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ABSTRACT 

 

AN APPROACH FOR DETERMINING PROCESS ECONOMY 

PARAMETERS OF MULTIVARIATE LOSS FUNCTIONS 

 

Özkan, Gökçe 

M.S., Department of Industrial Engineering 

Supervisor: Prof. Dr. Gülser Köksal 

August 2016, 72 pages 

 

The aim of this study is to provide an effective method for determining parameters 

of multivariate loss functions, which are related with process economics. The loss 

functions are widely used in product and process design and other quality 

engineering applications. Although there are several studies about different types 

of loss functions, there is a lack of studies on determining cost matrix parameters 

of these functions. For this purpose, we propose a method based on multi-objective 

decision making tools. We illustrate use of the method on two example problems, 

and discuss their results. 

 

Keywords: Multivariate Loss Functions, Parameter Determination, Quality 

Engineering



vi 
 

ÖZ 

 

ÇOK DEĞİŞKENLİ KAYIP FONKSİYONLARININ SÜREÇ EKONOMİSİ 

PARAMETRELERİNİN BELİRLENMESİ İÇİN BİR YAKLAŞIM  

 

Özkan, Gökçe 

Yüksek Lisans Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülser Köksal 

Ağustos 2016, 72 sayfa 

 

 

Bu tez çalışmanın amacı çok değişkenli kayıp fonksiyonlarının süreç ekonomisi 

parametrelerinin belirlenmesi konusunda bir etkili bir yöntem sağlamaktır. Kayıp 

fonksiyonları ürün ve süreç tasarımı ve diğer kalite mühendisliği uygulamalarında 

sıkça kullanılmaktadır. Literatürde farklı çok değişkenli kayıp fonksiyonları 

hakkında bir çok çalışma olduğu halde bu fonksiyonların maliyet matrisi 

parametrelerinin belirlenmesi konusunda yeterli bir çalışma bulunmamaktadır. 

Önerdiğimiz method bu parametrelerin belirlenmesi için çok amaçlı karar verme 

araçlarını kullanmaktadır. Önerilen methot iki örnek problem üzerinde açıklanmış 

ve sonuçları incelenmiştir. 

 

Anahtar Kelimeler: Çok Değişkenli Kayıp Fonksiyonları, Parametre 

Belirlenmesi, Kalite Mühendisliği 
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CHAPTER 1 

INTRODUCTION 

In a competitive environment arising from globalization, companies all around the 

world are forced to produce high quality products at low costs and as fast as possible 

in order to satisfy customers. Usually, overall quality perceived by the customers 

depends on several quality characteristics of the product. Hence, typically multiple 

quality characteristics need to be optimized simultaneously to create high quality 

products right at the first time, and minimize the quality loss, which is the loss to 

the society caused by low quality products. However, usually the quality 

characteristics are controlled by a common set of design parameters and improving 

a quality characteristic typically means worsening another, causing a trade-off 

between quality characteristics. Problems of finding the optimal design parameter 

setting that maximizes the overall quality of the products are called Multi-Response 

Design Parameter Optimization (MRDPO) problems and they are widely studied 

by researchers around the world. 

According to Taguchi (1986), the quality loss of a product arises from the functional 

variation from its target value and he defines quadratic loss functions to represent 

the quality loss caused by a product. Using the quadratic quality loss functions, he 

combines multiple quality characteristics in one value function, which allows the 

optimization of a single objective to reach the optimal result. According to Suhr and 

Batson (2001), loss functions are mainly used in product and process design, and 

quality assurance programs.  

The loss function developed by Taguchi (1986) considers only one quality 

characteristic of a product. Multivariate quality loss functions considering more 

than one quality characteristic are developed by Pignatiello (1993) and studied by 

several researchers including Ames et al. (1997), Tsui (1999), Wu and Chyu (2004), 
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Vining (1998) and Ko et al. (2005). These functions are in the form of a value 

function or a statistical distance of a given product or process design point (i.e., 

design parameter settings) from a target set of design parameter values. This 

distance depends on variances and covariances of the quality characteristics at the 

given design point as well as process economics and decision maker preferences. 

The distance utilizes empirical models of relationships between the design 

parameters and expected values of the quality characteristics at these parameter 

levels. Although building these empirical models are studied in detail in the 

literature as well as estimating the variances and the covariances, determination of 

loss function parameters that are affected by process economics is not paid enough 

attention as pointed out by some researchers including Park and Kim (2005). 

Similarly, Kuhnt and Erdbrügge (2004) state that the method proposed by 

Pignatiello (1993), which is a widely used method in other studies, is impractical, 

since it requires perfect estimation of quality losses at chosen design points.       

In this thesis, we study properties of multivariate loss functions and propose a 

method for determining the process economics related parameters of the 

multivariate quadratic loss functions. Based on a structural analysis of the loss 

functions, which we have performed to choose a proper approach, we develop an 

effective and robust method that does not require perfect estimation of loss at any 

stage. Our method can be used for building multivariate loss functions regardless 

of the number of quality characteristics under consideration. The purpose of the 

method we proposed is to find the best fitting function to the underlying value 

function of the decision maker, who typically is the quality engineer trying to find 

the best design parameter settings of a product and/or process.   

The organization of the thesis is as follows. The background and related literature 

on quality loss functions and other related concepts are reviewed in Chapter 2. In 

Chapter 3, the structural analysis on different aspects of multivariate quality loss 

functions are provided. We propose a method for determining the parameters of 

multivariate loss functions in Chapter 4. In Chapter 5, two examples illustrating the 

method and discussions on the method and multivariate loss functions in general 
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are provided. Our concluding remarks and future study directions are provided in 

Chapter 7.  
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CHAPTER 2 

LITERATURE REVIEW AND BACKGROUND 

In this chapter, the background and literature on related concepts to this study 

including the multi-response design parameter optimization problems and quality 

loss are presented together with Analytic Hierarchy Process. The chapter is divided 

into two sections, which are quality loss and relevant multi-objective decision 

making approaches. 

 

2.1 QUALITY LOSS  

DeVor et al. (2007) states that quality of a product is defined as its fitness for use. 

A quality product satisfies the requirements of the market. W.A. Shewhart (1927) 

brings the concept that increasing the quality of a product decreases the total cost 

of the product.  

In the traditional view, quality loss is associated with the tangible costs related to 

the product or service under consideration. Lost sales due to low quality is 

considered as the indicator of the quality loss. In the traditional view, quality costs 

can be listed as follows according to DeVor et al. (2007): 

 Prevention costs: As the name suggests, these costs result from the 

quality control system which aims to prevent production of low quality 

products.  

 Appraisal costs: Similar to prevention costs, appraisal costs are related 

to the maintenance of quality assurance system. Both prevention costs 

and appraisal costs are hard to measure on product basis. 
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 Internal Failures: These costs arise from the low quality products before 

they are delivered to the customers and include scrap and rework, cost 

of transporting the low quality product, cost of adjusting the process, 

etc.  

 External Failures: The costs related to external failures occur after the 

delivery of the product to the customer. Warranties, repairs, customer 

and product services, returns, product replacements, pollution, market 

share loss, increasing cost of marketing efforts can be included in the 

external failures which cause quality loss. 

However, Taguchi (1989) brings a new definition to the quality loss and states that 

quality loss is the cost to the society. These losses can be listed as the losses due to 

the harmful effects on society and the losses due to the variation of the function of 

the product or service. This definition suggests that not only manufacturers, but also 

customers are affected from the loss resulting from a quality product. 

Logothetis and Wynn (1989) claim that the losses caused by the intrinsic function 

of the product or service delivered should be excluded from the quality loss. They 

give the example of liquors. Although drunk people may harm themselves or other 

people, causing some losses, these losses cannot be thought as quality losses since 

removing alcohol from the liquors would result in a product which does not have 

the intrinsic function of the liquor. Hence, they suggest that the loss should be 

limited to the loss caused by variation in the function of product. Therefore, the 

quality loss caused by the product must be zero when all of the quality 

characteristics of that product are at their target values. Furthermore, the loss 

increases in an increasing manner as the quality characteristics deviates from their 

targets. If the target is a nominal value, then the response is called “nominal-the-

best” type response. If the target is minimizing the value of quality characteristic, 

the type of the response is called as “smaller-the-better”. Finally, if the target is 

maximizing the response, then the type of the response is “larger-the-better”.  
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Using these definition of quality, Taguchi defines robust parameter design (RPD) 

problems according to Ross (1988) and suggests ways of solving them. In RPD 

problems the aim is to optimize quality characteristic such that its value is at the 

desirable level with minimum variation from the target value. The value of the 

quality characteristic depends on the values of design parameters, which are 

controllable and the noise factors, which cannot be controlled.  

The robust parameter design problems with more than one quality characteristics 

are called MRDPO or robust design for multiple responses. If there is more than 

one quality characteristics under consideration, usually there is a trade-off between 

these quality characteristics according to Murphy et al. (2005), who provide a 

review on MRDPO problems and different approaches including the loss functions.   

Taguchi et al. (1989) defines quality loss function for products with only one quality 

characteristic. The univariate loss function proposed by Taguchi is provided below.  

L(y(x),t)=c(y(x)-t)2 (1) 

In Equation (1), y(x) represents the value of the quality characteristic, x array 

represents the design parameters determining the value of quality characteristics, t 

is the target value for the quality characteristic under consideration and c represents 

the proportionality coefficient. Figure 1 represents the graph of a univariate loss 

function example which is provided in Equation (2). 

L(y(x),0.5)=(y(x)-0.5)2 (2) 

The expected loss of the product, E(L(y(x),t)), which needs to be minimized to 

minimize the loss to the society is calculated as follows. 

E(L(y(x),t))=c(2+E(y(x)-t)2) (3) 

The term 2 represents the sample variance of quality characteristic y(x). 
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Figure 1 Example Univariate Loss Function 

As mentioned above, only one quality characteristic can be analyzed using 

univariate quality loss functions. However, in real life applications usually there are 

more than one quality characteristic under consideration. Therefore, quality loss 

functions need to be adapted for cases where there are several quality 

characteristics. 

Pignatiello (1993) suggests a multi-response loss function by extending Taguchi’s 

univariate loss function. The function proposed by Pignatiello (1993) can be seen 

in Equation (4). 

L(y(x),t) =(y(x)-t) C(y(x)-t) (4) 

The multivariate loss function is similar to the univariate loss function. However, 

since there are at least two quality characteristics under consideration, we have t 

array to represent the target values for all quality characteristics and y(x) array to 

represent values of quality characteristics when design factors are in the setting 

represented by the x array. Coefficient c is replaced with C matrix to reflect the loss 

incurred due to individual quality characteristics and the loss incurred due to 

pairwise interactions between quality characteristics. An example bivariate loss 

function can be seen in Figure 2. 

The expected multivariate loss function is shown in Equation (5).  

