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ABSTRACT

STABLE ULRICH BUNDLES ON FANO 3-FOLDS WITH PICARD NUMBER 2

Genç, Özhan

Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Emre Coşkun

July 2016, 64 pages

In this thesis, we consider the existence problem of rank one and two stable Ulrich
bundles on imprimitive Fano 3-folds obtained by blowing-up one of P3, Q (smooth
quadric in P4), V3 (smooth cubic in P4) or V4 (complete intersection of two quadrics
in P5) along a smooth irreducible curve. We prove that the only class which admits
Ulrich line bundles is the one obtained by blowing up a genus 3, degree 6 curve in
P3. Also, we prove that there exist stable rank two Ulrich bundles with c1 = 3H on a
generic member of this deformation class.

Keywords: Ulrich bundle, Fano variety
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ÖZ

PİCARD SAYISI 2 OLAN ÜÇ BOYUTLU FANO VARYETELERİ ÜZERİNDE
KARARLI ULRİCH DEMETLERİ

Genç, Özhan

Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Emre Coşkun

Temmuz 2016 , 64 sayfa

Bu tezde, P3, Q (P4 içinde pürüzsüz ikinci dereceden hiper yüzey), V3 (P4 içinde pü-
rüzsüz üçüncü dereceden hiper yüzey) veya V4 (P5 içinde pürüzsüz ikinci dereceden
iki tane hiper yüzeyin tam kesişimi) varyetelerinden herhangi birinin, indirgenemez
ve pürüzsüz bir eğri boyunca patlatılmasıyla elde edilen imprimitif üç boyutlu Fano
varyeteleri üzerinde, birinci ve ikinci mertebeden kararlı Ulrich demetlerinin varlığı
üzerinde durduk. Birinci mertebeden Ulrich demetlerin sadece P3’ün cinsi 3 dere-
cesi 6 eğri boyunca patlatılmasıyla elde edilen imprimitif üç boyutlu Fano varyeteleri
üzerinde varolduğunu ispatladık. Ayrıca, P3’ün cinsi 3 derecesi 6 eğri boyunca patla-
tılmasıyla elde edilen imprimitif üç boyutlu Fano varyetelerinin genel bir temsilcisi
üzerindei ikinci mertebeden, kararlı ve birinci Chern sınıfı c1 = 3H olan Ulrich de-
metleri olduğunu ispatladık.

Anahtar Kelimeler: Ulrich demetleri, Fano varyeteleri
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

The existence of Ulrich bundles on smooth projective varieties is related to a number

of geometric questions. For instance, the existence of rank 1 or rank 2 Ulrich bundles

on a hypersurface is related to the representation of that hypersurface as a determinant

or Pfaffian ([1]). Another question of interest is the Minimal Resolution Conjecture

(MRC) ([23], [13]). In [7], the existence problem of Ulrich bundles on del Pezzo

surfaces was related to the MRC for a general smooth curve in the linear system of

the first Chern class of the Ulrich bundle. Also, in [10], it is proved that the cone of

cohomology tables of vector bundles on a k-dimensonal scheme X ⊂ PN is the same

as the cone of cohomology tables of vector bundles on Pk if and only if there exists

an Ulrich bundle on X .

It was conjectured in [11] that on any variety there exist Ulrich bundles. Although

it is known that any projective curve ([9]), hypersurfaces and complete intersections

([18]), cubic surfaces ([5]), abelian surfaces ([2]), Veronese varieties ([11]) admit

Ulrich bundles, such a general existence result is not known. The finer question

of determining the minimal rank of Ulrich bundles (which do not contain bundles

of lower rank as direct summands) on a given variety seems to be a quite difficult

problem.

The problem that has attracted the most attention is the existence of stable Ulrich

bundles with given rank and Chern classes. Stable Ulrich bundles are particularly

interesting as they are the building blocks of all Ulrich bundles: Every Ulrich bundle
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is semistable, and the Jordan-Hölder factors are stable Ulrich bundles.

In this paper, we studied the construction of stable Ulrich bundles on imprimitive

Fano 3-folds obtained by blowing-up one of P3,Q (smooth quadric in P4), V3 (smooth

cubic in P4) or V4 (complete intersection of two quadrics in P5) along a smooth irre-

ducible curve. There are 36 deformation classes of Fano 3-folds with Picard number

ρ = 2 and 27 of these are imprimitive ([21, Table 12.3]). Among all imprimitive Fano

3-folds of Picard number ρ = 2, 21 deformation classes are obtained by blowing-up

one of P3, Q, V3 or V4 along a smooth irreducible curve. We focus on these 3-folds

and we consider rank 1 and 2 stable Ulrich bundles.

First, we prove that the only class which admits rank 1 Ulrich bundles is the one

obtained by blowing up a genus 3, degree 6 curve in P3, which is [21, No:12 in Table

12.3]. These varieties admit two classes of rank 1 Ulrich bundlesL1 andL2 (Theorem

2.1.17).

The next step is to construct rank 2 stable Ulrich bundles on these varieties. To do

this, we first construct rank 2 simple Ulrich bundles (Theorem 2.2.14). For this, we

use extensions of rank 1 Ulrich bundles L1 and L2:

0→ L1 → E → L2 → 0

or

0→ L2 → E → L1 → 0.

Then E is Ulrich and simple; and it has first Chern class 3H .

Then, to determine whether there exists a stable Ulrich bundle of rank 2 with c1 =

3H , we use the Quot scheme. It is known that stable vector bundles are simple.

We consider the local dimension of the Quot scheme at the simple Ulrich bundle with

first Chern class 3H and find a lower bound to this dimension (Theorem 2.2.35). Then

we find an upper bound to the dimension of the subset parametrizing the non-stable

Ulrich bundles (Proposition 2.2.37 and Proposition 2.2.39). The latter dimension is

strictly smaller than the former; that is, there are stable, rank 2 Ulrich bundles with

first Chern class 3H (Theorem 2.2.41).
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Notations and Conventions

We work over an algebraically closed field K of characteristic 0.

• X : Smooth projective variety of degree c and dimension k in PN .

• HX : Hyperplane class of X .

• KX : Canonical divisor of X .

• E(t): The vector bundle E ⊗ OX(tHX) where E is a vector bundle on X , and

t ∈ Z.

• C: Smooth, irreducible curve of degree d and genus g.

• Q: Smooth quadric in P4

• V3: Smooth cubic in P4

• V4: Complete intersection of two quadrics in P5

• X̃: Blow-up of X along C.

• Ỹ : Non-hyperelliptic Fano 3-fold which is obtained by blowing up one of P3,

Q, V3 or V4 along C.

• Y : Deformation class of Fano 3-folds which is obtained by blowing up P3 along

a smooth irreducible space curve of degree 6 and genus 3, which is scheme

theoretic intersection of cubics.

1.2 Preliminaries

1.2.1 Fano Varieties

Definition 1.2.1 A smooth projective variety X is called a Fano variety if its anti-

canonical divisor −KX is ample.

Definition 1.2.2 A Fano 3-fold is imprimitive if it is isomorphic to the blow-up of a

Fano 3-fold along a smooth irreducible curve.
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The classification of Fano 3-folds with ρ = 2 has been completed and it can be found

in [21, Table 12.3]. In this paper, we consider the question of existence of Ulrich

bundles on Ỹ .

Upon blowing-up X along C, we have the following commutative diagram:

E

g

��

� � j // X̃

f
��

C �
� i // X

the map f is the blow-down map and E = PN is the exceptional divisor, where N is

the normal bundle of C inX . Recall that X̃ stands for Ỹ . Let h be the class of a plane

in A1(X), and let l = h2 be the class of a line in A2(X). We will denote h̃ and l̃ for

the pullbacks of h and l to X̃ respectively; and e denotes the class of the exceptional

divisor. Also for any divisor D ∈ Z1(C), we denote by FD = g∗D ∈ Z1(C) the

corresponding linear combination of fibers E → C, and similarly for divisor classes.

Theorem 1.2.3 Let D = ah̃ − be be a divisor on Ỹ = P̃3, where a, b ∈ Z. Let

D(t) = D + tHỸ . Then

χ(Ỹ ,O(D(t))) =
1

6
[62− 8d+ 2g]t3

+
1

6
[(48− 3d)a+ (6g − 12d− 6)b− 12d+ 3g + 93]t2

+
1

6
[12a2 + (6g − 6)b2 − 6dab+ (48− 3d)a

+(6g − 6− 12d)b+ 43− 4d+ g]t

+
1

6
[a3 + (4d+ 2g − 2)b3 + 6a2 + (3g − 3da− 3)b2 + 11a

+(g − 3da− 4d− 1)b+ 6].

Proof 1.2.4 It is well-known that

KP3 = (−3− 1)h = −4h

and

c(TP3) = (1 + h)1+3 = 1 + 4h+ 6h2 + 4h3.

So by [14, Example 15.4.3], we have

c1(TP̃3) = f ∗c1(T
3
P ) + (1− 2)[E]

4



= f ∗(4h)− e

= 4h̃− e

c2(TP̃3) = f ∗c2(T
3
P ) + f ∗i∗[C]− f ∗c1(T 3

P )[E]

= f ∗(6h2) + dl̃ − f ∗(4h)e

= (6 + d)h̃2 − 4h̃e

KP̃3 = f ∗KP3 + (2− 1)[E]

= f ∗(−4h) + e

= −4h̃+ e.

Then using [24, Lemma 2.1], we obtain

h̃3 = 1

e3 = −(−KP3 · C) + 2− 2g = −(4h · C) + 2− 2g = −4d− 2g + 2

e2 · (−KP̃3) = 2g − 2 ⇒ e2(4h̃− e) = 2g − 2

⇒ 4h̃e2 − e3 = 2g − 2

⇒ 4h̃e2 − (−4d− 2g + 2) = 2g − 2

⇒ h̃e2 = −d

e · (−KP̃3)
2 = (−KP3 · C) + 2− 2g ⇒ e(4h̃− e)2 = (4h · C) + 2− 2g

⇒ 16h̃2e− 8h̃e2 + e3 = 4d+ 2− 2g

⇒ 16h̃2e+ 4d− 2g + 2 = 4d+ 2− 2g

⇒ h̃2e = 0.

Since Ỹ = P̃3 is non-hyperelliptic Fano,

HP̃3 = −KP̃3 = 4h̃− e.

Let D = ah̃− be be a divisor class on Ỹ . Then

D(t) = D + tHỸ = (ah̃− be) + t(4h̃− e)

= (a+ 4t)h̃− (b+ t)e.

5



Then, we apply Riemann-Roch theorem for line bundles on 3-folds to obtain

χ(Ỹ ,O(D(t))) =
1

6
(D(t))3 +

1

4
c1(TỸ ) · (D(t))2 +

1

24
c1(TỸ ) · c2(TỸ )

+
1

12
(c21(TỸ ) + c2(TỸ )) · (D(t)).

