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ABSTRACT

GENE FUNCTION INFERENCE FROM EXPRESSION USING PROBABILISTIC
TOPIC MODELS

Tercan, Bahar

Ph.D., Department of Medical Informatics

Supervisor : Assist. Prof. Dr. Aybar Can Acar

August 2016, [R1] pages

The main aim of this study is to develop a probabilistic biclustering approach which
can help to elaborate on the question "Can we determine the biological context of a
sample (tissue/condition etc.) using expression data and associate the contexts with
annotation databases like Gene Ontology, KEGG and HUGE to discover annotations
(like cell division, metabolic process, illness etc.) for these contexts?". We applied a
nonparametric probabilistic topic model, Hierarchical Dirichlet Process (HDP), which
was originally developed for text mining to extract unknown number of latent topics
from documents, to gene expression data analysis. In this study, the analogy is the
mRNA transcript to the word, the biological context to the topic and the sample to
the document. This study builds on previous studies that have, to varying extents,
been able to apply topic models to the problem of differential expression, and improves
on the current state of the art by producing a comprehensive and integrative method
to enhance HDP with prior information. The main areas of proposed improvement
are the preprocessing of gene expression data for topic models and the introduction
of informed priors to the HDP model. The results of experiments showed that prior
improved HDP successfully reveals the hidden biclusters in gene expression data with

higher robustness to changes in sparsity levels (number of samples) and prior strengths

(n).-
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Keywords: Expression data analysis, Probabilistic topic models, Hierarchical Dirichlet
Process, Prior smoothing, Biclustering
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OLASILIKSAL TEMA MODELLERI KULLANARAK GEN IFADESINDEN ISLEV
CIKARIMI

Tercan, Bahar
Doktora, Tip Biligimi Programi
Tez Yoneticisi @ Yrd. Dog. Dr. Aybar Can Acar

Agustos 2016 , [81] sayfa

Bu caligmanin temel amaci, "Ifade verisi kullanarak bir 6rnegin (doku/durum vb.) bi-
yolojik baglamini belirleyebilir miyiz ve bu baglamlar1 Gene Ontology, KEGG, HUGE
gibi yorumlama veritabanlar ile iligkilendirebilir miyiz?" sorusuna cevap bulmamiza
yardimci olabilecek olasiliksal bir ikili kiimeleme yaklagimi geligtirmektir. Baglangigta
dokiimanlarda bulunan bilinmeyen sayidaki gizli temalar1 gikartmak igin geligtirilen
ve metin madenciligi metodu olan olasiliksal tema modeli Hiyerargik Dirichlet Stireci
(HDP)’ni gen ifadesi veri analizine uyguladik. Bu ¢aligmada analoji mRNA transkript-
ten kelimeye, biyolojik baglamdan temaya, érnekten dokiimanadir. Bu tez calismasi,
tema modellerini farklilagsmig ifade problemine belirli bir dlgiide uygulamay1 bagarmis
caligmalarin tizerine insa edilmistir ve tema modellerinin gen ifadesi analizinde kulla-
nilmasi i¢in HDP’yi 6nciil bilgi ile gliclendirerek kapsamli ve biitlinciil bir metot ge-
ligtirilmistir. Onerilen iyilestirmenin temel alanlar1, gen ifade verisinin tema modelleri
igin 6n iglemesinin yapilmasi ve Hiyerargik Dirichlet Siirecine bilgilendirilmis 6nciillerin
eklenmesidir. Sonuglar, 6nciil iyilegtirilmis HDP’nin gen ekspresyon verisi igindeki gizli
ikili kiimeleri seyreklik seviyesi (6rnek sayisi) ve onciil giiciindeki (n) degisikliklerden
etkilenmeden bagarili bir sekilde ortaya c¢ikardigini gostermistir.

Anahtar Kelimeler: Ekspresyon veri analizi, Olasiliksal tema modelleri, Hiyerargik Di-
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CHAPTER 1

INTRODUCTION

Transcriptomics is the study area that aims to understand gene activity by measuring
messenger Ribonucleic Acids (mRNAs) within a cell or organism [1]. By examining
the transcriptome, total mRNA in a cell or organism, researchers can find out turned
on/turned off genes at a given time in a cell and this examination provides information
about gene’s effect on a particular phenotype. It is possible to know which gene(s) to
interfere with for curation of complex diseases such as cancer with this information.
This merit of gene expression analysis is facilitated in drug discovery and this is just
one of the usages of transcriptome data. Transcriptome data can also be used for
class prediction, class discovery, pathway analysis, biomarker detection, development
of prognostic tests, and disease-subclass determination, etc. [2].

The reason why transriptome is used for gene activity measurement is that gene reg-
ulation mostly occurs at transcription that is when Deoxyribonucleic Acid (DNA) is
transfered into mRNA.

Although every cell in an organism has the same DNA, different cells have different
gene expression profiles. This is differential gene expression and it is preceeded by gene
regulation. Differential gene expression is responsible for the differences among tissue
types. It causes brain cell to be different from liver cell and as a consequence, brain
functions differently than liver.

Some of the differences between cancerous and normal cells can also be attributable
to gene regulation. Besides many attributes differentiate the onco and normal cell like
ability to metastasize, difference in appearance etc, we want to give an example of
the cell death difference in onco and normal cells. The inactivation of tumor supressor
genes like p53 will cause the cell not to undergo apoptosis (programmed cell death) and
will continue to reproduce despite being too old or damaged, with increasing mutations
causing malignant tumors [3].

The differential expression of a gene is assumed to give clues about existence of bio-
logical conditions in which the gene is known to take role in. Visa versa is also valid;
once a gene is discovered and its function is not known clearly yet, the tissue or biolog-
ical condition in which it is differentially expressed gives information about the gene’s
function.

