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ABSTRACT

INTERACTIVE EVOLUTIONARY APPROACHES TO MULTI-OBJECTIVE
FEATURE SELECTION

Ozmen, Miiberra
M.S., Department of Industrial Engineering
Supervisor: Prof. Dr. Murat Koksalan
Co-Advisor: Assist. Prof. Dr. Giilsah Karakaya

August 2016, 93 pages

In feature selection problems, the aim is to select a subset of features to characterize
an output of interest. In characterizing an output, we may want to consider multiple
objectives such as maximizing classification performance, minimizing number of
selected features or cost, etc. We develop a preference-based approach for multi-
objective feature selection problems. Finding all Pareto optimal subsets may turn out
to be a computationally demanding problem and we still would need to select a
solution eventually. Therefore, we develop interactive evolutionary approaches that
aim to converge to a subset that is highly preferred by the decision maker. We test
our approach on several instances simulating decision-maker preferences by
underlying preference functions and demonstrate that it works well.

Keywords: feature selection, subset selection, interactive approach, evolutionary
algorithm
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COK AMACLI DEGISKEN SECIMINE ETKILESIMLI EVRIMSEL
YAKLASIMLAR

Ozmen, Miiberra
Yiiksek Lisans, Endiistri Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Murat Koksalan
Ortak Tez Yoneticisi: Y. Dog. Dr. Giilsah Karakaya

August 2016, 93 Sayfa

Ozellik segme problemlerinde, amag ¢ikti degiskenini karakterize etmek icin girdi
degiskenlerinin bir altkiimesini se¢mektir. Cikt1 degiskenini karakterize ederken,
smiflandirma performansin1 maksimize etmek, secilen girdi degiskeni sayisini
minimize etmek gibi birden fazla amag diisiliniilebilir. Cok amagh degisken se¢imi
problem icin tercihe baglh bir yaklasim gelistirdik. Tiim domine edilemeyen
cozlimleri bulmak, islemsel agidan biiyiik caba gerektiren bir problemdir ve yine de
sonunda bir ¢6zlimiin secilmesi gerekir. Bu nedenle, karar verici tarafindan tercih
edilen bir ¢oziime yonelmeyi amaclayan etkilesimli evrimsel yaklagimlar gelistirdik.
Karar vericinin tercihlerini bir tercih fonksiyonuyla simule ederek, yaklagimimizi
ornekler lizerinde test ettik ve iyi ¢aligtigin1 gosterdik.

Anahtar Kelimeler: 6zellik se¢imi, altkiime se¢imi, etkilesimli yaklasim, evrimsel
algoritma
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CHAPTER 1

INTRODUCTION

In classification problems, supervised learning algorithms, such as decision trees,
support vector machines, neural networks etc. are used to predict the class (or output
variable) of an instance by observing its features’ (or input variables) values.
Supervised learning algorithms train a prediction model over a dataset, in which
different feature and class values of some past observations are provided, by
understanding the relationship between the features and classes. Hence, the

prediction model can be used to classify a new instance based on its features.

The classification performance of the learning algorithm depends on its ability to
detect the relationship between input and output variables accurately. However, the
presence of features that are irrelevant to the class, or the redundancy within the
features may have a negative impact on the classification performance of the learning
algorithm (Kohavi and John, 1997). Yu and Liu (2004) classify the features based on
their relevance with respect to the output as strongly relevant, weakly relevant, and
irrelevant. A feature is strongly relevant to class if its existence affects classification
performance independently from the other features used, weakly relevant if it affects
the classification performance depending on the other features used and irrelevant if
the feature does not affect the classification performance at all. They argue that the
optimal subset of features in terms of classification performance includes all strongly
relevant, and weakly relevant and non-redundant features. Selecting a subset that
comprises of strongly relevant, and weakly relevant and non-redundant features to be
used in the prediction model of the learning algorithm (or classifier), instead of using

them all, is called as feature selection problem.

Feature selection aims to improve the classification performance by eliminating

irrelevant and redundant features. The decrease in the number of features to be used



in the prediction model is also useful in terms of reducing storage requirements,
improving the time efficiency, and simplifying the prediction model itself (Guyon,
2003). Therefore, feature selection methods are used in many areas, such as
handwritten digit recognition, facial recognition, medical diagnosis, gene marker

recognition etc.

Even though, reduction in the number of input variables seems to be a natural
outcome of the feature selection procedure that aims at maximizing the classification
performance, it is possible to consider minimizing the cardinality of subset as
another objective. That is, one may be willing to reduce the number of variables
beyond the number of variables in the subset that gives the best classification
performance to enjoy the benefits of reducing cardinality. In that case, the problem is
converted into a multi-objective problem. Depending on the scope of the problem
other objectives can also be defined. For example, in a medical diagnosis application,
minimizing the screening costs of medical tests that will give feature values or
minimizing the health related risks involved in those tests for the patient could be set

as objectives.

The algorithms developed for solving feature selection problem can be investigated
in two dimensions. Firstly, since it is not straightforward to measure the impact of
using a feature on classification performance, different strategies have been
developed for subset selection; which are filter and wrapper approaches (Kohavi and
John, 1997). Secondly, since the number of possible subsets grows exponentially
with the number of available features, the feature selection problem is combinatorial
in nature. Therefore, many optimization techniques are used to solve the feature
selection problem, such as sequential backward selection, branch and bound, best-

first search, and genetic algorithms (Kohavi and John, 1997).

In the literature, feature selection problem is usually treated as a bi-objective
problem in which the objectives are maximizing the classification performance and
minimizing the cardinality of the subset. Most of the studies aim to find all non-
dominated solutions for these two objectives, which refers to finding the subset with
best classification performance for each cardinality level. However, in the presence

of more objectives, enumeration of all non-dominated solutions is not practical and

2



useful because of the combinatorial nature of the problem. Instead of finding all non-
dominated solutions, concentrating on solutions that are of more interest to the
decision maker (DM) of the problem, is more practical. Therefore, in this study,
interactive evolutionary algorithms are developed for multi-objective feature
selection problems that aim to converge the most preferred solution by guiding the

search towards the regions that consists of appealing solutions for the DM.

Measuring the classification performance is an important part of feature selection
problems and a number of supervised learning algorithms have been developed in the
literature. We leave this measurement problem out of the context of our research and
we use one of the existing supervised algorithms for this purpose. The main
contribution of this study is developing a multi-objective optimization approach that

is compatible with the characteristics of the feature selection problem.

The rest of the thesis is organized as follows. In Chapter 2, main concepts and
definitions regarding the problem are provided. In Chapter 3, a literature review of
related studies is given. In Chapter 4, the feature selection problem addressed in this
study is defined. In Chapter 5, the interactive algorithms to find a preferred solution
of the DM are developed and in Chapter 6 these algorithms are tested on several

instances. Concluding remarks and future research directions are outlined in Chapter

7.






CHAPTER 2

MAIN CONCEPTS AND DEFINITIONS

In this chapter, basic concepts and definitions regarding feature selection problem

and multi-objective optimization will be provided and explained on a small example.
2.1 Feature Selection Problem

Let there be a medical doctor who would like to make diagnosis of her patients’
disease. Assume there is a record of past patients on hand in which the patients’ all
test results and actual diseases are given. Using the past records, the doctor is to
decide how the test results should be evaluated in order to make diagnosis on future
patients accurately. The past records can be defined as the dataset in the feature
selection problem in which each patient corresponds to an instance, and test results
and actual disease of each patient correspond to feature values and class variable
value of each instance, respectively. The doctor’s expertise of constructing the
relationship between the test results and diagnosis can be thought of as the learning
algorithm. What we would like to decide in the feature selection problem is which
tests should be performed so that the doctor’s performance of making accurate

diagnosis is maximized.

In this study, the classification problems where each instance is classified in only one
of the non-overlapping classes are addressed. The classification problems with two
non-overlapping classes and multiple non-overlapping classes are called as binary
class and multi-class classification problems, respectively (Sokolova and Lapalme,
2009). In the medical diagnosis example, if the doctor has to decide whether or not
her patient has cancer, the problem is binary class. On the other hand, if the doctor
classifies the disease based on the existence/type of tumor as class 1: no tumor, class
2: benign tumor, and class 3: malignant tumor, then the problem is multi-class as

there are more than two classes.



Let the dataset consist of N instances. Assuming there exists M available features
defined as a vector X = {x4, ..., x),} and a class variable y, the observed values of M
features and class variable for each instance is provided in the dataset. Let S be a
subset of X and f(S) denote the classification performance of using the features in S

to train the prediction model.

The feature selection problem with a single objective of maximizing the

classification performance can be formulated as follows:
max f(S)
s.to
SeXx

Once the learning algorithm is trained using past data, it can be used to classify the
future observations based on their feature values. Actually, without knowing what
will be the observations in future, the classification performance cannot be measured
exactly. However, it can be estimated by using some observations on hand for testing
the trained algorithm. For this aim, the dataset is divided into two sets: training and
testing sets. The instances in the training set are used to train the learning algorithm
and then the trained model is used to determine the classes of instances in the testing
set. The classification performance of the algorithm can be estimated by using its

performance on classifying the instances in the testing set.

The classification performance depends on the division of dataset into training and
testing sets. In order to reduce this dependency, k-fold cross validation procedure can
be applied (Kohavi and John, 1997). In this procedure the dataset is divided into
training and testing sets k times, such that N/k instances are selected from the
dataset randomly to form the testing set, and rest of the instances are used to form the
training set. For each fold, the training set is used to train the algorithm and its
classification performance on the testing set is calculated based on a predefined

performance indicator (e.g. f). Let f; be the classification performance at the it"



fold. Then, the final classification performance, f*, is calculated as the average of

_ Yk

performances obtained in k folds, i.e. f* P

To calculate a certain classification performance measure, a confusion matrix is
obtained by comparing the predicted and actual classes of the instances in the testing
dataset. For a binary class classification problem where there are two classes (e.g.

positive and negative), the confusion matrix would be as in Table 2.1.

Table 2.1 Confusion matrix
Predicted class

Positive Negative
True Positive (tp) False Negative (fn)
. number of instances number of instances
Positive
whose actual classes are | whose actual classes are
- positive and predicted positive but predicted as
= as positive negative
(5]
§ False Positive (fp) True Negative (tn)
(5]
< . )
. number of instances number of instances
Negative
whose actual classes are | whose actual classes are
negative but predicted | negative and predicted as
as positive negative

The classification performance of a subset of features, namely f(S), can be measured
in terms of different indicators using the confusion matrix. There are several
performance measures defined to be used in different areas (Sokolova and Lapalme,
2009). The formulations of three different indicators are given below.

tp+tn t tp

———— Precision= P Sensitivity =
tptHp+tntfn tp+p Y tp+fn

Accuracy =

Different indicators evaluate the performance of the learning algorithm in different
senses. Accuracy is used as an indicator of overall effectiveness of the classifier,
precision indicates what proportion of positively labeled instances are actually
positive, and sensitivity stands for measuring the performance of identifying

positively labeled instances. Back to the example of medical diagnosis, let us assume



that the doctor is asked to make a diagnosis on 10 patients for having cancer or not,
and it is actually known that 3 patients have cancer and 7 do not. It is observed that
she classified 3 patients, who actually do not have cancer, as having cancer and
classified all 3 patients with cancer correctly. Assuming the class of having cancer is
the positive class, the accuracy, precision, and sensitivity of the doctor are 70%,

50%, and 100%, respectively.
2.2 Multi-objective Optimization

In multi-objective optimization problems there are two or more, generally

conflicting, objectives to be optimized.