Then we have

χ(Ỹ ,O(D(t))) =
1

6
[(a+ 4t)h̃− (b+ t)e]3

+
1

4
[4h̃− e][(a+ 4t)h̃− (b+ t)e]2

+
1

12
[(4h̃− e)2 + (6 + d)h̃2 − 4h̃e][(a+ 4t)h̃− (b+ t)e]

+
1

24
[4h̃− e][6h̃2 + dl̃ − 4h̃e]

=
1

6
[(a+ 4t)3h̃3 − 3(a+ 4t)2(b+ t)h̃2e

+3(a+ 4t)(b+ t)2h̃e2 − (b+ t)3e3]

+
1

4
[4h̃− e][(a+ 4t)2h̃2 − 2(a+ 4t)(b+ t)h̃e+ (b+ t)2e2]

+
1

12
[(22 + d)h̃2 − 8h̃e+ e2 − 4h̃e][(a+ 4t)h̃− (b+ t)e]

+
1

24
[4h̃− e][(6 + d)h̃2 − 4h̃e].

Then,

χ(Ỹ ,O(D(t))) =
1

6
[(a+ 4t)3 − 3d(a+ 4t)(b+ t)2 − (−4d− 2g + 2)(b+ t)3]

+
1

4
[4(a+ 4t)2 − 4d(b+ t)2 − 2d(a+ 4t)(b+ t)

−(−4d− 2g + 2)(b+ t)2]

+
1

12
[22(a+ 4t)− 12d(b+ t)− (−4d− 2g + 2)(b+ t)]

+
1

24
[24 + 4d− 4d].

Now, by expanding, we obtain

χ(Ỹ ,O(D(t))) =
1

6
[a3 + 12a2t+ 48at2 + 64t3 − 3dab2 − 6dabt− 12db2t

−3dat2 − 24dbt2 − 12dt3 + 4db3 + 12db2t+ 12dbt2 + 4dt3

+2gb3 + 6gb2t+ 6gbt2 + 2gt3 − 2b3 − 6b2t− 6bt2 − 2t3]

6



+
1

4
[4a2 + 32at+ 64t2 − 4db2 − 8dbt− 4dt2 − 2dab− 2dat

−8dbt− 8dt2 + 4db2 + 8dbt+ 4dt2 + 2gb2 + 4gbt+ 2gt2

−2b2 − 4bt− 2t2]

+
1

12
[22a+ 88t− 12db− 12dt+ 4db+ 4dt+ 2gb+ 2gt

−2b− 2t]

+
1

24
24.

Then, collecting the terms with same powers of t

χ(Ỹ ,O(D(t))) =
1

24
[256− 48d+ 16d+ 8g − 8]t3

+
1

24
[192a− 12da− 96db+ 48db+ 24gb− 24b+ 384− 24d

−48d+ 24d+ 12g − 12]t2

+
1

24
[48a2 − 24dab− 48db2 + 48db2 + 24gb2 − 24b2 + 192a

−48db− 12da− 48db+ 48db+ 24gb− 24b+ 176− 24d

+8d+ 4g − 4]t

+
1

24
[4a3 − 12dab2 + 16db3 + 8gb3 − 8b3 + 24a2 − 24db2

−12dab+ 24db2 + 12gb2 − 12b2 + 44a− 24db

+8db+ 4gb− 4b+ 24].

Finally,

χ(Ỹ ,O(D(t))) =
1

6
[62− 8d+ 2g]t3

+
1

6
[(48− 3d)a+ (6g − 12d− 6)b− 12d+ 3g + 93]t2

+
1

6
[12a2 + (6g − 6)b2 − 6dab+ (48− 3d)a

+(6g − 6− 12d)b+ 43− 4d+ g]t

+
1

6
[a3 + (4d+ 2g − 2)b3 + 6a2 + (3g − 3da− 3)b2 + 11a

+(g − 3da− 4d− 1)b+ 6].

Theorem 1.2.5 Let D = ah̃ − be be a divisor on Ỹ = Q̃, where a, b ∈ Z. Let

D(t) = D + tHQ̃. Then

χ(Ỹ ,O(D(t))) =
1

24
[208− 24d+ 8g]t3

7



+
1

24
[(216− 12d)a+ (24g − 36d− 24)b− 36d+ 12g

+312]t2

+
1

24
[72a2 + (24g − 24)b2 − 24dab+ (216− 12d)a

+(24g − 24− 36d)b+ 152− 6d+ 4g]t

+
1

24
[8a3 + (12d+ 8g − 8)b3 + 36a2 + (12g − 12da− 12)b2

+52a+ (4g − 12da− 12d− 4)b+ 24 + 3d].

Proof 1.2.6 Since Q is a smooth quadric

KQ = (2− 4− 1) = −3h

and

c(TQ) =
(1 + h)1+4

1 + 2h
= 1 + 3h+ 4h2 + 2h3.

So by [14, Example 15.4.3],

c1(TQ̃) = f ∗c1(TQ) + (1− 2)[E]

= f ∗(3h)− e

= 3h̃− e

c2(TQ̃) = f ∗c2(TQ) + f ∗i∗[C]− f ∗c1(TQ)[E]

= f ∗(4h2) + dl̃ − f ∗(3h)e

= 4h̃2 + dl̃ − 3h̃e

= (4 + d)h̃2 − 3h̃e

KQ̃ = f ∗KQ + (2− 1)[E]

= f ∗(−3h) + e

= −3h̃+ e.

Then using [24, Lemma 2.1] and the fact that Q is a smooth quadric, we obtain

h̃3 = 2

e3 = −(−KQ · C) + 2− 2g = −(3h · C) + 2− 2g = −3d− 2g + 2

e2 · (−KQ̃) = 2g − 2 ⇒ e2(3h̃− e) = 2g − 2

8



⇒ 3h̃e2 − e3 = 2g − 2

⇒ 3h̃e2 − (−3d− 2g + 2) = 2g − 2

⇒ h̃e2 = −d

e · (−KQ̃)
2 = (−KQ · C) + 2− 2g ⇒ e(3h̃− e)2 = (3h · C) + 2− 2g

⇒ 9h̃2e− 6h̃e2 + e3 = 3d+ 2− 2g

⇒ 9h̃2e+ 6d− 3d− 2g + 2 = 3d+ 2− 2g

⇒ h̃2e = 0.

Since Ỹ = Q̃ is non-hyperelliptic Fano,

HQ̃ = −KQ̃ = 3h̃− e.

Let D = ah̃− be be a divisor class on Ỹ . Then

D(t) = D + tHỸ = (ah̃− be) + t(3h̃− e)

= (a+ 3t)h̃− (b+ t)e.

Then, applying the Riemann-Roch theorem for line bundles on 3-folds, we obtain

χ(Ỹ ,O(D(t))) =
1

6
(D(t))3 +

1

4
c1(TỸ ) · (D(t))2 +

1

24
c1(TỸ ) · c2(TỸ )

+
1

12
(c21(TỸ ) + c2(TỸ )) · (D(t)).

Then, we have

χ(Ỹ ,O(D(t))) =
1

6
[(a+ 3t)h̃− (b+ t)e]3 +

1

4
[3h̃− e][(a+ 3t)h̃− (b+ t)e]2

+
1

12
[(3h̃− e)2 + (4 + d)h̃2 − 3h̃e][(a+ 3t)h̃− (b+ t)e]

+
1

24
[3h̃− e][(4 + d)h̃2 − 3h̃e]

=
1

6
[(a+ 3t)3h̃3 − 3(a+ 3t)2(b+ t)h̃2e+ 3(a+ 3t)(b+ t)2h̃e2

−(b+ t)3e3]

+
1

4
[3h̃− e][(a+ 3t)2h̃2 − 2(a+ 3t)(b+ t)h̃e+ (b+ t)2e2]

+
1

12
[(13 + d)h̃2 − 6h̃e+ e2 − 3h̃e][(a+ 3t)h̃− (b+ t)e]

+
1

24
[3h̃− e][(4 + d)h̃2 − 3h̃e].
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Then,

χ(Ỹ ,O(D(t))) =
1

6
[2(a+ 3t)3 − 3d(a+ 3t)(b+ t)2

−(−3d− 2g + 2)(b+ t)3]

+
1

4
[3.2(a+ 3t)2 − 3d(b+ t)2 − 2d(a+ 3t)(b+ t)

−(−3d− 2g + 2)(b+ t)2]

+
1

12
[(26 + d)(a+ 3t)− 9d(b+ t)− (−3d− 2g + 2)(b+ t)]

+
1

24
[24 + 6d− 3d].

Then, by expanding

χ(Ỹ ,O(D(t))) =
1

6
[52t3 + 2gt3 − 6dt3 − 6bt2 + 6bgt2 − 9bdt2 + 54at2

−3adt2 − 6b2t+ 6b2gt− 6abdt+ 18a2t− 2b3 + 2b3g

+3b3d− 3ab2d+ 2a3]

+
1

4
[52t2 + 2gt2 − 6dt2 − 4bt+ 4bgt− 6bdt+ 36at

−2adt− 2b2 + 2b2g − 2abd+ 6a2]

+
1

12
[76t+ 2gt− 3dt− 2b+ 2bg − 6bd+ 26a+ ad]

+
1

24
[3d+ 24].

Then, collecting the terms with same powers of t

χ(Ỹ ,O(D(t))) =
1

24
[208 + 8g − 24d]t3

+
1

24
[−24b+ 24gb− 36db+ 216a− 12da+ 312 + 12g

−36d]t2

+
1

24
[−24b2 + 24gb2 − 24dab+ 72a2 − 24b+ 24gb− 36db

+216a− 12da+ 152 + 4g − 6d]t

+
1

24
[−8b3 + 8gb3 + 12db3 − 12dab2 + 8a3 + 12gb2 − 12dab

−12b2 + 36a2 − 4b+ 4gb− 12db+ 52a+ 2da+ 3d+ 24].

Finally,

χ(Ỹ ,O(D(t))) =
1

24
[208− 24d+ 8g]t3

+
1

24
[(216− 12d)a+ (24g − 36d− 24)b− 36d+ 12g

10



+312]t2

+
1

24
[72a2 + (24g − 24)b2 − 24dab+ (216− 12d)a

+(24g − 24− 36d)b+ 152− 6d+ 4g]t

+
1

24
[8a3 + (12d+ 8g − 8)b3 + 36a2 + (12g − 12da− 12)b2

+(52 + 2d)a+ (4g − 12da− 12d− 4)b+ 24 + 3d].

Theorem 1.2.7 Let D = ah̃ − be be a divisor on Ỹ = Ṽ3, where a, b ∈ Z. Let

D(t) = D + tHṼ3
. Then

χ(Ỹ ,O(D(t))) =
1

12
[44− 8d+ 4g]t3

+
1

12
[(72− 6d)a+ (12g − 12d− 12)b− 12d+ 6g + 66]t2

+
1

12
[36a2 + (12g − 12)b2 − 12dab+ (72− 6d)a

+(12g − 12− 12d)b+ 46 + 2g]t

+
1

12
[6a3 + (4d+ 4g − 4)b3 + 18a2 + (6g − 6da− 6)b2

+(24 + 2d)a+ (2g − 6da− 4d− 2)b+ 12 + 2d].

