allocator is signalled to issue a new page
allocation.

Figure 4.5: Inside the page system, there is a stack which holds the empty locations, two arrays
that hold normal and positions, and an array that holds object information of that segment. S
is segment size, N is segment count per page.

Portion of the algorithm that is responsible for voxel inclusion is only writes to
or removes from the green array (see 4.5). Green array holds the information
required to fetch and use the data from the voxel cache. Next algorithm, voxel
include, will use this data structure to actually transform and cull objects from
the voxel cache.

Before explaining the voxel include algorithm we will explain a implementation
detail. In our implementation segment size chosen as 1024 and page size chosen
as 65536. Each page can hold 64 segments. Because of that we choose our
stack data structure to hold a single byte. Our implementation uses CUDA and
we choose block size as 512 threads. The reason behind this number is that
firstly it supports full occupancy and secondly this guarantees that each thread
block in the streaming multiprocessor will be responsible for the single object.
Thus this enables to fetch and store transformations required for that object to
the shared memory without an occupancy penalty. This significantly improves
performance and shared memory usage for the object that is required to have
multiple transformations like bone transformed objects.

Voxel transformation portion of the algorithm is responsible for transforming
objects that are included by the input/output portion of the algorithm. Currently,
three types of objects are supported by the system; static objects, non-deformed
dynamic objects and deformed objects with joint transformations. At each frame,
transformation system re-transforms the entire page system according to object
transformation and new grid position because for interactive applications such as
games, camera movement occur frequently.

In detail, for static and non-deformed dynamic objects each thread block loads
two matrices, one is for transformation and the other is for rotation. Rotation
matrix is used by normals and transformation is used for voxel positions. Then,
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all threads in the blocks load a voxel from the cache and include them to the
system. For deformed objects with joint transformations, entire pool of voxels
ask for their required final joint transformations. After that, threads load required
joint transforms for this thread block. Then transformation occurs and voxels are
now considered in world space.

After world space positions of the voxels are determined, their positions at the
voxel grid will be determined. After that, collision checks takes place. If voxels
collide with a inner grid, algorithm checks whether there is any lower level rep-
resentation of this voxel. The reason behind is that if there is a higher resolution
alternative managed by the other voxel cache, we omit inclusion of the voxel since
lower level voxels will be averaged up to the higher level voxel anyway on the SVO
average stage. This is where the last two bits of the first word is used. (see Fig.
4.2).

Now all required voxels by the SVO are on the page system and ready for recon-
struction by the SVO sub-algorithm. This concludes input output and transform
portions of the algorithm.

4.4 Sparse Voxel Octree (SVO)

Before explaining the octree reconstruction algorithm, first we will explain the
data structure behind the octree. First of all, octree will be used both in the
OpenGL section of the program and CUDA section of the program. CUDA
section is responsible for updating and reconstructing the SVO and the OpenGL
section is responsible for using the constructed SVO to cone trace and get results.
Because of that, we could not use pointer system for SVO construction since
OpenGL does not support pointers. To make the algorithm work on both CUDA
and OpenGL, we used indexing relative to each level of the SVO. Each level pre-
allocated by determining peak voxel counts for each scene. However, instead of
relying on pre-allocation, algorithm can be adjusted to allocate its own memory
in run-time by starting with an initial size then aggressively allocating memory
when algorithm runs out of memory.

In our approach, we used two OpenGL buffers which are mapped to the CUDA
context. From these two arrays, we allocate all sparse levels of the tree. For
each level, arrays are divided into chunks and offsets of these are stored on a
different buffer. Each level allocates relative to this position, thus, this further
increases potential maximum node per level. OpenGL and CUDA also shares
two 3D Textures, one is a mippmaped texture that holds material informations
and the other is index texture that is used as a starting point of the SVO sparse
portion.

One of the arrays is used for pointer mapping and other is used for holding re-
quired data for illumination and occlusion. Data structure is laid out to be as
compact as possible and it is required to fit CUDA 64-bit atomic operations to
get atomically averaged efficiently. After transformations, voxels may overlap on
the grid(i.e. object overlapping, voxel model grid - voxel world grid mismatch).
In order to resolve overlap, average operation needs to be conducted. Most ef-
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ColorR /
LuminanceR

ColorG /
LuminanceG

ColorB /
LuminanceB

Specular / Empty

NormalX NormalY NormalZ
Occlusion /

Average Count

Children Index

Figure 4.6: SVO data structure. Color portion has different values depending on the light
injection pass has happened or not.

ficient and lock free way to implement this was by using atomic compare and
swap operation; which is available on CUDA, on the entire material data set. If
we had data structure that has values which uses more than a 64-bit word, we
could have changed the algorithm to use a compare and swap atomic busy lock
and average values that way. However, using compare and swap operation as a
bush lock mechanism on a streaming multiprocessor will have heavy performance
limitations.

Color and specular portions hold unilluminated data up until light injection oc-
curs. After light injection, illuminated color values will be available on the ma-
terial node instead of unilluminated data. Constant ambient light; which illu-
minates the scene, will also be applied at this stage. After illumination calcu-
lation, specular portion is irrelevant and will not be used. Implementation uses
Phong illumination method because of that, we only require single value for ob-
ject specularity, more sophisticated illumination methods may require more data
and structure will be designed to incorporate that extra memory cost [6], [7].

Normal and occlusion portions hold world space normals which are used in the
light injection. After injection normals are used to determine luminance direction
when a cone samples the voxel. For leaf nodes, occlusion portion is used by
atomic average operation as voxel count. Since leaf node voxels implicitly have
full occlusion, there is no need to hold occlusion for the leaf nodes.

Figure 4.7: 2 dense, 5 sparse level, SVO Structure sparse portion array view. Two OpenGL
buffers are used and each level has different pre-determined offsets. Dense portion uses single
3D mipmapped texture. One array holds index hierarchy, other holds material.

Each pointer node holds single 32 bit integer, which is guaranteed to point all of
the eight children. Each child may be empty, but algorithm requires to allocate
all eight of the children, since each node individually allocates and does not
have any information regarding how many children of this node are required
to be allocated. This increases the memory requirements of the algorithm, but

32



performance increase gained by using this structure, which enables full atomic
reconstruction, is worth the extra memory cost.

