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ABSTRACT

PRICING AND HEDGING OF QUOTIENT OPTIONS IN ISTANBUL STOCK
EXCHANGE

ÖZSOY, Ahmet Umur
M.S., Department of Financial Mathematics

Supervisor : Assoc. Prof. Dr. Ali Devin Sezer

AUGUST 2016, 42 pages

Multi-asset options are derivatives written on more than one underlying asset. As a
special case of multi-asset options, quotient options are written on the ratio of two
underlying assets. They may be used to replace pair trading. We review the literature
on quotient options within the Black-Scholes-Merton framework and pair trading. We
study the performance of the delta hedging algorithm given by the BSM framework
when it is applied to the quotient options traded in Borsa Istanbul. We also compare
the market prices of the same quotient options to the prices suggested by the BSM
model.

Keywords : option pricing, delta-hedging, Black-Scholes-Merton formula, quotient op-
tions, BIST30
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ÖZ

BORSA İSTANBUL’DA ORAN OPSİYONLARININ FİYATLAMASI VE
KORUNUMU

ÖZSOY, Ahmet Umur
Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ali Devin Sezer

AĞUSTOS 2016, 42 sayfa

Birden fazla dayanağa sahip opsiyonlara çoklu opsiyon denir. Çoklu opsiyonların
özel bir çeşidi olan oran opsiyonları dayanakların birbirlerine bölünmesiyle bulunur.
Oran opsiyonlar ikili yatırım stratejisinin yerine kullanılabilir. Bu çalışmada, oran op-
siyonların avantajları, fiyatlaması ve riskten korunum performansları Black-Scholes-
Merton (BSM) çatısı altında incelenmiştir. Oran opsiyonları ve ikili yatırım üzerine
kaynak taraması yapılmıştır. Oran opsiyonların Borsa İstanbul verileri kullanılarak
fiyatlaması ve korunumu uygulamaları BSM çatısı altında yapılmıştır. Fiyatlama için
BSM’den gelen formül kullanışmıştır. Ayrıca market fiyatlarıyla BSM modelinin fiy-
atları karşılaştırılmıştır.

Anahtar Kelimeler : opsiyon fiyatlaması, riske karşı korunum, Black-Scholes-Merton
formülü, oran opsiyonları, BIST30
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CHAPTER 1

INTRODUCTION

A financial derivative is a financial product(contract), whose value is derived from its
underlying (or underlying assets). In this study, a type of financial derivatives, quotient
options, is reviewed and applied to real-life data of Istanbul Stock Exchange.

The topic of our thesis, quotient options, is a class of multi-asset options, defined as
follows: given two prices S(1) and S(2), a quotient option call option with maturity T

and strike K pays
(
S
(1)
T

S
(2)
T

−K
)+

; here S(i) can be the prices of stocks, commodities,

futures etc. A model, based on the Black Scholes Merton (BSM) framework (including
explicit pricing formulas), to price these types of options is already in existence, see for
instance, [6], [10] or [26]. Because the quotient option involves two underlying assets,
the BSM model involves exponentials of two correlated Brownian motions (BM); the
correlation coefficient ρ between the BMs is one of the parameters of the models to
be estimated from data. The goal of this thesis is to apply the BSM framework to the
pricing and hedging of quotient warrants written on assets traded in the Istanbul Stock
Exchange.

The idea to design such an option originates from the strategy of pair trading, which
consists of trading two stocks whose prices are highly correlated, once the prices of
the stocks move away from each other the investor takes positions that would bring in
a profit when the stock prices converge back to each other. Pair trading by its nature
may involve many transactions on two underlying stocks; instead of a pair trade, to
reduce the number of transactions the investor may prefer to buy /sell a quotient option
written on the ratio of the stocks. Chapter 2 covers pair trading and quotient options in
further detail.

In Chapter 3 we review the BSM framework for quotient options. The treatment of
these options within the BSM framework is well known and a number of approaches
are available in the current literature. We review two of them: [26] and [6]. In partic-
ular, we review how these references derive explicit formulas for the price of the call
warrants; the derivatives of these prices give us the deltas to be used in the hedging
algorithm.

The main results of our thesis are given Chapter 4 where we apply the formulas of
the BSM model reviewed in Chapter 3. For S(1), S(2) we take two separate pairs:
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(Sabanci1 and Koc2 Holdings) and (Garanti Bankasi 3 and Akbank 4. Is Bankasi is
a market maker in Borsa Istanbul selling and buying quotient options on these pairs.
Chapter 4 does two things:

1. it applies the hedging algorithm implied by the BSM model to quotient options
on the above pairs over two initial dates (08.03.2016, 30.12.2015), two separate
maturities (30 and 60 days), four strikes (K = 1.5, 1.1, 1, 0.9) and two types of
options (puts and calls). For this, the model has to be fit to market data, which
we do by using historical volatility and correlation estimation directly from the
price data of the underlyings.

2. it compares the prices of the quotient options observed in the market to those
implied by the BSM model.

The hedging algorithm given by the BSM model is in continuous time; in real life
we obviously hedge in discrete time. Our price data is daily so we perform the hedge
daily. This and model error lead to a hedging error (which is identically 0 for a perfectly
hedged portfolio). A precise definition of the hedging error is given Chapter 4 and this
error (normalized by the initial price of the option) will be our primary performance
measure in our evaluation of the BSM framework. The interest rate is assumed constant
and is estimated from an average of the benchmark interest rate 5 over a single month
preceding the hedge period.

Further comments on our results and about future work is given in the Conclusion.

1 see https://www.google.com/finance?q=IST%3ASAHOL
2 see https://www.google.com/finance?q=IST%3AKCHOL
3 see https://www.google.com/finance?q=IST%3AGARAN
4 see https://www.google.com/finance?q=IST%3AAKBNK
5 see, e.g, http://www.bloomberght.com/tahvil/gosterge-faiz
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CHAPTER 2

QUOTIENT OPTIONS AND PAIR TRADING

Firstly we review the concept of pair trading, which is one of the motivations for trad-
ing in quotient options. Pair trading consists of buying two highly correlated stocks
whose difference or ratio follow a mean reverting process. When the ratio process
wanders away from the mean the trader expects it to return to the mean in a short while
and takes positions to benefit from such a reversion. A more detailed review is given
in the next section. Books on the basics and applications of the subject include [11],
[24] and [25]. As for real-life applications, one can refer to [22] for Brazilian financial
market, and to [13] for Dhaka Stock Exchange. Another interesting application on
energy futures markets can be found in [18].

Among the standard references on the Black-Scholes-Merton model (the model used
in this thesis) are [3], [15] and [20]. This thesis is concerned with the application of the
BSM framework to quotient options. There are a number of works deriving explicit
pricing formulas for a range of exotic options under the BSM framework, see, for
example, [26, 6]; both of these works cover quotient options. An early paper on the
pricing of quotient options under the BSM frameworks is [10]. In this work we will
mostly follow the exposition in [26], a review of the derivations in [26, 6] for quotient
options is given in the next chapter. Another reference of interest on exotic options is
[9]. Finally, we would like to mention [2] an application is given of quotient options
written on the ratio of futures contract.

2.1 Pair Trading

2.1.1 Introduction to Pair Trading

As we have already indicated in the precious section, pair trading consists of buying
two highly correlated stocks whose difference or ratio follow a mean reverting process.
When the ratio process wanders away from the mean the trader expects it to return to
the mean in a short while and takes positions to benefit from such a reversion. The goal
in pair trading is to have “market neutral” investment strategy, i.e., to obtain investment
results regardless of the direction of the market. A definition along these lines is also
given in [11]:

3



“Pairs trading: a non-directional, relative-value investment strategy that seeks to iden-
tify two companies with similar characteristics whose equity securities are currently
trading at a price relationship that is outside their historical trading range. This invest-
ment strategy entails buying the undervalued security while short selling the overval-
ued security, thereby maintaining market neutrality.”