Proof 1.2.8 Since V3 is a smooth cubic, we have

KV3 = (3− 4− 1) = −2h

and

c(TV3) =
(1 + h)1+4

1 + 3h
= 1 + 2h+ 4h2 − 2h3.

So by [14, Chapter 15.4.3],

c1(TṼ3) = f ∗c1(TV3) + (1− 2)[E]

= f ∗(2h)− e

= 2h̃− e

c2(TṼ3) = f ∗c2(TV3) + f ∗i∗[C]− f ∗c1(TV3)[E]

= f ∗(4h2) + dl̃ − f ∗(2h)e

= 4h̃2 + dl̃ − 2h̃e

= (4 + d)h̃2 − 2h̃e

KṼ3
= f ∗KV3 + (2− 1)[E]

11



= f ∗(−2h) + e

= −2h̃+ e.

Then using [24, Lemma 2.1] and the fact that V3 is a smooth cubic,

h̃3 = 3

e3 = −(−KV3 · C) + 2− 2g = −(2h · C) + 2− 2g = −2d− 2g + 2

e2 · (−KṼ3
) = 2g − 2 ⇒ e2(2h̃− e) = 2g − 2

⇒ 2h̃e2 − e3 = 2g − 2

⇒ 2h̃e2 − (−2d− 2g + 2) = 2g − 2

⇒ h̃e2 = −d

e · (−KṼ3
)2 = (−KV3 · C) + 2− 2g ⇒ e(2h̃− e)2 = (2h · C) + 2− 2g

⇒ 4h̃2e− 4h̃e2 + e3 = 2d+ 2− 2g

⇒ 4h̃2e+ 4d− 2d− 2g + 2 = 2d+ 2− 2g

⇒ h̃2e = 0.

Since Ỹ = Ṽ3 is Fano,

HṼ3
= −KṼ3

= 2h̃− e.

Let D = ah̃− be be a divisor on Ṽ3. Then

D(t) = D + tHỸ = (ah̃− be) + t(2h̃− e)

= (a+ 2t)h̃− (b+ t)e.

Then, applying the Riemann-Roch theorem for line bundles on 3-folds, we obtain

χ(Ỹ ,O(D(t))) =
1

6
(D(t))3 +

1

4
c1(TỸ ) · (D(t))2 +

1

24
c1(TỸ ) · c2(TỸ )

+
1

12
(c21(TỸ ) + c2(TỸ )) · (D(t)).

Then, we have

χ(Ỹ ,O(D(t))) =
1

6
[(a+ 2t)h̃− (b+ t)e]3 +

1

4
[2h̃− e][(a+ 2t)h̃− (b+ t)e]2

+
1

12
[(2h̃− e)2 + (4 + d)h̃2 − 2h̃e][(a+ 2t)h̃− (b+ t)e]

12



+
1

24
[2h̃− e][(4 + d)h̃2 − 2h̃e]

=
1

6
[(a+ 2t)3h̃3 − 3(a+ 2t)2(b+ t)h̃2e+ 3(a+ 2t)(b+ t)2h̃e2

−(b+ t)3e3]

+
1

4
[2h̃− e][(a+ 2t)2h̃2 − 2(a+ 2t)(b+ t)h̃e+ (b+ t)2e2]

+
1

12
[(8 + d)h̃2 − 4h̃e+ e2 − 2h̃e][(a+ 2t)h̃− (b+ t)e]

+
1

24
[2h̃− e][(4 + d)h̃2 − 2h̃e].

Then,

χ(Ỹ ,O(D(t))) =
1

6
[3(a+ 2t)3 − 3d(a+ 2t)(b+ t)2

−(−2d− 2g + 2)(b+ t)3]

+
1

4
[2.3(a+ 2t)2 − 2d(b+ t)2 − 2d(a+ 2t)(b+ t)

−(−2d− 2g + 2)(b+ t)2]

+
1

12
[3(8 + d)(a+ 2t)− 6d(b+ t)− d(a+ 2t)

−(−2d− 2g + 2)(b+ t)]

+
1

24
[2.3(4 + d)− 2d].

Then, by expanding

χ(Ỹ ,O(D(t))) =
1

6
[22t3 + 2gt3 − 4dt3 − 6bt2 + 6bgt2 − 6bdt2 + 36at2

−3adt2 − 6b2t+ 6b2gt− 6abdt+ 18a2t− 2b3 + 2b3g

+2b3d− 3ab2d+ 3a3]

+
1

4
[22t2 + 2gt2 − 4dt2 − 4bt+ 4bgt− 4bdt+ 24at

−2adt− 2b2 + 2b2g − 2abd+ 6a2]

+
1

12
[46t+ 2gt− 2b+ 2bg − 4bd+ 24a+ 2ad]

+
1

24
[4d+ 24].

Then, collecting the terms with same powers of t

χ(Ỹ ,O(D(t))) =
1

12
[44 + 4g − 8d]t3

+
1

12
[−12b+ 12gb− 12db+ 72a− 6da+ 66 + 6g − 12d]t2

+
1

12
[−12b2 + 12gb2 − 12dab+ 36a2 − 12b+ 12gb− 12db

13



+72a− 6da+ 46 + 2g]t

+
1

12
[−4b3 + 4gb3 + 4db3 − 6dab2 + 6a3 − 6b2 + 6gb2 − 6dab

+18a2 − 2b+ 2gb− 4db+ 24a+ 2da+ 2d+ 12].

Finally

χ(Ỹ ,O(D(t))) =
1

12
[44− 8d+ 4g]t3

+
1

12
[(72− 6d)a+ (12g − 12d− 12)b− 12d+ 6g + 66]t2

+
1

12
[36a2 + (12g − 12)b2 − 12dab+ (72− 6d)a

+(12g − 12− 12d)b+ 46 + 2g]t

+
1

12
[6a3 + (4d+ 4g − 4)b3 + 18a2 + (6g − 6da− 6)b2

+(24 + 2d)a+ (2g − 6da− 4d− 2)b+ 12 + 2d].

Theorem 1.2.9 Let D = ah̃ − be be a divisor on Ỹ = Ṽ4, where a, b ∈ Z. Let

D(t) = D + tHṼ4
. Then

χ(Ỹ ,O(D(t))) =
1

12
[60− 8d+ 4g]t3

+
1

12
[(96− 6d)a+ (12g − 12d− 12)b− 12d+ 6g + 90]t2

+
1

12
[48a2 + (12g − 12)b2 − 12dab+ (96− 6d)a

+(12g − 12− 12d)b+ 54 + 2g + 2d]t

+
1

12
[8a3 + (4d+ 4g − 4)b3 + 24a2 + (6g − 6da− 6)b2

+(28 + 3d)a+ (2g − 6da− 4d− 2)b+ 12 + 3d].

Proof 1.2.10 Since V3 is a complete intersection of two quadrics,

KV4 = (2 + 2− 5− 1) = −2h

and

c(TV4) =
(1 + h)1+5

(1 + 2h)2
= 1 + 2h+ 3h2 + 0h3.

So by [14, Example 15.4.3],

c1(TṼ4) = f ∗c1(TV4) + (1− 2)[E]

= f ∗(2h)− e
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= 2h̃− e

c2(TṼ4) = f ∗c2(TV4) + f ∗i∗[C]− f ∗c1(TV4)[E]

= f ∗(3h2) + dl̃ − f ∗(2h)e

= 3h̃2 + dl̃ − 2h̃e

= (3 + d)h̃2 − 2h̃e

KṼ4
= f ∗KV4 + (2− 1)[E]

= f ∗(−2h) + e

= −2h̃+ e.

Then using [24, Lemma 2.1] and that V4 is a complete intersection of two quadrics,

h̃3 = 2.2 = 4

e3 = −(−KV4 · C) + 2− 2g = −(2h · C) + 2− 2g = −2d− 2g + 2

e2 · (−KṼ4
) = 2g − 2 ⇒ e2(2h̃− e) = 2g − 2

⇒ 2h̃e2 − e3 = 2g − 2

⇒ 2h̃e2 − (−2d− 2g + 2) = 2g − 2

⇒ h̃e2 = −d

e · (−KṼ4
)2 = (−KV4 · C) + 2− 2g ⇒ e(2h̃− e)2 = (2h · C) + 2− 2g

⇒ 4h̃2e− 4h̃e2 + e3 = 2d+ 2− 2g

⇒ 4h̃2e+ 4d− 2d− 2g + 2 = 2d+ 2− 2g

⇒ h̃2e = 0.

Since Ỹ = Ṽ4 is non-hyperelliptic Fano,

HṼ4
= −KṼ4

= 2h̃− e.

Let D = ah̃− be be a divisor on Ṽ4. Then

D(t) = D + tHỸ = (ah̃− be) + t(2h̃− e)

= (a+ 2t)h̃− (b+ t)e.

15



Then, applying the Riemann-Roch theorem for line bundles on 3-folds, we obtain

χ(Ỹ ,O(D(t))) =
1

6
(D(t))3 +

1

4
c1(TỸ ) · (D(t))2 +

1

24
c1(TỸ ) · c2(TỸ )

+
1

12
(c21(TỸ ) + c2(TỸ )) · (D(t)).

Then, we have

χ(Ỹ ,O(D(t))) =
1

6
[(a+ 2t)h̃− (b+ t)e]3 +

1

4
[2h̃− e][(a+ 2t)h̃− (b+ t)e]2

+
1

12
[(2h̃− e)2 + (3 + d)h̃2 − 2h̃e][(a+ 2t)h̃− (b+ t)e]

+
1

24
[2h̃− e][(3 + d)h̃2 − 2h̃e]

=
1

6
[(a+ 2t)3h̃3 − 3(a+ 2t)2(b+ t)h̃2e+ 3(a+ 2t)(b+ t)2h̃e2

−(b+ t)3e3]

+
1

4
[2h̃− e][(a+ 2t)2h̃2 − 2(a+ 2t)(b+ t)h̃e+ (b+ t)2e2]

+
1

12
[(7 + d)h̃2 − 4h̃e+ e2 − 2h̃e][(a+ 2t)h̃− (b+ t)e]

+
1

24
[2h̃− e][(3 + d)h̃2 − 2h̃e].

Then,

χ(Ỹ ,O(D(t))) =
1

6
[4(a+ 2t)3 − 3d(a+ 2t)(b+ t)2

−(−2d− 2g + 2)(b+ t)3]

+
1

4
[2.4(a+ 2t)2 − 2d(b+ t)2 − 2d(a+ 2t)(b+ t)

−(−2d− 2g + 2)(b+ t)2]

+
1

12
[4(7 + d)(a+ 2t)− 6d(b+ t)− d(a+ 2t)

−(−2d− 2g + 2)(b+ t)]

+
1

24
[2.4(3 + d)− 2d].

