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ABSTRACT

MULTIOBJECTIVE EVOLUTIONARY FEATURE SUBSET SELECTION
ALGORITHM FOR BINARY CLASSIFICATION

Deniz-Kızılöz, Firdevsi Ayça

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Ahmet Coşar

Co-Supervisor : Assist. Prof. Dr. Tansel Dökeroğlu

August 2016, 76 pages

This thesis investigates the performance of multiobjective feature subset selection

(FSS) algorithms combined with the state-of-the-art machine learning techniques for

binary classification problem. Recent studies try to improve the accuracy of classi-

fication by including all of the features in the dataset, neglecting to determine the

best performing subset of features. However, for some problems, the number of

features may reach thousands, which will cause too much computation power to be

consumed during the feature evaluation and classification phases, also possibly re-

ducing the accuracy of the results. Therefore, selecting the minimum number of

features while preserving the accuracy of the results at a high level becomes an im-

portant issue for achieving fast and accurate binary classification. The multiobjective

algorithms implemented in this thesis include two phases, selecting feature subsets

and applying supervised/unsupervised machine learning techniques to these selected

subsets. For the FSS part of the algorithms, first a brute-force approach is imple-

mented. Since exhaustively investigating all of the feature subsets is unfeasible when
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the number of features is larger than 20, secondly, a greedy algorithm implemented

to find good-enough feature subsets. Finally, in order to select the most appropriate

feature subsets intelligently, a genetic algorithm is proposed at the FSS part of the

algorithms. Crossover and mutation operators are used to improve a population of in-

dividuals (each representing a selected feature subset) and obtain (near-)optimal solu-

tions through generations. At the second phase of the algorithms, the performance of

the selected feature subsets is evaluated by using five different machine learning tech-

niques: Logistic Regression, Support Vector Machines, Extreme Learning Machine,

K-means, and Affinity Propagation. The best performing multiobjective evolutionary

algorithm is selected after comprehensive experiments and compared with the state-

of-the-art algorithms in literature; Particle Swarm Optimization, Greedy Search, Tabu

Search, and Scatter Search. 11 different datasets, mostly obtained from the well-

known machine learning data repository of University of California UCI Machine

Learning Repository, are used for the performance evaluation of the implemented

algorithms. Experimental results show that the classification accuracy increases sig-

nificantly with the most suitable subset of features and also execution time reduces

greatly after applying proposed algorithm on the datasets.

Keywords: Multiobjective Feature Selection, Evolutionary Algorithm, Binary Clas-

sification, Supervised/Unsupervised Machine Learning
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ÖZ

İKİLİ SINIFLANDIRMA İÇİN ÇOK AMAÇLI EVRİMSEL ÖZNİTELİK ALT
KÜMESİ SEÇİMİ ALGORİTMASI

Deniz-Kızılöz, Firdevsi Ayça

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Ahmet Coşar

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Tansel Dökeroğlu

Ağustos 2016 , 76 sayfa

Bu çalışmada, ikili sınıflandırmada öznitelik alt küme seçimi problemi üzerine en

yeni makine öğrenme algoritmalarıyla birlikte çok amaçlı algoritmaların performansı

araştırılmıştır. Yakın zamandaki çalışmalar, en uygun özniteliklerin bulunduğu veri

kümesinin ne olduğuna aldırmadan özniteliklerin tamamını kullanmakta ve ikili sı-

nıflandırma problemlerinde doğruluk oranını bu şekilde artırmaya çalışmaktadır. Fa-

kat bazı problemler için öznitelik sayısı binlere kadar ulaştığından karar verme sü-

recinde hesaplama için çok fazla güç harcanabilmekte ve sonucun doğruluğu azalır-

ken problemi sınıflandırmak zorlaşabilmektedir. Bu nedenle, doğru ikili sınıflandırma

sonuçlarına hızlı ulaşabilmek için sonuçların doğruluk oranlarını korurken öznitelik

sayısını azaltmak oldukça önemlidir. Bu çalışmada geliştirilen çok amaçlı algoritma-

lar iki aşamadan oluşmaktadır. Bu aşamalar öznitelik alt kümesini seçmek ve sınıf-

landırma işlemi için bu küme üzerinde makine öğrenme tekniklerini uygulamaktır.

Öznitelik kümelerini seçebilmek için geliştirilen ilk yöntem kaba kuvvet yaklaşımı
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olmuştur. Kaba kuvvet yaklaşımı bütün öznitelik kümelerini incelemeyi gerektirir.

Ancak 20’den fazla öznitelik bulunduğu durumlarda çözüme ulaşmak uygulanabi-

lir bir işlem olmadığından ikinci yöntem olarak bir açgözlü algoritma geliştirilmiş

ve yeterince iyi olan öznitelik alt kümeleri elde edilmeye çalışılmıştır. Son olarak,

öznitelik alt kümesi seçimi işlemini daha akıllıca yapabilmek için bu aşamada bir

evrimsel algoritma önerilmiştir. Çaprazlama ve mutasyon operatörleri seçilen birey-

lerden (öznitelik alt kümeleri) oluşan popülasyonu nesiller boyunca geliştirmekte ve

ideale yakın çözümler elde etmektedir. Geliştirilen algoritmaların ikinci bölümünde,

seçilen öznitelik kümelerinin performansı şu makine öğrenme algoritmaları ile hesap-

lanmıştır: Lojistik Regresyon, Destek Vektör Makineleri, Aşırı Öğrenme Makinesi,

K-ortalama ve Benzeşim Yayılımı. En iyi performans gösteren çok amaçlı evrimsel

algoritma seçilerek literatürdeki Parçacık Sürüsü Optimizasyonu, Aç Gözlü Arama,

Tabu Arama ve Dağılım Arama algoritmaları ile karşılaştırılmıştır. Birçoğu tanınmış

Kaliforniya Üniversitesi UCI Makine Öğrenme Deposu’ndan temin edilen 11 farklı

veri kümesi, geliştirilen algoritmaların performans değerlendirmelerini yapmak için

kullanılmıştır. Elde edilen sonuçlar göstermektedir ki, en uygun öznitelik alt kümesi

seçimi ile sınıflandırma doğruluk oranı önemli ölçüde artmakta ve önerilen algoritma

veri kümelerine uygulandığında çalışma zamanı oldukça azalmaktadır.

Anahtar Kelimeler: Çok Amaçlı Öznitelik Seçimi, Evrimsel Algoritma, İkili Sınıflan-

dırma, Gözetimli/Gözetimsiz Makine Öğrenmesi
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CHAPTER 1

INTRODUCTION

The process of making selection over many possible options is called decision-making.

People have to make decisions in their daily activities every day, such as deciding

whether or not carrying an umbrella on a cloudy day. In computer applications, algo-

rithmic decision-making techniques are used for this process. For example, special-

ized advertisements targeting individual customers may be created by extracting the

available customers’ profile information.

An effective decision-making relies on the quality of information [32]. In general,

previous experience/knowledge is used in making a decision. The amount of histori-

cal and statistical data increases massively as data collection technology and abilities

improve. The speed of data accumulation is beyond manual processing capacity. In

2012, the amount of data generated in one day was around 2.5 exabytes (2.5 mil-

lion terabytes), and this volume doubles in every 40 months [29]. As the amount

of available information increases, it becomes much harder to extract meaningful in-

formation in terms of computational power and requires some advanced techniques

like data preprocessing, data mining and/or machine learning. As a result, the use of

historical data in the decision-making activities may be negatively affected due to the

inability to properly filter and process this information.

Data mining, also known as knowledge discovery, identifies the existing patterns in

the data which might help predict future behaviors. It is widely used in commercial

business intelligence to provide insight and likely trends/expectations to decision-

making experts. In addition to data mining techniques, machine learning techniques

are also widely used in modern decision making processes. While data mining manip-
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ulates data by filtering, formatting, etc., machine learning techniques help to build a

smart model using past data and experience [1]. Machine learning techniques provide

tools that can analyze large amounts of data in a limited time.

Given a set of items with their corresponding classes as (training) input; classifica-

tion is a type of learning which can be done in a supervised or unsupervised way.

It aims to identify which class a new item would fit into with respect to the similar-

ity of its attributes (features) with the instances of the existing/known classes. For

decision-making tasks, classification based on available information is a significant

tool. For example, predicting, diagnosing or recognizing patterns are the frequently

faced decision-making tasks. If a classification problem has two mutually exclusive

classes, then this problem is called binary classification. When constructing a classi-

fier, some of the available input class instances are used as the training set, so that the

classifier can learn the patterns in the dataset which helps decide the class it belongs.

Every item in the training set has its own set of attributes and these attributes are in-

vestigated to help determine how and which of them affect the determination of the

item’s class [9].

Researchers agree that data mining tools perform more effectively when data prepro-

cessing is applied on the dataset before using it for mining [26]. One of the most

commonly used data preprocessing techniques is feature selection. There are many

cases that some of the attributes of a dataset can be irrelevant or redundant in making

a certain decision [4]. These kinds of features do not affect or add anything to the

objective concept and they have no contribution to the representation of the problem

domain [21]. For example, the eye color of a person has no effect on his/her gender

type. In real-world problems, irrelevant features are generally not known apriori and

finding the optimal set of features is intractable [25]. Feature selection is the process

of reducing the number of features by identifying these unnecessary features while

keeping an optimization criterion fulfilled which minimizes any loss of information.

Feature selection affects the result in two important ways [13]. First, machine learn-

ing algorithms run faster since the amount of data decreases. And second, accuracy

results improve since the noisy data is removed.

As database sizes get bigger, the need for machine learning techniques increases.
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Consequently, feature selection becomes indispensable to extract meaningful infor-

mation from these huge databases. Feature selection algorithms are widely applied

in various real-world problems such as text categorization [48], recommendation sys-

tems [38], gene analysis on microarray data [44], big data mining [16], and customer

relationship management [31]. For example, a text categorization domain may con-

tain a vocabulary with a size of hundreds of thousands. It is almost impossible to run

a learning algorithm on that domain before selecting the most valuable features.

The reason for a multiobjective formulation is because there are two objectives of the

feature selection problem. These objectives are minimizing the number of features

and maximizing the accuracy. Therefore there might be more than one solution which

serve to both objectives and cannot dominate each other. For example, a solution hav-

ing an accuracy value of 0.85 by selecting 5 features and another solution having an

accuracy value of 0.75 by selecting 3 features cannot overwhelm each other. Because

one of them (former) provides a better solution for one objective (higher accuracy)

and the other one (latter) for the other objective (lower number of features). Figure

1.1 shows sample solutions of a hypothetical problem set. The ideal point is (1, 1)

which has the value for maximum accuracy and minimum number of features. It is

clear that solutions closest to the ideal point are more desirable. The solutions that
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are not dominated by any other solution constitute a set of solutions and they fit to a

pareto curve. In real world problems, however, the solutions may not form a curve,

yet they will lie on a curve like shape.

The motivation of this thesis is providing a detailed analysis on three different feature

selection strategies; namely, exhaustive, greedy and genetic. Furthermore, classifica-

tion accuracies of these strategies are evaluated using five different machine learning

algorithms: three supervised (Logistic Regression, Support Vector Machines, Ex-

treme Learning Machine), and two unsupervised (K-means, Affinity Propagation).

The most distinctive point of this study is giving the results of the mentioned tech-

niques in a multiobjective way which is not discussed extensively in literature.

Experimental results of this thesis show that feature selection reduces the computa-

tional time and increases the classification accuracy noticeably. Exhaustive algorithm,

one of the feature selection algorithms, searches over all possible combinations which

makes it unfeasible to run in real-world examples. Greedy algorithm, on the other

hand, gives better results than exhaustive one by decreasing the computational time

tremendously. The last feature selection algorithm, genetic algorithm, has the best

time and accuracy results on average. In Section 5.4.2, it is shown that how a ran-

domly picked feature subset can be improved and approximated to the ideal point in

terms of accuracy and feature size by employing evolutionary approach.

The rest of this thesis is organized as follows. In Chapter 2, related studies about the

feature subset selection for the binary classification problem are given. In Chapter 3,

feature subset selection problem is defined in detail and feature selection algorithms

used in this study are explained. Applied machine learning techniques are introduced

in Chapter 4. The setup of the experimental environment, obtained results, and per-

formance comparison of the proposed algorithm and the state-of-the-art algorithms in

literature are presented in Chapter 5. Concluding remarks along with possible future

works are provided in the last chapter, Chapter 6. Finally, in Appendix A, two sample

datasets used in this study are given with their attributes to visualize preprocessing

and also to show how the classification result is affected after unnecessary features

are detected.
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CHAPTER 2

BACKGROUND

In this chapter, information about the history of feature subset selection (FSS), mul-

tiobjective studies about FSS, and the state-of-the-art methods for solving FSS for

binary classification problem are given.

Dash et al. [9] conduct a survey on feature selection methods. The survey first gives

a definition of feature selection by discussing previous definitions by many other au-

thors. Afterwards, the procedure of a typical feature selection is explained with four

steps: generation, evaluation, criteria to stop, and verification part. Consequently,

different combinations of feature selection methods are revealed by splitting the gen-

eration procedures and the evaluation functions into categories. Some representative

methods are analyzed to see the positive and negative parts of the methods. It is stated

that the guideline given in the paper can be useful when choosing a particular method

for the problem.

Narendra et al. [30] implement branch and bound algorithm to select the best fea-

ture subset. They report that, evaluating only 6000 subsets would yield the best 12

feature set among 24, where it would require thousands of evaluations in case of an

exhaustive search. A strong drawback of the study is the need of a monotonic cri-

terion function, which means adding new features to a subset does not decrease the

value. The monotonic condition generally remains unsatisfied.