Figure 4.8: Simple four level and one cascade SVO (actually quadtree) 2D representation.
First three levels are densely stored and last layer is stored sparsely. This figure aligns with
figure 4.7. Notice that all of the allocations are 2 by 2 (in octree version 2 by 2 by 2). In
addition, last dense level is required to hold the ’root’ index hierarchy which is shown as blue
grid. Orange grids are for material information.

Our SVO structure is semi-sparse. That means up to a certain level tree is
allocated densely, which is 643 in our implementation. Seventh level is sparsely
allocated. In order to combine the sparse and dense portions of the algorithm
sixth level has densely allocated index map. Other levels of the dense data do
not require pointer map since all of their children are densely allocated.

Before averaging, not only the last level but each cascade level holds leaf nodes.
Even on inner cascades, algorithm is required to consider potential case that
parent node and its children are both holding material information.

Only dense levels can utilize hardware 3D interpolation since those values are
stored in the texture memory. Sparse values are stored in linear memory and do
not utilize texture memory. The reasoning behind choosing linear memory over
texture memory for sparse portions of the data structure will be explained in the
SVO reconstruction section.

4.5 SVO Reconstruction

In this section we will explain SVO construction portion of the algorithm. After
page layout has been set by include/exclude and transformation operations, SVO
reconstruction operation takes place.

Entire SVO can be constructed with the single kernel call on the GPU. This ap-
proach works well on Nvidia R© Maxwell architecture devices. For other devices
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Figure 4.9: Simple 4 layered, two cascaded SVO (actually binary tree) for one dimensional
data before averaging. Orange nodes actually hold material information, blue ones are allocated
and ready for averaging. X is for empty positions that are allocated but not used. Notice that
last level has only data for only inner portion of the tree and outer layers of the tree do not
allocate the last level.

and architectures, level by level construction approach is issued. SVO reconstruc-
tion is required to be done in every frame since voxel grid(s) follows the camera.
In addition to that, algorithm should scale well with dynamic objects.

Full atomic reconstruction algorithm relies on atomically allocating a node when
it is required. On every frame SVO is reset, and each voxel that is transformed
and stored in the voxel page system individually starts to allocate nodes in top
down fashion. Starting from the first sparse level, atomic allocation occurs when
a leaf voxel does not find its parent on a particular level. It atomically locks the
node location required; which is always available since allocation always allocates
the eight potential children, and allocates all of the children. And it continues to
go down until it finds its position. Then it atomically averages its material values
at that node.

Level by level method does not rely on atomic operations besides the atomic
add operation. For each level, two sub operations occur. First each potential
leaf node marks the required node on that level, then second pass looks up the
the requested nodes and atomically allocates an index for that location on the
children level. This algorithm requires to be called for each level individually
with the entire voxel transform pool which is the bottleneck of the level by level
approach implementation.

Both of those algorithms define the nodes at the center of the voxel location in
order to make reconstruction algorithm fast. Like Crassin suggested [1], corner
voxel definition can also be used since it makes the cone tracing with linear inter-
polation faster. However, we reconstruct octree every frame, our reconstruction
scheme should also be faster. Corner voxel implementation increases work done
for each voxel by eight(see Fig 4.10). Each node should also be incorporated to
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the neighbouring nodes in order to interpolate consistently.

Figure 4.10: Left diagram show the center stored voxels, right diagram shows the corner
stored voxels. Corner stored voxels required to be averaged by all the neighbouring nodes in
order to provide consistent interpolation.

Our sparse portion of the data structure used by algorithm does not use texture
memory. Implementation descision behind this is the modern hardware fetches
global memory as fast as texture memory if it stays constant thorught the kernel
call, meaning algorithm should only read from that global memory location [55].
This balances the global memory and texture memory usage because texture
memory now can be fully utilized by 3D dense material and index textures and
sparse portion of the algorithm utilizes global memory. Only difference is that
global memory is required to do the interpolation by hand but since the memory
fetches are as fast, code interpolation do not create a bottleneck in the algorithm.
Another reason to use global memory operations is that, there is no 64-bit atomic
compare and swap operation available on the GPU which prevents fast atomic
average operation required by the down to top average stage which happens after
SVO reconstruction.

After entire node system gets allocated, down to top averaging operation occurs
in order to fully construct SVO for cone tracing. For each parent node, we call
single CUDA thread which will average all potential 8 neighbouring values. Color
and normal values will be averaged with the available children but occlusion value
will be divided in to the maximum potential children count which is 8. In addition
to that, leaf node occlusion memory location was used to hold the object count
for averaging so that leaf node occlusion also get corrected.

4.6 Cone Trace on the SVO

Most computationally heavy portion of the entire method is the tree traversal.
In order to get smooth results, tree sampling should be interpolated. Deterrences
between single point sample and neighbour linear interpolation is shown on figure
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4.11. However; our tree holds node centred voxels and for tri-linear sampling we
require at most 8 memory fetches from tree in order to interpolate the sampled
result properly.

Figure 4.11: Scene ambient occlusion with point sampling (left) and linear sampling (right).

This sampling can be reduced to guaranteed single fetch if we store corner voxels.
However, as stated above, it pressures SVO Reconstruction algorithm by forcing
the algorithm to create consistencies between the adjacent neighbouring voxel
groups. Hence reducing performance significantly.

Our tree sampling approach is similar to the [56]. We choose to implement the
brute force approach by sampling all 8 neighbouring voxels. Worst case scenario,
voxel fetch location can be on one of the corner edges of the voxel which forces
8 different nodes to be fetched. Middle edges of the voxel node will force 4
different nodes and center portion will require a single node. Application reduces
the required samples by only sampling single cone at each traverse iteration. It
provides similar visual quality but performance is higher but sampling artefacts
can occur if sample distances are chosen too high. We choose this approach over
corner node holding SVO structure since both operations will be done per frame
and SVO reconstruction operation is much more complex because it relies on
atomic operations.

Tracing is done using multiple cones from the surface patch. Our illumination
method is simple Phong illumination which can be approximated using cones. In
order to simulate Phong illumination, we will consider similar approach used by
the Crassin [1]. Multiple high aperture cones for diffuse illumination and single
low aperture cone for specular illumination are used to simulate indirect reflective
lighting. This approach is illustrated in figure 4.13.