Then, by expanding

χ(Ỹ ,O(D(t))) =
1

6
[30t3 + 2gt3 − 4dt3 − 6bt2 + 6bgt2 − 6bdt2 + 48at2

−3adt2 − 6b2t+ 6b2gt− 6abdt+ 24a2t− 2b3 + 2b3g

+2b3d− 3ab2d+ 4a3]

+
1

4
[30t2 + 2gt2 − 4dt2 − 4bt+ 4bgt− 4bdt+ 32at

−2adt− 2b2 + 2b2g − 2abd+ 8a2]
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+
1

12
[54t+ 2gt+ 2dt− 2b+ 2bg − 4bd+ 28a+ 3ad]

+
1

24
[6d+ 24].

Then, collecting terms with same powers of t

χ(Ỹ ,O(D(t))) =
1

12
[60 + 4g − 8d]t3

+
1

12
[−12b+ 12gb− 12db+ 96a− 6da+ 90 + 6g − 12d]t2

+
1

12
[−12b2 + 12gb2 − 12dab+ 48a2 − 12b+ 12gb− 12db

+96a− 6da+ 54 + 2g + 2d]t

+
1

12
[−4b3 + 4gb3 + 4db3 − 6dab2 + 8a3 − 6b2 + 6gb2 − 6dab

+24a2 − 2b+ 2gb− 4db+ 28a+ 3da+ 3d+ 12].

Finally

χ(Ỹ ,O(D(t))) =
1

12
[60− 8d+ 4g]t3

+
1

12
[(96− 6d)a+ (12g − 12d− 12)b− 12d+ 6g + 90]t2

+
1

12
[48a2 + (12g − 12)b2 − 12dab+ (96− 6d)a

+(12g − 12− 12d)b+ 54 + 2g + 2d]t

+
1

12
[8a3 + (4d+ 4g − 4)b3 + 24a2 + (6g − 6da− 6)b2

+(28 + 3d)a+ (2g − 6da− 4d− 2)b+ 12 + 3d].

17



18



CHAPTER 2

ULRICH BUNDLES

The general references for this section are [7] and [20].

Definition 2.0.11 Let E be a vector bundle on a nonsingular projective variety X .

Then E is said to be semistable if for every nonzero subbundle F of E we have the

inequality
PF

rank(F)
≤ PE
rank(E)

,

where PF and PE are the respective Hilbert polynomials and comparison is based on

the lexicographic order. It is stable if one always has strict inequality above.

Definition 2.0.12 Let E be a vector bundle on a nonsingular projective variety X .

The slope µ(E) of E is defined as deg(E)/rank(E). We say that E is µ-semistable if

for every subbundle F of E with 0 < rank(F) < rank(E), we have µ(F) ≤ µ(E).
We say E is µ-stable if strict inequality always holds above.

Lemma 2.0.13 The two definitions are related as follows:

µ− stable⇒ stable⇒ semistable⇒ µ− semistable.

Proof 2.0.14 See [20, 1.2.13].

Definition 2.0.15 A vector bundle E on X is called ACM (arithmetically Cohen-

Macaulay) if H i(E(t)) = 0 for all t ∈ Z and 0 < i < k.

Definition 2.0.16 Let E be a vector bundle of rank r on X . Then E is Ulrich if for

some linear projection π : X → Pk we have π∗E ∼= OcrPk .
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Proposition 2.0.17 Let E be a vector bundle of rank r on X . Then E is Ulrich if and

only if it is ACM with Hilbert polynomial cr
(
t+k
k

)
.

Proof 2.0.18 See [7, Proposition 2.3].

Theorem 2.0.19 Let Ỹ be one of the following Fano 3-folds:

1. the blow-up of P3 along an intersection of two cubics,

2. the blow-up of P3 along a curve of degree 7 and genus 5 which is an intersection

of cubics,

3. the blow-up of P3 along a curve of degree 6 and genus 3 which is an intersection

of cubics,

4. the blow-up of P3 along the intersection of a quadric and a cubic,

5. the blow-up of P3 along an elliptic curve which is an intersection of two quadrics,

6. the blow-up of P3 along a twisted cubic,

7. the blow-up of P3 along a plane cubic,

8. the blow-up of P3 along a conic,

9. the blow-up of P3 along a line.

Then Ulrich line bundles can exist only on the class (3).

Proof 2.0.20 Let D = ah̃ − be be a divisor class on Ỹ . We can compute Hilbert

polynomial ofOỸ (D) by Theorem 1.2.3. By Proposition 2.0.17, this must be equal to

deg(Ỹ )
(
t+3
3

)
. We will equate the coefficients of these two polynomials and try to find

integer solutions for a and b in each case separately.

1. (This case is [21, No.4 in Table 12.3].) Since C is an intersection of two cubics,

d = 9. By the adjunction formula, g = 10. Then k = H3 = 10. Now, equate

the coefficients of t2:

10.6

6
t2 =

1

6
[(48− 3.9)a+ (6.10− 12.9− 6)b− 12.9 + 3.10 + 93]t2
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which gives

a =
18b+ 15

7
.

Next, equate the coefficients of t and use the above relation between a and b to

get

10.11

6
t =

1

6
[12(

18b+ 15

7
)2 + (6.10− 6)b2 − 6.9(

18b+ 15

7
)b

+(48− 3.9)(
18b+ 15

7
) + (6.10− 6− 12.9)b

+43− 4.9 + 10]t

which gives

b =
3

2
∓ 7

30

√
65.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

2. (This case is [21, No.9 in Table 12.3].) It is given that d = 7 and g = 5. Then

k = H3 = 16. Now, equate the coefficients of t2:

16.6

6
t2 =

1

6
[(48− 3.7)a+ (6.5− 12.7− 6)b− 12.7 + 3.5 + 93]t2

which gives

a =
20b+ 24

9
.

Next, equate the coefficients of t and use the above relation between a and b to

get

16.11

6
t =

1

6
[12(

20b+ 24

9
)2 + (6.5− 6)b2 − 6.7(

20b+ 24

9
)b

+(48− 3.7)(
20b+ 24

9
) + (6.5− 6− 12.7)b+ 43− 4.7 + 5]t

which gives

b =
3

2
∓ 9

34

√
34.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

3. (This case is [21, No.12 in Table 12.3].) It is given that d = 6 and g = 3. Then

k = H3 = 20. Then equate the coefficients of t2:

20.6

6
t2 =

1

6
[(48− 3.6)a+ (6.3− 12.6− 6)b− 12.6 + 3.3 + 93]t2
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which gives

a = 2b+ 3.

Next, equate the coefficients of t and use the above relation between a and b to

get

20.11

6
t =

1

6
[12(2b+ 3)2 + (6.3− 6)b2 − 6.6(2b+ 3)b

+(48− 3.6)(2b+ 3) + (6.3− 6− 12.6)b+ 43− 4.6 + 3]t

which gives

b = 0 or b = 3.

Then we have (a, b) = (3, 0) or (a, b) = (9, 3). Both of these solutions satisfy

also the equality of coefficients of t2 and constant terms. So the divisors 3h̃ and

9h̃−3e yield possible Ulrich line bundles. (We note that to be Ulrich, they must

also satisfy the ACM condition.)

4. (This case is [21, No.15(a) in Table 12.3].) Since C is the intersection of a

quadric and a cubic, d = 6. By the adjunction formula g = 4. Then k = H3 =

22. Then equate the coefficients of t2:

22.6

6
t2 =

1

6
[(48− 3.6)a+ (6.4− 12.6− 6)b− 12.6 + 3.4 + 93]t2

which gives

a =
18b+ 33

10
.

Next, equate the coefficients of t and use the above relation between a and b to

get

22.11

6
t =

1

6
[12(

18b+ 33

10
)2 + (6.4− 6)b2 − 6.6(

18b+ 33

10
)b

+(48− 3.6)(
18b+ 33

10
) + (6.4− 6− 12.6)b+ 43− 4.6 + 4]t

which gives

b =
3

2
∓ 5

66

√
627.

There is no integer solution for a and b, so there exists no Ulrich line bundle.
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5. (This case is [21, No.25 in Table 12.3].) Since C is an elliptic curve of inter-

section of two quadrics, d = 4 and g = 1. Then k = H3 = 32. Then equate the

coefficients of t2:

32.6

6
t2 =

1

6
[(48− 3.4)a+ (6.1− 12.4− 6)b− 12.4 + 3.1 + 93]t2

which gives

a =
4b+ 12

3
.

Next, equate the coefficients of t and use the above relation between a and b to

get

32.11

6
t =

1

6
[12(

4b+ 12

3
)2 + (6.1− 6)b2 − 6.4(

4b+ 12

3
)b

+(48− 3.4)(
4b+ 12

3
) + (6.1− 6− 12.4)b+ 43− 4.4 + 1]t

which gives

b =
3

2
∓ 3

4

√
6.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

6. (This case is [21, No.27 in Table 12.3].) Since C is a twisted cubic, d = 3 and

g = 0. Then k = H3 = 38. Then equate the coefficients of t2:

38.6

6
t2 =

1

6
[(48− 3.3)a+ (6.0− 12.3− 6)b− 12.3 + 3.0 + 93]t2

which gives

b =
13a− 57

14
.

Next, equate the coefficients of t and use the above relation between a and b to

get

38.11

6
t =

1

6
[12a2 + (6.0− 6)(

13a− 57

14
)2 − 6.3a(

13a− 57

14
)

+(48− 3.3)a+ (6.0− 6− 12.3)(
13a− 57

14
) + 43− 4.3 + 0]t

which gives

a = 6∓ 21

323

√
969.

There is no integer solution for a and b, so there exists no Ulrich line bundle.
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7. (This case is [21, No.28 in Table 12.3].) Since C is a plane cubic, d = 3 and

g = 1 by the degree genus formula. Then k = H3 = 40. Then equate the

coefficients of t2:

40.6

6
t2 =

1

6
[(48− 3.3)a+ (6.1− 12.3− 6)b− 12.3 + 3.1 + 93]t2

which gives

b =
13a− 60

12
.

Next, equate the coefficients of t and use the above relation between a and b to

get

40.11

6
t =

1

6
[12a2 + (6.1− 6)(

13a− 60

12
)2 − 6.3a(

13a− 60

12
)

+(48− 3.3)a+ (6.1− 6− 12.3)(
13a− 60

12
) + 43− 4.3 + 1]t

which gives

a = 6∓ 2

5

√
35.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

8. (This case is [21, No.30 in Table 12.3].) Since C is a conic, d = 2 and g = 0.

Then k = H3 = 46. Then equate the coefficients of t2:

46.6

6
t2 =

1

6
[(48− 3.2)a+ (6.0− 12.2− 6)b− 12.2 + 3.0 + 93]t2

which gives

b =
14a− 69

10
.

Next, equate the coefficients of t and use the above relation between a and b to

get

46.11

6
t =

1

6
[12a2 + (6.0− 6)(

14a− 69

10
)2 − 6.2a(

14a− 69

10
)

+(48− 3.2)a+ (6.0− 6− 12.2)(
14a− 69

10
) + 43− 4.2 + 0]t

which gives

a = 6∓ 5

138

√
2139.

