
EFFECTIVE SUBGOAL DISCOVERY AND OPTION GENERATION IN
REINFORCEMENT LEARNING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

ALPER DEMİR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2016

Approval of the thesis:

EFFECTIVE SUBGOAL DISCOVERY AND OPTION GENERATION
IN REINFORCEMENT LEARNING

submitted by ALPER DEMİR in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı
Head of Department, Computer Engineering

Prof. Dr. Faruk Polat
Supervisor, Computer Engineering Department,
METU

Examining Committee Members:

Prof. Dr. H. Altay Güvenir
Computer Engineering Department, Bilkent University

Prof. Dr. Faruk Polat
Computer Engineering Department, METU

Prof. Dr. Kemal Leblebicioğlu
Electrical - Electronics Engineering Department, METU

Prof. Dr. İsmail H. Toroslu
Computer Engineering Department, METU

Assoc. Prof. Sinan Kalkan
Computer Engineering Department, METU

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: ALPER DEMİR

Signature :

iv

ABSTRACT

EFFECTIVE SUBGOAL DISCOVERY AND OPTION GENERATION IN
REINFORCEMENT LEARNING

Demir, Alper

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Faruk Polat

August 2016, 56 pages

Subgoal discovery is proven to be a practical way to cope with large state spaces

in Reinforcement Learning. Subgoals are natural hints to partition the prob-

lem into sub-problems, allowing the agent to solve each sub-problem separately.

Identification of such subgoal states in the early phases of the learning process

increases the learning speed of the agent. In a problem modeled as a Markov

Decision Process, subgoal states possess key features that distinguish them from

the ordinary ones. A learning agent needs a way to reach an identified subgoal,

and this can be achieved by forming an option to reach it. Most of the studies in

the literature focus on finding useful subgoals by employing statistical methods

and graph-based methods. On the other hand, there are few studies working on

how to improve the process of forming options.

In this thesis, an efficient subgoal discovery making use of local information is

proposed. Unlike other methods, it has lower time complexity and does not

v

require additional problem specific parameters. Furthermore, a better heuristic

for forming options is proposed. It focuses on collecting a set of states that an

option is really useful to employ from, leading to more effective options.

Keywords: reinforcement learning, subgoal discovery, option framework

vi

ÖZ

PEKİŞTİRMELİ ÖĞRENMEDE ETKİLİ ALT HEDEF BULMA VE
OPSİYON OLUŞTURMA

Demir, Alper

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Faruk Polat

Ağustos 2016, 56 sayfa

Alt hedef bulma, pekiştirmeli öğrenmede, problem büyüklüğüyle başa çıkma

konusunda kendini kanıtlamış önemli bir yaklaşımdır. Alt hedefler problemin,

alt problemlere bölünmesi konusunda ipucu verir. Bu alt hedeflerin öğrenmenin

erken aşamalarında bulunmaları, öğrenen ajanın her bir alt problemi ayrı ayrı

çözmesine olanak sağlar ve öğrenme hızını arttırır. Markov Karar İşlemi ola-

rak modellenmiş bir problemde, alt hedefler, ajanın bulunduğu diğer durumlara

göre farklı özellikler taşır ve bu özellikler keşfedilmelerine olanak sağlar. Aja-

nın, bulunmuş bir alt hedefe yönelmesi için, opsiyon sistemi ortaya atılmıştır.

Opsiyon sistemi, öğrenen ajana bulunmuş bir alt hedefe gitmek için bir yetenek

kazandırır. Alandaki birçok çalışma, bu opsiyonların gideceği alt hedefleri bulma

konusuna odaklanmış olup çalışmalar istatistik tabanlı ve grafik tabanlı olmak

üzere ikiye ayrılır. Opsiyon oluşturma aşamasını geliştirme konusunda görece

daha az çalışma bulunmaktadır.

Bu çalışmada, problem hakkında kısmi bilgi ile çalışan verimli bir alt hedef bulma

yöntemi sunulmuştur. Bu yöntem, alandaki diğer yöntemlerin aksine, daha düşük

vii

zaman karmaşıklığına sahiptir ve problem ile alakalı fazladan bir parametreye

ihtiyaç duymamaktadır. Ayrıca bu tezde, opsiyon oluşturma aşaması için daha

gelişmiş bir yaklaşım ortaya atılmıştır. Bu yaklaşım, opsiyon tanımını, opsiyonun

kullanılmasının faydalı olacağı durumlar ile sınırlandırıp opsiyonları ana hedefe

yönlendirir. Bu sayede, daha etkili opsiyonlar üretilir.

Anahtar Kelimeler: pekiştirmeli öğrenme, alt hedef bulma, opsiyon sistemi

viii

Dedicated to my dear family.

ix

ACKNOWLEDGMENTS

First of all, I would like to thank my thesis supervisor Prof. Dr. Faruk Polat.

He led me to this field and always provided the support that a student may ever

require. His leadership motivated me during this whole work. Finally, I would

like to thank Erkin Çilden as he contributed to the study in many cases and his

counselling helped me to solve the problems that I face.

This work is partially supported by the Scientific and Technological Research

Council of Turkey under Grant No. 215E250.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Definition of a Subgoal 3

1.2 Contributions . 3

1.3 Outline . 4

2 BACKGROUND AND RELATED WORK 5

2.1 Markov Decision Processes 5

2.2 Semi Markov Decision Processes 6

2.3 Reinforcement Learning 6

2.4 Options Framework and Macro-Q Learning 7

xi

2.5 Sample Problem Domains 9

2.6 Related Work . 10

2.6.1 Automatic Subgoal Discovery 10

2.6.1.1 Access States 11

2.6.1.2 Relative Novelty 12

2.6.1.3 Local Betweenness 14

2.6.1.4 Local Cuts 15

2.6.2 Option Generation and Experience Replay . . 17

2.6.2.1 Option Lag Heuristics 19

3 TREE BASED SUBGOAL IDENTIFICATION 21

3.1 Local Roots . 22

3.2 Experiments . 27

3.2.1 Settings . 27

3.2.2 Results and Discussion 29

4 DIRECTED OPTIONS . 35

4.1 History Tree Heuristics 37

4.2 Experiments . 39

4.2.1 Settings . 39

4.2.2 Results and Discussion 40

5 CONCLUSION AND FUTURE WORK 51

REFERENCES . 53

xii

LIST OF TABLES

TABLES

Table 2.1 Problem sizes and reference publications (problems marked

with ? sign are modified versions of their originals) 9

Table 3.1 Parameter values used in subgoal identification 28

Table 3.2 Average CPU time overhead per episode (msec) for subgoal

identification . 31

Table 3.3 Average number of vertices (|V |) and edges (|E|) of the local

interaction graphs . 33

Table 4.1 Initiation set size settings for both option lag and history tree

heuristics . 39

Table 4.2 Results in option quality and time consumption for both of the

initiation set heuristics . 42

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Sample problem domains . 8

Figure 2.2 2 rooms 1 door grid world domain colored according to state

visitations where brighter color means higher visitation. 13

Figure 2.3 2 rooms 1 door grid world domain colored according to be-

tweenness values of the states where brighter color represents higher

betweenness. 15

Figure 2.4 2 rooms 1 door grid world domain interaction graph where

each node represents a state and each edge represents a transition.

Possible cuts are shown with dashed lines and access states that may

be identified by L-Cut is shown with white coloring. 16

Figure 2.5 Greedy selection of initiation set states with the option lag

heuristic. A state history with length l is given with terminal state st
and option lag ol. 19

Figure 3.1 (a) A sample grid world with two consecutive subgoals, colored

according to rooting factor values of the states. Shaded cells repre-

sent walls. (b) The generated tree, using the same coloring scheme.

Actions are noted on the edges. The numbers at the bottom are

corresponding levels of the tree. 23

Figure 3.2 Average number of steps to goal for each problem 30

xiv

Figure 3.3 Subgoals found in 2 rooms 1 door domain by (a) L-Cut (b)

LoBet (c) RN (d) Local Roots. 32

Figure 3.4 Average subgoal effectiveness (average option trace % per sub-

goal) . 33

Figure 3.5 Average memory usage per episode in kilobytes 33

Figure 4.1 History tree heuristic for initiation set generation. The tree is

rooted at state sr and the maximum depth of BFT starting from the

terminal state st is given as option depth (od). 38

Figure 4.2 Average number of steps to goal for 2 rooms 1 door, 2 rooms

2 door and Virtual Office problems 41

Figure 4.3 Average number of steps to goal for 4 rooms 3 doors and

Taxi problems . 42

Figure 4.4 Average option preferabilities 43

Figure 4.5 The number of occurrences of each state within an initiation

set for 2 rooms 1 door problem . 44

Figure 4.6 The number of occurrences of each state within an initiation

set for Virtual Office problem . 44

Figure 4.7 The number of occurrences of each state within an initiation

set for 4 rooms 3 doors problem 44

Figure 4.8 The number of occurrences sketch for a simple domain (a)

10x10 grid domain definition (b) number of occurrences with option

lag (b) number of occurrences with history tree 45

Figure 4.9 Average number of steps to goal for 4 rooms 4 doors domain

with (a) 2 subgoals and (b) 3 subgoals 47

xv

Figure 4.10 Visitation frequencies of each state for 4 rooms 4 doors prob-

lem with 3 subgoals provided. Brighter color represents higher visita-

tion. 48

Figure 4.11 The number of occurrences of each state within an initiation

set for 4 rooms 4 doors problem with 3 subgoals provided 49

xvi

CHAPTER 1

INTRODUCTION

In our daily lives, we always use abstractions to avoid thinking about the already

learned notions. To drive a car, we learn how to use the steering wheel and pedals

in an order so that the car can move to the direction as we intended to. After

the learning process is finished, we acquire a skill of driving a car and do not

rethink the same set of actions as we already made an abstraction over them.

This "driving a car" abstraction helps us planning our day without considering

the primitive actions of using the pedals and the wheel.

Making abstractions enables any learning agent to plan in higher levels. In

Reinforcement Learning (RL) [33], such abstractions save the agent’s learning

time by employing macro actions in addition to primitive ones. Since the aim

is to increase overall cumulative reward, these abstractions may help in solving

the task more efficiently. As the state space of a problem may be huge, having

abstractions plays an important role in the learning phase.