Kohavi et al. [25] investigate the performance of wrappers for FSS. After giving

a comprehensive definition of the problem, they share their proposed methods and

test results. They implement two greedy algorithms for feature selection part of the
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study, Hill-Climbing and Best-First Search, and two classifiers for the testing part of

the study, Decision Tree and Naive-Bayes. They use benchmark datasets to compare

their results against same classifiers without the FSS process in means of accuracy and

CPU times. They also compare the results against Relief, a filter based FSS approach.

According to test results, both algorithms improve their results on the average. Yang

et al. [47] propose the use of genetic algorithm for finding a suitable subset and a

neural network algorithm, DistAI, for the classification process. They run tests on

benchmark datasets and show that genetic algorithm combined with DistAI improves

the results obtained from DistAI using all features (without subset selection). Finally,

they compare their results against results from different studies, showing that their

proposal generally achieves better. Inza et al. [20] give a state-of-the-art description

of FSS problem and present Feature Subset Selection by Estimation of Bayesian Net-

work Algorithm. Since it is derived from Estimation of Distribution Algorithm, it is an

evolutionary and randomized search algorithm which can be useful when knowledge

about domain is limited. In experiments, Naive-Bayes and ID3 learning algorithms

are used as classifiers. They compare both classifiers with and without FSS in terms

of CPU time and accuracy. Results show that FSS process does not change accuracy

significantly but decreases the CPU execution times dramatically.

An efficient filter based feature selection algorithm is introduced in [49] to effec-

tively handle high dimensional data. Fast Correlation-Based Filter identifies relevant

features without pairwise analysis. They compare it with three well-known feature

selection algorithms; ReliefF, ConsSF, and CorrSF. It is presented that the proposed

algorithm runs faster than the other algorithms, and it increases the accuracy values

for most of the datasets. Cervante et al. [6] combine Particle Swarm Optimization

(PSO) with two information measures, namely Mutual Information and Entropy. Us-

ing each measure, they evaluate relevance and redundancy of the selected subsets,

which are then used in fitness evaluation. They use Decision Trees for classification.

Analysis on benchmark datasets show that minimizing mutual information usually

selects a smaller feature subset whereas maximizing group entropy achieves higher

accuracy. Similarly for feature selection problem, Unler et al. [42] propose basically

a PSO algorithm but with some modification. Features are chosen according to two

characteristics: their independent likelihood and their predictive contribution to the

6



feature subset already selected. It is stated that the algorithm developed for binary

classification problems and Logistic Regression model is used as classifier. Exper-

iments show that performance of this adaptive feature selection algorithm is better

than Tabu and Scatter Search algorithms.

Lopez et al. [28] propose a Parallel Scatter Search method for the feature selection

problem. They use greedy approach to generate new feature subsets as solutions. It

is presented that this parallelized algorithm performs better than Sequential Scatter

Search. Pacheco et al. [33] propose a Tabu Search method for the problem of feature

selection for Logistic Regression models. This new method is compared with the

classic ones. The results supported by statistical tests show that the new method

obtains better set of solutions than the others. However, it requires more computation

time.

Khan et al. [23] present a multiobjective evolutionary algorithm for the feature selec-

tion problem. They use NSGA-II, one of the latest multiobjective genetic algorithm, in

their study. They apply the algorithm on 4 datasets obtained from UCI database. The

experiment results show that NSGA-II is a promising algorithm for the FSS problem.

Unlike this thesis study, they use ID3 as classifier and maximize both first class and

second class accuracy values in their objectives. Sikdar et al. [39] propose a Multiob-

jective Differential Evolution (MODE) for feature selection and classifier altogether.

Their objectives are set as minimizing the number of features, and maximizing the f-

measure value. They use three biomedical datasets: GENIA, GENETAG and AIMed.

F-measure values for these datasets are evaluated as 76.75%, 94.15% and 91.91%,

respectively, achieving a similar score with the top score of other studies for GENIA

and achieving higher than the top score for GENETAG. A recent study by Xue et al.

[46] introduce multiobjective approach into PSO for the feature selection problem.

In their study, they describe two PSO based algorithms and compare them against

two existing single objective PSO algorithms. They also compare their proposal al-

gorithms against three existing multiobjective evolutionary algorithms. According to

the results, one of the proposed algorithms performs better than single objective meth-

ods and achieves comparable results against multiobjective algorithms; whereas, their

other proposal performs better than all mentioned algorithms, including their first one.
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Vafaie et al. [43] conduct a comparison between two feature selection methods, one

of them is based on greedy search, and the other one is a genetic algorithm. They use

classification performance as the evaluation function. Using real-world problems,

they present that greedy search is more efficient on small datasets, while genetic al-

gorithm results are more reliable without sacrificing too much computational effort.

Talbi et al. [41] compare two population based metaheuristics; genetic algorithm and

a new version of PSO which they name as Geometric PSO (GPSO). SVM is used as

classifier for both algorithms. First they prove that the GPSO achieves competitive

results in feature selection. Afterwards they compare GPSO and genetic algorithm

by running the algorithms on some popular high dimensional cancer datasets. Ex-

periment results show that genetic algorithm is generally better at selecting features.

However, GPSO performs better in terms of average accuracy of classification. A

study by Yusta [50] proposes three metaheuristic strategies for the feature selection

problem. These strategies involve GRASP, Memetic Algorithm and Tabu Search. Af-

ter finding a suitable subset, K-nearest Neighbour algorithm is used for classification.

The author compares the proposed methods using 6 benchmark datasets against three

existing methods namely Genetic Algorithms, Sequential Forward Floating Selection

and Sequential Backward Floating Selection. Comparison shows that GRASP and

Tabu Search outperform every other method; whereas Memetic Algorithm shows bet-

ter results than the remaining without significant difference.

Sarafrazi et al. [37] combine Gravitational Search Algorithm (GSA) with SVM for

the classification of binary problems. They utilize GSA for two purposes: finding an

optimal feature subset and optimizing SVM model parameters. SVM, on the other

hand, is used for classifying the data using the selected subset. They report results

obtained from 8 benchmark datasets and compare their proposed algorithm against re-

sults from other studies. The authors state that their proposal achieves similar results

compared to other studies, if not better. Huang et al. [18] propose a genetic algorithm

based strategy to optimize the process of feature selection and setting SVM parame-

ters. This new approach is tested on 11 known real-world datasets and compared with

the Grid Algorithm which is mostly used for parameter searching. The results show

that this approach significantly affects the classification accuracy in a positive way.

Kazemian et al. [22] compare both supervised and unsupervised types of machine
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learning models for detecting malicious websites. They download all these websites

with a web crawler and convert them into feature vectors. Finally, they apply dif-

ferent machine learning methods for classification purpose and compare the results.

They state that, Radial Basis Function Support Vector Machine classifier reaches 97%

accuracy, outperforming other supervised methods such as K-nearest Neighbour, Lin-

ear Support Vector Machines and Naive-Bayes. For unsupervised methods, all tested

methods could separate malicious websites from safe websites perfectly with a sil-

houette coefficient of 0.963, 0.877 and 0.877 for Affinity Propagation, K-means and

Mini Batch K-means, respectively.

Finally, a very recent survey by Xue et al. [45] gives a comprehensive analysis on

the FSS problem. They investigate different evolutionary methods in literature by

discussing how and which evaluation techniques are applied and their number of ob-

jectives. The study presents challenges and contributions of various FSS algorithms.

Moreover, the authors state that feature selection improves classification performance

by reducing the dimension of the data.

There is a wide range of studies about FSS for binary classification problem. Nev-

ertheless, there is no certain results and it is still an open problem. Although there

are promising experimental studies about this problem, an extensive analysis on com-

bining different feature selection algorithms with different classification algorithms

does not exist in literature. The aim of this thesis is filling this gap by giving an

extensive analysis on three feature selection algorithms evaluated by five classifica-

tion algorithms. Moreover, the most distinctive point of this study is presenting the

experiment results and comparing them in a multiobjective way.
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CHAPTER 3

FEATURE SUBSET SELECTION

In this chapter, feature subset selection (FSS) is described in detail, a formal defini-

tion of FSS is given, and finally, feature selection algorithms used in this study are

introduced.

FSS is a process of selecting a subset of features from the original feature set. FSS

process prevents the complicated calculations by shrinking the dataset which provides

the classifiers run much faster. In literature, there are conceptually different defini-

tions for FSS [9]. While preserving the structure of the original dataset, some of them

care much about minimizing the size of subset whereas some other aim to improve

prediction accuracy.

The most simple and comprehensive definition can be as follows. Feature subset

selection is a process which aims to remove irrelevant or redundant features and cre-

ate an effective subset that represents the dataset most informatively with minimum

number of features. Therefore, there are two important criteria for FSS:

1. finding minimally sized feature subset that preserves the original structure,

2. not decreasing the classification accuracy remarkably, increasing if possible.

FSS is known as an NP-hard problem, since extracting the optimal feature subset is

a challenging process and there is no exact way of solving it [27]. A typical FSS

consists of four steps: generating feature subsets, evaluating these subsets, deciding

on termination condition of the algorithm and validating the results. In the first step,

candidate features are selected by a search strategy and subsets are generated. In the
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second step, these subsets are evaluated and compared against each other in terms of

the quality of the subset. First two steps are repeated until the third step, termination

condition, is fulfilled. The final step is to validate the chosen subset by different tests

or prior knowledge whether it is equal or close to the optimal feature subset.

The methods proposed for the problem of FSS basically split into three categories in

literature: filter, wrapper and embedded [7]. In filter methods, the dataset is prepro-

cessed and the subset is chosen by the instrinsic properties of the data without con-

sidering a classifier. Filter methods suppress the least interesting features by some

quality metrics, such as a suitable ranking method like Information Gain or Entropy.

Although they are effective in computation time, they may end up selecting more re-

dundant features when compared to other methods. In wrapper methods, searching

for the best feature subset is conducted by using a classifier. They generally obtain

better accuracy results than the filter methods. Embedded methods aim to reduce the

computation time spent in reclassifying different subsets by incorporating the selec-

tion process with the training process. The implemented algorithms in this study are

examples of wrapper methods.

3.1 Problem Definition

There are two main phases of this study; selecting subsets of features and evaluating

accuracy of these selected subsets. At the FSS phase of the algorithms, the subset of

features are selected from the set of all features in the original dataset. Section 3.2

gives the details of these selection methods, and used classification methods for the

evaluation part of the study are given in Chapter 4.

In this section, multiobjective FSS problem is formally defined. Multiobjective FSS

can be described as selecting the minimum number of features with maximum classi-

fication accuracy acquired by the chosen feature subset.

LetD be a dataset withR instances andK features, that isD = R×K. The objective

of the FSS part is to obtain a subset, k, from the original dataset, where k ⊆ K,

which optimizes both objectives. The multiobjective model used for optimizing both

objectives is given below:
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min(f1)

max(f2)

subject to

f1 = |k|

f2 = accuracy(k) where k ⊆ K

(3.1)

There are two important decisions in this problem. First one is the number of features

in the subset k. Generally, the optimal number of features is unknown in advance and

incrementally searching over the sets of features is the common approach for this part

of the problem. Even if the size of k is given, it is still a very intractable problem to

extract the optimal subset. Second one is to choose a function to evaluate the quality

of the selected subset of features. Most commonly used functions to compare the

classification results are F1-measure and Accuracy. In the beginning of this study,

F1-measure was chosen since it conveys a balance between precision (exactness) and

recall (completeness). However, these metrics only measure the true positive ratios

whereas true negatives are equally important in this study. Therefore, classification

results, given in Chapter 5, are compared by using Accuracy which is defined as given

below:

Accuracy =
true pos.+ true neg.

true pos.+ false pos.+ false neg.+ true neg.
(3.2)

As seen in the formula, Accuracy is calculated by correctly classified instances di-

vided by all instances. This function is utilized in the supervised classification part

(see Section 4.1) of the experiments since the class label of the data is needed to

calculate Accuracy.

In the unsupervised learning part (see Section 4.2) of the experiments, Purity, a basic

metric to evaluate how good is the clustering when compared with the class labels of

data, is utilized. To compute Purity, first, each cluster is assigned to a class by mea-

suring the most frequent label in that cluster and then the ratio of correctly assigned

instances in all clusters is calculated. Mathematical definition of purity is given be-

low:
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Purity =
1

|R|

m∑
i=1

max
j
|wj ∩ ci| (3.3)

wherem is the number of clusters which is 2 in this study, {c1, c2} is the set of clusters

and {w1, w2} is the set of classes.

In experimental results (see Chapter 5), the term accuracy is used to express the

performance of both supervised and unsupervised machine learning techniques.

3.2 Applied Algorithms

In this section, the details of implemented algorithms for the FSS part are described.

Exhaustive, greedy, and genetic approaches are the three FSS algorithms applied in

this study. Exhaustive approach is a brute force algorithm that is selected to compare

its results with those of the greedy and genetic approaches.

3.2.1 Exhaustive Approach

Exhaustive Approach (EA), evaluating every possible combination of the set of fea-

tures, can be used to find the optimal subsets of features. For every possible combina-

tion, the accuracy values are evaluated by testing the trained model. The implemented

exhaustive based algorithm for FSS process can be seen in Algorithm 1. Since eval-

uating all possible feature subsets is unfeasible, the algorithm includes a time limit.

The required time to evaluate the next feature subset is estimated and if the approxi-

mate total running time of the algorithm exceeds 3 hours, then the algorithm is termi-

nated.

As the number of features in a dataset increases, complexity of this approach grows

exponentially. Finding accuracy of every combination of a feature set in a dataset

requires
∑n

i=1

(
n
i

)
= 2n− 1 iterations, and hence, the complexity of the EA becomes

O(2n). For small datasets, a dataset having up to 10 features, it might be reasonable to

evaluate every possible combinations; however, this is impossible for large datasets.