Besides investigating single gene effects, we know that biological activity is usually
carried out by a coordination of several genes and our aim is to find gene expression



patterns seen in a cellular activity or biological function, we need to find the group
of genes expressed in a correlated way and we can cluster genes according to their
expression levels under different conditions (samples) for this purpose. Samples can
also be clustered according to their expression profiles to find out similarities between
conditions. Traditional clustering algorithms like k-means, SOM, etc. can perform
clustering on all the feature set, that is sample profiles of all genes for sample clustering
and gene expression profiles of all samples for gene clustering. This process can be
visualized as in Figure (1.1

Samples Clustered Samples

Clustered Genes
Genes

Figure 1.1: Traditional clustering of gene expression matrix, gene clustering on the left
and sample clustering on the right side.

Traditional clustering approach has some shortcomings like restricting samples or genes
to a single cluster, and causing noisy genes to join a cluster causing deteoriation of the
clustering process. There is a study [4] which can get rid of the obligation to cluster
a gene into a single cluster. By this study, genes can be clustered into multiple or
none clusters. To us, apart from these shortcomings, the most important limitation
of traditional clustering algorithms is their global modeling. Global modeling does
not always suffice to model gene behavior. A group of genes may be differentially
expressed in some conditions and they may be totally uncorrelated in other conditions
due to being co-expressed in a cellular process which is active under only a subset of
conditions.

There is an obvious need for local modeling. Local patterns (correlated expression
of a subset of genes in a subset of conditions) in gene expresssion data can be found
by clustering genes and samples simultaneously. This clustering approach is called

biclustering |§|| .

1.1 Motivation

There are different biclustering approaches. Traditional biclustering algorithms like
Chen and Church’s algorithm [5] and Spectral Biclustering can extract biclusters
in gene expression data but the extracted biclusters do not always model biological
reality. The biclusters found by these algorithms are binary and exclusive that is a
sample or a transcript can belong to one or no bicluster as can be seen on left side of

Figure
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Figure 1.2: Traditional biclustering of gene expression matrix

The aforementioned biclustering approach underestimates the complexity in the na-
ture of gene expression data. A sample is not limited to a single biological event,
samples have a mixture of these events where each of these biological events can be
seen as a differential expression of a group of genes. A very similar condition applies
to the gene side of the biclustering process. Genes (especially regulatory genes) differ-
entially express due to different roles in many different contexts for different reasons.
Transcripts are "polysemic" or "context-sensitive" in other words. This "context sen-
sitiviy" is mentioned in several publications. A few examples of these publications are
on miRNAs. Gabriely et. al. , have stated that miRNA-10b acts differently in dif-
ferent cancer types, for example it fosters metastasis in breast cancer but apoptosis in
glioblastoma. Blenkiron et al. IEII have reported that overlapping subsets of a group of
miRNAs have context-specific roles in different types of breast cancer (luminal, basal).
Zhou et al. have used context-specific miRNA activity as feature space for SVM
classifier and achieved much more accurate prognosis prediction on breast and brain
cancer than using feature space on mRNA expression.

The context-sensitivity in gene expression data requires it to be handled with over-
lapping biclusters where a gene or a sample can belong to more than one bicluster.
This approach can be seen on the right side of Figure PLAID model , FLOC
model and ISA model are some examples for methods that can find overlapping
biclusters.

There is even a better solution, context-sensitivity can be represented by soft biclus-
ters, letting genes and samples have membership to different biclusters with different
degrees. In order to achieve soft biclustering, we propose a model where samples
are mixtures of biclusters and biclusters are mixtures of gene expressions. Namely,
a bicluster is a probability distribution over transcripts and a sample is a proba-
bility distribution over biclusters. This model is called Bayesian Mized-membership
Model [14). Bayesian Mixed-membership Models are commonly used in text mining
and their domain-specific name is "Probabilistic Topic Models" . Probabilistic La-
tent Semantic Analysis (PLSA) [16], Latent Dirichlet Allocation (LDA) [17], and the
Hierarchical Dirichlet Process (HDP) [18| are among the most commonly used topic



models.

Clustered Samples

Clustered Genes

Overlapping Probabilistic
Biclusters

Figure 1.3: Our biclustering approach

In the text domain, a document is a mixture of words and a corpus is a mixture of
documents. A document is treated as being "bag of words", this means the order of
words is not important in a document and also the order of documents is not important
in a corpus. This case is very similar to the problem at hand. The order of samples
is not important in gene expression data and the order of transcripts in a sample is
again of no importance. The "bag of words" assumption fits our problem even better
than text domain since the order of words may be important in phrases but a sample
is exactly a "bag of transcripts".

The topics in topic models can be considered as mixtures of semantically related words.
Indeed, each topic is a probability distribution over word types in the entire corpus.
We can sort the words based on their probability values in a topic in descending order
and set a threshold on either number of words to include or a cumulative probability
distribution of words (such as top 10 words or the top words that explain 50 percent
of the topic), we can cut at the threshold and use the top words as the topic with or
without their probability values. If we include the probability values, this will give us
the weight of each word in a topic. In our case, a topic is a mixture of biologically
related transcripts. Hence, the topics in mixed-membership models are analogues to
soft biclusters that we are seeking. In our analogy, the topics can be functional modules
of gene products, in other words biological contexts. Samples are mixtures of these
biological contexts. We are going to call biological contexts as topics to be consistent
with the literature throughout this thesis.

Different subsets of genes may over- or under- express in different topics and a certain
gene may be significant in multiple contexts. All probabilistic topic models can handle
this context sensitivity issue but parametric topic models like PLSI and LDA need
many runs and model selection to find the number of topics that fits the data best.
The number of topics has to be set beforehand and it is not easy to know the number
of biological contexts active in a set of samples.

The HDP model is nonparametric and it infers both the topic distributions and number



of topics from data. HDP assumes an infinite number of topics but concretizes a finite
number of them. We worked on HDP not to be forced to estimate number of topics
before running the algorithm.

The results of this study are expected to have beneficial impact on the study of the
differential expression of highly context sensitive genes and gene products such as
microRNAs, transcription factors and other genes with high centrality in cellular pro-
cesses. As such genes typically regulate cell processes and have high impact in disorders
like cancer; we hope that this study will indirectly benefit the research in these areas.

1.2 Problem Statement

The crux of our study is to find out the situation of a sample by biclustering gene
expression data. We achieve this using the workflow which can be seen in Figure [I.4]

In the system, first gene expression data is converted into a format that is applicable
to topic model which is originally a text mining method. Since we are not just using
the method as is, we also prepare the prior information in the pre-processing step.

