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ABSTRACT

A HEURISTIC TEMPORAL DIFFERENCE APPROACH WITH ADAPTIVE GRID

DISCRETIZATION

Fikir, Ozan Bora

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

September 2016, 43 pages

Reinforcement learning (RL), as an area of machine learning, tackle with the problem de�ned

in an environment where an autonomous agent ought to take actions to achieve an ultimate

goal. In RL problems, the environment is typically formulated as a Markov decision process.

However, in real life problems, the environment is not �awless to be formulated as an MDP,

and we need to relax fully observability assumption of MDP. The resulting model is partially

observable Markov decision process, which is a more realistic model but forms a di�cult prob-

lem setting. In this model agent cannot directly access to true state of the environment, but

to the observations which provides a partial information about the true state of environment.

There are two common ways to solve POMDP problems; �rst one is to neglect the true state

of the environment and directly rely on the observations. The second one is to de�ne a belief

state which is probability distribution over the actual states. However, since the belief state

de�nition is based on probability distribution, the agent has to handle with continuous space

unlike MDP case, which may become intractable easily in autonomous agent perspective.

In this thesis, we focus on belief space solutions and attempt to reduce the complexity of belief

space by partitioning continuous belief space into well-de�ned and regular regions with two

di�erent types of grid discretization as an abstraction over belief space. Then we de�ne an

approximate value function which can be used in an online temporal di�erence learning.
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ÖZ

ADAPT�F IZGARA AYRIKLA�TIRILMASI �LE SEZG�SEL ZAMANSAL FARK

YAKLA�IMI

Fikir, Ozan Bora

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Eylül 2016, 43 sayfa

Makine ö§reniminin bir alt dal� olan peki³tirmeli ö§renme, otonom bir etmenin herhangi bir

çevrede aksiyon alarak nihai bir hedefe ula³maya çal�³t�§� problemlere odaklanmaktad�r. Bu

problemlerde çevre bir Markov karar süreci olarak modellenmektedir. Ancak, gerçek hayat

problemlerinde çevre, bu ³ekilde modellenebilecek kadar kusursuz de§ildir, bu durumda Mar-

kov karar sürecinin kabul etti§i tam gözlemlenebilirlik varsay�mdan vazgeçmemiz gerekmekte-

dir. Ortaya ç�kan k�smi gözlemlenebilir Markov karar süreci modeli, daha gerçekçi olup daha

zor bir problem alan� tan�mlar. Bu problemlerin çözümünde kar³�m�za ç�kan en önemli so-

run otonom etmenin gözünde modelin hesaba dayal� denemelerinin sonuçsuz kalabilmesidir.

Bu modelde, otonom etmen kan� ad� verdi§imiz ve çevrenin gerçek durumlar� üzerine tan�m-

lanm�³ bir olas�l�k da§�l�m� ile Markov özelli§ini sa§lar ancak bir olas�l�k uzay�nda çal�³mak

zorundad�r.

Bu tezde, k�smi gözlemlenebilir Markov karar süreç problemlerinde kar³�m�za ç�kan ve bir

sürekli olas�l�k olay� olan kan� uzay�n�n iki farkl� yöntemle iyi tan�mlanm�³ ve düzenli bölgelere

ayr�³t�r�larak kan� uzay� karma³�kl�§�n�n bu soyutlama yöntemi ile azalt�lamas�na çal�³�lm�³t�r.

Sonras�nda, bu soyutlamay� sezgisel bir kestirme yöntemi içinde kullan�larak iki farkl� çevrim

içi peki³tirmeli ö§renme yöntemi sunulmu³tur.
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CHAPTER 1

INTRODUCTION

Decision making is the thought process to make logical choices from a set of available options
presented by the environment where the decision maker exists in. This thought process can
be considered as a problem solving activity terminated by a solution deemed to be acceptable.
The problems are generally formalized as aMarkov decision process (MDP) where environment
composed of a set of states, their transitions, and available actions regarded as options induced
by environment. The ultimate goal is to take actions in a sequential manner either starting
from any non-terminal state to reach some terminal state that returns maximum sum of
discounted rewards.

Usually, an autonomous agent is designed to act on behalf of a decision maker and is expected
to behave rationally to optimize its long term utility. The solution, which can also be in-
terpreted as the consecutive decisions of actions or the general decision rule executed by the
agent, is called a policy. A policy can be constructed before its execution, called an o�ine
policy; or it can be constructed while the agent is exploiting it within the environment, called
an online policy. The quality of a policy can be measured in various ways: using its response
time in an environment, by number of actions to reach the goal, etc. Constructing the policy
o�ine or online is a parameter that a�ects its success in terms of some quality metrics. The
designer may choose one of the approaches with respect to the constraints introduced by the
problem itself. For instance, there might not be enough time to construct an o�ine policy, or
the agent may be memoryless.

In MDP model it is assumed that the state transition information is perfectly available to both
the designer and the agent. Besides the design issues about policy construction given above, in
many real world problems, unfortunately, the environment information can not be perceived
perfectly and the information residing in it is partially hidden from both the designer and the
agent. Under these circumstances, the environmental state information is not fully observable
but there is a set observations that gives clues about the true state. In most cases these
observations are gathered from the agent sensors, where both agent and designer have to rely
on and act accordingly. The theory of partially observable Markov decision process (POMDP)
[1, 22, 15] aims to model this situation and provides fundamentals to compute optimal policies
based on observations.

There are solutions directly relying on the observation gathered from agent sensors, where
the agent generally is designed to be reactive or memoryless [12], [14]. However, for many
problems, there is no optimal (nor neal-optimal) policy over observations semantic alone.
Because the main problem of the observation model is perceptual aliasing where two or more
di�erent true states of the environment becomes indistinguishable by the agent. An obvious
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alternative to solve perceptual aliasing problem is to incorporate some form of memory to
discriminate perceptually aliased observations[5]. However, within the scope of this thesis we
focus on the belief space solutions as de�ned below.

Only di�erence of POMDP from MDP is its stochastic foundation, and there is an underlying
MDP model the environment has to follow. As an extension, POMDP framework provides
all su�cient statistics that satis�es Markov property with addition of an initial probability
distribution over the true states of environment when the underlying MDP model is available
in advance. With this prior information, the agent becomes able to keep track of its internal
belief space, i.e., instead of knowing the exact state, the agent now has its instincts to be in
a state with some probability. Since a belief state is de�ned as a probability distribution over
actual states of the environment, the agent has to handle a continuous state space to solve the
problem. The advantage of this approach is that any POMDP problem can be transformed
to an MDP problem and that allows us to utilize existing MDP solutions. On the other hand,
belief state space has dimensionality equal to number of states. While the size of the state
space grows exponentially with number of states, any solution to the problem su�ers from the
curse of dimensionality.

A variety of algorithms exists focusing on belief model trying to solve POMDP problems either
exactly [22] or approximately [7]. The main challenge in POMDP domain is its stochastic
foundation that increases computational complexity. Particularly, �nding an optimal policy
for a �nite horizon case is known to be PSPACE-hard [18] and for the discounted horizon case,
it may not be even computable [16]. Not only computation of the exact solution is intractable
in POMDP domain [13], but also that of the approximate solutions are intractable as well
[15].

The very �rst attempt to solve POMDP problems for discounted in�nite horizon case is Policy
Iteration method [9, 24]. The idea is to search policy space for a given POMDP problem
instead of iteratively improving value function. The method consists of two steps performed
iteratively:

• policy evaluation, that computes expected value for the current policy

• policy improvement, that improves the current policy

The policy iteration method could not draw signi�cant attention, since it su�ers from com-
putational complexity to solve POMDP problems with larger state spaces, speci�cally more
than 10-15 [6].

Approximate POMDP solutions to some ε-precision is another attempt. Lovejoy showed that
there are value function approximations de�ned with dynamic programming operator that
becomes the supremum and in�mum of optimal value function [15]. Lovejoy partitions the
entire belief space into a regular grid structure, whose elements are called simplexes in higher
dimensions, with the help of Freudenthal triangulation. And then, it works on the vertexes
of simplexes, which can be mapped to certain belief points in belief space, to evaluate value
function approximations. For any other belief points falling into the simplex region, he used
approximate value functions to decide the value of belief with ε-precision. This thesis is mainly
inspired by Lovejoy's studies on approximate solutions, and they are explained extensively in
the following chapters.

Another attempt to solve POMDP problems is forward decision tree methods. It is the �rst
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attempt to decrease computational complexity by taking initial belief state into consideration.
This method is e�cient if and only if the problem is de�ned to have an initial belief. Instead
of working the entire belief space, forward decision tree method focuses on the reachable
belief space, from given initial belief. It combines dynamic programming techniques and
decision trees in such a way that, while a decision tree is constructed to forward lookahead to
decide which action is much more bene�cial, a dynamic programming update tries to construct
a policy [8]. Unfortunately, this method is also relatively ine�cient; decision tree method
su�ers from its exponential growth, and policy construction with dynamic programming su�ers
from exponential growth in value function complexity. However, there are solutions to bound
the growth problem in decision trees by branch and bound pruning [21] and approximation
methods can be used for policy construction. Many online solutions to POMDP problems are
in�uenced by this approach [20].

As stated above, the major problem about POMDP framework is its computational complex-
ity, where exact solutions are intractable, approximations with ε-precision is also intractable
or not e�cient as expected. This is why POMDP research has focused on heuristic methods
(or approximations without any error parameters) which can be considered much more e�-
cient. Many heuristic approximations are introduced, and compared in terms of performance
in small sized POMDP problems [3].

Most promising and e�ective solution to POMDP problems is introduced by Pineau et al.
called Point Based Value Iteration (PBVI) [19], which can also deal with large POMDPs
as well. The idea is to sample a set of points from state space and use it as an approximate
representation of the state space, instead of representing it exactly. Contradictory to Lovejoy's
uniform sampling idea, research area draws attention to point-based algorithms considering to
sample reachable belief space that starts from initial belief [25, 11]. Both solutions uses Value
Iteration approach over a �nite set of sample belief state to produce an approximated value
function which requires an o�ine policy generation, i.e., all sampled belief states are required
to be processed to form a new approximated value function at the next step. The overall goal
is to have an approximated value function with an ε-precision to induce an approximately
optimal policy.