As a result, EA gives certain results, yet it consumes too much time. Therefore, it is
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Algorithm 1: Algorithm of the exhaustive based approach.
Input: dataset = FSS to be applied on.

Output: S = set of examined solutions.

Function ExhaustiveApproach (dataset)

test← 0 ; // estimated time to complete

S ← {};
n← # of features in dataset;

i← 0;

while test ≤ 10, 000 and i < n do // 10, 000 sec ≈ 3 hrs

i++;

Q← n choose i;

tinitial ← timestamp;

while Q is not empty do

u← Dequeue(Q);

u.accuracy ← FindAccuracy(u,method);

// method = LR, SVM, ELM, K-means, AP

S ← S ∪ u;

tfinal ← timestamp;

test ← test +
tfinal−tinitial

(ni)
×
(
n
i+1

)
;

return S;

not feasible in many real world applications. For small number of subsets, however,

it can be used to compare its exact results with those of the heuristic approaches.

3.2.2 Greedy Approach

A greedy algorithm is a process that searches for a solution which is easy-to-find.

Greedy Approach (GR) makes decision by looking at the most promising solution at

any moment and the key point of the algorithm is to never reconsider the decisions

made. The implemented greedy based algorithm for FSS process can be seen in

Algorithm 2.
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Algorithm 2: Algorithm of the greedy based approach.
Input: dataset = FSS to be applied on.

Output: S = set of best solutions at each iteration.

Function GreedyApproach (dataset)

S ← {};
n← # of features in dataset;

Initialize SF with n features and set all values to false;

while SF has false features do

Q← FindNewSubsets(SF );

iterationMax← NULL;

while Q is not empty do

u← Dequeue(Q);

u.accuracy ← FindAccuracy(u,method);

// method = LR, SVM, ELM, K-means, AP

if u.accuracy > iterationMax.accuracy then

iterationMax← u;

SF ← iterationMax;

S ← S ∪ SF ;

return S;

Function FindNewSubsets (SF)

Q← {};
foreach feature in SF do

if SF [feature] = false then

u← SF ;

u[feature]← true;

Enqueue(Q, u);

return Q;

As seen in Figure 3.1, having a dataset with four features, first the dataset is trained

and tested for each feature separately and accuracies are calculated. Let fi be the

feature having the best accuracy result. Then the binary combinations of all fea-
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Figure 3.1: Algorithm steps of the greedy based approach.

tures including the feature fi are trained and tested to calculate their accuracy values.

Again, the best accuracy result is chosen and the related subset is selected to continue

with. This procedure is performed iteratively until there are no features left to add to

the subset of features.

The complexity of the GR is O(n2) since the evaluation of the feature sets explained

in previous paragraph requires n×(n+1)
2

iterations. In previous section, the complexity

of EA was presented as O(2n). It is clear that the exhaustive based algorithm grows

faster and requires more time to conclude than the greedy based algorithm.

GR may end up finding a local best solution rather than the global one, since it does

not check all possible solutions as EA does. However, GR decreases the computa-

tional time drastically when compared with EA. Moreover, finding a good enough

solution rather than trying to find the global best solution may be sufficient in real life

problems.

3.2.3 Genetic Approach

A greedy algorithm may find a local best solution but it may fail finding the global so-

lution. Therefore, an intelligent metaheuristic should be applied for better solutions.
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Figure 3.2: Chromosome structure.

Genetic Approach (GA) is a heuristic search method which is inspired by natural

selection. Possible solutions of the problem are called chromosomes. A sample chro-

mosome, which represents a combination of features, a subset, is given in Figure 3.2.

A feature is included in the subset if its value in the chromosome is 1, whereas the

value 0 shows unselected features. In this figure, the dataset has 8 features in total

and the features 1, 2, 4 and 7 are the selected ones which will be evaluated.

Given or randomly chosen a set of chromosomes to populate upon are called the

initial population. In single objective genetic algorithms, to determine how well a

chromosome is, every chromosome’s fitness value is evaluated. This value can be

calculated using different types of fitness functions [2] such as statistical distribu-

tions, machine learning classifiers etc. Instead of using fitness function, objectives

are set separately in this study, since there are two objectives. New generations are

iteratively populated by pairing strong chromosomes with each other. The process of

merging subsolutions of two pairs to generate a new chromosome is called crossover,

see Figure 3.3. In order to prevent getting stuck at a local optima, mutation may be

used in genetic algorithms. Mutation can be defined as randomly changing a part of

a chromosome, a sample of which can be seen in Figure 3.4.

More specifically, in this study, the Non-dominated Sorting Genetic Algorithm II

(NSGA-II) [10] algorithm has been employed. NSGA-II is a popular algorithm used

for solving multiobjective optimization problems. This algorithm is already imple-

mented in MOEA Framework 1, which is then utilized for solving the FSS for the

1 MOEA Framework: a Free and Open Source Java Framework for Multiobjective Optimization, version 2.9,
available at http://www.moeaframework.org/.
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Figure 3.3: Half uniform crossover operation.

binary classification problem. Default parameters were used for the NSGA-II algo-

rithm, as they were defined in the MOEA Framework; only population size and the

number of generations were chosen manually (see Table 5.5). The selection of values

of population size and the number of generations are described in Section 5.4.1 in

detail.

The implemented genetic based algorithm for FSS process can be seen in Algo-

rithm 3. A brief description of the algorithm is given as follows: First, the initial

population is generated in a totally random fashion. For every chromosome in the

initial population, the two objectives are calculated: the number of the selected fea-

tures, and the accuracy value. Every unique chromosome with their objective values

1 1 1 1 

1 1 1 

1 

1 0 0 0 0 

0 0 0 

Figure 3.4: Bit flip mutation operation.
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Algorithm 3: Algorithm of the genetic based approach.
Input: pop = population size, gen = number of generations.

Output: Non-dominated solutions for FSS problem.

Function GeneticApproach (pop, gen)

P ← randomly generate initial population with the size of pop;

S ← {} ; // set of already examined individuals

for i← 1 to gen do

foreach u in P do

if u does not exist in S then

u.objective1 ← # of selected features;

u.objective2 ← FindAccuracy(u,method);

// method = {LR, SVM, ELM, K-means, AP.}

S ← S ∪ {u};

else

u.objective← S[u].objective;

P ← NSGA-II(P ) ; // generate new population [10]

return FindNonDominatedSolutions(P );

Function NSGA-II (P)

size← |P |;
P ← NonDominatedSort(P );

for i← 1 to size/2 do

p1 ← BinaryTournament(P [rand(0, size)], P [rand(0, size)]);

p2 ← BinaryTournament(P [rand(0, size)], P [rand(0, size)]);

c1, c2 ← HalfUniformCrossover(p1, p2);

// p1, p2 = Parent 1 - 2, c1, c2 = Child 1 - 2

c1 ← BitF lipMutation(c1);

c2 ← BitF lipMutation(c2);

P ∪ {c1} ∪ {c2};

// size of P is doubled

P ← NonDominatedSort(P );

return P [0 ... size-1];
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are recorded within a set in order not to evaluate objective values of the same chro-

mosomes repeatedly. Finally the NSGA-II algorithm starts optimization with respect

to both objectives.

According to NSGA-II algorithm; an individual, p , dominates another individual, q,

only if at least one of p’s objectives are better than of q’s, while keeping all other

objectives at least same. This may also be referred as q is dominated by p. If both p

and q have at least one objective that is better than their opponent’s, then p and q are

non-dominated to each other.

Since this is a multiobjective optimization, all objectives need to be considered when

individuals are compared. Selection of the stronger individual process depends on

two metrics, namely fronts and crowding distance values. Non-dominated sort al-

gorithm splits all individuals into their respective fronts according to their accuracy

and selected feature size values. All individuals that are non-dominated by any other

individuals are grouped in the first front. All individuals that are dominated by the

first front group members, but non-dominated among each other are grouped into the

second front, and so on. After all fronts are determined, the crowding distance val-

ues of the chromosomes are assigned. Crowding distance is an intra-front algorithm,

and it measures the Euclidian distance between individuals according to their ob-

jective values. Once both metrics are calculated, comparing two individuals becomes

straightforward. An individual assigned into a smaller front, i.e. first front, is stronger

than of all individuals having bigger fronts. On the other hand, if two individuals are

assigned into the same front, then individuals having larger crowding distance value

are considered as stronger than of those having smaller crowding distance values.

Given a population, P , the NSGA-II algorithm applies a non-dominated sort over P

and calculates crowding distance values. The algorithm generates new chromosomes

by using the individuals in P . Generation starts with binary tournament selection.

Two individuals are randomly chosen and the strongest individual becomes the first

parent. The second parent is decided in the same way. In order to generate two chil-

dren, half uniform crossover is applied on these parent individuals. Bit flip mutation

may also be applied to the children individuals with some probability. The size of the

population doubles at the end of the generation process. Finally, with a utilization of
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the non-dominated sort and crowding distance values, weak individuals are discarded

and only half of the individuals in the population remains as the new population.

Let pop be the population size and gen be the number of generations. The complexity

of the GA is O(pop× gen).

3.3 Complexity Analysis

In previous section, the complexity of the greedy based approach is calculated as

O(n2) and presented as a faster algorithm than the exhaustive based approach. As

explained in detail in Section 5.4.1, population size is chosen as 40 and the number of

generations is chosen as 60 for GA in the experimental part of this study. According to

the complexity of GA, 2400 operations is needed in theory. Up to 11 features, which

yields 211 = 2048 operations, it can be inferred that EA seems more reasonable to be

used than GA. With a similar calculation, up to 49 features, GR is less complex than

GA, see Figure 3.5. On the other hand, in GA, examined set of features are stored in

a set and their objectives are not evaluated again. Moreover, the elitism property of

the NSGA-II algorithm suggests a great decrease in practice which provides leverage
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Figure 3.5: Complexity comparison of feature subset selection algorithms.
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to GA against both EA and GR regardless of the feature size.

Note that, only subset selection part is considered in the complexity analysis. Since

the classification complexity applies for all types of FSS algorithms, it is not given

here for the sake of brevity. Moreover, all classification methods have different im-

pacts on complexity. However, it should be mentioned that classification has a signif-

icant effect on complexity, since it operates as a multiplier in the complexity calcula-

tion.
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CHAPTER 4

BINARY CLASSIFICATION USING MACHINE LEARNING

As mentioned in Section 3.1, second part of the study is to evaluate the accuracy of

the selected subset of features. In this chapter, information about the machine learn-

ing techniques that are applied in this study is given. The datasets are trained with

three supervised learning algorithms; Logistic Regression (LR), Support Vector Ma-

chines (SVM) and Extreme Learning Machine (ELM), and two unsupervised learning

algorithms; K-means and Affinity Propagation (AP).

Datasets used in the experiments include either numerical data or categorical data

which are converted to numerical values in the preprocess phase of the study. There-

fore, the classifiers are chosen among those which are compatible to work with this

kind of data. LR is easy, fast, and it does not require parameter tuning. SVM is well

known as an effective classifier for binary classification of large datasets. ELM is a

trending supervised classifier since it shortens training time considerably when com-

pared to traditional neural networks. K-means is known as the most simple clustering

algorithm. AP is a relatively new unsupervised learning algorithm which performs

well in means of clustering accuracy.

4.1 Supervised Machine Learning Techniques

A supervised learning algorithm generates a model through a training process where

the label or result of the data is known a priori. This model is used for classifying

future instances in which the feature values are given as input, but the class label is

unknown.
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In this section, supervised machine learning techniques implemented in this study are

explained in detail.

4.1.1 Logistic Regression

LR is a method which estimates the probability of occurrence of an event with respect

to resemblance of its attributes to the training set. Distinctly from linear regression,

which predicts a continuous value, LR is especially good for binary classifications

since the used logarithm function reduces the value into the range between 0 and 1

[3]. Besides, experiments show that the performance of LR can result as good as some

other more complicated classifiers [24]. LR uses Sigmoid function, see in Equation

4.1, to find the probability of an event to occur. The event is then predicted as 1 if its

occurrence probability is greater than 0.5 and it is predicted as 0 otherwise.

P (y = 1 | X, θ) = 1

1 + e−θX
(4.1)

whereX is the matrix consisting feature sets to be examined, θ is a vector representing

coefficient values for all features, and y is the probability of occurrence of the event.

A Matlab function for LR classification, glmfit, is utilized to train and test the datasets

in the experimental part of the study.

4.1.2 Support Vector Machines

SVM performs classification by constructing a hyperplane to separate given data

points [8]. The closest data points to the separating hyperplane are called support

vectors. Figure 4.1 shows how a hyperplane is constructed between support vectors

in a 2D space. It is seen that the separating line defines a boundary between two

classes colored as green and red.

The optimal hyperplane is constructed in an iterative fashion by maximizing the mar-

gin between the hyperplane and the support vectors of the classes, due to the intuition

that the generalization error decreases as the margin increases [40]. However, when
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Figure 4.1: Separating two classes by constructing a hyperplane with Support Vector

Machines.

classes are not linearly separable, this method would not suffice to classify success-

fully. In such case, data points can be mapped into a higher dimensional space with

a transform function ϕ(~xi) , also known as the kernel function, expecting that the

classes would be more discrete in that space that is separable by a hyperplane [15].

An example of classifying a nonlinear dataset by using kernel transformation can be

seen in Figure 4.2.

A Matlab function for binary SVM classification, fitcsvm, is utilized to train and test

the datasets in the experimental part of the study.

φ 

Figure 4.2: Mapping data points to a higher dimension.
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4.1.3 Extreme Learning Machine

Neural networks are inspired by the brain, the biological nervous system. Similar to

brain, neural networks consist of several layers. ELM is a type of feedforward neural

network with a single hidden layer. This specific model consists of three layers called

input, hidden and output. Input layer represents the training data information that is

given to the network for the learning process. Inputs are weighted and transformed

by a function and passed to the other layer. The activity of hidden layer is determined

by the activities of the input units and the weights on the connections between the

input and hidden layer. The behaviour of the output layer depends on the activity of

the hidden layer and the weights between the hidden and output layer. An example of

a feedforward neural network can be seen in Figure 4.3.

x1 

xj 

.  . 