E[L(y(x),t)]=(E(y(x))-t)
'
C(E(y(x))-t)+trace[CΣy(x)] (5) 
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Figure 2 Example Multivariate Loss Function 

Pignatiello (1993) also suggests a guideline for the determination of the C matrix. 

In his method, parameters are estimated using some reference points where the loss 

values are known.  

 

Figure 3 Reference Points Used in Loss Calculations 

It is assumed that the loss values at points (1), (2), (3), and (4) are known. There are 

two levels determined for both quality characteristics. y1 and y2 represent the values 

of quality characteristics when they are at a chosen level which is greater than the 

target value while 𝑦1
t and 𝑦2

t  represent the values of the quality characteristics when 

they are at their targets. For example, at point (4), both first and second quality 

characteristics have values greater than their target values, while at point (1) both 

(3) 

(1) 

(4) 

(2) 
y2 

y1 y
1

t
 

y
2

t
 

Loss 
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quality characteristics are at their targets. Hence, at point (1), the quality loss is 

equal to zero whereas the quality loss is positive at the other three points. Pignatiello 

(1993) assumes that the C matrix is symmetric, hence there are three components 

of the C matrix which needs to be estimated for a bivariate loss function. They are 

estimated as in Equations (6), (7) and (8). 

c11= 
L(2)

(y1(x)-t1)
2 

(6) 

c22= 
L(3)

(y2(x)-t2)
2 

(7) 

c12= 
L(4)-L(2)-L(3)

(y1(x)-t1)(y2(x)-t2)
 

(8) 

L(2), L(3) and L(4) represent the loss values at points (2), (3) and (4), 

correspondingly. The diagonal elements of C matrix are represented by c11 and c22 

while the off-diagonal elements are represented by c12. 

As mentioned above, this method requires the exact knowledge of loss values at the 

chosen points. However, as also acknowledged by Kuhnt and Erdbrügge (2004), 

perfect estimation of the loss value at the given points is almost impossible and the 

method proposed by Pignatiello (1993) is unrealistic. Park and Kim (2005) also 

state that since it is especially hard to determine the off-diagonal elements of C 

matrix, the practitioners may tend to ignore these elements and try to reach solutions 

using only the diagonal elements. 

Vining (1998) modifies the multivariate loss function proposed by Pignatiello 

(1993). He uses predicted responses (quality characteristics), ŷ(x), instead of exact 

values of the quality characteristics, y(x), in the multivariate loss function he 

proposed. The loss function suggested by Vining (1998) is as in Equation (9). 

L(ŷ(x),t)=(ŷ(x)-t)'C(ŷ(x)-t) (9) 

The expected loss function is presented in Equation (10). 
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E[L(ŷ(x),t)]=(E(ŷ(x))-t)
'
C(E(ŷ(x))-t)+trace[CΣŷ(x)] (10) 

The term trace[CΣŷ(x) ] represents the loss caused by the prediction errors while 

term (E(ŷ(x))-t)
'
C(E(ŷ(x))-t) represents the loss caused by the deviations of 

predictions from their targets. The main difference between Pignatiello’s approach 

and Vining’s approach is the fact that Vining’s approach considers quality of the 

predictions. 

Vining (1998) also suggests a way to decompose the C matrix in order to increase 

the understanding of cost structure. The cost matrix, C, proposed by Vining for the 

loss function consists of the inverse of the variance-covariance matrix, Σ-1, and 

matrix K, which reflects the preference/cost structure for the quality characteristics. 

However, he does not specify the method for choosing matrix K. The open forms 

of matrices K and Σ-1 for bivariate case are provided in Equations (11) and (12) 

correspondingly. 

K= [
w1 k1

k2 w2
] 

(11) 

In the K matrix, w1 and w2 correspond to the weights of outcomes, while k1 and k2 

are the preferential dependency constants. Quality characteristics are preferentially 

dependent if preferences of some quality characteristics depend on the values of 

other quality characteristics. If the preferential dependency constants are positive, 

it indicates that the options where both quality characteristics have high or low 

values are preferred more than other alternatives. 

Σ
-1= [

σ22 -σ12

-σ12 σ11
]

1

σ11σ22-σ12
2

 
(12) 

The general form of cost matrix, C, is provided in Equation (13). 

C= [
w1σ

22
-k1σ12 -w1σ

12
+k1σ11

k2σ22-w2σ
12

-k2σ12+w2σ
11

]
1

σ11σ22-σ12
2

 
(13) 
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Ko et al. (2005) extend further the multivariate loss functions proposed by Vining 

(1998) and Pignatiello (1993). They define 𝐲̃new(x) to represent the vector of 

estimated future responses. The loss function they suggest is shown in Equation 

(14). 

L(ỹ
new

(x),t)=(ỹ
new

(x)-t)
'
C(ỹ

new
(x)-t) (14) 

The expected loss function for a future observation is presented in Equation (15). 

E[L(ỹ
new

(x),t)]=(E(ŷ(x))-t)
'
C(E(ŷ(x))-t)+trace[CΣŷ(x)]+ 

trace[CΣy(x)] 

(15) 

The term (E(ŷ(x))-t)
'
C(E(ŷ(x))-t) is identical to the first term of expected loss 

function proposed by Vining and represents the loss caused by the deviations of 

predictions from their target values. The second term, trace[CΣŷ(x)], represents the 

loss due to low quality predictions. Finally, trace[CΣy(x)] represents the loss 

caused by the variation of quality characteristics at a given parameters setting, 

which is called as poor robustness. They also provide the C matrix suggested by 

Vining and do not bring any further explanation on the determination of C matrix. 

There are several studies on multivariate loss functions based on the loss functions 

mentioned above. Multivariate loss functions are generally used in optimization of 

processes where there is more than one quality characteristic as mentioned by Ames 

et al. (1997) in their paper on an alternative multivariate loss function. They also 

suggest that to determine the weights of loss function, customers can be asked to 

compare the products, which is also similar to the approach used in thesis study. 

Chou and Chen (2001) extends the multivariate loss functions by providing a loss 

function which allows the changes in loss over time. They also suggest that it is 

appropriate to use loss functions to evaluate the quality of the product since other 

performance measures are more difficult to analyze. Maghsoodloo and Chang 

(2001) also suggest a new bivariate loss function and use the idea of dividing the 

design specification set into regions, which is also utilized in this study. They try to 
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extend the parameter determination method proposed by Taguchi for univariate loss 

functions to be used in multivariate loss functions. However, their method also 

requires the exact knowledge of loss at given points. Bhamare et al. (2009) use a 

hybrid quality loss function based approach to handle also smaller-the-better and 

larger-the-better type of quality characteristics together with nominal-the-best type 

quality characteristics. However, their method does not consider the correlation 

between quality characteristics. Suhr and Batson (2001) suggest solution methods 

for constrained multivariate loss functions. 

 

2.2 ANALYTIC HIERARCHY PROCESS 

Analytic Hierarchy Process (AHP) is a decision making tool which aims to 

formalize the decision making process. It has been developed by Saaty (1980). It is 

based on the pairwise comparison of the elements to obtain their relative 

desirability. Saaty (1999) states that the comparison between two elements is made 

by answering the question how many times more strongly does one element 

contribute to the upper level element when compared to the other element. In order 

to express the preference, Saaty suggests a ratio scale between 1-9. The scale 

suggested by Saaty (1987) is presented in Table 1. 

Table 1 The Scale Used in Comparisons 

Verbal Pairwise Judgement Numerical Score 

Equally important 1 

Moderately more important 3 

Strongly more important 5 

Very strongly more important 7 

Extremely more important 9 

Intermediate values 2, 4, 6, 8 
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Let xijk denote the numerical score obtained from the decision maker when he/she 

verbally compares alternatives j and k in criterion i. Then, xikj be calculated as in 

Equation (16). 

xikj=

1

xijk

 

(16) 

Let xik be calculated as shown in Equation (17). 

xik= ∑ xijk

j

 
(17) 

Then we obtain xijk
' , which is an estimate of the relative value of alternative j over 

alternative k in criterion i, as shown in Equation (18). 

xijk
' =

xijk

xik

 
(18) 

Let Xij
'  be an estimate of relative value of alternative j in criterion i and be calculated 

as shown in Equation (19) when there are n alternatives.   

Xij
' =

∑ xijk
'

k

n
 

(19) 

Similarly let yit be score obtained from the decision maker when he/she verbally 

compares criteria i and t. 

y
ti
=

1

y
it

 

(20) 

Let yt be calculated as shown in Equation (21). 

y
t
= ∑ y

it

i

 
(21) 

The estimated value of criterion i, y
it
'  is calculated as shown in Equation (22). 
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y
it
' =

y
it

y
t

 
(22) 

Then the relative value of the criterion i when m criteria exist is calculated as shown 

in Equation (23). 

Yi
'=

∑ y
it
'

t

m
 

(23) 

Then the overall value of alternative j, Xj can be calculated as in Equation (24). 

Xj= ∑ Yi
'

i

Xij
'  

(24) 

The alternative with the greatest value is the most preferred alternative by the 

decision maker. Xj value is also the normalized preference value of the alternative 

j. 

However, AHP is criticized several times as mentioned by Zahedi (1986). The 

author groups the criticism with respect to the four steps defined by Johnson (1980). 

The categories are the hierarchy of decisions, input data, estimation of relative 

weights and aggregation of relative weights of various levels into composite relative 

weights. The criticism includes the usage of additive value functions without 

justification, the restrictions due to the scale used. Jensen (1983) suggests that 

alternatives are compared simultaneously for all criteria to remove the aggregation 

step, which is a similar approach to the method used in this study. 
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CHAPTER 3 

STRUCTURAL ANALYSIS OF LOSS FUNCTIONS 

In this chapter, the quadratic bivariate quality loss functions are analyzed in 

different structural aspects. The structure of the cost matrix, the derivation of the 

cost matrix under different dependency conditions and resulting multivariate 

quality loss functions, special cases of the cost matrix and the representative 

strength of quality loss functions are examined in the following subsections. 

 

3.1 DERIVATIONS OF EXPECTED LOSS FUNCTIONS UNDER 

DIFFERENT DEPENDENCY CASES 

This subsection presents the analysis of the structure of the cost matrix and 

corresponding expected loss function under different settings in terms of 

preferential and statistical dependency. The cost matrices and corresponding 

expected loss functions are analyzed under four different cases. 

 

3.1.1 NO STATISTICAL AND PREFERENTIAL DEPENDENCY 

BETWEEN RESPONSES 

In this case there is no statistical and preferential dependency between responses; 

therefore, preferential dependency constants, k1 and k2, and correlation between 

responses σ12 are equal to zero. Hence, the cost matrix, C, becomes as in Equation 

(25). 
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C= [
w1σ

22
(x) 0

0 w2σ
11

(x)
]

1

σ11(x)σ22(x)
 

(25) 

The expected loss function using the cost matrix provided in Equation (25) is shown 

in Equation (26) and the open form of the expected loss function is provided in 

Equation (27). 