As usual, a classical approach to cope with the effect of the problem size is

the divide and conquer strategy. The idea is that, if one can divide a problem

into sub-problems, it may be easier to solve the sub-problems first, and then

combine the sub-solutions to achieve the answer to the overall problem. From

the solution point of view, these sub-solutions are handled as abstractions.

Humans employ divide-and-conquer strategy frequently. Our brain constantly

recognizes the sub-problems and solves them separately. For instance, if we

need to go to a location in some other room, we realize that we need to reach

1

the door first, so we solve the problem of reaching the door and making an

abstraction about it, avoiding the unnecessary exploration of the whole room.

The bottleneck here is to recognize the door in order to partition the problem.

In this example, the door may represent a subgoal where the goal is the location

that we want to reach in another room.

A subgoal in the problem is a natural hint to partition it into sub-problems.

Identification of such subgoals in the early phase of learning is proven to increase

the learning performance. If an agent is capable of identifying a subgoal and

making an abstraction to reach it, it may skip the exploration of the sub-problem

that the subgoal partitions.

There are a number of different approaches that attack the subgoal discovery

problem in RL. Some of the methods are based on graph theory [15, 24, 30, 35],

some use statistical methods [4, 21, 29, 31], while others employ data mining

approach [16, 19].

Obviously, since the intrinsic focus of RL is on on-line performance, it is quite

reasonable to expect that the identification of subgoals should better be confluent

with the underlying learning procedure. That is, a subgoal must be discovered

during learning so that the agent can benefit from it. While some methods

natively support this paradigm [11, 29, 30], some others may require additional

setup.

Among the approaches for making abstractions, Options framework drew at-

tention due to its generality and ease of implementation, where an option is

nothing but a time extended abstract action (or macro action). Definition of

an option involves an initiation set (states at which an option may start) and

a termination condition (how an option terminates). Subgoal discovery, usually

deals with how to accurately identify the termination condition, since its quality

determines effectiveness of the partitioning.

2

1.1 Definition of a Subgoal

A subgoal in a problem is defined in different ways in the literature. Some

definitions [21, 24] are task dependent, meaning that a subgoal is the state that

is visited frequently on the way to a possible goal state. These definitions require

that the agent recognizes the goal states in the problem. Other definitions

[28, 15, 35, 4, 31, 19, 16] are based on the being a bottleneck idea. A subgoal

acts as a bottleneck state allowing the agent to travel between different regions

of the state space.

In this thesis, the latter definition is adopted as the proposed subgoal identifi-

cation method focuses on finding bottleneck candidates in the early phases of

learning.

1.2 Contributions

The thesis work proposes two main contributions as a novel subgoal discovery

method [6] and an improvement of the option generation process [5].

The proposed subgoal identification method is coherent with RL paradigm as

it can be employed on-line and it works with local information. Having these

features, it resembles with the methods proposed by Simsek [28] and it uses the

same filtering rule as theirs. The main prominent characteristics of the proposed

method are as follows.

• Compared to existing methods, the proposed method requires less CPU

time with an average time complexity of O((logb(n))2).

• It maintains the partial information about the problem in a more compact

way as it leads to low memory usage.

• It achieves the same quality in finding useful subgoals as the other subgoal

discovery methods and it identifies less number of subgoals ignoring the

similar subgoals having no extra effect on the learning process.

3

• It does not require any additional parameters besides the ones used in the

filtering mechanism.

The proposed option generation method focuses on the initiation set part of an

option by creating directed options. It aims to form more effective options in

the sense of learning performance.

• It significantly improves the learning performance when the same set of

subgoals are provided.

• It forms better options in terms of quality measured as usefulness and

compactness.

• It requires reasonable computation time.

1.3 Outline

The organization of the thesis is as follows. Chapter 1 introduces the problem

at hand and the existing approaches to solve it. Chapter 2 summarizes the nec-

essary background and related works in the literature. Chapter 3 and Chapter 4

present a novel subgoal discovery method and a new way of generating options,

respectively, along with the experimental results and discussions. Chapter 5

concludes the research work and proposes future research directions.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter gives the necessary background to understand the addressed prob-

lem and the proposed improvements in this thesis. It introduces the formalisms

that the problem is modeled, summarizes existing methods in the literature.

2.1 Markov Decision Processes

Formally, a Markov Decision Process (MDP) is a tuple 〈S,A, T,R〉, consisting
of

• a finite set of states S,

• a finite set of actions A,

• a transition function T : S × A × S → [0, 1] where ∀s ∈ S, ∀a ∈ A,∑
s′∈S T (s, a, s′) = 1,

• a reward function R : S × A→ <.

T (s, a, s′) is the probability of being in state s′ if action a is performed in state

s. R(s, a) gives the immediate reward from the environment after taking action

a in state s.

T states whether the MDP is deterministic or not. In the nondeterministic

(stochastic) case, the actions become noisy, i.e., the same action may not lead

the agent to the same state all the time.

5

A policy

π : S × A→ [0, 1] (2.1)

is a mapping defining the probability of selecting an action in a state. The aim is

to find the optimal policy π∗ which maximizes the total expected reward received

by the agent. If reward and transition functions are unknown, the optimal policy

π∗ needs to be found by estimating the value function (i.e. function giving

the value of being in a state on the way to goal) incrementally. Incremental

estimation approach makes use of the average cumulative rewards over different

trajectories obtained by following a policy to calculate the value function and

gives rise to the central idea of most RL algorithms, called the temporal difference

(TD) [32].

2.2 Semi Markov Decision Processes

A Semi-Markov Decision Process (SMDP) extends the MDP model with tran-

sitions of stochastic time duration. An SMDP is a tuple 〈S,A, T,R, F 〉, where
S, A, T and R define an MDP, and F (t|s, a) is the probability that starting at

s, action a completes within time t. MDP is clearly a specialization of SMDP,

where a step function has a jump at 1. In the SMDP model, a policy is still a

mapping from states to actions, thus the Bellman equations [1] still hold for an

optimal policy [2].

2.3 Reinforcement Learning

Reinforcement Learning (RL) defines a family of machine learning methods that

try to solve a decision problem by utilizing the feedback received on-line while

experiencing the problem space. It also differs from supervised learning tech-

niques in the sense that there is no presentation of correct decisions, yet the

agent has to derive them by itself through processing of environmental feedback

[33].

6

A famous TD algorithm using action-values (i.e. Q-values) instead of state-

values is named Q-Learning [36], and is widely used due to its simplicity and

ease of use. Q-values represent the value of taking an action a in a state s. The

update rule for Q-Learning is

Q(s, a)← (1− α)×Q(s, a) + α× [r + γ ×max
a′∈A

Q(s′, a′)], (2.2)

where α ∈ [0, 1) is the learning rate, γ ∈ [0, 1) is the discount factor, s′ is

the reached state when action a is fired at state s and a′ is the action leading

to the maximum Q-value in state s′. Q-Learning has been shown to converge

to the optimal action-value function denoted by Q∗, under standard stochastic

approximation assumptions.

2.4 Options Framework and Macro-Q Learning

An implicit assumption for the MDP model is that an action lasts for a single

time step. However, there are acceptable rationales to relax this assumption.

An obvious one would be the convenience in the reuse of a behaviour pattern

(i.e. skill) in different situations within the problem space. This abstraction idea

took attention by various researchers, and a few different mainstream approaches

emerged [7, 26, 34].

As a prominent abstraction formalism based on the SMDP model, options frame-

work [34] devices a way to define and invoke timed actions via incorporation of

composite actions on top of an MDP model. It allows to create and use abstract

actions (options) by using primitive actions, lasting for a finite number of dis-

crete time steps. Briefly, an option is defined by three components < I, π, β >:

(1) a set of states that the option can be initiated at, called the initiation set,

I, (2) option’s local policy, π, and (3) a probability distribution induced by the

termination condition β.

7

(a) 2 rooms 1 door (b) 2 rooms 2 doors

(c) 3 rooms (d) Virtual Office (e) Taxi

(f) 4 rooms 4 doors (g) 4 rooms 3 doors (h) 6 rooms

Figure 2.1: Sample problem domains

A natural extension of Q-Learning to include options is Macro-Q Learning [22],

where the value of each primitive action is again updated according to regular

Q-Learning (as given in the update rule 2.2), while the value of an option is

updated according to the following rule:

Q(st, ot)← Q(st, ot) + α× (γn ×max
o′

Q(st+n, o
′)−Q(st, ot)

+rt+1 + γrt+2 + ...+ γn−1rt+n),
(2.3)

where st is the starting state of the option ot, n is the number of steps taken

while the option is employed, st+n is the state that the option terminates at, o′ is

the option from st+n that has the maximal value and rt+i is the reward received

at time t+ i. The reward is discounted by the time it is received.

8

Table2.1: Problem sizes and reference publications (problems marked with ?

sign are modified versions of their originals)

Problem |S| |A| Reference
2 rooms and 1 door 201 4 [30]
2 rooms and 2 door 202 4 [24]?

3 rooms 106 4 -
Virtual Office 212 4 [8]?

4 rooms and 3 doors 404 4 [21]?

4 rooms and 4 doors 403 4 [21]
6 rooms 605 4 [24]
Taxi 500 6 [7]

2.5 Sample Problem Domains

Commonly used sample domains include grid world navigation problems (Figure

2.1). They are well-known benchmark problems in the related literature. Table

2.1 include sizes of the state space and action space of the experimented domains.

New grid world domains and different versions of existing ones are also included

to further analyze the behaviour of the proposed improvements.

In the grid world problems, except Taxi, the agent can perform four movement

actions, move north, east, south and west. The environment is non-deterministic,

and the agent moves to the intended direction with probability 0.9 and moves

randomly in any of the movement directions otherwise. The agent is given a

reward of +1 if it reaches the goal state and transitions to nongoal states yield

0 reward. For 2,3 and 4 rooms problems and Virtual Office, the agent starts

from any cell in the left room(s). The agent starts from any cell in the upper

left room in the 6 rooms domain.