There are also heuristic approaches to solve POMDP problems where the optimal policy is
not guaranteed, but empirically shown to be satisfying. While some of these heuristic approx-
imations strictly requires o�ine policy generation, some of them are de�ned in reinforcement
setting to generate online policies, i.e., an approximated value function is built while the
agent is executing in the environment. These heuristic approximations are introduced in the
following sections one by one, and our approach is considered in this category as well.

In these thesis, we focused on a belief space POMDP solution which can be de�ned in a
reinforcement learning. The idea is to reduce belief space complexity by partitioning belief
space into regular and well-de�ned regions as an abstraction over entire belief space. We used
two di�erent types of grid discretization methods inspired by Lovejoy, as he used to generate
approximately optimal o�ine policies. With the help of this abstraction, we are able to de�ne
a value function approximation that can be utilized in a reinforcement setting to generate
online policies. Despite the other heuristic online approximations, our approach allows agent
to update approximated value function locally, i.e., in a partition of entire belief space, so
value function approximation over the rest of belief space is not e�ected.

The outline of this thesis is as follows. Following this introduction chapter (Chapter 1),

3



Chapter 2 gives a detailed literature survey on the subject which the thesis work is based on.
Chapter 3 presents our heuristic online approximation to solve POMDP problems. In Chapter
4, we compare our method with other heuristic approximation techniques by conducting several
experiments on well-known POMDP problems. Finally, we give our concluding remarks and
state future research directions in Chapter 5.
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CHAPTER 2

BACKGOUND

In this chapter, we summarize the necessary background to formally de�ne the problem that
we attack on this thesis by introducing relevant topics and pointing out the related work
in the literature. We �rst introduce the sequential decision making problem, then decision
process models are de�ned formally; namely Markov decision process, and partially observable
Markov decision process. Afterwards value function de�nition is formally given in a dynamic
programming approach for both MDP and POMDP models, its properties and algorithms
are introduced. Two di�erent approximation of value function in POMDP case is explained
in details with formal boundaries and isomorphic property of the belief space is discussed.
Utilizing a value function approximation to provide an action selection strategy is explained.
Two di�erent grid discretization approach in the literature is given and their use cases are
explained in details. Finally, similar heuristic approaches to POMDP problems, which we also
use to compare in our experiments, are formally introduced.

2.1 Markov Decision Processes

Decision making is the thought process to make rational choices from a set of available options
provided by the environment to optimize some utility metric. Similarly, sequential decision
making consists of consecutive decisions made by the decision maker and it is the fundamen-
tal task to achieve an overall goal aimed by the decision maker. The essence of sequential
decision making is that any decision made at time t has both an immediate and long-term
e�ects, despite the single decision making problem. In sequential decision making problems,
the decision maker has to consider a best choice at time t which critically a�ects his future
situations.

Intuitively, it is easier to model a sequential decision making process assuming that any state
de�ned in the model summarizes everything about the current state of the environment, and
there is no need to refer any former states. This assumption is called Markov property and any
process satis�es this property, i.e., processes whose future states only depend on the present
state, is called as Markov process [10]. A Markov decision process (MDP) is used to de�ne
a formal framework for the sequential decision making problems under uncertainty having
Markov property, and it is formally de�ned as follows:

De�nition 1. An MDP is a tuple 〈S,A,R, T 〉, where

• S is a �nite set of states,
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• A is a �nite set of actions,

• R : S × A → R is a reward function, which indicates the immediate reward that agent

receives after taking action a at state s,

• T : S × A × S → [0, 1] is a state transition function such that ∀s ∈ S, ∀a ∈ A,∑
s′∈S T (s, a, s′) = 1, which actually describes the probability of transitioning from state

s to s′ when action a is taken.

For an MDP, a policy is de�ned as a function π that maps the set of states to set of actions:

π : S → A (2.1)

Simply a policy de�nes which actions to choose at each step of the decision process in any
state, and �nding a solution to a given MDP problem turns out to be �nding the best policy.
One can simply search through the policy space to �gure out the best policy, and this approach
can be realized with a policy iteration. The alternative is the value iteration approach that will
be covered in following section. But both approaches are based on value function concepts,
which de�nes a mapping from any state s to the sum of accumulated expected rewards return
to evaluate a policy. For any given policy π, value function under π can de�ned as follows:

Vπ(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)Vπ(s′), (2.2)

and the optimal or best policy becomes,

V ∗(s) = maxa∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

]
. (2.3)

Solving an MDP problem using policy iteration and value iteration is usually impractical for
large state space. On the other hand, reinforcement learning framework which is a synthesis
of classical dynamic programming, arti�cial intelligence (temporal di�erences), stochastic ap-
proximation (simulation), and function approximation (regression, Bellman error, and neural
networks) provides e�cient solution to the MDP problems.

In a reinforcement learning setting, an MDP is used to model the environment where an au-
tonomous agents ought to take actions. The agent is supposed to interact with the environment
by taking actions and observing changes in the environment, without knowing the transition
and reward function of the underlying MDP in advance. The interaction between the au-
tonomous agent and the environment in reinforcement learning framework can be depicted
as in Figure 2.1. Basically, in this setting, agent has percepts through its sensor denoting
the changes in the environment. Particularly in MDP case these percepts are generally same
as the true state of the environment since the environment is fully observable and the agent
generally keeps track of its environment in an internal model using true state of the environ-
ment. Action selector is responsible to choose the best action in each step, based on the policy
induced by internal model.
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Figure 2.1: Conceptual model of an autonomous agent in reinforcement learning.

2.2 Temporal Di�erence (TD) Learning

Within the context of this thesis, we focused on the temporal di�erence learning which is
a combination of Monte Carlo and dynamic programming methods. The strong side of TD
methods is that it can learn directly from raw experience; sample sequences of states, actions,
and rewards from online or simulated interaction with an environment[26]. Unlike Monte Carlo
methods, TD methods do not require to complete a task by following a policy π to evaluate
it and update value function approximation V of V π. The simplest TD method known as
TD(0) requires only the observed reward at time t + 1 to update and the estimate of V at
t+ 1 to update value function approximation, which can be de�ned as follows:

V (s)← V (s) + α [r + γV (s′)− V (s)] . (2.4)

Since TD method updates based on an existing estimate (a bootstrapping method), i.e., allows
an autonomous agent to learn from scratch without any need for external input but only the
experience. In a autonomous agent perspective, the following procedure can be followed in an
environment modeled as an MDP.

Algorithm 1 Temporal Di�erence Learning Algorithm

1: procedure TD-0(MDP,α, γ, π)
2: initialize V,∀s ∈ S arbitrarily
3: for all episodes do
4: repeat(for each step of episode)
5: a← action given by π(s)

6: Take action a; observe reward r and next state s′

7: V (s)← V (s) + α [r + γV (s′)− V (s)]

8: s← s′

9: until s is terminal
10: end for

11: end procedure

7



2.3 Partially Observable Markov Decision Processes

Partially observable Markov decision processes (POMDPs) allows us to model a decision theo-
retic planning problem under incomplete and imperfect information about the states available
to an agent. The agent is expected to make a sequence of decisions to maximize its utility under
these circumstances. Formally, a POMDP can be represented with a tuple 〈S,A,Z,R, T,Ω〉
where

• S is a �nite set of states,

• A is a �nite set of actions,

• Z is a �nite set of observations,

• R : S × A → R is a reward function, which indicates the immediate reward that agent
receives after taking action a at state s,

• T : S × A × S → [0, 1] is a state transition function such that ∀s ∈ S, ∀a ∈ A,∑
s′∈S T (s, a, s′) = 1, which actually describes the probability of transitioning from

state s to s′ when action a is taken. T (s, a, s′) := Pr(st+1 = s′|at = a, st = s),

• Ω : S × A × Z → [0, 1] is an observation function, which is a probability distribution
describing the probability of observing z from state s when action a is taken. Ω(s, a, z) :=

Pr(zt+1 = z|at = a, st = s).

In a POMDP, the agent is unaware of the actual state of the environment, i.e., the actual
state is hidden from the agent, so that it cannot directly use it for decision making. However,
POMDP framework actually provides all su�cient statistics that satis�es Markov property
with addition of an initial probability distribution over states, which can be denoted by b0(s).
With this prior information agent is able to keep track of its belief state, which is a probability
distribution over states. Belief state becomes a su�cient statistic for a given history

bt(s) := Pr(st = s|b0, ao, z1, ..., zt−1, at−1, zt), (2.5)

and a successor belief state can be determined if an action at is taken by the agent at time t
and an observation zt+1 is observed at time t+ 1 such that

bt+1(s′) = τ(bt, zt+1, at) =

∑
s∈S Pr(zt+1, s

′|s, at)bt(s)
Pr(z|bt, at)

, (2.6)

where Pr(z|b, a) is a normalizing constant de�ned as

Pr(z|b, a) =
∑
s′∈S

Ω(s′, a, z)
∑
s∈S

T (s, a, s′)b(s)

=
∑
s′∈S

Pr(z|s′, a)
∑
s∈S

Pr(s′|s, a)b(s),

and

Pr(z, s′|s, a) = Ω(s′, a, z)T (s, a, s′)

= Pr(z|s′, a)Pr(s′|a, s).
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In reinforcement setting learning depicted in Figure 2.1, agent now receives observation from
the environment as percepts. In this setting inaccurate sensor information, i.e., noise in sensor
data can also be introduced. However, in order to derive an internal belief representation
agent should know the transition and observation functions of underlying POMDP, or the
belief state should be provided from the environment itself.