.  . 
.  . 

L 

.. 

1 

f(x) 

x2 

input 
layer 

hidden 
layer 

output 
layer 

a1 

ai 

a2 

w1 

wj 

wk 

Figure 4.3: Feedforward neural network with a single hidden layer.

The output of such neural network having L number of hidden nodes can be repre-

sented with the formula below:

f(x) =
L∑
i=0

wiG(ai, bi, x) (4.2)
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where wi is the weight between the i-th hidden node and the output layer. G(ai, bi, x)

is the output of the activation function between the hidden layer and the input layer.

Some commonly used activation functions are Sigmoid function, Gaussian function,

and Fourier function. Sigmoid function, the most popular one, can be seen in Equa-

tion 4.3.

G(a, b, x) =
1

1 + e−(ax+b)
(4.3)

where x is the input, a is the contribution weight of the input to the hidden layer and

b is the bias term.

Feedforward neural networks need to tune its parameters iteratively which increases

the learning time. Since ELM does not require parameter tuning, learning time of

the algorithm is much lower than the traditional feedforward network learning algo-

rithms.

Huang et al. [19] analyze ELM theories and applications in detail. It is pointed out

that ELM can overcome challenges which neural networks or SVMs cannot handle.

In this survey, it is also stated that ELM performs better when compared to traditional

computational intelligence techniques.

An ELM library which is available for download 1 is utilized in the experimental part

of the study.

4.2 Unsupervised Machine Learning Techniques

An unsupervised learning algorithm divides data points into similarity groups called

clusters. A cluster consists of a set of instances which are more similar to each other

in some way than the other ones in other clusters. Since there is no need for output

values in unsupervised learning, the class labels of the datasets used in this study

are neglected for the training part of these techniques. In this section, unsupervised

machine learning techniques implemented in this study are explained in detail.

1 Extreme Learning Machine, http://www.ntu.edu.sg/home/egbhuang/.
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4.2.1 K-means

K-means clustering is an iterative algorithm in which k clusters are partitioned by

selecting k centroids at each iteration and assigning data points to the closest cen-

troid’s cluster [14]. Initially k is defined by user and the algorithm selects k centroids

randomly. Afterwards data points are grouped according to their distance to each

centroid. Different methods for calculating distance exist, e.g. Euclidian distance

or Manhattan distance. Cluster centers are computed to find new centroids and then

the steps above are repeated until cluster members stay same. In K-means algorithm,

setting k is a hard decision to make. In general, different k values are tested and

silhouette coefficient [35] is used for deciding which k value gives the best clusters.

Since this study is on binary classification, k is set as 2 in the experiments.

In K-means clustering, initial data points are generally chosen randomly. However,

selection of initial data points may affect the results which can implicitly change the

accuracy of clustering [5]. The importance of initial data point selection can be seen

in Figure 4.4. Left side of the figure shows an example of inappropriate clustering of

the sample data points. On the other hand, a drastic change is observed in the result

when the algorithm selects some other initial data points, which can be seen at the

right side of the figure. Therefore, it is clear that selection of the initial data points

Figure 4.4: The significance of initial data points in K-means clustering.
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correlate with the clustering result. Since the datasets used in this study already have

a class field, this information is used in determination of initial data points. Average

data points for each classes are calculated and used as initial data points in K-means

clustering experiments to maximize the accuracy.

A Matlab function for K-means clustering, kmeans, is utilized in the experimental

part of the study.

4.2.2 Affinity Propagation

AP is a clustering algorithm based on iterative messaging between data points [12].

Initially, all data points are considered as cluster representatives by the algorithm, in

other words exemplars. Two types of messages, responsibility and availability, are

sent between data points until a convergence is fulfilled. Responsibility messages

are sent from the data points to their candidate exemplars. A responsibility message

contains information about how well the data point serves to that candidate exemplar.

Availability messages are sent from the candidate exemplars to the data points. An

availability message represents how appropriate the candidate exemplar is for that

data point.

Let s be a function which calculates the similarity between two data points. Using

this similarity result, the algorithm performs by passing messages and updating the

statuses of the data points. Let r(i, k) be the responsibility function and a(i, k) be the

availability function. Equations 4.4 and 4.5 shows how responsibility and availability

values of a data point are updated [11].

r(i, k) = s(i, k)−max
k′ 6=k
{a(i, k′

) + s(i, k
′
)} (4.4)

a(i, k) =


min{0, (r(k, k) +

∑
i′ /∈{i,k}

max{0, r(i′ , k)})}, for i 6= k

∑
i′ 6=k

max{0, r(i′ , k)}, otherwise
(4.5)
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AP does not require the number of clusters beforehand which is a major distinction

to K-means. Furthermore, AP does not randomly choose some data points as cluster

representatives initially which gives an advantage in such case that initial choices do

not conclude with a good solution.

An AP library which is available for download 2 is utilized in the experimental part

of the study.

2 Affinity Propagation, www.psi.toronto.edu/affinitypropagation.
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CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, first, the experimental environment is described and problem instances

are introduced. Then, the results of the experiments performed to evaluate the effec-

tiveness of the discussed methods in previous chapters are presented.

5.1 Experimental Environment and Problem Instances

Eleven datasets were used in the experimental part of the study. Ten of them were

obtained from University of California UCI Machine Learning Repository 1, a well-

known machine learning data repository. The eleventh dataset, Financial, can be

reached from Pacheco et al. [33]. The feature size of the original datasets range from

8 to 93 and the instance counts range from 351 to 581, 012.

Table 5.1: Specification of the datasets used in the experiments.

Problem
ID

Dataset Number
of features

Number
of instances

Actual number
of classes

CT Covertype 54 581, 012 7

MR Mushrooms 22 8124 2

SB Spambase 57 4601 2

NU Nursery 8 12, 960 5

C4 Connect-4 Opening 42 67, 557 3

WF Waveform 40 5000 3

FI Financial 93 17, 108 2

PM Pima Indians Diabetes 8 768 2

BC Breast Cancer 9 699 2

IO Ionosphere 34 351 2

WBC Wisconsin Breast Cancer 30 569 2

1 UCI Machine Learning Repository, http://archive.ics.uci.edu/ml
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Total number of features, instances and classes of the datasets are shown in Table 5.1.

The first column indicates the identifier (ID) of the dataset used in the forthcoming

tables. The second column is the name of the dataset. The third column is the total

number of features the dataset has. Total number of instances of the datasets are

given in the next column. Finally, the last column gives information about the actual

number of classes of the datasets.

Detailed description of the datasets presented in Table 5.1 is given below:

• Covertype (CT) dataset contains cartographic variables to predict forest cover

type. Elevation, slope and soil type are the sample attributes of this dataset.

There are both categorical and integer values in the dataset.

• Mushrooms (MR) dataset contains physical characteristics of different mush-

room species in the Agaricus and Lepiota families. Class labels provide infor-

mation about the mushroom being poisonous or edible. The dataset contains

categorical data.

• Spambase (SB) dataset includes information about frequencies of different words

and characters. Class labels denote whether the e-mail is spam or not. The

dataset contains integer and real numbers.

• Nursery (NU) dataset was developed to decide whether an applicant should be

recommended to a nursery school or not. The dataset provides information

about the applicant’s family structure in terms of social, health and financial

statuses. The dataset contains categorical data.

• Connect-4 (C4) dataset consists of the players’ position information of the

Connect-4 game. The game board has 6 × 7 = 42 positions which can ei-

ther be x (player x has taken), o (player o has taken) or b (blank). Class labels

indicate win or loss status. The dataset contains categorical data.

• Waveform (WF) dataset provides attributes which include noise of different

wave types. Class labels indicate which wave fits to the corresponding noise

information. The dataset contains real valued numbers.

• Financial (FI) dataset contains financial ratios of various firms and class labels

denote the status of the firm as failed or healthy. The dataset contains integer
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and real numbers.

• Pima Indians Diabetes (PM) dataset keeps a patient’s background information

related to diabetes such as number of pregnancy, blood pressure, glucose toler-

ance test etc. Class labels indicate positive or negative result for diabetes. The

dataset contains integer and real numbers.

• Breast Cancer (BC) dataset presents characteristics of various breast cells. Some

attributes are clump thickness, uniformity of cell size and shape. The class la-

bels show if the result is benign or malignant. Attribute values are given as

integer values.

• Ionosphere (IO) dataset contains data gathered from a radar which detects free

electrons in the ionosphere. Class labels show if there is an evidence of a struc-

ture in the ionosphere or not. The dataset contains integer and real numbers.

• Wisconsin Breast Cancer (WBC) dataset provides characteristics of breast cell

nucleuses. Radius, perimeter and concavity are the sample attributes and the

class labels are benign or malignant. The dataset contains real numbers.

Since the algorithms are implemented for binary classification problems, first two

classes having the most number of instances are selected in the experiments for the

datasets which include more than two actual classes. Another important issue was the

existence of text based categorical data in the datasets. These values were converted

to numerical data before applying machine learning algorithms in the experimental

part of the study. A possible conversion would have been adding all distinct values as

new features and setting only the related feature value as 1 while keeping all others as

0. This technique is often used in literature [17] since it prevents false prioritization of

categorical data. However this conversion technique increases the number of features

in the dataset, and hence it is unsuitable for the purpose of this study. Therefore, data

types apart from real numbers were cast into integers by enumerating every distinct

value in the dataset. A sample of original values of the NU dataset and its values after

conversion process are given as an example in the Appendix A.

In the experiments, first, the classification model is trained using the training set, and

afterwards, accuracy value of each model is calculated using the test set. Different
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methods for generating these train and test sets exist. The most prominent method

is k-fold cross-validation proposed by Salzberg [36]. K-fold cross-validation can

simply be described as dividing the dataset into k subsets and utilizing a loop to select

each subset as the test set for the respective iteration. At each iteration, remaining

k − 1 subsets are combined and labeled as the training set, and used for training the

classification model. Trained model is then used for finding the accuracy of the test

set. After k iterations, average accuracy is calculated and accepted as the accuracy of

the classifier for that dataset. K-fold cross-validation is robust and less prone to errors

in calculation of average accuracy since no data is discarded. On the other hand, using

all data may increase the training time of large datasets having many instances. It gets

even worse especially when the classification model iterates over every instance in the

training set at each iteration of its optimization loop, e.g. SVM, K-means, etc.

A second method could be selecting the training and test sets randomly. In this

method, a predefined number of random selected instances generate the training and

test sets of a dataset. In this method, a total random selection of the training set could

result in selecting instances from one class only. Training a model with instances

of the same class could decrease accuracy. Moreover, some valuable data could be

discarded during the random selection process. Hence, this method is more prone

to errors in average accuracy calculation. Finally, the accuracy results may not be

consistent due to complete randomness. Same dataset and classification model may

produce distinct average accuracy values.

In this study, a specialized random selection method is applied. In this method, 10

different training sets, and 10 test sets for each training set (a total of 100 test sets)

were generated and saved. Instances in the training set were randomly selected, how-

ever, selected in such fashion that training set involves the same proportion of each

class existing in the original dataset. For example, consider that the original dataset

includes 920 class0 instances, and 80 class1 instances. If the training set size is pre-

defined as 100, all training sets have 92 randomly selected class0 instances, and 8

randomly selected class1 instances. Moreover, none of the instances existing in the

training set is included in its test sets.

Table 5.2 shows selected training and test set sizes of the datasets and presents a pre-
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Table 5.2: Size of the training and test sets used in the experiments and details of
classification accuracy of the sets evaluated by Logistic Regression.

Dataset
ID

Size of each
training set

Size of each
test set

Training Test

Mean Std.
Dev.

Max. Min. Mean Std.
Dev.

Max. Min.

CT 600 200 0.791 0.013 0.812 0.772 0.761 0.027 0.830 0.700

MR 1300 200 0.945 0.006 0.954 0.933 0.937 0.019 0.975 0.885

SB 600 200 0.940 0.020 0.945 0.913 0.893 0.022 0.935 0.825

NU 400 200 1.000 0.000 1.000 1.000 1.000 0.000 1.000 1.000

C4 1200 200 0.837 0.033 0.865 0.748 0.820 0.042 0.885 0.655

WF 400 200 0.952 0.014 0.978 0.933 0.893 0.027 0.945 0.810

FI 1000 200 0.947 0.024 0.969 0.906 0.909 0.041 0.975 0.800

PM 268 200 0.793 0.017 0.817 0.769 0.762 0.026 0.815 0.705

BC 199 100 0.980 0.016 1.000 0.960 0.954 0.022 0.990 0.900

IO 101 50 1.000 0.000 1.000 1.000 0.812 0.055 0.960 0.660

WBC 169 80 1.000 0.000 1.000 1.000 0.924 0.034 1.000 0.825

liminary experimentation on all datasets by training the classifier having all features

selected. The training and test set sizes are compatible with Unler et al. [42]. Ac-

curacy statistics of all subsets in terms of mean, standard deviation, maximum and

minimum values for each dataset are also given in the table, for both training and test

sets. In order to obtain these statistics, LR is used for classification.

All experiments were conducted on an Intel Core i7-6700 processor with a CPU clock

rate of 3.40 GHz and 16 GB main memory. The implemented algorithms mainly

have two components, feature selection and machine learning. The FSS algorithms

were implemented in the Java environment and MATLAB 2015a version was used

for executing the machine learning techniques for testing purposes.