E[L(ŷ(x)-t)]=[ŷ̅1
(x)-t1 ŷ̅

2
(x)-t2] [

w1

σ11(x)
0

0
w2

σ22(x)

] [
ŷ̅

1
(x)-t1

ŷ̅
2
(x)-t2

] +trace [
w1 0

0 w2
] 

(26) 

E[L(ŷ(x)-t)]=
w1

σ11(x)
(ŷ̅

1
(x)-t1)

2
+

w2

σ22(x)
(ŷ̅

2
(x)-t2)

2
+w1+w2 (27) 

where ŷ̅
1
(x) and ŷ̅

2
(x) are the means of predicted responses one and two, 

respectively. It can be observed that multivariate expected loss function is reduced 

to the sum of two univariate expected loss functions; therefore, it becomes an 

additive function. Hence, determination of weights is trivial in this case. The 

methods proposed by Taguchi for univariate loss functions which are mentioned in 

Chapter 2 can be used to determine the weights. 

 

3.1.2 NO PREFERENTIAL DEPENDENCY BETWEEN RESPONSES 

In this case the responses have statistical dependency, however, there is not any 

preferential dependency between responses. The cost matrix in this case is shown 

in Equation (28). 

C = [
w1σ

22
(x) -w1σ

12
(x)

-w2σ
12

(x) w2σ
11

(x)
]

1

σ11(x)σ22(x)-σ12
2 (x)

 
(28) 

The expected loss using the cost matrix given above is given in Equation (29) and 

its open form is given in Equation (30). 
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E[L(ŷ(x)-t)]= [ŷ̅1
(x)-t1 ŷ̅

2
(x)-t2] [

w1σ
22

(x) -w1σ
12

(x)

-w2σ
12

(x) w2σ
11

(x)
]

1

σ11(x)σ22(x)-σ12
2 (x)

 

[
ŷ̅

1
(x)-t1

ŷ̅
2
(x)-t2

] +trace [
w1 0

0 w2
] 

(29) 

E[L(ŷ(x)-t)]=
w1σ22(x)

σ11(x)σ
22

(x)-σ12
2 (x)

(ŷ̅
1
(x)-t1)

2
+

w2σ11(x)

σ11(x)σ
22

(x)-σ12
2 (x)

(ŷ̅
2
(x)-t2)

2
 

-
(w

1
+w2)σ12(x)

σ11(x)σ
22

(x)-σ12
2 (x)

 (ŷ̅
1
(x)-t1)(ŷ̅

2
(x)-t2)+w1+w2 

(30) 

In the loss function provided in Equation (30), there are two terms which represent 

the effects of each quality characteristic separately in addition to the interaction 

term which represents the loss resulting from the interaction of two quality 

characteristics. The interaction term only represents the interaction due to statistical 

dependency. 

 

3.1.3 NO STATISTICAL DEPENDENCY BETWEEN RESPONSES 

The third instance is the case where the quality characteristics are not statistically 

dependent but there is preferential dependency between the responses which means 

the correlation term, σ12, is equal to zero and the cost matrix becomes as in Equation 

(31). 

C= [
w1σ

22
(x) k1σ11(x)

k2σ
22

(x) w2σ
11

(x)
]

1

σ11(x)σ
22

(x)
 

(31) 

 

The expected loss function resulting from the cost matrix in Equation (31) is 

provided in Equation (32) and open form of the expected loss function is provided 

in Equation (33). 
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E[L(ŷ(x)-t)]= [ŷ̅1
(x)-t1 ŷ̅

2
(x)-t2] [

w1σ
22

(x) k1σ11(x)

k2σ
22

(x) w2σ
11

(x)
]

1

σ11(x)σ
22

(x)
 

[
ŷ̅

1
(x)-t1

ŷ̅
2
(x)-t2

]  +trace [
w1 k1

k2 w2
] 

(32) 

E[L(ŷ(x)-t)]=
w1

σ11(x)
(ŷ̅

1
(x)-t1)

2
+

w2

σ22(x)
(ŷ̅

2
(x)-t2)

2
 

-
σ11(x)k1+σ22(x)k2

σ11(x)σ22(x)
 (ŷ̅

1
(x)-t1)(ŷ̅

2
(x)-t2)+w1+w2 

(33) 

There are two terms representing the individual effects of quality characteristics on 

the quality loss, which are identical to the no dependency case. There is also the 

interaction term to represent the effect of preferential dependency between two 

quality characteristics on quality loss. 

 

3.1.4 GENERAL FORM 

The general form represents the case where both statistical and preferential 

dependency between quality characteristics are considered in the construction of 

the loss function. The general form of the cost matrix is provided in Equation (34). 

C= [
w1σ

22
(x)-k1σ12(x) -w1σ

12
(x)+k1σ11(x)

k2σ22(x)-w2σ
12

(x) -k2σ12(x)+w2σ
11

(x)
]

1

σ11(x)σ
22

(x)-σ12
2 (x)

 
(34) 

The general form of the expected loss function can be derived as in Equation (35). 

E[L(ŷ(x)-t)]= [ŷ̅1
(x)-t1 ŷ̅

2
(x)-t2] [

w1σ
22

(x)-k1σ12(x) -w1σ
12

(x)+k1σ11(x)

k2σ22(x)-w2σ
12

(x) -k2σ12(x)+w2σ
11

(x)
] 

1

σ11(x)σ
22

(x)-σ12
2 (x)

[
ŷ̅

1
(x)-t1

ŷ̅
2
(x)-t2

] +trace [
w1 k1

k2 w2
] 

(35) 

The derived expected loss function in open form is provided in Equation (36). 
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E[L(ŷ(x)-t)]=
(w

1
σ22(x)-k1σ12(x))

σ11(x)σ22(x)-σ12
2 (x)

(ŷ̅
1
(x)-t1)

2
+

(w
2
σ11(x)-k2σ12(x))

σ11(x)σ22(x)-σ12
2 (x)

     

(ŷ̅
2
(x)-t2)

2
 +

σ11(x)k1+σ22(x)k2-(w
1
+w2)σ12(x)

σ11(x)σ22(x)-σ12
2 (x)

 (ŷ̅
1
(x)-t1)(ŷ̅

2
(x)-t2)+w1+w2 

(36) 

In the general form, terms reflecting the effects of individual quality characteristics 

and the interaction term become more complex when compared to the previous 

cases and the effects of individual parameters become harder to observe. The 

general form of loss function is similar for different numbers of quality 

characteristics. The general form of loss function when there are three quality 

characteristics under consideration is provided in Appendix A. 

 

3.2 ANALYSIS ON THE STRUCTURE OF C MATRIX 

Structure of C matrix is analyzed in this subsection. The analysis is done by 

evaluating the meanings of K and Σ matrices using an analogy between univariate 

loss functions and multivariate loss functions.  

The univariate loss function proposed by Taguchi is shown in Equation (37). 

L(y(x))=c (y(x)-t)2 (37) 

By rearranging the terms, it can be written as the Equation (38) which is similar to 

multivariate loss functions. 

L(y(x))=(y(x)-t) c (y(x)-t) (38) 

By adopting the decomposition proposed by Vining, the coefficient c can be written 

as c=k(σ2)-1. Hence, the loss function becomes as in Equation (39). 

L(y(x))=(y(x)-t) k (σ2)-1 (y(x)-t) (39) 

In the univariate loss functions, the term c is calculated as described in Equations 

(40), (41) and (42) using the notions provided in Figure 4. 
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Figure 4 Univariate Loss Function 

L(y(x))=
a

∆
2 (y(x)-t)

2
 

(40) 

L(y(x))=
a

(mσ)
2 (y(x)-t)

2
 

(41) 

L(y(x))=
a

m2
(

y(x)-t

σ
)

2

 
(42) 

In Equation (42), (
(y(x)-t)

σ
)

2

represents the normalized distance from target and c is 

a

(mσ)
2 . Hence, we can derive k as shown in Equations (43) and (44). 

k

σ2
= 

a

(mσ)
2
 

(43) 

k= 
a

m2
 (44) 

Since a and m values do not change through the function, losses at points with the 

same statistical distances from the target should be the same for a symmetric loss 
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function in the univariate case. In order to check whether this is also true or not in 

the multivariate loss functions the following counterexample is studied. 

Let 𝛍 = (
2

2
) and  Σ = (

2 -0.5

-0.5 1
). 

In the multivariate loss functions, the statistical distance is equivalent to the 

Mahalanobis distance. Most of the multivariate techniques are based on distances 

according to Johnson and Wichern (2002). The loss functions used in this study are 

also a statistical distance and are similar to the Mahalanobis distance. Maesschalck 

et al. (2000) state that the Mahalanobis distance between two vectors y1 and y2 is 

calculated as shown in Equation (45). 

d(y
1
,y

2
)=√(y

1
-y

2
)'Σ-1(y

1
-y

2
) 

(45) 

Σ matrix corresponds to the variance-covariance matrix of vectors y1 and y2.  

Let us choose four points which have the same Mahalanobis distance, 1 unit, from 

the mean.  

These four points are: 

 P1 = (0, 3) 

 P2 = (1, 1) 

 P3 = (3, 3) 

 P4 = (4, 1) 

Since these four points have the same Mahalanobis distances from the mean, their 

frequencies should be equal if the assumption is also valid for multivariate loss 

functions. 

Let T= (
2

2
) and  K= (

2 0.5

0.5 3
) 
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Then the losses calculated using (Y-T)'C(Y-T) where C=KΣ
-1 are available 

below. 

 L(P1) = 4.14 

 L(P2) = 7.14 

 L(P3) = 7.14 

 L(P4) = 4.14 

If we ask the decision maker not to consider the variation correlations we assume 

that ΣI= (
1 0

0 1
) we expect the answers below using (Y-T)'C(Y-T) where C = K. 

 LI(P1) = 9 

 LI(P2) = 6 

 LI(P3) = 6 

 LI(P4) = 9 

Since all of the points have the same frequencies according to Mahalanobis distance 

we expect that the expected frequencies in the following equations to be almost 

equal. 

 9 E(frequency1) = 4.14 

 6  E(frequency2) = 7.14 

 6  E(frequency3) = 7.14 

 9  E(frequency4) = 4.14 

The expected frequencies are: 

 E(frequency1) = 0.46031746 
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 E(frequency2) = 1.19047619 

 E(frequency3) = 1.19047619 

 E(frequency4) = 0.46031746 

The expected frequencies are not equal meaning that losses at points with same 

statistical distances from the target are not equal to each other in multivariate loss 

functions. Hence, K matrix does not perfectly reflect the preference structure of the 

decision maker and the process economics excluding the variance-covariance 

structure of the quality characteristics. 

3.3 ANALYSIS ON THE EFFECTS OF C MATRIX ON THE LOSS 

FUNCTION STRUCTURE 

In this subsection, the effects of components of C matrix on the loss function 

structure is demonstrated using three examples.  

In the first example the effect of off-diagonal terms, c12 and c21, is illustrated in 

Figure 5 below. 