Remember that for an MDP problem where the state space is discrete, the goal is to maximize
expected accumulated reward for each discrete state, which can be de�ned by a value function.
In POMDP case, our aim is the same, but the state space is now continuous, which means
that we have to maximize the expected reward for in�nitely many belief states. The value
function in this case can be formulated as

V (b) = maxa∈A

[
R(b, a) + γ

∑
b′∈B

T (b, a, b′)V (b′)

]
(2.7)

= maxa∈A

[∑
s∈S

R(s, a)b(s) + γ
∑
z∈Z+

∑
s∈S

Pr(z|s, a)b(s)V (τ(b, z, a))

]
, (2.8)

where Z+ is the set of all observation that can be observable when a particular action a ∈ A
is taken.

There are nice properties of the above value function. In order to show these properties we
need to rewrite the value function de�nition 2.7 in value function mapping form where a value
function mapping induce an action selection strategy.

2.4 Value Function Mappings

A policy is a decision rule, δ, that maps a set of information into actions in A and a strategy

is a sequence of policies {δ1, δ2, δ3, ...} such that δt is the policy that determines which action
to choose in stage t of the process. If a policy requires only the current information at stage
t, that is δ : I → A then δ is a Markov policy and if each policy in a strategy is Markov, then
the strategy becomes a Markov strategy. Furthermore, if each policy in a strategy is the same,
i.e., the decision rule does not change from one stage to another, then we say the strategy is
stationary.

Let V(I) be the space of real-valued bounded functions V : I → R de�ned on the belief
information space I, and the common supremum metric ρ de�ned by ρ(V,U) = sup{|V (b)−
U(b)| : ∀b ∈ I}. V(I) is a complete space with its common metric ρ. (Note that the space of
piecewise linear convex functions is a subspace of V(I).)

Now let h : I ×A×V(I)→ R be a real valued function, D be the set of Markov policies, and
de�ne two value function mappings by

HδV (b) = h(b, δ(b), V ), b ∈ I, δ ∈ D, V ∈ V(I), (2.9)

which induces the Markov policy δ, and

HV (b) = sup{h(b, a, V ) : a ∈ A}, b ∈ I, V ∈ V(I), (2.10)

which induces the maximal policy, such that HV = sup{HδV : ∀δ ∈ D}. If we de�ne the real
valued function h as

h(b, a, V ) =
∑
s∈S

R(s, a)b(s) + γ
∑
z∈Z+

∑
s∈S

Pr(z|s, a)b(s)V (τ(b, z, a)), (2.11)
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then both Hδ and H value function mappings are isotone and contraction mappings.

De�nition 2. A mapping H is isotone, if ∀V,U ∈ V such that V ≤ U implies HV ≤ HU .

De�nition 3. Let ρ be the supremum norm. The mapping H is a contraction under the

supremum norm, if ∀V,U ∈ V(I), ρ(HV − HU) ≤ γρ(V − U) holds for some 0 ≤ γ ≤ 1.

[8, 15]

Lemma 1. The value function mappings Hδ and H de�ned in 2.9 and 2.10 respectively are

both isotonic and contraction mapping. [8, 15]

Proof. See Appendix A.

With the de�nition of value function mappings we can easily compute the optimal value func-
tion or its approximations using dynamic programming techniques. The well known approach
is value iteration [2], de�ned as a sequence of value-iteration steps Vi = HVi−1 where Vi is the
ith approximation of the value function. The algorithm for the value iteration procedure given
in 2. We can show that the recursive de�nition of value iteration will converge to a unique
�xed point, i.e., an optimal value function V ∗, in the limit. This result is a direct consequence
of Banach's Fixed Point theorem. [8, 15]

Lemma 2. The sequence of (Vt) de�ned by Vt = HVt+1 converges to a unique �xed point V ∗

in the limit such that V ∗ = HV ∗.

Proof. See Appendix A.

The results above allows us to de�ne ε that is the maximum di�erence between two consecutive
value function in the iteration, so called Bellman error, such that ε = ρ(Vt+1 − Vt) [8, 15] and
to use in value iteration algorithm given in 2.

Theorem 1. Let ε = ρ(Vt+1−Vt) be the magnitude of the Bellman error. Then ρ(V ∗−Vt) ≤
γε

1−γ and ρ(V ∗ − Vt−1) ≤ ε
1−γ .

Proof. See Appendix A.

The above theorem allows us to determine how precisely the value iteration is approximated,
such that to obtain the approximation of V ∗ with precision δ the Bellman error should fall
below δ(1−γ)

γ .

Algorithm 2 Value Iteration

1: procedure Value Iteration(POMDP, ε)
2: initialize V,∀b ∈ I
3: repeat

4: V ′ ← V

5: update V ← HV ′,∀b ∈ I
6: until ρ(V − V ′) ≤ ε return V
7: end procedure

The major problem about the value iteration algorithm given in 2 is that the belief space
is in�nite and we need to compute Vt for all of it. So, Vt becomes incomputable in a �nite
number of steps.
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2.5 Lower Value Function Approximation

It is shown that the optimal value function V ∗ is piecewise linear and convex [23, 22], formally
it can be de�ned as follows:

V ∗(b) = maxα∈Γ∗

∑
s∈S

α(s)b(s),

where Γ∗ = {α1, α2, ..., αm} is �nite set of α-vector each represents an |S| dimensional hy-
perplane. An optimal value function for 2 state POMDP domain is illustrated in Figure
2.2. Note that for any belief point b, V ∗ attains its maximum with one of α′ ∈ Γ∗, i.e.,
α′ = maxα∈Γ∗

{∑
s∈S b(s)α(s)

}
, herein this context we call α′ is the gradient of b. Consid-

Γ* = {α₁, α₂, α₃, α₄, α₅, α₆}

V*(b) = max{α⋅b : α ϵ Γ*}

b0=(0,1) b1=(1,1)

Figure 2.2: An optimal value function for 2 state POMDP domain.

ering this fact, they show that this �nite representation of optimal value function can also be
applied to any �nite horizon problem, such that for any �nite t, the optimal value function V ∗t
is piecewise linear and convex, i.e., V ∗t (b) = maxα∈Γt

∑
s∈S α(s)b(s) for some �nite set Γt of

vectors. Using this representation of V ∗t in the dynamic programming recursion V ∗t+1 = HV ∗t ,
they show that this mapping can be represented as

V ∗t+1(b) = HV ∗t (b) (2.12)

= maxa∈A

{
b∑

s∈S
(s)

[
R(s, a) +

∑
z∈Z+

∑
s′∈S

Pr(s′, z|s, a)αtι(b,a,z)(s
′)

]}
,

where ι(b, a, z) indexes a linear vector αt ∈ Γt for �xed b, a, z that maximizes:

∑
s′∈S

[∑
s∈S

Pr(s′, z|s, a)b(s)

]
αt(s′).

The linear vector that maximizes V ∗t+1 at b then is:

αt+1
b = R(s, a) +

∑
z∈Z+

∑
s′∈S

Pr(s′, z|s, a)αtι(b,a,z)(s
′),

and we have Γt+1 = ∪{αt+1
b : b ∈ I} to represent V ∗t+1. It is shown that for any t the number

of Γt is �nite and can be computed by a �nite algorithm[23, 22]. However, the number of linear
vectors computed for each iteration grows exponentially and the problem becomes intractable.
In [13], it is proved that all useful linear vectors of V ∗t can be solved e�ciently if RP = NP .
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So far we showed that the optimal value function can be represented by a �nite set of vectors
Γ∗ in a �nite horizon, and even if it is intractable to solve we showed that for any t, Γt can
be computed exactly by a �nite algorithm. However, we can de�ne an approximation to the
optimal value function for any t with a �nite number of points in b ∈ I. To illustrate this
idea, consider the optimal value function example given in Figure 2.2 and further assume that
it is optimal for a �nite horizon. There are exactly 6 alpha vectors to represent optimal value
function at horizon t, and there are exactly 8 extreme belief points. Now assume that, we
want to approximate this optimal value function with a �nite set of belief of points b ∈ I, with
equi-sized intervals. In this case we will have an approximation of the optimal value function
at horizon t which gives us a lower bound. The idea is illustrated in Figure 2.3. As can be
seen easily, there are exactly 5 belief points and we have an alpha vector for each belief points.
Unfortunately, in this representation we lose one of the alpha vector, α2, which we have in the
optimal case.

ΓL
t= {α₁, α₃, α₄, α₅, α₆}

VL
t(b) = max{α⋅b : α ϵ ΓL

t}

b0=(0,1) b1=(1,1)

Figure 2.3: A lower bound approximation to optimal value function for 2 state POMDP

domain.

Before de�ning the lower value function approximation formally, let us give Sondik's algorithm
to �nd the next gradient vector in dynamic programming recursion. Let Γt be the set of all
gradient vectors at horizon t, and we would like to �nd the gradient vector αt+1

b at b. Note

Algorithm 3 Sondik Algorithm

1: procedure Next Gradient(POMDP,Γt, b ∈ I)
2: for all a ∈ A, and z ∈ Z+ do

3: αti,a,z ← maxαt
i∈Γt

∑
s∈S τ(b, a, z)(s)αti(s)

4: end for

5: for all a ∈ A, and s ∈ S do

6: αti,a(s)← R(s, a) + γ
∑
z∈Z+

∑
s′∈S Pr(z, s

′|s, a)αti,a,z(s
′)

7: end for

8: αt+1
b ← arg maxαt

i,a

∑
s∈S b(s)α

t
i,a(s) return αt+1

b

9: end procedure

that any Vt ∈ V(I) that is piecewise linear and convex can be represented by a set of gradient
vectors Γt, and Algorithm 3 can produce a new piecewise linear and convex function, which is
Vt+1 and represented by Γt+1 whose elements are the gradient vectors obtained from Algorithm
3 with a �nite number of belief points b ∈ I.