However, there is major downside to pair trading; transaction costs. Suppose that we
execute pair trading strategy with two assets. At the beginning, we pay two commis-
sions for each of the short and long positions. At the end, to close the positions, we
again pay commissions. Meaning that four times we are faced with transaction costs
so as to execute pair trading. If the pair trading involves a longer horizon more trans-
actions may need to be executed for each mean reversion, adding to transaction costs.
For a discussion of sensitivity of profitability of pair trading to transaction costs see [5],
also [12]. A less costly alternative is to purchase a quotient option that is compatible
with the direction of the mean reversion, which we discuss in the next section.

2.2 Quotient Options

2.2.1 Foundations of Quotient Options

To lay the foundations of quotient options, one must define the necessary background
of these exotic options. Starting with exotic options, we now step by step define classes
of options, to narrow our focus on solely quotient options. Since we assert that quotient
option is a special case, now we have the following definitions.
Definition 2.1. An option with a different structure of payoff and underlyings is con-
sidered an exotic option.
Definition 2.2. An option written on more than one underlying asset is defined as a
multi-asset option, whose value depends on the overall performance of the underly-
ing assets. If assets are from different type from each other, multi-asset options are
sometimes also called cross-asset options.

What makes multi-asset options unique and difficult to price from other exotic options
is its number of underlyings. With multiple underlying, the dimension of the problem
and the computational complexity of the problem increase; this is the main challenge
with multi-asset options. These options are mostly traded over-the-counter. One may
have different reason to enter into exotic option positions, such as its different payoff
calculations giving advantages in some cases, or to hedge ongoing position through
its features of underlying assets. For more on exotic option see [26] and [6], on their
hedging refer to [23], and also see [9] for market applications. Now we move on to
define what is central in quotient options.
Definition 2.3. Correlation option is a multi-asset option written on correlated assets.

In some sources, such as [26], it is asserted that correlation options and multi-asset op-
tions refer to the same concept. It does hold true under some circumstances, however,
multi-asset option does not need necessarily to be written on correlated assets.
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Definition 2.4. Quotient option is a multi-asset option, written on the ratio of assets
S1 and S2. Let κ be a binary operator taking 1 for call option and−1 for put option, K
be the strike price and T be the time to expiration. European quotient option’s payoff
at expiration is given by

C =

[
κ
S2(T )

S1(T )
− κK

]+
. (2.1)

2.2.2 Correlation Between Assets

Correlated assets tend to move together regardless of the market direction. When it
is said that a pair of assets are correlated, we infer that assets’ returns are correlated,
not the prices. Meaning that ρ is the correlation coefficient between the returns of the
two assets, in terms of quotient option, returns of the two underlying assets. Before
explaining this concept from financial perspective, we first define two continuous ran-
dom variables X and Y , let f(x) and f(y) be their corresponding density functions,
and g(x, y) as their joint density function of X and Y . Means of continuous random
variables are given by the following

E(X) =

∫ ∞
−∞

xf(x)dx, (2.2)

E(Y ) =

∫ ∞
−∞

yf(y)dy. (2.3)

And the variances

V ar(X) = E[(x− E(X))2] =

∫ ∞
−∞

(x− E(X))2f(x)dx, (2.4)

V ar(Y ) = E[(y − E(Y ))2] =

∫ ∞
−∞

(y − E(Y ))2f(y)dy. (2.5)

Mean is the average. Thinking in terms of asset prices, it indicates on average what the
asset value takes on. Since we are calculating the returns of the underlying assets, we
can obtain the returns on average. Variance measures how spread the data is. Taking
square root of variance, we obtain standard deviation. In terms of our case, we calculate
the standard deviation σi for asset i , meaning that σ indicates to the standard deviation
of asset’s daily return over a period. This is also called historical volatility, or simply
volatility. One more concept is needed to calculate correlation, covariance.

Cov(X, Y ) = E[X − E(X)][Y − E(Y )], (2.6)

=

∫ ∞
−∞

∫ ∞
−∞

[x− E(X)][y − E(Y )]g(x, y)dxdy. (2.7)

5



Covariance indicates the relationship of two random variables. In our case, for in-
stance, positive covariance is an indicator of assets’ returns moving together, negative
covariance is also indicating the direction of two assets’, moving opposite. Now we
define correlation, which is given by

ρ =
Cov(X, Y )

σxσy
. (2.8)

As can be seen, covariance and correlation refer to the movements, indicating the di-
rection. What seperates correlation from covariance is that correlation also tells us the
magnitude or say the degree of movements. If we were to assume strong positive cor-
relation between two assets, we would be able to assert that two assets are moving the
same way, but now we are given a measure to answer how strong the relationship is.
Another example is that the correlation between gasoline prices and oil production in
total is negative due to supply and demand. Meaning that with more production, gaso-
line prices are inversely moving. Correlation takes values within [−1, 1]. If correlation
is 1, it is positive perfect correlation, if −1, it is negative perfect correlation.

In financial markets, assets having perfect correlation is theoretical. Therefore, we
assert that correlated assets move within these bounds. Since we are dealing with a
sample not the population, we utilize sample data formulas, instead of (2.2), (2.3),
(2.4), (2.5), and (2.6). Let us present the formula to calculate volatility, also see [15].

Let St be the price of the asset at time t, n + 1 number of observations, however
we calculate from the sample data so we use n − 1, and τ lenght of time interval
in years, we assume there are 252 trading days in a year. Define daily return ui for
i = 1, 2, 3, ..., n as

ui = ln

(
Si
Si−1

)
. (2.9)

With ū as the mean of daily asset returns, unbiased estimate s of the standard deviation
of the daily asset returns are given by

s =

√∑n
i=1(ui − ū)2

n− 1
. (2.10)

Variable s is an estimate of σ
√
τ , so that volatility is given by

σ̂ =
s√
τ
. (2.11)

Determining an appropriate value of n is challenging. A rule of thumb is suggested by
[15], if we value an option with time to expiration one year, use one year daily data to
compute σ, and then annualize it. Now we present formula for sample covariance in

6



terms of asset’s prices. We are given two assets S(1)
i and S(2)

i for i = 1, 2, ..., n with
σS(1) and σS(2) as volatilities of asset returns per annum, setting ui and vi of assets S(1)

and S(2), respectively, as the percentage changes (or returns) is given by the following.
Notice one can also use the form in (2.9).

ui =
S
(1)
i − S

(1)
i−1

S
(1)
i−1

, (2.12)

vi =
S
(2)
i − S

(2)
i−1

S
(2)
i−1

. (2.13)

The reason that they can be used interchangeably is that if one takes logarithm of
simple returns, logarithmic return is found. While ū and v̄ are mean values of asset
returns. Again we take n − 1 as the sample size and divide by it, so the covariance
formula is given by

Cov(S(1), S(2)) =
1

n− 1

n∑
i=1

(ui − ū)(vi − v̄). (2.14)

Therefore, using (2.14), the formula of correlation between two assets’ returns is ob-
tained

ρ =
Cov(S(1), S(2))

σS(1)σS(2)

. (2.15)

Back to the previous example, using the method above, the correlation coefficient of
assets’ returns is found as 0.8131. Since we are interested in the returns, not the prices
themselves. Let us now give a graphical example of assets’ returns.

7



Figure 2.1: Daily Returns of Bank of America and Morgan Stanley

It can be seen in Figure 2.1 that daily returns present similar movements, meaning that
a quotient option as well as pair trading can be applied for these two assets. Con-
sidering the payoff structure given (2.1), we also look for the graphs of price ratios
and return ratios of Bank of America and Morgan Stanley from New York Stock Ex-
change. Below graph could give us insight into the option to be written. For instance,
setting K = 2 would have created many opportunities, however, if we were to be
more precise: in the last hundred trading days setting strike price as 2 dollars would be
applicable for a call option with time to maturity is about of a quarter.