 

Figure 5 Effect of Diagonal Elements of C 

y1 y2 

Loss 
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The two loss functions presented in Figure 5 have the same C matrix parameters 

except c12. The preference coefficients of the steeper loss function are as twice as 

the preference coefficients of the less steep loss function.  

Figure 6 illustrates the effect of diagonal elements of C matrix. The off-diagonal 

elements of the C matrices of the two loss functions are equal to each other while 

the diagonal elements of the steeper loss function are as twice as the diagonal 

elements of the less steep loss function.  

 

Figure 6 Effect of Off-Diagonal Elements of C 

Finally, Figure 7 represents the simultaneous effects of both diagonal and off-

diagonal elements of the C matrix. All elements of the cost matrix of steeper loss 

function are as twice as the elements of the cost matrix of the remaining loss 

function. 

The examples provided show that all of the components of C matrix can 

significantly affect the structure of the loss function. As the components of C matrix 

increase, the loss function becomes steeper. It can be also concluded that although 

it is important to obtain the relative values of the components of C matrix, it is not 

sufficient to acquire the true underlying quality loss function of the decision maker. 

Hence, true estimation of the C matrix is crucial to obtain the real quality loss 

function of the decision maker. 

y1 
y2 

Loss 
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Figure 7 Effect of C Matrix 

 

 

3.4 ANALYSIS OF THE EFFECTS OF K MATRIX ON THE LOSS 

FUNCTION STRUCTURE 

In this subsection, the K matrix which includes the effects of individual weights of 

quality characteristics and preferential dependency between them to the cost matrix 

C, is analyzed. Vining (1998) and Ko (2005) defines K as a typically diagonal 

matrix. In order to show whether the K matrix must be diagonal or not, structures 

of the cost matrix and variance-covariance matrix and their relationship to the K 

matrix should be examined. 

The cost matrix, C, and variance-covariance matrix, Σ, are symmetric matrices by 

definition.  

C=K Σ -1 (46) 

By multiplying both sides of the equation with Σ we obtain Equation (47) 

C Σ =K Σ -1 Σ (47) 

y1 y2 

Loss 
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Hence, 

C Σ =K (48) 

Both C and Σ are symmetric matrices. However, this condition does not guarantee 

that K will be also symmetric as it can be seen in the example below. 

Let C be [
2 1

1 2
] and Σ be [

3 1

1 5
]. 

Then, C Σ =K= [
7 7

5 11
] which is not a symmetric matrix. Therefore, we cannot 

conclude that K is a symmetric matrix. 

If K matrix is not diagonal, it indicates that there is a preferential dependency 

between quality characteristics. K matrix is expected to be symmetric if it is not 

diagonal. The off-diagonal terms reflect the preferential dependency between 

quality characteristic pairs and they should be equal to each other for each and every 

pair regardless of the order of comparison. However, as it can be seen from the 

example above, K matrix is not necessarily symmetric. K matrix is not a perfect 

measure of the decision maker as it is shown in Subsection 3.2. It only provides 

insight on the preferences of the decision maker excluding the variance-covariance 

structure of the quality characteristics. Hence, K matrix can also be asymmetric. 

Pignatiello (1993) uses the C matrix given in Equation (49) in his paper. 

C= [
1.0 0.5

0.5 2.5
] (49) 

When all of the three controllable variables are at their minimum level the Σ matrix 

in Equation (50) is obtained. 

Σ = [
0.20 0.17

0.17 0.21
] (50) 
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Using the C Σ =K, we obtain the K matrix in Equation (51) which is an asymmetric 

matrix. 

K= [
0.29 0.28

0.53 0.61
] (51) 

Hence, to examine all the possible cases, an analysis is made considering three cases 

of K matrix which are diagonal, symmetric and asymmetric. For each case of K 

matrix, three different Σ matrices reflecting the cases where there is no correlation, 

positive correlation and negative correlation between two quality characteristics 

correspondingly are analyzed.  Σ and corresponding Σ -1 matrices for each 

correlation type is presented in Table 2 below. 

Table 2 Variance-Covariance Matrices for Different Correlation Types 

 Σ Σ -1 
Correlation 

coefficient (ρ) 

No correlation [
1.00 0.00

0.00 1.00
] [

1.00 0.00

0.00 1.00
] 0.0 

Positive 

correlation 
[
1.00 0.50

0.50 1.00
] [

1.33 -0.67

-0.67 1.33
] 0.5 

Negative 

correlation 
[

1.00 -0.50

-0.50 1.00
] [

1.33 0.67

0.67 1.33
] -0.5 

 

For these three different correlation cases, the effect of different types of K matrix 

on quality loss function is analyzed in the following subsections.  

 

3.4.1 DIAGONAL K MATRIX 

In the first case, the K matrix is assumed to be diagonal meaning that there is no 

preferential dependency between quality characteristics. The diagonal K matrix is 

chosen as: 

K = [
1.0 0.0

0.0 1.0
] 
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Figure 8 represents the contour plots of quality loss functions under different 

correlation cases.  

 

Figure 8 Contour Plots of Loss Functions with Diagonal K Matrix (a) rho=0.0, (b) 

rho=0.5, (c) rho= -0.5 

As it can be perceived from the Figure 8(a), when there is no correlation between 

responses, contours of the loss function are not skewed since there is no linear 

dependency between the responses. On the other hand, when there is positive 

correlation between the quality characteristics that can be seen in Figure 8(b), 

quality loss increases at a slower rate when both quality characteristics increase or 

decrease at the same time. When the quality characteristics are negatively correlated 

which is illustrated in Figure 8(c), the loss function increases with an increasing 

rate when the quality characteristics simultaneously increase or decrease. Hence, 

the orientation of the loss function depends on the correlation when the K matrix is 

diagonal.   

 

3.4.2 SYMMETRIC K MATRIX 

K matrix is symmetric in the second case. There can be both positive or both 

negative preferential dependency between the quality characteristics. Hence two 

different K matrices are analyzed here which are: 

K1= [
1.0 0.5

0.5 1.0
]      K2= [

1.0 -0.5

-0.5 1.0
] 

Figures 9 and 10 represents the contours of loss functions for different correlation 

types for K1 and K2 matrices respectively.  

(a) (b) (c) 

y1 y1 y1 

y2 y2 y2 
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Figure 9 Contour Plots of Loss Functions with Symmetric K1 Matrix (a) rho=0.0, 

(b) rho=0.5, (c) rho= -0.5 

 

Figure 10 Contour Plots of Loss Functions with Symmetric K2 Matrix (a) rho=0.0, 

(b) rho=0.5, (c) rho= -0.5 

As it can be observed from the Figures 9(a) and 10(a), when there is no correlation 

between the quality characteristics, the orientation of the loss function depends on 

the K matrix for both cases. The rate of increase escalates when exactly one of the 

preferential dependency and correlation is positive while the other one is negative, 

which are illustrated in 9(c) and 10(b). Conversely, the effects of preferential 

dependency and statistical dependency cancel each other when they are both 

negative or positive, as can be seen in Figure 9(b) and 10(c). We can also observe 

that identical K and Σ matrices have contrary effects on the loss function. When 

there is positive correlation between responses, the rate of increase of the loss 

decreases when both quality characteristic increase or decrease. However, when 

there is positive preferential dependency between responses, the quality loss 

becomes larger more rapidly when both quality characteristics simultaneously 

increase or decrease.  

 

 

(a) 

(a) 

(b) 

(b) 

(c) 

(c) 

y1 y1 y1 

y1 y1 y1 

y2 y2 y2 

y2 y2 y2 
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3.4.3 ASYMMETRIC K MATRIX 

The third and final type of K matrix is asymmetric. Two different K matrices which 

are transpose of each other are analyzed. The K matrices are: 

 K3= [
1.0 0.5

-0.5 1.0
]      K4= [

1.0 -0.5

0.5 1.0
] 

The contours of the loss function under different type of correlations are represented 

in Figures 11 and 12 for matrices K3 and K4 respectively. 

 

Figure 11 Contour Plots of Loss Functions with Asymmetric K3 Matrix (a) 

rho=0.0, (b) rho=0.5, (c) rho= -0.5 

 

Figure 12 Contour Plots of Loss Functions with Asymmetric K4 Matrix (a) 

rho=0.0, (b) rho=0.5, (c) rho= -0.5 

The loss function behaves similar to the loss function with diagonal K matrix in 

both cases. If there is no correlation between the quality characteristics, there is no 

statistical dependency. Hence, from section 3.1.3 we can observe that only the 

interaction term includes the preferential dependency constants k1 and k2. Since we 

assumed variances of both quality characteristics are equal, the coefficient of 

interaction term becomes zero and loss function becomes identical to the no 

correlation loss function with diagonal K matrix in both cases. For positive 

correlation and negative correlation examples, the orientation of quality loss 

(a) 

(a) 

(b) 

(b) 

(c) 

(c) 

y1 y1 y1 

y1 y1 y1 

y2 y2 y2 

y2 y2 y2 
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function slightly differs from the loss function in 3.4.1 because individual effects 

of quality characteristics also depend on the preferential dependency constants. 

 

3.5 THE REPRESENTATIONAL POWER OF BIVARIATE QUADRATIC 

LOSS FUNCTIONS 

The quadratic multivariate loss functions are monotonous functions and cannot 

represent all possible value functions a decision maker can have. The real value 

functions of the decision makers may have different shapes which are not 

compatible with quadratic loss functions. In this subsection, the fit to the closest 

loss function for different types of value functions are examined to illustrate the 

representational power of quadratic loss functions considering two quality 

characteristics. The examples which have four different correlation types among 

responses and eight different value functions. It is assumed that there exist two 

quality characteristics (y
1
(x) and y

2
(x) ) and their values depend on 3 factors (x1, x2 

and x3). Design parameter x1 is uniformly distributed between 0 and 1 and other 

factors are assumed to be constant at their chosen values for the sake of simplicity. 

The different types of correlations included in the study can be shown as: 

Strong Positive Correlation (SPC) 

y
1
(x)=4x1+4x2+3x3  

y
2
(x)=8x1+8x2+6x3  

 

(52) 

(53) 

Strong Negative Correlation (SNC) 

y
1
(x)=x1-x2+x3  

 y
2
(x)=-x1+x2-x3 

 

(54) 

(55) 
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Weak Negative Correlation (WNC) 

y
1
(x)=x1x2x3+ x2x3  

y
2
(x)=x1

2x2x3- x2x3
2  

 

(56) 

(57) 

Weak Positive Correlation (WPC) 

y
1
(x)=x1+2x2-3x3  

y
2
(x)=2x1+x2+3x3  

 

(58) 

(59) 

The variance- covariance information for the four different cases are available in 

Table 3. 

Table 3 Variance-Covariance Information for Different Correlation Cases 

 
Variance of 

y1 

Variance of 

y2 
Covariance 

Pearson 

Correlation 

Coefficient 

SPC 5.161 20.644 10.322 1.000 

SNC 0.378 0.378 -0.378 -1.000 

WPC 1.762 0.755 0.126 0.109 

WNC 0.161 0.0698 -0.040 -0.375 

 

Since the value function of the decision maker may affect the performance of loss 

function, following value functions are constructed. 