Now we can formally de�ne the lower value function approximation and make analysis in
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the �nite horizon case. For any Vt ∈ V(I) that is piecewise linear and convex, i.e., repre-
sentable by a set of gradient vectors Γt, and b ∈ I, let αt+1

b be the gradient vector at b for
Vt+1 that is Vt+1(b) = HVt(b) =

∑
s∈S α

t+1
b (s)b(s). Note that αt+1

b ∈ Γt+1. Let assume
that we have a �nite set belief point G, which will latter be grid points of �xed and adap-
tive grids,and further assume that we have ΓLt+1 = ∪{αt+1

b : b ∈ G} be the set of gradient
vectors at next iteration calculated with the belief points in G. If we de�ned the value func-
tion mapping HL : V(I) → V(I) by HLVt(b) = max

{∑
s∈S α(s)b(s) : α ∈ ΓLt+1

}
and since

HVt(b) = max
{∑

s∈S α(s)b(s) : α ∈ Γt+1

}
we have the following lemma.

Lemma 3. For any Vt ∈ V(I) that is piecewise linear and convex, HLVt ≤ HVt on I. [15]

Proof. See Appendix A.

Now recursively de�ne the lower value function approximation as

V Lt+1 = HLV Lt , (2.13)

where V L0 = 0 then we have the following lemma in any �nite horizon t.

Lemma 4. For all t, V Lt ≤ V ∗t on I.[15]

Proof. See Appendix A.

We now have lower value function approximation, V Lt , for any �nite horizon t that is always
less than or equal to optimal value function, V ∗t . More importantly V Lt is generated with a
�nite number of belief points G ⊂ I. Note that the number of gradient vectors in ΓLt is not
necessarily to be same as the number of points G. Some of the belief points may attain their
maximum at the very same gradient, but it cannot exceed |G|.

2.6 Upper Value Function Approximation

We already de�ned a lower value approximation that underestimates the optimal value func-
tion. Yet, we can also de�ne an upper value function approximation that overestimates the
optimal value function. Again, we consider a �nite number of belief points in belief space I
to approximate optimal value function. We use these points to calculate exact value of the
optimal value function, but we use linear interpolation to approximate optimal value function
any belief point other than these belief points. It is straightforward to interpolate the upper
value function approximation as in Figure 2.4; all we need is to �nd the interval that any belief
point b belongs to, then we can use the interval boundaries to approximate the upper value
function. However, since state space size increases, we need a proper way of partitioning of
belief space I. A solution proposed by Lovejoy is Freudenthal Triangulation of Rn [15].

The generalization of the notion of a triangle in arbitrary dimensions is called simplex, and
we will use this term in this context to refer to a particular region in partitioning of I. A
simpli�ed triangulation example (for R2) is depicted in in Figure 2.5. A triangulation of Rn

can be constructed with n-dimensional integer vectors as vertexes. Given any x ∈ Rn, the
vertexes of a particular simplex that contains x can be generated with Algorithm 4.
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VU
t(b) = Σi λi V

U
t(vi)

b0=(0,1) b1=(1,1)

Figure 2.4: An upper bound approximation to optimal value function for 2 state POMDP

domain.

Algorithm 4 Find Vertices of Simplex

1: procedure FindVerticesOfSimplex(x ∈ Rn)
2: Let v ∈ Zn be the base vector
3: for i = 0, 1, ..., n do

4: vi ← bxic
5: end for

6: d = x− v
7: Let p be the sort permutation vector of d in descending order,

so that dp0 ≥ dp1 ≥ dp2 ≥ ... ≥ dpn−1

8: Let ej be the jth unit vector
9: v0 ← v

10: for i = 1, ..., n− 1 do

11: vi+1 ← vi−1 + ep0

12: end for

13: return {v0, v1, ..., vn}
14: end procedure

Since any simplex of Rn of is a convex hull, we can write x ∈ Rn as a convex combination
of vertexes of the simplex that x resides in, such that x =

∑n
i=0 λiv

i, where ∀λi, 0 ≤ λi and∑n
i=0 λi = 1. One can �nd the barycentric coordinates of x with Algorithm 5, where d = x−v

and p is the sort permutation of d in descending order.

Figure 2.5: Freudenthal Triangulation of R2
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Algorithm 5 Find Barycentric Coordinates

1: procedure FindBarycentricCoordinates(d, p)
2: Let λ ∈ Rn be barycentric coordinate vector
3: for i = 1, 2, ..., n do

4: vi ← dpi−1
− di

5: end for

6: λ0 = 1−
∑n
i=1 λi

7: return λ

8: end procedure

Now let f be a piecewise linear convex function de�ned over Rn, then we have:

f(x) =

n∑
i=0

λif(vi),

We use this interpolation technique to de�ne our upper value function approximation. How-
ever, interpolation over I is not an easy task to do because I is not well de�ned for Freudenthal
Triangulation. This situation is depicted for I ⊂ R3 in Figure 2.6.

(0,0,1)

(.5,0,.5)
(0,.5,.5)

(0,1,0)
(.5,.5,0)

(1,0,0)

Figure 2.6: Triangulation of I ⊂ R3.

2.7 Isomorphic Grids and Belief Space

Note that, Freudenthal Triangulation is de�ned over the set integer vectors as vertexes. Love-
joy de�nes a transformation that maps I into a subset of Freudenthal Triangulation. Let M
be the a positive integer that represent the resolution of Freudenthal Triangulation that we
want to achieve. Consider the subset of vertexes in Freudenthal Triangulation of Rn such that:

G′ = q ∈ Zn+|M = q1 ≥ q2 ≥ ... ≥ qn = 0.

De�ne the n× n nonsingular matrix

B =

(
1

M

)


1 −1 0 0 ... 0

0 1 −1 0 ... 0

0 0 1 −1 ... 0

. . . . ... .

0 0 0 0 ... 1

 .
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Then for any q ∈ G′, Bq = (1/M)(M − q2, q2 − q3, ..., qn−1 − qn, dqn) ∈ I, where the mapping
B allows us to induce a triangulation of I with Freudenthal Triangulation of Rn. The inverse
of mapping B is just a scaling transformation that followed by conversion of probability dis-
tribution over states to its cumulative distribution. Considering Figure 2.6, the result of the
transformation is depicted in Figure 2.7 for M = 2. Now, let us assume we have a �nite set

(0, 0, 2)

(0, 2, 2)

(2, 2, 2)

(1, 2, 2)

(1, 1, 2)

(0, 1, 2)

Figure 2.7: Triangulation of I under transformation B for M = 2.

of vertexes of a grid G isomorphic to set of Freduenthal Triangulation vertexes of G′ ⊂ Rn,
and de�ne value function mapping HU : I → I as follows:

HU (V )(b) =

n∑
i=0

λiHV (Bvi),

where b =
∑n
i=0 λi(Bv

i). Note that, we are evaluating HV for belief points in G only,
we use piecewise linear approximation for the rest of I. If we de�ne V U0 = V ∗0 = 0 and
V Ut = HU (V Ut−1) then we have an upper value function approximation as the following lemma
asserts.

Lemma 5. For all t, V ∗t+1 ≤ min
(
V Ut+1, H(V Ut )

)
.[15]

Proof. See Appendix A.

Besides, since V Ut ≥ V ∗t , the monotonicity of H implies that HV Ut ≥ HV ∗t = V ∗t+1. So either,
V Ut+1 or HV Ut provides a tighter bound.

2.8 Action Selection Strategy / Extracting Control Strategy

The ultimate goal of value iteration at the end is to �nd an optimal strategy for any state of the
environment at any time. However, in the previous section we showed that �nding an optimal
value function even for a �nite horizon t is intractable. Instead of optimal value function,
we gave a lower value function approximation that is always lower than the optimal value
function for a �nite set of points. Assume that we computed the value function for a �nite
horizon t, which action should be the best for any given belief state? Hauskrecht[8] discusses
alternative strategies to extract control strategies, one of them is the lookahead design also
used by Lovejoy in [15] de�ned as follows.
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For a �nite horizon t, de�ne the the Markov policy as

δt+1(b) = arg max
a∈A

h(b, a, V Lt ) (2.14)

for any belief b ∈ I. With this policy de�nition one can construct the action selection strategy
such that ∆t+1 = {δt+1, δt, ..., δ1} and its value at any horizon V∆t(b) = h(b, a, V Lt ) for any
b ∈ I. Note that the value function mapping that induce this action selection strategy is
V∆t

= HδtV∆t−1
= HV Lt−1 and it also de�nes another approximation to optimal value function

that is better than the lower value function approximation which is showed in the following
lemma.

Lemma 6. For any t, V Lt+1 ≤ V∆t+1
≤ V ∗t+1 on I.[15]

Proof. See Appendix A.

2.9 Fixed Grid Approximations

Lovejoy uses Fixed Grids to partition the belief space I with Freudenthal Triangulation, to
obtain a �nite set of vertexes so that he can �nd both upper and lower function approximations
to bound optimal value function. The idea is to narrowing down the region that optimal value
function falls into, which is illustrated in Figure 2.8.

Conceptual Value
Approximations

b0=(0,1) b1=(1,1)

Figure 2.8: Upper and Lower Value Function Approximations against Optimal Value Function.

2.9.1 Finite Horizon

For a particular resolution M , one can enumerate all of the vertexes of grid G which is a
subset of Freudenthal triangulation of Rn, and then run both upper and lower value function
approximations up to any horizon t. The following proposition is an immediate result of the
analysis done so far.

Proposition 1. For all t,

V Lt = HLV Lt−1 ≤ HV Lt−1 = HδtV
L
t−1 ≤ HδtV∆t−1

= V∆t
≤ HδtV

∗
t−1 ≤ HV ∗t−1

= V ∗t ≤ min
(
V Ut+1, H(V Ut )

)
.[15]

17



If we use the lookahead design that we proposed at horizon t, then value loss with respect to
the optimal value function can be bounded as follows at any belief point b ∈ I:

0 ≤ V ∗t+1(b)− V∆t+1
(b) ≤ min

{
V Ut+1(b), HV Ut (b)

}
−HV Lt (b).[15] (2.15)

The bound given in 2.15 depends on the given belief point. We can de�ne an overall error
bound for the entire �xed grid approximation, uniform error bound Lovejoy called, as follows:

Corollary 1. For any t,

ρ(V ∗t , V∆t) ≤ min
{
ρ(V Ut , V

L
t ), γρ(V Ut−1, V

L
t−1)

}
.[15]

Proof. See Appendix A.