The last domain is the famous Taxi domain (Figure 2.1e, [7]), in which a taxi

tries to pick up a passenger from its location and transfer it to a destination

location in a 5 × 5 grid world with designated locations. The taxi agent can

perform 6 actions: movement actions north, east, south, west ; a pickup action to

get the passenger, and a putdown action to drop the passenger. The passenger is

initially located in one of the four different cells marked as Red (R), Yellow (Y),

9

Green (G) and Blue (B), and the destination of the passenger is one of these

four designated cells. The actions are noisy, leading the agent to its intended

direction with probability of 0.8 and randomly moving it to the left or the right

of the intended direction with probability of 0.1 each. The agent is punished

for wrong pickups and putdowns with −10 and it is rewarded with +20 when

it puts down its passenger in the desired location. Any other transition is given

the penalty of −1. A state in this problem is made up of the cell that the taxi is

currently located (25 cells), the destination of the passenger (4 designated cells)

and the position of the passenger (4 designated cell or taxi).

In Taxi domain, as the destination of the passenger is constant during an

episode, the number of states that can be visited in an episode is limited to

125. On the contrary, the agent can visit all the states in an episode in the other

problems. This causes the learning to take more episodes in Taxi domain than

the other ones. However, the agent constantly receives rewards in Taxi domain

while in other grid world domains, it receives a reward only when it reaches to

the goal state. Again this difference leads agent to take less steps in an episode

in Taxi domain than the others.

2.6 Related Work

2.6.1 Automatic Subgoal Discovery

Automatic discovery of subgoals deals with the problem of identifying a set of

intermediate points or regions within an MDP, that are “subgoals” or “bottle-

necks”, naturally partitioning the problem in hand. Due to the vagueness of

the concept, a number of different approaches had been developed for subgoal

discovery in RL context.

Some of the methods transform the experience history to a transition graph and

analyze it to find most suitable bottleneck regions that partitions the problem

[9, 15, 24, 25, 30, 35]. Some other methods rely on state visitation statistics

to find frequently used states, based on the observation that frequently visited

states are more likely to be a bottleneck on the way to goal [4, 12, 21, 29, 31]. A

10

yet different approach interprets the same matter as a clustering problem, trying

to find separate regions in state space using experiences and then identify access

points between regions as subgoals [16, 19]. Although not explicitly subgoal-

based, a related family of methods focuses on the sequence analysis on episode

histories, under the assumption that the subgoals are signaled via reward peaks

[11, 20].

However, it is not straightforward to determine whether a state is a subgoal or

not. In the ideal case, one needs the complete transition function T in order to

make an accurate decision, which is practically not possible. Nevertheless, ma-

jority of subgoal discovery methods rely on the assumption that an approximate

T can be gathered throughout the RL experience. A drawback of this approach

is that it may not be possible to decide that approximation of T is accurate

enough to be used for subgoal discovery. Alternatively, few other methods use

a hybrid approach that brings together locally collected transition information

and a means to statistically test its sufficiency for subgoal discovery [28].

2.6.1.1 Access States

Simsek [28] puts a definition on a subgoal, called an access state, as a state that

connects two or more connected regions having few transitions in between. The

key idea is that, a method searching for an access state is allowed to possess only

local statistics throughout the experience, to classify a state as either a target

state (an access state) or not. Observations that are collected for a state this

way are then used in the following decision rule:

n+

n
>

ln 1−q
1−p

ln p(1−q)
q(1−p)

+
1

n

ln(
λfa
λmiss

p(N)
p(T)

)

ln p(1−q)
q(1−p)

, (2.4)

where n is the total number of observations for a state, n+ is the total number

of positive observations for a state, p is the probability of a positive observation

given a target state (an access state), q is the probability of a positive observation

given a non-target state, λfa is the cost of a false alarm, λmiss is the cost of a

miss, p(N) is the prior probability of non-target states and p(T) is the prior

probability of target states.

11

If the inequality holds, then the state is classified as an access state. This

decision rule pinpoints the time step when the collected observations are enough

to make a decision about the label of a state. This two-level mechanism enables

the methods to avoid the time cost of traversing the whole problem domain.

On the other hand, the parameters are problem specific and needed to be either

guessed or estimated with the help of prior experiments. The analysis of the

parameters can be found in [28].

The main reason behind having a second level decision rule is that the subgoal

identification methods proposed by Simsek can lead to noisy results as they work

on partial information. It is possible that the agent walk in a way so that the

resulted interaction may show a different problem structure, suggesting a regular

state as a subgoal. Such noises are eliminated with inequality 2.4.

In the same study, Simsek proposes three access state identification methods

(Local Betweenness, Local Cuts, Relative Novelty) to generate the observations

for the states that are required for the inequality 2.4. Two of them are graph-

based methods working on local interaction graphs and one of them is a frequency

based method collecting statistics about the states.

A local interaction graph is a weighted and directed graph constructed with the

interactions between the agent and the environment. As the name suggests, the

graph possesses only local information. For example, a local interaction graph

created at the end of an episode may not have all the states in the problem

domain as those states may remain unvisited within that episode.

2.6.1.2 Relative Novelty

Relative Novelty (RN) focuses on the idea that access states are more likely to

allow the agent to go from a highly visited region to another new region in the

state space. The method employs a statistical approach. The agents keeps a

history of states that it visits and calculates the relative novelty metric on the

states.

12

Figure 2.2: 2 rooms 1 door grid world domain colored according to state visi-
tations where brighter color means higher visitation.

Novelty of a set of states is defined as n−
1
k , where n is the mean number of visits

to states in the set and k > 0 is a parameter called novelty exponent. With this

parameter, the novelty of a set decays with the increasing number of visits.

Relative novelty of a state is the ratio of the novelty of following states (includ-

ing itself) to the novelty of preceding states. The number of states to consider

in these sets is determined with a parameter called novelty lag (ln). Since calcu-

lating relative novelty of a state needs a set of following states, the calculation

is done when the history of states allows the state of interest to have a following

set.

A state is said to generate relative novelty when its relative novelty value is

bigger than an estimated threshold called relative novelty threshold (tRN). If

the value of a state is greater than the threshold, the algorithm generates a

positive observation for the state, it generates a negative observation otherwise.

Then, the inequality 2.4 is checked and the state is classified accordingly.

The method resets the visitation counts periodically, since only the recent ex-

perience is important to the classification. A very suitable time for resetting is

the end of each episode. Also, self transitions are ignored, that is consecutive

visitations for the same state are skipped.

The algorithm has O(1) time complexity as it consists of a basic calculation.

However, RN requires to be employed at each step. In an episodic view, the

complexity of it becomes O(m) where m represents the number of steps taken

in that episode.

13

To give a further idea, 2 rooms 1 door grid world domain with state visitation

frequencies is shown in Figure 2.2 where a cell with brighter color is visited more

often. Due to the early exploration, the agent spends more time on the left room

than the right one. The method depends on this difference in the visitation

counts and with the relative novelty metric, it identifies the states around the

doorway as access states. On the other hand, RN is highly open to generating

noise as it depends on the idea that the agent explores the problem with an

unbiased way. That is why, it performs best when random action selection is

employed. If the agent spends some extra time on some set of regular states,

possibly due to a pitfall, the method may consider that set as a connected region

and it may mark the state that the agent exits the set as an access state.

2.6.1.3 Local Betweenness

The method of local betweenness (LoBet) uses a graph-based approach to iden-

tify bottlenecks. It uses local interaction graphs to identify bottleneck states.

Betweenness of a vertex in a graph is defined as the ratio of shortest paths

on the graph, between all possible sources and targets, that pass through the

vertex of interest to the total number of shortest paths. Local betweenness is

the betweenness of a state computed in a local interaction graph.

In addition to the betweenness metric, Simsek also considers the path weights

which are calculated according to the rewards taken in a path and the number

of transitions between the states in a path.

Hence, the betweenness value of a vertex v is calculated as,

∑
s 6=t6=v

σst(v)

σst
wst, (2.5)

where σst is the number of shortest paths from vertex s to t, σst(v) is the number

of such paths that pass through v, wst is the weight of the path from s to t.

This metric directly shows the important bottleneck nodes in a graph, corre-

14

Figure 2.3: 2 rooms 1 door grid world domain colored according to between-
ness values of the states where brighter color represents higher betweenness.

sponding to access states in a problem domain. For the same example of 2

rooms 1 door grid world domain given in Figure 2.3, the states with higher

betweenness values are easily detectable. The algorithm generates a positive

observation for a state if its betweenness is local maxima among its immediate

neighbors in the graph, and a negative observation otherwise. Finally, those

observations are fed to the inequality 2.4.

With Brandes’ algorithm [3], a local interaction graph can be processed for

betweenness of each node in O(n ·m) time with unweighted edges, O(n ·m+n2 ·
log n) with weighted edges where n is the number of nodes and m is the number

of edges in the graph.

One problem about LoBet is that it may miss a set of access states when they

are neighbors to each other. In a version of the 2 rooms 1 door grid world

domain with 2 cells in the doorway, the method will miss both cells when the

local interaction graph is symmetric around the doorway, since LoBet marks a

state as access state if its betweenness is local maxima around its neighbors. In

the symmetric case, both states in the doorway may have the same betweenness,

causing the method to miss both of them. However, this problem does not occur

as much because of partial information on domain structure.

2.6.1.4 Local Cuts

Local Cuts (L-Cut) is another graph based approach proposed by Simsek [28].

Basically, it aims to partition the local interaction graph into two according to

a metric called normalized cut (NCut) introduced by Shi and Malik [27].

15

Figure 2.4: 2 rooms 1 door grid world domain interaction graph where each
node represents a state and each edge represents a transition. Possible cuts are
shown with dashed lines and access states that may be identified by L-Cut is
shown with white coloring.

NCut is defined as,

NCut(A,B) =
cut(A,B)

vol(A)
+
cut(B,A)

vol(B)
, (2.6)

where A and B are two partitions, cut(A,B) is defined as the sum of the weights

of the edges that start in A and end in B and vol(A) is defined as the sum of

the weights of all edges that start in A.

The algorithm employs spectral clustering of Shi and Malik [27] for the parti-

tioning of the local interaction graph. Then, it calculates NCut value of the

partitioning for determining the cut quality. If NCut value is lower than a pre-

determined threshold called cut threshold (tc), indicating that the partitions

are well separated, then the border states of this cut get a positive observation

while the others get a negative one. Again, these observations are given to the

inequality 2.4 for further elimination.

In the example of 2 rooms 1 door grid world domain with complete interaction

graph given in Figure 2.4, possible cut positions are given with dashed lines. The

method finds two partitions, namely the left and the right room. Having NCut

16

value lower than tc, generates positive observations to the possible border states

marked with white color. As the method works on each local interaction graph,

inequality 2.4 separates each of them from the remaining states.