Linear Value Functions 

v1(y(x))=0.1y
1
(x)+0.9 y

2
(x) 

v2(y(x))=0.5y
1
(x)-0.5 y

2
(x) 

 

(60) 

(61) 
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Multiplicative Value Functions 

v3(y(x))=y
1
(x)

2
+y

1
(x) y

2
(x)+ y

2
(x)

2
 

v4(y(x))=y
1
(x)

2
 y

2
(x)

3
 

 

(62) 

(63) 

Tchebycheff Value Functions 

v5(y(x))=max{0.1|t1-y
1
(x)|, 0.9|t2- y

2
(x)|} 

v6(y(x))=max{0.5|t1-y
1
(x)|, 0.5|t2- y

2
(x)|} 

 

(64) 

(65) 

According to the value functions, following objectives are determined for the 

responses. 

Table 4 Objectives of the Selected Value Functions 

Value Functions 𝒚𝟏 𝒚𝟐 

v1(y(x)) Maximize Maximize 

v2(y(x)) Maximize Minimize 

v3(y(x)) Maximize Maximize 

v4(y(x)) Maximize Maximize 

v5(y(x)) Target is the best Target is the best 

v6(y(x)) Target is the best Target is the best 

 

It is assumed that the decision maker is able to provide perfect information when 

he/she is asked questions about his/her preferences.  

The loss value at the target is assumed to be equal to zero. For the parameter 

determination purposes, three other points are asked to the decision maker. His/her 

answers are available in Table 5. 
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Table 5 Decision Maker’s Answers for Strong Correlation Cases 

 SPC SNC 

y1, y
2
t  y

𝟏
t , y2 y1, y2 y1, y

2
t  y

𝟏
t , y2 y1, y2 

v1(y(x)) 1.1 19.8 20.9 0.3 2.7 3.0 

v2(y(x)) 5.5 11.0 165.0 1.5 1.5 3 

v3(y(x)) 363.0 726.0 847.0 6.0 3.0 0.0 

v4(y(x)) 1288408.0 1288408.0 1288408.0 3.0 36.0 12.0 

v5(y(x)) 1.1 19.8 19.8 0.3 2.7 2.7 

v6(y(x)) 5.5 11.0 11.0 1.5 1.5 1.5 

 

Table 6 Decision Maker’s Answers for Weak Correlation Cases 

 WPC WNC 

y1, y
2
t  y

𝟏
t , y2 y1, y2 y1, y

2
t  y

𝟏
t , y2 y1, y2 

v1(y(x)) 0.6 5.4 6.0 0.2 1.2 1.4 

v2(y(x)) 3.0 3.0 6.0 1.0 0.7 1.7 

v3(y(x)) 36.0 54.0 54.0 3.9 1.9 3.9 

v4(y(x)) 0 1944.0 1944.0 0.2 4.2 0.2 

v5(y(x)) 0.6 5.4 5.4 0.2 1.2 1.2 

v6(y(x)) 3.0 3.0 3.0 1.0 0.7 1.0 

 

In order to determine the components of the cost matrix, the method proposed by 

Pignatello (1993), which is available in Chapter 2, is used. 

The loss function coefficients obtained are available in Table 7 and Table 8. 

In order to test the fit of the loss functions to underlying value functions, a 

comparison between the optimal values obtained by real value functions (V) and 

multivariate loss functions (L) is provided in Table 9. 
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Table 7 Loss Function Coefficients for Strong Correlation Cases 

 

SPC SNC 

c11 
c22 c12 c11 

c22 c12 

v1(y(x)) 0.009 0.041 0.000 0.033 0.300 0.000 

v2(y(x)) 0.045 0.023 0.000 0.167 0.167 0.000 

v3(y(x)) 3.000 1.500 -0.500 0.667 0.333 -0.500 

v4(y(x)) 10648.000 2662.000 -2662.000 0.333 4.000 -1.500 

v5(y(x)) 0.009 0.041 -0.002 0.033 0.300 -0.017 

v6(y(x)) 0.045 0.023 -0.011 0.167 0.167 -0.0833 

 

Table 8 Loss Function Coefficients for Weak Correlation Cases 

 

WPC WNC 

c11 
c22 c12 c11 

c22 c12 

v1(y(x)) 0.017 0.150 0.000 0.050 0.652 0.000 

v2(y(x)) 0.083 0.083 0.000 0.250 0.362 0.000 

v3(y(x)) 1.000 1.500 -0.750 1.190 1.000 -0.500 

v4(y(x)) 0.000 54.000 0.000 0.055 2.216 -2.776 

v5(y(x)) 0.017 0.150 -0.008 0.050 0.652 -0.132 

v6(y(x)) 0.083 0.083 -0.042 0.250 0.362 -0.454 

 

In the strong correlation cases, for seven case out of twelve cases, loss function is 

able to find the true optimal solution. In the weak correlation cases, there are two 

cases where the results obtained from the value function and loss function match. 

The loss function gives better results in two cases due to the solver capabilities used 

in the solutions. 
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Table 9 Comparison of Optimal Values 

    v1(y(x)) v2(y(x)) v3(y(x)) v4(y(x)) v5(y(x)) v6(y(x)) 

SPC 
V 20.90 0.00 847.00 1288408.00 0.00 0.00 

L 20.90 -1.83 847.00 1288408.00 0.00 0.00 

SNC 
V 0.80 2.00 4.00 1.00 0.27 0.75 

L 0.56 2.00 0.69 0.02 0.32 0.75 

WNC 
V  0.47 1.13 4.00 0.00 0.55 0.75 

L 0.32 1.12 3.53 0.00 0.72 0.28 

WPC 
V 5.40 0.50 36.00 500.00 0.10 1.50 

L 5.16 0.50 30.00 0.00 1.48 0.75 

 

Loss functions perform poorly and are not able to find the optimal points for half 

of the cases although it is assumed that the decision maker is perfectly consistent in 

his/her answers. Performance of the loss functions is expected to decrease further 

when the decision maker is not consistent while answering the questions and also 

is not able to tell the exact loss values of points under consideration. Hence loss 

functions are not appropriate to use if the underlying value function differs from a 

quadratic loss function. 
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CHAPTER 4 

A METHOD FOR PARAMETER ESTIMATION 

This chapter presents the general approach proposed for the estimation of 

multivariate quadratic loss function parameters associated with process economics 

and DM preferences. Firstly, an overview of the method is provided.  In the 

following subsections, details of each step of the method are presented, which are 

initialization, selection of products to compare quality losses, estimation and 

comparison of the quality losses for selected products, optimization, and evaluation 

of fit. 

 

4.1 OVERVIEW OF THE METHOD 

This subsection represents the overview of the proposed method. Firstly, decision 

makers that will be included in the study are identified. Then, the products that will 

be used in the current iteration are selected according to the rules described in 

Subsection 4.3. The decision maker estimates the quality losses associated with 

selected products using the available data relevant to quality losses of products 

under consideration. Using the estimated loss values, products are compared in 

terms of their desirability. The comparison results are converted to model 

parameters and a mathematical model is constructed and solved in order to find 

optimal parameters of the multivariate loss function. The results obtained from the 

mathematical model are evaluated using some test products. The steps are repeated 

until the algorithm converges. The flow of the method can also be seen in Figure 

13. 
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4.2 INITIALIZATION 

In the initialization step, the decision makers of the problem should be determined. 

For different cases, the decision makers can include employees of the producer 

playing the role of internal customers for the product under consideration, customer 

representatives, and experts in the related field.  

Identify the decision maker(s) 

Select the products to compare 

Estimate the 

quality losses of 

selected products 

Compare the 

desirabilities of 

the products 

Convert the 

results to model 

parameters 

Evaluate the fit 

Formulate and optimize the mathematical model 

The errors are under 

the desired threshold?

Figure 13 Flowchart of the Method 

Stop 

Yes 

No 
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The study is usually initiated by the producer. Hence, the producer intrinsically 

takes part in the decision making process. However, as mentioned in Chapter 2, the 

quality loss is the loss to the society, which includes not only producer loss but also 

customer loss. Hence, if possible, customers should also take part in the decision 

making process. If the product is an end product, the customers are the end 

customers. On the other hand, if the product is a component (semi-finished product) 

the customer is the immediate successor of the current production process such as 

the chief of the assembly. If customers cannot participate in the process, experts 

such as quality and marketing managers may be included in the study to reflect the 

opinions of the customers. 

 

4.3 SELECTION OF PRODUCTS TO COMPARE QUALITY LOSSES 

The first step of the approach is selection of the products. Although there may be 

some restrictions in the product selection, the following rules are suggested to 

increase the speed of convergence of the approach.   

Firstly, the products or services which cause extremely high quality loss should be 

excluded in the product selection process. The utilization of multivariate quadratic 

loss functions may be improper in the situations where consequences of the usage 

of product are not tolerable. For example, if the product or service with a certain set 

of quality characteristic values is very likely to cause the death of a user, the cost 

of quality of that particular product cannot be represented properly by the loss 

functions. Hence, it is suggested that all characteristics of the products selected 

should be in or around the specification limits.  

As proposed by Taguchi (1986), the products at the upper specification limit (USL) 

or the lower specification limit (LSL) are selected to construct the univariate quality 

loss function since the calculation of quality loss is relatively easy at the 

specification limits. A similar approach is suggested here in order to limit the 

quality loss to repair and replacement costs which can be observed relatively easily. 
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The products should be selected in the neighborhood of specification limits if it is 

possible. 

Maghsoodloo and Chang (2001) divide the quality loss into areas with respect to 

the design specifications and the products positions according to these 

specifications. For the bivariate case where both of the responses are nominal the 

best type, there are four regions, where both characteristics are below the target, 

first characteristic is above the target while second characteristic is below the target, 

both characteristics are above the target and finally first characteristic is below the 

target while second characteristic is above the target, respectively. Figure 14 

demonstrates the approach mentioned above. 

 

Figure 14 The Regions Constructed from Specification Limits and Targets 

 

If we generalize this approach for a product with n different quality characteristics, 

we obtain 2n regions. As shown in Chapter 3, K is not necessarily a symmetric 

I II 

IV III 
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matrix. Hence, for the n quality characteristic case, there are n2 unknown parameters 

in the K matrix. 

If there are more than four quality characteristics, n2 < 2n. We suggest n2 different 

regions to be selected from 2n areas in the first iteration of algorithm and one 

product to be selected from that particular areas. If the algorithm does not converge 

in the first iteration, then new products should be selected from the regions which 

are not used in the previous step. 

In the cases where there are less than five quality characteristics, 2n regions will not 

be sufficient for point selection, since n2 ≥ 2n. 2n areas may also not be sufficient 

until convergence for the cases where there are more than 4 quality characteristics. 

Under these circumstances, more than one product should be selected from each 

and every area at each step. 