In our implementation we choose 3 cones for diffuse illumination which are centred
around the surface normal. We sample 6 cones once per march iteration and this
will create spiral pattern of sample points. This only covers the upper hemisphere
of the rendering equation integrand but for diffuse illumination it is where the
most of the irradiance is coming from because of the Lambert’s cosine law. We
omit lower hemispherical diffuse illumination in order to increase performance.
For specular illumination we send a single cone which has a direction vector
determined by Phong Illumination model. Specular cone is launched towards the
reflection vector with an aperture determined by the specularity of the object.
Metallic objects that reflect light will have a low aperture.

Sampling requirement for voxel cone tracing is quite high in our implementation.
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Figure 4.12: 2D representation of the voxel octree (actually quadtree). When SVO stores
the nodes sampled, additional neighbouring nodes are required to be fetched in order to conduct
linear interpolation. Sampling locations are marked with X sign. Orange sample location do
not require additional node fetches. Green one is required to have one additional voxel fetch,
yellow one requires three more voxel fetches. Right diagram show the sampling of the corner
stored voxels. Notice that all of the fetches from this node do not require additional fetches.

For each pixel on the screen we launch a total of two cones, each sampling the
scene multiple times. For each sample, worst case, 8 SVO lookups are required
which has a potential to traverse the entire tree depth. On worst case scenario
with lower aperture cones, with a SVO depth of 11 (20483) total of 176 global
memory operations are needed to be done for each sample per pixel. This intro-
duces the main bottleneck about tracing method since global memory lookup on
the GPU is slow, even more so without coalesced access.

4.7 Voxel Transformations & Applicability of the Common Animation
Methods

In this section, we will present how transformation portion algorithm is used to
derive certain animations for dynamic objects. These objects can have multiple
joint transformation matrices or single transformation matrix. In both cases sys-
tem handles the update operation over the pixel quite scalable. However, for each
transformation method there will be approximations over per-frame voxelization
which can be considered as a most accurate way of applying animations over
voxel structures.

Static Objects

Most simplest form of object that can be found in a scene is the static object.
Static objects do not move for their lifetime in the scene and they can be pre-
processed by illumination algorithms most of the time. In contrast, in our ap-
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Figure 4.13: Cone Tracing illustration on a surface patch represented by orange plane.
Multiple diffuse(blue) and single specular (green) ray are launched in order to approximate
Phong illumination.

proach, static objects are still processed by the transformation stage. If model
matrix is identity for that object; meaning that object is already in world space
(world space and the model space are aligned), matrix load and multiplication
can be skipped. However, voxels are required to be repositioned on the cascade
since cascade moves as the camera moves.

Static objects can be fully approximated by our approach without introducing
any defects.

Dynamic Objects

Dynamic objects reposition themselves every frame. Dynamic objects can be
derived by the physics system or the animation system. These objects are hard
to use as occluders because of their pixel coverage is hard to predict without
actually rendering the object.

Our approach is to apply transformation matrix in per voxel basis for these ob-
jects. These objects assumed to be driven by a single transformation matrix. Hi-
erarchical transformations are required to be reduced into a single matrix which
is a trivial task. To increase performance and in order to approximate the scene
efficiently, object may not be perfectly transformed into the voxel grid because
of the model space and voxel grid world space mismatch.
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Skeletally Animated Objects

Our voxelization method provides a simple solution for assigning weights for each
voxel. Our skeletally deformed object has very small sized triangles; because of
that we chose to use nearest vertex weights as a voxel weight. Because of the
integer precision limitations we already have transformation inconsistencies on
the voxel. Adding this inconsistency is hardly noticable for hight voxel size to
triangle size ratios.

More accurate solution for this can be provided by applying the method of Dionne
et al. [57]. However, this method requires solidly voxelized objects and our
implementation use surface voxelized objects.

Figure 4.14: Nyra character doing her jumping animation. First frame is the characters bind
pose and there is no inconsistency of voxels. However after key-frame interpolation, transfor-
mation artefacts occur because of the method limitation.

After assigning the voxel weights on voxelization, voxel transformation portion
of the method uses the weights and the weight indices to load the required joint
final transformation matrices provided by the animation system of the renderer.
This data is available since parallel raster pipeline renders the skeletally animated
object and provides the direct illumination of the object.

In detail, each voxel on the thread block requests final joint transformations
required by itself. This request is stored in the block shared memory. Then block
threads start to fetch requested matrices on to the block shared memory. After
that, voxel transformation continues as explained above.

CUDA shared memory usage is a bottleneck if there is high amount of joint
transformations available for the skeleton. In order not to reduce occupancy,
shared memory allocation for each streaming multiprocessor needed to be ad-
justed. Nvidia R© GTX 980Ti can easily supports 128 4 by 4 float and 3 by 3 pairs
of matrices. 3 by 3 matrix holds rotation information and 4 by 4 matrix holds
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complete transformation information of the joint, which is more than enough for
most of the skeletally animated objects.

4.8 Memory Usage

Memory structure is designed to be as compact as possible. One of the most
important memory constraint of the algorithm is that some voxel information
stored on multiple stages redundantly. However, this redundancy is necessary
since each stage treats the information with slight differences. Cache data holds
model space voxel data. Page system holds world space position and normals.
SVO system holds potential averaged world space normals and colors since mul-
tiple voxels may overlap after transformations. This slight differences make the
algorithm to store same data multiple times.

For a sample case; each voxel is required to have at least 28 bytes distributed on
the sub methods. If we consider skeletally deformed meshes; which holds at most
4 weight per vertex, amount of data required will increase by 8 bytes. In addition
to that, extra allocations of the SVO is needed to be considered, since some of
the data may not be used when we allocate each node with all of its children.

Still, we wanted to minimize the memory cost since this method is considered as
a complimentary rendering illumination solution. Main rendering pipeline; which
uses rasterization, is already using high amount of memory since it solves the most
visually alluring portion of the rendering equation which is direct illumination.
Our method mutually exists to support high fidelity direct illumination.