The partitioning of the graph requires O(n3) time where n is the number of

states in the local interaction graph. Since the local interaction graph may not

have all the states in the problem domain, this high time complexity is not a

problem.

Unlike the other two methods, L-Cut always points two candidates for being

access states as the cut always has two ends. This may lead to having more

access states compared to the other methods.

2.6.2 Option Generation and Experience Replay

Option framework does not impose any strategy for designing meaningful or

useful options. Although there are “guidelines” giving some insight to the dy-

namics of the framework, the formalism itself lacks procedural ways for defining

a valuable option. A general rule of thumb would be, “the initiation set and

termination condition of an option together restrict its range of application in a

potentially useful way” [34].

However, many of the existing automatic option generation algorithms focus on

the termination condition, mostly due to the fact that (as an obvious strategy)

a partitioning attempt should find splitting points or regions in the state space

and let the termination criteria of options be derived by using those bottleneck

states.

Initiation sets, on the other hand, are usually defined via a simpler premise, like

“all states other than termination states,” hoping for the action selection mech-

anism to restrict choices during learning later on. “All other states” heuristic

is probably one of the simplest ideas for construction of the initiation sets [13].

Some methods improve this idea by introducing additional –direct or indirect–

information about the domain. Restrictive parameters like “option lag” can be

used to provide a problem specific limit for the option length [29]. Some meth-

17

ods incorporate a reachability criterion for states to the ones in the termination

condition as a heuristic [31].

In a relatively less explored approach, sub-sequence commonalities are explored

instead of bottlenecks [23, 10]. This flexibility allows the methods to gener-

ate useful options from common parts of histories. While [23] stores a his-

tory database for this purpose, [10] introduces shortcut history procedure and

a compact tree structure eliminating the excessive memory requirement, which

inspired our work. Unlike [10] which focuses on sequences including actions, our

work uses the similar history tree heuristic with only state information in order

to identify the set of states that an option can be useful to be employed from.

There are also studies that expand the notion of option to handle problems

that do not fit to classic MDP model. For problems with continuous state

space, initiation set of discovered skills can be the terminal set of the next skill,

forming a skill chain [17]. Reachability heuristic is also studied, although in

a different form, for factored MDP setting [14]. These methods apply to the

relevant extended MDP models, and are not directly related to our work.

As the third component of an option, a common way of forming the option policy

is the Experience Replay (ER) mechanism [18]. ER makes use of a repository

of past episodes and replays them repeatedly as if the agent experiences them

again. In option generation, a policy for reaching a state can effectively be

formed by using ER via artificial internal rewards rather than the ones yielded

by the environment. Traditionally, the ER rewards are designed in such a way

that reaching the state gets a very high reward, while reaching the states of the

initiation set are punished.

18

...

sn−1...stst−1st−2...st−ol...s0

ol

...

Figure 2.5: Greedy selection of initiation set states with the option lag heuristic.
A state history with length l is given with terminal state st and option lag ol.

2.6.2.1 Option Lag Heuristics

Figure 2.5 illustrates one of the popular greedy strategies for forming an initia-

tion set for a given terminal state (possibly a subgoal). It selects the initiation

set states among the ones visited before the terminal state occurrences within

an episode. As the agent explores different paths to the terminal state in each

episode, the method collects the states in these paths.

The number of transitions to check before the terminal state of the option is

an externally supplied parameter called the option lag. An episode starts with

the state s0 and ends with the state sn−1 with a total history length n, and the

number of transitions checked before the terminal state st (with an option lag

of ol) are indicated in the figure.

This strategy is based on the idea that there is a path reaching the terminal

state st from each state visited before it, and this time ordering is likely to occur

again in the future episodes, meaning that the agent will visit the same states in

a similar order to reach the terminal state. As this strategy depends on a fragile

intuition, there is a room for improvement which is proposed in Chapter 4.

19

20

CHAPTER 3

TREE BASED SUBGOAL IDENTIFICATION

The aim of reinforcement learning is to find an optimal policy (π∗) to solve a

planning task where π∗ represents an optimal set of actions to reach a goal state

from any other state in the problem. Following this policy, the agent can form a

shortest path from any state to a goal state. Such a shortest path is an ordering

of states according to their values leading to a goal state.

Even though the optimal policy is not given to the agent, it is possible to derive

such an ordering after a successful episode. A successful episode is the one

that ends with a reward peak, possibly reaching to a goal state. With such an

information at hand, the agent can form shortcuts for reaching the reward peak

from any state visited in the episode.

By eliminating loops and choosing the best states to go from any state in the

episode history, such shortcuts may provide further information about how the

states in the episode may have been visited efficiently to reach to a possible goal

state. This idea is influenced from Girgin’s study of shortcut history procedure

[10]. As these shortcut paths merge, they form a tree that is called a history

tree. In a history tree, some states may act as bottleneck states in the way to a

goal state. Being the main advantage of automatic subgoal discovery methods,

reaching to such states in the early phases of learning may accelerate it in a

significant way.

In this study, a subgoal state is defined as a state that serves as a junction point

or a region of the derived shortcut paths from each state to a goal state. Based

21

on this intuition, the algorithm requires the episode to end with a peak reward

so that it can form a history tree to reach it.

3.1 Local Roots

The proposed method, named Local Roots [6], generates positive and negative

observations for visited states and feeds them to the inequality 2.4. As it is

mentioned in Chapter 2, this is a common pattern in local approaches in sub-

goal discovery, since the local information gathered from the episode history can

be highly dependent on the particular way of state visitations, and thus, may

give rise to noisy results without a high level decision filter (especially false pos-

itives). Inequality 2.4 is calculated for each visited state, aiming to distinguish

the subgoals more accurately.

Local Roots method records the transition history for each episode (Algorithm 1,

line 3). Upon completion of an episode, it first checks whether the last transition

yields the maximum reward for that episode, or not. If so, it calculates the

average number of distinct transitions made through a state (ntavg) and creates

a history tree using shortcut paths derived using state equivalences, to serve as a

collection of the best “memorized” trajectories starting from every visited state

in the episode up to the goal state (Algorithm 1, line 6). As this history tree

consists of the states only visited in the episode, it is called local history tree.

Best trajectories are calculated by traversing from a leaf of the tree to the root,

iteratively updating the transitions with the best values. The path from a vertex

to the root in the tree forms the shortest path from the corresponding state to

(possibly) the last state in the episode. The tree generation procedure is given in

Algorithm 2. Starting from the last transition reaching to the reward peak going

to the beginning of the episode, each transition is used to calculate a value V for

each visited state. Such values, are formed with the rewards taken during these

transitions and the discounted values of their end states. If there is a transition

reaching to a better state s′ from a state s, then the best state to go for s is set

to s′. Collecting these relations, a directed edge from s to its best state is added

22

(a)

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

s76s75
n

s74 s

s70

es71 ns66
es61

e

s60 s
s55

e

s54 s59
e

s53
s

s64
e

s58 s63
e

s52 s57
e s

s62

w

s67

w

s72
w

s73
n

s68

n

s69
n

s65

e
s

s

s56
n

s51
e

s48
e

s47
s

s42
e

s43
es38

es33
e

ss32 s37
e e

s36 s41
e

s34
n

s39

n

s28

e

s29
e

s30 s35
e

s40
e

s45
e

s44 s49
e

s31
e

s26
e

s27
e

s25
e

s46
se

n

n

s50

n

s22
e

s21
s

s17
e

s16
e

s11 e

s20
s

s15

s

s12
e

s10
e

s5
e

s18 s23
e

n

s24

n

s19
n

s14
e

s13

e

s7
e

s6
e

s8
e

s9
e

s4
e

s3
e

s2
e

s1
e

s0
s Root

(b)

Figure 3.1: (a) A sample grid world with two consecutive subgoals, colored
according to rooting factor values of the states. Shaded cells represent walls.
(b) The generated tree, using the same coloring scheme. Actions are noted on
the edges. The numbers at the bottom are corresponding levels of the tree.

to the tree. The resulting local history tree is a collection of shortcut paths (i.e.

free of loops) from every visited state in the episode to the last state (with the

reward peak), based on the local history derived from experiences.

The core idea of the proposed method lies in a state metric, that is called the

rooting factor, due to the visual resemblance to a root structure of a tree in

the nature fringing underground. To clarify the idea, Figure 3.1a illustrates a

sample grid world domain made up of three rooms with passageways between

adjacent rooms, and Figure 3.1b is a tree generated for the problem by using an

episode history. The goal state is s76 which is located in the south-east corner

of the room and the agent starts from the north-west corner, namely s0. The

agent can move to any one of the four compass directions at each time step,

except that after a move attempt to the walls and the boundaries of the room,

it stays still.

23

The grid world and the tree instance given in Figure 3.1 are colored according

to the rooting factor values of states scaled from black to white, where brighter

color means a higher value. Note that the states in the doorways have high

rooting factor values. In the case of state s48 located at level 9, the rooting

factor metric focuses on the sub-tree having state s48 as the root. To calculate

the rooting factor of state s48, one should first find the widest level for the sub-

tree rooted by state s48, which is the level possessing the first peak in sub-tree

width. In this sub-tree, the widths of each level are 1,3,5,5,5,5,3 consecutively,

and the first peak value in terms of width is 5. The method considers level 11

as the widest level and ignores the second peak with value 5 starting in level 17

since level 11 has the first peak. This way, even if there is a wider level below,

it is not taken into account for state s48. Thus, each bottleneck state in the tree

possesses its relative sub-tree, as is the case for another subgoal s22 in level 15

where the widest level of its relative sub-tree is level 17.

Upon identification of the widest level for state s48, one can think of an imaginary

triangle (i.e. the dotted triangle in Figure 3.1b) where the vertices in the widest

level compose its base, and its topmost corner is s48 (w.r.t. a portrait orientation

of the tree, where the root is at the top). The shape of this triangle is an

indication of the “importance” of state s48 in the tree. A wider triangle suggests

that, for relatively more states, the agent should pass through state s48 in order

to reach the root state (i.e. goal). The height of the triangle, on the other hand,

pinpoints a state which is the “first” junction point of the merging paths. That

is why, the rooting factor of state s48 is higher than its parent’s, state s51.