The simplified graphical representation of the Probabilistic Biclustering (Topic Model)
Mechanism we propose can be seen in Figure please see Figure (d) for the
detailed representation.

In Figure S is the sample, G is the gene and z is the topic assignment, M is
the number of samples and N; is the number of observations in sample j. Shaded
variables are observed, unshaded variable is latent to be inferred during biclustering
process. The number of topics is inferred by the topic model as well.

After running the probabilistic biclustering algorithm, we have two distributions as
its outputs. First is sample-topic, P(topic|sample), and the second is gene-topic,
P(geneltopic), distribution. Note that the topics are the pivot elements between sam-
ples and genes, they provide the connection between genes and samples. We are also
interested in annotation-topic distribution, P(annotation|topic), which can be inferred
from annotation databases by using P(annotation|gene) of most representative genes
of each topic with geneset enrichment.

The outputs of the biclustering can be used in several ways. First usage utilizes all of
the distributions mentioned above to label samples, we can annotate topics by gene
set enrichment of the top genes of each topic. Thus, we have the biological meaning
of topics. The topics which are dominant in each sample, top topics of each sample,
can explain the sample’s situation (cancer etc.), in turn.

On the other hand, genes’ features are topics and samples’ features are topics, again.
Unlike using one side of the gene expression matrix as features of the other side, the
features which are composed of topics are local modeled. That is, if samples and genes
are classified or clustered according to this new feature set, it is possible to recover
gene expression similarities due to their correlated expression in only subset of samples
and sample similarities due to their gene expression patterns in a subset of genes and
this alleviates the problem caused by global modeling approach of traditional clustering
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algorithms. We do not suffer from the disadvantage of traditional clustering/classifica-
tion algorithms, although we use them. Especially in sample clustering/classification,
we alleviate the problem of curse of dimensionality because we will be using tens of

topics instead of thousands of genes.

For another usage of topic models in bioinformatics, the top genes in a topic can be used
for gene regulatory network construction or module detection. This can be achieved
by combining the gene-topic distribution output of topic models with the information
about transcription binding sites and tf-gene interaction, to our best knowledge there
is no such a study.




Figure 1.5: The Plate Model of Probabilistic Topic Model

1.3 Contribution

The main contribution proposed in this study is the use of nonparametric topic model,
Hierarchical Dirichlet Process (HDP), in biclustering microarray data while taking
account the prior information. The prior information we have incorporated to stan-
dard HDP is taken from either an external gene regulatory network or co-expression
information calculated over the correlation of gene expression matrix.

HDP is a nonparametric Bayesian model. Bayesian models have prior belief about
their parameter distributions and update this belief with observations. If the num-
ber of observations is enough to represent the tendency in data, posterior parameter
distribution is sound. If the number of observations is small compared to number of
parameters (n << p), the posterior won’t be well-defined. Starting from an accurate
prior belief enables the model to work on a smaller space configurations and this gives
better results with less number of observations.

The previous applications of HDP in gene expression data analysis have used the
method as is with respect to prior distribution. Standard HDP assumes flat prior
distribution over transcript-topic distribution. So the previous applications do not take
into account gene co-expression or co-regulation information in their prior transcript-
topic distribution. These studies will be summarized in Section 2.8 In this study, we
proved that prior informed (using this information) HDP can mitigate data sparsity
problem and also the model becomes robust to hyperparameter changes. Incorporating
informed prior into HDP enables modeling mixed-memberships on sparse data more
successfully. Our model works without necessity to specify the number of topics in
advance, this is an inherent attribute of HDP and left intact in our model.

In transcriptomics studies, number of genes is in the thousands and number of sam-
ples is generally in the tens. The standard approach used in order to evade curse of
dimensionality problem, genes that are not differentially expressed or having high cor-
relation to each other can be removed with gene selection methods, the rest of analysis
can be done with the remaining distinguishing genes. The removal of genes that are



not differentially expressed is handled through our preprocesing approach defined in

Section B.1.2.11

1.4 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2] we gave background
information about microarray and RNA-seq data which are valid input to our prepro-
cessing for topic models. We mentioned different topic models: unigram, mixture of
unigrams, PLSI, LDA; nonparametric Bayesian models, Dirichlet processes and HDP
and also two metrics used in topic model evaluation, perplexity and topic coherence.
We explained gene set enrichment analysis, hypergeometric distribution of genes and
gene set enrichment analysis tools. In Section we summarized previous work on
the application of topic models to gene expression and the incorporation of priors to
topic models.

In Chapter [3] we described our model "Externally Smoothed HDP" with compari-
son to previous mixed membership models, Probabilistic Latent Semantic Indexing
(PLSI), Latent Dirichlet Allocation (LDA) and Hierarchical Dirichlet Process (HDP).
We explained the preprocessing approach we adapted to be able to use topic models for
gene expression data analysis. We proposed two methods for encoding the priors: "Co-
expression smoothing" and "Network-based smoothing". "Co-expression smoothing"
uses the correlation of data and "Network-based smoothing" uses external gene-gene
interaction networks as prior information. We proved that both smoothing approaches
enhance success of original HDP algorithm in gene expression data analysis.