If only one product is to be selected from each region, the selection can be done 

randomly in the region. However, if more than one product needs to be selected 

from a region, the products should not be too similar in order to enable comparison 

between them. The decision makers may also suggest some sample products from 

the region under consideration to compare which they can compare easily. Finally, 

some random products may be selected and the decision maker may choose the 

product closest to the random point suggested. 

If the time is a concern in the process, then the test points used in the previous 

iteration may be used as the selected points in the current iteration.  

 

4.4 ESTIMATION AND COMPARISON OF THE QUALITY LOSSES FOR 

SELECTED PRODUCTS 

The quality losses at the chosen points need to be estimated in order to guide the 

decision maker in the normalization process or comparisons. As mentioned in 

Chapter 2, quality loss may include various quality cost components. The decision 

maker may choose the costs which will be included in the cost calculations from 
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the costs mentioned. Also he/she may add additional costs. However, the decision 

maker should be consistent while selecting the costs and use the same costs for the 

calculation of each point. In this study repair and replacement costs are considered 

in the estimated cost calculations which is a similar approach to univariate loss 

function studies mentioned in Chapter 2. 

The estimation procedures for the quality loss may differ due to nature of the data 

available. There are different sources which are a part of customer value chain. For 

possible sources of data, corresponding strategies are presented below. 

The service records in the warranty period of the product can be used to estimate 

losses if the customers cannot be included in the decision making process and past 

service records of the considered product are available. This method can be applied 

to an existing product or a derivative of an existing product. The service records 

should include all the related information to be proper to use. In this case, data 

mining tools can be useful to construct a proper data set in order to use in the 

subsequent steps. The number of repaired products and returned products can be 

analyzed to understand which failures cause the necessity of repair/return action. If 

a product is sold but is not returned or requested to be repaired, then it can be 

assumed that the customers have chosen to ‘do nothing’. Pareto charts can be 

constructed to understand critical failures according to customers and quality loss 

of a product can be assigned accordingly.  

Expert opinions can be used if the service records are not available and the 

customers cannot be included in the decision making process. Sales department of 

the producer can perform conjoint analysis to determine the quality values 

associated with the products which will be used in the study. Also expert opinions 

may be useful if the products require a test period or the defects are hard to 

recognize in the short term.   

If the customers can be included in the study, a focus group which consists of ten 

to thirty customers can be formed in order to gather data. Their opinions for the 

quality loss of the given products should be collected and combined for each and 
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every product which will be used in this study to obtain their estimated quality loss 

values. Also, the opinion of the producer can be included to obtain more realistic 

values. 

When only the repair and replacement costs are considered the question that must 

be asked to the customers is “Would you request a replacement, ask for the 

considered product to be repaired or do nothing and continue to use the product?”. 

If the decision makers are not customers then the question becomes “How many 

customers out of 100, on the average would request a replacement, ask for the 

considered product to be repaired or do nothing and continue to use the product?”. 

When the quality loss values for all products are determined, next step is performing 

a comparison study. The decision maker needs to compare each product pair 

considering his/her preferences and the quality loss values of the products using a 

method similar to AHP. While making the comparisons, other quality costs which 

cannot be calculated can also be included in the quality loss to a certain extent. For 

example, although the loss of goodwill is hard to calculate, the decision maker may 

have an opinion on the relative magnitudes of the costs caused by loss of goodwill 

when individual product pairs are considered. If there no additional costs which 

cannot be calculated, normalization can be used instead of using a comparison 

matrix. 

If the number of products to compare is high, the practitioners may only calculate 

the first row of the comparison matrix and assume consistency in other rows in 

order to reduce the number of comparisons. 

However, the results of comparison reflect the desirability of the products while the 

estimated quality losses are needed for the optimization step. Hence, the results 

need to be converted to reflect the relative quality losses of the products. 

Let ci be the priority vector value corresponding to product i, li be the loss 

coefficient of product i which is obtained by conversion of ci, and b be the 

benchmark product in the current iteration. Benchmark product can be any product 
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evaluated in the current iteration. The li values are calculated as shown in Equation 

(66). 

li=
cb

ci
 (66) 

 

4.5 OPTIMIZATION 

Optimization is the step where parameters of the quadratic multivariate loss 

function are estimated using the data from the previous steps of the algorithm. A 

nonlinear mathematical model is used in the parameter estimation procedure.  

The objective of the model can be stated as providing the best fit to the multivariate 

quadratic loss function by minimizing square errors which is a similar approach to 

ordinary least squares (OLS) method. The constraints of the model include the 

constraints which relate the comparison results to the quadratic loss function under 

consideration and other constraints which provide additional bounds on the 

parameters. 

For the n quality characteristics case we have at least n2 products in each iteration 

of the algorithm if the decision maker does not have a time constraint.  

The mathematical model is defined as in Equations (67), (68), (69) and (70). 

Minimize ∑ ϵi
2n

i=1  (67) 

Subject to 

liQ=(y
i
(x)-t)

T
C(y

i
(x)-t)+ϵi          ∀i=1,…,n (68) 

C = KΣ-1 (69) 

Q ≥ Qb (70) 

where li is the converted comparison result of ith product, Qb is the lower bound on 

the loss of benchmark product, yi = {yi1, yi2,…,yin}, t={t1, t2,…,tn} and Σ-1 is the 

inverse of variance-covariance matrix. The decision variables are represented with 

C and K matrices and Q and ϵi. 
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Since the loss cannot be negative by definition, C must be positive definite. Hence 

additional constraints can be added to ensure C is positive definite. 

In order to make C positive definite, for the two quality characteristics case, the 

bound suggested by Maghsoodloo and Chang (2001) can be considered which is 

given in Equation (71). 

4c11c22>c12
2  

 

(71) 

4.6 EVALUATION OF FIT 

The fit obtained in the optimization step needs to be evaluated. There are various 

methods that can be used to test the fit of the quality loss function predicted in the 

optimization step to the underlying value function of the decision maker, which 

includes selecting random products from the convex hull of already evaluated 

products and selecting products near the products which have the highest error 

values in the optimization step of current iteration according to Burr and Tobin 

(2015) in the “Measuring the effect of data mining on inference” entry of 

Encyclopedia of Information Science and Technology. Also selecting products 

from the most important area according to the decision maker may be considered if 

the number of questions that can be answered by the decision maker is limited.     

The number of products which will be included in the evaluation of the fit may 

depend on the situation. Since the quality loss values for the test products needs to 

be calculated, it is suggested that the points which will be used in the next iteration 

may be used as test points. However, a cross validation approach can be used to 

determine the test products if the number of products that can be tested is limited 

due to time concerns. Cross validation means dividing the available data to k 

sections and using some sections as the test data (Ross et al., 2009). The number of 

sections that the data will be divided into and number of sections that will be used 

as test data can be determined depending on the situation.   
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When the points that will be used are determined, the error threshold needs to be 

specified and the quality loss values of all of the test products need to be estimated. 

If the difference between the estimated values and values obtained from estimated 

loss function is less than the desired threshold value for all test products, then the 

estimated quality loss function represents the underlying value function of decision 

maker and algorithm stops. Otherwise, next iteration of the algorithm starts from 

the second step, which is selections of the products to compare quality losses. 
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CHAPTER 5 

ILLUSTRATIVE EXAMPLES AND DISCUSSIONS 

In this chapter, two examples are provided to illustrate the method under different 

conditions together with the discussion on the method proposed and multivariate 

loss functions in general. 

 

5.1 METAL WORKING CASE 

The proposed approach is illustrated on a metal working example. According to 

Dolgun (2014) surface roughness and wall thickness are among the quality 

characteristics of metal parts produced by turning operation. 

In our case, we assume that we are performing a study for an aircraft company. The 

customer in this case is a department which produces engines for aircrafts, which is 

an internal customer. Since the quality characteristics need to be tested for a time 

period, expert opinions are more useful to determine the quality losses. Hence the 

decision makers are quality engineers or experts from the engine department in our 

example. 

After the decision makers are determined, the next step of the algorithm is the 

selection of the products. In the example by Dolgun (2014), the target for surface 

roughness (y1) is 2 μm and the target for wall thickness (y2) is 4 millimeters. 

Moreover, the specification limits are 0 μm and 8 μm for surface roughness and the 

wall thickness should be between 3.99 millimeter and 4.01 millimeters. Finally, 

since it is not provided, we assume that the variance-covariance matrix of surface 

roughness and wall thickness is as shown in Equation (72). 
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Σ=[
0.2000 0.0005

0.0005 0.0010
] (72) 

This assumption is made according to the properties of data provided by Dolgun 

(2014). 

Let the cost matrix of underlying loss function be as shown in Equation (73). 

C=[
5 0

0 90000
] (73) 

The answers of experts are consistent with the cost matrix given in Equation (73) 

through the example. 

We need to select one product from each area mentioned in Subsection 4.3. There 

are four areas since there are two quality characteristics. The selected four products 

are: 

 Product 1 = (1.0 μm, 4.005 mm)  

 Product 2 = (1.5 μm, 3.995 mm)  

 Product 3 = (2.5 μm, 4.005 mm)  

 Product 4 = (3.0 μm, 3.995 mm)   

 

The next step is estimating the quality loss values of the selected products using the 

expert opinion as mentioned above. We assume that the experts state how many 

times on the average the engine department requests a replacement or repair or does 

nothing about the selected products out of a hundred times they received the product 

and their answers are stated in Table 10.  

Table 10 Experts’ Actions on Selected Products 

 Replacement Repair Do nothing 

Product 1 10 20 70 

Product 2 5 10 85 

Product 3 5 10 85 

Product 4 10 20 70 
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Let the replacement cost be $50 and the repair cost be $10. The answers of the 

experts are created using the cost matrix given in Equation (73) and the replacement 

and repair costs. It is assumed that the number of customers that would request a 

repair is as twice as the number of customers that would request a replacement. For 

example, the percentage of customers that would request a replacement or repair 

for Product 1 is estimated using the following method. 

L(Product 1) =(1.000-2.000 4.005-4.000) [
5 0

0 90000
] (1.000-2.000

4.005-4.000) 

L(Product 1) =7.25 

Let the percentage of customers that would request a replacement be x and the 

percentage of customers that would request repair be 2x. 

Then 50x+10(2x) = 7.25 and x = 0.1035 

By rounding the x value, we obtain the percentage of customers that would request 

replacement as 10% and the percentage of customers that would request repair as 

20%. 

Using the answers of experts, the estimated average losses of selected products are 

calculated as given in Equations (74), (75), (76) and (77). 