As a mathematical interpretation of the above characteristics, the rooting factor

of a state s can be defined as follows:

rs =
(nwidest)

ntavg

dwidest − ds
, (3.1)

where ds is the depth of s in the tree, ntavg is the average number of distinct

transitions of states in the tree, nwidest is the number of vertices in the widest

level and dwidest is the depth of the states in that level. In order to strengthen

the effect of possible connections that a vertex can have, number of vertices in

the widest level is powered by the average number of distinct transitions (ntavg).

24

Algorithm 1 LOCAL_ROOTS
Require: p, q, λfa

λmiss
, p(N)
p(T)

1: oi ← 0, o+i ← 0

2: for each episode do

3: h← Interact with the environment . record episode history

4: if h ended with a peak reward then

5: ntavg ← calculate average number of distinct transitions in h

6: T ← CREATE_TREE(h)

7: CALCULATE_ROOTING_FACTORS(T, ntavg)

8: for s ∈ VT do

9: os ← os + 1

10: if s is a local maximum on T then

11: o+s ← o+s + 1

12: end if

13: if the decision rule is satisfied then . use inequality 2.4

14: Classify s as a subgoal

15: end if

16: end for

17: end if

18: end for

After the tree is constructed by using Algorithm 2, the rooting factor calculation

takes place for every vertex (Algorithm 1, line 7). Algorithm 3 is employed for

this purpose, where a tree traversal (via breadth first search, BFS) is employed

first, to find the depth of each vertex in the tree. An additional traversal is

run afterwards, from the level with the deepest state(s) to the root, to find

the number of vertices below each vertex classified by their depths (Algorithm

3, lines 3-7). Using this information, the rooting factor of each state can be

calculated by traversing from the state under consideration to the deeper levels.

Having calculated the rooting factor values for every visited state, each state

is checked whether it is a local maximum or not, in terms of rooting factors,

among its children and parent in the tree. The state gets a positive observation

if that is the case, or a negative observation otherwise. The root of the entire

25

Algorithm 2 CREATE_TREE
Require: a successful episode trajectory h

Ensure: a tree T representing shortcut histories to goal from each state

1: t← length(h)− 2

2: Vst+1 ← 0, bestst+1 ← null

3: while t ≥ 0 do

4: if Vst is undefined or (rt+1 + γ ∗ Vst+1) > Vst then
5: Vst ← rt+1 + (γ ∗ Vst+1)

6: bestst ← st+1

7: end if

8: t← t− 1

9: end while

10: V ← {sl}, E ← ∅
11: for each state s 6= sl do

12: V ← V ∪ {s}
13: E ← E ∪ (s, bests)

14: end for

15: return (V,E)

tree does not get a positive observation since it is a possible goal state and is

obviously not a subgoal. The observations made for each state are fed to the

inequality 2.4 for a further classification.

The most time consuming portion of the Local Roots algorithm is the part where

the rooting factor value is calculated for each state which has O(n2) worst time

complexity. However, the worst case happens when the tree is linear (although

it is usually unlikely at the initial states of learning due to the exploration

component, the agent might execute a policy that visits each state only once)

and the branch factor (b) is 1, which means, by the definition, there is no new

subgoal to identify. Thus, the worst case can be avoided by a heuristic check

on the shape of the generated tree. On the other hand, the algorithm performs

O((logb(n))
2) on the average, where n is the number of nodes in the tree. Since

the algorithm makes use of local episode trajectories, the number of nodes in the

tree (n) does not directly relate to the number of states in the whole domain.

26

Algorithm 3 CALCULATE_ROOTING_FACTORS
Require: a successful history tree T , ntavg

1: calculate the depth of each state in T . use BFS

2: dmax ← maxs∈VT (depth(s)) . find maximum depth

3: for every s ∈ VT do

4: ni(s)← number of nodes at depth i ≥ depth(s) in the subtree rooted at

s

5: end for

6: for each state s in VT do . rooting factor calculation for every vertex

7: ds ← depth(s)

8: i← ds, nwidest ← 1, dwidest ← ds

9: while i ≤ dmax and ni(s) ≥ nwidest do

10: if ni(s) > nwidest then

11: nwidest ← ni(s)

12: dwidest ← i

13: end if

14: i← i+ 1

15: end while

16: rs ← calculate the rooting factor of s using Equation 3.1

17: end for

3.2 Experiments

3.2.1 Settings

We compared Local Roots method (LoRoots) with RN, LoBet and L-Cut, since

they use the same decision rule and can be employed on-line. The decision

rule parameters were optimized separately for each method and problem so

that they find subgoals in the early stages of learning and they eliminate noise

properly. The cost ratio (λfa/λmiss) and the prior ratio (p(N)/p(T)) parameters

of inequality 2.4 were set to 100 for all experiments like in the Simsek’s study

[28]. The visitation counts used by RN were reset at the end of each episode.

The remaining parameters used by the subgoal identification methods are given

27

Table3.1: Parameter values used in subgoal identification

Problem
Parameters used

Method p q tc tRN k ln

2 rooms 1 door
RN 0.06 0.01 - 2.0 2 7

L-Cut 0.3 0.01 0.05 - - -
LoBet 0.7 0.07 - - - -

LoRoots 0.6 0.06 - - - -

3 rooms
RN 0.05 0.01 - 2.0 2 7

L-Cut 0.1 0.01 0.05 - - -
LoBet 0.6 0.06 - - - -

LoRoots 0.6 0.06 - - - -

6 rooms
RN 0.5 0.008 - 2.0 2 7

L-Cut 0.2 0.01 0.05 - - -
LoBet 0.5 0.05 - - - -

LoRoots 0.75 0.05 - - - -

Taxi
RN 0.712 0.01 - 2.0 2 7

L-Cut 0.04 0.002 0.05 - - -
LoBet 0.3 0.03 - - - -

LoRoots 0.24 0.03 - - - -

in Table 3.1. Unfortunately, currently, there is no practical way to find the

correct values other than a number of trial-and-error experimentation sessions.

Specifically, a heuristic we used to set p and q values is, to examine the outputs of

the used subgoal discovery methods and calibrate them according to the subgoals

that we manually identified. Other parameters are mostly inherited from [28]

where a further analysis can be found.

When a subgoal is found, the agent generates an option to reach that subgoal.

The initiation set of the new option contained the states before the first oc-

currence of the subgoal in each previous episode. Option lag (lo), the number

of time steps to look for states to add the initiation set, was 10. Termination

probability for each state in the initiation set was set to 0.0, while 1.0 was used

for the subgoal.

28

The policy of the option was formed through ER by giving 100 reward upon

reaching the subgoal, −10 punishment for leaving the initiation set and −1
punishment for any other transition. For the policy learning part of ER, α =

0.125 and γ = 0.9 were used as the learning parameters. The replay is repeated

10 times for fast convergence.

The agent incorporated Macro-Q learning algorithm, where Q values of an option

were updated according to Macro-Q learning while Q values of primitive actions

were updated according to regular Q learning. ε-greedy was used as option

selection strategy, with ε = 0.1, and α = 0.05 and γ = 0.9 were set as learning

parameters. The same γ value is used in Algorithm 2. All of the results are

averaged over 200 experiments.

3.2.2 Results and Discussion

Average number of steps to reach the goal state are compared among methods,

and the results are sketched in Figure 3.2. Plots are smoothed for visual clarity.

All of the subgoal identification methods, including Local Roots, improve the

learning speed of the agent by leading it to the goal state earlier and our proposed

method matches the performance of the other methods. In general, subgoals

discovered by Local Roots seem to be as useful as the ones found by L-Cut,

LoBet and RN. We can conclude that the solution quality of Local Roots method

is not worse than others on the average.

LoBet algorithm has O(n · m) and O(n · m + n2 · log n) time complexities on

unweighted and weighted graphs, respectively, while L-Cut algorithm requires

O(n3) time when the local interaction graph has n vertices and m edges. On

the other hand, RN algorithm is O(1). The time complexity of Local Roots,

depends on the maximum depth of a state in the tree it creates. It requires

O((logb(n))
2) time where b is the average branching factor and n is the number

of vertices in the tree.

29

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q
RN + MacroQ

L-Cut + MacroQ
LoBet + MacroQ

LoRoots + MacroQ

(a) 2 rooms 1 door

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q
RN + MacroQ

L-Cut + MacroQ
LoBet + MacroQ

LoRoots + MacroQ

(b) 3 rooms

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100 120 140

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q
RN + MacroQ

L-Cut + MacroQ
LoBet + MacroQ

LoRoots + MacroQ

(c) 6 rooms

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q
RN + MacroQ

L-Cut + MacroQ
LoBet + MacroQ

LoRoots + MacroQ

(d) Taxi

Figure 3.2: Average number of steps to goal for each problem

30

Table3.2: Average CPU time overhead per episode (msec) for subgoal identifi-
cation

Problem RN L-Cut LoBet LoRoots
2 rooms 1 door 0.63 5.18 0.65 0.45
3 rooms 0.33 1.78 0.32 0.24
6 rooms 11.00 289.30 7.10 4.08
Taxi 0.85 1.68 0.79 0.81

CPU time measurements, indicating the CPU times used by each subgoal dis-

covery method excluding the underlying Macro-Q algorithm, are given in Table

3.2. The results shows that both LoBet and L-Cut require much more time than

Local Roots because of their higher time complexities. The only exception is

LoBet for Taxi problem, whose time consumption seems to be nearly the same

as in Local Roots. On the other hand, although RN is O(1), its time complex-

ity is in fact associated with the number of steps taken, since it is invoked at

every time step, unlike the other methods waiting for the episode end. Longer

episodes in the earlier stages of an experiment causes RN to generally take more

time than Local Roots. Table 3.2 implies that Local Roots algorithm shows a

significant advantage in terms of CPU time compared to other methods.

Figure 3.3 shows the subgoals discovered by all four methods for 2 rooms 1

door problem, marked with brighter color showing high frequency of identifica-

tion. L-Cut, LoBet and RN finds more than one subgoals including the doorway

and states one step near to it. On the other hand, our proposed method finds

only the state before the doorway as it is the first merging point of the shortest

paths of the states in the left room to the goal state in the right room. This

characteristic causes Local Roots to find less number of subgoals than the other

algorithms, especially in 2, 3 and 6 rooms domains. However, as seen Fig-

ure 3.4, effectiveness of subgoals discovered are usually higher in Local Roots

method compared to the others. We define the subgoal effectiveness as

(100× nsteps(option)/nsteps(episode))/nsubgoals, (3.2)

where nsteps(option) is the total number steps passed within option sequences,

nsteps(episode) is the total number of steps taken during the episode, and nsubgoals
is the number of subgoals identified at the end of an episode.