In Chapter[4, we mentioned several experiments which were carried out using HDP and
Smoothed HDP algorithms. First experiment was performed to establish the perfor-
mance of HDP in finding pre-seeded biclusters. HDP algorithm successfully recovered
the biclusters in two dimensional datasets of 2, 4 and 8 biclusters. Second experiment
was performed to make sure prior smoothing works as we expect. We tested HDP
and Smoothed HDP algorithms on a test platform which was originally created by Yee
Whye Teh [19] to test HDP algorithm. The results showed that Smoothed HDP algo-
rithm finds topic distributions over words and number of topics much more successfully
than original HDP algorithm in every sparsity level (number of documents) and prior
strength (7)) value combination. In the third experiment, we performed quantitive
evaluation of Smoothed HDP algorithm using the model comparison metric Akaike
Information Criterion (AIC) which provides a trade off between model complexity and
likelihood of model given data. According to results of AIC experiment, Smoothed
HDP algorithm is of more quality compared to HDP algorithm under every sparsity
level (number of documents) and prior strength (7 ) value combination. The fourth
experiment was performed on a semi-synthetic dataset generated using Syntren [20].
In this experiment, we used a yeast transcriptional network, we first fully perturbed
some of the hub genes individually to know the gene expression profile generated owing
to each perturbation. Resultant gene expression profile of perturbation of each hub
gene fully was regarded as a topic. We perturbed different hub genes at different levels
to generate gene expression data of each sample. We then ran HDP, Co-expression
Smoothing HDP and Network-based Smooothing HDP algorithms and tried to find
the latent topics we had seeded in the experiment set. Both Co-expression Smoothing



HDP and Network-based Smoothing HDP revealed the latent topics more successfully
than HDP under every sparsity level (number of samples in this experiment) and prior
strength(n) combination. In the fifth and last experiment, we worked on a dataset
from prostate cancer study by Dhanasekaran et. al. [21]. In this experiment, we eval-
uated comparative success of HDP and Co-expression smoothing HDP in two metrics.
First is dependent on sample-topic distribution and sample labels. We compared each
sample’s label with that of the sample which is most similar to it according to its
topic distribution. Second is based on the topic coherence metric given in Section
this metric measures how often the top words of each topic are seen in the same
documents in the original dataset, its implicit assumption is that if a group of words
are seen together in the same documents in the original corpus, it means that they are
related, so they should be found in the same topic. In both evaluation approaches,
Co-expression Smoothing HDP provided more successful and consistent results over
different 7 values.

In Chapter [f], we discussed our approach, contribution and the results of experiments,
commented on future directions and concluded the thesis.
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CHAPTER 2

BACKGROUND

In this chapter, I give brief background information to enable readers to familiarize
themselves with the materials covered in the rest of this thesis study. We begin with
basic biology information in Section 2.1 and continue with the data types, microarray
data and RNA-Seq data in Section 2.2 In Section [2.3] we provide introductory in-
formation about probabilistic topic models and list the probabilistic topic models in
evolutionary order: unigram, mixture of unigrams, PLSA and LDA. In Section [2.4] we
point out the differences between frequentist and Bayesian approaches and paramet-
ric and nonparametric Bayesian methods. We touch upon properties of the Dirichlet
Processes, different metaphors for constructing the Dirichlet Processes and Hierarchi-
cal Dirichlet Process. In Section we address the post evaluation issue of topic
models and mention a topic coherence metric defined by Mimno et.al [22]. In Section
2.6 we give definition and formula of perplexity which is a measure for prediction
power of probabilistic models. In Section [2.8] we refer to the previous studies on both
mixed membership model usage in transcriptomics studies and informed priors in text
domain.

2.1 Background Biology

The cell is the smallest unit in an organism and it contains all genetic information
of the organism in it. The genetic information in the cell is stored in a nucleic acid
type called deoxyribonucleic acid (DNA). The gene is a segment of the DNA and it
contains necessary information to create functional structures, that are proteins. The
other nucleic acid is the ribonucleic acid (RNA) and a special type of RNAs, messenger
RNA (mRNA), maintains the flow of information in protein synthesis. First, the gene
on DNA is transcribed into mRNA and mRNA is translated into building blocks
of protein, that are amino acids. The flow of information can be summarized as
follows |23]:

DNA — mRNA — Amino acid — Protein — Phenotype (cell) — Phenotype (sample)

Samples are the biological materials like tissues and phenotypes are the visible char-
acteristics like cancer, non-cancer.

If the gene is transcribed into its mRNA, it means that it is expressed and the tran-
scription level is its gene expression and can be measured by microaarray or RNA-seq
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technology. The importance of measuring the amount of mRNA is that it gives infor-
mation about the amount of protein and proteins’ functions determine the phenotype.

We call mature mRNAs (containing only exons) mRNA transcripts. Gene and tran-
script terms are used interchangeably throughout this thesis study.

2.2 Data Sources

The genome is the blueprint of all cellular processes and activities in a living thing.
Although every cell contains a copy of whole genome, not all the genes are expressed
equally in each cell every time. This is called differential gene expression [24]. We are
interested in differential gene expression because a successful understanding of gene
expression will lead us to understand cell function and pathology. Gene expression
levels can be measured via mRNA amounts and mRNAs are captured with microarray
chips in microarray technology. There are two main types of microarray chips: first
type is spotted or cDNA microarrays and second type is oligonucleotide chips [25].
In spotted or cDNA microarrays, a probe is a complementary copy of original DNA
and corresponds to one gene. Two classes of tissues (for example, healthy vs. cancer)
are dyed with different colors and they compete to hybridize with probes. In oligonu-
cleotide chips, a gene is represented by a probe set. In this technology, a sample is
hybridized on one chip.

In microarray technologies, raw microarray data are scanned as images, fluorescence
readings from these images are transformed into mRNA expression values [26]. The
datasets used in our experiments come from oligonucleotide chips. One of the meth-
ods for normalization array images into mRNA values for data retrieved with oligonu-
cleotide chips is Robust Multiarray Analysis (RMA) |27]. RMA is a technique that
consists of background correction, normalization across arrays, probe level intensity
calculation and probe set summarization. After this method is applied to raw data,
the gene expression matrix where the mRNA expression values are stored is obtained.
In a gene expression matrix, rows represent genes and columns represent samples (like
tissues, experimental conditions), hence each cell represents the expression level of a
particular gene in a particular sample |28]. Genes can be clustered according to their
expression levels under different conditions (samples) especially for discovery of regu-
latory motifs and conditions (samples) can be clustered according to their expression
profiles to find out condition similarities |5|. Analysis of local expression patterns in
gene expression matrix is also essential because genes may co-express under a subset
of conditions and be independent in other conditions; this simultenous clustering of
genes and conditions is called biclustering of microarray expression data [6].

Before analyzing the gene expression matrix, it should be cleaned from genes exhibiting
little variation across samples (like house-keeping genes). This is especially important
in topic modeling because house keeping genes play a similar role to stop words in
text mining. If this process is skipped, the prevelant genes across the experiment will
dominate all topics and the differences among topics will be obscured.