8



Figure 2.2: Price Ratio of Bank of America and Morgan Stanley

2.2.3 Modeling Multi-Asset Options

An asset’s behavior can be described by a stochastic differential equation. Using that
equation, we reach a one-dimensional partial differential equation (PDE). The multiple
asset case is no different. Now that we are given two assets, we have a set of stochastic
differential equations, one equation for each of the assets. After that, utilizing Ito’s
Lemma Multidimensional, what we reach is a multidimensional PDE governing the
dynamics of two-assets, and solved as a terminal-boundary value problem. Suggested
by [17], we should reduce the multidimensional PDE to one-dimensional PDE by in-
troducing suitable composed variables into the governing PDE. Now let us introduce
what is used to price quotient options. First we define geometric Brownian motion,
and the CEV model is given.

Let Z be a Brownian motion, µ be the percentage drift, and σ be the percentage volatil-
ity. The solution to the following SDE

dSt = µStdt+ σStdZt. (2.16)

is called a geometric Brownian motion with µ, σ ∈ R, and written as

St = S0e
(µ−σ

2

2
)t+σZt . (2.17)
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In a risk-neutral setting, µ can be replaced by r. However, it can also be replaced by
r − g with g as the dividend rate, see [26], such as

dS = (r − g)Sdt+ σSdZ. (2.18)

This process is quite common, and suggested in most cases, see [17]. For a detailed
discussion of geometric Brownian motion, see [19], and for a practical approach refer
to [15]. There is another process used in modeling multi-asset options, which is the
Constant Elasticity of Variance (CEV) model. CEV is put forward as

dSt = µStdt+ σSγt dZt. (2.19)

Each cases of the CEV model is studied, see [8] for the case of γ < 0, and thorough
literature review is given in [16], also suggested for pricing quotient options in [2] in
futures markets.
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CHAPTER 3

QUOTIENT OPTIONS IN CONTINUOUS-TIME

3.1 General Framework

In this part, we present the Black-Scholes-Merton model. The PDE for the standard
call option is the Black-Scholes-Merton framework will be referred to when analyzing
quotient options. Let P be the price of the security, r the interest rate,D as the dividend
rate, σ the volatility of the security, T is the expiration date and the option value is given
by C. The governing PDE of Black-Scholes-Merton is given by

∂C

∂t
+ (r −D)P

∂C

∂P
+

1

2
σ2P 2∂

2C

∂P 2
− rC = 0. (3.1)

which is subject to final condition C(P, T ) = max(P −K, 0)

C(P, t) = Pe−D(T−t)N (d1)−Ke−r(T−t)N (d2), (3.2)

d1 =
ln( P

K
) + (r −D + σ2

2
)(T − t)

σ
√
T − t

, (3.3)

d2 = d1 − σ
√
T − t. (3.4)

Here N denotes the cumulative distribution function of standard normal distribution.
For more information on this model see [3], [20] and [21].
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3.2 Pricing Quotient Options

3.2.1 A Model For Pricing Quotient Options

A pricing formula for quotient options is already derived by [6], or [26]. Here we set
out to study the formula step by step. The price processes are assumed to be

dS1 = µ1S1dt+ σ1S1dZ1, (3.5)
dS2 = µ2S2dt+ σ2S2dZ2, (3.6)

where Z = (Z1, Z2) is a two dimensional Brownian motion with cross variation
〈dZ1, dZ2〉 = ρdt. Let C(S1, S2, T ) be the value of the option written on the ratio
of two assets at expiration. Now set a portfolio consisting of a long position on quo-
tient option, and two short positions in the underlying assets with amounts ∆1 and ∆2,
such as

Π = C −∆1S1 −∆2S2. (3.7)

And the increment of the portfolio is given by

dΠ = dC −∆1dS1 −∆2dS2. (3.8)

In (3.8), we have random variables. Therefore, we apply Itô’s Lemma Multidimen-
sional. The purpose here is to get rid of the randomness coming from the Brownian
motion, and be able to use deterministic calculus after we reach a PDE governing the
dynamics of the option. We have

dC =
∂C

∂S1

dS1 +
1

2

∂2C

∂S2
1

(dS1)
2 +

1

2

∂2C

∂S2
2

(dS2)
2 +

∂2C

∂S1∂S2

(dS1dS2) +
∂C

∂t
dt. (3.9)

Using (3.5) and (3.6)

dC =
∂C

∂t
dt+

∂C

∂S1

(µ1S1dt+ σ1S1dZ1) +
1

2

∂2C

∂S2
1

(µ1S1dt+ σ1S1dZ1)
2

+
∂C

∂S2

(µ2S2dt+ σ2S2dZ2) +
1

2

∂2C

∂S2
2

(µ2S2dt+ σ2S2dZ2)
2

+
∂2C

∂S1∂S2

(µ1S1dt+ σ1S1dZ1)(µ2S2dt+ σ2S2dZ2), (3.10)
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dC =
∂C

∂t
dt+

∂C

∂S1

µ1S1dt+
∂C

∂S1

σ1S1dZ1 +
1

2

∂2C

∂S2
1

µ2
1S

2
1dt

2 +
∂2C

∂S2
1

µ1σ1S
2
1dtdZ1

+
1

2

∂2C

∂S2
1

σ2
1S

2
1dZ

2
1 +

∂C

∂S2

µ2S2dt+
∂C

∂S2

σ2S2dZ2 +
1

2

∂2C

∂S2
2

µ2
2S

2
2dt

2

+
∂2C

∂S2
2

µ2σ2S
2
2dtdZ2 +

1

2

∂2C

∂S2
2

σ2
2S

2
2dZ

2
2 +

∂2C

∂S1∂S2

µ1µ2S1S2dt
2

+
∂2C

∂S1∂S2

µ1σ2S1S2dtdZ2 +
∂2C

∂S1∂S2

σ1µ2S1S2dtdZ1

+
∂2C

∂S1∂S2

σ1σ2S1S2dZ1dZ2, (3.11)

Using dZ2
i = 0, dZ1dZ2 = ρdt, dt2 = 0 and dtdZi = 0 for i = 1, 2, and with dS1 and

dS2 is already defined; now rearranging the terms

dC =

[
∂C

∂t
+

1

2

∂2C

∂S2
1

σ2
1S

2
1 +

1

2

∂2C

∂S2
2

σ2
2S

2
2 + ρσ1σ2S1S2

∂2C

∂S1∂S2

]
dt

+
∂C

∂S1

dS1 +
∂C

∂S2

dS2. (3.12)

Set ∆1 and ∆2 as ∂C
∂S1

and ∂C
∂S2

to eliminate risk, so that the portfolio is riskless. Sub-
stituting (3.12) into (3.8), we reach increment of the portfolio value

dΠ =

[
∂C

∂t
+

1

2

∂2C

∂S2
1

σ2
1S

2
1 +

1

2

∂2C

∂S2
2

σ2
2S

2
2 + ρσ1σ2S1S2

∂2C

∂S1∂S2

]
dt. (3.13)

Since the portfolio is riskless, should have a return of interest rate r. Now

dΠ = rΠ = r

(
C − ∂C

∂S1

S1 −
∂C

∂S2

S2

)
dt. (3.14)

From above, we find

∂C

∂t
+

1

2

∂2C

∂S2
1

σ2
1S

2
1 +

1

2

∂2C

∂S2
2

σ2
2S

2
2 + ρσ1σ2S1S2

∂2C

∂S1∂S2

+ rS1
∂C

∂S1

+ rS2
∂C

∂S2

− rC = 0. (3.15)
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Now we can introduce dividends, even though in our study we assume that the dividend
rates are zero. Let gi be the dividend rate of asset i for i = 1, 2. Subject to final
condition C(S1, S2, T ) = max