Let x and X represent the decision variable vector and feasible decision space,
respectively. Let there be p objectives z; (x), ..., z, (x) to be minimized and Z be the
objective space defined by the feasible decision vectors. The general multi-objective

optimization problem can be formulated as follows:

"min" {z, (%), ..., z,(x)}

XxX€EX

The quotation marks are used to emphasize that the minimization of a vector is not a

well-defined mathematical operation.

Definition 2.2.1: An objective vector z(x') = (zl(x’), ...,zp(x’)) is said to
dominate z(x) = (zl (x), ..., zy (x)) if and only if z;(x") < z;(x) forall j =1,...,p

and z; (x) < zj(x) for at least one j.
Definition 2.2.2: z(x) is non-dominated if and only if no z(x") dominates it.

Definition 2.2.3: An objective vector z* = (z{‘, ...,z;;) forms the ideal point in Z if

and only if z; = minyex{z;(x)} forallj=1,..,p.



Definition 2.2.4: An objective vector z"%¢ = (z{lad, ...,Z{,‘ad) forms the nadir point

in Z if and only if Zj"“d = Max,ecx {Z;(x)} where z(x) is non-dominated.

In this study, interactive evolutionary algorithms that aim to find appealing solutions
for a DM are developed for multi-objective feature selection problems. The DM of
the problem is assumed to have an underlying monotone preference function,
Upu(2), to be minimized. When the DM is presented with two solutions z(x) and
z(x"), he/she prefers z(x) if UDM(z(x)) < Upym (z(x’)). We assume that there are
no indifference responses. Indifference can be handled by allowing a small range in
the estimated preference function values of both z(x) and z(x') as in Karakaya and
Koksalan (2014). However, we do not address this case in this study. We also do not
consider the case where the DM gives responses inconsistent with his underlying

preference function.
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CHAPTER 3

LITERATURE REVIEW

In this chapter, a background of theory developed regarding feature selection
problem and a general literature review of different multi-objective applications are

mentioned.
3.1 Feature Selection Theory

As mentioned before, the number of possible subsets of features grows exponentially
with the number of available features, that is; for M features there are 2M possible
subsets. Therefore, different searching algorithms can be used to explore the solution
space, such as sequential backward selection, branch and bound, best-first search and
evolutionary algorithms (Kohavi and John, 1997). For a survey of evolutionary

algorithms used for feature selection problem Xue et al. (2016) can be referred to.

There are two main approaches developed for subset selection: wrapper and filter

approaches.

In the search phase of a subset selection algorithm, in order to estimate the
classification performance of a learning algorithm for a subset of features, namely
f(S), the learning algorithm itself can be used directly. Applying this procedure to
find the subset of features with best classification performance is called the wrapper

approach (Kohavi and John, 1997).

Using the wrapper approach can be computationally time consuming since it requires
to call learning algorithm to evaluate each subset found during search. Moreover, the
classification performance estimated for a subset of features is dependent on the
learning algorithm used. Therefore, instead of using a learning algorithm to estimate
the classification performance during search, subsets of features can be evaluated

with respect to some statistical measures (e.g. correlation, information theoretic
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measures), which is called the filter approach (Kohavi and John, 1997). Although
the filter approach is more efficient in terms of computational time, wrapper
approach provides more reliable estimation of classification performance of feature

subset as it uses learning algorithm during the search phase.

There are many techniques used in supervised learning algorithms. Decision Trees
are examples of logic-based algorithms in which classification rules are developed
based on feature values. Instance based learning algorithms, such as k-Nearest
Neighbor (kNN), classifies the instances bases on their nearest neighbors in the
training instances in terms of a distance metric. Support Vector Machines (SVM), aim
to create hyperplanes that separate the training data classes by maximizing the
distance between the hyperplanes and the instances on different sides of the
hyperplanes. Artificial Neural Networks (ANN) use input and output neurons together

with hidden neurons to form a map between features and class variable (Figure 3.1).

FEATURE CLASS

VALUES

Figure 3.1 Artificial Neural Networks (ANN)

The input neurons carry the activation function value of feature values. They send
signals to hidden neurons and the collected signals are sent from hidden neurons to
output neurons. The class values are determined based on the activation function

values of output neurons.

For a review of supervised learning algorithms Kotsiantis (2007) can be referred to.
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3.2 Multi-objective Approaches and Applications

Since feature selection is a combinatorial problem, it is popular to use evolutionary
algorithms as search engines. In multi-objective feature selection problems it is
typical to consider the number of selected features to be minimized and the
classification performance of the corresponding subset to be maximized as two

competing objectives.

We next provide the literature that aims to find Pareto optimal solutions for the
objectives defined, by using different evolutionary algorithms and some of them

focus on specific applications of feature selection problems.

Oliveira et al. (2002) use Non-dominated Sorting Genetic Algorithm (NSGA), which
is suggested by Srinivas and Deb (1995), for feature selection in handwritten digit
recognition in which the aim is to select the features that will contribute to
characterize the expressions most. They define the objectives as minimizing number
of features and maximizing accuracy. Once the non-dominated solutions are
obtained, the one that has the minimum number of features with an accuracy level

higher than a threshold value is chosen as the best solution.

Hamdani et al. (2007) also define the feature selection problem with two objectives
minimizing number of features and maximizing accuracy. They suggest using Non-
dominated Sorting Genetic Algorithm II (NSGA 1II), which is developed by Deb
(2002), as search engine. Their results show that for simple problems, that is the
problems with small number of features and small training sets, NSGA 1I is able to
approximate the Pareto optimal solutions in a few iterations and even an exact
convergence requires small number of iterations. When the training and test sets are
relatively large compared to a simple problem, the computational time performance

per iteration may drop but the number of iterations to convergence stays reasonable.

Huang et al. (2010) develop a modified version of NSGA II to feature selection for
customer churn prediction, where the customers are classified as churn or non-churn.
The authors state that in customer churn prediction, the classification performance

should be evaluated in terms of three indicators: overall accuracy, sensitivity for
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churn class and sensitivity for non-churn class. They set their objectives as
maximization of these three indicators and minimization of cardinality. They find
non-dominated solution by NSGA II with a modification that population cannot
include duplicated solutions. Then, they develop a method to find the best solution

for each cardinality level among the non-dominated solutions.

Xue et el. (2013) investigate the performance of Particle Swarm Optimization (PSO),
which is first developed by Kennedy and Eberhart (1995), for feature selection
problem by comparing it with existing algorithms. They develop two algorithms
using the framework of PSO; NSPSOFS and CMDPSOFS where the objectives are
minimizing cardinality and maximizing accuracy. They compare these algorithms
with two conventional methods, two single objective algorithms, and three multi-
objective evolutionary algorithms in terms of non-dominated solutions obtained.
They show that NSPSOFS and CMDPSOFS are able to find more and better
solutions then conventional methods and single objective algorithms. In the final set
of solutions obtained by NSPSOFS, some solutions dominate some of the solutions
in the final solution set of multi-objective evolutionary algorithms, while the reverse
is also possible. However, their results show that CMDPSOFS outperforms multi-
objective algorithms in most of the experiments by achieving better feature subsets in

terms of classification performance requiring less computational effort.

Most of the researchers work on the bi-objective (minimizing number of features and
maximizing classification performance) version of the feature selection problem
where typically the aim is to obtain Pareto optimal solutions. Karakaya et al. (2016)
introduce the term “quasi equally informative subsets” into this problem. The idea is
to find alternative subsets that have similar classification performances for each
cardinality level. They propose two approaches, Wrapper for Quasi Equally
Informative Subset Selection (WQEIS) and Filter for Quasi Equally Informative
Subset Selection (FQEIS). They use Borg Multi-objective Evolutionary Algorithm,
which is first proposed, by Hadka and Reed (2013) in both algorithms.

In recent years, cost-based feature selection methods have been developed, in which
the subsets are evaluated in terms of costs associated with the features in the subset

in addition to classification performance.
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Bolon-Canedo et al. (2014) introduce a framework for cost-based feature selection.
They suggest adding a term into evaluation function of a filter algorithm to represent
the costs associated with the features. The tradeoff between the cost and
classification performance is controlled by a parameter. Their approach simply
converts the problem into a single objective problem, which is a linear combination
of cost and performance indicator used in the filter approach with the tradeoff

parameter.

Zhang et al. (2015) propose a multi-objective algorithm using PSO framework for
cost-based feature selection problem where the objectives are minimizing cost and
maximizing accuracy of feature subsets. While the earlier studies related with cost-
based feature selection generally forms a single objective by combining cost and
classification performance, this study aims to generate all non-dominated solutions

for these two objectives.

15
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CHAPTER 4

THE FEATURE SELECTION PROBLEM ADDRESSED

In this chapter, the feature selection problem addressed in this thesis is introduced. In
Section 4.1 general formulation of the problem is given and in Section 4.2 the DM’s

objectives are explained in detail.
4.1 General Formulation of the Problem

We consider a DM who has four objectives: accuracy, cardinality, cost, and risk of
the feature subset selected to use in the prediction model. The objectives will be

discussed in detail in the following section.
The problem can be formulated in closed form as given below.
"min" {z; (x), z;(x), z3(x), z4(x)}

S. to

M
z x> 1 (4.1)
i=1

xi €{0,}3Vi=1,..,M

where x; represents whether feature i is selected to construct the prediction model
(value of 1) or not (value of 0), M is number of available features, z,(x), z,(x),
z3(x), and z,(x) represent the accuracy, cardinality, cost, and risk objectives,
respectively, of solution x = (x4, ..., x);). Constraint (4.1) ensures the selected subset

will include at least one feature.

Recall that the DM’s preferences are assumed to be consistent with a monotone

preference function denoted as Upy,(2). Specifically, in the feature selection problem
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addressed, in our experiments we mostly consider a DM who would like to minimize
weighted Chebyshev distance of a point from the ideal point in the objective space.
We later briefly experiment with underlying quadratic preference functions as well.
Since all objectives are scaled between 0 and 1, the ideal point can be defined as 0
for each objective. The underlying Chebyshev preference function can be formulated

as in Equation (4.2).
Upm (2) = max{w, z;, w,z;, w373, Wyz,} (4.2)

where w = (w;, w,, w3, w,) represents the objectives’ weights of the DM in his/her

preference function.

We note that the algorithms developed in this study are capable of handling any
number of objectives. However, for the sake of completeness, in the rest of the paper

we will address these four objectives only.
4.2 Objective Functions

Most of the studies that treat feature selection as a multi-objective problem focus on
classification performance and cardinality. We use two more objectives; cost and

risk.