Corollary 1 allows us to de�ne a supremum over the uncountable belief space I. Fortunately,
the piecewise linear structure of V U and V L allows us to de�ne a uniform error bound for
ρ(V Ut , V

L
t ) just considering grid points in G.

Corollary 2. Let F denote the set of sub-simplexes in the triangulation of I, and v denote a

vertex of a simplex σinF . For any t,

ρ(V Ut , V
L
t ) ≤ max

σ∈F
min
α∈ΓL

t

max
v∈σ

(
V Ut (v)− αv

)
.[15]

Proof. See Appendix A.

Hence for any σ ∈ F

max
b∈σ

[
V Ut (b)− V Lt (b)

]
≤ min
α∈ΓL

t

max
v∈σ

(
V Ut (v)− αv

)
.[15]

The �nal statement can be obtained by taking maximum over all σ ∈ F .

Uniform error bounds for over all grid sounds promising, unfortunately it has complexity
O(|S|!|G|2). Note that in order to produce all set of sub-simplexes, F , we need to work
through each vertex in G and for each vertex we need to consider all possible permutations
of coordinate direction vector. Uniform error bound can be used for the problems where the
number of state is less than 10, otherwise it becomes intractable.

2.9.2 In�nite Horizon

The analyses made so far are applicable to �nite horizon case of value approximations. How-
ever, the ultimate goal is to approximate optimal value function and �nd an optimal policy
accordingly. In in�nite horizon case the problem turns out to be �nding an optimal value
function approximation at horizon T that is su�ciently close to optimal value function in
in�nite horizon case. We will show that for a large t, we can bound the value loss in in�nite
horizon case with the �nite one. Assume that Rmin and Rmax are the minimum and maximum
attainable rewards respectively, and let γ ∈ [0, 1) be discount factor.

18



Lemma 7. For all t,

γt

1− γ
Rmin ≤ V ∗ − V ∗t ≤

γt

1− γ
Rmax,

where V ∗ is the optimal value function in in�nite horizon, V ∗t is the optimal value function at

horizon t. [15]

Proof. See Appendix A.

We infer that we can use a speci�c, presumably large, �nite horizon t as an approximation to
the in�nite horizon problem.

2.10 Adaptive Grid Approximations

It is obvious that the quality of �xed grid approximations depends on the resolution of the
grid. A �ner grid means a better approximation, since we sample belief space with more
points. Problem is that the size of grid grows exponentially with any increase in resolution.
To solve this problem, Zhou and Hansen proposed a variable grid resolution approach where
the resolution of grid varies in di�erent regions of belief space [28] as depicted in Figure 2.9.
The expectation is to obtain higher quality approximation with less computational cost.

To allow the resolution of the grid to vary, they adopt the rule that the resolutionM is always
a positive integer power of 2. With this rule, they ensure that vertexes of high-resolution sub-
simplexes are also vertexes of low-resolution sub-simplexes, and still useful when resolution is
increased.

Figure 2.9: Variable Resolution Grid approach.

The algorithm they proposed is slightly di�erent than Fixed Grid approximations, since the
resolution of the grid is di�erent in regions of belief space, and requires detailed analysis. We
see that in Fixed Grid approximation, for any belief state b we need to �nd the simplex that
b resides in to interpolate upper value function approximation.

In variable resolution grid, on the other hand, they need to search this simplex in di�erent
resolutions. Since, we adopted rule that M must be positive power of 2, for any b ∈ I we
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can �nd the smallest complete sub-simplex, whose vertexes are in variable grid, with recursive
search starting from minimum resolution. Once we identi�ed the smallest complete sub-
simplex, we can apply the upper value interpolation as described in Fixed Grid approximations.

Re�ning the grid, i.e., adjusting the resolution of grid in a part of belief simplex, depends on
the error made at an iteration. Remember that we can �nd an error bound that is made in
any t, at any b by Equation 2.15. Once we have identi�ed the vertex/vertexes with the largest
error, we can add new vertexes by increasing the resolution to reduce this error. Since the
value function approximations at any grid vertex depends on its successors belief states, we
can reduce the error at grid vertex by re�ning the grid at the successor belief state. Assume
that for a successor belief b we identi�ed the smallest complete sub-simplex at resolution
M = m, we can re�ne value function approximation at this belief state by adding the vertexes
of smallest sub-simplex at resolution 2m that b resides in.

2.11 Heuristic Approximations

In previous sections, we summarized the optimal or near optimal (with ε-precision) solution
approaches. It is obvious that, in general, POMDPs cannot be solved optimally or near
optimally in practice [4], furthermore they cannot be approximated e�ciently. For these
reasons, researchers focused on various heuristic approximation that does not require any error
parameter. In this section, heuristic approximations techniques providing e�cient POMDP
solutions are summarized.

2.11.1 Truncated Exact Value Iteration

Cassandra et al. introduced Witness Algorithm [4] to �nd an exact solution to discounted
�nite-horizon POMDP problems using value iteration. The idea behind truncated value it-
eration method is to run Witness Algorithm up to k steps to �nd an arbitrarily accurate
approximation to optimal in�nite horizon policy. Because, it is often the case that a near-
optimal policy is reached long before the value iteration is converged to optimal point in
in�nite horizon case.

2.11.2 QMDP Value Method

If we ignore the observation model in POMDP, we already have an MDP model for which we
have dozens of e�cient solutions. An ingenuous approach to solve a POMDP problem is to
make use of its underlying MDP by ignoring observation model temporarily. Once QMDP (s, a)

table is constructed, one can make use of this information to approximate Q value of an action
a, for a given belief space with:

Qa(b) =
∑
s∈S

QMDP (s, a),

which we can utilize to determine valuable action during agent execution, and we can produce
e�cient policies [4].

20



2.11.3 Replicated Q-Learning

Attempts to solve POMDP problems in a reinforcement learning setting and to learn transition
and observation probabilities explored in [5] and [17]. Replicated Q-learning is an extension
of well-know reinforcement learning method, Q-learning [27].

The idea is to use a single vector qa for action a to approximate the Q function for each action
for any belief state such that

Qa(b) =
∑
s∈S

qa(s)b(s),

Whenever an agent makes a transition, qa estimations updated for every s ∈ S with

q′a(s) = αb(s)[r + γmax
a′

Qa′(b
′)− qa(s)],

where α is learning rate, b a belief state, a action taken, r is the reward gained with this
transition, and b′ is the resulting belief state. Note that, if b(s) = 1 for every s ∈ S, the update
rule given below is reduced the original Q-learning update rule. However, this extension is
not su�cient in case of high degree of uncertainty, because optimal value function cannot be
expressed with qa vector over the entire belief space in most cases.

2.11.4 Linear Q-Learning

Linear Q-learning is very similar to replicated Q-learning, but in contrast to replicated Q-
learning it also considers each qa vectors that estimates the Q values so the update rule
becomes

q′a(s) = αb(s)[r + γmax
a′

Qa′(b
′)−

∑
s∈S

qa(s)b(s)],

Similar to replicated Q-learning, if the belief state is deterministic then update rule is reduced
to the original Q-learning update rule [4].
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CHAPTER 3

A HEURISTIC TEMPORAL DIFFERENCE

APPROACH WITH GRID DISCRETIZATION

There are many reinforcement learning algorithms that can deal with MDP problems [10].
However the reason that we cannot employ these approaches to POMDP case is due to the
continuous belief space; we have to deal with probability distribution over states. The major
drawback is that belief space is continuous and there are in�nitely many believes that need
consideration in a reinforcement learning. Discretization of belief space however, may lead
us to make use of traditional reinforcement learning approaches. In this chapter, we pro-
pose a method to apply classical temporal di�erence learning to POMDP problems with grid
discretization.

The key point to solve POMDP problem is to reduce its space complexity. As we have
shown so far, there are many attempts to reduce this complexity. Initially, the true state
of the environment is ignored and focused directly on the observations. The main problem
of such an approach is perceptual aliasing, that the agent becomes unable to distinguish at
least two di�erent true states of the environment. With belief space extension, the problem
evolves from a discrete state space to a continuous probability space. But it leads us to make
use of PWLC property of the optimal value function and allows us to de�ne approximated
solutions. Value iteration approaches show that the number of vectors representing the value
function, grows exponentially during the iteration and leaves problem intractable. Lovejoy
[15] and Pineau [19] attacked to belief space to reduce its complexity, while Lovejoy used
a regular sampling over belief with a limited number of vectors to represent value function
approximation, Pineau used an irregular sampling over the reachable belief space with an
unlimited number of vectors to represent value function approximation that is required to be
pruned during iterations. Unfortunately, these approaches are not applicable to be adapted
in a reinforcement learning settings. Because both requires that entire sample set belongs to
belief space should be processed, updated, and expanded if required iteratively.

On the other hand, there are reinforcement learning approaches such as Linear-Q and Replicated-
Q based on the belief extension of POMDPs. They both try to make use of piecewise linear
property of optimal value function, with a limited number of linear vectors to represent value
function approximation over the entire belief space. The main problem of this approach is
that the belief space is completely ignored, such that critical regions of belief space that leads
to optimal policy may easily be ignored.

In our novel approach, we try to reduce belief space complexity by partitioning belief space
into regular and well-de�ned regions as an abstraction over the entire belief space. We �rst
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use a �xed grid partitioning method as introduced by Lovejoy[15], and we also use an adaptive
partitioning as introduced by Zhou and Hansen [28]. With the help of this partitioning we
also de�ne a value function approximation to introduce an abstraction into value function
representation. To put all of them into reinforcement learning setting, we adopt temporal
di�erence(TD) methods to estimate value function de�ned over belief space partitioning. This
approach allows us to explore reachable belief space, update value function approximation
locally, i.e., in particular region of belief space, and identify critical regions that lead to optimal
solution. While the agent updates value function approximation locally, these updates spread
out to the neighbor regions due to partitioning of belief space through the edges between
regions. We empirically show that our value function approximation convergences and we
conclude that our method induces policies no worse than other heuristic approaches.