(
S2

S1
−K, 0

)
, we solve the following governing PDE

∂C

∂t
+

1

2

∂2C

∂S2
1

σ2
1S

2
1 +

1

2

∂2C

∂S2
2

σ2
2S

2
2 + ρσ1σ2S1S2

∂2C

∂S1∂S2

+ (r − g1)S1
∂C

∂S1

+ (r − g2)S2
∂C

∂S2

− rC = 0. (3.16)

Let time to expiration be τ = T − t, (3.16) can be written as

∂C

∂τ
=

1

2

∂2C

∂S2
1

σ2
1S

2
1 +

1

2

∂2C

∂S2
2

σ2
2S

2
2 + ρσ1σ2S1S2

∂2C

∂S1∂S2

+ (r − g1)S1
∂C

∂S1

+ (r − g2)S2
∂C

∂S2

− rC. (3.17)

We assume the exact solution is C(S1, S2, t) = e−rτφ(z, τ) with z = S2

S1
. Our purpose

is to reduce (3.17) to 1-D, by introducing composed variables. However, to achieve
that, let us solve (3.17) by taking the partial derivatives of exact solution:

∂C

∂t
= −e−r(T−t)φ

(
S2

S1

, T − t
)

+ rC, (3.18)

∂C

∂S1

=
∂φ

∂z

∂

∂S1

(
S2

S1

)
= −∂φ

∂z
S2S

−2
1 e−rτ , (3.19)

∂2C

∂S2
1

=
∂

∂S1

(
−∂φ
∂z
S2S

−2
1 e−rτ

)
, (3.20)

= S2S
−2
1

∂2φ

∂z2
S2S

−2
1 e−rτ + 2

∂φ

∂z
S2S

−3
1 e−rτ , (3.21)

∂C

∂S2

=
∂φ

∂z

∂

∂S2

(
S2

S1

)
=
∂φ

∂z
S−11 e−rτ , (3.22)

∂2C

∂S2
2

=
∂

∂S2

(
∂φ

∂z
S−21 e−rτ

)
=

(
∂2φ

∂z2
S−21 e−rτ

)
, (3.23)

∂2C

∂S1∂S2

=
∂C

∂S1

(
∂φ

∂z
S−11 e−rτ

)
, (3.24)

= −∂
2φ

∂z2
S2S

−3
1 e−rτ − ∂φ

∂z
S−21 e−rτ . (3.25)

Putting the above partial derivatives into (3.17), with z as the ratio of the assets
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∂C

∂τ
=

1

2
σ2
1z

2∂
2φ

∂z2
+ σ2

1z
∂φ

∂z
+

1

2
σ2
2z

2∂
2φ

∂z2
− ρσ1σ2z2

∂2φ

∂z2
− ρσ1σ2z

∂φ

∂z

− (r − g1)z
∂φ

∂z
+ (r − g2)z

∂φ

∂z
. (3.26)

Rearranging the terms

∂C

∂τ
=

1

2
(σ2

1 + σ2
2 − 2ρσ1σ2)z

2∂
2φ

∂z2
+ (σ1(σ1 − ρσ2) + (g1 − g2))z

∂φ

∂z
. (3.27)

If we let α1 =
√
σ2
1 + σ2

2 − 2ρσ1σ2 and α2 = σ1(σ1 − ρσ2) + (g1 − g2), (3.17) is
reduced to the following form

∂φ

∂τ
=
α2
1

2
z2
∂2φ

∂z2
+ α2z

∂φ

∂z
. (3.28)

Here, α1 is also called the aggregate volatility, αa see [6]. Now comparing with Black-
Scholes-Merton (3.1), it can be seen that (3.28) is a special case of (3.1), letting D =
−α2, r = 0, and σ = α1

φ(z, τ) = zeα2τN(d1)−KN(d2), (3.29)

d1 =
ln( z

K
) + (α2 +

α2
1

2
)τ

α1

√
τ

, (3.30)

d2 = d1 − α1

√
τ . (3.31)

Since c(S1, S2, t) = e−rτφ(z, τ) with the other variables put into the equation, pricing
formula is

e−rτ
[
S2

S1

eσ1(σ1−ρσ2)τ+(g1−g2)τN (d1)−KN (d2)

]
. (3.32)

Let us introduce a variable κ taking the value of 1 for call options and −1 for put
options. Writing (3.32) explicitly, we obtain the final form of a pricing formula for
quotient options written on stocks with dividends g1 and g2
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κ

[
S2

S1

eσ1(σ1−ρσ2)τ+(g1−g2−r)τN (κd1)−Ke−rτN (κd2)

]
, (3.33)

d1 =
ln( S2

S1K
) + (σ2

1 − ρσ1σ2 + g1 − g2 +
σ2
1+σ

2
2−2ρσ1σ2
2

)τ√
σ2
1 + σ2

2 − 2ρσ1σ2
√
τ

, (3.34)

d2 = d1 −
√
τ
√
σ2
1 + σ2

2 − 2ρσ1σ2. (3.35)

3.2.2 An alternative approach using Two-Asset Binary Options

We now review an approach to pricing quotient options developed in [6], which reduces
the task of pricing quotient options to that of pricing two-asset binary options.

Definition 3.1. Binary option is a case of exotic options, in which the payoff can take
only two possible outcomes.

Let us have a binary option with time to maturity T written on S1 and S2, with K
as the strike price and r is the interest rate. Since a binary option can take only two
outcomes for each asset, in case of two assets, there are four possible outcomes. Given
(a1, a2, a3) ∈ (±), (p, q) ∈ R; H and K are some positive constants, K also serves as
the strike price. The payoffs are given by the following equations:

C1(S1, S2, T ) = Sp1S
q
2I(a1S1>a1H)I(a2S2>a2K), (3.36)

C2(S1, S2, T ) = Sp1S
q
2I(a3S1>a3S2), (3.37)

C3(S1, S2, T ) = Sp1S
q
2I(a1S1>a1H)I(a3S1>a3S2), (3.38)

C4(S1, S2, T ) = Sp1S
q
2I(a2S2>a2K)I(a3S1>a3S2). (3.39)

The indicator functions are exercise conditions of the quotient options, meaning that
under which conditions the option is exercised is indicated by these functions. Among
these, C2 is appropriate to model the behavior ofquotient options, and its value at time t
is given by C2(S1, S2, t) = Sp1S

q
2e
µτN(a3d) with τ being the time to expiration. Asset

are assumed to follow Geometric Brownian Motion (2.17), with volatility σ1 and σ2,
while σ is the aggregate volatility. The payoff of a European quotient call option is
given by

C(S1, S2, T ) =

(
S1

S2

−K
)
I(S1>S2K). (3.40)

Dividing by K, and setting z = KS2, which also follows Geometric Brownian Motion
due to S2. Here aim is to substitute z = KS2 into the two-asset binary formula. We
obtain
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C(S1, S2, T ) = K

(
S1

z
− 1

)
I(S1>z). (3.41)

Now we define Ca = S1

z
I(x>z), and setting p = 1 and q = −1 in (3.37), and using its

value function we find

Ca(S1, S2, t) =
S1

z
eµτN (d(S1, z, τ)), (3.42)

µ = −r + σ2(σ2 − ρσ1), (3.43)

σ =
√
σ2
1 + σ2

2 − 2ρσ1σ2, (3.44)

d(S1, z, t) =
1

σ
√
τ

(
ln(

S1

z
) +

(
σ2
2

2
− σ2

1

2
+ σ2

)
τ

)
. (3.45)