An alternative to microarray technology is high-throughput sequencing of cDNA (RNA-
Seq). RNA-Seq counts the number of discrete sequence reads while hybridization-based
array methods (microarray) measure continuous probe intensities [29]. Raw RNA-Seq
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data is usually in FASTQ format. It contains an ID number for each read, the read se-
quence, and a quality score [30]. Low quality reads are removed and rest are mapped
to a reference genome. After splice junction detection and gene/isoform expression
quantification, differential expression analysis is performed [31].

RNA-Seq data has many advantages over microarray expression data. Both RNA-
Seq and microarray data can detect differentially expressed genes but only RNA-
Seq data can detect abundances of alternative isoforms. RNA-Seq data favors larger
dynamic range and less background and technical variation [32]. Microarray data is
usually used for comparing the same gene across multiple samples/conditions but not
expession levels of different genes in a single sample because of cross-hybridization
effects on probe intensities. RNA-Seq data makes it possible to do such analyses.
RNA-Sequencing is possible for any organism while microarray platforms are only
available for model organisms [33].

Besides these advantages, RNA-Seq data has its own limitations. The reads are not
uniform along genome, more reads are mapped to longer genes and there is an artificial
correlation between differential expression and gene length; this effects within sample
analysis. Reads Per Kilobase of transcript per Million (RPKM) and Fragments Per
Kilobase of transcript per Million (FPKM) are used methods for normalizing expression
of genes with different length within a sample. Dependence to sequencing depths and
library sizes effects comparison among samples and different normalization algorithms
like Trimmed Mean of M-values (TMM) |34] is used to make the same genes in different
samples comparable [32].

2.3 Probabilistic Topic Models

Probabilistic topic models automatically extract hidden topics from document sets,
in other terms, corpora. They achieve this by considering a topic as a probability
distribution over words and a document as a mixture of topics [35]. These models
define a joint probability distribution on both latent and observed variables; conditional
distributions of hidden variables are calculated given the observed ones [15].

Probabilistic topic models are both generative and discriminative. As a generative
model, a document can be composed by sampling words from topics according to weight
given to each topic; and as a discriminative model, they can be used for statistical
inference of topics that have generated the observed words in corpora.

The probabilistic topic models from the most naive one, the unigram model, up to the
Latent Dirichlet Allocation are explained below:

2.3.1 Unigram

In this model, the "bag of words" assumption is essential as it is in all other topic
models. For every document di ;s in the corpus, its observations wi, y are sampled
independently from a single multinomial [17]. The graphical representation of the
unigram model can be seen in Figure [2.1]
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Figure 2.1: The Plate Diagram of the Unigram Model

N

M

The probability of a document can be calculated as follows:

P(w) = [] Plwn) (2.1)

Unigram model can also be explained in a geometrical perspective. Like all topic
models, unigram acts in the space of distributions over words. Each distribution is a
point on the (V' — 1) simplex where V' is the number of word types and this simplex is
known as word simplex. The unigram model selects a single point on the word simplex
and assumes that all the observations in the corpus originate from this distribution
[17].

2.3.2 Mixture of Unigrams

This model is an extension of the unigram model [17] with a latent variable topic z. In
this model; for each document, first a topic z is chosen and words wy__n are sampled
from this topic. The graphical representation of the mixture of unigrams model can

be seen in Fig.

O—+@,

Figure 2.2: The Plate Diagram of the Mixture of Unigrams Model

M

The probability of a document can be calculated as follows:

N
Pw) =Y P(2) ] Plwnl2) (2.2)
Z n=1

This model assumes that a document can be related to only one topic and it is unre-
alistic to assume that each document is relevant to a single topic.
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From a geometrical point of view, the mixture of unigrams model selects one of the
points on the word simplex for each document and observations of the document
originate from this point, in other words, each observation of the document is drawn
according to this distribution [17].

2.3.3 Probabilistic Latent Semantic Analysis (pLSA)

Latent Semantic Analysis (LSA) is a method used for data reduction in text mining
[36,137]. Let a term-document matrix have terms in rows and documents in columns.
Each cell consists of the number of occurance of the row-indexed word in the column-
indexed document, we can find term similarities by correlation of rows and document
similarities by correlation of columns. The number of features of a document is the
number of terms, and the number of features of a term is the number of documents.
This is a very sparse matrix and LSA offers to reduce the number of features of both
terms and samples by using the Singular Value Decomposition method. This method
breaks the term-document matrix A into linearly independent components:

A=USVT (2.3)

where A is the term-document matrix, U is the matrix whose columns are orthonormal
eigenvectors of matrix AA”, S is the diagonal matrix having square roots of eigenval-
ues of U or T in descending order, V is the matrix whose columns are orthonormal
eigenvectors of matrix AT A.

In this equation, the first few columns of U and V carry information that accounts for
the most variation in the data. We can select a number of eigenvalues beginning from
the largest one and the corresponding eigenvectors in the columns of the matrices U
and V. The number of features of words and documents become this value, hence the
data reduction is realized.

The word and document are represented as rows of reduced form of U and V respec-
tively and their similarities can be computed over this matrices instead of original
term-document matrix.

This method is effective in data reduction and also noise filtering but it has limitations.
The selection of the number of features is arbitrary and this method can not handle
polysemy which is very common in text domain.

This limitations are overcome by pLSA model. pLSA has a statistical foundation,
model selection is possible and this attribute can alliveate the problem of choosing the
number of latent factors randomly. In pLSA model, each observation in a document
is sampled from a topic, which can be viewed as a multinomial random variable. Each
observation is generated from a single topic, and different observations in a document
may be generated from different topics and pLSA can handle polysemy. A document
can be viewed as a mixture of topics with a weight given to each topic [16]. The
graphical representation of the pLSA model can be seen in Fig.

In this model, document d and word w, are conditionally independent given latent
variable z.
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Figure 2.3: The Plate Diagram of pLSA where d represents the document, z represents the
topic and w represents the word. N is the number of words and M is the number of documents.