3.1 A Heuristic TD Approximation with Fixed Grid Discretization

Remember that the classical temporal di�erence method TD(0) given in Section 2.2 tries to
estimate the value function of a given MDP with following online update rule:

V (st) = V (st) + α[rt+1 + γV (st+1)− V (st)],

where st and st+1 are the states of agent at time t and t + 1 respectively, and rt+1 is the
reward gained at time t+ 1.

If we try to employ classical TD(0) method in POMDP case with the following value function
de�nition,

V (bt) = V (bt) + α[rt+1 + γV (bt+1)− V (bt)],

then V becomes a continuous function over belief space and our agent should have an experi-
ence table with in�nitely many numbers of entries.

In order to solve this problem, we consider to partition entire belief space into regular regions
using Freudenthal triangulation. Consider the belief space discretization for 3 state POMDP
given in 2.6, where resolution M = 2; we have 6 distinct grid vertexes that yield 4 regular
regions on belief space. Let's assume that our agent already has value approximations for each
grid vertex, then for any given belief b we can �nd which region b belongs to and we can use
a linear interpolation to �nd the value of being at belief, b.

Formally, let's assume that the entire belief space I is partitioned into regular simplexes with
Freudenthal triangulation, and let IG be the set of all belief points that belongs to our grid. For
every belief point b that corresponds to a grid vertex, we use the value function approximation
stored in our grid, and for the rest we use linear interpolation using barycentric coordinates of
the smallest simplex that contains b which can be obtained by Algorithm 5 given in Chapter
2, i.e.,

V (b) =

{
V G(b), if b ∈ IG∑
vi∈SG λiV

G(vi), if b /∈ IG,
(3.1)

where IG is the set of all grid vertexes, λi is the barycentric coordinate that corresponds to
vertex vi of the smallest simplex that contains b.

Furthermore, let bt is the internal belief of our agent at time t. One can �nd the smallest
simplex that contains bt, using Algorithm 4 in Chapter 2. In this case we can de�ne the
following update rule over smallest simplex that contains bt
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V G(vit) = V G(vit) + α[rt+1 + γV G(bt+1)− V G(vit)], (3.2)

where vit denotes one of the vertexes of smallest simplex that contains bt.

To complete this reinforcement setting, we also need to de�ne an action selection strategy as
discussed in Section 2.8. For our method, we also use a similar lookahead design as Lovejoy
[15] and Hauskrecht [8], which is a greedy one-step lookahead. Assume that the agent belief
at time t is bt, then best action can be selected with the following lookahead design.

δt+1(bt) = arg max
a∈A

h(bt, a, V
G
t ), (3.3)

where h is de�ned as in Equation 2.11 in Chapter 2.

In summary, our agent keeps its internal belief and belief space partitioned into regular regions
in a particular resolution with a �xed grid discretization. In each vertex of this �xed grid,
a value function approximation is de�ned and stored. Whenever the agent needs to take an
action, it �rst evaluates all possible outcomes with one step lookahead; i.e., for each available
actions and observation pairs an expected internal belief be in next step is calculated and its
value induced by grid discretization, V G(be), is calculated. With 1− ε probability, an action
with maximum value is selected and executed, or a random action is selected and executed
with ε probability. Once an observation and a reward is acquired, agent updates its experience
induced by grid discretization. The formal steps of the method is given in Algorithm 6.

Algorithm 6 A Heuristic TD Approximation with Fixed Grid Discretization

1: procedure TD-FixedGrid(POMDP,M, ε)
2: initialize IG with M
3: initialize V G,∀v ∈ IG

4: initialize b0
5: repeat(for each step of episode)
6: Take action at = arg maxa∈A h(bt, a, V

G
t ) with 1 − ε probability, select a random

action otherwise
7: Observe bt+1, rt
8: Scale b to b′′ in max resolution M
9: SGt ← FindVerticesOfSimplex(b′′)
10: for ∀vit ∈ SGt do

11: update V G(vit)← V G(vit) + α[rt+1 + γV G(bt+1)− V G(vit)]

12: end for

13: until end of episode
14: end procedure

Note that even if we have value function induced by our grid discretization for the entire
belief space, in each step of agent execution only a portion of value function is updated,
which is a contradiction to lower and upper bound value approximations de�ned by Lovejoy.
These local updates extinguish the piecewise linear and convex properties of our value function
approximation, but allows us to de�ne an online approximated solution to POMDP problems.

Any �xed grid constructed with resolution M by Freudenthal triangulation consist of (M +

|S| − 1)/M !(|S| − 1)! vertexes at maximum, and they can be stored in hash map with in
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lexicographical order. Since, hashing strictly depends on both |S| and M , the size of hash
map is not a problem in small POMDP problems. In our test suits, we haven't had any
collision in our hash maps, but this issue should be addressed in large POMDP problems.

Another important issue in our algorithm is the action selection by lookahead design. For any
given belief b, a successor belief state can be calculated for a particular action and observation
pair in O(|S|2) time. In our lookahead design, we have to evaluate all possible successors for all
actions and observation, which means the worst case time complexity becomes O(|S|2|A||Z|).
However in most of POMDP problems, with respect to observation transition model, there
are a few observations available for a particular action which allows us to reduce this time
complexity. To evaluate any given successor b′, we have to calculate its approximate value.
In best case scenario, b′ may belong to one of the vertexes of �xed grid, and in this case it
requires O(|S|) time to �nd its value in our hash map. Otherwise, we have to search for the
smallest sub-simplex that contains b′, which requires O(|S|2) time.

3.2 A Heuristic TD Approximation with Adaptive Grid Discretization

Up to now, we have introduced our TD approximation approach via a �xed resolution grid
discretization. But the problem of �xed grid approach is choosing an appropriate resolution
for the problem. By appropriate, we mean that the value function approximation induced
by �xed grid discretization shall allow agent to explore belief space fairly, but also it shall
allow agent to exploit good policies. However, we can see that for very small resolutions, the
agent might be stuck in particular regions of belief space, and inevitably the balance between
exploration and exploitation is not achieved.

But the resolution of a �xed grid discretization is not the only parameter that a�ects the
balance between exploration and exploitation. The nature of POMDP problems itself makes
exploration harder. In most of the POMDP problems we are given an initial belief state, and
neither all the actions nor the observation is available for a given belief state. These limitations
result in a �nite number of branches from a common ancestor belief as depicted in 3.1.

(0,0,1)

(0,1,0)

(1,0,0)

Figure 3.1: Reachable space from an initial belief state.

While the reachability is a major drawback for exploration, it may also help us reduce the
problem size. If a region of the belief space is not utilized and not visited by the agent
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frequently, can we simply ignore this region to approximate optimal value function? Due to
PWLC structure of the optimal value function, we cannot ignore this region. But, we can
assume that any error made by an approximate value function is negligible in such a region.

In order to take advantage of reachable belief space, we extend our �xed grid value function
approximation with an adaptive grid discretization, where the resolution of grid adjusted
during belief transitions of the agent. The agent execution is started with a �xed grid resolution
M = 1, and a maximum resolution is provided as a power of 2.

For any internal belief of the agent, the smallest simplex is searched and then we increase the
resolution on this simplex by adding virtual grid vertexes (if the maximum resolution is not
reached yet) to de�ne the set of candidate sub-simplexes. The one that contains b is called the
smallest incomplete sub-simplex, and the search algorithm for smallest incomplete sub-simplex
is given in Algorithm 7. The idea is to use a more re�ned grid over reachable belief space to
make precise estimations, and use rough estimations over non-reachable belief space regions.
Besides, it also helps us to reduce memory requirements to store a grid approximation using
more grid vertexes over the reachable belief space and less over the non-reachable belief space.

Algorithm 7 Search For Smallest Incomplete Sub-Simplex

1: procedure SmallestIncompleteSubSimplexSearch(b,m,M, IG, searchHistory)
2: if m > M then . i.e., maximum resolution is reached out
3: return
4: end if

5: Scale b to b′ in max resolution, M
6: if b′ ∈ IG then

7: Append b′ as a degenerate simplex to searchHistory
8: return
9: end if

10: Scale b to b′′ the given relative resolution m
11: SGm ← FindVerticesOfSimplex(b′′)
12: Append Im to searchHistory
13: if SGm ⊂ IG then . A complete sub-simplex found.
14: SmallestIncompleteSubSimplexSearch(b, 2m,M, IG, searchHistory) .

Continue to search for an incomplete sub-simplex in higher resolution.
15: end if

16: return
17: end procedure

Note that searching for an incomplete sub-simplex is di�erent from regular simplex search
with a factor of O(logM), and at the end of this search we have a precious information of how
agent's internal belief follows a path in entire belief space in terms of sub-simplex partitions.
With this additional information, we decided to extend the update rule of TD learning to
include the values of all the vertexes emerged during this recursive search. Formally, let SGm
be the set of vertexes belonging to the sub-simplex with resolutionM = 2m, and we apply our
update rule de�ned in Equation 3.2 to all the vertexes in

⋃
m S

G
m. This minor change allows

the agent to explore and exploit more and more belief points in one execution step compared
to the �xed resolution grid approach. It can be considered as a batch update to one branch
of reachable belief space. Moreover, any reinforcement obtained at one execution is di�used
over an entire reachable belief space region more coherently and fairly. The corresponding
algorithm is given in Algorithm 8.
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Algorithm 8 A Heuristic TD Approximation with Adaptive Grid Discretization

1: procedure TD-AdaptiveGrid(POMDP,M, ε)
2: initialize IG with m = 1

3: initialize V G,∀v ∈ IG

4: initialize b0
5: repeat(for each step of episode)
6: Take action at = arg maxa∈A h(bt, a, V

G
t ) with 1− ε probability

7: Observe bt+1, rt
8: initialize searchHistroy

9: SmallestIncompleteSubSimplexSearch(bt, 1,M, IG, searchHistory)
10: for ∀vit ∈ searchHistroy do
11: if vit /∈ IG then V G(vit)← V (vit)

12: end if

13: update V G(vit)← V G(vit) + α[rt+1 + γV G(bt+1)− V G(vit)]

14: end for

15: until end of episode
16: end procedure

3.3 Successor Cache

As we noted above, the most time consuming step of our approach is the action selection which
depends on the successor beliefs for each a ∈ A and z ∈ Z. In order to reduce its complexity,
we decided to use a successor cache using another �xed grid. As a rule of thumb we decided
to use a 2 times �ner grid, i.e., whose resolution is 2M . Once a successor request is received
on this cache for a belief b, we �rst transform b to isomorphic equivalent in 2M resolution to
�nd the nearest grid vertex v. If such a grid vertex v does not exist in the successor cache, we
generate all successors for each action a ∈ A and z ∈ Z, and store them as 〈v, a, z, b′〉 tuples
in our successor cache. If the grid vertex v is already in our cache, we can easily access any
successor b′ of b for a given action a and z. Note that generating such a cache for a given
b again requires O(|S|2|A||Z|) time, yet requires O(|S||A||Z|) time in worst case scenario if
already exists, and requires constant time in best case scenario. Successor cache concept is
depicted in Figure 3.2 for a 3 state POMDP case with 2 actions and 2 observations.