Now define Cb = I(x>z), and setting p = q = 0 in (3.37), we obtain

Cb(S1, z, t) = e−rτN (d′(S1, z, τ)), (3.46)

d′(S1, x, τ) =
1

σ
√
τ

(
ln

(
S1

KS2

)
+

1

2
(σ2

2 − σ2
1)τ

)
. (3.47)

With (3.42) and (3.46), from the equation C(S1, S2, t) = K(Ca − Cb)(S1, S2, t), we
obtain

C(S1, S2, t) =
S1

S2

eµτN (d(S1, KS2, τ))−Ke−rτN (d′(S1, KS2, τ)). (3.48)

3.3 Hedging and Sensitivities in Continuous-time

Hedging requires a parameter known as delta, which equals the derivative of the prices
with respect to the price of the underlying; thus, obviously, delta is the sensitivity
of the option price to changes in the price of the underlying. Aside from the delta,
sensitivities to change in time, volatility are often of interest. As is well known, these
derivatives are collectively refered to as the “Greeks of the option.” In this section,
we give formulas for the greeks for the pricing of quotient options under the BSM
framework. Since we have a correlation option, there comes parameters concerning
the correlation. We will in particular use the delta in the hedging application of the
next chapter.

Recall that N denotes the cumulative distribution function of standard normal distri-
bution, and let N ′ denote the derivative of the cumulative distribution function, both
are given by
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N (x) =
1√
2π

∫ x

−∞
e−

t2

2 dt, (3.49)

N ′(x) =
1√
2π
e−

x2

2 . (3.50)

Using (3.5), (3.6) and (3.50), we obtain an identity we will use in calculating the sen-
sitivities

N ′(d1)
N ′(d2)

=

1√
2π
1√
2π

e
d22−d

2
1

2 , (3.51)

= e
(d1−

√
τ−d1)(d1−α1

√
τ+d1)

2 . (3.52)

Therefore, using the above relation, we reach

N ′(d1)S2e
σ1(σ1−ρσ2)τ+(g1−g2)τ = S1KN ′(d2). (3.53)

Definition 3.2. Delta(∆) of an option measures the rate of change of the option’s
value with respect to changes in the underlying asset’s price. Meaning that λ amount
of change in delta changes the price of an option by the amount of λ∆, obtained by
taking the partial derivative of payoff with respect to asset’s price, ∂C

∂S
.

Since we have two assets, we also have two deltas. Taking the partial derivative of
(3.33) with respect to S1 and S2, letting η = σ1(σ1−ρσ2)τ +(g1−g2−r)τ , we obtain

∂C

∂S1

= −κS2

S2
1

eηN (κd1) + κ
S2

S1

eηN ′(d1)
∂d1
∂S1

− κKe−rτN ′(d2)
∂d2
∂S1

, (3.54)

∂C

∂S2

= κ
1

S1

eηN (κd1) + κ
S2

S1

eηN ′(d1)
∂d1
∂S2

− κKe−rτN ′(d2)
∂d2
∂S2

, (3.55)

∂d2
∂S1

=
∂d1
∂S1

− ∂

∂S1

α1

√
τ , (3.56)

∂d2
∂S2

=
∂d1
∂S2

− ∂

∂S2

α1

√
τ , (3.57)

KN ′(d2) =
S2

S1

N ′(d1)eσ1(σ1−ρσ2)τ+(g1−g2)τ . (3.58)

Partial derivatives of d1 and d2 with respect to any variable cancel each other out, and
we are left with partial derivative of α1

√
τ with respect to variable in question. This

fact is used in all calculations regarding the sensitivities. Given the binary operator κ
1 for call options and −1 for put options, ∆1 and ∆2 of S1 and S2 are given by
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∆1 = −κS2

S2
1

eσ1(σ1−ρσ2)τ+(g1−g2−r)τN (κd1), (3.59)

∆2 =
κ

S1

eσ1(σ1−ρσ2)τ+(g1−g2−r)τN (κd1). (3.60)

Definition 3.3. Theta(Θ) of an option measures the rate of change of the option’s value
with respect to changes in the time to maturity, obtained by taking the partial derivative
of the payoff with respect to time to maturity, ∂C

∂τ
.

Theta of an option is also known as the time decay. Taking the partial derivative of
(3.33) with respect to τ

∂C

∂τ
= κ

S2

S1

(σ1(σ1 − ρσ2) + (g1 − g2 − r))eηN ′(κd1) + κ
S2

S1

eηN ′(d1)
∂d1
∂τ

+ κrKe−rτN (κd2)− κKe−rτN ′(d2)
∂d2
∂τ

. (3.61)

Rearranging the terms and using (3.53), we obtain the theta as

Θ = κ
S2

S1

(σ1(σ1 − ρσ2) + (g1 − g2 − r))eσ1(σ1−ρσ2)τ+(g1−g2−r)τN (κd1)

+ κ
S2

S1

eσ1(σ1−ρσ2)τ+(g1−g2−r)τ α1

2
√
τ
N ′(d1) + κrKe−rτN (κd2). (3.62)

Theta is given in terms of year, therefore we divide it by 252 to find the time decay for
a trading day.

Definition 3.4. Vega(V) of an option measures the rate of change of the option’s value
with respect to changes in volatility of the underlying, given by ∂C

∂σ
.

Since we have two assets, we also have two vegas. Taking the partial derivative of
(3.33) with respect to volatilities σ1 and σ2, we obtain

∂C

∂σ1
=κ

S2

S1

(2σ1τ − ρσ2τ)eηN (κd1) + κ
S2

S1

eηN ′(d1)
∂d1
∂σ1

− κKe−rτN ′(d2)
∂d2
∂σ1

, (3.63)

∂C

∂σ2
=κ

S2

S1

(−ρσ1τ)eηN (κd1) + κ
S2

S1

eηN ′(d1)
∂d1
∂σ2

− κKe−rτN ′(d2)
∂d2
∂σ2

. (3.64)
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Rearranging the terms and using the identity (3.53), we obtain vegas

V1 = κ
S2

S1

eη
[
(2σ1τ − ρσ2τ)N (κd1) +

σ1 − ρσ2
α1

√
τN ′(d1)

]
, (3.65)

V2 = κ
S2

S1

eη
[
−ρσ1τN (κd1) +

σ2 − ρσ1
α1

√
τN ′(d1)

]
. (3.66)

Vega is given in the absolute value. If the absolute value is high, we assert that the
underlying’s volatility has a high effect on the option value.

Definition 3.5. Rho(ρ) measures the rate of change of the option’s value with respect
to the interest rate.

We assumed that the interest rate for borrowing and lending is the same, and denoted
by r. Rho of the quotient option is given by

∂C

∂r
= κ

S2

S1

(−τ)eηN (κd1) + κτKe−rτN (κd2). (3.67)

From now on, we derive the higher-order sensitivities, starting with a second-order
measure and moving on to cross-sensitivities used for multi-asset options. We now
define gamma of an option, in our case we are given two gammas for each of the
assets.

Definition 3.6. Gamma(Γ) of an option measures the rate of change in the delta with
respect to the changes in the underlying price, given by ∂2C

∂S2 .

Taking the second-order partial derivative of (3.33) with respect to assets, and utilizing
deltas:

∂2C

∂S2
1

=
∂

∂S1

∆1, (3.68)

∂2C

∂S2
2

=
∂

∂S2

∆2. (3.69)

Using the identity and rearranging the terms, we obtain two gammas

Γ1 = κ
S2

S3
1

eη
[
2N (κd1) +

N ′(d1)
α1

√
τ

]
, (3.70)

Γ2 =
κ

S1S2

eη

α1

√
τ
N ′(d1). (3.71)
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From the hedger’s view, a small gamma is preferred, so that the frequency of rebalanc-
ing can be reduced.