L(Product 1) = 0.1050 + 0.2010= 7.0 (74) 

L(Product 2) = 0.0550 + 0.1010= 3.5 (75) 

L(Product 3) = 0.0550 + 0.1010= 3.5 (76) 

L(Product 4) = 0.1050 + 0.2010= 7.0 (77) 

We assume that the experts’ preferences are inversely proportional with the quality 

loss values of the products. Since the customer is an internal customer, the other 

costs are ignored and the parameters of the model can be calculated using 

normalization. If we normalize the costs ensuring they add up to one, the costs and 

model parameters in Table 11 are obtained. 
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Table 11 Normalized Costs and Model Parameters of Example 1 

 Normalized 

Costs 

Model Parameters 

(li) 

Product 1 0.333 1.000 

Product 2 0.167 0.500 

Product 3 0.167 0.500 

Product 4 0.333 1.000 

 

Since the benchmark product is Product 1, the estimated loss value of Product 1, 

which is 7, becomes the lower bound Qb. Then the mathematical model is: 

Minimize ∑ 𝜖𝑖
24

𝑖=1  

Subject to 

liQ=(y
i
(x)-t)

T
C(y

i
(x)-t)+ϵi          ∀i=1,…,4 

C = KΣ-1 

Q ≥ 7 

All error variables are equal to zero in the optimal solution. The C and K matrices 

are obtained as given in Equations (78) and (79) correspondingly. 

C=[
4.667 174.440

-174.440 93333.340
] (78) 

K=[
1.021 0.177

11.779 93.246
] (79) 

We assume the decision maker has a time limit. Hence the products that will be 

used in the next iteration are selected as the test points in this iteration. The products 

which are selected from the four areas are given below. 

 Product 5 = (1.0 μm, 3.995 mm)  

 Product 6 = (1.5 μm, 4.005 mm)  

 Product 7 = (2.5 μm, 3.995 mm)  

 Product 8 = (3.0 μm, 4.005 mm)   
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The experts estimate the number of times the products are requested to be replaced 

or repaired out of a hundred times they are received by the engine department as 

shown in Table 12 according to the cost matrix provided in Equation (71). 

Table 12 Experts’ Actions on Test Products in Example 1 

 Replacement Repair Do nothing 

Product 5 10 20 70 

Product 6 5 10 85 

Product 7 5 10 85 

Product 8 10 20 70 

 

Then the estimated average losses which are calculated using replacement and 

repair costs are provided in Equations (80), (81), (82) and (83). 

L(Product 5) = 0.1050 + 0.2010= 7.0 (80) 

L(Product 6) = 0.0550 + 0.1010= 3.5 (81) 

L(Product 7) = 0.0550 + 0.1010= 3.5 (82) 

L(Product 8) = 0.1050 + 0.2010= 7.0 (83) 

The desired threshold is 10% in this case. The loss values estimated from expert 

opinions, the losses calculated using the obtained loss function and percentage 

errors are given in Table 13. 

Table 13 Test Results of Example 1 

 Expert 

Opinion 

Calculated 

Loss 

Percentage 

Error 

Product 5 7.0 7.0 0.0 

Product 6 3.5 3.5 0.0 

Product 7 3.5 3.5 0.0 

Product 8 7.0 7.0 0.0 
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Hence the loss function obtained is satisfactory and the process stops. The C matrix, 

K matrix and loss function obtained are available in Equations (84), (85) and (86) 

correspondingly. 

C=[
4.667 174.440

-174.440 93333.340
] (84) 

K=[
1.021 0.177

11.779 93.246
] (85) 

L(y(x),t) =(y(x)-t) [
4.667 174.440

-174.440 93333.340
] (y(x)-t) (86) 

Open form of the loss function is provided in Equation (87). 

L(y(x),t)=4.667(y
1
(x)-2.000)

2
 

+(174.440-174.440)(y
1
(x)-2.000)(y

2
(x)-4.000) 

+93333.340(y
2
(x)-4.000)

2
 

(87) 

The interaction term cancels out and the loss function becomes as shown in 

Equation (88). 

L(y(x),t)=4.667(y
1
(x)-2.000)

2
+93333.340(y

2
(x)-4.000)

2
 (88) 

The open form of underlying loss function which we try to find is provided in 

Equation (89). 

L(y(x),t)=5(y
1
-2.000)

2
+90000(y

2
-4.000)

2
 (89) 

Figure 15 illustrates the loss functions provided in Equations (88) and (89). 
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Figure 15 Illustration of Real Loss Function and Estimated Loss Function for 

Example 1 

5.2 SHIRT CASE 

The second case which is used to demonstrate the proposed method is determination 

of the quality loss function for luxury shirts with stripes. Two quality 

characteristics, fabric pattern matching, which is measured using mismatch between 

centers of meeting stripes (y1) and stitch density (y2), are chosen to be used in the 

study.  

Fabric pattern matching is evaluated using the difference between the start of a 

pattern in sleeves and the main body of the shirt and its target value is 0.00 

millimeters. The acceptable values of difference in terms of fabric pattern matching 

are between -0.005 millimeters and 0.005 millimeters. The average stitch density 

should be between 2.9 stitches per centimeter and 3.1 stitches per centimeter and 

its target value is 3 stitches per centimeter.  The estimated variance-covariance 

matrix of two quality characteristics is provided in Equation (90). 

Σ=[
0.001 -0.0005

-0.0005 0.05
] (90) 

The quality manager of the manufacturer firm is the decision maker of the process. 

However, in luxury items customers have high quality expectations and their 

opinions should also be included in the study. We assume that the quality manager 

answers are consistent with cost matrix C1 and customers’ answers are consistent 

with cost matrix C2 which are provided in Equations (91) and (92) correspondingly. 

y2 y1 

Loss 
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C1=[
30000000 200000

200000 130000
] (91) 

C2=[
10000000 100000

100000 100000
] (92) 

Four products should be selected in the first iteration since there are two quality 

characteristics under consideration. The products which are selected from the four 

different areas can be listed as: 

 Product 1 = (-0.002 mm, 3.05 stitches per cm)  

 Product 2 = (0.001 mm, 2.95 stitches per cm)  

 Product 3 = (0.002 mm, 3.07 stitches per cm)  

 Product 4 = (-0.001 mm, 2.98 stitches per cm)   

 

The selected products can be represented as in Figure 16. 

After the product selection is completed a survey is assumed to be made to a focus 

group consisting of 20 customers. Due to the nature of the product, repair is not an 

option and the customers may do nothing about the product or would request a 

replacement. Let the cost of replacement be 1500$ per product. The results of the 

survey are as shown in Table 14. 

Table 14 Customers’ Actions on Selected Products for First Iteration of Example 

2 

 Replacement Do nothing 

Product 1 4 16 

Product 2 3 17 

Product 3 7 13 

Product 4 1 19 
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Figure 16 Selected Products 

The results in Table 14 are calculated according to the C2 matrix and replacement 

cost. For example, the number of customers that request a new product if they 

received Product 1 is calculated as follows. 

L(Product 1) =(-0.002-0.000 3.050-3.000) [
10000000 100000

100000 100000
] (-0.002-0.000

3.050-3.000 ) 

L(Product 1) =270 

Let the number of customers that would request a replacement be x. 

Then 75x= 270 and x = 3.6 

By rounding the x value, we obtain the number of customers that would request 

replacement as 4. 

Using the answers from customers, the average replacement costs (RC) can be 

calculated as: 

RC(Product 1) = 0.20x1500 = 300$ (93) 

I II 

III IV 

 1 

 3 

 4 
 2 
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RC(Product 2) = 0.15x1500 = 225$ (94) 

RC(Product 3) = 0.35x1500 = 525$ (95) 

RC(Product 4) = 0.05x1500 = 75$ (96) 

When the preferences are calculated inversely proportional to the quality losses, the 

comparison matrix in Table 15 is obtained. 

Table 15 Initial Comparison Matrix for First Iteration of Example 2 

 Product 1 Product 2 Product 3 Product 4 

Product 1 1.00 0.75 1.75 0.25 

Product 2 1.33 1.00 2.33 0.33 

Product 3 0.57 0.43 1.00 0.14 

Product 4 4.00 3.00 7.00 1.00 

 

For example, in the comparison matrix in Table 15 the inverse replacement cost 

ratio of Product 2 to that of Product 1 is calculated as  

RC (Product 1)

RC (Benchmark Product 2)
= 

300

225
=1.33 

However, the quality manager of the manufacturing firm is assumed to believe that 

these preferences should be modified to reflect other external costs such as loss of 

goodwill. Let the modified comparison matrix be as shown in Table 16. 

Table 16 Modified Comparison Matrix for First Iteration of Example 2 

 Product 1 Product 2 Product 3 Product 4 

Product 1 1.00 0.75 2.00 0.25 

Product 2 1.33 1.00 2.67 0.33 

Product 3 0.50 0.38 1.00 0.13 

Product 4 4.00 3.00 8.00 1.00 
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The modified comparison matrix is obtained by the quality manager by adding 

estimated additional costs such as loss of goodwill in this example. For example, 

the inverse overall cost ratio of Product 2 to that of Product 1 is calculated as: 

RC (Product 1)+Estimated loss of goodwill of Product 1

RC (Benchmark Product 2)+ Estimated loss of goodwill of Product 2
= 

 
300+100

225+75
=1.33 

In order to calculate the total loss estimated by the quality manager, we used the C1 

matrix and to obtain loss of goodwill we subtracted the repair replacement cost from 

the total estimated loss. For example, the estimated loss of goodwill due to Product 

1 is calculated as follows. 

L(Product 1) =(-0.002-0.000 3.050-3.000) [
30000000 200000

200000 130000
] (-0.002-0.000

3.050-3.000 ) 

L(Product 1)=405$ 

By rounding the expected loss to the nearest multiple of hundred we obtain 400$ 

and by subtracting the replacement cost we obtain the estimated loss of goodwill as 

100$. 

Table 17 presents the priority vector constructed using the procedure suggested in 

AHP and the converted parameters obtained from priority vector when the 

benchmark product is chosen as Product 2. 

Table 17 Priority Vector Values and Model Parameters for First Iteration of 

Example 2 

 Eigenvector Model Parameters (li) 

Product 1 0.146 1.333 

Product 2 0.195 1.000 

Product 3 0.073 2.667 

Product 4 0.585 0.333 
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The lower bound on the loss of the benchmark product is 300. Using these 

parameters, the mathematical model is constructed as presented below: 

Minimize ∑ 𝜖𝑖
24

𝑖=1  

Subject to 

liQ=(y
i
(x)-t)

T
C(y

i
(x)-t)+ϵi          ∀i=1,…,4 

C = KΣ-1 

Q ≥ 300 

The resulting values of the decision variables in C, K, and ϵ are given in Equations 

(97), (98) and (99) correspondingly. 

C=[
31600397 379363

18217 126130
] (97) 

K=[
31411.1 3168.0

-44.8 6297.4
] (98) 

ϵ=[-2.06 -27.04 0.00 9.90] (99) 

Let us assume that the decision maker has a time limit, hence we are using one test 

product. Since the quality loss function has the highest percentage error when 

Product 4 is calculated, a product close to Product 4 is chosen as the test product. 

Let the test product be Product 5 (-0.001 mm, 2.97 stitches per cm) and 1 out of 20 

customers state that they would request a replacement. Then the estimated average 

loss is given in Equation (100). 