There is no integer solution for a and b, so there exists no Ulrich line bundle.
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9. (This case is [21, No.33 in Table 12.3].) Since C is a line, d = 1 and g = 0.

Then k = H3 = 54. Then equate the coefficients of t2:

54.6

6
t2 =

1

6
[(48− 3.1)a+ (6.0− 12.1− 6)b− 12.1 + 3.0 + 93]t2

which gives

b =
5a− 27

2
.

Next, equate the coefficients of t and use the above relation between a and b to

get

54.11

6
t =

1

6
[12a2 + (6.0− 6)(

5a− 27

2
)2 − 6.1a(

5a− 27

2
) + (48− 3.1)a

+(6.0− 6− 12.1)(
5a− 27

2
) + 43− 4.1 + 0]t

which gives

a = 6∓ 1

9

√
105.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

Theorem 2.0.21 Let Ỹ be one of the following Fano 3-folds:

1. the blow-up of Q along the intersection of two divisors from |OQ(2)|,

2. the blow-up of Q along a curve of degree 6 and genus 2,

3. the blow-up of Q along an elliptic curve of degree 5,

4. the blow-up of Q along a twisted quartic,

5. the blow-up of Q along an intersection of two divisors from |OQ(1)| and

|OQ(2)|,

6. the blow-up of Q along a conic,

7. the blow-up of Q along a line.

Then Ulrich line bundles can not exist on non of them.
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Proof 2.0.22 Let D = ah̃ − be be a divisor class on Ỹ . We can compute Hilbert

polynomial ofOỸ (D) by Theorem 1.2.5. By Proposition 2.0.17, this must be equal to

deg(Ỹ )
(
t+3
3

)
. We will equate the coefficients of these two polynomials and try to find

integer solutions for a and b in each case separately.

1. (This case is [21, No.7 in Table 12.3].) It is given that C is obtained by in-

tersection of two divisors from |OQ(2)|; so d = 8. By the adjunction formula

g = 5. Then k = H3 = 14. Then equate the coefficients of t2:

14.6

6
t2 =

1

24
[(216− 12.8)a+ (24.5− 36.8− 24)b− 36.8 + 12.5 + 312]t2

which gives

b =
10a− 21

16
.

Next, equate the coefficients of t and use the above relation between a and b to

get

14.11

6
t =

1

24
[72a2 + (24.5− 24)(

10a− 21

16
)2 − 24.8a(

10a− 21

16
)

+(216− 12.8)a+ (24.5− 24− 36.8)(
10a− 21

16
)

+152− 6.8 + 4.5]t

which gives

a =
9

2
∓ 2

7

√
161.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

2. (This case is [21, No.13 in Table 12.3].) It is given that d = 6 and g = 2. Then

k = H3 = 20. Then equate the coefficients of t2:

20.6

6
t2 =

1

24
[(216− 12.6)a+ (24.2− 36.6− 24)b− 36.6 + 12.2 + 312]t2

which gives

b =
6a− 15

8
.

Next, equate the coefficients of t and use the above relation between a and b to

get

20.11

6
t =

1

24
[72a2 + (24.2− 24)(

6a− 15

8
)2 − 24.6a(

6a− 15

8
)
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+(216− 12.6)a+ (24.2− 24− 36.6)(
6a− 15

8
)

+152− 6.6 + 4.2]t

which gives

a =
9

2
∓ 4

5

√
10.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

3. (This case is [21, No.17 in Table 12.3].) It is given that d = 5 and g = 1. Then

k = H3 = 24. Then equate the coefficients of t2:

24.6

6
t2 =

1

24
[(216− 12.5)a+ (24.1− 36.5− 24)b− 36.5 + 12.1 + 312]t2

which gives

b =
13a− 36

15
.

Next, equate the coefficients of t and use the above relation between a and b to

get

24.11

6
t =

1

24
[72a2 + (24.1− 24)(

13a− 36

15
)2 − 24.5a(

13a− 36

15
)

+(216− 12.5)a+ (24.1− 24− 36.5)(
13a− 36

15
)

+152− 6.5 + 4.1]t

which gives

a =
9

2
∓ 5

4

√
3.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

4. (This case is [21, No.21 in Table 12.3].) Since C is twisted quartic, d = 4 and

g = 0. Then k = H3 = 28. Then equate the coefficients of t2:

28.6

6
t2 =

1

24
[(216− 12.4)a+ (24.0− 36.4− 24)b− 36.4 + 12.0 + 312]t2

which gives

b = a− 3.

Next, equate the coefficients of t and use the above relation between a and b to

get

28.11

6
t =

1

24
[72a2 + (24.0− 24)(a− 3)2 − 24.4a(a− 3) + (216− 12.4)a
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+(24.0− 24− 36.4)(a− 3) + 152− 6.4 + 4.0]t

which gives

a =
9

2
∓ 1

2

√
13.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

5. (This case is [21, No.23(a) in Table 12.3].) It is given that C is obtained by

intersection of two divisors from |OQ(1)| and |OQ(2)|; so d = 4. By adjunction

formula g = 1. Then k = H3 = 30. Then equate the coefficients of t2:

30.6

6
t2 =

1

24
[(216− 12.4)a+ (24.1− 36.4− 24)b− 36.4 + 12.1 + 312]t2

which gives

b =
14a− 45

12
.

Next, equate the coefficients of t and use the above relation between a and b to

get

30.11

6
t =

1

24
[72a2 + (24.1− 24)(

14a− 45

12
)2 − 24.4a(

14a− 45

12
)

+(216− 12.4)a+ (24.1− 24− 36.4)(
14a− 45

12
)

+152− 6.4 + 4.1]t

which gives

a =
9

2
∓ 9

10

√
5.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

6. (This case is [21, No.29 in Table 12.3].) Since C is a conic, d = 2 and g = 0.

Then k = H3 = 40. Then equate the coefficients of t2:

40.6

6
t2 =

1

24
[(216− 12.2)a+ (24.0− 36.2− 24)b− 36.2 + 12.0 + 312]t2

which gives

b =
4a− 15

2
.

Next, equate the coefficients of t and use the above relation between a and b to

get

40.11

6
t =

1

24
[72a2 + (24.0− 24)(

4a− 15

2
)2 − 24.2a(

4a− 15

2
)
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+(216− 12.2)a+ (24.0− 24− 36.2)(
4a− 15

2
)

+152− 6.2 + 4.0]t

which gives

a =
9

2
∓ 1

2

√
6.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

7. (This case is [21, No.31 in Table 12.3].) Since C is a line, d = 1 and g = 0.

Then k = H3 = 46. Then equate the coefficients of t2:

46.6

6
t2 =

1

24
[(216− 12.1)a+ (24.0− 36.1− 24)b− 36.1 + 12.0 + 312]t2

which gives

b =
17a− 69

5
.

Next, equate the coefficients of t and use the above relation between a and b to

get

46.11

6
t =

1

24
[72a2 + (24.0− 24)(

17a− 69

5
)2 − 24.1a(

17a− 69

5
)

+(216− 12.1)a+ (24.0− 24− 36.1)(
17a− 69

5
)

+152− 6.1 + 4.0]t

which gives

a =
9

2
∓ 10

299

√
598.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

Theorem 2.0.23 Let Ỹ be one of the following Fano 3-folds:

1. the blow-up of V3 along a plane cubic,

2. the blow-up of V3 along a line.

Then Ulrich line bundles can not exist on non of them.

Proof 2.0.24 Let D = ah̃ − be be a divisor class on Ỹ . We can compute Hilbert

polynomial ofOỸ (D) by Theorem 1.2.7. By Proposition 2.0.17, this must be equal to

deg(Ỹ )
(
t+3
3

)
. We will equate the coefficients of these two polynomials and try to find

integer solutions for a and b in each case separately.
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1. (This case is [21, No.5 in Table 12.3].) Since C is a plane cubic, d = 3 and

g = 1 by the adjunction formula. Then k = H3 = 12. Then equate the

coefficients of t2:

12.6

6
t2 =

1

12
[(72− 6.3)a+ (12.1− 12.3− 12)b− 12.3 + 6.1 + 66]t2

which gives

b =
3a− 6

2
.

Next, equate the coefficients of t and use the above relation between a and b to

get

12.11

6
t =

1

12
[36a2 + (12.1− 12)(

3a− 6

2
)2 − 12.3a(

3a− 6

2
)

+(72− 6.3)a+ (12.1− 12− 12.3)(
3a− 6

2
) + 46 + 2.1]t

which gives

a = 3∓
√
3.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

2. (This case is [21, No.11 in Table 12.3].) Since C is a line, d = 1 and g = 0.

Then k = H3 = 18. Then equate the coefficients of t2:

18.6

6
t2 =

1

12
[(72− 6.1)a+ (12.0− 12.1− 12)b− 12.1 + 6.0 + 66]t2

which gives

b =
11a− 27

4
.

Next, equate the coefficients of t and use the above relation between a and b to

get

18.11

6
t =

1

12
[36a2 + (12.0− 12)(

11a− 27

4
)2 − 12.1a(

11a− 27

4
)

+(72− 6.1)a+ (12.0− 12− 12.1)(
11a− 27

4
) + 46 + 2.0]t

which gives

a = 3∓ 2

117

√
2145.

There is no integer solution for a and b, so there exists no Ulrich line bundle.
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Theorem 2.0.25 Let Ỹ be one of the following Fano 3-folds:

1. the blow-up of V4 along an elliptic curve which is an intersection of two hyper-

plane sections,

2. the blow-up of V4 along a conic,

3. the blow-up of V4 along a line.

Then Ulrich line bundles can not exist on non of them.

Proof 2.0.26 Let D = ah̃ − be be a divisor class on Ỹ . We can compute Hilbert

polynomial ofOỸ (D) by Theorem 1.2.9. By Proposition 2.0.17, this must be equal to

deg(Ỹ )
(
t+3
3

)
. We will equate the coefficients of these two polynomials and try to find

integer solutions for a and b in each case separately.

1. (This case is [21, No.10 in Table 12.3].) Since C is an elliptic curve which is an

intersection of two hyperplane sections, d = 4 and g = 1. Then k = H3 = 16.

Then equate the coefficients of t2:

16.6

6
t2 =

1

12
[(96− 6.4)a+ (12.1− 12.4− 12)b− 12.4 + 6.1 + 90]t2

which gives

b =
3a− 6

2
.

Next, equate the coefficients of t and use the above relation between a and b to

get

16.11

6
t =

1

12
[48a2 + (12.1− 12)(

3a− 6

2
)2 − 12.4a(

3a− 6

2
)

+(96− 6.4)a+ (12.1− 12− 12.4)(
3a− 6

2
)

+54 + 2.1 + 2.4]t

which gives

a = 3∓
√
3.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

31



2. (This case is [21, No.16 in Table 12.3].) Since C is a conic, d = 2 and g = 0.