5.2 Exhaustive Algorithm Results

The results given here present the performance of machine learning techniques on

feature subsets generated by Exhaustive Approach (EA) that evaluates every subset

of features. This performance of the exhaustive selection is used as an evaluation

criterion for other feature selection approaches. Table 5.3 gives the maximum number

of features that could be fully examined by EA along with the achieved maximum

accuracy and execution times of the algorithms.
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Table 5.3: Classification results of feature subsets generated by exhaustive algorithm.

Dataset
ID

Total
# of features

Classifier Max. examined
# of features

Max.
accuracy

# of features
at max. accuracy

Exec. time
(sec.)

CT 54

LR 3 0.764 3 1774.5

SVM 3 0.763 3 4285.7

ELM 3 0.657 3 6997.5

K-means 3 0.725 1 2016.3

AP 2 0.863 2 4517.4

MR 22

LR 6 0.952 6 8044.4

SVM 4 0.946 4 3518.6

ELM 4 0.992 4 1835.2

K-means 5 0.931 5 5140.5

AP 2 0.983 1 2811.1

SB 57

LR 3 0.857 3 1146.6

SVM 3 0.865 3 5084.5

ELM 3 0.866 3 7262.8

K-means 3 0.744 3 2545.8

AP 2 0.863 2 4923.5

NU 8

LR 8 1.000 1 15.7

SVM 8 1.000 1 34.0

ELM 8 1.000 1 50.7

K-means 8 1.000 1 15.1

AP 8 1.000 1 553.0

C4 42

LR 4 0.765 4 5962.9

SVM 3 0.746 3 2978.3

ELM 3 0.753 3 3889.9

K-means 3 0.731 1 1632.5

AP 2 0.908 2 5734.5

WF 40

LR 4 0.902 4 1940.3

SVM 3 0.893 3 1743.9

ELM 3 0.889 3 2541.8

K-means 4 0.888 4 6548.3

AP 2 0.859 2 1512.6

FI 93

LR 3 0.967 3 6085.1

SVM 2 0.966 2 760.1

ELM 2 0.966 2 985.5

K-means 2 0.966 2 500.6

AP 1 0.969 1 974.0

PM 8

LR 8 0.771 7 5.2

SVM 8 0.769 6 40.2

ELM 8 0.739 1 47.1

K-means 8 0.736 4 12.7

AP 8 0.792 5 287.4

BC 9

LR 9 0.963 5 10.3

SVM 9 0.968 4 56.3

ELM 9 0.963 3 80.5

K-means 9 0.961 5 19.8

AP 9 0.970 8 366.7

IO 34

LR 5 0.888 5 7771.7

SVM 4 0.878 4 6000.0

ELM 4 0.898 3 5844.0

K-means 5 0.860 5 9998.8

AP 3 0.894 3 1603.5

WBC 30

LR 5 0.975 5 3111.3

SVM 4 0.975 4 3565.3

ELM 4 0.954 3 3957.4

K-means 5 0.917 4 6546.9

AP 3 0.919 3 1881.1
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As seen in Table 5.3, when the total number of features in a dataset is small, up to

9 for these datasets, it is possible to find the best subsets of features by using EA in

a timely manner. For example, the Nursery dataset has 8 features in total and every

combination of feature subsets can be examined by SVM in 34 seconds to find the best

accuracy. On the other hand, datasets with higher number of features cannot be ex-

amined completely due to time limit. It can be seen from the table that EA could only

examine the subsets with maximum 6 number of features for the Mushrooms dataset.

As the feature size increases, required time to examine all possible subsets increases

exponentially. For example, there exists 254 possible combinations for Covertype and

257 possible combinations for Spambase datasets.

It can be deduced from the results that, performance of EA in terms of required time

to finish the algorithms is inversely correlated to feature size; meaning that, as the

feature size increases, the number of fully evaluated subsets in the same amount of

time decreases.

5.3 Greedy Algorithm Results

The results given here present the performance of machine learning techniques on

feature subsets generated by Greedy Approach (GR) explained in Section 3.2.2. Ta-

ble 5.4 gives the results of GR in terms of execution time and achieved maximum

accuracy. This table gives promising results when compared to EA results. For ex-

ample, SVM can classify Nursery dataset in 4.3 seconds which is much shorter than

34 seconds of EA. Also, EA worked for 19 minutes, yet it could only evaluate up

to 0.857 accuracy value for Spambase dataset with LR; whereas GR achieved 0.923

accuracy value in about 7 minutes.

Selecting feature subsets exhaustively consumes much more time than GR. More-

over, GR achieves higher accuracy values in most cases since EA can only examine a

limited proportion of subsets. Note that, the results of EA does not include the whole

execution time to need to finish the algorithm since it is not feasible to examine all

possible subset of features when the number of features is high.
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Table 5.4: Classification results of feature subsets generated by greedy algorithm.

Dataset
ID

Total
# of features

Classifier Max.
accuracy

# of features
at max. accuracy

Exec. time
(sec.)

CT 54

LR 0.776 31 327.3

SVM 0.775 32 507.7

ELM 0.651 2 298.3

K-means 0.725 1 133.0

AP 0.860 3 4028.1

MR 22

LR 0.949 11 39.9

SVM 0.954 16 93.5

ELM 0.991 3 50.6

K-means 0.836 15 38.4

AP 0.979 2 4702.6

SB 57

LR 0.923 22 431.3

SVM 0.923 31 513.3

ELM 0.900 16 349.2

K-means 0.818 37 151.8

AP 0.915 31 10385.6

NU 8

LR 1.000 1 2.9

SVM 1.000 1 4.3

ELM 1.000 1 6.8

K-means 1.000 1 2.1

AP 1.000 1 61.7

C4 42

LR 0.835 28 215.7

SVM 0.832 35 1423.5

ELM 0.804 13 181.7

K-means 0.731 1 132.1

AP 0.922 10 10800.2

WF 40

LR 0.923 11 27.7

SVM 0.923 14 184.4

ELM 0.902 8 159.1

K-means 0.896 17 52.8

AP 0.923 38 2228.1

FI 93

LR 0.967 6 2249.9

SVM 0.966 9 21463.7

ELM 0.967 12 954.5

K-means 0.966 2 575.3

AP 0.970 18 51933.6

PM 8

LR 0.771 7 0.9

SVM 0.769 6 7.0

ELM 0.735 1 6.6

K-means 0.736 4 1.8

AP 0.792 5 41.2

BC 9

LR 0.962 5 1.0

SVM 0.966 7 5.4

ELM 0.964 3 6.9

K-means 0.961 5 1.9

AP 0.970 8 33.7

IO 34

LR 0.892 11 42.5

SVM 0.895 20 69.6

ELM 0.894 3 71.3

K-means 0.856 2 19.6

AP 0.913 10 177.1

WBC 30

LR 0.974 5 31.0

SVM 0.977 6 58.4

ELM 0.953 3 62.0

K-means 0.916 3 19.3

AP 0.924 13 228.4
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5.4 Genetic Algorithm Results

In this section, first, selection steps of population size and the number of generations

are given. Then, the performance of machine learning techniques on feature subsets

generated by Genetic Approach (GA) are presented in terms of execution time and

achieved maximum accuracy. Finally, the improvement of the solutions populated by

GA through generations is shown in detail with graphics.

5.4.1 Setting the Population Size and the Number of Generations

One of the most crucial point of a GA is determining the population size and the num-

ber of generations. The number of individuals in a population must be large enough to

keep the diversity of the exploration space. Similarly, the number of generations must

be large enough to allow the algorithm to converge. At the same time, both must be

small enough to have a reasonable execution time during optimization. Therefore, in

this part of the study, the experiments are carried out to find the most promising popu-

lation size and number of generations. For that purpose, an interval of 10 to 100 with

a step size of 10 is examined for both population size and number of generations. LR

is utilized to calculate the accuracy of feature subsets. Figure 5.1 presents the results

for three criteria; accuracy, number of features, and execution time of the algorithm

during the optimization tests. Among three subfigures, the best case is colored with

green and the worst case is colored with red. In-between values are colored with a

transition color with respect to their goodness. A higher value is better for accuracy,

whereas a lower value is better for both feature size and execution time. The results

show the average of all 11 problem datasets.

Accuracy, number of selected features and execution times are the three criteria exam-

ined to decide population size and number of generations. Figure 5.1a which shows

the progress of accuracy according to change in population size, provides a closer

look to the effect of population size on the accuracy. If achieving the maximum ac-

curacy value was the only objective, then selecting 100 would be the best solution

for both population size and the number of generations, as easily be seen in Figure

5.1a. However, minimizing the number of selected features is another objective of
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10 0.9871 0.9903 0.9914 0.9929 0.9935 0.9919 0.9944 0.9940 0.9941 0.9943 

20 0.9908 0.9920 0.9944 0.9951 0.9963 0.9978 0.9985 0.9965 0.9972 0.9962 

30 0.9912 0.9943 0.9950 0.9955 0.9967 0.9982 0.9965 0.9972 0.9975 0.9966 

40 0.9919 0.9949 0.9967 0.9959 0.9965 0.9986 0.9977 0.9982 0.9977 0.9981 

50 0.9919 0.9964 0.9972 0.9959 0.9972 0.9981 0.9977 0.9981 0.9973 0.9985 

60 0.9945 0.9956 0.9958 0.9963 0.9974 0.9984 0.9979 0.9975 0.9972 0.9986 

70 0.9934 0.9964 0.9981 0.9970 0.9978 0.9973 0.9981 0.9986 0.9979 0.9981 

80 0.9969 0.9971 0.9972 0.9971 0.9983 0.9986 0.9986 0.9980 0.9987 0.9976 

90 0.9943 0.9969 0.9977 0.9975 0.9972 0.9969 0.9981 0.9987 0.9987 0.9982 

100 0.9957 0.9977 0.9970 0.9979 0.9975 0.9978 0.9976 0.9982 0.9987 0.9988 

(a) Average accuracy values.
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10 4.8493 4.5343 4.6027 4.5558 4.4867 4.5573 4.6002 4.4983 4.9559 4.6291 

20 3.7158 4.6736 3.9910 3.8249 3.8976 4.2750 4.0223 4.0946 3.8676 4.0076 

30 3.6128 3.8063 3.8124 3.4479 4.0059 3.9338 3.8091 3.7813 3.8916 3.6582 

40 3.9327 3.6642 3.8757 3.8135 3.4566 3.9843 3.6004 4.0295 3.5413 4.1986 

50 3.5839 3.6633 3.6794 3.7502 3.4648 3.7642 3.7659 4.1467 3.8012 3.7490 

60 3.5524 3.3840 3.6437 3.2256 4.0015 4.1042 3.8273 3.8739 3.5229 3.6367 

70 3.4460 3.4602 3.6948 3.6308 3.5887 3.8308 3.7044 3.6588 3.9537 3.8007 

80 3.6696 3.9515 3.6992 3.4956 3.7081 3.7431 3.8415 3.5591 3.5993 4.0732 

90 3.4832 3.7229 3.5884 3.9165 3.3724 3.7939 3.8603 3.8134 3.9797 3.9834 

100 4.0571 3.4846 3.7172 3.9868 3.8783 3.6988 3.4917 3.8294 3.8771 3.8869 

(b) Average number of features.
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10 0.3741 0.6545 0.9652 1.2561 1.5584 1.7899 2.1307 2.4099 2.6123 3.1989 

20 0.4544 0.8446 1.1826 1.6272 2.2269 2.1955 2.5989 3.1167 3.3974 4.1017 

30 0.4422 0.9641 1.3907 1.8143 2.3165 2.9326 3.3037 3.5150 4.0993 4.3395 

40 0.6533 1.1700 1.7077 2.1029 2.3892 3.1540 3.5492 3.9927 4.6459 5.4172 

50 0.6777 1.1930 1.7166 2.3358 2.7689 3.3346 3.9718 4.7464 5.2018 6.1517 

60 0.8259 1.2598 1.7761 2.3590 3.0762 4.1120 4.5547 4.9590 5.8034 7.2297 

70 0.7487 1.4250 1.8989 2.5016 3.3245 4.1707 4.8512 6.0536 6.5200 7.6520 

80 0.8942 1.5789 2.1598 3.0348 3.7306 4.4851 5.3548 6.1916 7.9519 8.4497 

90 0.8728 1.6021 2.2648 3.0820 3.8577 4.9655 5.9662 7.4928 8.3107 9.6859 

100 1.0319 1.7891 2.3987 3.6617 4.3096 5.5508 6.2921 7.8770 9.3527 10.4397 

(c) Average execution times.

Figure 5.1: Average accuracy, number of features and execution times of all datasets

with varying population size and number of generations.
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the study. It can be seen from Figure 5.1b that, selected number of features is not

minimized when the value of 100 is selected for population size and the number of

generations. Moreover, execution time of the algorithm is an important aspect as well

when deciding these sizes.

Figure 5.1c shows extremely high execution time for the mentioned values. A note-

worthy observation is that the color in the top right cell (pop = 100, gen = 10) is more

reddish than the bottom left cell (pop = 10, gen = 100). It is clear that increase in pop-

ulation size affects the execution time worse than increase in number of generations.

Therefore, it is clear that population size should be chosen as small as possible.

A smarter method should be applied for selection of these values taking all these in-

formation into account. According to Figure 5.1a, accuracy values are monotonically

increasing only when population size is 40. It can be deduced that only when the pop-

ulation size is selected as 40, an increase in accuracy can be expected as the number

of generations increases. This is an important sign which suggests that the results are

reliable. Similarly, according to the Figure 5.1b, the minimum number of selected

features is found when population size is selected as 40. As a result, the value 40 was

used as population size throughout this study.