31

(a)

(b)

(c)

(d)

Figure 3.3: Subgoals found in 2 rooms 1 door domain by (a) L-Cut (b) LoBet
(c) RN (d) Local Roots.

Subgoal effectiveness can be interpreted as the ability of a subgoal to trigger

a useful option. Contribution of some of the additional subgoals found by the

other three methods are not as significant as that are found by Local Roots in

general.

The average memory usage of Local Roots does not exceed the graph based

methods (i.e. LoBet and L-Cut) in general, showed in Figure 3.5. It is worth

noting that, memory usage metrics also include ER repositories. Since LoRoots

works on a more compact representation of the episode history, namely local

32

 0

 2

 4

 6

 8

 10

 12

2 rooms 3 rooms 6 rooms Taxi

RN
L-Cut
LoBet

LoRoots

Figure 3.4: Average subgoal effectiveness (average option trace % per subgoal)

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 rooms 3 rooms 6 rooms Taxi

RN
L-Cut
LoBet

LoRoots

Figure 3.5: Average memory usage per episode in kilobytes

Table3.3: Average number of vertices (|V |) and edges (|E|) of the local interac-
tion graphs

Problem Sizes L-Cut LoBet LoRoots

2 rooms 1 door
|V | 36.898 37.786 39.196
|E| 52.194 52.921 38.196

3 rooms
|V | 25.272 24.803 25.591
|E| 37.618 35.577 24.591

6 rooms
|V | 85.506 78.478 84.098
|E| 158.724 131.138 83.101

Taxi
|V | 21.915 21.014 20.819
|E| 36.504 34.078 19.821

history tree, it contains less number of edges compared to the other graph based

methods. This phenomenon is supported by the results given in Table 3.3 and

it leads to the low memory usage.

33

In addition to the parameters of the inequality 2.4, L-Cut requires one and RN

requires four more parameters while LoBet and Local Roots require none. These

extra parameters determine the quality of the subgoals found by L-Cut and RN

and make them dependent on the structure of the domain. In that sense, Local

Roots, like LoBet, is less dependent on the problem characteristics compared to

L-Cut and RN. Moreover, as seen in Figure 3.4, Local Roots outperforms LoBet

in terms of subgoal quality.

34

CHAPTER 4

DIRECTED OPTIONS

Identification of a subgoal is of no use unless there is a mechanism that directs

the agent to that subgoal. Option framework provides such a formalism by

having a definition with an initiation set, I, a local policy, π, and a probability

distribution induced by the termination condition, β. With option framework,

the agent can employ an option o from a state in Io, follow the local policy πo
and end it when βo is satisfied which will cause the agent to reach a possible

subgoal.

Most of the studies in the literature focuses on the local policy and the termi-

nation condition part of an option, leaving the impact of the initiation set. As

I consists of the states that the option can be employed from, it possesses an

important role.

Definition of a subgoal inherently depends on being a bottleneck state in the

state space since such a subgoal is important on making transitions between

the different regions of the problem domain. However, reaching to a subgoal is

useful only on the way to a goal state. That is, starting from a state, there is

no need to visit a subgoal if there is a better path to a goal state without the

subgoal. Reaching to a subgoal is relatively useful only for a set of states in the

state space.

In the example of 2 rooms 1 door domain, a bottleneck state is the one at the

doorway. However, the agent does not need to visit it when it is located in the

right room (the same room with the goal state). It is only useful for the locations

35

at the left room to reach the bottleneck state. This intuition demonstrates the

importance of an initiation set of the option reaching to that bottleneck state.

Common approach in generating an initiation set for the option reaching to

an identified subgoal is option-lag. Based on the time ordering, it includes the

states visited before the subgoal to the initiation set. This method depends on

the idea that there is a path from those states to the subgoal and it will be

followed again in the next episodes.

However, this is not always the case. It is quite possible that some states visited

before the subgoal have a better route to the goal by-passing the subgoal, i.e.

have a higher utility in the long term. However, the greedy strategy with op-

tion lag heuristic does not take this into account, just putting those states into

the initiation set, and depending on the action selection mechanism to perform

the necessary distinction in the future. Unfortunately, this unnecessary option

transaction grabs learning time until the utility values saturate, which nega-

tively effects the overall performance of learning. Moreover, checking several

steps before the terminal does not take state repetitions (or loops) into account.

Repetition of states in the observed history usually shortens the initiation set

generated, violating an indirect intention of the option lag heuristics to keep

track of more or less similar initiation set sizes.

This thesis proposes a better heuristics for building an initiation set for an

option. It is again influenced by the history tree approach and it follows the same

intuition of ordering states according to their utilities. It focuses on collecting

the states that a possible subgoal is relatively useful for reaching.

36

Algorithm 4 HISTORY_TREE_HEURISTIC
Require: a history H

Require: a terminal state st
Ensure: initiation set I

1: sr ← state yielding a reward peak and highest reachability through st
2: parent(sr)← null, Vsr ← 0,

3: for each sub-history e ∈ H ending with sr do

4: i← length(e)− 2

5: while i ≥ 0 do . calculate state values backwards in history

6: if Vsi is undefined or (ri+1 + γ ∗ Vsi+1
) > Vsi then

7: Vsi ← ri+1 + (γ ∗ Vsi+1
)

8: parent(si)← si+1

9: end if . get rid of loops

10: i← i− 1

11: end while

12: end for

13: V ← {sr}, E ← ∅
14: for each state s 6= sr do

15: V ← V ∪ {s} . vertices of the tree

16: E ← E ∪ (s, parent(s)) . edges of the tree

17: end for

18: I ← traverse sub-tree of (V,E) rooted by st down to depth od (excluding st)

19: return I

4.1 History Tree Heuristics

The proposed method [5], given in Algorithm 4, is a heuristic making use of a

history tree in order to generate an initiation set. It aims to construct options

with goal orientation, meaning that it restricts the initiation set of a new option

with the states that are more likely to construct it with an implicit “direction”.

The method also aims to incorporate a larger set of states as the initiation set

compared to the option lag heuristic, due to the elimination of the redundant

loops.

37

sr

st

od

...
...... ...

Figure 4.1: History tree heuristic for initiation set generation. The tree is rooted
at state sr and the maximum depth of BFT starting from the terminal state st
is given as option depth (od).

Given a terminal state st, similar to Algorithm 2, Algorithm 4 creates a tree

having sr as the root node, which is a assumed to be a possible goal state. A

state can be decided as a root if it yields a peak reward within history and is

the most frequently reached target from the given terminal state st. The aim

here, is to determine an accurate direction for the new option.

When the state sr is selected as the root node, the algorithm traverses all the sub-

histories (or episodes) ending with sr and generates a tree of shortest paths from

each visited node to sr. Each state possesses a value V determined according to

the discounted rewards taken in the path from the state to the root sr. Using

these values, every episode ending with sr is traversed from the last visited state

to the first, setting the parent states for each state as a representative of the

best state to go in order to reach the root state sr (lines 3-12). As a result, a

history tree is generated having the vertex set V including all states observed

during the traversal and the edge set E having transitions from each state to its

parent (lines 13-17).

Figure 4.1 illustrates a portion of a tree generated by the algorithm. Algorithm

4 then employs a traversal (which we implemented as a breadth-first traversal)

starting from the terminal state st to add every visited state (except st) to the

initiation set (line 18). With terminal state st in depth 0, the maximum depth

of the traversal is provided as a parameter called option depth (od).

38

Table4.1: Initiation set size settings for both option lag and history tree heuris-
tics

Problem
option lag history tree
ol size od size

2 rooms 1 door 15 75.47 10 75.00
2 rooms 2 doors 10 45.22 10 44.02
Virtual Office 20 69.52 10 66.28
4 rooms 4 doors (2 subgoals) 18 63.76 10 64.47
4 rooms 4 doors (3 subgoals) 11 50.98 10 49.38
4 rooms 3 doors 11 75.53 10 75.00
Taxi 20 35.98 10 34.70

4.2 Experiments

4.2.1 Settings

The experiments are designed to compare the performance of history tree heuris-

tic with the greedy option generation strategy using the option lag heuristic. For

a fair comparison, the terminal states are provided to the agent beforehand. For

the rooms domains, the terminal states are the doorways. For the Taxi domain,

they are the navigational bottleneck states and the states right after the taxi

agent picks up the passenger. The agent generates an option to reach a termi-

nal state (inclusive) when sufficient number of episodes are experienced. This

number is called the episode threshold, which is set as 10 for all experiments.

Unlike the approach of using only the first occurrence in Chapter 3, here, the

option lag heuristic is employed at all occurrences of a subgoal in an episode.

There is no distinct trend on the approach for this choice. However, to show the

real effect of option lag, all occurrences of a subgoal are examined.

After the formation of the initiation sets is complete, ER is employed by the

agent to generate the policy through the states in the initiation set to reach

the terminal state. A transition is rewarded 1000 upon reaching the terminal

state, and punished with −100 for leaving the initiation set, and given a −1
punishment for any other transition. The learning parameters of ER are α =

0.125 and γ = 0.9. An option is terminated upon reaching the terminal state

39

with probability 1.0, while it is terminated at any state in the initiation set with

probability of 0. The learning process is repeated 10 times to achieve a fast

convergence of the Q function.

The parameters option lag and option depth are set in such a way that the

resulting options have initiation sets with approximately the same number of

states on the average for both approaches (Table 4.1). Macro-Q learning is used

with learning parameters α = 0.05, γ = 0.9 and ε = 0.1. Both methods are

compared against the regular Q-Learning using the same learning parameters

without options. All test results are averaged over 200 experiments.

4.2.2 Results and Discussion

It is clear from the results given in Figures 4.2 and 4.3 that, under fair conditions,

Macro-Q learning with options generated using the history tree heuristic for

initiation set clearly outperforms the one with option lag heuristic, in terms of

average number of steps to reach the goal state. For every problem in the set,

history tree provides an advantage to the Macro-Q learning algorithm, especially

at the early stages of the learning process.