4.9 Method Limitations

Cascade Flickering and Unaligned Voxels

Since cascaded approach is inspired by cascaded shadow maps, some of the lim-
itations of shadow mapping method can also be found in our solution. Camera
anchored voxels are required to be translated differently because floating point
world space to integer voxel space will introduce precision errors which create
flickering. Shadow mapping solves this problem by moving the shadow map pro-
jection camera by the increments of the pixel coverage distance. This will prevent
flickering but shadows in the scene will not be perfectly aligned. However, align-
ment problem is not noticeable unless pixel coverage size is high which is avoided
since it introduces other problems like pixellated shadows etc.

However, SVO will have its intermediate nodes saturated with the data and
those data are also prone to movement flickering. To prevent that, the movement
required has to be changed with the voxel size of that level. For higher levels,
voxel sizes will gradually increase and difference between the raster graphics and
voxel system will even be larger.

Our implementation snaps the voxels in the system up to a certain level on the
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tree, in order to provide balance between scene accuracy and flickering. Since the
higher level of the octree will be used for very low-frequency illumination which
has minimal effect on the scene and this makes the flickering hardly noticeable.

Scale and Shear Transformations

Another limitation of the method is that by definition, voxels do not support
transformations which invalidates their definition. Voxels have to be uniform sized
in order to be partitioned by a sparse voxel octree. Invalidating transformations
include non-uniform scale and shear transformations. Uniform scaling is also
problematic but can be used if and only if the transformed voxel size will align
with the used cascade size after transformation.

For example; having model space voxel with a span of 1.2 world units on a voxel
cascade that accepts 0.3 world units, it is not applicable to the method since
cascades only accept voxel spans that have the same span as the voxel cascade.
However, in that same example having a model space to world transformation
had a scale factor of 0.25; which makes the span of the voxel same as the cascade
space is, makes the resulting voxel acceptable.

If scale transformation is not used in animation, it can be pre-baked into the
vertices at the modelling time in order to support scale and shear. If the object
uses scaling animation, it is not possible to incorporate the animated object in
to our solution.

Transformation Holes

Since all of the voxels are transformed individually, neighbouring voxels may end
up in a same cascade node, because of the integer precision of the voxel index.
Figure 4.15 illustrates the problem. Voxels have to be snapped to a certain grid
after transformation and in our implementation we round the floating point world
space position of the voxel to the nearest voxel cascade relative integer index.

Voxel hole problem is more noticeable on skeletally animated objects. Skeletally
animated object voxels approximate their weight by choosing closest vertex weight
as explained above. This approximation should introduce additional gaps on the
objects (See fig. 4.14) in addition to the transformation artefacts created by the
discrepancies between world space and voxel space transformation. Since the
voxel model is used for indirect illumination, we leave the holes as is since voxel
inconsistencies are hardly noticeable on the final image (Figure 4.16). However
in order to use the cone tracing method for mirror-like reflections, transformation
inconsistencies should be prevented.

Surface Voxelization

Since we use triangle rasterization to create voxels, our voxel models are empty
inside. This introduces potential case where sampling can skip the surface voxel
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Figure 4.15: After transformation (which includes a rotation in this case) voxels are needed
to be aligned with the world space voxel grid which is always aligned with the world space axes.
Nearest voxel position is chosen by the algorithm. This creates invalidates object rigidity and
creates inconsistencies on the voxel system.

Figure 4.16: Voxel holes can be seen on the rotating cube at the Sponza Atrium scene.

by under sampling that location on lower cone apertures. In order to prevent
the skipping, cones can oversample the tree but oversampling process will effect
the performance. Other method that can be used to prevent this, voxelization
scheme can be changed from surface voxelization to dense voxelization. However,
this implies more voxels and having more voxels will impact the performance of
SVO reconstruction and transformation.
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CHAPTER 5

RESULTS

5.1 Scene Results

Our implementation used a simple deferred rendering implementation for direct
illumination. Graphics Buffer (G-Buffer) stores world normals, world position in
form of normalized device coordinate z (depth) information, unlit color (albedo)
and surface specular value. Depth information is converted to world space float-
ing point position by reversing the rasterization steps; first depth value and
screen pixel coordinates are converted back into the normalized device coordi-
nates (NDC) then from NDC it is multiplied by inverse of the projection and
view matrices to get world space coordinates.

Our implementation use shadow mapping with mip-maps to simulate direct shadow,
this implementation can be considered very simple rendering engine that is used
by today’s games. Our Deferred Rendering scaling with respect to screen resolu-
tion is shown in the figure 5.1.

All of the timings on this paper is done on the configuration provided below:

– CPU Intel Core i7-4790
– RAM 16 GB DDR3
– OS Windows 10
– GPU Nvidia R© GTX 980Ti GPU (8GB GDDR5 RAM).

On all of our scenes, we used 1920x1080 resolution direct illumination. Since
calculating direct illumination is not a bottleneck, we decided to use high resolu-
tion for increased visual fidelity. However, Our tracing resolution is lower since
processing power requirement of the linearly interpolated cone tracing is quite
high. We choose 1280x720 resolution for cone tracing buffer.

Beside from the pixel size, cone aperture and cone traverse maximum distance
also directly effect the performance of the tracing. Higher cone apertures tends
to be faster since they tend to fetch less frequently from the lower levels of the
tree. In addition, maximum cone trace distance can be adjusted to increase
performance.
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Figure 5.1: Deferred rendering scaling on the GPU in the Crytek modified Sponza Atrium
Scene. This timing also includes four cascaded shadow map generation for a singe directional
light. As can be seen from the graph, up until certain resolution, pixel count is not enough to
saturate the entire GPU.

5.1.1 Sponza Atrium

One of our test scene is Sponza Atrium scene. We used modified version of the
atrium which is done by Crytek R©. It has 32 materials and 443 objects which are
rendered by 460 draw calls. There are total of 292661 triangles on the scene. Sin-
gle directional light illuminates the scene and there are multiple rotating objects
and a single bone deformed mesh.

Atrium Sponza has single light entry point which makes it a good sample scene
for showing indirect lighting. Scene has many small and large objects which are
ideal for testing multi cascade voxel structures. Voxelization may not be able to
fit some of the big objects into a voxel grid. However, algorithm is designed to
utilize the objects without a base leaf node for that span.