Figure 5.1b shows promising results for the number of generations values of 30, 60

and 80, when population size is selected as 40. It is clear from Figure 5.1b that, the

minimum number of features can be found when the number of generations is selected

as 60. In addition, the value 60 may be considered as an optimal value when compared

to the values 30 and 80, when both accuracy and time aspects are also considered. The

accuracy value on selection of 60 is greater than the accuracy value on selection of

30. Similarly, execution time on selection of 60 is smaller than the execution time

on selection of 80. As a result, the number of generations was selected as 60 for the

study.

After choosing the population size and the number of generations, parameters for

GA are set as given in Table 5.5. Other than the population size and the number of

generations, default parameters were used in the algorithm, as they were defined in

the MOEA Framework.
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Table 5.5: Parameter configuration for genetic algorithm.

Parameter Value

Population size 40

Number of generations 60

Crossover ratio 1.0

Mutation ratio 0.01

Table 5.6 presents the results of the machine learning techniques on feature subsets

generated by GA. The maximum accuracy and the number of features at that maxi-

mum accuracy are given in this table. At first glance, the accuracy results of GA are

better than the EA and are comparable with GR. Moreover, GA reduces the number

of features as compared to GR. Execution times vary according to the total number

of features of the dataset.

The experiment results in terms of execution times are compatible with the theoretical

calculations given in Section 3.3, Figure 3.5. It is possible to examine all subsets of

features of small datasets in an acceptable amount of time which makes the EA ad-

vantageous. For medium datasets, GR can be used to achieve a good enough solution

in a reasonable amount of time. However, for large datasets, it is obvious that GA

gives the best results in terms of execution time. A detailed comparison of all fea-

ture selection algorithms and machine learning algorithms with respect to accuracy,

number of features and execution times is given in Section 5.5.

5.4.2 Improvement of Individuals in the Population through Generations

In this part of the experiments, to prove that evolutionary part of the GA works as

intended, the solutions in the initial and final populations are compared. As explained

in previous section, population size and number of generations were set as 40 × 60

respectively to be used in the experiments.

Datasets were categorized into three groups with respect to their number of features,

as given in Table 5.7. One sample dataset from each group is randomly selected

as representative: BC for small datasets, MR for medium datasets and SB for large

datasets.
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Table 5.6: Classification results of feature subsets generated by genetic algorithm.

Dataset
ID

Total
# of features

Classifier Max.
accuracy

# of features
at max. accuracy

Exec. time
(sec.)

CT 54

LR 0.775 14 341.2

SVM 0.775 11 652.3

ELM 0.683 8 343.8

K-means 0.725 1 95.3

AP 0.781 6 8047.2

MR 22

LR 0.949 9 102.5

SVM 0.956 9 414.5

ELM 0.990 3 112.6

K-means 0.827 8 87.0

AP 0.996 8 28562.7

SB 57

LR 0.921 20 356.3

SVM 0.920 22 566.8

ELM 0.901 12 409.3

K-means 0.807 24 216.0

AP 0.907 16 11979.4

NU 8

LR 1.000 1 6.0

SVM 1.000 1 10.2

ELM 1.000 1 17.6

K-means 1.000 1 5.6

AP 1.000 1 171.3

C4 42

LR 0.825 24 186.9

SVM 0.826 24 2650.2

ELM 0.800 16 425.6

K-means 0.731 1 115.7

AP 0.825 25 58104.0

WF 40

LR 0.923 11 42.3

SVM 0.922 9 300.0

ELM 0.904 5 224.4

K-means 0.891 11 97.1

AP 0.918 11 4560.1

FI 93

LR 0.966 3 606.6

SVM 0.966 1 2307.2

ELM 0.966 5 491.5

K-means 0.966 2 264.9

AP 0.968 18 24127.6

PM 8

LR 0.770 5 3.0

SVM 0.769 6 20.9

ELM 0.740 1 18.5

K-means 0.736 4 5.7

AP 0.792 5 142.1

BC 9

LR 0.963 5 4.0

SVM 0.968 4 21.0

ELM 0.962 3 22.6

K-means 0.961 5 8.4

AP 0.969 7 184.0

IO 34

LR 0.897 11 82.1

SVM 0.897 10 179.2

ELM 0.894 2 126.4

K-means 0.856 2 28.0

AP 0.915 9 500.9

WBC 30

LR 0.975 4 27.6

SVM 0.978 10 147.3

ELM 0.952 3 139.5

K-means 0.917 4 31.4

AP 0.929 5 548.9
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Table 5.7: Dataset categorization according to feature size.

Small Medium Large

NU MR CT
PM WF SB
BC IO C4

WBC FI

From Figure 5.2 to Figure 5.6, the distributions of initial and final solutions of GA so-

lutions for the selected datasets evaluated by each classification technique are given.

Non-dominated chromosomes shown in these figures are selected from the final popu-

lation only. In order to prove that selection of machine learning technique is irrelevant

in this process, figures of all three datasets evaluated by the same machine learning

technique are given in one page each. It can be seen from the figures that the qual-

ity of solutions improves after all generations are populated when compared to the

solutions of initial population. Initial population gives a picture of disorganized indi-

viduals but as the number of generations increases, the population tends to get closer

to the hypothetical ideal point. In other words, the population evolve toward ideal

point through generations. In the figures, the point (1, 1) is shown as the hypothetical

ideal point since the two objectives of this study are maximizing the accuracy and

minimizing the number of features, both of which are 1 in their best cases.

Having less number of features, the number of non-dominated solutions is lower in

the small dataset. Moreover, these solutions form a pareto curve like shape, as seen

in the figures. On the other hand, the solutions tend to fit a pareto curve when the

feature size of dataset gets larger.

Even though the number of possible solutions is small for the small dataset and ini-

tial population is closer to the ideal point, the improvement of the solutions is still

significant. This becomes even more apparent as the dataset gets larger.
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(a) Distribution of solutions of GA on the BC dataset evaluated by LR.
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(b) Distribution of solutions of GA on the MR dataset evaluated by LR.
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(c) Distribution of solutions of GA on the SB dataset evaluated by LR.

Figure 5.2: Distribution of genetic algorithm solutions evaluated by Logistic Regres-

sion.
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(a) Distribution of solutions of GA on the BC dataset evaluated by SVM.
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(b) Distribution of solutions of GA on the MR dataset evaluated by SVM.
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(c) Distribution of solutions of GA on the SB dataset evaluated by SVM.

Figure 5.3: Distribution of genetic algorithm solutions evaluated by Support Vector

Machines.
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(a) Distribution of solutions of GA on the BC dataset evaluated by ELM.
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(b) Distribution of solutions of GA on the MR dataset evaluated by ELM.
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(c) Distribution of solutions of GA on the SB dataset evaluated by ELM.

Figure 5.4: Distribution of genetic algorithm solutions evaluated by Extreme Learn-

ing Machine.
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(a) Distribution of solutions of GA on the BC dataset evaluated by K-means.
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(b) Distribution of solutions of GA on the MR dataset evaluated by K-means.
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(c) Distribution of solutions of GA on the SB dataset evaluated by K-means.

Figure 5.5: Distribution of genetic algorithm solutions evaluated by K-means.
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(a) Distribution of solutions of GA on the BC dataset evaluated by AP.
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(b) Distribution of solutions of GA on the MR dataset evaluated by AP.
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(c) Distribution of solutions of GA on the SB dataset evaluated by AP.

Figure 5.6: Distribution of genetic algorithm solutions evaluated by Affinity Propa-

gation.

51



5.5 Performance Comparison of the Algorithms

In this section, comparison of FSS algorithms and machine learning algorithms are

discussed. Finally, the results are compared with a well-known filtering algorithm

and other state-of-the-art algorithms in literature.

In Table 5.8, the classification accuracy values are given in a multiobjective fashion.

Discussions of FSS and machine learning algorithms are given in following sections

according to the values in this table. Distinct feature sizes (given as "F. size" in the ta-

bles) are extracted from the non-dominated solutions generated by GR and GA. Also,

to give a baseline for each feature size, maximum EA values are added to the table,

when applicable. Only accuracy values of feature sizes having both non-dominated

GR and GA are given. Even though GR has accuracy values for every feature size,

incomparable ones are omitted. Similarly, some of GA solutions that are not compa-

rable with GR are not shown in the table. For every machine learning algorithm, GR

and GA accuracy values are compared for every feature size and the higher ones are

weighed with bold in the table. Note that LR, SVM and K-means are deterministic

algorithms since they yield exact accuracy values in same conditions, whereas, ELM

and AP are non-deterministic and accuracy of the same condition may vary. That is

why GR or GA could find higher accuracy values than EA for ELM and AP.

Table 5.8: Solution sets of all feature selection algorithms evaluated by all machine
learning algorithms for all datasets.

(bold: dominant solution)

(a) Solution sets of the CT dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 0.743 0.743 0.743 0.743 0.743 0.743 0.609 0.609 0.609 0.725 0.725 0.725 0.856 0.855 0.722
2 0.753 0.753 0.753 0.754 0.754 0.754 0.640 0.651 0.640 - - - 0.863 0.858 0.770
3 0.764 0.764 0.764 0.763 0.763 0.759 - - - - - - - 0.860 0.775
4 - 0.767 0.767 - 0.767 0.767 - - - - - - - - -
5 - 0.770 0.770 - 0.771 0.771 - - - - - - - - -
6 - 0.772 0.772 - 0.772 0.772 - - - - - - - - -
7 - 0.773 0.772 - 0.773 0.773 - - - - - - - - -
8 - 0.773 0.773 - 0.774 0.774 - - - - - - - - -
9 - 0.774 0.774 - - - - - - - - - - - -

10 - 0.774 0.774 - 0.775 0.774 - - - - - - - - -
11 - - - - 0.775 0.775 - - - - - - - - -
13 - 0.775 0.774 - - - - - - - - - - - -
14 - 0.775 0.775 - - - - - - - - - - - -

52



(b) Solution sets of the MR dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 0.763 0.763 0.750 0.750 0.750 0.750 0.985 0.985 0.985 0.773 0.773 0.677 0.983 0.971 0.983
2 0.905 0.864 0.867 0.899 0.826 0.899 0.990 0.989 0.989 0.821 0.812 0.784 0.979 0.979 0.988
3 0.937 0.891 0.937 0.937 0.861 0.932 0.990 0.991 0.990 - - - - - -
4 0.940 0.937 0.937 0.946 0.894 0.946 - - - - - - - - -
5 0.949 0.937 0.945 - 0.937 0.954 - - - - - - - - -
6 0.952 0.938 0.946 - 0.937 0.956 - - - - - - - - -
8 - 0.940 0.946 - - - - - - - 0.825 0.827 - - -
9 - 0.945 0.949 - - - - - - - - - - - -

(c) Solution sets of the SB dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 - - - - - - - - - - - - 0.818 0.820 0.789
2 0.835 0.835 0.835 0.842 0.842 0.842 0.846 0.846 0.834 0.728 0.728 0.691 0.863 0.863 0.852
3 0.857 0.857 0.857 0.865 0.865 0.865 0.866 0.868 0.868 0.744 0.744 0.742 - 0.874 0.871
4 0.871 0.871 0.871 - 0.875 0.875 - - - - 0.759 0.759 - 0.878 0.878
5 - 0.883 0.883 - 0.883 0.883 - 0.870 0.873 - 0.767 0.767 - 0.881 0.886
6 - 0.889 0.890 - 0.890 0.890 - 0.877 0.879 - 0.776 0.776 - 0.883 0.887
7 - 0.898 0.902 - 0.897 0.897 - 0.878 0.880 - 0.781 0.781 - 0.890 0.898
8 - 0.905 0.906 - 0.902 0.902 - 0.884 0.886 - 0.787 0.787 - 0.894 0.900
9 - 0.910 0.910 - 0.906 0.906 - 0.889 0.893 - 0.790 0.787 - - -

10 - 0.914 0.914 - 0.911 0.911 - 0.891 0.894 - 0.793 0.791 - 0.899 0.906
11 - 0.915 0.915 - 0.912 0.912 - 0.894 0.896 - 0.796 0.793 - - -
12 - 0.917 0.916 - 0.913 0.913 - 0.897 0.901 - 0.798 0.797 - - -
13 - 0.918 0.917 - - - - - - - 0.799 0.798 - - -
14 - 0.919 0.919 - 0.916 0.916 - - - - 0.802 0.801 - - -
15 - 0.919 0.919 - 0.918 0.916 - - - - 0.803 0.802 - - -
16 - 0.920 0.920 - 0.918 0.917 - - - - 0.804 0.802 - - -
17 - 0.920 0.920 - 0.920 0.918 - - - - 0.806 0.805 - - -
18 - 0.921 0.920 - 0.921 0.919 - - - - - - - - -
19 - - - - 0.921 0.919 - - - - 0.809 0.805 - - -
20 - - - - 0.921 0.920 - - - - 0.810 0.806 - - -
22 - - - - 0.921 0.920 - - - - - - - - -
23 - - - - - - - - - - 0.812 0.806 - - -
24 - - - - - - - - - - 0.813 0.807 - - -

(d) Solution sets of the NU dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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(e) Solution sets of the C4 dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 - - - 0.730 0.730 0.729 0.730 0.731 0.730 0.731 0.731 0.731 - - -
2 - - - 0.737 0.730 0.733 0.746 0.738 0.744 - - - 0.908 0.902 0.738
3 - - - - - - 0.753 0.748 0.753 - - - - - -
4 0.765 0.747 0.765 - 0.730 0.757 - 0.761 0.763 - - - - - -
5 - 0.756 0.772 - 0.730 0.765 - 0.769 0.769 - - - - - -
6 - 0.766 0.778 - - - - 0.774 0.775 - - - - - -
7 - 0.772 0.785 - - - - 0.780 0.781 - - - - - -
8 - 0.778 0.791 - - - - 0.783 0.786 - - - - - -
9 - 0.784 0.796 - 0.730 0.794 - 0.791 0.789 - - - - 0.903 0.774