In order to further analyze the quality of generated options, two metrics are

introduced: One of them is the option overlap which is defined as

100× | ∩o
′ Io′ |

| ∪o′ Io′ |
, (4.1)

where | ∩o′ Io′ | represents the cardinality of the intersection of initiation sets

of all options and | ∪o′ Io′| represents the cardinality of the union of initiation

sets of all options. Higher values of this metric is an indication of potentially

unnecessary repetitions among options.

40

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45 50

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q w/o options
Macro-Q w/ option lag

Macro-Q w/ history tree

(a) 2 rooms 1 door

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35 40 45 50

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q w/o options
Macro-Q w/ option lag

Macro-Q w/ history tree

(b) 2 rooms 2 doors

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q w/o options
Macro-Q w/ option lag

Macro-Q w/ history tree

(c) Virtual Office

Figure 4.2: Average number of steps to goal for 2 rooms 1 door, 2 rooms 2

door and Virtual Office problems

41

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80 90 100

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q w/o options
Macro-Q w/ option lag

Macro-Q w/ history tree

(a) 4 rooms 3 doors

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q w/o options
Macro-Q w/ option lag

Macro-Q w/ history tree

(b) Taxi

Figure 4.3: Average number of steps to goal for 4 rooms 3 doors and Taxi

problems

Table4.2: Results in option quality and time consumption for both of the initi-
ation set heuristics

Problem

Option Average time
overlap (%) overhead (msec)

option history option history
lag tree lag tree

2 rooms 1 door 0.00 0.00 15.72 15.58
2 rooms 2 doors 13.99 0.38 21.82 20.69
Virtual Office 9.43 1.15 11.83 10.39
4 rooms 4 doors (2 subgoals) 0.00 0.00 22.89 23.75
4 rooms 4 doors (3 subgoals) 8.08 0.00 33.83 38.18
4 rooms 3 doors 12.85 0.00 103.79 105.31
Taxi 52.59 51.24 25.53 23.31

42

The other metric is the option preferability indicating how desirable it is to

employ the option at the states in its initiation set. It is defined as

P (o) =

∑
s∈Io p(s, o)

|Io|
, (4.2)

and p(s, o) is defined as

p(s, o) =


1, max

o′
Q(s, o′) = Q(s, o),

0, otherwise
(4.3)

where o is the option at hand, s represents a state in Io, o′ is any option that

can be employed from s and Io is the initiation set of the option o.

Table 4.2 lists the option overlap percentages and average CPU time used by

the heuristic. In terms of option overlap, history tree heuristics provides a

significant improvement for the majority of problems. This means that history

tree heuristics can generate an initiation set for an option in such a way that

redundant repetitions are reduced. Moreover, the method achieves this using

more or less the same CPU time.

Options generated via the history tree method are preferred more than the ones

generated via the option lag method, on the average, as can be seen in Figure 4.4.

 0

 0.2

 0.4

 0.6

 0.8

 1

2 rooms
1 door

2 rooms
2 doors

virtual
office

4 rooms
4 doors

4 rooms
3 doors

taxi

option lag

history tree

Figure 4.4: Average option preferabilities

43

(a) option lag (b) history tree

Figure 4.5: The number of occurrences of each state within an initiation set for
2 rooms 1 door problem

(a) option lag (b) history tree

Figure 4.6: The number of occurrences of each state within an initiation set for
Virtual Office problem

(a) option lag (b) history tree

Figure 4.7: The number of occurrences of each state within an initiation set for
4 rooms 3 doors problem

44

(a)

(b) (c)

Figure 4.8: The number of occurrences sketch for a simple domain (a) 10x10
grid domain definition (b) number of occurrences with option lag (b) number of
occurrences with history tree

The relative difference seems to be more significant with increasing problem size

and number of terminal states, supporting our intuition that history tree based

initiation sets drive the action selection process through macros by encouraging

generation of goal oriented options.

In order to have a deeper insight on how our method realizes this improvement,

Figures 4.5, 4.6 and 4.7 visualize the number of occurrences of each state within

an initiation set on the average. Brighter color means that the state has been

selected more as an initiation set element, while darker means less.

But first, it might be useful to use a simple 10x10 grid world domain (Figure

4.8a) with the same action, transition and reward semantics with the rooms

domains, but lacking any inherent bottleneck states. Start state is S and the

goal state is G. This means that if a terminal state is randomly chosen in this

problem, it is unlikely to improve learning performance, since the problem can

not be naturally partitioned. However, still, the position of the goal state may

imply an option orientation with respect to a randomly selected terminal state.

A state is selected somewhere in the middle of the grid world, as an artificial

terminal (or subgoal) state, and the both option lag and history tree methods

are invoked to generate initiation sets, and then options are generated. The

45

initiation set occurrence frequencies for each state are illustrated in Figures 4.8b

and 4.8c. Both methods ended up with having approximately 17 states in their

initiation sets. As depicted in the figures, the option lag approach generates

an option aiming to reach the given terminal state from its surrounding states.

On the other hand, history tree approach includes only the states between the

start state and the terminal state. Since the goal state is located at the south-

east corner, the states selected as initiation set elements are clearly shapes the

option to have an implicit “direction” towards the goal state. The eliminated

states have shorter paths to reach the goal state without any need to visit the

terminal state.

Similarly, Figure 4.5 shows that, although both methods have nearly the same

amount of states in the initiation sets (Table 4.1), since the agent can circle in

loops leading back to the doorway, the option lag mechanism tends to choose

many of the states on the right side of the doorway and add them to the initiation

set. However, the initiation set generated by history tree heuristic consists only

of the states of the room on the left. This differentiation prevents the agent to

explore an option among the states at the right side and results in improved

learning performance (Figure 4.2a).

The 2 rooms 2 doors domain (Figure 2.1b) offers two alternative ways for the

agent to reach the single goal state. In the generated options, the history tree

heuristic adds a state in the left room to only one of the initiation sets of the

options leading to the doorways, resulting in a very low option overlapping

compared to the one of the option lag heuristic (Table 4.2). This is simply

because a state in the western room can belong to only one of the sub-trees below

a door state within the generated tree. This allows the history tree method to

skip the unnecessary exploration on an equally useful option and improves the

performance of it in the learning speed (Figure 4.2b).

When multiple goal states are introduced, like in the Virtual Office domain,

history tree heuristic still outperforms the current option lag heuristic in terms

of learning speed (Figure 4.2c). Since an episode including a bottleneck state

usually ends with the goal state in the corresponding room, history tree heuristic

46

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q w/o options
Macro-Q w/ option lag

Macro-Q w/ history tree

(a) 4 rooms 4 doors (2 subgoals)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100

n
u
m

b
e
r

o
f

st
e
p
s

episode

Q w/o options
Macro-Q w/ option lag

Macro-Q w/ history tree

(b) 4 rooms 4 doors (3 subgoals)

Figure 4.9: Average number of steps to goal for 4 rooms 4 doors domain with

(a) 2 subgoals and (b) 3 subgoals

selects that goal state as the root, resulting in generating an option for entering

that room. This selection mechanism prevents our method to create an option

leaving a room with a goal state. The occurrence frequencies of states in the

initiation sets are sketched in Figure 4.6, indicating that history tree heuristic

tends to derive options more eager in leading the agent to the goal states in

the eastern rooms. It is important to note that the initiation set states at the

right rooms in Virtual Office are actually included to the initiation sets of

the options reaching to the other doorway, not to the one close to them.

47

(a) Q without options (b) option lag

(c) history tree

Figure 4.10: Visitation frequencies of each state for 4 rooms 4 doors problem
with 3 subgoals provided. Brighter color represents higher visitation.

The original version of the 4 rooms domain with 4 doors, possesses an important

feature as the doorway between the left rooms is a bottleneck state and can be

considered as a subgoal while it is not that useful to reach it. As the goal

state is the doorway between the right rooms, an optimal policy may lead the

agent to the doorways connecting the left and the right rooms. When only these

2 subgoals are provided to the agent, history tree heuristic results in better

performance (Figure 4.9a), even though the difference is close. However, both

methods lead to no option overlap (Table 4.2). On the other hand, with the

doorway between the left rooms included, the agent spends time to learn that

the option reaching to it, is no use with option lag heuristic as it can be seen

from Figure 4.9b. Generated by option lag heuristic, such an option acts like a

pitfall, making the agent visit the useless doorway more frequently. From Figures

48

(a) option lag (b) history tree

Figure 4.11: The number of occurrences of each state within an initiation set
for 4 rooms 4 doors problem with 3 subgoals provided

4.10a, 4.10b and 4.10c with state visitation frequencies, it can be seen that the

agent spends more time in the left rooms with no options, visits the left doorway

often with options with option lag heuristic and it is led to the goal state more

sooner with the options generated by history tree heuristic. Moreover, addition

of the left doorway causes option overlap for option lag heuristic while history

tree method only includes a small set of states to the initiation set of the option

reaching to it (4.11b).

For the modified version of 4 rooms domain, without the doorway between the

southern rooms (Figure 2.1g), an option to reach the door connecting the left

rooms is useful only if it initiates from the states in the south-west room, which

is in fact a distractor leading nowhere. To be included in the initiation set,

history tree method selects only those states which directs the option towards

the room exit. The difference between the selection strategies can be clearly

seen in Figure 4.7.

Finally, in Taxi domain, the destination of the passenger inherently suggests a

direction towards the goal state. Since history tree heuristic helps generating

goal oriented options, its performance is much better than the option lag ap-

proach, as can be seen in Figure 4.3b. On the other hand, the subgoals in the

49

Taxi problem are successive, meaning that, starting from an initial state, more

than one subgoal exists on the way to goal. This causes a higher option overlap-

ping compared to the other problems for both of the methods. However, history

tree heuristic still outperforms the option lag heuristic in terms of overlapping

options.

In general, the goal oriented options generated via the history tree heuristic seem

to be more preferable than the ones created through the option lag mechanism on

their corresponding initiation sets, outperforming for all of the problems in the

problem set. This suggests that history tree heuristic can be a better alternative

than the conventional greedy initiation set generation approach.

50

CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis proposes a tree based automatic subgoal discovery method called

Local Roots that helps the learning agent to identify important states on the

way to the goal state in the early stages of learning. Local Roots method can be

employed upon reward peaks, which are usually goal states. Using the options

framework, the learning agent can devise abstractions to reach the identified

subgoals. The method utilizes a tree based metric to locally identify the junction

points of the shortcuts directed from each visited state towards the goal state.