Sponza Atrium has peak of 10 million voxels with a span of 0.3 world distance
units with three 10243 sized voxel cascades. Voxel count gradually decreases
higher span values and lower voxel cascade sizes. Visualization of the voxel cov-
erages are shown in Figure 5.2. Our sparse voxel octree (SVO) construction times
and voxel values for each coverage scheme can be seen in the Figure 5.3.

Coarse coverage sizes do not saturate the GPU, which can be seen on the graph
by looking at 3, 4.8, 643 and 3, 2.4, 1283 coverage schemes. Those took nearly
the same amount of time which is an indication of the GPU under-saturation.
I-O section of the algorithm tends to scale constantly since it is bound to the
object segment count which barely increases for each coverage because in our
implementation segment size is 1024 which makes the i-o portion of the algorithm;
in theory, three order of magnitude faster than voxel count bounded portions of
the algorithm.
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Figure 5.2: Sponza Atrium Voxel Rendering for different coverage values.

Table 5.1: Sponza Atrium Timings. Timings of input, output, transformation, SVO recon-
struction, and average stages of the algorithm is given. Trace portion is separated since it uses
the constructed SVO structure and all other portions of the algorithm constructs the structure.
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Figure 5.3: Sponza Atrium Scaling. Only voxel tree construction portion of the algorithm is
graphed since it is directly bounded by voxel count.

In Table 5.1, we can see that tracing algorithm is the biggest bottleneck compared
to other sub-parts of the algorithm. For higher resolution coverage schemes,
algorithm results in interactive frame rates, for lower resolution coverage schemes,
algorithm gives real-time frame rates. Scaling of the trace algorithm is bound
to the screen resolution of the trace and cone aperture as well as voxel count.
Therefore, algorithm parameters can be adjusted to reduce quality of the trace
without reducing total scene voxel size.

Ambient occlusion results can be seen in Figure 5.4. Cone tracing method covers
ambient occlusion quite well even though there is no direct lighting on the right
side of the scene in Figure 5.4, shadows behind the curtains are approximated
by the algorithm. Traditional shadow mapping methods can only cover direct
lighting shadows and our method complements the direct shadows quite well.
However, because of the voxel resolution limitations pixellated ambient occlusion
can also be seen in the figure.

In Figure 5.5 our approximation of the real-time reflections can be seen. However,
because of the performance limitations, mirror like objects like polished metals
cannot be calculated in real-time frame rates. However, glossy surfaces; which
have more blurry reflections, can be approximated quite well. Marble like floor
on the Sponza Atrium is quite a good example for this phenomenon which can be
seen in Figure 5.5. Our implementation is capable of capturing reflections from
both static and animated dynamic objects.

However Figure 5.5 reflections can be approximated quite well with other methods
[8], [44] since reflection contact point resides in the screen space. Both skirt of the
Nyra character and the blue curtain can be given as examples for this situation.
Although the screen space algorithms can give more realistic results, they cannot
cover portions of the scene that is not inside the screen-space. Since our structure
covers the entire scene, reflections can be approximated at the places that are not
covered by the camera. In Figure 5.6 we can see the reflections of nearly the entire
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Figure 5.4: Sponza Atrium Occlusion. At left column, ambient occlusion is enabled. Top row
shows the final scene lighting image and bottom row shows only the light intensity texture.

scene on the mirror-like white sphere. Our limitation of the mirror like objects
can be seen here; in addition, voxel resolution artefacts can be seen more clearly
in this image.
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Figure 5.5: Sponza Atrium Reflections. At top image reflections are on and at the bottom
column reflections are off.
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Figure 5.6: Sponza Atrium Sphere Reflection. Full reflective white sphere reflecting light
from entire scene. Notice the linear sampling artefacts since specular cone traced and sampled
without linear interpolation.
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5.1.2 Sibernik Cathedral

Another scene we chose to deploy our algorithm on is the Sibernik Cathedral
scene. Sibernik Cathedral has 11 materials and a single object that is rendered
by 11 draw calls. Scene has total of 71341 triangles. Single directional light
illuminates the entire scene. Sibernik cathedral has minimal light intake points
which is applicable for approximating diffuse indirect lighting. Scene consists of
single monolithic object in order to test our multi cascade input output operations
on objects that is bigger than the voxel grid systems.

If Sibernik Cathedral covered with three 10243 sized voxel cascades where lowest
level cascade having a span of 0.3 units, there will be total of 8 million voxels
in update circulation. Voxel count gradually decreases with higher span values
just like Sponza scene. Sibernik Cathedral coverage scheme images can be seen
in Figure 5.7.

If we look at the voxel scaling (Figure 5.8), we can see that it follows the same
structure as Sponza Scene. Only difference is that; although having 2 million less
voxels, reconstruction portion of the algorithm takes more than two milliseconds
longer to complete compared to sponza scene (Table 5.2). This shows that the
scene layout also has impact on the SVO construction time. Sparsely laid out
objects tend to take longer time since each object is required to allocate different
parts of the tree which makes SVO structure to be allocated coarsely.

Ambient occlusion effects do not contribute to this scene as well as Sponza scene
since this scene consists of flat surfaces with minimal obscurance (Figure 5.9).
Only edges of the wall and pillars have ambient occlusion which is the expected
result.

Another example of reflections can be seen in Figure 5.10. In this screen-shot,
most of the cathedral is reflected from one of the brass colored windows in the
scene. As can be seen on the screen-shot, limitation of the surface voxelized
objects are quite apparent. Trace sample can pass through objects since single
tin layer of voxels defines the object. However, this light sample pass-thought
effect is only apparent on mirror-like objects.
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Figure 5.7: Sibernik Cathedral Voxel Rendering for different coverage values.

Table 5.2: Sibernik Cathedral Timings. Timings of input, output, transformation, SVO
reconstruction, and averaging stages of the algorithm is given. Trace portion is separated since
it uses the constructed SVO structure and all other portions of the algorithm constructs the
structure.
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Figure 5.8: Sibernik Cathedral Scaling. Only voxel tree construction portion of the algorithm
is graphed since it is directly bounded by voxel count.