Then k = H3 = 22. Then equate the coefficients of t2:

22.6

6
t2 =

1

12
[(96− 6.2)a+ (12.0− 12.2− 12)b− 12.2 + 6.0 + 90]t2

which gives

b =
14a− 33

6
.

Next, equate the coefficients of t and use the above relation between a and b to

get

22.11

6
t =

1

12
[48a2 + (12.0− 12)(

14a− 33

6
)2 − 12.2a(

14a− 33

6
)

+(96− 6.2)a+ (12.0− 12− 12.2)(
14a− 33

6
)

+54 + 2.0 + 2.2]t

which gives

a = 3∓ 3

110

√
1265.

There is no integer solution for a and b, so there exists no Ulrich line bundle.

3. (This case is [21, No.19 in Table 12.3].) Since C is a line, d = 1 and g = 0.

Then k = H3 = 26. Then equate the coefficients of t2:

26.6

6
t2 =

1

12
[(96− 6.1)a+ (12.0− 12.1− 12)b− 12.1 + 6.0 + 90]t2

which gives

b =
15a− 39

4
.

Next, equate the coefficients of t and use the above relation between a and b to

get

26.11

6
t =

1

12
[48a2 + (12.0− 12)(

15a− 39

4
)2 − 12.1a(

15a− 39

4
)

+(96− 6.1)a+ (12.0− 12− 12.1)(
15a− 39

4
)

+54 + 2.0 + 2.1]t

which gives

a = 3∓ 2

221

√
5083.

There is no integer solution for a and b, so there exists no Ulrich line bundle.
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2.1 Ulrich Line Bundles on Y

We recall that Y is the Fano 3-fold which is obtained as the blow-up of P3 along a

curve C of degree 6 and genus 3.

We also recall the following commutative diagram as in ’Preliminaries’ section:

E

g

��

� � j // Y

f
��

C �
� i // P3

Proposition 2.1.1 The canonical map OC → g∗OE is an isomorphism.

Proof 2.1.2 Note that g : E → C is a ruled surface. Then the result follows from

[16, Lemma 2.1 of Chapter V].

Corollary 2.1.3 f∗(OP̃3(−mE)) = ImC and Rif∗OP̃3(−me) = 0 for m ≥ 0 and

i > 0.

Proof 2.1.4 See [22, Lemma 4.3.16].

Lemma 2.1.5 f∗OE(mE) = 0 for m > 0.

Proof 2.1.6 Note that g : E → C is a ruled surface. So, by [16, Proposition 8.20 of

Chapter II], we have

wE ∼= wY ⊗OY (E)⊗OE ⇒ wE ∼= OE(E)(−1)

⇒ OE(E) ∼= wE(1)

⇒ OE(E) ∼= OE(KE +HE).

Then we have

OE(mE) ∼= OY (mE)⊗OE
∼= OY (E)⊗m ⊗OE
∼= [OY (E)⊗OE]⊗m

∼= OE(E)⊗m
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∼= OE(KE +HE)
⊗m

∼= OE(m(KE +HE))

where D = mKE +mHY .

Also, by [17, Lemma 2.10 in Chapter V], we know that

KE
∼= −2C0 +DC · F

where C0 is a section of the map g, F is the fiber of g and DC is a divisor class on C.

Then

D · F = (−2mC0 +mDC · F +mHE) · F

= −2mC0 · F +mDC · F 2 +mHE · F

= −2m+ 0 +m

= −m.

Hence D · F is negative. So, following the proof of [17, Lemma 2.1 in Chapter V],

one can easily show that

f∗OE(D) = f∗OE(mE) = 0.

Proposition 2.1.7 f∗(OP̃3(mE)) = OP3 for m > 0.

Proof 2.1.8 We have the exact sequence

0→ OP̃3(−E)→ OP̃3 → OE → 0.

Now twist this exact sequence by E and get

0→ OP̃3 → OP̃3(E)→ OE(E)→ 0. (*)

Then consider the long exact sequence

0→ f∗OP̃3 → f∗OP̃3(E)→ f∗OE(E)→ · · ·.

By Lemma 2.1.5, f∗OE(E) = 0. So

34



f∗OP̃3(E) ' f∗OP̃3 ' OP 3 .

Similarly, now twist the exact sequence (*) by 2E and get

0→ OP̃3(E)→ OP̃3(2E)→ OE(2E)→ 0.

Then consider the exact sequence

0→ f∗OP̃3(E)→ f∗OP̃3(2E)→ f∗OE(2E)→ · · ·.

Again by Lemma 2.1.5 f∗OE(2E) = 0. Therefore

f∗OP̃3(2E) ' f∗OP̃3(E) ' OP3 .

Hence, by induction on m, we have f∗(OP̃3(mE)) = OP3 for m > 0.

Lemma 2.1.9 Let E be an Ulrich bundle of rank r on Ỹ . Then E∨(3) is also Ulrich.

Proof 2.1.10 We use Proposition 2.0.17.

First,

(∗) H i(Ỹ , E∨(3)(t)) = H i(Ỹ , E∨(3 + t))

= H3−i(Ỹ , E(−3− t)⊗KỸ )
∨ (Serre Duality)

= H3−i(Ỹ , E(−3− t)⊗ (−H))∨ (Ỹ is Fano)

= H3−i(Ỹ , E(−4− t))∨.

But we know that E is Ulrich, so it is ACM by Proposition 2.0.17. Then the middle

cohomologies of all twists of E vanish; so H3−i(Ỹ , E(−4 − t)) vanishes for i = 1, 2

and t ∈ Z.

Hence H i(Ỹ , E∨(3)(t)) = 0; that is, E∨(3) is ACM.

Second,

χ(Ỹ , E∨(3)(t)) =
3∑
i=0

(−1)ihi(Ỹ , E∨(3)(t))
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=
3∑
i=0

(−1)ih3−i(Ỹ , E(−4− t)) (by (∗))

= −cr
(
−4− t+ 3

3

)
= −cr (−t− 1)(−t− 2)(−t− 3)

6

= cr
(t+ 1)(t+ 2)(t+ 3)

6

= cr

(
t+ 3

3

)
Therefore E∨(3) is Ulrich by Proposition 2.0.17.

Lemma 2.1.11 Let C be a curve cut out scheme-theoretically in P3 by cubic hyper-

surfaces. Then

H i(P3, IaC|P3(k)) = 0 for i ≥ 1 provided k ≥ 3a.

Proof 2.1.12 This is a special case of [3, Proposition 1].

Lemma 2.1.13 If C is an ACM curve in P3 with d = 6 and g = 3, then its ideal sheaf

IC in P3 has the minimal free resolution:

0→ O⊕3P3 (−4)→ O⊕4P3 (−3)→ IC → 0.

Proof 2.1.14 Since C is ACM, by [12, p.2], it has a minimal free resolution of the

form:

0→
k−1⊕
j=1

OP3(−nj)→
k⊕
l=1

OP3(−ml)→ IC → 0.

Since IC(3) is generated by global sections [17, Ex. 8.7(c)], ml = 3 for all l and we

have:

(∗) 0→
k−1⊕
j=1

OP3(−nj)→
k⊕
l=1

OP3(−3)→ IC → 0.

We know that h0(IC(3)) = 4 and hi(IC(3− i)) = 0 for all i > 0 by [17, Ex. 8.7(c)].

Since hi(IC(3− i)) = 0 for all i > 0, we have h2(IC(1)) = 0.

Then
∑k−1

j=1 h
3(−nj + 1) =

∑k−1
j=1 h

0(nj − 1− 4) = 0. Then nj ≤ 4. But, since (*) is

a minimal free resolution, we have nj ≥ 4. So nj = 4. Since h0(IC(3)) = 4, we have

k = 4.
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Proposition 2.1.15 (Yusuf Mustopa, written in private communication) IfC is an

ACM space curve with d = 6 and g = 3, then H i(I2C(5)) = 0 for all i > 0.

Proof 2.1.16 Twisting the sequence

0→ IC → OP3 → OC → 0

by IC(5) yields the long exact sequence

0→ Tor
OP3
1 (IC(5),OC)→ IC ⊗ IC(5)→ IC(5)→ N ∗C|P3(5)→ 0

This can be broken into two short exact sequences, one of which is

0→ Tor
OP3
1 (IC(5),OC)→ IC ⊗ IC(5)→ I2C(5)→ 0.

Since Tor
OP3
1 (IC(5),OC) has at most 1-dimensional support, we have

H i(Tor
OP3
1 (IC(5),OC)) = 0 for all i > 1. It then suffices to show the vanishing of

H i(IC ⊗ IC(5)) for all i > 0.

We know, by Lemma 2.1.13, that IC has a minimal free resolution of the form

0→ O⊕3P3 (−4)→ O⊕4P3 (−3)→ IC → 0.

As before, we consider the twist by IC(5). Then we have a long exact sequence

0→ Tor
OP3
1 (IC , IC(5))→ IC(1)

⊕3 → IC(2)
⊕4 → IC ⊗ IC(5)→ 0.

Given that TorOP3
1 (IC , IC(5)) has at most 1-dimensional support and is a subsheaf of

the torsion-free sheaf IC(1)⊕3, it is equal to 0; so we have

0→ IC(1)
⊕3 → IC(2)

⊕4 → IC ⊗ IC(5)→ 0

But, we know that, by Lemma 2.1.13, IC has a minimal free resolution of the form

0→ O⊕3P3 (−4)→ O⊕4P3 (−3)→ IC → 0.

So H i(IC(k)) = 0 for all i > 0 and k > 0. Then H i(IC ⊗ IC(5)) = 0 for all i > 0;

so the result follows.

Theorem 2.1.17 Suppose thatC is ACM. Then there are only two Ulrich line bundles

L1 and L2, and they correspond to divisors D1 = 9h̃− 3e and D2 = 3h̃ on Y .
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Proof 2.1.18 We will use Proposition 2.0.17 to show that L1 and L2 are Ulrich line

bundles. In Theorem 2.0.19, we showed that L1 and L2 satisfy the Hilbert polyno-

mial condition. So, it remains to show that L1 and L2 are ACM; i.e, to show that

H1(Y, L1(t)) = H2(Y, L1(t)) = 0 and H1(Y, L2(t)) = H2(Y, L2(t)) = 0 for all

t ∈ Z.

Consider L1 first.

• t ≥ 0:

Then

L1(t) = OY (9h̃− 3e+ t(4h̃− e)) = OY ((4t+ 9)h̃+ (−t− 3)e).

Since −t− 3 < 0, by the projection formula and Corollary 2.1.3, we have

f∗L1(t) = f∗OY ((4t+ 9)h̃+ (−t− 3)e)

= OP3(4t+ 9)⊗ f∗OY ((−t− 3)e)

= I t+3
C ⊗OP3(4t+ 9)

= I t+3
C (4t+ 9).

So H1(P3, f∗L1(t)) = H1(P3, I t+3
C (4t+ 9)) and it is 0 by Lemma 2.1.11, since

4t+ 9 ≥ 3(t+ 3).