In terms of learning speed, Local Roots outperforms the regular Q-Learning for

all problem domains experimented. It also keeps up with the performance of the

other local methods on the average, showing that subgoals identified by Local

Roots are no worse than the ones found by other algorithms. Compared to other

graph based methods tested, Local Roots has lower time complexity. On the

other hand, when average CPU times per episode are compared, Local Roots

outperforms all other methods on the average, including Relative Novelty which

has the lowest theoretical time complexity, but should be invoked at every time

step. Local Roots is also shown to identify less number of subgoals with higher

effectiveness in general. Moreover, it requires no additional parameters unlike

Relative Novelty and Local Cuts.

A possible future work on Local Roots can focus on finding an alternative way

of discriminating noise from local subgoal information with less domain specific

parameters. Also, automatic detection of these parameters can be an important

improvement for all the on-line subgoal discovery methods presented here.

51

Furthermore, a goal oriented option generation method utilizing a history tree

heuristic is proposed. It restricts the initiation set of an option to the states

from which employing the option would be useful. With this restriction, an

option possesses a direction towards a possible goal state. The new approach

increases the option quality by eliminating unnecessary states that do not need

to visit the terminal state to reach a goal state. Without requiring additional

computation time, history tree heuristic increases the learning performance of

the agent.

For the initiation set heuristic, a future work can be on the improvement of

the selection of the root state which determines the direction of the generated

options. It can be reasonable to choose a root state that an identified subgoal is

most useful to reach, or choose multiple roots causing multiple options aiming

to go to the same terminal state through different directions. Moreover, the

generated tree can also directly be used for construction of the option policy.

The only missing parts are the actions that lead the agent through the paths

in the tree. The artificial rewards used in experience replay mechanism can be

modified so that best target for each state corresponds to the parent of that

state in the tree.

52

REFERENCES

[1] R. E. Bellman. Dynamic Programming. Princeton University Press, Prince-
ton, NJ, 1957.

[2] S. J. Bradtke and M. O. Duff. Reinforcement learning methods for
continuous-time markov decision problems. In G. Tesauro, D. Touretzky,
and T. Leen, editors, Advances In Neural Information Processing Systems,
volume 7 of NIPS ’94, pages 393–400, Cambridge, MA, 1994. MIT Press.

[3] U. Brandes. A faster algorithm for betweenness centrality*. Journal of
mathematical sociology, 25(2):163–177, 2001.

[4] F. Chen, S. Chen, Y. Gao, and Z. Ma. Connect-based subgoal discovery
for options in hierarchical reinforcement learning. In J. Lei, J. Yao, and
Q. Zhang, editors, Proceedings of the Third International Conference on
Natural Computation, volume 4 of ICNC ’07, pages 698–702. IEEE, 2007.

[5] A. Demir, E. Çilden, and F. Polat. A history tree heuristic to generate
better initiation sets for options in reinforcement learning. European Con-
ference of Artificial Intelligence, ECAI 2016, The Hague, The Netherlands,
August 29 - September 2, 2016.

[6] A. Demir, E. Çilden, and F. Polat. Local roots: A tree-based subgoal dis-
covery method to accelerate reinforcement learning. European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery,
ECML-PKDD 2016, Riva del Garda, Italy, September 19 - 23, 2016.

[7] T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value
function decomposition. J. Artif. Intell. Res., 13(1):227–303, 2000.

[8] L. T. Dung, T. Komeda, and M. Takagi. Solving POMDPs with Automatic
Discovery of Subgoals. In M. J. Er and Y. Zhou, editors, Theory and Novel
Applications of Machine Learning, pages 229–238. InTech, 2009.

[9] M. Ghafoorian, N. Taghizadeh, and H. Beigy. Automatic abstraction in
reinforcement learning using ant system algorithm. In Lifelong Machine
Learning: Papers from the 2013 AAAI Spring Symposium. AAAI, 2013.

[10] S. Girgin, F. Polat, and R. Alhajj. Learning by automatic option discov-
ery from conditionally terminating sequences. ECAI 2006, pages 494–498,
Amsterdam, The Netherlands, 2006. IOS Press.

53

[11] S. Girgin, F. Polat, and R. Alhajj. Improving reinforcement learning by
using sequence trees. Mach. Learn., 81(3):283–331, 2010.

[12] S. Goel and M. Huber. Subgoal discovery for hierarchical reinforcement
learning using learned policies. In I. Russell and S. M. Haller, editors,
Proceedings of the 16th International FLAIRS Conference, pages 346–350.
AAAI Press, 2003.

[13] N. K. Jong, T. Hester, and P. Stone. The utility of temporal abstraction in
reinforcement learning. In Proceedings of the 7th International Conference
on Autonomous Agents and Multiagent Systems, volume 1 of AAMAS ’08,
pages 299–306, Estoril, Portugal, May 2008. International Foundation for
Autonomous Agents and Multiagent Systems.

[14] A. Jonsson and A. Barto. Causal graph based decomposition of factored
MDPs. Journal of Machine Learning Research, 7:2259–2301, Nov. 2006.

[15] S. J. Kazemitabar and H. Beigy. Automatic discovery of subgoals in rein-
forcement learning using strongly connected components. In M. Köppen,
N. Kasabov, and G. Coghill, editors, Advances in Neuro-Information Pro-
cessing: ICONIP ’08 Revised Selected Papers, Part I, volume 5506 of LNCS,
pages 829–834. Springer-Verlag, 2008.

[16] G. Kheradmandian and M. Rahmati. Automatic abstraction in rein-
forcement learning using data mining techniques. Robot. Auton. Syst.,
57(11):1119–1128, 2009.

[17] G. Konidaris and A. S. Barreto. Skill discovery in continuous reinforcement
learning domains using skill chaining. In Advances in Neural Information
Processing Systems, pages 1015–1023, 2009.

[18] L.-J. Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Mach. Learn., 8(3):293–321, 1992.

[19] S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in
reinforcement learning via clustering. In Proceedings of the Twenty-first
International Conference on Machine Learning, ICML ’04, pages 71–78.
ACM, 2004.

[20] A. McGovern. acQuire-macros: An algorithm for automatically learning
macro-actions. In The Neural Information Processing Systems Conference
Workshop on Abstraction and Hierarchy in Reinforcement Learning, NIPS
’98, 1998.

[21] A. McGovern and A. G. Barto. Automatic discovery of subgoals in rein-
forcement learning using diverse density. In Proceedings of the Eighteenth
International Conference on Machine Learning, ICML ’01, pages 361–368.
Morgan Kaufmann Publishers Inc., 2001.

54

[22] A. McGovern, R. S. Sutton, and A. H. Fagg. Roles of macro-actions in
accelerating reinforcement learning. Proceedings of the 1997 Grace Hopper
Celebration of Women in Computing, pages 13–18, 1997.

[23] E. A. McGovern. Autonomous Discovery of Temporal Abstractions from
Interaction with an Environment. Ph.D. thesis, University of Massachusetts
Amherst, Amherst, MA, USA, 2002.

[24] I. Menache, S. Mannor, and N. Shimkin. Q-Cut—Dynamic discovery of sub-
goals in reinforcement learning. In T. Elomaa, H. Mannila, and H. Toivo-
nen, editors, Machine Learning: ECML 2002: 13th European Conference
on Machine Learning Proceedings, volume 2430 of LNCS, pages 295–306.
Springer Berlin Heidelberg, 2002.

[25] P. Moradi, M. E. Shiri, and N. Entezari. Automatic skill acquisition in
reinforcement learning agents using connection bridge centrality. In T.-
H. K. et al., editor, Communication and Networking: International Con-
ference, FGCN 2010 Proceedings, Part II, volume 120 of CCIS, pages 51–62.
Springer Berlin Heidelberg, 2010.

[26] R. Parr and S. Russell. Reinforcement learning with hierarchies of ma-
chines. In M. Jordan, M. Kearns, and S. Solla, editors, Advances in Neural
Information Processing Systems, volume 10 of NIPS ’97, pages 1043–1049.
MIT Press, 1998.

[27] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 22(8):888–905, 2000.

[28] O. Simsek. Behavioral Building Blocks for Autonomous Agents: De-
scription, Identification, and Learning. Ph.D. thesis, University of Mas-
sachusetts Amherst, 2008.

[29] O. Simsek and A. G. Barto. Using relative novelty to identify useful tem-
poral abstractions in reinforcement learning. In Proceedings of the Twenty-
first International Conference on Machine Learning, ICML ’04, pages 95–
102. ACM, 2004.

[30] O. Simsek, A. P. Wolfe, and A. G. Barto. Identifying useful subgoals in
reinforcement learning by local graph partitioning. In Proceedings of the
Twenty-second International Conference on Machine Learning, ICML ’05,
pages 816–823. ACM, 2005.

[31] M. Stolle and D. Precup. Learning options in reinforcement learning. In
S. Koenig and R. C. Holte, editors, Proceedings of the 5th International
Symposium on Abstraction, Reformulation, and Approximation, volume
2371 of LNCS, pages 212–223. Springer Berlin Heidelberg, 2002.

55

[32] R. S. Sutton. Learning to predict by the methods of temporal differences.
Mach. Learn., 3(1):9–44, 1988.

[33] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
Adaptive Computation and Machine Learning. MIT Press, 1998.

[34] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: a
framework for temporal abstraction in reinforcement learning. Artif. Intell.,
112(1-2):181–211, 1999.

[35] N. Taghizadeh and H. Beigy. A novel graphical approach to automatic
abstraction in reinforcement learning. Robot. Auton. Syst., 61(8):821–835,
2013.

[36] C. Watkins. Learning from Delayed Rewards. Ph.D. thesis, Cambridge
University, 1989.

56

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Definition of a Subgoal
	Contributions
	Outline

	Background and Related Work
	Markov Decision Processes
	Semi Markov Decision Processes
	Reinforcement Learning
	Options Framework and Macro-Q Learning
	Sample Problem Domains
	Related Work
	Automatic Subgoal Discovery
	Access States
	Relative Novelty
	Local Betweenness
	Local Cuts

	Option Generation and Experience Replay
	Option Lag Heuristics

	Tree Based Subgoal Identification
	Local Roots
	Experiments
	Settings
	Results and Discussion

	Directed Options
	History Tree Heuristics
	Experiments
	Settings
	Results and Discussion

	Conclusion and Future Work
	REFERENCES