Cost represents an objective that measures the difficulty of obtaining feature
information. This may have a common aspect for a group of features (such as a fixed
cost incurred that is necessary to obtain information on a group of features) and an
individual part for each feature (such as a variable cost). Risk represents an attribute
that is feature based. While each feature equally affects cardinality, the effect on risk

could vary between features.
4.2.1 Accuracy

In feature selection problems it is typical to consider maximization of accuracy as

one of the objectives. The accuracy of a certain subset is estimated by calling the

P \where tp, tn, fp, and fn

learning algorithm. Recall the formula Accuracy = P Sv—

stand for true positive, true negative, false positive, and false negative, respectively.
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Accuracy is similar to rand index in statistics, which measures the similarity between
two clusters of data. Generally, scaling of objective space is a critical issue in multi-
objective optimization techniques. It is not possible to calculate the accuracy level at
ideal and nadir points without considering all possible combinations of features. In
the accuracy formula, the denominator is the sum of all testing observations and the
numerator is sum of correctly classified instances. Therefore, theoretically the
accuracy can take values between 0 and 1, so the other objectives are also scaled
between 0 and 1. To be consistent with the other objectives, accuracy is also
converted to a minimization type objective by simply subtracting its original value

from 1.

The accuracy objective z; (x) is defined shown in Equation (4.3).

z1(0) =1—f(x) (4.3)
where f(x) is the accuracy achieved for the selected features in solution x.
4.2.2 Cardinality

As mentioned before, decreasing the cardinality of the subset used in the prediction
model is favorable in terms of reducing storage requirements and improving the time
efficiency. Therefore, minimizing the cardinality of selected subset is considered as
another objective of the DM. In bi-objective feature selection problems this objective

is widely used together with maximization of accuracy (Hamdani, 2007).

The maximum cardinality level is the number of features M, and without loss of
generality it is assumed at least one feature is used in a solution. Linear scaling
scheme is used to scale the real cardinality levels between 0 and 1, so the cardinality

objective z,(x) is defined as shown in Equation (4.4).

M
i=1 X — 1

P (4.4)

zy(x) =
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4.2.3 Cost

In some classification problems, the features are grouped such that each group has a
fixed investment cost and within the group each feature has a measuring cost. The
medical diagnosis example mentioned before can be used to exemplify that structure.
For example, it is possible to perform a blood test and MRI scan on the patient, and
each of these two tests discloses different features regarding the patient. Both of the
tests have fixed costs and each feature obtained from the tests has a variable cost. In
that case, total screening cost of a subset is defined considering which test or tests are

applied and which features are measured.

Let K be the total number of tests that can be applied, k = 1, ..., K. To formulate the

cost objective, following parameter definitions are made:
vc;: variable cost of feature i
fcy: fixed cost of test k

. {1, if feature i belongs test k
k" 10, otherwise

Note that each feature belongs to one test, that is Y x_, t; = 1 fori =1,..., M.

In order to identify which tests should be applied to measure the selected features in

solution x, variable v (x) is defined for each test k = 1, ..., K as in Equation (4.5).
'Uk(x) = tigX; Vi = 1, v, M (45)

Using those definitions, the total measuring cost, TC(x), of a solution x is defined in

Equation (4.6);

K M
TC(x) = z fervr + z vCiX; (4.6)
k=1 i=1

In order to linearly scale total costs between O and 1, the feature subset with
minimum total cost TCy,;y and maximum total cost TCy;4x should be identified as in

Equations (4.7) and (4.8) respectively. The maximum total cost occurs simply when
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all features are used and the minimum total cost can be found by calculating the total

costs of subsets with cardinality 1.

K
TCyin = i=rr11inM {vci + z tikfck} (4.7)
k=1
K M
TCyax = chk + Zvci (4.8)
k=1 i=1

The resulting cost objective z;(x) is defined as shown in Equation (4.9).

TCMAX - TCMIN

z3(x) = (4.9)

4.2.4 Risk

In the risk objective, each feature is assigned a risk value and the risk of a subset is
determined by the summation of the risk values of the selected features in the
corresponding subset. Continuing with the medical diagnosis example, assume each
feature has a health related risk for the patient and it is a concern for the DM to

minimize the risks that the patient is exposed to.

To formulate the risk objective, the total risk involved in measuring the selected

features in solution x is defined as in Equation (4.10):

r;: risks involved in measuring feature i

M

R(x) = z i X; (410)

i=1

In order to linearly scale total risk between 0 and 1, the feature subset with minimum
total risk Rp;;y and maximum total risk Ry 4x should be identified as in Equation
(4.11) and (4.12). The maximum total risk occurs when all features are used, and the

minimum total cost can be finding the feature with minimum risk.

Ryin = ir=n1i;r1\1/1{ri} (4.11)
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M
Ruax = ) i (4.12)
i=1

The risk objective z,(x) is defined as shown in Equation (4.13);

24(x) = 2~ Run (4.13)

RMAX - RMIN
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CHAPTER 5

ALGORITHMS

In this chapter, two different algorithms, iTDEA-fs (Interactive Territory Defining
Evolutionary Algorithm for Feature Selection Problem) and iWREA-fs (Interactive
Weight Reducing Evolutionary Algorithm for Feature Selection), are developed. The
main framework used in both algorithms, the details of iTDEA-fs, the improvement
issues related with iTDEA-fs, and the details of iWREA-fs are explained in the

following sections.
5.1 Overview

The general framework of the algorithms is based on the framework of Interactive
Territory Defining Evolutionary Algorithm (iTDEA) developed by Koksalan and
Karahan (2010).

Being a preference-based multi-objective evolutionary algorithm, the main idea in
iTDEA, is making a deeper search in the region that is estimated to be more

appealing to the DM in order to approximate the most preferred solution better.

In order to identify the preferred region of the solution space, the algorithm is
constructed in a way that the preference information is obtained progressively during
the search process. That is, the algorithm allows the DM to indicate his/her
preferences through interaction stages integrated into iterations and the search is

guided towards preferred regions accordingly.

In iTDEA, to direct the search to the most preferred region, a territory defining
approach is used. Generally speaking, non-dominated solutions are assigned with
territory levels depending on their position in the solution space so that any other

non-dominated solution cannot violate this territory. Eventually, this approach allows
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the algorithm to give a higher chance of surviving to the solutions that are more

promising to be the most preferred solution.

In iTDEA, two populations are maintained through iterations; regular population and
archive. In the initialization part, a regular population containing N random solutions
are generated and the non-dominated solutions in that population are used to form
the initial archive. Both the archive and regular population is updated, and used
throughout the algorithm, however; the size of the regular population, N, is kept

constant while there is no restriction on the size of archive.

Then, the number of iterations, T, and number of interaction stages, H, are
determined. The interaction stages h = 1, ..., H are scheduled at iterations Gy, ..., Gy,
respectively; so that the DM is involved in the process after completing a certain

number of regular iterations.

At each regular iteration, one offspring is generated by two selected parents. Then, it
is decided whether the offspring will be accepted to the regular population and/or to
the archive, and both the regular population and archive are updated accordingly. At
each interaction stage, the DM is presented a set of solutions and asked to select the
best solution among them. Based on the choice of the DM, the preference

information is updated.

The algorithm stops when the maximum number of iterations, T, is reached and the
final interaction with the DM is performed to find the most preferred solution. The
general framework of the algorithm used in the algorithms iTDEA-fs and iWREA-fs,

is given below.

1) Set iteration counter t =0 and interaction counter h = 0. Schedule
interaction stages at iterations Gy, ..., Gy.

2) Generate initial regular population P(0) of size N, and find the non-
dominated solutions in the population to form initial archive A(0).

3) Sett—t+1landh < h+1.SetP(t) = P(t — 1) and A(t) = A(t — 1).
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4) Offspring Generation: Select two parents, one from regular population and
the other from archive, and apply crossover and mutation operators to create
an offspring.

5) Population Update: Check whether the offspring satisfies the acceptance
conditions to regular population. If it does not satisfy the conditions reject the
offspring and go to step 7, otherwise insert it into P(t).

6) Archive Update: Check whether the offspring satisfies the acceptance
conditions to archive. If so insert it into A(t), otherwise reject it.

7) Ift < Gy, go to step 3.

8) Interaction Stages: Interact with the DM and update offspring acceptance
conditions according to the preference information gathered.

9) Ift =T, perform the final interaction and stop. Otherwise, go to step 3.

iITDEA-fs and iWREA-fs use the same framework defined above as well as the same
Offspring Generation procedure. At each iteration t, two parents are selected to
create an offspring. First parent is selected from regular population by tournament
selection with tournament size of two and probability of 1. That is, two random
solutions are chosen from the current population and it is checked whether one of the
solutions dominates the other solution. If so, the solution dominating the other one is
selected as the first parent. If there is no dominance between two solutions, one of
them is selected randomly. The second parent is selected from current archive

randomly.

In both evolutionary algorithms the chromosome representation is constructed such

that each gene represents whether or not the corresponding feature is selected.

When the two parents are selected, uniform crossover is applied with a crossover
probability of p. = 0.5, and binary mutation is applied with a mutation probability of
Pm = 1/M, where M is the total number of features on each gene to generate

offspring z ¢ (Deb, 2001).
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Population— Parent 1 Parent 2 ¢—Archive
123456 123456
|1|O|1 O|1|1| |1|1|O 0|1|0| .selectedgene

Crossover,

123456
|1|0|0|0|1|1| .mutatedgene

Mutation

123456
Lofofofof1]1]
Offspring

Figure 5.1 An example of crossover and mutation operations

Crossover and mutation procedure is exemplified in Figure 5.1. In this example there
are 6 available features. Parent 1 consists of features 1, 3, 5, and 6 and Parent 2
includes features 1, 2, and 5. The generated offspring after applying crossover and

mutation operations consists of features 5 and 6.

iTDEA-fs and iWREA-fs differ in the Population Update, Archive Update, and
Interaction Stages that are explained for iTDEA-fs in Section 5.2 and for iWREA-fs
in Section 5.4. Furthermore, the two algorithms include different parameter setting

due to rules in their differing operations.

5.2 Interactive Territory Defining Evolutionary Algorithm for the Feature

Selection Problem (iTDEA-fs)

In this study, iTDEA has been implemented on feature selection problem with some
variations that are expected to be more compatible with the characteristics of the
problem. The adopted version is called iTDEA-fs. In this section, the details of
iTDEA-fs are explained.
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5.2.1 Definitions

In archive update and interaction stage of iTDEA-fs, additional operations are
required to calculate the objective weights that will minimize the Chebyshev distance

of a solution from the ideal point, namely calculating favorable weights. Favorable
weight vector w; = (v’\?il, e Wip) of a solution z;, is calculated using the following

formula;

Favorable weights formula

(1 (&1
- - ifzy #z, forallk =1,...p
Zij — 7 kzlzik—zk '
w;; = , .
5= 1 ifz;; = z
0 leU * Z; but 3k
\ such that all z;;, = z,

where z* is the ideal point and p is the number of objectives.