Figure 5.9: Sibernik Cathedral Occlusion. At left column, ambient occlusion is enabled. Top
row shows the final scene lighting image and bottom row shows only the light intensity texture.
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Figure 5.10: Sibernik Cathedral Reflections. Entire scene reflected from brass coloured win-
dow.
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5.1.3 Cornell Box

Last scene we will choose to show our algorithm on is the custom Cornell Box
scene with two rotating spheres each having a X shaped mark. Scene has 7
materials and 3 objects rendered by 7 draw calls. Total triangle count of this
scene is 1612 triangles. Single directional light is shed towards the opening in an
angle. Cornell Box is mainly used to cover light bleeding effect that is reflected
towards the two coloured wall of the outer enclosure. Because of that, most of
the objects have little specular material properties.

Highest coverage values used for Cornell Box were 3 cascades having 10243 sized
grids with a span of 0.3 units. In this coverage setting, Cornell Box had 4.2 million
voxels. Timings of the algorithm with respect to voxel size and voxel depth of the
SVO are given in Figure 5.12. Coverage images of the different cascade values
can be seen in Figure 5.11.

If we check the timings, we can see the same pattern compared to Sibernik Cathe-
dral scene (Figure 5.3). Another issue about approximating scene with voxels is
that even simple scenes like Cornell Box; which has 3 objects, can require millions
of voxels in order to be approximated properly. Ambient occlusion phenomenon
has minimal effect on this scene as well since there is no clustered objects that
can create light obscurance. As can be seen in Figure 5.13, ambient occlusion at
the corners of the outer enclose can be pointed out.
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Figure 5.11: Cornell Box Voxel Rendering for different coverage values.

Table 5.3: Cornell Box Timings. Timings of input, output, transformation, SVO reconstruc-
tion, and average stages of the algorithm is given. Trace portion separated since it uses the
constructed SVO structure and all other portions of the algorithm constructs the structure.
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Figure 5.12: Cornell Box Scaling. Only voxel tree construction portion of the algorithm is
graphed since it is directly bounded by voxel count.

Figure 5.13: Cornell Box Ambient Occlusion. At left column, ambient occlusion is enabled.
Top row shows the final scene lighting image and bottom row shows only the light intensity
texture.
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5.2 Dynamic Object Scalability

Since SVO construction is done per frame, entire system has a constant scaling for
dynamically allocated objects. Joint transformation cost has the only difference
between the static voxels and the joint transformed voxels. In Figure 5.14, scaling
cost of multiple joint transformed objects are provided. As can be seen from
the graph, additional cost from the joint transforms are minimal. Anyhow, joint
transformed objects are used minimally on the real-time applicable scenes because
their rendering and animation times are already consume high amount of the
processing budget for each frame.

Multiple skeletal objects on this example are the same. However, all of those
animated objects considered as a unique mesh and loaded and animated inde-
pendently in order to actually determine the scaling factor of the joint transfor-
mations. Even though the scaling looks fine on the SVO level, the animation cost
of the scene bottlenecked the frame since we do the animation calculations on
the CPU. This limitation shows that, before having a SVO transformation bot-
tleneck, CPU can choke the frame by not providing enough joint transforms to
feed to the GPU. However, our implementation of the animation transformation
did utilize a single core and the code did not optimized quite well. In order to
conclude where the bottleneck will be for the scenes with many joint transformed
objects.

5.3 Real-time Applicability

Our approach is interactive or real-time depending on the voxel coverage sizes.
Depending on the resolution, cone tracing portion of the algorithm performance
can be increased. However, utilizing these kind of approaches will result in poor
visualization. Even on more applicable performance / quality ratios, algorithm
is not real-time ready. You can still under sample the screen and apply Gaus-
sian filter to achieve smooth and high quality results with better performances.
However, this approaches can be applied if and only if you consider achieving
low-frequency indirect illuminations.

Gaussian filter is already well established technique in real-time graphics in order
to cover approximation artefacts and to achieve real-time frames. Gaussian filter
is a useful tool to get rid of inconsistency artefacts on high-frequency results on
the method but we did not choose to implement it since it is better to show
limitations of the method than covering it with established methods such as
Gaussian filter.

We can consider one degree aperture cone as a ray in order to compare the
speed-up gained by a standard ray tracing method using SVO as a acceleration
structure. Still apertures should be lower for specular reflections in order to
capture reflections from the scene. However, diffuse indirect illumination (radios-
ity) is a low-frequency illumination higher cone apertures can be sufficient. Since
lower aperture cones fetch from lower levels of the tree computation cost is higher
(Figure 5.15).
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Figure 5.14: Joint animated object per scene. Because of the memory limitations of our
implementation, at most 10 skeletally dynamic objects could be calculated.

Figure 5.15: Cone tracing timings with respect to cone aperture changes. One degree is given
to approximate the timing of the ray tracing to give baseline to the scaling of the cone tracing
method. At most 45 degree aperture is given since after 45 degrees opening cones will start to
overestimate hemispherical integral.
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CHAPTER 6

CONCLUSIONS

6.1 Conclusion

In this thesis, we presented a novel approach to construct sparse voxel octree
(SVO) in order for it to scale with high amounts of dynamic objects. In our
approach, instead of voxelizing object every frame after animating, we consider
voxels as a object representation and transform those voxels into world space
every frame. After transforming voxels, we constructed SVO every frame in real-
time speeds. After construction, SVO structure used to approximate rendering
equation by sending series of cone shaped rays which is proposed by Crassin [1].
Cone rays, which are used to approximate the integration of positive hemisphere
of a surface, are quite few compared to traditional rays. Therefore cone tracing
technique achieves real-time computation times. Our approach supports static
objects, rigid dynamic objects with transforms and dynamic objects with joint
hierarchies. For all of these approaches, algorithm promises scalable results.

Our approach used to calculate ambient occlusion, indirect global illumination
and reflections. Results are discussed on the scenes which are Sponza Atrium,
Cornell Box and Sibernik Cathedral. Our voxelization technique scaled quite well
on latest generation hardware and can support millions of voxels and constructed
SVO in real-time.