Definition 3.7. Chi measures the rate of change in the value of an option with respect
to correlation coefficient.

Taking the partial derivative of (3.33) with respect to ρ, we obtain

∂C

∂ρ
= κ

S2

S1

(−σ1σ2τ)eηN (κd1) + κ
S1

S2

eηN ′(d1)
∂d1
∂ρ
− κKe−rτN ′(d2)

∂d2
∂ρ

. (3.72)

Rearranging the terms, and using (3.53), we obtain

∂C

∂ρ
= κ

S2

S1

eσ1(σ1−ρσ2)τ+(g1−g2−r)τ
[
−σ1σ2τN (κd1)−

σ1σ2
√
τ

α1

N ′(d1)
]
. (3.73)

Definition 3.8. Cross-gamma measures the rate of change of delta in one underlying
in response to a change in the level of another underlying, given by ∂2C

∂S1∂S2
.

Taking partial derivative of deltas, regardless the order of assets; we form

∂2C

∂S1∂S2

=
∂

∂S1

∆2 =
∂

∂S1

[
κ

S1

eσ1(σ1−ρσ2)τ+(g1−g2−r)τN (κd1)

]
, (3.74)

Γcross = − κ

S2
1

eη
[
N (κd1) +

N ′(d1)
α1

√
τ

]
. (3.75)

21



22



CHAPTER 4

APPLICATIONS OF QUOTIENT OPTIONS

In this chapter, we apply the BSM formulas for the quotient options given in the pre-
vious chapters to several quotient options traded in BIST30. All prices below are in
Turkish Lira. As explained in the Introduction, the quotient options traded in BIST 30
are written on the pairs (Koc, Sabanci) and (Garanti, Akbank). We begin this chapter
by making several observations on the price movements of these underlyings.

4.1 Analysis of The Underlyings

In this part, we analyze the underlyings of our quotient options.

Figure 4.1: Price Movements of Garanti and Akbank
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Figure 4.2: Returns of Garanti and Akbank

Figure 4.3: Garanti and Akbank Ratio With Different Strikes
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In Figure 4.1, there is a clear tendency for these two assets to have similar movements.
Especially, at sharp turning points the behavior of assets are quick to take a similar
trend. However, we are to form this through the suggestion of correlated assets’ re-
turns, not the prices, therefore movements of returns are more important.

In Figure 4.2, returns of these two assets exhibit correlation, which are given in Table
4.14 for different periods of time. Meaning that the pair is a good candidate for pair
trading and quotient options. Returns swing between 0.05 and −0.05 with occasional
outliers. Since quotient options are written on the ratio of prices, it would give an
idea to see the movement of the ratio, to be able to think in terms of quotient options;
different strikes are set in Figure 4.3.

Figure 4.4: Price Movements of Koc and Sabanci
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Figure 4.5: Returns of Koc and Sabanci

Figure 4.6: Koc and Sabanci Ratio with Different Strikes
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In Figure 4.4, for the most part, prices are moving together. Clearly a good pair for a
quotient option to be underwritten. However, the difference between the prices is more
significant compared to Garanti and Akbank, meaning that a higher strike price should
be set, and is by the firm as 1.5. Looking at the returns of these two, we see a high
amount of tendency for comoving, which suggests that a pair trade may be applicable.
Again in Figure 4.6, we see that 1.5 is quite higher for an option to be in-the-money.
However, in terms of a put option, it would be advantageous. Since in the last 252
trading days, the ratio never exceeded 1.5. Therefore it is expected for the option to
have a higher price, which already has in Table 4.13.

4.2 Hedging

In this part, we explore the hedging performances. We have 8 hedging scenarios for
each a table of the last hedge error and average hedge error is given, and a graphic of
hedges. Four calls and four puts with four different strike prices as 1.5, 1.1, 1, 0.9,
and two different starting dates and two different maturities: 30-days and 60-days;
from these we have excluded those options which are deeply out of the money, which
effectively makes their price 0. In our case, 19 hedges are excluded.

Let φt be the positions in S1, S2 and bond at time t, and Vt be the value of this portfolio
at time t. Hedge error is given by the formula

Ht = Ht−1(1 + r) + Vt(φt)− Vt(φt−1). (4.1)

We are issuing 1000 options, and we track the error by Ht
C01000

, therefore we base the
hedge error on the first call price. We will refer to this ratio as the “normalized hedge
error”.

For the hedge scenarios, we use the following values

Table 4.1: Values for Hedge Scenarios 1

For T = 30, Starting: Dec 30th 2015

Underlyings Volatility Correlation
Coefficient

Interest
Rate

Garan 0.3623 0.8378
10.54Akbank 0.33725

Kchol 0.2794 0.7767Sahol 0.31339
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Table 4.2: Values for Hedge Scenarios 2

For T = 30, Starting: March 8th 2016

Underlyings Volatility Correlation
Coefficient

Interest
Rate

Garan 0.2639 0.8470
10.76Akbank 0.2632

Kchol 0.2614 0.62089Sahol 0.2521

Table 4.3: Values for Hedge Scenarios 3

For T = 60, Starting: Dec 30th 2015

Underlyings Volatility Correlation
Coefficient

Interest
Rate

Garan 0.3683 0.8790
10.302Akbank 0.3366

Kchol 0.2605 0.7309Sahol 0.2939

Table 4.4: Values for Hedge Scenarios 4

For T = 60, Starting: March 8th 2016

Underlyings Volatility Correlation
Coefficient

Interest
Rate

Garan 0.2714 0.8340
10.802Akbank 0.2814

Kchol 0.292 0.0769Sahol 0.2885

We firstly present the average error and last hedge errors in hedging. Tables also give
the starting points, and in any of it maturity is fixed at either 30 or 60 days. In graphs,
dashed lines represent the hedging errors of put contracts.

Table 4.5: Hedge 1: T = 30, Starting March 8th 2016

Underlyings Type Strike Price Last Normalized
Hedge Error

Average Normalized
Hedge Error

Garan/Akbank Call 1 -0.594 -0.284
Garan/Akbank Call 0.9 -0.049 -0.035
Garan/Akbank Put 1.5 -0.009 -0.003
Garan/Akbank Put 1.1 0.008 0.009
Garan/Akbank Put 1 -0.188 -0.071
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Figure 4.7: Hedge 1: T = 30, Starting March 8th 2016

Table 4.6: Hedge 2: T = 30, Starting Dec 30th 2015

Underlyings Type Strike Price Last Normalized
Hedge Error

Average Normalized
Hedge Error

Garan/Akbank Call 1.1 0.288 0.211
Garan/Akbank Call 1 0.080 0.029
Garan/Akbank Call 0.9 -0.021 -0.012
Garan/Akbank Put 1.5 -0.009 -0.004
Garan/Akbank Put 1.1 0.068 0.048
Garan/Akbank Put 1 0.569 0.234

Figure 4.8: Hedge 2: T = 30, Starting Dec 30th 2015
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Table 4.7: Hedge 3: T = 30, Starting March 8th 2016

Underlyings Type Strike Price Last Normalized
Hedge Error

Average Normalized
Hedge Error

Kchol/Sahol Call 1.5 0.549 0.199
Kchol/Sahol Call 1.1 -0.018 -0.007
Kchol/Sahol Call 1 -0.017 -0.007
Kchol/Sahol Call 0.9 -0.016 -0.007
Kchol/Sahol Put 1.5 0.221 0.074