Since all objectives are scaled between 0 and 1, as mentioned in Section 4.2, the

ideal point can be defined as z* = (0);xp-

At each interaction stage 4, the preference information obtained from DM is used to
estimate the preferred weight region, R™. A preferred weight region is defined by a
set of Chebyshev weight ranges [I*,ul] = {[I¥,ul], ..., [I%, ul]} where I} and u
refers the lower and upper bound defined for preference function weight of objective
i. Since there is no information regarding DM’s preferences until first interaction
stage, the initial preferred weight region R° includes all feasible weight ranges,

[0, u] = [0,1] forall j = 1, ...p.
5.2.2 iTDEA-fs Interaction Stages

At each interaction stage h of iTDEA-fs, P solutions are filtered from the current
archive to present to the DM, and he/she is asked to choose the most preferred

solution among them. The selected solution zy,, is used to estimate the preferred

weight region R".
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The preferred weight regions are used to direct the search by taking role in the
archive update rules. As the algorithm progresses and more preference information is
gathered, it is expected to converge to the preferred region. Therefore, the preferred
weight region shrinks progressively with the help of reduction factor r around the

favorable weights of the selected solution, zy,, in each interaction stage.

50 -

@ archive solutions
451 ideal point

Nt
35
30 E
25, E%g
20 - E
a0
%
R O

.
0 5 10 15 20 25 30 35 40 45 50
Objective 1

Objective 2

Figure 5.2 Smaller territory levels are assigned to the solutions in the preferred
region in iTDEA-fs.

Each preferred weight region R" has a territory level 7,,. The territory level assigned
to the recently found region is smaller as exemplified in Figure 5.2 in order to allow
more solutions in the preferred region. This is accomplished with the usage of
territories in archive update. Generally speaking, an offspring’s favorable weights
determine in which preferred weight region it falls into. If it violates the territory of a
solution within that region, then it is not accepted into archive. The archive update

rules will be discussed in Section 5.2.4 in more detail.
The steps of an interaction stage h, are explained below.

(1) Filtering: Find the solutions z; € A(t) whose favorable weights fall into most
currently estimated preferred weight region and form the set . That is for all

z; € A1),
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i.  Calculate favorable weights w; = {Wip ) Wip} of z;.
ii. Check if all I'™" <w;; <u™" where [I'™,u!""] € R"™ for all

j=1,..,p. If so, insert z; into F.

If the number of solutions in F is more than P, select P of them randomly
to present the DM. Otherwise, fill the remaining slots by the solutions in

the A(t) that are not presented to the DM before.

(2) Ask the DM to select zg,,, i.e, the most preferred solution of him/her in F.

(3) Estimate the weights of the DM’s preference function, wpy = (Wl, e Wp),
with the favorable weights of the selected solution zg,,.

(4) Set the preferred weight region R" defined by a set of Chebyshev weight

ranges [I*, ul] = {[1},ul], ..., [I%, ul]} as follows;

( h ) . rh
[0,7"] 1fwj—7S0
h
r
h h] — . *
[lj,uj]—<[1—rh,1] 1fwj+721
rh rh
Lle —?,wj +7l otherwise

where W; € Wpy and r is the reduction factor.

(5) Compute the territory level 7, and assign it to R" using following formula.

H—-h

<T0> h
Th = Tyg\—
Th

where 7y, and Ty represents initial and final territory level parameters,

respectively and H is the total number of interaction stages.

The filtering procedure of iTDEA-fs differs from iTDEA. Since iTDEA originally

implemented on the problems with continuous objective space, the number of non-

dominated solutions found is usually enough to fill P slots, in fact they also check ¢

dominance relations and select non-dominated ones. However, since the objective

space in the feature selection problem is discrete, sometimes P slots are not filled

with the solutions whose favorable weights fall into currently estimated weight

region, therefore in that case the remaining slots are filled with solutions that are not

presented before.
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5.2.3 iTDEA-fs Population Update

Each time an offspring z is generated, it is determined whether it will be accepted
into the regular population. The steps of population update procedure at iteration t,

are explained below:

(1) Check whether z, € P(t), if so do not accept the offspring into population,
otherwise go to step 2.

(2) Setacounteri = 1.

(3) Test z against z; € P(t). If z; is dominated by z., discard z;, insert z g
into P(t) and stop, otherwise set i « i + 1 and go step 4.

(4) If i <N go to step 3, otherwise choose a random solution z, € P(t) to

discard and insert z g into P(t).

In iTDEA, a solution dominated by the population is not accepted, however, in the
feature selection problem generating a non-dominated solution is more challenging.
Thus, for the sake of divergence, the offspring that are not included in regular

population are accepted even if they are dominated.
5.2.4 iTDEA-fs Archive Update

iTDEA-fs slightly differs in archive update rules from iTDEA. The steps followed to

decide whether the offspring z,¢, will be accepted into archive is given below.

(1) Test z,¢ against each solution in the achieve, z; € A(t). If there exists
z; € A(t) that dominates z,¢, reject it and stop, current archive remains
same. Otherwise, go to step 2.

(2) Check whether there exists z; € A(t) that is dominated by z,g. If there is,
discard the dominated solutions from A(t), insert z,g into A(t) and stop.
Otherwise, go to step 3.

(3) Calculate the favorable weights of the z,¢ as W = (Wl, e Wp) to find the
most recently estimated preferred weight region lower and upper bounds of
which covers W . That is,

i. Setq =h.
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ii.  Check if all I] <W; <ul where [I],ul] € R for all j =1,...,p. If

so, assign the territory level T = 7, to the offspring and go to step 4.

Otherwise, set ¢ = q — 1, and repeat this step.

(4) Calculate the Chebyschev distances of z; € A(t) to z.s as d;. Set d =

min;{d;}. If d < T insert the z,¢ into A(t), otherwise, reject it.

Unlike iTDEA, the offspring is accepted into archive if it is non-dominated and there

exist at least one solution dominated by the offspring regardless of territories in

iTDEA-fs.

The archive update procedure of this algorithm allows to keep more non-dominated
solutions in the estimated preferred regions by comparing the territory level of the

region that the offspring belongs to with the distance between the offspring and the

closest solution in the archive as shown in Figure 5.3.
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Figure 5.3 Archive update in iTDEA-fs: the offspring is accepted into archive if

d<r.

5.3 Improvement Issues of iTDEA-fs

Feature selection problem has two characteristics originating from the nature of the

problem that require a special treatment: scaling and imbalanced solution space.
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As mentioned in Section 4.2, theoretically, accuracy can take any value between 0
and 1. However, in practice, depending on the dataset the minimum and maximum
accuracy levels can form a much narrower interval. For example, consider a
classification problem with two classes where 99% of the instances in the dataset
belong to the first class, while only 1% of the instances are from the second class. In
that case, even without constructing any relation between the features and the classes
of the instance, estimating the class of all instances as the first class would result in a
high accuracy level. Since the true interval depends on the dataset, applying a scaling
procedure that will fit to every dataset can be challenging. Not scaling the objectives
properly have a negative impact on the convergence of iTDEA-fs because the
favorable weight calculation method highly relies on the assumption that the

objectives are scaled consistently with each other.

In addition to the scaling issue, in the feature selection problem, discretized and
imbalanced objective space may have a negative impact on estimating the objective
weights of the DM. For example, for a feature selection problem with the number of
features equal to 100, there are 100 distinct solutions with cardinality level of one
while there is only one solution with cardinality level of 100. Moreover, all
objectives have discrete values since accuracy is estimated on a certain size of testing

set, and cardinality, cost, and risk depend on the features included in a subset.

Favorable weight calculation procedure in iTDEA-fs is performed for both
estimating the preferred weight region from preferred solution in an interaction stage
and identifying in which estimated weight region a solution is included. Therefore,
this procedure is an important part of the algorithm but it may not perform well in
case of imprecise scaling and imbalanced solution spaces. The reason of this claim is

explained through an example.

Example: Consider a 3-objective minimization problem where the objectives are Z;,
Z,, and Z3. Suppose that during an interaction stage, when the archive is filtered to

present to the DM, five solutions as given in Table 5.1 are obtained.

Let us assume that the DM has a preference function that minimizes the Chebyshev

distance of a solution from the ideal point with objective weights w;, w,, and ws.
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Assume without loss of generality that the ideal point is zero at each objective. For a
weight set of wi, wy, and w3 equals to 0.1, 0.2, and 0.7 respectively, the DM would

chose the solution which will minimize following function,
max{0.1Z,,0.27Z,,0.7Z,}

Table 5.1 Filtered archive in the example

) Objective Value
Solution Z, d 7 7
Y, 0.10 0.40 0.40
Y, 0.10 0.30 0.50
Y3 0.20 0.30 0.45
Y4 0.20 0.20 0.70
Ys 0.30 0.10 0.70

For this filtered archive and preference function, the DM would select Y as the most
preferred solution. Using the favorable weight calculation method of iTDEA-fs, the
DM’s objective weights would be estimated as 0.66, 0.17, and 0.17, for w,, w», and
w3, respectively.
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Figure 5.4 Favorable weights and actual weights in the example

Figure 5.4 represents the feasible weight space for the 3-objective problem
mentioned in the example above. Favorable weights of the presented solutions to the

DM and actual preference function weights are shown in the figure. It can be
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observed from Figure 5.4 that the favorable weights of the solutions presented to the
DM tend to favor either first or second objectives, while the DM actually put more
emphasis on the third objective. In iTDEA-fs, there can be two reasons for the
filtered set presented to the DM consists of solutions whose favorable weights show

a tendency of not to put emphasis on the third objective.

First, the preferred weight region is converged to a certain region of the weight space
and the solutions in the filtered set are the ones whose favorable weights fall into this
specific region. In that case, if the region shrinks on weights that represent the DM’s
actual weights well, the favorable weights of the solutions in the filtered set will be
also representative and the algorithm will shrink the region around those weights
even more, which is desirable. If the preferred weight region shrinks on weights that
do not represent the DM’s actual objective weights, the solutions in the archive that
are potentially appealing for the DM may not be included in the filtered set as their

favorable weights does not belong to estimated preferred weight region.

Second, the objective function values of non-dominated solutions in the archive may
get squeezed within a narrow interval because of the imprecise scaling and/or
imbalanced solution space. Especially, at early iterations of the algorithm it is
possible that the solutions in the archive do not have balance in the objective space.
In that case, the selected solution from the filtered set will have favorable weights
that do not represent the actual weights well and the preferred weight region will

shrink on those weights to be used in further iterations and interaction stages.

As in the example above, it may be difficult for iTDEA-fs to interpret the behavior of
DM good enough for several reasons. To avoid such problems a mixed integer
mathematical model, Model (Mid,,), suggested by Karakaya et al. (2016), is used to
evaluate the DM’s preferences in iWREA-fs. This model aims to find a weight set
that will have a central location in the Chebyshev weight region that is feasible with

respect to preferences of the DM. The details of the model are given below.