N

M

The joint probability of document d and word w,, can be calculated as follows:

P(d,w,) = P(d) Y P(z = 2]|d) P(ws|z = 2) (2.4)
2, €Z

The pLSA model allows a document to represent a mixture of topics but it has two
serious limitations which were later overcome by the LDA model. First limitation is
that pLSA learns topic proportions p(z|d) only for the documents in the training set
and does not provide generalization to unseen documents. The second limitation is
the number of parameters, kV + kM (k is the number of topics, V' vocabulary size, M
is number of documents), grows linearly with the number of documents, which causes
overfitting [17,38|.

If we turn back to the geometric interpretation, we now have a new definition: topic
simplex. A sub - simplex is built on the word simplex by selecting k& points where k
is the number of topics, the sub-simplex formed by these k points is called the topic
simplex. For each document, pLSA finds a document specific distribution over topics
and this means a point on the topic simplex. pLSA uses Expectation-Maximization
approach to find the distributions that maximize the parameters P(z), P(w|z) and
P(z|d).

LDA instead relates a document with a k-parameter hidden variable and builds a
Dirichlet distribution over it. This enables LDA to have distribution for both training
and unobserved documents. LDA is a truly generative model. LDA uses k + kV
parameters, the number of parameters do not grow with the number of documents
and LDA does not suffer from overfitting.

The distribution used over LDA’s word-topic and topic-document distributions is the
Dirichlet distribution and it can be defined as follows [39,[40]: Random variables
X1, Xs,..., X, have a Dirichlet distribution if they have a density function with pa-
rameters aq, a2, ...,0p and N =3 1 | ag:

. P(N) 7 o1
p(x1, e, ..., x) ~ Dir(ay,a9,...,qp) = ==———| | 23.F (2.5)
' ' H;:l (o) el F

where 0 <z <land >, _;zr=1

E(Xy) = (2.6)

Lk
N
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Let X be a random variable with event space 1,2,...,7 ,

P(X = k) = E(X})

Dirichlet distribution is a probability distribution over probability distributions and a
draw from a Dirichlet distribution is a probability distribution.

2.3.4 Latent Dirichlet Allocation (LDA)

LDA clusters words into topics and documents into mixtures of topics just like pLSA.
This is, in fact, a three level hierarchical Bayesian model where each document is
associated with a probability distribution over topics and each topic is a probability
distribution over words. The probability of whole words in a topic sum up to one and
the topic ratios of a document are, again, additive.

The plate representation of LDA can be seen in Figure In this figure, o and
are hyper parameters on 6 and ¢ . 6 is the per-document topic distribution, ¢ is the
per-topic word distribution and z is the topic assignment of each observation to be
estimated.

!
<
=

T N,

D

Figure 2.4: The Plate Diagram of LDA where D is number of documents, Ny is the number
of tokens in a document, T is the number of topics

When using topic models as generative model, 6, is a document level variable and
sampled once per document, ¢y, is a topic level parameter and sampled once per topic.
Z4n and wg, are observation level variables and sampled once for each observation in
each document.

The generative process of LDA can be summarized as follows [41]:
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1. For each topic, draw a distribution over words: ¢y ~ Dir(3)
2. For each document, draw a distribution over topics, 85 ~ Dir(«a)
3. For each observation of each document,
(a) Draw a topic assignment zg, ~ Mult(4) where 24, € 1,..., K.

(b) Draw a word wgq, ~ Mult(¢z4,) where wg, € 1,...,V.

The joint probability of 8, ¢, w and z given « and 3 is calculated as follows:

T N
p(W, z, 9|a7 ﬁ) = p((9|04) H p(¢]|ﬁ) H p(zn‘g)p(wn|¢zn) (27)
j=1 n=1

The exact posterior distribution of LDA is not tractable and there are variational,
Laplacian and sampling based approximation methods for inference in LDA [17]. In
this thesis study we used a sampling-based method "Gibbs sampling". By apply-
ing Gibbs Sampling to the LDA model, we are seeking the conditional probability
P(2(i5)|2-(,5), W, @, B) where z(; ;y is the topic assignment for the 4t word of the "
document and z_; ;) is the topic assignment of every observation in the corpus except
the current observation-topic assignment pair. Therefore for each topic k,

(”:E;,)j) + ) (”(ﬁd(z)y) + O‘)
n&zi’j) + VB) (n(di)) + Ta)

(4.

p(z(i,j) = k“zﬁ(ﬁj)vwvavﬁ) X < (28)

¢)
is the number of observations assigned to topic

(wi)

where nﬁ(;j) count for word type w; assigned to topic k, n

observations assigned to topic k, niCl(ii)j)
(di)

k in document d;, nii) is the document size, all not including the current observation
w;, V is the corpus size and T is the number of topics.

) is the total number of

This formula is calculated for every observation of each document iteratively until it

)

reaches a stable state. The other latent variables Hgk , the topic-document distribution

and ¢’(€w)7 the topic-word distribution are calculated from z as follows:

(d)
N n, + o
0\ = m o (2.9)
()
(k)
2(w) nw +f
D W VA (2.10)

where néd) is the number of observations assigned to topic k in document d, n((i.) is

the number of observations in document d, ng: ) is the number of observations of word

type w under topic k and nk_ is the total number of assignments to topic k. The most
representative words can be extracted out of ¢ and the prominent topics of documents
can be determined out of 6.
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2.4 Non-Parametric Bayesian Methods

Two main approaches for solving statistical problems are frequentist and Bayesian.
In frequentist analyses, parameters are fixed, in Bayesian ones, prior distributions
are placed on parameters [42|. Parametric and nonparametric Bayesian models differ
in model selection. If the data is to be explored with parametric Bayesian models,
different models with different number of parameters are fit to the data; a model
comparison metric that measures which one of the models fits the data best and a
penalty score that is higher in complex models are calculated and a trade off between
these two metrics is used to select the best model. However, complexity is adapted to
the data with Bayesian nonparametric models and number of parameters is estimated
by the model [43].