Even though our approach can be used for real-time, other modifications are
required to be done in order for it to be both visually appealing and compu-
tationally real-time consistent. In the next section, we will provide discussions
about how this transformation based voxel structure can be improved further.

6.2 Future Work

Our algorithm suffers from voxel aliasing quite a lot. Just like pixel aliasing being
a problem for modern games, voxel aliasing creates even more noticeable aliasing
problem since voxel sizes are much larger than a pixel. Movement of objects;
which covers all of the dynamic objects in the scene, will introduce visual flick-
ering. However, those visual flickerings are less noticeable, because calculations
only effect indirect illumination. Voxel aliasing can be reduced by holding a frac-
tion for each axis and this fraction does not have to be precise and can be 8-bit
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Figure 6.1: After transformation, all eight adjacent voxels will be induced by occlusion which
is determined by how much space this voxel is covering on that grid position. This will introduce
8 time more voxel values to be calculated by the SVO reconstruction algorithm.

fixed point precision value that covers values between [0, 1]. Then at the construc-
tion stage, each voxel can be split into the nearest 8 neighbours by using these
fractional values. Figure 6.1 illustrates the idea. However, this approach will in-
crease the SVO reconstruction time since all voxels are required to be injected in
to the SVO 8 times. This approach also introduces slight problems about atomic
averaging since each voxel after transformation will not guaranteed to be fully
occupied, which can be solved by changing the atomic averaging scheme.

Another improvement can be appplied on pre-voxelization of dynamic objects
with joint transforms. We used nearest vertex sampling and it worked quite well
in our joint deformed objects since the voxel sizes were greater than the average
triangle size on the object. Even for finer voxel sizes, the voxel representation
is a coarse representation anyway and noticable differences are minimal because,
usage of the voxel representation is only for indirect illumination. However for
finer voxel representation, better approach can be to utilize the method proposed
in Dionne’s paper [57]. Dionne’s method is used to determine an automated
method of generating vertex weights using voxelization. Since we already have
voxelized object, this structure can be applied to this proposed method trivially.
Only difference is that geodesic voxel binding requires dense voxelization and in
our approach we used surface voxelization.

Next we can further improve the method by eliminating down to top averaging
by averaging voxels during voxelization time. Instead of having only leaf nodes
for each cascade, entire voxel mips of the object can be stored in cache then
transformed accordingly. However this approach will introduce greater aliasing
artefacts on higher levels of the tree. Unless, this method is combined with the
voxel that holds fractions; which complements this approach and reduces aliasing
artefacts, applicability of this method is minimal. Averaging process is not the
bottleneck of the entire algorithm anyway, hence this improvement will yield
minimal gains.

In our approach we used standart SVO structure that each parent holds 8 children.
This approach can be further improved by using idea of Lefebvre et al. [49]. N3-
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tree method can be applied to reduce the tree depth but increases the memory
requirement of the tree. This approach should increase the sampling on the GPU
because most costly operation on the GPU is global memory transactions. By
introducing lower tree level will make the SVO traversal faster.

By using N3-tree fast linearly interpolatable SVO tree can be achieved by storing
voxels at the corner points of the SVO node instead of storing voxels at the
center point of the SVO node. Thus, with N3-tree structure, neighbouring voxel
structure memory transaction cost will be lower since it has a lower probability
to traverse the entire tree to find its neighbouring node.
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APPENDIX A

Thesis Runtime Information

Overview

Thesis runtime is the implementation of the proposed method in this thesis. It

can be downloaded from [10]. Most recent branch is the ”surfinterpol” branch.

GitHub repository only holds the source code and shader code of the thesis

and working directory can be found on this URL https://www.dropbox.com/s/

c6lacwxzhzfhyt7/WorkingDir.rar?dl=0.

After downloading contents of the “WorkingDir” zip file needed to be extracted

into the “WorkingDir” folder. WorkingDir folder contents should look like in

Figure A.1.

Figure A.1: Thesis runtime working directory layout should look like this after extracting
“WorkingDir.ra” file.

It is tested on only Microsoft Windows platform and compiled only using Visual
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Studio 2015. Feel free to port it to other compilers and platforms. Most of the

libraries used by the thesis runtime are provided in the source code under Lib

folder. However, big distributions like CUDA are required to be downloaded

separately. Our implementation used Compute Capability 3.0 functionalities,

because of that required graphics cars should at least have Kepler Architecture

(GTX 600 Series cards, Quadro K Series cards and onward).

After those steps, code should compile and run fine. Runtime can be downloaded

in a binary from from this link https://www.dropbox.com/s/fstlmykiryr2pr3/

GIThesisRT.rar?dl=0.

Empty Solution and Input

Thesis runtime is separated into solutions. At first, Sponza scene with empty

solution should come up. Empty solution meaning that there is no solution for

the indirect illumination. Numpad 7 loads previous solution and Numpad 9 loads

next solution on the solution chain. There is only single a solution in the chain

currently, which is our implementation.

Scenes can be switched using numpad buttons 4 and 5. Entire scene chain is

loaded in initialization time in order to switch between scenes quickly. At the

time of this writing, there are total of seven scenes; which are Sponza Atrium,

Oscillating Sponza Atrium, Cornell Box, Sibernik Cathedral, Simple Cube and

Nyra.

There are three camera modes for the runtime. Program starts with static camera

that you cannot change in any way. Pressing numpad 3 will change the camera

movement to center of influence focused mode. Moving mouse while pressing

mouse button 1 will rotate the camera with respect to the center of influence. You

can move the center of influence by moving the mouse while pressing mouse button

3 and zoom in and out by using mouse scroll wheel. This camera movement is

inspired by the classing modelling tool camera movements. Last movement is

FPS movement; camera can be used to look around by pressing mouse button

1 and moving the mouse. W A S D keyboard buttons can be used to move the
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camera. You can cycle through the camera mode by using numpad 4 and numpad

1. Finally numpad 2 moves the camera into a hard coded position. This used to

take consistent screen shots for the written part of the thesis.

Figure A.2: Thesis runtime light bar. Shows the scenes entire light entities. All of the lights
can be adjusted using this GUI.

All lights are rendered dynamically in the scene and lights can be adjusted and

tweaked by using the light bar. Light bar shows the current frame time, on/off

buttons for entire direct lighting and constant ambient lighting of the scene. Light

direction, position, color and intensity values of each light can also be adjusted

from here.