Assuming the ideal point is zero for each objective, let z;; represents jt" objective
value of solution z; and L be the set of pairwise comparisons of the DM where

L = {(zy, 2,): zp, is preferred to z;}. Forming the sets I, , = {t:zp, <z, }and
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17 7, =1{s1zms >z}, and assigning a large positive value to M, the weight

estimation model can be constructed as follows:
Model (Mid,)
max €
s.to
WeZyy = WeZps + € — M(l — yt(zm,zl)),

vt €1, ,,Vs€I} ,,V(Zm,z)€EL, (51)

> w21, Vemz el (52)
tel, ,
m4l
14
W =1, (5.3)
j=1
W= V) (5.4)

Ve(@Zm z) €{0,1}, vVt €l ,, V(zpnz) €L

where W; represents the estimated weight of j*" objective and y;(zy, z;) is a binary

decision variable which equals to one if t* weighted objective of z has the
minimum difference with the maximum weighted objective of z, among the

objectives for which z,, is better than z;.

In this model, constraint (5.1) ensures the weights will be feasible with respect to
DM’s preferences, however; together with objective function it also ensures that the
minimum of the differences between the maximum of weighted objectives will be
maximized. Constraint (5.2) stands for identifying the minimum of those differences
for each preference. Constraint (5.3) normalizes the weights and constraint (5.4)

helps to keep weights away from extremes on the feasible space.
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Each preference of the DM restricts the feasible weight space and the optimal
solution of the model w = {17171, ...,VTIP} is the central weight vector in the feasible

weight space.
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Figure 5.5 Model (Mid,,) weights, favorable weights and actual weights in the
example

Consider the example mentioned above. If the DM selects Y, it refers to a
preference list in which Y, is preferred to solutions Y,, Y3, Y4 and Ys. Using this
preference list Model (Mid,,) estimates the DM’s objective weights as 0.19, 0.19, and
0.62, w1, wa, and w3, respectively. That is, with the same information Model (Mid,,)
is able to estimate the true weights of the DM better by setting a relatively high

estimated weight value to the 3™ objective as shown in Figure 5.5.

5.4 Interactive Weight Reducing Evolutionary Algorithm for Feature Selection
(IWREA-fs)

In this section, a new interactive evolutionary algorithm that uses the general
framework of iTDEA and improves iTDEA-fs in several dimensions is developed for
feature selection problem. As mentioned in Section 5.2, in this algorithm an
approach that is estimated to be more compatible with the characteristics of the

problem is used.
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5.4.1 iWREA-fs Interaction Stages

In iWREA-fs, at each interaction stage, the DM is asked to make Q pairwise
comparisons, where each comparison made between the incumbent solution, Zz;,,
and a selected solution to be compared with the incumbent, z;. The preferences of
the DM are used as constraint to restrict the weight space in Model (Mid,)
introduced in Section 5.2. Before making any interactions with the DM the
preference list is initialized as L = @. The steps of an interaction stage h, are

explained below.

(1) Set the question counter g = 0.

(2) If L = @, select two random solutions, z;,z, € A(t) and z; # z;. Then, ask
the DM to compare z; and z;, and set q < g + 1. Without loss of generality,
assume that z; is preferred to z;j. Then, set L = {(zi,zj)} and the incumbent
solution z;,,. = z;. Otherwise, go to step 3.

(3) Estimate the DM’s preference function weights wpy = (Wl, s Wp), by
solving Model(Mid,,) with the current preference list, L.

(4) Calculate the Chebyshev distances of the solutions in A(t) to the ideal point,
as follows:

i(z;) = mjax{wjzij: w; € WDM}
where z;; represents j objective value of solution z; € A(t) and W;
represents the estimated weight of j* objective.
Rank the solutions in increasing order of #(z;) as {zl, s Z) A(t)l}’ where
|A(t)| represents the number of solutions in the current archive. Initialize
rank counter r = 1.

(5) Check whether the comparison (z;;,, Z,-) is included in L, if it is not included
set z; = z, and go to step 8. Otherwise, set r < r + 1. If r < |A(t)| repeat
step 5, if r > |A(t)| go to step 6.

(6) Calculate the Chebyshev distances of the solutions in P(t) to the ideal point,
as follows:

ﬁ(zi) = m;:lX{WjZij: VT/] € WDM}
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where z;; represents j" objective value of solution z; € P(t) and W;
represents the estimated weight of j* objective.
Rank the solutions in increasing order of #(z;) as {Zl, ...,Z|p(t)|}, where

|P(t)| represents the number of solutions in the current regular population.
Initialize rank counter r = 1.

(7) Check whether the comparison (z;;,, Z,-) is included in L, if it is not included
set zg = z,. and go to step 8. Otherwise, set r « r + 1 and repeat step 7.

(8) Ask the DM to make a pairwise comparison between the current incumbent
solution z;,. and selected solution zg. Let z,, and z; represent the preferred
and non-preferred solutions, respectively. Set z;,. = z,,, update the
preference list as L = L U {(z,,,2;)}. Set ¢ « g + 1. If ¢ = Q estimate the
DM’s preference function weights Wpy and stop by solving Model (Mid,,)

with the current preference list, L, otherwise, go to step 3.

In the interaction stages of iWREA-fs, each pairwise comparison that the DM maker
will make is aimed to be informative, in terms of reducing the feasible weight space
as much as possible so that the objective weight of the DM can be estimated faster
and more accurately and the most preferred solution can converge better. To do that
after each comparison the incumbent solution is kept and the estimated weights are
updated. The next solution to be compared with the incumbent solution is selected
based on the updated weights. If the DM’s objective weight can be estimated
accurately, it is expected that the selected solution for the comparison and the
incumbent solution have close preference function values and the preference of DM
between these two solutions will be useful in terms of reducing the feasible weight

space.

As mentioned before, in iTDEA-fs the DM is presented P solutions and asked to
choose one of them, which actually refers asking the DM to make P — 1 pairwise
comparisons. Therefore, to be consistent while comparing two algorithms, the
number of questions @, in each interaction stage of iWREA-fs is set to P — 1 in our

computational experiments.
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5.4.2 iWREA-fs Population Update

iWREA-fs uses regular population updating rules to direct the search towards
appealing region of the solution space. When an offspring z,¢ is generated at

iteration t, the regular population is updated with the procedure defined below.

(1) Calculate the Chebyshev distances of the offspring to the ideal point, as
U(zy5) = maxj{wjzj: w; € vT/DM} where z; represents j** objective value of
Z of-

(2) Calculate the Chebyshev distances of the solutions in P(t) to the ideal point,

as follows:
i(z;) = mjax{v’\?jzij: w; € WDM}
where z;; represents j th objective value of solution z; € P(t).
(3) Rank the solutions in increasing order of #(z;) as {Zl, ...,Z|p(t)|}, where
|P(t)| represents the number of solutions in the current regular population.
(4) Compare 1i(zyg) and @(zp(r)), if W(Zor) > 1(Z)p(r)) do not accept the
offspring into regular population. Otherwise, discard zjp) and accept the

offspring into the regular population.

As in iTDEA, in WREA-fs it is allowed to keep dominated solutions in the regular
population and its size is kept constant. However, while in iTDEA the search is
directed by the archive with the acceptance rules, in iWREA-fs the search is directed
by regular population. The offspring generated is compared with the worst solution
in the regular population in terms of estimated preference function values and
accepted if it’s preference function value is lower. As a result, better solutions evolve
in the population in terms of estimated preference function values throughout the
iterations and if the weights are estimated well, this procedure allows to direct the

search accurately.
5.4.3 iWREA-fs Archive Update

If the offspring z.g, is accepted to the regular population at iteration ¢, in order to

decide whether it will be accepted into the archive, z s is tested against each
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z; € A(t). If the offspring is dominated at least by one solution, it is rejected and
current archive remains same. If the offspring is non-dominated, the solutions

dominated by the offspring are discarded and the offspring is accepted into archive.

Having a discretized solution space, the number of non-dominated solutions in
feature selection problem is small compared to continuous objective problems.
Therefore, in iWREA-fs it is preferred to keep non-dominated solutions and use

regular population to direct the search according to preferences of the DM.
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CHAPTER 6

COMPUTATIONAL EXPERIMENTS

In this chapter, first, the datasets used to test the performances of the algorithms are
introduced. Then, the parameter setting in the experiments is explained and lastly,

computational results and their analysis are provided.

6.1 Datasets

The algorithms are implemented on four datasets from University of California
(UCI) machine learning depository. Each dataset is designed for classification
problems and none of them includes missing value in their observations. The number
of features, number of classes and number of observations in each dataset are given

in Table 6.1.

Heart Disease and Breast Cancer datasets are examples of classification problems in
medical diagnosis area where the purpose is to identify the presence of diseases in
the patients. In Vehicle dataset, the features extracted by processing vehicle’s image
are used to categorize the vehicle as Opel, Saab, Bus or Van. German dataset
includes the data regarding the customers of a bank and the aim is to classify them as

bad or good.

Table 6.1 Datasets used in experiments

Number of Number of Number of
Dataset )
features classes observations
Heart Disease 13 2 270
Vehicle 18 4 846
German 24 2 1000
Breast Cancer 32 2 569

In order to address the problem defined in Chapter 4, it is required to generate the
parameters regarding cost and risk objectives for each dataset. In this study we

consider the case where the objectives of the DM conflict with each other. This is
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generally the case in real life situation where a solution that performs well in one
objective performs worse in another objective. To reflect such a conflict in our
objectives, we assume that the cost and risk objectives are inversely proportional to
accuracy in different ways. We measure the accuracy level of each feature
individually and use these values to generate inversely proportional cost and risk

parameters for the corresponding feature.

To exemplify the procedure of cost and risk parameters’ generation, consider a
dataset with 5 features. Recall that the DM aims to maximize accuracy whereas to
minimize the risk and the cost of the selected subset. Suppose that in terms of
accuracy features 1 and 2 perform well, feature 3 perform moderately, and features 4
and 5 perform poorly. The features that have close performances are grouped
together and fixed costs of the group are generated directly proportional to their
accuracy levels. That is, fixed costs of the groups comprising features 1 and 2,
feature 3, and features 4 and 5 are high, moderate, and low, respectively. The
variable costs in a group are generated randomly between an interval proportional to
accuracy level, e.g. random between 80% and 120% of accuracy level. The
individual risk levels are generated randomly from an interval that is proportional to

the variable costs of the features.

Heart Disease dataset in UCI repository includes the fixed and variable cost
information of the features and these original values are used as cost parameters in

our experiments.
6.2 Implementation

To estimate the accuracy level of a subset of features, a single hidden layer
feedforward neural network Extreme Learning Machine (ELM), which is suggested
by Huang et al. (2012), is used as the learning algorithm. ELM achieves comparably
high classification performances with a high training speed when compared with
gradient-based methods, traditional SVM, and least square SVM. In our experiments,

we use the suggested parameter setting in Huang et al. (20006).
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We use 10-fold cross validation to determine the training and test sets, and repeat
this procedure 5 times in order to reduce variation in accuracy level estimation

caused by the random nature of ELM.