Figure 4.9: Hedge 3: T = 30, Starting March 8th 2016

Table 4.8: Hedge 4: T=30, Starting Dec 30th 2015

Underlyings Type Strike Price Last Normalized
Hedge Error

Average Normalized
Hedge Error

Kchol/Sahol Call 1.5 0.566 0.029
Kchol/Sahol Call 1.1 -0.015 -0.006
Kchol/Sahol Call 1 -0.013 -0.005
Kchol/Sahol Call 0.9 -0.013 -0.005
Kchol/Sahol Put 1.5 0.003 -0.006
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Figure 4.10: Hedge 4: T = 30, Starting Dec 30th 2015

Table 4.9: Hedge 5: T = 60, Starting March 8th 2016

Underlyings Type Strike Price Last Normalized
Hedge Error

Average Normalized
Hedge Error

Garan/Akbank Call 1.1 -0.348 -0.256
Garan/Akbank Call 1 -0.087 -0.059
Garan/Akbank Call 0.9 -0.033 -0.034
Garan/Akbank Put 1.5 -0.025 -0.011
Garan/Akbank Put 1.1 -0.032 -0.011
Garan/Akbank Put 1 -0.026 -0.025
Garan/Akbank Put 0.9 -0.174 -0.183

Figure 4.11: Hedge 5: T = 60, Starting March 8th 2016
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Table 4.10: Hedge 6: T = 60, Starting Dec 30th 2015

Underlyings Type Strike Price Last Normalized
Hedge Error

Average Normalized
Hedge Error

Garan/Akbank Call 1.1 -0.003 -0.009
Garan/Akbank Call 1 0.020 -0.007
Garan/Akbank Call 0.9 -0.055 -0.027
Garan/Akbank Put 1.5 -0.016 -0.008
Garan/Akbank Put 1.1 0.049 0.024
Garan/Akbank Put 1 0.41 0.13
Garan/Akbank Put 0.9 0.367 0.208

Figure 4.12: Hedge 6: T = 60, Starting Dec 30th 2015

Table 4.11: Hedge 7: T = 60, Starting March 8th 2016

Underlyings Type Strike Price Last Normalized
Hedge Error

Average Normalized
Hedge Error

Kchol/Sahol Call 1.5 0.715 0.315
Kchol/Sahol Call 1.1 0.038 0.020
Kchol/Sahol Call 1 0.018 0.008
Kchol/Sahol Call 0.9 0.009 0.003
Kchol/Sahol Put 1.5 0.434 0.186
Kchol/Sahol Put 1.1 0.627 0.471
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Figure 4.13: Hedge 7: T = 60, Starting March 8th 2016

Table 4.12: Hedge 8: T = 60, Starting Dec 30th 2015

Underlyings Type Strike Price Last Normalized
Hedge Error

Average Normalized
Hedge Error

Kchol/Sahol Call 1.5 0.105 -0.019
Kchol/Sahol Call 1.1 -0.016 -0.009
Kchol/Sahol Call 1 -0.017 -0.009
Kchol/Sahol Call 0.9 -0.018 -0.009
Kchol/Sahol Put 1.5 -0.041 -0.027

Figure 4.14: Hedge 8: T = 60, Starting Dec 30th 2015
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4.2.1 Comments on the results

Our overall impression is that the BSM has limited success in hedging quotient op-
tions over the periods and products covered above. A successful hedge corresponds to
a hedging error close to 0 throughout the hedging period. In each of the tables given
above, we see a huge variability in the hedging error; sometimes the hedge ends rea-
sonably close to successful (surprisingly, most hedges of strikes close to 1 seem to give
reasonable hedges).

There may be many reasons for a hedge to perform poorly. One main reason for a
hedge to fail is very volatile price movements, since delta-hedging works better with
small changes. Another determinant is the length of maturity, for most it produced
lower average hedge error given 30-days period. Let’s say an option matures in money,
if the premium we get is higher, we are likely to close this hedge with lower amounts
of loss. For most of the cases, the performance of hedging is decided by how high
or low the strike price is set, given the spread between the ratio of two assets and K.
For instance, in Hedge 1, call with 1.5 strike price did not perform well even though
it ended with almost 100 percent profit for the hedger. In the same example, calls
with 0.9 strike price moves very closely around zero, indicating a very well hedging
performance, if not a perfect one. Since we do not buy or sell fractional amounts
of assets, a perfect hedge becomes not possible. However, calls with 1.1 strike price
ended with a lost almost the double what we invest.

Analyzing Hedge 3, given the ratio of Kchol/Sahol, puts with lower strike prices per-
formed poorly (although ending with profit for the hedger). The strike set by the firm
is 1.5, and puts with 1.5 strike performed better. Calls with 0.9, 1 and 1.1 strike prices
move around zero, suggesting a well-performing hedge. Let us compare Hedge 1 and
Hedge 5 which has longer time to maturity. Hedge 5 outperforms Hedge 1 almost each
cases, very lower average hedge errors. Maturity affects the option price, and in-the-
money option could end up out-of-the-money. To sum up, among other contributors to
the performances, the choice of strike price seem to have a very important role.

4.3 Pricing

We apply BSM formula to four different option contracts traded in the market. The data
given in Table 4.13 taken from Trademaster platform of Is Investment in April 25th
2016, with expiration in April 29th. Closing prices of 25th is used. Two call and put
quotient options are written on Garanti Bank, Akbank, Koc Holding, Sabanci Holding,
which are all listed in Istanbul Stock Exchange (Borsa Istanbul). Prices of Garanti and
Akbank are 8.31 and 8.35, of Koc Holding(Kchol) and Sabanci Holding(Sahol) are
14.85 and 10.05.
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Table 4.13: Prices: The Market Data

Underlyings Type Strike Price Bid Ask
Garan/Akbank Call 1 0.01 0.02
Garan/Akbank Put 1 0.01 0.02
Kchol/Sahol Call 1.5 0.01 0.02
Kchol/Sahol Put 1.5 0.04 0.05

Bid price refers to the price the market maker is willing to buy at that price, and ask
price is the price the market maker is willing to sell at that price.

Table 4.14: Volatilities and Correlations of Garanti and Akbank

3-years 180-days 90-days 60-days 30-days 10-days
Garan Volatility 0.3643 0.3033 0.2536 0.2650 0.2711 0.2690
Akbank Volatility 0.35116 0.30377 0.27988 0.27789 0.28492 0.28057
Correlation Coefficient 0.8966 0.8521 0.8028 0.8046 0.7921 0.7516

Table 4.15: Volatilities and Correlations of Kchol and Sahol

3-years 180-days 90-days 60-days 30-days 10-days
Kchol Volatility 0.2779 0.2618 0.2513 0.2491 0.2352 0.1992
Schol Volatility 0.31804 0.27741 0.25753 0.25183 0.28367 0.21988

Correlation Coefficient 0.7104 0.7187 0.6730 0.6706 0.7894 0.8568

Correlations and volatilities presented in Table 4.14 and Table 4.15 are done using the
methods given in Chapter 2. Time to expiration is 4

252
, and the interest rate is again set

as 0.1. We use the prices mentioned in the beginning. By BSM Red. 1-D, we refer to
(3.33), and by Buchen Binary to (3.48).