L(Product 5) = 0.05*1500=75$ (100) 

The manufacturer modifies the estimated loss as 200. When we use the C matrix 

estimated, we calculate the loss as 157$, which means percentage error is 21.50%. 

If we assume that the desired threshold is 10%, the fit test fails and the algorithm 

moves on to the next iteration.  
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Since we have a time limit the test product is used as the selected product in second 

iteration. The comparison matrix when the fifth product is added becomes the one 

in Table 18. 

Table 18 Initial Comparison Matrix for Second Iteration of Example 2 

 Product 1 Product 2 Product 3 Product 4 Product 5 

Product 1 1.00 0.75 1.75 0.25 0.25 

Product 2 1.33 1.00 2.33 0.33 0.33 

Product 3 0.57 0.43 1.00 0.14 0.14 

Product 4 4.00 3.00 7.00 1.00 1.00 

Product 5 4.00 3.00 7.00 1.00 1.00 

 

The decision maker modifies the comparison matrix as in Table 19. 

Table 19 Modified Comparison Matrix for Second Iteration of Example 2 

 Product 1 Product 2 Product 3 Product 4 Product 5 

Product 1 1.00 0.75 2.00 0.25 0.50 

Product 2 1.33 1.00 2.67 0.33 0.67 

Product 3 0.50 0.38 1.00 0.13 0.25 

Product 4 4.00 3.00 8.00 1.00 2.00 

Product 5 2.00 1.50 4.00 0.50 1.00 

 

The priority vector and the converted parameters obtained from priority vector 

when the benchmark product is chosen as Product 2 are presented in Table 20. 
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Table 20 Priority Vector Values and Model Parameters for Second Iteration of 

Example 2 

 Priority Vector Model Parameters (li) 

Product 1 0.11 1.33 

Product 2 0.15 1.00 

Product 3 0.06 2.64 

Product 4 0.45 0.33 

Product 5 0.23 0.66 

 

Using the parameters obtained from comparison study, the mathematical model is 

constructed as can be seen below. 

Minimize ∑ ϵi
25

i=1  

Subject to 

liQ=(y
i
(𝐱)-t)

T
C(y

i
(𝐱)-t)+ϵi          ∀i=1,…,5 

C = KΣ-1 

Q ≥ 300 

In the optimal solution the values of decision variables are obtained as in Equations 

(101), (102) and (103). 

C=[
31600396 379366

18220 123620
] (101) 

K=[
31411.1 3168.1

-43.6 6171.9
] (102) 

ϵ=[4.21 -20.77 0.00 10.90 45.01] (103) 

In order to test the fit of quality loss function obtained to underlying cost function 

of decision maker, a new test point which is close to the product with largest 

percentage error value should be selected. Let Product 6 be selected as (-0.001 mm, 

2.96 stitches per cm) and two customer say that she would request a change 
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meaning the estimated quality loss is 150$ and it is modified by the decision maker 

as 250$. 

When we calculate the quality loss using the function we obtained in the second 

iteration, we find the quality loss is 245.30$. Hence the error is 1.88% which is less 

than the desired threshold and the algorithm stops. The C matrix, K matrix and loss 

function obtained are available in Equations (104), (105) and (106) 

correspondingly. 

C=[
31600396 379366

18220 123620
] (104) 

K=[
31411.1 3168.1

-43.6 6171.9
] (105) 

L(y(x),t) =(y(x)-t) [
31600396 379366

18220 123620
] (y(x)-t) (106) 

Open form of the loss function is provided in Equation (107). 

L(y(x),t)=31600396(y
1
(x)-0.00)

2
+123620(y

2
(x)-3.000)

2
 

+(379366+18220)(y
1
(x)-0.00)(y

2
(x)-3.00)) 

 

(107) 

When we simplify the interaction term the loss function becomes as shown in 

Equation (108). 

L(y(x),t)=31600396(y
1
(x)-0.00)

2
+397586(y

1
(x)-0.00)(y

2
(x)-3.00) 

+123620(y
2
(x)-3.00)

2
 

(108) 

The open form of underlying loss function which we try to find is provided in 

Equation (109). 

L(y(x),t)=30000000(y
1
(x)-0.00)

2
+400000(y

1
(x)-0.00)(y

2
(x)-3.00) 

+130000(y
2
(x)-3.00)

2
 

(109) 

Figure 17 illustrates the loss functions provided in Equations (108) and (109). 
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Figure 17 Illustration of Real Loss Function and Estimated Loss Function for 

Example 2 

 

5.3 DISCUSSIONS 

In this thesis, we have studied the process economy related parameters of 

multivariate loss functions and provided a practical approach for estimating the 

parameters. The purpose of our approach is providing the closest fit to the loss 

function regardless of the type of underlying value function of decision maker. 

However, we observed that multivariate quadratic loss functions are not appropriate 

to represent all types of value functions that a decision maker can have. Multivariate 

quadratic loss functions may perform poorly if decision maker’s value function is 

nonconvex or highly non-monotonous. If the algorithm does not converge after a 

reasonable number of steps, the true value function may be significantly different 

from a quadratic loss function and it might be useful to consider another type of 

function to represent the true value function. However, the perfect representation 

might be achieved if the value function is a quadratic loss function. 

Another issue about multivariate loss function is the difficulty of estimating the 

quality loss value of a given product or process. Estimation of tangible costs which 

affect the quality loss is relatively simple and structured. On the other hand, 

intangible costs such as loss of goodwill and overhead costs for a given product are 

hard to include in the estimation of quality loss. Both tangible and intangible costs 

y2 
y1 

Loss 
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are significant for construction of cost matrix C. As shown in Chapter 3, the correct 

estimation of C matrix is crucial for multivariate loss functions. Hence, 

practitioners should be careful about the estimation of intangible costs. 

Even if the C matrix is estimated correctly, the K matrix estimation can be wrong 

when Σ estimation is not adequate. Appropriate methods should be used for 

estimating Σ in order to obtain meaningful inferences from K matrix. 

Estimating the cost matrix, C, and its elements might improve understanding of 

decision maker’s preferences and, allow usage of univariate methods in predictive 

modelling. However, if loss function is to be used for optimization, using interactive 

multi-criteria decision making approaches supported with statistical inference 

might prove to be a better choice. 





65 
 

 

CHAPTER 6 

CONCLUSIONS 

In this thesis, we propose a method for determining the parameters of multivariate 

loss functions by developing an algorithm to obtain the best fit to the underlying 

value function of the decision maker which utilizes the quadratic loss function in 

product or process design and quality assurance processes.  

To the best of our knowledge, there is only one approach in the literature for 

parameter determination, which is proposed by Pignatiello (1993). However, his 

approach requires an exact knowledge of quality loss at certain points, which is not 

applicable in practice. Instead of using exact loss values, our algorithm takes rough 

estimates of the loss values of some selected products, and uses optimization to find 

the best fitting quadratic loss function.  The method we propose is applicable for all 

problems where the underlying value function is a quadratic loss function. Even if 

the underlying value function is not a quadratic loss function, our algorithm aims 

to provide the closest quadratic loss function fit to the true value function.   

Results of this research can be utilized by practitioners who need to compare quality 

of products or find optimal design parameter settings of products and processes 

especially when the decision makers do not have enough time to interact with the 

analyst in the prediction and optimization process. Such cases occur when quality 

inspection and control need to be made by inexperienced people or by automated 

systems. However, if it is possible to interact with the decision maker, one may 

prefer more effective approaches for quality prediction and optimization, than using 

the multivariate loss functions. 

Both univariate and multivariate quadratic loss functions are useful tools for quality 

engineering purposes and worth studying by researchers. However, there is a 
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tradeoff between the practicality of the method to predict the parameters of the 

quadratic loss functions and accuracy of the results. Therefore, future research may 

consider other loss estimation processes to improve the results of the algorithm.  
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APPENDIX A 

The preference matrix, K, when there are three quality characteristics is given 

below. 

K=[

w1 k12 k13

k21 w2 k23

k31 k32 w3

] 

The variance-covariance matrix, , is provided below. 

=[

11 12 13

12 22 23

13 23 33

] 

Inverse of variance-covariance matrix can be represented as shown below. 

-1= [

-(-23
2 +2233) -(1323-1233) -(1223-1322)

-(1323-1233) -(-13
2 +1133) -(1213-1123)

-(1223-1322) -(1213-1123) -(-12
2 +1132)

] 


1

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

The cost matrix C and its components are presented below. 

C=[

c11 c12 c13

c21 c22 c23

c31 c32 c33

] 

c11=  
-(w1(-23

2 +2233)+k12(1323-1233)+k13(1223-1322))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

c12=  
-(w1(1323-1233)+k12(-13

2 +1133)+k13(1213-1123))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

c13=  
-(w1(1223-1322)+k12(1213-1123)+k13(-12

2 +1132))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

c21=  
-(k21(-23

2 +2233)+w2(1323-1233)+k23(1223-1322))

(3312
2 -2121323+2213

2 +1123
2 -112233)
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c22 =  
-(k21(1323-1233)+w2(-13

2 +1133)+k23(1213-1123))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

c23 =  
-(k21(1223-1322)+w2(1213-1123)+k23(-12

2 +1132))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

c31 =  
-(k31(-23

2 +2233)+k32(1323-1233)+w3(1223-1322))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

c32 =  
-(k31(1323-1233)+k32(-13

2 +1133)+w3(1213-1123))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

c33 =  
-(k31(1223-1322)+k32(1213-1123)+w3(-12

2 +1132))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

Using the C matrix and its components the general form of expected loss function 

when there are three quality characteristics is calculated as follows.
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E[L(y(x),t]=
-(w1(-23

2 +2233)+k12(1323-1233)+k13(1223-1322))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 (y
1
(x)-t1)

2
 

 +
-(k21(1323-1233)+w2(-13

2 +1133)+k23(1213-1123))

(3312
2 -2121323+2213

2 +1123
2 -112233)

(y
2
(x)-t2)

2
 

+
-(k31(1223-1322)+k32(1213-1123)+w3(-12

2 +1132))

(3312
2 -2121323+2213

2 +1123
2 -112233)

(y
3
(x)-t3)

2
 

+
-((w1+w2)(1323-1233)+k12(-13

2 +1133)+k13(1213-1123)+k21(-23
2 +2233)+k23(1223-1322))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

(y
1
(x)-t1)(y

2
(x)-t2) 

+
-((w1+w3)(1223-1322)+k12(1213-1123)+k13(-12

2 +1132)(k31(-23
2 +2233)+k32(1323-1233))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

(y
1
(x)-t1)(y

3
(x)-t3) 

+
-((w2+w3)(1213-1123)+k21(1223-1322)+k23(-12

2 +1132)+k31(1323-1233)+k32(-13
2 +1133))

(3312
2 -2121323+2213

2 +1123
2 -112233)

 

(y
2
(x)-t2)(y

3
(x)-t3) 

+w1+w2+w3   

 