To be able to observe the effect of employing the DM’s preferences, a version,
namely No Interaction, in which the number of interaction stages is set to zero, is

also tested on each dataset in addition to iTDEA-fs and iWREA-fs.

Recall that the Chebyshev preference function of DM, Upy(2), is formulated in

section 4.1 as follows:
UDM(Z) = max {W]_Zl, W2Z2, W3Z3, W4_Z4_}

where z;, z,, zz and z, refer to accuracy, cardinality, cost and risk objectives of
solution z, respectively, and w = (w;, w,, w3, w,) represents the objective weight

vector of the DM.

We use different weight vectors to simulate the preferences of the DM so that
different sets of solutions are favored by the DM for different weight sets. We refer
to these weights sets as: Accuracy Favored, Accuracy and Cost Tradeoff, Equally
Treated. In Table 6.2, the objective weights in Upy(z) for each type of DM are
given as w = (Wq, wy, w3, w,) where wy, w,, ws, and w, refer to the weights of

accuracy, cardinality, cost, and risk objectives, respectively.

Table 6.2 Types of DM's preference function weights tested

Test Name Weight set
Accuracy Favored (0.97, 0.01, 0.01, 0.01)
Accuracy and Cost Tradeoff (0.40, 0.10, 0.40, 0.10)
Equally Treated (0.25, 0.25, 0.25, 0.25)

6.3 Experimental Setting

The algorithms are tested on each dataset for different types of underlying preference
functions of the DM. In Tables 6.3-6.6, the evolutionary algorithms’ parameter

settings are given for each experiment.
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Within an experimental setting, iTDEA-fs, iIWREA-fs and No Interaction shares the
same parameter setting for the population size, N, and number of iterations, T, and
number of interaction stages, H, is also set same for iTDEA-fs and iWREA-fs. The
interactions with DM scheduled in equal intervals for iTDEA-fs and iWREA-fs in

each experiment. That is, G(h) = (%) h for h =1, ..., H. It is also possible to set an
adaptive scheduling procedure for interactions such that the DM is interacted
whenever solutions that are estimated to be favorable for the DM are obtained. We
do not apply an adaptive scheduling procedure to be able to make a fair comparison
between the algorithms. The number of comparisons, Q, given in Tables 6.3-6.6
refers the number of questions asked to the DM in iWREA-fs at each interaction
stage. The number of solutions presented to the DM in the interactions stages of

iTDEA-fs, P, is set to P = Q + 1. Together with this setting, in an experiment
iTDEA-fs and iIWREA-fs employ same amount of DM interaction.

The population size and the number of questions in the experiments of a dataset are
kept constant, however, the number of iterations and number of interaction stages are
determined such that the search is stopped at a point in which the algorithms can be
compared. Accuracy Favored weight set is generally more challenging in terms of
convergence, thus the number of iterations and interaction stages are set higher for its

experiments.

In addition to those parameters, iTDEA-fs requires to set initial and final territory
levels, 7, and Ty, and reduction factor, r. Based on our preliminary experiments, we
used 7y = 0.1, 7y = 0.0001 and r = (1/p)" where p is number of objectives in the

experiments.

In general, as the solution space enlarges, that is as the number of features increases,
to converge the most preferred solution of the DM the number of iterations, number
of interactions and number of questions asked to the DM are increased, as we did in
our experimental settings. Different settings can be employed such as an adaptive
interaction schedule based on the progress of non-dominated solutions. However, to
make a fair comparison of the algorithms we do not consider such procedures and

keep our original settings.

44



Table 6.3 Parameter settings of Heart Disease (13) experiments

Weight Set
Accuracy Accuracy and Cost Equally
Parameter Favored Tradeoff Treated
Population size, N 50 50 50
Number of iterations, 7’ 600 200 200
Number of interactions, H 6 4 4
Number of comparisons, O 3 3 3
Table 6.4 Parameter settings of Vehicle (18) experiments
Weight Set
Accuracy Accuracy and Cost Equally
Parameter Favored Tradeoff Treated
Population size, N 200 200 200
Number of iterations, T 10,000 10,000 10,000
Number of interactions, H 10 10 10
Number of comparisons, O 3 3 3
Table 6.5 Parameter settings of German (24) experiments
Weight Set
Accuracy Accuracy and Cost Equally
Parameter Favored Tradeoff Treated
Population size, N 500 500 500
Number of iterations, T 20,000 6,000 6,000
Number of interactions, H 10 3 3
Number of comparisons, O 5 5 5
Table 6.6 Parameter settings of Breast Cancer (32) experiments
Weight Set
Accuracy Accuracy and Cost Equally
Parameter Favored Tradeoff Treated
Population size, N 1,000 1,000 1,000
Number of iterations, T 20,000 10,000 10,000
Number of interactions, H 20 10 10
Number of comparisons, O 5 5 5

45



6.4 Results and Discussion

Three algorithms are tested on each experimental setting with 10 replications. The
algorithms are compared based on a performance indicator (defined in the next

section) and their computational efficiency.
6.4.1 Performance Indicator

The performance of algorithms on finding an appealing solution for DM in an
experiment can be evaluated based on the best solution in the final archive
U*(T) = ming, s {Upm(2;)}. Although during the search process the underlying
preference function of the DM is unknown to us, we use this simulated underlying
preference function to calculate the performance indicator. Let U/ ., s Ulyreas> @nd
ur

No Interaction

represent U*(T) values obtained in replication r of an experimental
setting by iTDEA-fs, iWREA-fs, and No Interaction, respectively. The values of
Ul oinio Utireass and Uf peracion @re given in Appendix A for each experimental

setting.

Since in the feature selection problem addressed it is not possible to find the nadir
and ideal point without total enumeration of possible subsets, in order to define a
normalized performance indicator, for each experimental setting, the best and worst
performance obtained by algorithms through 10 replications are found as shown in

Equations (6.1) and (6.2).

UMAX = r =Il;[la)§ O{maX{ UirTDEA-fs' Ui‘(’\/REA-fs' UIGO lnteraction}} ( 6.1 )
UMIN = r =r£lin1 0 {mln{ Ui?DEA-fs' Ui(’\/REA-fs' UIGO Interaction}} ( 6.2 )

By using Uy 4x and Uy;y, the performance of algorithms in a replication is evaluated
as percentage deviations, which are defined as given in Equations (6.3), (6.4) and
(6.5).

Ui"{'DEA-fs — Unin

Al = 6.3
iTDEA-fs UMAX _ UMIN ( )
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UiT\;VREA-fs - UMIN
A" = 6.4
iWREA-fs UMAX _ UMIN ( )

Ut . —=U
r __ “No Interaction MIN
No Interaction ™

(6.5)

UMAX - UMIN

6.4.2 Evaluating Algorithms

The mean and standard deviation of the percentage deviations of each algorithm
from the minimum value on each experimental setting are given in Tables 6.7-6.10.
The mean of percentage deviations is zero in some experimental settings, which
indicates that the algorithm found the best solution of the three algorithms in 10 runs,
Upin, in all replications. Those types of results are bold-faced in Tables 6.7-6.10,
and it is observed that in some experiments iWREA-fs is able to converge the best

solution found in all of the replications.

One sample t test is applied on the paired differences of percentage deviations:

r T T T r T 1
(Aiwreats — Aitppass)> (Aiwreass — DNomteraction) a0d (Airpea.s — Alo mteraction) 1N Order to
identify whether there exists statistically significant difference between means and

95% confidence intervals are computed as given in Tables 6.11-6.14.

In Tables 6.11-6.14, the results in which there is statistically significant difference
between the algorithms are bold-faced. The results indicate that iWREA-fs performs
better than iTDEA-fs and No Interaction in many cases. Based on our preliminary
experiments, it is known that Vehicle and Breast Cancer datasets and Accuracy
Favored weight set are comparably more challenging in terms of convergence than
other settings since the relevance and redundancy relations between the features are
more complicated. IWREA-fs’s performance is more apparent in those cases. On the
other hand, according to Tables 6.11-6.14, there is no statistical difference between
iTDEA-fs and No Interaction in none of the experimental settings, which will be

discussed later in this section in detail.
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Table 6.7 Mean and standard deviation of the percentage deviations for Heart
Disease (13) experiments

Algorithm

Weight Set iTDEA-fs  iWREA-fs No Interaction
Accuracy Favored Mean 0.3887 0.0402 0.0919
Std. Dev. 1.2051 0.3810 0.4437
Accuracy and Cost ~ Mean 0.2086 0.0000 0.1756
Tradeoff Std. Dev. 1.0185 0.0000 1.1241
Mean 0.1543 0.0241 0.1497
Equally Treated o1 Dev.  1.0279 0.2289 0.7951

Table 6.8 Mean and standard deviation of the percentage deviations for Vehicle (18)
experiments

Algorithm

Weight Set iITDEA-fs  iWREA-fs No Interaction
Accuracy Favored Mean 0.6670 0.1523 0.7522
Std. Dev. 1.0437 0.7501 1.0092
Accuracy and Cost ~ Mean 0.5263 0.0000 0.5861
Tradeoff Std. Dev. 1.2447 0.0000 0.8261
Mean 0.8000 0.4000 0.8000
Equally Treated g4 Dev.  1.2649 1.5492 12649

Table 6.9 Mean and standard deviation of the percentage deviations for German (24)
Experiments

Algorithm

Weight Set iITDEA-fs  iWREA-fs No Interaction
Accuracy Favored Mean 0.7166 0.2811 0.6716
Std. Dev. 0.6888 0.7127 0.9189
Accuracy and Cost Mean 0.1176 0.0117 0.0176
Tradeoff Std. Dev. 0.9339 0.0740 0.0848
Mean 0.2106 0.0409 0.2162
Equally Treated g i Dev. 12521 0.3263 1.0046

Table 6.10 Mean and standard deviation of the percentage deviations for Breast
Cancer (32) experiments

Algorithm

Weight Set iTDEA-fs  iWREA-fs No Interaction
Accuracy Favored Mean 0.4436 0.0449 0.6640
Std. Dev. 0.9839 0.4258 0.9090
Accuracy and Cost ~ Mean 0.3688 0.0000 0.4233
Tradeoff Std. Dev. 1.2026 0.0000 1.0990
Mean 0.1996 0.0000 0.0195
Equally Treated /i Dev.  1.0356 0.0000 0.0942
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Table 6.11 95% confidence intervals on paired differences of percentage deviations
for Heart Disease (13) experiments

iWREA-fs iWREA-fs iTDEA-fs
Vs. Vs. Vs.
Weight Set iTDEA-fs No Interaction No Interaction
Accuracy Favored (-0.61, -0.09) (-0.21, 0.10) (-0.04, 0.63)
Accuracy and Cost
Tra};ieoff (-0.45, 0.03) (-0.44, 0.09) (-0.38, 0.45)
Equally Treated (-0.33,0.07) (-0.29, 0.04) (-0.20, 0.21)