Thesis Solution

After changing solution, thesis bar will come up. Thesis bar has render drop

down menu to show the system requested by the user.

On the Render Menu Fig A.3:

– Voxel Caches option is used to render voxel caches of the cascades. Each

voxel rendered as a single cube because of that, performance can be low.

Entire model space object cache is transformed to the world space in order
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to get consistent world overview. “numpad +” and “numpad -” buttons

can be used to render cascade caches.

– Voxel Pages option renders the voxel page system. Like Voxel Caches this

option renders each voxel as a cube.

– Voxel Octree option renders consructed SVO. In order to debug the va-

lidity of SVO, simple ray marching algorithm is used to render the SVO

structure. Because of this, performance is quite high compared to raster

approaches use in “Voxel Pages” and “Voxel Caches” options. “numpad +”

and “numpad -” buttons can be used to show different levels of the octree.

– SVO Lookup option uses G-Buffer position to query SVO to check if

world pixels and voxels are algined with each other. If pixel misses the

octree completely it will show up as gray. “numpad +” and “numpad -”

buttons can be used to sample from different levels of the octree.

– Light Intensity option renders light intensity buffer which contains final

lighting of the scene. Last step of the rendering pipeline is to multiply the

values of this buffer with the color buffer.

– Deferred option shows the final image.

On “Voxel Caches”, “Voxel Pages”, “Voxel Octree” parts “numpad /” and “numpad

*” can be used to see normals and occlusion portions of the voxel structure. The-

sis bar initially will start rendering Voxel Page system using rasterizer.

In addition to that there is on/off buttons for Ambient Occlusion and Global

Illumination. Moreover, it shows how many voxels are loaded by the cascade

caches and usage of those voxels on the page system.

Timing portion of the thesis bar shows timings for each sub portion of the algo-

rithm. Misc time is dependant on the render option, most of it shows the required

overhead in order to show voxels into the scene.

When user chooses the option “Deferred” of “Light Intensity” cone bar will show

up (See Fig A.4). Cone bar is used to effect cone tracing parameters. These

include;

– Cone Angle is cone aperture in degrees. Increasing this value will increase

performance but ambient occlusion and diffuse indirect illumination will be
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Figure A.3: Thesis runtime bar. Shows the voxel counts and timings. Also it has options to
render voxel systems.

overestimated.

– Sample Factor is used to determine distance between samples. Distance

between the next sample and the previous sample will be multiplied by this

value. Increasing this will increase performance but calculation will be less

accurate.

– Falloff Factor determines how much light degrades with the distance. This

option only effects visually and does not effect performance.

– Max Distance is the maximum world units distance of a cone can traverse.

Reducing this will increase performance slightly.

– Intensity is the multiplication factor in order to see the effect more clearly

and in a more expressive way.

Figure A.4: Thesis cone bar. Shows the adjustable parameters for cone angles and sampling
from the SVO.
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Voxelizer

Voxelizer program is a command line program which creates voxel cascades from

GPU Friendly Graphics (GFG) files. For each object on the GFG file, it applies

the algorithm explained in the Chapter 4, then outputs it to a another GFG file.

Arguments of the Voxelizer.exe is as follows:

– “-f” switch is used to feed files to the voxelizer. These files should not be

skeletal files. Those files will be fed using -fs swtich.

– “-fs” switch is used for files only contain skeletally animated mesh. Cur-

rently voxelizer and thesis runtime supports GFG files with single animation

containing single skeletally animated mesh.

– “-span” switch is used to determine voxel span

– “-cas” switch is used to feed cascade count. For each cascade voxel span

size is doubled.

– “-splat” switch is for determining a ratio to oversample the triangle by

increasing frame buffer size.

Voxelizer then writes to files with “vox ‘span’ ‘cascadeCount’ ” prefix. Thesis

runtime, while in solution load time, checks GFG file that has appropriate cov-

erage value and use that file in the initialized solution.
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APPENDIX B

GPU Friendly Graphics (GFG) File Format

Overview

Thesis runtime uses GFG file format which is designed along with the imple-

mentation of our solution. GFG file format is designed to support direct GPU

vertex definitions provided by OpenGL or DirectX, hence the name GPU Friendly

Graphics. GFG file format lays out the object vertices in such a way that single

memory copy operation can be enough to copy the data from CPU memory to

GPU memory (two if you include indices buffer). It also supports pre-compressed

vertex data which can be used to open in shader by code or if GPU natively sup-

ports such data it can be un-packed by the hardware. GFG supports single

indexed vertex layout since OpenGL and DirectX only supports such data.

GFG file format also supports simple materials and multiple material definitions

on the same object. Those materials are used for shading of the different triangles

in the object mesh. In addition to that, GFG File support skeletal animations

and can store multiple animations in a single GFG File.

Maya Exporter

GFG File format comes with a Autodesk R© Maya Importer/Exporter. Installation

instructions can be found on the GFG GitHub repository [11]. Since the only file

format supported by the thesis system is GFG, scenes that will be used by the

thesis are required to be converted to GFG. Maya exporter can be used by this
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purpose. Maya export options can be seen in Figure B.1.

Figure B.1: Export options of the GFG Maya.

Thesis Integration

Thesis solution only supports Maya Phong materials for all the files. All of the

textures used by the objects should be copied into the ”Textures” folder in the

working directory folder. Vertex layout and ordering should not be changed,

default ordering is only supported by the thesis. For animated objects, GFG

only supports joint rotations and hip translations. Other key frames will be

ignored. Only export positions, normals and UVs for static objects should be

exported. For skeleletally animated objects, export weight and weight indices

should be exported in addition to positions, normals and UVs. Other vertex

components may create inconsistencies or straight up crash the runtime with the

shaders provided in the source.

Another limitation is that the models should have their scale and, if available,

shear transformations incorporated into their vertices, since voxel transformations

cannot cover scale and shear transformations as stated on the method limitations.

78



At the moment, source does not provide argument intake for scenes. In future

iterations, there will be a command line argument system for loading custom

multiple GFG files, defining custom lights and providing voxel system span and

size values directly.
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