2.4.1 Dirichlet Process

One of the most commonly used prior distributions in nonparametric Bayesian models
is the Dirichlet Process (DP). DP is a distribution over distributions and has two
parameters. First is the base distribution as the prior belief and the second is the
concentration parameter as its strength [44]. It is symbolized as G «~~ DP(«, H) where
G is the Dirichlet process distributed with base distribution, H and concentration
parameter, . If the concentration parameter « is small, the samples of Dirichlet
Process will cumulate around small number of units, if it is large, the distribution of
samples will be similar to H.

Dirichlet process is indeed infinite dimensional generalization of Dirichlet distribution.

Some important attributes of a Dirichlet Process can be listed as follows [44,45]:

e F(G) = H that is the base distribution is the mean of the DP.

e Draws from a DP are discrete and probabilities are additive. So identical draws
are possible.

e The posterior distribution of a Dirichlet distribution given observations 1, ..., 0,
is
n
6
Glor, .. 0 ~ DP(av+ 1, O H 1 T 21 %) (2.11)
a+n atn n

where dp, is the unit mass function concentrated at ¢;. This is a weighted average
of the base distribution H and the emprical distribution

2 % (2.12)

n

The weights are o and n respectively. When the number of observations are
large enough, n > «, the posterior DP becomes more and more close to the
underlying distribution of data.

e Posterior distribution given 61, ..., 6, is the predictive distribution of 8,,41.
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2.4.2 Construction of Dirichlet Process

There are some methaphors used to explain the construction of the Dirichlet Process.
These are Blackwell - MacQueen Urn Schema, the Stick Breaking Construction and
Chinese Restaurant Process.

2.4.2.1 Blackwell — MacQueen Urn Schema

This metaphor is established by Blackwell and MacQueen in 1973 [46]. At the begining,
there is an empty urn G. A color is drawn from the base distribution H and a ball
is painted with this color and placed into the urn. In the subsequent steps either this
process is repeated or a ball is drawn from the urn and another ball is painted the
same color as the just drawn ball and both are dropped into the urn. At the n + 1st
draw:

e Either, a new color is drawn with probability ﬁ from the base distribution and
a ball is painted with this color and dropped into the urn.

e Or, a ball is drawn from urn with probability ;7 and a new ball with the same
color as the just drawn is dropped along with the drawn ball. Drawing of a ball
with a specific color is proportional to number of previous draws of balls wih its
color.

If {6'} are successive draws from the urn:

K

6n+1|017 ©y 0717 CE,H = Z
k=1

my % (6%
0
k n—+aoa

H (2.13)
n-+ o

where my, is the number of previous draws of the ball colored k from the urn G and
gy is the unit mass function concentrating at dgy, K is number of different colors in
the urn.

2.4.2.2 Stick Breaking

This definition was established by Sethuraman in 1994 [47]. Suppose that we have a
stick of unit length, we break it at a random proportion £; and assign 71 to the just
broken piece’s length. Repeat this process to get mo, 73, ... on the remaining stick
recursively [48].

By ~ Beta(1,a) = By [[5=1 (1 — B;) (2.14)

An infinite sequence of weights m = {7 }32, is referred to be distributed according to
GEM («), where GEM stands for Griffiths-Engen-McCloskey.

The random discrete probability G is said to be a Dirichlet Process symbolized as
G ~ DP(a,H) if
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G= Zﬂkégz where 0 ~ H (2.15)
k=1

2.4.2.3 Chinese Restaurant Process

In Chinese restaurant process analogy, a Chinese restaurant has countably infinite
number of tables, countably infinite number of customers can sit at a table. A customer
can sit at an occupied table or at the next unoccupied table. When customer X,
comes into the resturant,

e Either, they sit at an already occupied table k with probability
is the number of customers at table k.

mg
i where my

_a
n+ao

e Or, they sit at the next unoccupied table with probability

K

mg
9n+1|91,..,0n,a,H: E 59;;—1—
kzln—i-oz n-+ o

H (2.16)

where my, is the number of customer sitting at table k, K is number of allocated tables.
The tables can be thought as the colors in the Black— MacQueen Urn schema namely,
G; and the unallocated tables compose the base distribution H.

2.4.3 Hierarchical Dirichlet Process

Hierarchical Dirichlet Process (HDP) is a model that is built on the recursive con-
struction of Dirichlet Processes and it handles cases where data consist of groups
(i.e.documents) and each data point in a group (i.e observation) belongs to a latent
cluster (i.e. topic) and the latent clusters are shared across groups [49]. HDP-LDA
can be considered as nonparametric counterpart of LDA and while the number of top-
ics is given to LDA, the HDP-LDA model assumes the number of topics is infinite and
that can be inferred from data.

The graphical model of HDP-LDA can be seen in Figure 2.5] In this model H is
the prior distribution over topics. 6j; is a parameter specifying the topic associated
with x;;, the ith observation of j** document. Gy is the set of topics and G samples
a subset of topics to use in document j from its base distribution Gy. + and « are
concentration parameters for Gy and G; respectively. These concentration parameters
govern variability.

In HDP construction the Dirichlet process G ~ DP(a,Gg) is drawn from another
Dirichlet distribution Gy ~ D P(ay, H) which forces G to replace its atoms on discrete
places determined by Gy [50] because support of each draw from the G distribution
has to be a subset of the support of its base distribution GGo. This enables sharing
atoms of G distribution across G; distributions.
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Figure 2.5: HDP-LDA model for topic modeling

The HDP model can be summarized as follows:

Go ~ DP(ag, H) (2.17)
G;|Gy ~ DP(a, Gy) (2.18)
gji’Gj ~ Gj (2.19)

;il0ji ~ F (i) (2.20)

where F'(0;;) is the distribution of x;; given 6;.

Chinese Restaurant Franchise Sampling is a metaphor used for inference in Hierar-
chical Dirichlet Process. In this analogy, there is a two level hierarchy of Chinese
Restaurant Processes. It uses a seperate Chinese Restaurant Process in each group
(i.e. document). These are document level CRPs. Since latent variables are shared
across groups, a corpus level CRP is defined as the upper level and the dish (i.e. topic)
of the tables in the customer level CRPs are sampled from this layer.

Probabilities for the lower (customer) level CRP calculated using Gibbs sampling are
shown in the following equations: [50].
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The probability of the last customer sitting in a previously selected table.