Table 6.12 95% confidence intervals on paired differences of percentage deviations
for Vehicle (18) experiments

iWREA-fs iWREA-fs iTDEA-fs
Vs. Vs. Vs.
Weight Set iTDEA-fs No Interaction No Interaction
Accuracy Favored (-0.88, -0.15) (-0.84, -0.36) (-0.36, 0.19)
Accuracy and Cost
Tra}clleo ff (-0.82, -0.23) (-0.78, -0.39) (-0.33,0.21)
Equally Treated (-0.90, 0.10) (-0.77, -0.03) (-0.34, 0.34)

Table 6.13 95% confidence intervals on paired differences of percentage deviations
for German (24) experiments

iWREA-fs iWREA-fs iTDEA-fs
Vs. Vs. Vs.
Weight Set iTDEA-fs No Interaction No Interaction
Accuracy Favored (-0.62, -0.25) (-0.73, -0.05) (-0.24, 0.33)
Accuracy and Cost
Tra}éeoff (-0.33,0.12) (-0.02, 0.01) (-0.13,0.33)
Equally Treated (-0.41, 0.07) (-0.38, 0.03) (-0.13,0.12)

Table 6.14 95% confidence intervals on paired differences of percentage deviations
for Breast Cancer (32) experiments

iWREA-fs iWREA-fs iTDEA-fs
Vs. Vs. VS.
Weight Set iTDEA-fs No Interaction No Interaction
Accuracy Favored (-0.64, -0.15) (-0.92,-0.32) (-0.55,0.11)
Accuracy and Cost
Tra}c]leo e (-0.66, -0.08) (-0.69, -0.16) (-0.36, 0.25)
Equally Treated (-0.45, 0.05) (-0.04, -0.01) (-0.07, 0.43)
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The deviations are used to compare the algorithms in their performance to converge
to the best solution found in all replications for a given number of iterations. In order
to evaluate the convergence speed of algorithms in detail, the deviations in each
replication can be investigated. The progress of the best solution in the archive
through iterations, U*(t) = min, ¢ A(t){UDM (z;)}, for 10 replications of experiments
on Breast Cancer dataset with Accuracy Cost Tradeoff weight set are shown in
Figures 6.1, 6.2, and 6.3 for iTDEA-fs, iWREA-fs, and No Interaction, respectively.
As it can be inferred from those figures that iWREA-fs is converging better and
faster to the best solution found by three algorithms in 10 replications. The progress
of the best solution in the archive through iterations, namely archive progress, is

given for each experimental setting in Appendix B as figures.

iTDEA-fs (Breast Cancer Dataset - Accuracy Favored Weight Set)
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Figure 6.1 Archive progress of iTDEA-fs on Breast Cancer dataset experiments with
Accuracy Favored weight set
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IWREA-fs (Breast Cancer Dataset - Accuracy Favored Weight Set)
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Figure 6.2 Archive progress of iWREA-fs on Breast Cancer dataset experiments
with Accuracy Favored weight set

No Interaction (Breast Cancer Dataset - Accuracy Favored Weight Set)
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Figure 6.3 Archive progress of No Interaction on Breast Cancer dataset experiments
with Accuracy Favored weight set t
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Although it is expected that the information gathered from the DM will be useful to
find appealing solutions for the DM, one of the observation that can be inferred from
the confidence intervals given in Tables 6.11-6.14 is that there is no statistical
difference between the performances of iTDEA-fs and No Interaction. In order to
explain the reason, one of the replications in which iTDEA-fs does not perform as

well as No Interaction is investigated.

In Figure 6.4, the progress of best solution for DM in the archive through iterations,
U*(t), is shown for the 5™ replication of experiments on Breast Cancer dataset with
Accuracy Cost Tradeoff weight set. Additionally, the preference function value of
the selected solutions of iTDEA-fs’s and incumbent solutions of iWREA-fs’s at

interaction stages are represented in the same figure.

Breast Cancer Dataset - Accuracy Favored Weight Set Run 5
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Figure 6.4 5" replication on Breast Cancer dataset experiments with Accuracy
Favored weight set

As it can be observed from Figure 6.4, the selected solution is not the same with the
best solution of the archive after the fourth interaction stage of iTDEA-fs. This is

only possible if the best solution is not included in the set of solutions presented to
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the DM. Recall that the filtered set in iTDEA-fs includes the solutions whose
favorable weights fall into the most recently estimated preferred weight region. Even
though in the first three interaction stages the best solution in the archive is presented
to the DM, the preferred weight region is not shrunk on objective weights that
represent the DM’s preference function well. Hence, in the later interaction stages
the favorable weights of the best solution in the archive do not belong to the
estimated preferred weight region and the search is not directed towards the

appealing region of solution space for the DM.

On the other hand, the incumbent solution in iWREA-fs is same with the best
solution in the archive in most of the interaction stages, which indicates that the
DM’s objective weights are represented well with the estimated weights throughout
the algorithm. In addition to its benefit in directing search accurately, this property of
iWREA-fs enables to identify best solution found without an additional interaction.
By investigating plots provided in supplementary material that has the same form
with Figure 6.4 for all individual runs, it can be observed that the conflict with the
selected solution and best solution in iTDEA-fs is valid in most of the replications,

while in iWREA-fs generally the best solution and incumbent overlaps.
6.4.3 Comparison of Computational Efforts

As mentioned before, ELM has randomness in its nature. Therefore, in order to
compare the algorithms in terms of convergence performance precisely, accuracy
level of one feature subset found in a replication is used in other replications without
calling ELM again. As a result, it would not be fair to compare the algorithms in

terms of computational effort with the original experiments.

In order to compare the computational efforts, accuracy objective is defined as a
simple function and experiments regarding Accuracy Favored weight set are

conducted with that modification for 10 replications.

The algorithms are coded on MATLAB R2014b, and implemented on a computer
with Intel(R)Core(TM)i7-4770S CPU @ 3.10 GHz, 16 GB RAM and Windows 7.

53



The average CPU times for the implementation of algorithms on each dataset in

Table 6.15. The individual CPU time of runs are provided in Appendix C.

Table 6.15 CPU times of algorithms (in seconds)

Algorithm
Dataset 1ITDEA-fs IWREA-fs No Interaction
Heart Disease 0.38 1.55 0.38
Vehicle 16.57 7.40 16.52
German 71.83 18.06 72.65
Breast Cancer 144.30 33.97 146.90

In the interaction stages of iWREA-fs after each question asked to the DM,
Model (Mid,,) is solved which is a mixed integer programming, while the favorable
weight calculation procedure in iTDEA-fs is a simple algebraic function. However,
at each iteration in order to update the regular population, the dominance relation
between the offspring and population members is checked in iTDEA-fs and No
Interaction, while in iWREA-fs after the first interaction estimated preference
function value of the offspring is compared with the maximum of estimated
preference function values of population members only. In Heart Disease dataset
experiments for which the interaction stages are set more frequently, iWREA-fs
requires higher computational effort. However, as the frequency of interaction stages
decreases the efficiency of population update rules in iWREA-fs shows its effect,
therefore the average CPU time of iWREA-fs is smaller than iTDEA-fs and No

Interaction for the experiments of Vehicle, German and Breast Cancer datasets.
6.4.4 Features Selected

In feature selection problems it is a concern to identify the features that contribute to
classification performance most. Therefore, we looked at the similarity of the
features of the subsets that have high preference function values for the accuracy-
favored preference function casein this section. We selected the accuracy-favored
case since it proved to be a difficult case in the experiments. Heart Disease dataset is

used for that purpose since total enumeration of solutions is possible for this dataset.

When the DM’s objective weights are Accuracy Favored, it is expected that the
subsets of features with high accuracy levels will be favored according to the

underlying preference function. Among all possible feature subsets of Heart Disease
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dataset, the best solution in terms of preference function value with Accuracy
Favored weight set includes only features 3, 12 and 13. In Table 6.16, the existence
frequencies of features in the subsets ranked in top 5 percent by their respective
preference function values with Accuracy Favored weight set are given. As it can be
inferred from these results, most frequent features are 3rd, 12" and l3th, which are

consistent with the features included in the best solution, as expected.

Table 6.16 Existence frequencies of features in the subsets ranked in top 5 percent
Feature Frequency

1 0.3634
2 0.4829
3 0.7634
4 0.3878
5 0.3512
6 0.3195
7 0.3585
8 0.4415
9 0.4366
10 0.5195
11 0.4000
12 0.8415
13 0.9171

6.4.5 Some Results for Quadratic Underlying Preference Functions

In order to demonstrate the performance of algorithms for a different form of DM’s
underlying preference function, we repeated the experiments on Vehicle dataset for a

quadratic preference function to be minimized as formulated in Equation 6.6.
Upm(2) = (W121)? + (Wp25)% + (W323)% + (Wyz4)? (6.6)

where z;, z,, z;3 and z, refer to (modified) accuracy, cardinality, cost and risk
objectives of solution z, respectively, and w = (wy, w,, w3, w,) represents the
objective weight vector of the DM as discussed in Section 4.2. We used Accuracy
Favored, Accuracy and Cost Tradeoff, Equally Treated weight vectors as defined in
Section 6.2 and same evolutionary algorithms’ parameter settings with the previous
experiments on Vehicle dataset as given in Table 6.2 for the experiments of quadratic

preference function.
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The progress of the best solution in the archive through iterations, U*(t) =
ming ea){Upm(2;)}, for 10 replications of iTDEA-fs, iWREA-fs and No Interaction
are given in Appendix D for each experimental setting. As it can be inferred from the
figures, in Accuracy Favored weight set experiments, iWREA-fs has a better and
faster convergence to the best solution found by three algorithms in 10 replications,
namely Upy. On the other hand, for Accuracy and Cost Tradeoff and Equally
Treated weight vectors, all three algorithms are successful in converging to Uy,

while iWREA-fs seems to converge faster in several replications.
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Figure 6.5 4™ replication of quadratic preference function experiments with
Accuracy Favored weight set

In Figure 6.5, the progress of the best solution for DM in the archive through
iterations, U*(t), is shown for the 4™ replication of quadratic preference function
experiments on Vehicle dataset with Accuracy Favored weight set. The preference
function value of the selected solutions of iTDEA-fs’s and incumbent solutions of
iWREA-fs’s at interaction stages are represented in the same figure. Figure 6.5
demonstrates that iWREA-fs is able to identify best solution for DM as in previous

experiments.
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CHAPTER 7

CONCLUSION

Feature selection is an important problem as the result has a major impact on the

performance, storage requirements, and computational efforts of learning algorithms.

In this study, we have implemented several variations of a preference-based
evolutionary algorithm, iTDEA-fs, on the feature selection problem. As the results
revealed special characteristics of the problem, we developed a new preference based

evolutionary algorithm, iWREA-fs, that is compatible with those characteristics.

In addition to the traditional objectives defined for the feature selection problem in
the literature, we set generic objectives that can be useful within different contexts of
the problem. We defined the problem with representative objectives; however, in the
presence of more objectives the algorithms can be used for more than four

objectives.