Table 4.16: Prices for April 25th

Garan/Akbank Volatility&
Correlation for Bid Ask BSM

Red. 1-D

Buchen

Binary

Call

180-days

0.01 0.02

0.0050858 0.0050567
90-days 0.0053019 0.0052722
60-days 0.0053179 0.0052882
30-days 0.0057329 0.0057021
10-days 0.0063450 0.0063129

Put

180-days

0.01 0.02

0.0097076 0.0096784
90-days 0.0098339 0.0098042
60-days 0.0098900 0.0098603
30-days 0.010281 0.010250
10-days 0.010869 0.010837

35



Table 4.17: Prices for April 25th

Kchol/Sahol Volatility&
Correlation for Bid Ask BSM

Red. 1-D

Buchen

Binary

Call

180-days

0.01 0.02

0.006687 0.00656346
90-days 0.00686957 0.00678017
60-days 0.00670018 0.0066329
30-days 0.00496206 0.00490298
10-days 0.00165859 0.00162519

Put

180-days

0.04 0.05

0.0284596 0.0285333
90-days 0.0284596 0.0286738
60-days 0.0285527 0.0284854
30-days 0.0266635 0.0266044
10-days 0.0237578 0.0237244

As for Garan/Akbank call option, we produce close prices, however; it suggests that
the call option is overvalued. For the put options, the prices are very close or just
above the market price. Meaning that put option on Garan/Akbank is undervalued.
For Kchol/Sahol, the call and put seems to be overpriced. The reason that prices are
calculated using different time periods is to have an idea how much change it has on
the prices. However, not much of a significance is found, except 10-days prices for
Kchol/Sahol call.

Now let us price again the same four different contracts with five different days(time
to maturity). The expiration date is April 29th 2016( now we are pricing the same
contracts used in the previous example, only earlier), and the first contract we have
is on February 8th. Again strike prices are set as 1 for Garan/Akbank, and 1.5 for
Kchol/Sahol. Interest rate is 10.48 percent so we set r = 0.10 like the above example.
90 days volatilities and correlations are calculated starting from the day before it starts
to 90 days backward. Volatilities for Garanti and Akbank are 0.328, 0.32302 and cor-
relation is 0.8597. Volatilities for Kchol and Sahol are 0.2837, 0.25746 and correlation
is 0.7162.

On February 8th, prices for Garanti and Akbank are 7.05 and 7.12, for Kchol and Sahol
are 11.67 and 8.25.

Table 4.18: Prices for February 8th

Underlyings Type Bid Ask BSM
Red 1D

Buchen
Binary

Garan/Akbank Call 0.06 0.07 0.0356386 0.0313811
Garan/Akbank Put 0.06 0.07 0.0344478 0.0274991
Kchol/Sahol Call 0.07 0.08 0.0412074 0.0369499
Kchol/Sahol Put 0.15 0.16 0.111352 0.104403

Now we go one day further, on February 9th, prices for garanti and akbank are 7.04
and 7.20, for kchol and sahol are 11.55 and 8.14
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Table 4.19: Prices for February 9th

Underlyings Type Bid Ask BSM
Red 1D

Buchen
Binary

Garan/Akbank Call 0.05 0.06 0.0297346 0.0254694
Garan/Akbank Put 0.06 0.07 0.0355584 0.0286971
Kchol/Sahol Call 0.07 0.08 0.0473853 0.0431201
Kchol/Sahol Put 0.14 0.15 0.108313 0.101451

On February 10th, prices for Garanti and Akbank are 7.09 and 7.16, for Kchol and
Sahol are 11.56 and 8.35.

Table 4.20: Prices for February 10th

Underlyings Type Bid Ask BSM
Red 1D

Buchen
Binary

Garan/Akbank Call 0.06 0.07 0.0351941 0.0310769
Garan/Akbank Put 0.05 0.06 0.024765 0.0184446
Kchol/Sahol Call 0.07 0.08 0.0408069 0.0366897
Kchol/Sahol Put 0.16 0.17 0.131122 0.124802

On February 11th, prices for Garanti and Akbank are 7.05 and 7.13, for Kchol and
Sahol are 11.58 and 8.39.

Table 4.21: Prices for February 11th

Underlyings Type Bid Ask BSM
Red 1D

Buchen
Binary

Garan/Akbank Call 0.06 0.07 0.034265 0.0302055
Garan/Akbank Put 0.05 0.06 0.0233444 0.0172182
Kchol/Sahol Call 0.07 0.08 0.0413295 0.03727
Kchol/Sahol Put 0.17 0.18 0.133908 0.127782

On February 12th, prices for Garanti and Akbank are 6.99 and 7.16, for Kchol and
Sahol are 11.51 and 8.37.

Table 4.22: Prices for February 12th

Underlyings Type Bid Ask BSM
Red 1D

Buchen
Binary

Garan/Akbank Call 0.05 0.06 0.0283863 0.0243323
Garan/Akbank Put 0.04 0.05 0.0217623 0.0158484
Kchol/Sahol Call 0.07 0.08 0.0476742 0.0436202
Kchol/Sahol Put 0.17 0.18 0.13736 0.131446

In all of the above pricing, we see that the options are overpriced, meaning that the fair
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value is lower than the market value: it is not advisable to enter into any positions of
these contracts.

4.4 Sensitivities

Table 4.23: Sensitivities: Results

Sensitivity
Parameter

Garan/Akbank
Call

Garan/Akbank
Put

Kchol/Sahol
Call

Kchol/Sahol
Put

Delta 1 -0.0501512 0.0688868 -0.0426022 0.104244
Delta 2 0.0503926 -0.0692184 0.0288318 -0.0705488
Theta 0.0011 -0.0011 0.0016 -0.0016
Vega 1 0.0244126 0.0252966 0.029685 0.0330861
Vega 2 0.00688933 0.00633154 0.0229484 0.0212443

Rho -0.00010222 -0.000172798 -0.000109027 -0.000455369
Gamma 1 0.273403 -0.27789 0.201403 -0.21367
Gamma 2 0.263913 -0.263913 0.0883623 -0.0883623

Chi -0.0209983 0.0211745 -0.0204545 0.0210908
Cross Gamma -0.268684 0.270938 -0.133434 0.137585

We use the contracts prevailing in 25th of April. Sensitivities measure the effects of a
change in one variable while keeping others constant. Deltas give us the answer that
if x amount of change in Garanti’ price, we assert that 0.05x change in the option’s
value occurs. Notice that for calls delta 1 is negative whereas the reverse is true for
puts. The reason for that comes from the structure of the option. Meaning that the ratio
is affected negatively if the price of denominator rises, therefore a negative delta for
call options. For puts, the expectation is that the ratio will be smaller than the strike,
so it is in the interest of a trader for a raise in the denominator, forcing the put option
to end up in-the-money. Vegas are given in absolute values, if it has a small value, we
assert that volatility has a small impact on the option’s value. In our cases, the absolute
values are quite small, therefore the expected effect of a change in the underlyings’
volatilities are rather small. Rho seems insignificant in our cases. Given the gammas,
one thing should be noticed, the gamma of Kchol is, compared to Sahol, very small.
This means that the rate of change of delta of Kchol is slow. The correlation plays a
part in the pricing of quotient options, and the sensitivity of it is measured by Chi, also
called as Correlation-delta. It is negative for call options, indicating that higher the
positive change in the correlation adversely affect the price. A similar idea appears in
pair trading where traders wait for the relaxing moments of correlation.
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CHAPTER 5

CONCLUSION

The goal of this thesis was the application of the BSM framework to a number of
quotient options traded in BIST30. Our main tool in this assessment was the hedging
performance of the model.

We analyzed graphically the pairs used in Istanbul Stock Exchange. Correlations are
found to determine if the pairs are good candidate for quotient options. We saw
from our graphical analysis and empirical computations that indeed the pairs stud-
ied (Koc/Sabanci) and (Garanti/Akbank) do exhibit high correlations. We applied the
BSM hedging algorithm to quotient options written on the above pairs traded in Borsa
Istanbul. This involed the investigation of 45 hedge scenarios, to see the hedging per-
formances of the contracts in real-life. To the best of our understanding and based
on our results the BSM has a limited capability in hedging the quotient options of the
types and periods covered in this thesis. We also compared the market prices and those
suggested by the BSM faremwork. We observed that overall the market prices to be
greater than those suggested by BSM.

Future work may focus on: 1) using implied volatilities in the hedging algorithm
(rather than historical as done in this thesis) and 2) try alternative volatility models
that allow also hedging the volatility.
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