Now we consider H0(P3, R1f∗L1(t)). By projection formula, we have

H0(P3, R1f∗L1(t)) = H0(P3, R1f∗OP3((−t− 3)e)⊗OP3(4t+ 9))

But R1f∗OP3((−t− 3)e) = 0 by Corollary 2.1.3, since −t− 3 ≤ 0.

SinceHp(P3, Rqf∗L1(t)) =⇒ Hp+q(Y, L1(t)) by the Leray spectral sequence and we

showed that H1(P3, f∗L1(t)) = H0(P3, R1f∗L1(t)) = 0, we have

H1(Y, L1(t)) = 0.

Now consider H0(P3, R2f∗L1(t)) and H1(P3, R1f∗L1(t)). Note that they are 0 by

Corollary 2.1.3.
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Also H2(P3, f∗L1(t)) = H2(P3, I tC(4t+ 3)) = 0 again by Lemma 2.1.11.

SinceHp(P3, Rqf∗L1(t)) =⇒ Hp+q(Y, L1(t)) by the Leray spectral sequence and we

showed that H0(P3, R2f∗L1(t)) = H1(P3, R1f∗L1(t)) = H2(P3, f∗L1(t)) = 0,

H2(Y, L1(t)) = 0.

• t < −4:

Then

H1(Y, L1(t)) = H2(Y, L∨1 (−t)⊗KY )
∨

= H2(Y,OY ((−4t− 9)h̃+ (t+ 3)e)⊗OY (−4h̃+ e))∨

= H2(Y,OY ((−4t− 13)h̃+ (t+ 4)e))∨.

Similarly,

H2(Y, L1(t)) = H1(Y,OY ((−4t− 13)h̃+ (t+ 4)e))∨.

So, if H i(Y,OY ((−4t− 13)h̃+(t+4)e)) for i = 1, 2 vanishes, the result will follow.

Since t+ 4 < 0, by the projection formula and Corollary 2.1.3, we have

f∗OY ((−4t− 13)h̃+ (t+ 4)e)) = OP3(−4t− 13)⊗ f∗OY ((t+ 4)e)

= I−t−4C ⊗OP3(−4t− 13)

= I−t−4C (−4t− 13).

So H1(P3, f∗OY ((−4t− 13)h̃+(t+4)e)) = H1(P3, I−t−4C (−4t− 13)) and it is 0 by

Lemma 2.1.11, since −4t− 13 ≥ 3(−t− 4).

Now consider H0(P3, R1f∗OY ((−4t− 13)h̃+ (t+ 4)e)). By the projection formula,

we have

H0(P3, R1f∗OY ((−4t− 13)h̃+ (t+ 4)e)) =

H0(P3, R1f∗OP3((t+ 4)e)⊗OP3(−4t− 13)).

But R1f∗OP3((t+ 4)e) = 0 by Corollary 2.1.3, since t+ 4 ≤ 0.

Since Hp(P3, Rqf∗OY ((−4t − 13)h̃ + (t + 4)e)) =⇒ Hp+q(Y,OY ((−4t − 13)h̃ +
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(t+ 4)e)) by the Leray spectral sequence and we showed that

H1(P3, f∗OY ((−4t−13)h̃+(t+4)e)) andH0(P3, R1f∗OY ((−4t−13)h̃+(t+4)e))

vanish. So H1(Y,OY ((−4t− 13)h̃+ (t+ 4)e)) = 0. So,

H2(Y, L1(t)) = 0.

Now consider H0(P3, R2f∗OY ((−4t− 13)h̃+ (t+ 4)e)) and

H1(P3, R1f∗OY ((−4t−13)h̃+(t+4)e)), and note that they are 0 by Corollary 2.1.3.

Also H2(P3, f∗OY ((−4t− 13)h̃+ (t+ 4)e)) = H2(P3, I−t−4C (−4t− 13)) = 0 again

by Lemma 2.1.11.

Since Hp(P3, Rqf∗OY ((−4t − 13)h̃ + (t + 4)e)) =⇒ Hp+q(Y,OY ((−4t − 13)h̃ +

(t+ 4)e)) by the Leray spectral sequence and we showed that

H0(P3, R2f∗OY ((−4t−13)h̃+(t+4)e)), H1(P3, R1f∗OY ((−4t−13)h̃+(t+4)e)),

H2(P3, f∗OY ((−4t−13)h̃+(t+4)e)) andH2(Y,OY ((−4t−13)h̃+(t+4)e)) vanish.

So

H1(Y, L1(t)) = 0.

• t = −4:

Then

H i(Y, L1(−4)) = H i(Y,OY (−7h̃+ e)).

Then by [3, Lemma 1.4], we have

H i(Y,OY (−7h̃+ e)) = H i(P3,OP3(7h)).

So,

H1(Y, L1(−4)) = H2(Y, L1(−4)) = 0.

• t = −3:

Then

H i(Y, L1(−3)) = H i(Y,OY (−3h̃)).
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Then by [3, Lemma 1.4], we have

H i(Y,OY (−3h̃)) = H i(P3,OP3(3h)).

So,

H1(Y, L1(−3)) = H2(Y, L1(−3)) = 0.

So far, we showed that H1(Y, L1(t)) = H2(Y, L1(t)) = 0 for all t except t = −1,−2.

For the remaining two values of t, we assume that C is ACM.

• t = −1:

Again by the Leray spectral sequence, if H i(P3, f∗L1(−1)) for i = 1, 2,

Hj(P3, R1f∗L1(−1)) for j = 0, 1 and H0(P3, R2f∗L1(−1)) vanishes,

then H1(Y, L1(−1)) and H2(Y, L1(−1)) vanish.

Note that H i(P3, f∗L1(−1)) = H i(P3, I2C(5)) for i = 1, 2 by the projection formula

and Corollary 2.1.3; and we know that H i(P3, I2C(5)) = 0 for i = 1, 2 by Proposition

2.1.15. Also, we know that Hj(P3, R1f∗L1(−1)) = 0 for j = 0, 1 and

H0(P3, R2f∗L1(−1)) = 0 by the projection formula and Corollary 2.1.3. So,

H1(Y, L1(−1)) = H2(Y, L1(−1)) = 0.

• t = −2:

By the Leray spectral sequence, if all of H i(P3, f∗L1(−2)) for i = 1, 2,

Hj(P3, R1f∗L1(−2)) for j = 0, 1 and H0(P3, R2f∗L1(−2)) vanish,

then H1(Y, L1(−2)) and H2(Y, L1(−2)) vanish.

Note that H i(P3, f∗L1(−2)) = H i(P3, IC(1)) for i = 1, 2 by the projection formula

and Corollary 2.1.3. But H i(P3, IC(1)) = 0 for i = 1, 2 since C is ACM and by

Lemma 2.1.13 IC has a minimal free resolution

0→ O⊕3P3 (−4)→ O⊕4P3 (−3)→ IC → 0.

Also, we know that Hj(P3, R1f∗L1(−2)) = 0 for j = 0, 1 and

H0(P3, R2f∗L1(−2)) = 0 by projection formula and Corollary 2.1.3. So,
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H1(Y, L1(−2)) = H2(Y, L1(−2)) = 0.

Hence H1(Y, L1(t)) = H2(Y, L1(t)) = 0 for all t ∈ Z, and the result follows for L1.

Consider L2 next.

L2 is Ulrich by Lemma 2.1.9, since

L∨1 (3) = (−(9)h̃+ 3e) + 3(4h̃− e) = 3h̃ = L2.

Remark 2.1.19 We know that H6,3,3, which is the open subscheme of the Hilbert

Scheme parametrizing the smooth irreducible curves of d = 6 and g = 3 in P3, is

irreducible by [8, Theorem 4]. Also, we know that the property of being an ACM

sheaf is an open condition by [5]. Hence, if we assume C is ACM, then the line

bundles L1 and L2 exist on a generic element of the deformation class Y .

2.2 Rank 2 Ulrich Bundles on Y

Let E be a vector bundle of rank r, and L a line bundle on X . Then, by [14, Ex.

3.2.2], for all p ≥ 0,

cp(E ⊗ L) =
p∑
i=0

(
r − i
p− i

)
ci(E) · cp−i1 (L).

Then, if E is a rank 2 vector bundle, we have

c1(E ⊗OX(tH)) =
1∑
i=0

(
2− i
1− i

)
ci(E) · c1−i1 (OX(tH))

= 2c0(E) · c1(OX(tH)) + c1(E)

= c1(E) + 2tH

and

c2(E ⊗OX(tH)) =
2∑
i=0

(
2− i
2− i

)
ci(E) · c2−i1 (OX(tH))

=
2∑
i=0

ci(E) · c2−i1 (OX(tH))

= c0(E) · c21(OX(tH)) + c1(E) · c1(OX(tH)) + c2(E)

= (tH)2 + tc1(E) ·H + c2(E).
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Theorem 2.2.1 Let (Ỹ , H) be a Fano threefold which is the blow-up of P3 along a

smooth, irreducible curve of degree d and genus g. If E is a rank 2 Ulrich bundle on

Ỹ , then we have

1. H2 · c1(E) = 3H3,

2. H · c2(E) = 1
2
H · c21(E)− 2H3 + 4,

3. 2c31(E)− 6c1(E) · c2(E) + c1(E) · c2(KỸ ) = 9H3.

Proof 2.2.2 Let ci = ci(E) and di = ci(KỸ ). Then, by Riemann-Roch theorem

χ(Ỹ , E(t)) =
1

6
[(2tH + c1)

3 − 3(2tH + c1)((tH)2 + tc1 ·H + c2)]

+
1

4
H[(2tH + c1)

2 − 2((tH)2 + tc1 ·H + c2)]

+
1

12
(H2 + d2)(2tH + c1) +

1

12
Hd2

=
1

6
(8H3t3 + 12H2 · c1t2 + 6H · c21t+ c31 − 6H3t3 − 6H2 · c1t2

−6H · c2t− 3H2 · c1t2 − 3H · c21t− 3c1 · c2)

+
1

4
(4H3t2 + 4H2 · c1t+H · c21 − 2H3t2 − 2H2 · c1t− 2H · c2)

+
1

12
(2H3t+H2 · c1 + 2H · d2t+ c1 · d2) +

1

12
(H · d2)

=
1

3
H3t3 + (

1

2
H2 · c1 +

1

2
H3)t2

+(
1

2
H · c21 −H · c2 +

1

2
H2 · c1 +

1

6
H3 +

1

6
H · d2)t

+(
1

6
c31 −

1

2
c1 · c2 +

1

4
H · c21 −

1

2
H · c2 +

1

12
H2 · c1

+
1

12
c1 · d2 +

1

12
H · d2).

Since E is a rank 2 Ulrich bundle, by Proposition 2.0.17, we have

χ(Ỹ , E(t)) = 2H3

(
t+ 3

3

)
= H3 (t

3 + 6t2 + 11t+ 6)

3
.