(a1,z1)

(a1,z2)

(a2,z2)

(a2,z1)

Figure 3.2: Sample successor cache for 3 state POMDP with 2 actions and 2 observations.
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CHAPTER 4

EXPERIMENTAL RESULTS

We need to compare our solution with similar heuristic approaches to evaluate its performance.
Littman et al. already compared performance of heuristic approximations given in previous
sections [13]. To be fair, we use the same small sized problems with the settings they applied.
Information about the test suit they applied is given in Table 4.1. Note that, "Noise" column
indicates whether there is noise in transitions (T ), observations (O), or both (T/O).

By respecting to the test con�guration given by Littman et al. we trained our agent for 21

episodes each of which includes 75, 000 steps. At the end of each episode the agent resets its
internal belief to the initial belief introduced by the problem itself. The learning rate was
decreased according to the following schedule:

• 0.1 for steps 0 to 20, 000,

• 0.01 from 20, 000 to 40, 000,

• 0.001 from 40, 000 to 60, 000,

• 0.0001 thereafter.

Initial values of vertexes in the grid were assigned to 0. The test runs are performed for 101

episodes each of which consists of 101 steps, without any learning updates. The performance is
evaluated as a mean per-step reward with 95% con�dence interval. Experiments are conducted
by TD-approximation using �xed grid resolution (TDFG) and TD-approximation using adap-
tive grid resolution (TDAG) approaches with di�erent resolutions. Performance comparison
with other heuristic approximations are given in Table 4.2.

Table 4.1. Suit for small POMDP problems

Name |S| |A| |Z| Noise

Shuttle 8 3 5 T/O

Cheese Maze 11 4 7 -

Part Painting 4 4 2 T/O

4x4 Grid 16 4 2 -

Tiger 2 3 2 O

4x3 Grid 11 4 6 T
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Table 4.2. Performance Comparison

Shuttle Cheese-maze Part painting 4x4-grid Tiger 4x3-grid

Trunc VI 1.805± 0.002 1.188± 0.002 0.179± 0.012 0.193± 0.003 0.930± 0.205 0.109± 0.005

Q-MDP 1.809± 0.012 0.185± 0.002 0.112± 0.016 0.192± 0.003 1.106± 0.196 0.112± 0.005

Repl-Q 1.355± 0.265 0.175± 0.017 0.003± 0.005 0.179± 0.013 1.068± 0.047 0.080± 0.014

Linear-Q 1.672± 0.121 0.186± 0.000 0.132± 0.030 0.141± 0.026 1.074± 0.046 0.095± 0.007

Optimal − 0.186± 0.002 0.170± 0.012 0.192± 0.002 1.041± 0.180 −
TDFG(M = 4) 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.192± 0.003 0.929± 0.203 −0.036± 0.002

TDAG(M = 4) 1.799± 0.013 0.185± 0.002 0.166± 0.009 0.193± 0.002 1.266± 0.180 0.106± 0.005

TDFG(M = 8) 0.000± 0.000 0.000± 0.000 0.168± 0.009 0.192± 0.003 0.938± 0.213 −0.034± 0.002

TDAG(M = 8) 1.795± 0.012 0.185± 0.002 0.162± 0.009 0.190± 0.002 1.030± 0.205 0.113± 0.005

TDFG(M = 16) 1.525± 0.023 0.184± 0.002 0.142± 0.009 − 1.174± 0.188 −0.033± 0.002

TDAG(M = 16) 1.794± 0.012 0.186± 0.002 0.161± 0.009 0.191± 0.003 0.760± 0.244 0.110± 0.005

The results show that our adaptive grid approximation is now worse than other heuristic
approximations. Even if �xed grid approximation converges to a particular policy in most of
the cases, obviously it is not the optimal one. It can be seen that in Shuttle and Cheese-maze
problems, �xed grid approximation fails when resolution is set to M = 4 and M = 8, but
successes in M = 16. This result shows the importance of higher resolutions, and indicates
that any reinforcement obtained by the agent cannot be distributed fairly over the belief space.
For the same reason, �xed grid approximation also failed in 4x3 grid problem, which has a
pitfall. In this problem, if the agent makes a wrong choice to determine the path to the goal,
it is punished by a negative reinforcement. We can say that, �xed grid approximation does
not allow the agent to make enough exploration.

To see the convergence speed of our approximation, we also gathered statistics for per step
rewards. Note that one can evaluate per step reward by dividing total rewards to number
of steps in an episode. However, we calculate per step reward whenever agent reach to a
goal state; we evaluate per step reward by dividing total rewards obtained to step size. With
this approach, we believe that the policy induced by our method can easily be depicted and
illustrated in per step reward graphics. This is the reason why we have oscillation patterns in
per step reward graphics. For each problem, both �xed grid and adaptive grid approximations
per step reward performances are depicted in the Figure 4.1 - Figure 4.6 for each problems
with di�erent resolutions.

Note that per step rewards performance metrics are gathered during training sessions. Even in
this case both approximations converged to a particular policy very fast. But in most of cases
of �xed grid approximation, this particular policy is a sub-optimal policy. For adaptive grid
approximations, the convergence speed is much faster than �xed grid approximations. Yet,
there is another advantage of adaptive grid approximation compared to �xed grid approxima-
tions, which is memory consumption. Fixed grid approximation requires all grid vertexes to be
generated initially, however in adaptive grid approximation only the boundaries are generated
and any required vertex during execution is generated. In Table 4.3, grid sizes in terms of
number of vertexes are listed for each problem. When we use the adaptive grid approxima-
tion we can observe that the number of vertexes to cover belief space is drastically reduced
compared to �xed grid approximation. This observation is the direct consequence of reachable
belief space from a particular initial belief.
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Figure 4.1: Per Step Reward Performance for Shuttle Problem.
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Figure 4.2: Per Step Reward Performance for Cheese-Maze Problem.
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Figure 4.3: Per Step Reward Performance for Part Painting Problem.
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Figure 4.4: Per Step Reward Performance for 4x4 Grid Problem.
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Figure 4.5: Per Step Reward Performance for Tiger Problem.
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Figure 4.6: Per Step Reward Performance for 4x3 Grid Problem.
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Table 4.3. Grid Sizes

Shuttle Cheese-maze Part-painting 4x4-grid Tiger 4x3-grid

TDFG(M = 4) 358 1,001 51 3,922 9 1,078

TDAG(M = 4) 67 78 29 383 5 155

TDFG(M = 8) 6,474 43,758 190 490,363 13 43,978

TDAG(M = 8) 89 78 44 565 9 317

TDFG(M = 16) 245,221 5,311,735 1,017 - 21 5,312,438

TDAG(M = 16) 103 78 63 618 9 797

As pointed in the previous section, another re�nement that we have made is successor cache.
The results for successor cache hits are given in Table 4.4. Each entry indicates the successful
successor cache hits over total requests made to this cache. Note that, this results are obtained
during training stages. The high percentage rates indicate that the internal belief state of
agent follows a very limited path in the entire belief space and it is a direct consequence
of the POMDP model. Note that the resolution of successor cache is always 2 times �ner
than the grid used in TD methods, and the changes of resolution in successor cache does not
a�ect the path the agent follows. Successful successor hit in Tiger problem is 0.00001 due to
high stochastic nature of the problem, i.e., a belief state is not likely to be revisited by the
agent during its execution. As stated in Section 3.3, generating a successor cache does not
increase the time complexity but requires much more memory. The results indicate that if
there is no memory restrictions in the agent design, it can be utilized keeping in mind that
the performance of successor cache entirely depends on the POMDP model itself.

Table 4.4. Successor Cache Hits

Shuttle Cheese-maze Part-painting 4x4-grid Tiger 4x3-grid

TDFG(M = 4) 69.1% 85.7% 37, 5% 33, 7% 0.00% 46, 8%

TDAG(M = 4) 63.6% 72.3% 37, 5% 32, 1% 0.00% 42, 7%

TDFG(M = 8) 70.1% 85.7% 37, 5% 34, 4% 0.00% 47, 0%

TDAG(M = 8) 63.9% 72.3% 37, 5% 32, 2% 0.00% 43, 5%

TDFG(M = 16) 69.3% 72.8% 37, 5% - 0.00% 46, 5%

TDAG(M = 16) 63.4% 72.4% 37, 5% 32, 2% 0.00% 43, 7%

In the previous section we stated that there are some portions of belief space that can be
reachable if the agent start from a particular belief space. To investigate this claim we also
gathered hit count metrics for all vertexes of grid that we used. Expectedly, we concluded
the same result. Even if we generate a lot of vertexes and partition entire belief space into
much more sub-simplexes, the agent's internal belief state is always in the neighborhood of
particular vertexes of our grids. In Figures 4.7 - 4.12 the number of vertexes against hit counts
depicted to show these results. Note that, there are very few vertexes for which the agent's
internal belief is always in the neighborhood.