The feature selection is used for many applications of classification problems. The
DM of the problem can be different agencies or customers depending on the scope of
the application area. For example, in health care, association of medical doctors,
governmental agencies or patients can be the DM of the problem whose concerns are
selecting a set of tests that provides accurate diagnosis while being cost-efficient
and/or while minimizing health related risks involved in the tests. It may also be
possible to select several meaningful subsets and then involve the patient in the final

decision of which subset to use.

The results show that the interactions with the DM provide a higher convergence
speed while finding solutions appealing to the DM in iWREA-fs. We believe
employing the DM preferences is beneficial for solving feature selection problem in

terms of bringing both flexibility on implementing the algorithm without dataset-
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specific parameters and ability that the final best solution for the DM is known at the
end of algorithm. To the best of our knowledge, this is the first study that uses a
preference-based approach and considers additional objectives together with the

traditional ones for the feature selection problem.

It may be useful to try different underlying preference functions to further
demonstrate the performance of algorithm. It may also be worthwhile to study DM
inconsistencies. Koksalan and Karahan (2010) demonstrated that such

inconsistencies did not deteriorate the performance of iTDEA much.

Being a parameter-free and computationally efficient algorithm, iWREA-fs can be
tested for other combinatorial problems as a preference-based evolutionary algorithm
as a future work. We also intend to compare the performance of the algorithms with
commonly used multi-objective evolutionary algorithms in feature selection

problem.

In some classification problems, there can be more than one class variable to be
determined. That is, the features’ values of an instance are used to classify it in more
than one class. To illustrate, in a medical diagnosis case the patients can be classified
in terms of two diseases: flu and cold, and it is possible that the patient has both, only
one, or none of those illnesses. As a future work, the algorithms developed in this

study can be applied on feature selection for this type of classification problems.
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APPENDICIES

APPENDIX A

PERFORMANCE MEASUREMENTS

Table A.1 Heart Disease — Accuracy Favored

Run Ulg DEA-fs U17{7V REA-fs UIGO Interaction

1 1 0 0

2 0 0 0

3 0 0 0.3062
4 0.3062 0 0.3062
5 0.9632 0 0

6 0.3062 0 0

7 0 0 0

8 0.3062 0 0.3062
9 0.1498 0 0
10 | 0.8554 | 0.4016 0

Table A.2 Heart Disease — Accuracy and Cost Tradeoff

Run Ulg DEA-fs U17{7V REA-fs UIGO Interaction

1 0 0 0

2 0.7563 0 0

3 0.573 0 0

4 0 0 0

5 0.7563 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0.7563
10 0 0 1
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Table A.3 Heart Disease — Equally Treated

Run Ulg DEA-fs U17{7V REA-fs UIGO Interaction

1 0 0 0

2 0 0 0

3 0.5427 0 0.2413
4 0 0 0.6967
5 1 0.2413 0.5593
6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0
10 0 0 0

Table A.4 Vehicle — Accuracy Favored

Run UiT;DEA-fs Uiwreass | UNo nteraction
1 0 0 0
2 0.4681 | 0.625 0.9925
3 0.43 0.4681 0.8432
4 1 0 0.4681
5 1 0 1
6 0.4681 0.43 1
7 1 0 0.802
8 0.4681 0 0.9483
9 0.9925 0 1
10 | 0.8432 0 0.4681

Table A.5 Vehicle — Accuracy and Cost Tradeoff

Run UiT;DEA-fs Uiwreass | UNo nteraction
1 1 0 0.6206
2 0 0 0.2525
3 0.2525 0 0.6206
4 0.2525 0 0.6206
5 1 0 0.6206
6 0.2525 0 0.2525
7 0.2525 0 1
8 1 0 1
9 1 0 0.6206
10 | 0.2525 0 0.2525
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Table A.6 Vehicle — Equally Treated

Run UiT;DEA-fs Uvreass | Ulo iteraction
1 1 1 1
2 1 0 1
3 1 1 1
4 1 0 1
5 1 1 1
6 1 0 1
7 0 1 1
8 1 0 1
9 0 0 0
10 1 0 0

Table A.7 German — Accuracy Favored

Run UiT;DEA-fs Uvreass | Ul iteraction
1 0.338 0.338 0.6068
2 0.6656 | 0.338 0.6068
3 0.7826 | 0.338 0.8166
4 0.811 0 0.7826
5 0.7826 | 0.338 0.7826
6 1 0.338 1
7 0.7826 0 0.7826
8 0.338 0 1
9 0.6656 | 0.338 0
10 1 0.7826 0.338

Table A.8 German — Accuracy and Cost Tradeoff

Run UiqDEA-fs Uvreass | Ul iteraction
1 0 0 0
2 0.0585 0 0
3 0 0 0
4 0 0 0
5 0.0585 0 0.0585
6 0 0.0585 0.0585
7 1 0 0
8 0 0 0
9 0 0 0
10 | 0.0585 | 0.0585 0.0585
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Table A.9 German — Equally Treated

Run UiT;DEA-fs Uiwrea-ss | UNo nteraction

1 0.1063 0 0.1063
2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0.3451
6 1 0.3451 0.6463
7 0 0 0.1063
8 0 0 0

9 0 0 0
10 1 0.064 0.9576

Table A.10 Breast Cancer — Accuracy Favored
Run UiT;DEA-fs Uiwreass | UNo nteraction

1 0.54 0.4488 0

2 0 0 0.54
3 0.54 0 0.6548
4 0 0 0.9896
5 0.8363 0 0.54
6 0.5896 0 0.9907
7 0.54 0 0.54
8 0.8497 0 1

9 0.54 0 0.6152
10 0 0 0.7692

Table A.11 Breast Cancer — Accuracy and Cost Tradeoff

Run UiqDEA-fs Uiwreass | UNo nteraction
1 0.672 0 0.672
2 0.672 0 0.672
3 0 0 0.7724
4 1 0 0.672
5 0 0 0
6 0 0 0
7 0 0 0
8 0.672 0 0
9 0.672 0 0.7724

10 0 0 0.672
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Table A.12 Breast Cancer — Equally Treated

Run UiT;DEA-fs Uiwreass | UNo nteraction

1 0 0 0

2 0.065 0 0

3 1 0 0

4 0 0 0

5 0.065 0 0

6 0.065 0 0.065
7 0 0 0

8 0.065 0 0

9 0.6705 0 0.065
10 0.065 0 0.065
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APPENDIX B

ARCHIVE PROGRESSES

iTDEA-fs (Heart Disease Dataset - Accuracy Favored Weight Set)
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Figure B.1 Heart Disease — Accuracy Favored — iTDEA-fs
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iIWREA-fs (Heart Disease Dataset - Accuracy Favored Weight Set)
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Figure B.3 Heart Disease — Accuracy Favored — No Interaction
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iIWREA-fs (Heart Disease Dataset - Equally Treated Weight Set)
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iTDEA-fs (Vehicle Dataset - Accuracy Favored Weight Set)
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No Interaction (Vehicle Dataset - Equally Treated Weight Set)
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0.28F T

Run 1
Run 2
Run 3
Run 4
Run 5
Run6 H
Run 7
Run 8
‘ Run 9

Run 10

—

0.275

027411 .

Ut

0.265 &

026 B

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure B.19 German — Accuracy Favored — iTDEA-fs

71



0.28

0.275

0.27

U

0.265

0.26

iIWREA-fs (German Dataset - Accuracy Favored Weight Set)

Run 1
Run 2
Run 3
Run 4
Run 5
Run6 H
Run 7

Run 8

Run 9

Run 10

0.2

0.4

0.6

0.8

Figure B.20 German — Accuracy Favored — iWREA-fs

0.28

0.275

027 |

Ut

0.265

0.26

No Interaction (German Dataset - Accuracy Favored Weight Set)

Run 1
Run 2
Run 3
Run 4
Run 5
Run6 H
Run 7

Run 8

Run 9

Run 10

0.2

0.4

0.6

0.8

1.2

1.4

Figure B.21 German — Accuracy Favored — No Interaction

78



iTDEA-fs (German Dataset - Accuracy Cost Tradeoff Weight Set)
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No Interaction (German Dataset - Accuracy Cost Tradeoff Weight Set)
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iTDEA-fs (Breast Cancer Dataset - Accuracy Favored Weight Set)
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Figure B.28 Breast Cancer — Accuracy Favored — iTDEA-fs
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Figure B.29 Breast Cancer — Accuracy Favored — iWREA-fs
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APPENDIX C

COMPUTATIONAL TIMES

Table C.1 CPU Times of Heart Disease experiments (in seconds)

Run iTDEA-fs iWREA-fs No Interaction
1 0.38 1.47 0.39
2 0.41 1.50 0.39
3 0.38 1.98 0.38
4 0.39 1.41 0.39
5 0.41 1.61 0.39
6 0.39 1.41 0.36
7 0.34 1.70 0.38
8 0.36 1.58 0.38
9 0.38 1.27 0.36
10 0.38 1.63 0.41

Table C.2 CPU Times of Vehicle experiments (in seconds)

Run iTDEA-fs iWREA-fs No Interaction
1 15.98 8.92 16.19
2 16.38 8.09 16.03
3 17.34 7.38 17.06
4 16.48 7.33 16.72
5 16.83 6.17 16.23
6 17.05 7.61 16.88
7 16.19 6.66 16.56
8 16.28 6.58 16.17
9 16.20 7.25 16.66
10 17.00 8.06 16.67

Table C.3 CPU Times of German experiments (in seconds)

Run iTDEA-fs iWREA-fs No Interaction
1 71.45 17.47 71.92
2 74.30 17.64 74.05
3 73.70 19.81 75.13
4 71.72 18.41 72.56
5 71.14 17.17 71.08
6 71.55 18.97 72.06
7 69.89 18.72 71.45
8 70.66 18.14 71.86
9 73.39 18.48 73.98
10 70.50 15.80 72.45
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Table C.4 CPU Times of Breast Cancer experiments (in seconds)

Run iTDEA-fs iWREA-fs No Interaction
1 143.66 32.70 150.73
2 147.38 37.14 154.27
3 148.00 33.13 145.64
4 145.06 33.47 149.06
5 145.47 35.64 142.52
6 139.25 32.16 146.03
7 145.61 34.64 146.50
8 141.13 32.05 144.86
9 145.52 34.86 144 .48
10 141.94 33.88 144.92
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QUADRATIC PREFERENCE FUNCTION RESULTS
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iIWREA-fs (Vehicle Dataset - Accuracy Favored Weight Set
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iTDEA-fs (Vehicle Dataset - Accuracy Cost Tradeoff Weight Set)
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Figure D.4 Accuracy and Cost Tradeoff — iTDEA-fs
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No Interaction (Vehicle Dataset - Accuracy Cost Tradeoff Weight Set)
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Figure D.6 Accuracy and Cost Tradeoff — No Interaction

iTDEA-fs (Vehicle Dataset - Equally Treated Weight Set)
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92



IWREA-fs (Vehicle Dataset - Equally Treated Weight Set)
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Figure D.8 Equally Treated — iWREA-fs
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Figure D.9 Equally Treated — No Interaction
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