10 - 0.791 0.800 - 0.738 0.800 - 0.794 0.795 - - - - 0.922 0.784
11 - 0.796 0.802 - 0.742 0.801 - - - - - - - - -
12 - 0.802 0.807 - 0.753 0.804 - 0.797 0.796 - - - - - -
13 - 0.805 0.810 - 0.769 0.808 - 0.804 0.796 - - - - - -
14 - 0.810 0.812 - 0.781 0.811 - - - - - - - - -
15 - 0.814 0.815 - 0.794 0.816 - - - - - - - - -
16 - 0.817 0.819 - 0.800 0.819 - - - - - - - - -
17 - 0.821 0.821 - 0.802 0.821 - - - - - - - - -
18 - 0.825 0.822 - - - - - - - - - - - -
19 - 0.827 0.822 - 0.812 0.822 - - - - - - - - -
20 - 0.829 0.823 - 0.816 0.822 - - - - - - - - -
21 - 0.830 0.823 - - - - - - - - - - - -
22 - 0.831 0.824 - 0.823 0.825 - - - - - - - - -
23 - 0.833 0.824 - 0.823 0.826 - - - - - - - - -
24 - 0.834 0.825 - 0.825 0.826 - - - - - - - - -

(f) Solution sets of the WF dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 - - - 0.806 0.806 0.791 0.798 0.796 0.797 0.804 0.804 0.793 0.798 0.798 0.798
2 0.868 0.857 0.868 0.869 0.855 0.869 0.866 0.854 0.869 0.852 0.840 0.852 0.859 0.859 0.859
3 0.893 0.887 0.893 0.893 0.887 0.893 0.889 0.882 0.890 0.875 0.875 0.875 - 0.882 0.882
4 0.902 0.901 0.902 0.904 0.904 0.904 0.900 0.898 0.901 0.888 0.882 0.882 - 0.900 0.900
5 0.915 0.910 0.915 - 0.910 0.914 - 0.902 0.904 - 0.889 0.887 - 0.906 0.906
6 - 0.917 0.917 - 0.917 0.917 - - - - 0.890 0.889 - 0.910 0.910
7 - 0.919 0.919 - 0.918 0.918 - - - - 0.891 0.890 - 0.912 0.914
8 - 0.921 0.921 - 0.921 0.921 - - - - 0.891 0.890 - 0.912 0.916
9 - 0.921 0.922 - 0.922 0.922 - - - - - - - - -

10 - 0.922 0.923 - - - - - - - 0.893 0.890 - - -
11 - 0.923 0.923 - - - - - - - 0.894 0.891 - 0.913 0.918

(g) Solution sets of the FI dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966 0.966 - - -
2 - - - - - - - - - 0.966 0.966 0.966 - 0.970 0.966
3 0.967 0.966 0.966 - - - - - - - - - - - -
7 - - - - - - - - - - - - - 0.970 0.968

18 - - - - - - - - - - - - - 0.970 0.968
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(h) Solution sets of the PM dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 0.747 0.747 0.747 0.747 0.747 0.747 0.739 0.735 0.740 0.728 0.728 0.728 0.714 0.714 0.712
2 0.760 0.760 0.760 0.760 0.760 0.760 - - - 0.732 0.732 0.732 0.777 0.776 0.777
3 0.766 0.766 0.766 0.765 0.765 0.765 - - - 0.735 0.735 0.735 0.784 0.781 0.784
4 0.768 0.768 0.768 0.766 0.766 0.766 - - - 0.736 0.736 0.736 - - -
5 0.771 0.770 0.770 0.768 0.768 0.768 - - - - - - 0.792 0.792 0.792
6 - - - 0.769 0.769 0.769 - - - - - - - - -

(i) Solution sets of the BC dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 0.927 0.927 0.927 0.926 0.926 0.926 0.925 0.924 0.924 0.896 0.896 0.896 0.792 0.818 0.756
2 0.953 0.953 0.953 0.955 0.955 0.955 0.955 0.954 0.955 0.941 0.941 0.941 0.899 0.845 0.902
3 0.963 0.958 0.963 0.965 0.959 0.965 0.963 0.964 0.962 0.957 0.957 0.957 0.951 0.933 0.949
4 0.963 0.961 0.963 0.968 0.965 0.968 - - - 0.959 0.959 0.959 0.963 0.944 0.963
5 0.963 0.962 0.963 - - - - - 0.961 0.961 0.961 0.966 0.961 0.966
6 - - - - - - - - - - - - 0.968 0.963 0.968
7 - - - - - - - - - - - - 0.968 0.966 0.969

(j) Solution sets of the IO dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 - - - 0.811 0.811 0.811 0.818 0.816 0.819 0.835 0.835 0.835 0.782 0.782 0.689
2 0.872 0.872 0.872 0.864 0.864 0.864 0.892 0.889 0.894 0.856 0.856 0.856 0.846 0.839 0.773
3 0.876 0.876 0.876 0.873 0.873 0.873 - - - - - - 0.894 0.894 0.858
4 0.883 0.878 0.878 0.878 0.877 0.877 - - - - - - - 0.896 0.890
5 0.888 0.883 0.886 - 0.879 0.883 - - - - - - - - -
6 - 0.889 0.889 - 0.88 0.888 - - - - - - - - -
7 - - - - - - - - - - - - - 0.905 0.906
8 - 0.891 0.892 - 0.885 0.892 - - - - - - - 0.911 0.909
9 - - - - 0.887 0.894 - - - - - - - - -

11 - 0.892 0.897 - - - - - - - - - - - -

(k) Solution sets of the WBC dataset.

F.
size

LR SVM ELM K-means AP

EA GR GA EA GR GA EA GR GA EA GR GA EA GR GA

1 0.920 0.920 0.920 0.921 0.921 0.919 0.918 0.917 0.915 0.901 0.901 0.901 0.891 0.891 0.875
2 0.961 0.961 0.961 0.960 0.960 0.960 0.947 0.947 0.946 0.915 0.915 0.915 0.911 0.911 0.908
3 0.972 0.968 0.972 0.970 0.970 0.969 0.954 0.953 0.952 0.916 0.916 0.916 0.919 0.919 0.914
4 0.975 0.974 0.975 0.975 0.974 0.975 - - - - - - - 0.921 0.928
5 - - - - - - - - - - - - - 0.923 0.929
6 - - - - 0.977 0.975 - - - - - - - - -
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5.5.1 Comparison of Feature Selection Algorithms

In this section, the performance of GR and GA are compared in a multiobjective

fashion, while EA provides a baseline. With the use of EA, 152 baseline subsets were

found in the above given subtables of Table 5.8. GR could only find 95 (62.5%) of

these subsets, whereas GA could reach up to 107 (70.4%). GR performs well, yet GA

performs even better.

When GR and GA are compared one-by-one for each machine learning technique at

each feature size, there exists 326 direct comparisons. Among these 326 comparisons,

GA dominates GR for 115 times (35%), and GR dominates GA only for 84 times

(26%). GA and GR tie on the remaining 127 comparisons (39%).

A more detailed analysis shows that, GR dominates GA for only 38 times when super-

vised techniques are employed, whereas it is dominated by GA for 91 times. More-

over, among these dominations, GR cannot even reach up to half of GA for any of

these methods. These results indicate that GR is no match for GA when supervised

techniques are used, regardless of which method is selected. On the other hand, the

use of unsupervised techniques tells another story. When K-means is used for classi-

fication, GR dominates GA for 24 times and is dominated for 2 times only. The use

of AP is more balanced with 22 and 21 dominations in favor of GR and GA, respec-

tively. Nevertheless, GR is better with both unsupervised techniques. On the other

hand, accuracy values achieved by GR with K-means are generally dominated by

of those achieved by GA with supervised techniques, only 6 of them remained non-

dominated. This number is higher for GR with AP, 20 out of 52 are non-dominated

by GA with supervised techniques. However, execution time of AP is much larger

than all other machine learning techniques, which will be discussed in Section 5.5.2,

and hence it is not a preferable method. As a result, it is proved that GA is more

preferable than other FSS algorithms.

5.5.2 Comparison of Machine Learning Algorithms

In this section, the performance of machine learning techniques are compared in a

multiobjective fashion. In previous section, GA is proved to be the best FSS algo-
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rithm, and hence its results are used in performance comparisons of machine learning

techniques.

In previous section, baseline results obtained from EA, were given in a cumulative

form. Here, they are broken down to show the performance of each machine learning

technique. Of the 152 baseline subsets; LR could find 29 out of 38 (76.3%), SVM

could find 27 out of 35 (77.1%), ELM could find 16 out of 25 (64%), K-means could

find 21 out of 27 (77.8%), and AP could find 13 out of 27 (48.1%). It can be seen that

all techniques achieve similar success ratios in finding baseline subsets, only ELM

and AP are lower. There may be several reasons for that. First, even though the

number of times ELM could not find baseline subsets (9) is comparable with LR (9)

and SVM (8), its ratio drops more than others since ELM could find less number

of non-dominated solutions in total (25). Second, non-deterministic nature of both

techniques could harm this ratio by evaluating a lower accuracy for the same baseline

subset generated by different feature selection algorithms.

In order to give a more detailed analysis on machine learning techniques, they are

compared one-by-one for each feature size when there exists at least one comparison

for that feature size. Methods are compared separately as supervised and unsuper-

vised. According to comparison results of supervised methods, LR, with a total dom-

ination of 42 out of 69 (60.9%), outperformed both SVM and ELM, 24 (34.8%) and

11 (15.9%) out of 69 respectively. Total count of dominations (77) is higher than total

number of comparisons (69). The reason for this, two methods non-dominated to each

other, dominated the third method in some cases. Since the domination is significant,

it was counted for each method in calculation of domination results. According to

comparison results of unsupervised methods, AP, with a total domination of 23 out of

33 (69.7%), outperformed K-means having 10 dominations out of 33 (30.3%).

Figure 5.7 compares execution times of machine learning algorithms on the three

selected datasets when EA is employed. Since EA works on a timely manner and it

can only explore a small search space, execution times of GR and GA are not given

in the same figure. According to all three subfigures, LR is the most time efficient

technique, whereas AP is the most time consuming one. K-means, SVM and ELM lay

in-between. Note that LR as a supervised technique and K-means as a unsupervised
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(a) Execution times of machine learning algorithms for the BC dataset.
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(b) Execution times of machine learning algorithms for the MR dataset.
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(c) Execution times of machine learning algorithms for the SB dataset.

Figure 5.7: Execution times of machine learning algorithms applied on three datasets

with exhaustive algorithm.
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technique could explore more feature subsets than other techniques could explore in

the same amount of time.

Figure 5.8 shows total execution time of each machine learning algorithm working

with GR and GA on all 11 datasets. Similarly, LR and K-means are the most time

efficient algorithms among supervised and unsupervised techniques, respectively. In

total, GA works faster than GR when LR, SVM and K-means are employed. On the

other hand, GR works slightly and significantly faster than GA when ELM and AP

are employed, separately. This, again, may be the result of non-deterministic nature

of these algorithms, since GA adopts elitism which relies on reliability of the results.

AP, even though achieving higher accuracy values than K-means, is shown to be an

unpreferable machine learning technique with its enormous execution time values in

all FSS algorithms.

To sum up, GA was found as a superior FSS algorithm as compared to GR in the

previous section. Also it was found that, GA performs better with supervised tech-

niques. In this section, LR was found as the best supervised technique in terms of

both accuracy and execution time.

As a result, GA with LR is called as the proposed algorithm in the following sections

of this study.
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Figure 5.8: Comparison of total execution times of machine learning algorithms ap-

plied on all datasets with the greedy and genetic algorithms.
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5.5.3 Comparison with a Filtering Algorithm

In this section, the performance of the proposed algorithm (GA with LR) is compared

against Information Gain (IG), a well-known filtering algorithm [34]. As described in

Chapter 3, wrapper methods utilize accuracy results when searching to find the best

subset and the proposed algorithm is an example of them. IG, on the other hand, is

an example of filter method which ranks features of a dataset by their contribution to

the structure of dataset.

WEKA library 2 is utilized to apply IG on the datasets. For every dataset, first, the

features are ranked with IG by their importance. Then, for every feature size, feature

subsets are generated by choosing the most valuable features up to that size. Finally,

generated subsets are evaluated by using LR. Table 5.9 compares accuracy results of

IG subsets having same number of features with non-dominated GA solutions, which

are both evaluated by LR.

In almost all cases, GA performs better than IG. In a total of 95 comparisons, GA

outperforms IG for 88 times and they tie on the remaining 7 comparisons.

As a result, it is obvious that selecting the most valuable k features may not constitute

the best feature subset having k features for this problem. IG may have worked better

if FSS were a monotonic increasing problem in which increasing feature size would

not decrease the accuracy value.

5.5.4 Comparison with State-Of-The-Art Algorithms

Table 5.10 presents the results of the proposed algorithm (GA with LR) and other

state-of-the-art algorithms in literature that utilized same datasets with this study.

Unler et al. [42] propose a Particle Swarm Optimization (PSO) based algorithm and

evaluate the algorithm with all 11 datasets used in this study. Pacheco et al. [33]

propose a Tabu Search (TS) method for the feature selection part and compares its re-

sults with two different greedy based algorithms, Sequential Forward Selection (SFS)

and Sequential Backward Selection (SBS), using 7 of the datasets used in this study.

2 WEKA, http://www.cs.waikato.ac.nz/ml/weka/.
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Table 5.9: Multiobjective comparison of the proposed algorithm and a filtering algo-
rithm (Information Gain).