Considering time and space complexity, experiments shows that adaptive grid approach is
always better than �xed grid approaches. Additionally, our adaptive grid approach seems also
promising in large POMDP problems. In contradiction to other heuristic approaches, we do
not introduce any constraint in the approximation of value function as in Replicated-Q and
Linear-Q learning. They both have a limited number of vectors (a vector for each action) to
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approximate optimal value function. Besides, we introduce 2 distinct abstractions, one is in
belief space and the other in value function approximation. We strongly believe that belief
space abstraction can be utilized for sub-goal identi�cation, and it can be extended to identify
macro actions which eventually yield better policies. Our method is also convenient for a
multi-agent solution by sharing the grid structure among the agents as a common knowledge
that can be utilized in large POMDP models.
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Figure 4.7: Hit Counts for Shuttle Problem.
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Figure 4.8: Hit Counts for Cheese Maze Problem.
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Figure 4.9: Hit Counts for Part Painting Problem.
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Figure 4.10: Hit Counts for 4x4 Grid Problem.
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Figure 4.11: Hit Counts for Tiger Problem.
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Figure 4.12: Hit Counts for 4x3 Grid Problem.
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CHAPTER 5

CONCLUSION & FUTURE WORK

In this thesis, we present a new heuristic reinforcement learning method to solve POMDP
problems with classical temporal di�erence approach. We also used two distinct abstraction,
the �rst one is Freudenthal triangulation of belief space, and the second one is the value
function approximation with TD(0) updates de�ned over belief space abstraction. Lovejoy
[15] was the �rst to utilize grid solutions for belief spaces years ago, and we showed that his
work can still be improved and extended with new approaches to deal with POMDP problems
in reinforcement learning perspective. We strongly believe that, grid discretization is just one
step to introduce new ways of abstraction in POMDPs which will help us to reduce their
complexity drastically.

Existing realizations of �xed grid approach cannot deal with large POMDPs, due to space
complexity. But we believe that adaptive grid approach can be easily extended to deal with
large POMDP problems, and it becomes much more scalable by introducing new compact
data structures into implementations. This issue is noted and planned as a future work. With
this new implementation we would like to work on sub-goal identi�cation and macro-action
extraction over an adaptive grid. We also would like to extend our adaptive grid approach to
multi-agent case.

Note that our methods consists of consecutive policy execution (action selection) and policy

construction (backup) steps as suggested by Ross et al. [20]. Currently, action selection is
much more expensive than backup operations, which might become a problem with time
critical problems, i.e., if the agent is supposed to act in prede�ned time interval. We try
to solve this problem with a successor cache as discussed in Section 3.3. However, as the
results indicate, the performance of successor cache directly depends on the POMDP model.
We believe that this problem can be resolved by extending our approximation with Q-values
instead of V values as a future work.

Our results indicate that our approximations converge to particular policies for each problem
very fast, and we showed that these policies are competitive with the policies generated by
the other heuristic methods. While comparing the performance of our methods with other
approximate heuristic solutions, we initialized our grid values to 0. Our intention is to make
a fair comparison, and respect to test suit introduced by Littman et al [12]. However, a more
legitimate way is to initialize these values with respect to the underlying MDP value especially
in the adaptive grid approximation since it's started with boundary belief states which can be
reduced to original states and can be calculated e�ciently. On the other hand, we would like
to investigate exploration and exploitation trade-o� by di�erent con�guration parameters to
compare its performance with other heuristic approximations.
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APPENDIX A

PROOFS OF STATEMENTS

Proof of Lemma 1. We will show that Hδ is isotone and contraction, so H case is trivial. To
show that Hδ is isotone we have to show that ∀V,U ∈ V(I) such that V ≤ U should imply
HδV ≤ HδU .

HδV (b) = h(b, δ(b), V )

=
∑
s∈S

R(s, δ(b))b(s) + γ
∑
z∈Z+

∑
s∈S

Pr(z|s, δ(b))b(s)V (b′) (b′ = τ(b, z, a))

≤
∑
s∈S

R(s, δ(b))b(s) + γ
∑
z∈Z+

∑
s∈S

Pr(z|s, δ(b))b(s)U(b′) (V (b′) ≤ U(b′)∀b′ ∈ I given)

≤ h(b, δ(b), U)

≤ HδU(b)

On the other hand, for any b ∈ I

ρ(HδV −HδU) = sup{γ
∑
z∈Z+

∑
s∈S

Pr(z|s, δ(b))b(s)[V (b′)− U(b′)]} (b′ = τ(b, z, a))

≤ γ sup{|V (b′)− U(b′)| : ∀b′ ∈ I}
∑
z∈Z+

∑
s∈S

Pr(z|s, δ(b))b(s)

(
∑
z∈Z+

∑
s∈S Pr(z|s, δ(b))b(s) ≤ 1)

≤ γρ(V,U)

Proof of Lemma 2. Let us assume that we start the value iteration sequence with a �xed value
function V0. We need to show that (Vt) is a Cauchy sequence. If t ≥ r ≥ 1, then we have

ρ(Vt, Vr) = ρ(HtV0, H
rV0)

≤ γrρ(Ht−rV0, V0) (H is contraction mapping.)

≤ γr
[
ρ(Ht−rV0, H

t−r−1V0) + ρ(Ht−r−1V0, H
t−r−2V0) + ...+ ρ(HV0, V0)

]
(Triangle inequality.)

≤ γr
[
t−r−1∑
k=0

γk

]
ρ(V1, V0)

≤ γr
[ ∞∑
k=0

γk

]
ρ(V1, V0) (Geometric series.)

≤
(

γr

1− γ

)
ρ(V1, V0)
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which implies that (Vt) is Cauchy. Since, V(I) is a complete space with ρ, (Vt) converges to
a limit V ∗ ∈ V(I). The fact that V ∗ is a �xed point follows from the continuity of H:

HV ∗ = H lim
t→∞

Vt = lim
t→∞

HVt = lim
t→∞

Vt+1 = V ∗

Finally we need to show that V ∗ is unique �xed point solution. If V ∗ and V # are two �xed
points, then

0 ≤ ρ(V ∗, V #) = ρ(HV ∗, HV #) ≤ γρ(V ∗, V #)

Since γ ≤ 1, then we have ρ(HV ∗, HV #) = 0, so V ∗ = V # and the �xed point is unique.

Proof of Theorem 1.

ρ(V ∗ − Vt+1) = ρ(HV ∗ −HVt)
≤ γρ(V ∗ − Vt)

≤ γ ρ(Vt − Vt−1)

1− γ
≤ γε

1− γ

Proof of Lemma3. From the de�nitions of Γt+1 and ΓLt+1 it is obvious that ΓLt+1 ⊆ Γt+1, which
indicates that HLVt ≤ HVt for all b ∈ I.

Proof of Lemma 4.

V Lt = HL(V Lt−1) (De�nition of V Lt , Equation 2.13)

≤ H(V Lt−1) (Lemma 3)

≤ H(V ∗t−1) (H is monotonic, and V Lt−1 ≤ V ∗t−1)

≤ V ∗t (De�nition of V ∗t , Equation 2.12)

Proof of Lemma 5. First, we show that for all t, V ∗t+1 ≤ V Ut+1. Assume inductively that this
inequality holds for t, then for any b ∈ I we have

V Ut+1(b) =

n∑
i=0

λiV
U
t+1(Bvi)

=
n∑
i=0

λiHV
U
t (Bvi)

≥
n∑
i=0

λiHV
∗
t (Bvi) (H is monotonic)

=

n∑
i=0

λiV
∗
t+1(Bvi)

≥ V ∗t+1

(
n∑
i=0

λi(Bv
i)

)
(Jensen's inequality)

= V ∗t+1(b)
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Proof of Lemma 6. Let V L0 = V∆0
= V ∗0 = 0 and inductively assume that V Lt ≤ V∆t

≤ V ∗t

V Lt+1 = HL(V Lt )

≤ H(V Lt ) (Lemma 3)

= H(V Lt )

≤ Hδt(V
L
∆t

) (Hδt is monotonic.)

= V∆t

The upper inequality is always true since ∆t is a feasible strategy and cannot exceed optimal
value.

Proof of Corollary 1. ∀b ∈ I,

V ∗t (b)− V∆t(b) ≤ V Ut (b)− V∆t(b)

≤ V Ut (b)− V Lt (b)

≤ ρ(V Ut , V
L
t ) (Proposition 1)

and

V ∗t (b)− V∆t(b) ≤ H(V Ut−1)(b)− V∆t(b)

≤ H(V Ut−1)(b)−H(V Lt−1)(b)

≤ γρ(V Ut−1, V
L
t−1) (Proposition 1)

hence at any belief point b, ρ(V ∗t , V∆t) ≤ min
{
ρ(V Ut , V

L
t ), γρ(V Ut−1, V

L
t−1)

}
.

Proof of Corollary 2. Let σ be a speci�c sub-simplex, on this simplex

max
b∈σ

[
V Ut (b)− V Lt (b)

]
= max

b∈σ

[
V Ut (b)− max

α∈ΓL
t

αb

]
≤ max

b∈σ

[
V Ut (b)− αb

]
∀α ∈ ΓLt

We know that V Ut is linear on this simplex by construction so the maximum must be attained
at a vertex of σ, i.e.

max
b∈σ

[
V Ut (b)− V Lt (b)

]
= max

v∈σ

[
V Ut (v)− αv

]

Proof of Lemma 7 . Let ∆t be the �nite horizon action selection strategy that we used in the
previous sections, and assume that we decided to use ∆t for the �rst t time periods and use
any arbitrary policy after time t, ∆′t, for in�nite horizon. The following is an immediate result
of value functions mappings being a Cauchy series.

γt

1− γ
Rmin ≤ V∆′t

− V∆t
≤ γt

1− γ
Rmax

which can be easily extended to if we have optimal �nite horizon strategy

γt

1− γ
Rmin ≤ V ∗ − V ∗t ≤

γt

1− γ
Rmax
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