—Jt

plti = 1) ~ —Fp (i) (2.21)
! g
J..

The probability of the last customer to open a new table but with a previously sampled
topic.

—ji
o m.k

n7 famit

p(tjs =t"%and  kjpnew = k) ~ fe({zji}) (2.22)

The probability of the last customer to open a new table and sample a new topic.

— i
p(tjz = tnewand ]Cjtnew = ]{)new) ~ n_‘j’t o mﬁji T ’Yfknew({le}) (223)
.. -

where t;; is the table at which customer ¢ in restaurant j sits, nj; is the number of
customers sitting at table ¢ in restaurant j, n;. is the number of customers in restaurant
7, my is the number of tables serving dish k, m_ is the total number of tables, —ji
means that customer ¢ in restaurant j is removed from CRF.

Probabilities calculated for the upper (menu) level CRP by using Gibbs sampling is
as follows: [50].

—gt
M g A
p(kje = k) ~ w1 S felas st =1}) (2.24)
new ’Y new . _
plhse = K"0) ~ g f (gt = 1) (2.25)

2.5 Topic Coherence

After data is clustered into topics, quality of topics should be evaluated in order to
get rid of incoherent topics. Since words with highest probability in each topic are
representative for the topic, in a high quality topic, it is expected that each most
representative word’s conditional probability given the other most representative word
should be high. A topic coherence metric in a pairwise fashion is defined as follows
[22]:

M m—1 ) (b
D(vy,v;7)+ 1
ct,vW)y=> log ( ét)) (2.26)
m=2 [=1 D(Ul )

where D(v) is document frequency of word type v that is the number of documents that
word type v seen at least once, D(vy,, v;) is the co-document frequency of word types vy,

and v; i.e the number of documents containing both v,, and v;. V® = (Vl(t), VN V]&t))
is a list of most probable M words in topic ¢.
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2.6 Perplexity

Perplexity is a measure of prediction power of a probabilitistic model on test data
and monotonically decreases with likelihood. Lower perplexity values mean better
generalization. In probabilistic topic models, for a test set of M documents, perplexity
is:

M
Zd:1 Nd

where wy represents the words in document d, Ny is the number of words in document
d.

M
l
perplexity(Diest) = exp {—M} (2.27)

2.7 Gene Set Enrichment Analysis

After genes are clustered together, we consult gene databases to find out the biological
interpretation of the relevant genes. Three of the databases are the Gene Ontol-
ogy (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Human
Genome Epidemiology Network (HuGENet).

Gene Ontology(GO) [51] has a directed acyclic graph structure where the specificity
increases from root to leaves. It has three main divisions: Cellular Compartment,
Molecular Function and Biological Process. Cellular Compartment is the place where
a gene product is active in a cell. Ribosome and nuclear membrane are example terms
of cellular compartment. Molecular Function is the biological activiy of a gene product.
Enzyme and transporter are example terms of molecular function. Biological Process
is the biological objective which a gene/gene product takes role in. Translation and
cAMP biosynthesis are example terms for biological process.

The KEGG database relates gene information to pathways and groups genes according
to the biological pathways that they take role in. It has three databases: GENES for
gene catalogues, PATHWAY for functions in terms of interacting module network and
LIGAND for cellular chemical compounds, enzyme molecules and enzymatic reactions
[52].

HuGENet maintains a database for published epidemiologic studies of human genes
extracted from PubMed. Each article is indexed with MESH terms (by MESH hierar-
chical structure) and gene information from the NCBI Gene database [53].

2.7.1 Hypergeometric Distribution of Genes

If we can answer if a specific GO term or KEGG pathway is enriched in the gene list,
the resulting terms can be biologically meaningful in describing the set of differentially
expressed genes or the gene clusters found. In that sense, an overrepresentation test
of genes can be achieved by using the hypergeometric distribution.

Let N be the total number of genes in the universe of the experiment, M be the
number of genes annotated with a specific GO term or KEGG pathway, n genes are
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differentially expressed or form a cluster, £ of these n genes are annotated by the
specific GO term or KEGG pathway.

The probability for each k is:

P(X =k)= ~ (2.28)
(n)
The probability of having at most £ genes:
LGS
P(X <k)=)» -t (2.29)

= G

In the GO database, less specific nodes contain more specific nodes, so the nodes at
root or in upper levels can achieve significant p values although these terms are not
very informative. We need to set a limit for the number of genes annotated with the
terms, and exclude the terms exceeding the limit [54].

2.7.2 Enrichment Analysis Tools

The co-expression of genes should be biologically analysed, interpreted and the results
should be visualized. This process is called geneset enrichment analysis and as of 2009,
there were more than 60 tools developed for this purpose [55].

These tools can be studied under three categories:

1. Singular enrichment analysis (SEA)

SEA counts the enrichment of each term for the geneset and it compares the
number of differentially expressed genes to the term and compares the result with
random assignments, calculating the p-value based on statistical tests (e.g. Fisher
exact, Chi-square, Hyper-geometric etc.). The most well-known examples of SEA
tools are GoMiner, Onto-Express, DAVID, EASE, GOEAST and GFinder.

2. Geneset enrichment analysis (GSEA)

GSEA works on all the genes from the experiment without using any threshold.
It takes experimental results of all genes and the extent of differential expression
is important, unlike SEA methods which only consider differential expression as
a binary state. The Kolmogorov-Smirnov test, t-test and Z-score are commonly
used in GSEA tools like Fatiscan, T-profiler, and GOdist.

3. Modular enrichment analysis (MEA)

MEA combines SEA results with network information. This captures term-term
co-occurrences which distinguish between biological conditions. Statistical meth-
ods used in MEA tools are Kappa statistics, the Czekanowski-Dice distance and
Pearson Correlation. Examples of MEA tools are Ontologizer, topGO, ADGO
and GENECODIS.

25



A new gene set enrichment analysis tool enrichr [56] approaches gene set enrichment
analysis differently. While most of the gene set enrichment analysis tools rely on
only Gene Ontology, this tool uses 35 different gene libraries which can be divided
into six categories: t