(bold: dominant solution)

(a) C4

F.
size

IG GA

4 0.753 0.765
5 0.763 0.772
6 0.776 0.778
7 0.785 0.785

8 0.784 0.791
9 0.790 0.796
10 0.794 0.800
11 0.793 0.802
12 0.796 0.807
13 0.798 0.810
14 0.802 0.812
15 0.808 0.815
16 0.809 0.819
17 0.811 0.821
18 0.813 0.822
19 0.814 0.822
20 0.813 0.823
21 0.813 0.823
22 0.814 0.824
23 0.817 0.824
24 0.817 0.825

(b) SB

F.
size

IG GA

2 0.819 0.835
3 0.831 0.857
4 0.860 0.871
5 0.865 0.883
6 0.868 0.890
7 0.870 0.902
8 0.872 0.906
9 0.873 0.910
10 0.885 0.914
11 0.890 0.915
12 0.901 0.916
13 0.903 0.917
14 0.903 0.919
15 0.902 0.919
16 0.903 0.920
17 0.903 0.920
18 0.904 0.920
20 0.907 0.921

(c) CT

F.
size

IG GA

1 0.743 0.743

2 0.747 0.753
3 0.748 0.764
4 0.747 0.767
5 0.754 0.770
6 0.753 0.772
7 0.755 0.772
8 0.756 0.773
9 0.756 0.774
10 0.756 0.774
13 0.754 0.774
14 0.755 0.775

(d) WF

F.
size

IG GA

2 0.857 0.868
3 0.875 0.893
4 0.895 0.902
5 0.906 0.915
6 0.911 0.917
7 0.914 0.919
8 0.914 0.921
9 0.914 0.922
10 0.912 0.923
11 0.920 0.923

(e) IO

F.
size

IG GA

2 0.812 0.872
3 0.813 0.876
4 0.811 0.878
5 0.810 0.886
6 0.799 0.889
8 0.822 0.892
9 0.815 0.895
10 0.812 0.896
11 0.808 0.897

(f) MR

F.
size

IG GA

1 0.589 0.750
2 0.848 0.867
3 0.747 0.937
4 0.744 0.937
5 0.744 0.945
6 0.747 0.946
8 0.825 0.946
9 0.890 0.949

(g) BC

F.
size

IG GA

1 0.927 0.927

2 0.938 0.953
3 0.954 0.963
4 0.955 0.963
5 0.954 0.963

(h) PM

F.
size

IG GA

1 0.747 0.747

2 0.760 0.760

3 0.759 0.766
4 0.758 0.768
5 0.757 0.770

(i) WBC

F.
size

IG GA

1 0.918 0.920
2 0.918 0.961
3 0.919 0.972
4 0.948 0.975

(j) FI

F.
size

IG GA

1 0.966 0.966

3 0.965 0.966

(k) NU

F.
size

IG GA

1 1.000 1.000
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Lopez et al. [28] utilize Scatter Search (SS) algorithm to propose three different

heuristics, Sequential SS with Greedy Combination (SSS-GC), Sequential SS with

Reduced Greedy Combination (SSS-RGC), and Parallel SS (PSS). Unler et al. and

Pacheco et al. use LR as classifier, whereas Lopez et al. use three different classifiers,

IB1, Naive Bayes, and C4.5. The values of Lopez et al. in Table 5.10 are obtained

from the IB1 classifier. Since they all use supervised machine learning algorithms for

classification and proposed algorithm is evaluated by LR, which is also supervised

machine learning algorithm, comparing the results is reasonable.

The comparison between the proposed algorithm and the other state-of-the-art algo-

rithms is given in a multiobjective fashion in Table 5.10. The values of the proposed

algorithm are chosen from its set of non-dominated solutions. The values of the other

algorithms are chosen from the solution sets having maximum accuracy. The fonts

of the results having both higher accuracy and lower number of features are weighted

with bold as a sign of domination. However, if a dominant result does not exist for a

dataset, all the non-dominated results are underlined. The proposed algorithm outper-

forms all other algorithms providing the best multiobjective solutions in 8 datasets out

of 11. In remaining three datasets, MR, C4, and PM, the proposed algorithm is not

dominated by any other algorithm. The proposed algorithm is non-dominated with

both PSO and TS in MR, both PSO and SBS in C4, and PSO in PM.

As a result, proposed algorithm generates comparable solutions, if not better, when

compared to mentioned state-of-the-art algorithms.
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Table
5.10:M

ultiobjective
com

parison
ofthe

proposed
algorithm

and
state-of-the-artalgorithm

s
in

literature.

(bold:dom
inantsolution,underline:non-dom

inated
solution)

D
ataset

ID

Proposed

A
lgorithm

U
nler

etal.[42]
Pacheco

etal.[33]
L

opez
etal.[28]

PSO
T

S
SFS

SB
S

SSS-G
C

SSS-R
G

C
PSS

accuracy
#

of

features
accuracy

#
of

features
accuracy

#
of

features
accuracy

#
of

features
accuracy

#
of

features
accuracy

#
of

features
accuracy

#
of

features
accuracy

#
of

features

C
T

0.770
5

0.770
7

0.755
7

0.764
5

0.761
7

-
-

-
-

-
-

M
R

0.867
2

1.000
3

1.000
5

0.860
3

0.869
3

-
-

-
-

-
-

SB
0.906

8
0.902

8
0.900

8
0.879

8
0.876

8
-

-
-

-
-

-

N
U

1.000
1

1.000
3

1.000
3

1.000
3

1.000
3

-
-

-
-

-
-

C
4

0.802
11

0.813
12

0.791
12

0.782
11

0.749
7

-
-

-
-

-
-

W
F

0.915
5

0.906
7

0.903
7

0.899
5

0.899
5

-
-

-
-

-
-

FI
0.966

1
0.882

8
0.879

3
0.873

3
0.873

5
-

-
-

-
-

-

PM
0.768

4
0.774

6
-

-
-

-
-

-
0.679

4.1
0.677

4.0
0.681

4.2

B
C

0.963
3

0.962
4

-
-

-
-

-
-

0.952
5.2

0.949
4.8

0.951
5.4

IO
0.878

4
0.862

4
-

-
-

-
-

-
0.878

6.1
0.871

5.7
0.874

3.9

W
B

C
0.975

4
0.963

7
-

-
-

-
-

-
0.947

6.8
0.936

5.5
0.937

6.0
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The use of previous knowledge is crucial when making a decision. The amount of

data generated in one day increases massively. This increase could lead to vital im-

provement in decision-making when in use by expert decision-makers. However an

effective decision-making relies on the quality of information and extracting valuable

information from huge databases is an intractable process. Machine learning tech-

niques provide tools that can analyze large amounts of data in a reasonable time. On

the other hand, these tools may be insufficient especially when the number of fea-

tures in the data reaches to very large numbers, e.g. hundreds of thousands for text

categorization domain. Moreover, having too much features could cause overfitting

problem in classification, which is more memorizing than learning. Therefore, se-

lecting most valuable features, feature subset selection (FSS), becomes indispensable

in such cases. In FSS, keeping the classification accuracy at a comparable level with

the original data is as much important as decreasing the number of features. With

respect to this information, a multiobjective approach should be employed for this

problem. These objectives are minimizing the number of features and maximizing

the classification accuracy.

In this study, three different FSS algorithms, exhaustive (EA), greedy (GR) and ge-

netic (GA), are implemented for the feature selection part and their performances are

evaluated by five different machine learning algorithms, Logistic Regression (LR),

Support Vector Machines (SVM), Extreme Learning Machine (ELM), K-means, and

Affinity Propagation (AP). In the experimental part of the study, 11 publicly available

datasets are used in the performance evaluation of the mentioned algorithms.
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Table 6.1: The effect of feature subset selection on classification performance.

Dataset
ID

Before FSS After FSS

accuracy # of features accuracy # of features

CT 0.761 54 0.775 14

MR 0.937 22 0.949 9

SB 0.893 57 0.921 20

NU 1.000 8 1.000 1

C4 0.820 42 0.825 24

WF 0.893 40 0.923 11

FI 0.909 93 0.966 3

PM 0.762 8 0.770 5

BC 0.954 9 0.963 5

IO 0.812 34 0.897 11

WBC 0.924 30 0.975 4

Experiment results show that FSS improves classification performance by finding

the most valuable subset of features and hence reducing the dimension of the data.

For all datasets, the classification accuracy values having all features selected were

obtained using LR and the results were given in Table 5.2 in previous chapter. The

accuracy values of the feature subsets obtained from GA using LR were also given

in Table 5.6. The values before FSS and after FSS are combined in Table 6.1 to

show the effectiveness of FSS in terms of accuracy and feature size of the dataset. As

seen in the table, FSS reduces the number of features tremendously for all datasets.

At the same time, for all datasets, accuracy values are increased considerably after

FSS. For example, the dataset FI has 93 features and a classification accuracy of

0.909 before FSS. After finding the most valuable 3 features with FSS, classification

accuracy reaches up to 0.963. Since the required time to get a classification result is

highly correlated with the number of features, FSS decreases the execution time by

discarding 90 unnecessary features.

In more comprehensive comparisons, GA outperformed GR when supervised ma-

chine learning techniques are employed, by dominating GR in 91 of the comparisons

and being dominated in only 38 of them. Among the supervised techniques, LR was

found by far the best supervised machine learning technique, as compared to both

SVM and ELM. LR dominated for a total of 42 times, whereas domination numbers

for SVM and ELM are 24 and 11, respectively. Moreover, LR was found as the most
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efficient machine learning technique in execution time comparisons. As a result, best

performing algorithm is proved as GA with LR in this study.

To verify efficiency of the multiobjective evolutionary algorithm (GA), the best per-

forming machine learning algorithm (LR) results are compared with the state-of-the-

art Particle Swarm Optimization, Tabu Search, Greedy Search and Scatter Search

algorithms in literature. GA outperforms all other algorithms in 8 of the datasets, and

generates solutions that are non-dominated for the remaining 3 datasets.

To sum up, EA is preferable for small datasets, since it may check every possible

feature subsets in a reasonable time. However, it is impossible to employ a complete

search of EA in medium to large datasets. In medium sized datasets, GR can achieve

good enough solutions in a small amount of time. GA can achieve better solutions, yet

it requires more time. In large datasets, however, GA outperforms GR with respect to

both accuracy values and execution times.

A possible future work can be training and testing different datasets and comparing

their results with other state-of-the-art algorithms. Furthermore, different machine

learning algorithms can be utilized to evaluate the performance of the feature se-

lection algorithms. Another future work can be using parallel programming on this

problem. It would most likely decrease the execution time of both feature selection

and machine learning algorithms. Finally, initial population of GA can be organized

intelligently instead of randomization. For example, a short explorization with ex-

haustive approach can reveal some valuable feature subsets to be used as the initial

population.
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APPENDIX A

DETAILS OF SAMPLE DATASETS

Datasets used in this study include various attributes which have different data types.

Breast Cancer dataset is selected as a sample dataset and Table A.1 gives information

about the attributes of this dataset.

Table A.1: Attributes, domain ranges and sample instances of Breast Cancer dataset.

clump
thickness

uniformity
of cell size

uniformity
of cell shape

marginal
adhesion

single
epithelial
cell size

bare
nuclei

bland
chromatin

normal
nucleoli

mitoses class

domain
range

1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 1 - 10 2, 4

5 sample
instances

8 7 5 10 7 9 5 5 4 4
7 4 6 4 6 1 4 3 1 4
4 1 1 1 2 1 2 1 1 2
4 1 1 1 2 1 3 1 1 2

10 7 7 6 4 10 4 1 2 4

Table A.2 shows the classification accuracy with and without feature selection. Train-

ing the classifier with all 9 features has the accuracy value of 0.954. Accuracy in-

creases significantly after the feature selection process and training the model with

only 5 features of the datasets gives an accuracy value of 0.963. These five features

are clump thickness, uniformity of cell shape, bare nuclei, normal nucleoli and mi-

toses.

Table A.2: Classification accuracies of Logistic Regression with & without feature
selection on Breast Cancer dataset.

selected (1) / unselected (0)
features

accuracy

1 1 1 1 1 1 1 1 1 0.954
1 0 1 0 0 1 0 1 1 0.963
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It is obvious that applying feature selection is highly effective. Because, as seen in

this example, only 5 features represent this dataset better than all 9 features.

A second example is Nursery dataset. Nursery differs from Breast Cancer since it

has text based categorical data along with real-valued data. In Table A.3, sample

instances from original Nursery dataset are given. Table A.4 shows the same data as

given in Table A.3, only after preprocessing techniques are applied on the dataset.

As seen in the table, all text-based values are converted to numerical values before

machine learning techniques are applied.

Table A.3: Attributes and sample instances of Nursery dataset.

parents has_nurs form children housing finance social health class

usual proper complete 1 convenient convenient slightly_prob recommended recommend
usual proper complete 3 convenient convenient slightly_prob priority priority
usual proper complete 3 convenient convenient slightly_prob not_recom not_recom
usual proper complete 3 convenient convenient problematic recommended priority
usual proper complete 3 convenient convenient problematic priority priority
usual proper complete 3 convenient convenient problematic not_recom not_recom

pretentious less_proper completed 1 convenient inconv slightly_prob recommended very_recom
pretentious improper foster 2 critical convenient nonprob recommended priority
pretentious improper foster 2 critical convenient nonprob priority spec_prior
pretentious improper foster 2 critical convenient nonprob not_recom not_recom

Table A.4: Attributes and sample instances of Nursery dataset after preprocessing.

parents has_nurs form children housing finance social health class

1 1 1 1 1 1 2 1 2
1 1 1 3 1 1 2 2 4
1 1 1 3 1 1 2 3 1
1 1 1 3 1 1 3 1 4
1 1 1 3 1 1 3 2 4
1 1 1 3 1 1 3 3 1
2 2 2 1 1 2 2 1 3
2 3 4 2 3 1 1 1 4
2 3 4 2 3 1 1 2 5
2 3 4 2 3 1 1 3 1
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