So, if we equate coefficients of t2, we get

1

2
H2 · c1 +

1

2
H3 = 2H3

⇒ H2 · c1 = 3H3.
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If we equate coefficients of t, we get

1

2
H · c21 −H · c2 +

1

2
H2 · c1 +

1

6
H3 +

1

6
H · d2 =

11

3
H3

⇒ H · c2 =
1

2
H · c21 − 2H3 +

1

6
H · d2 (by part (1))

⇒ H · c2 =
1

2
H · c21 − 2H3 + 4.

If we equate constant terms, we get

1

6
c31 −

1

2
c1 · c2 +

1

4
H · c21 −

1

2
H · c2 +

1

12
H2 · c1 +

1

12
c1 · d2 +

1

12
H · d2 = 2H3

⇒ 2c31 − 6c1 · c2 + c1 · d2 = 9H3.

Theorem 2.2.3 Let E be a rank 2 Ulrich bundle on Y with c1(Y ) = xh̃ − ye. Then

there are 7 possibilities for c1(Y ), which are

• 6h̃,

• 8h̃-e,

• 10h̃-2e,

• 12h̃-3e=3H ,

• 14h̃-4e,

• 16h̃-5e,

• 18h̃-6e.

Proof 2.2.4 We know that HY = 4h̃− e. By Theorem 2.2.1

(4h̃− e)2(xh̃− ye) = 3(4h̃− e)3

⇒ 16x+ 8y(−6) + x(−6)− y(−28) = 3.20 (Theorem 1.2.3)

⇒ x = 2y + 6.

Since E is Ulrich, it is µ-semistable by Theorem 2.2.24. So, we can apply Bogomolov’s

Inequality [20, Theorem 7.3.1] and get

(2.2c2(E)− (2− 1)c21(E))H ≥ 0
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⇒ 4Hc2(E)−Hc21(E) ≥ 0

⇒ 4(H
c21(E)
2
− 2H3 + 4)−Hc21(E) ≥ 0 (Theorem 2.2.1)

⇒ Hc21(E)− 8H3 + 16 ≥ 0

⇒ (4h̃− e)(xh̃− ye)2 − 8.20 + 16 ≥ 0

⇒ 4x2 + 4y2(−6) + 2xy(−6)− y2(−28)− 144 ≥ 0 (Theorem 1.2.3)

⇒ 4(2y + 6)2 − 24y2 − 12y(2y + 6) + 28y2 − 144 ≥ 0

⇒ −4y2 + 24y ≥ 0

⇒ 0 ≤ y ≤ 6.

2.2.1 Simple Ulrich Bundles on Y with c1 = 3H

Proposition 2.2.5 Let X be projective variety of dimension k in PN and IX be the

ideal sheaf of X in PN . Then H i(PN , InX(t)) is upper semi-continuous for i > k.

Proof 2.2.6 Twisting the sequence

0→ IX → OPN → OX → 0

by I⊗n−1X (t) yields the long exact sequence

0→ Tor
OPN
1 (I⊗n−1X (t),OX)→ I⊗nX (t)→ I⊗n−1X (t)→ OX ⊗ I⊗n−1X (t)→ 0

This can be broken into two short exact sequences, one of which is

0→ Tor
OPN
1 (I⊗n−1X (t),OX)→ I⊗nX (t)→ InX(t)→ 0.

Since Tor
OPN
1 (I⊗n−1X (t),OX) has at most k-dimensional support, we have

H i(PN ,TorOPN
1 (I⊗n−1X (t),OX)) = 0 for all i > k. So, by long exact sequence of

cohomology, we get H i(PN , I⊗nX (t)) = H i(PN , InX(t)) for all i > k. Since left hand

side is upper semi-continuous, the right hand side is upper semi-continuous.

Theorem 2.2.7 Let C be an smooth ACM space curve with d = 6 and g = 3. Then

h2(P3, I3C(6)) = 0 and h2(P3, I2C(2)) ≤ 8 for a generic such C.

Proof 2.2.8 Use Macaulay2 [15] for computations:
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i1 : k = ZZ/32467; R = k[x,y,z,w];

Then load the package RandomSpaceCurves [4] to produce explicit example of smooth

ACM space curve C
′

of d = 6 and g = 3 with ideal J:

i2 : load"RandomSpaceCurves.m2";

i3 : J=(random spaceCurve)(6,3,R)

o3 : ideal (-2215x^3+10620x^2y+2508xy^2-15048y^3-5453x^2z-2767xyz

+8885y^2z+2225xz^2+1759yz^2-9499z^3+3014x^2w+12412xyw

-1419y^2w-11910xzw-3506yzw-831z^2w-1546xw^2+4414yw^2

-10576zw^2+15249w^3, -6292x^3-10864x^2y+5626xy^2-8024y^3

+10837x^2z-6966xyz+9956y^2z-9501xz^2-9538yz^2+9745z^3

+15655x^2w-3220xyw-12116y^2w+11148xzw-3392yzw-1539z^2w

-3915xw^2-5992yw^2+15589zw^2+7309w^3, 870x^3+9582x^2y

-172xy^2+8082y^3-13952x^2z+1923xyz+13352y^2z+7141xz^2

-13354yz^2+15747z^3+1042x^2w+1494xyw-11584y^2w+7730xzw

-4628yzw+9837z^2w-4220xw^2+4893yw^2-15379zw^2-13719w^3,

-15941x^3-8361x^2y-16223xy^2+12866y^3-4501x^2z+13591xyz

-11196y^2z-6043xz^2-7842yz^2+11284z^3+1057x^2w-2552xyw

+6508y^2w+15994xzw-2374yzw-10280z^2w+7766xw^2+15317yw^2

-10555zw^2+7241w^3)

o3 : Ideal of R

Then check whether C
′

is a smooth ACM space curve of d = 6 and g = 3:

i4 : (degree J, genus J, resolution J)

o4 : (6, 3, R^1 <-- R^4 <-- R^3 <-- O)

0 1 2 3

o4 : Sequence

Then compute h2(J3
C′ (6)) and h2(J2

C′ (2)):

i5 : J3 = J*J*J;

J2 = J*J;

vJ3 = Proj(R/J3);

vJ2 = Proj(R/J2);

sJ3 = sheaf module ideal vJ3;
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sJ2 = sheaf module ideal vJ2;

o5 : Ideal of R

o6 : Ideal of R

i11: (HH^2 (sJ3(6)), HH^2 (sJ2(2)))

o11: (0, k^8)

o11: Sequence

But, we know that these cohomologies are upper semi-continuous functions by Propo-

sition 2.2.5. Hence, we have h2(P3, I3C(6)) = 0 and h2(P3, I2C(2)) ≤ 8 for a generic

element of all smooth ACM space curves of d = 6 and g = 3.

Remark 2.2.9 Since cohomology is an upper semi-continuous function, as stated in

the proof of Theorem 2.2.7, smooth ACM space curves of d = 6 and g = 3 satisfying

h2(I3C(6)) = 0 form an open subset of all smooth ACM space curves of d = 6 and

g = 3. Also by Remark 2.1.19, we know that H6,3,3 is irreducible and smooth ACM

space curves of d = 6 and g = 3 form an open subset in H6,3,3. So, smooth ACM

space curves of d = 6 and g = 3 satisfying h2(P3, I3C(6)) = 0 form an open subset of

all smooth space curves of d = 6 and g = 3. Hence, h2(P3, I3C(6)) = 0 for a generic

element of the deformation class Y . By a similar argument, h2(P3, I2C(2)) ≤ 8 for a

generic element of the deformation class Y .

Corollary 2.2.10 For a generic element of the deformation class of Y , we have

ext1(L2, L1) = 8.

Proof 2.2.11 We know that

ext1(L2, L1) = h1(Y, L∨2 ⊗ L1),

where L∨2 ⊗ L1 = OY (−(3h̃) + (9h̃− 3e)) = OY (6h̃− 3e).

By Theorem 1.2.3, χ(Y, L∨2 ⊗ L1) = −8. So, we have

h0(L∨2 ⊗ L1)− h1(L∨2 ⊗ L1) + h2(L∨2 ⊗ L1)− h3(L∨2 ⊗ L1) = −8

⇒ h1(L∨2 ⊗ L1) = 8 + h0(L∨2 ⊗ L1) + h2(L∨2 ⊗ L1)− h3(L∨2 ⊗ L1)

= 8 + hom(L2, L1) + h2(L∨2 ⊗ L1)− hom(L1(1), L2)
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where hom(L2, L1) = hom(L1(1), L2) = 0 by [20, Proposition 1.2.7]. So

h1(Y, L∨2 ⊗ L1) = h2(Y, L∨2 ⊗ L1) + 8.

Use the Leray spectral sequence to compute h2(Y, L∨2 ⊗ L1):

Hp(P3, Rqf∗L
∨
2 ⊗ L1) =⇒ Hp+q(Y, L∨2 ⊗ L1)

where f is the blow-down map.

We know that H0(P3, R2f∗L
∨
2 ⊗ L1) = H0(P3, R2f∗OY (−3e)⊗OP3(6)) by the pro-

jection formula and R2f∗OY (−3e) = 0 by Corollary 2.1.3.

So, H0(P3, R2f∗L
∨
2 ⊗ L1) = 0. Similarly, H1(P3, R1f∗L

∨
2 ⊗ L1) = 0.

Also by the projection formula, we know that

f∗(L
∨
2 ⊗ L1) = f∗OY (6h̃− 3e)

= OP3(6)⊗ f∗OY (−3e)

= I3C ⊗OP3(6)

= I3C(6).

So H2(P3, f∗L
∨
2 ⊗ L1) = H2(P3, I3C(6)). Hence, by the Leray spectral sequence,

H2(Y, L∨2 ⊗ L1) = H2(P3, I3C(6)).

So

h1(Y, L∨2 ⊗ L1) = h2(P3, I3C(6)) + 8.

But, h2(P3, I3C(6)) = 0 by Remark 2.2.9, for a generic element of deformation class

Y . Hence, ext1(L2, L1) = 8 for a generic element of deformation class Y .

Corollary 2.2.12 For a generic element of deformation class Y , ext1(L1, L2) ≤ 8.

Proof 2.2.13 We know that

ext1(L1, L2) = h1(Y, L∨1 ⊗ L2) = h2(Y, L∨2 ⊗ L1 ⊗KY )

where L∨2 ⊗ L1 ⊗KY = OY (−(3h̃) + (9h̃− 3e) + (−4h̃+ e)) = OY (2h̃− 2e).

Use the Leray spectral sequence to compute h2(Y, L∨2 ⊗ L1 ⊗KY ):

Hp(P3, Rqf∗L
∨
2 ⊗ L1 ⊗KY ) =⇒ Hp+q(Y, h2(Y, L∨2 ⊗ L1 ⊗KY ))
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where f is the blow-down map.

We know that H0(P3, R2f∗L
∨
2 ⊗ L1 ⊗ KY ) = H0(P3, R2f∗OY (−2e) ⊗ OP3(2)) by

the projection formula and R2f∗OY (−2e) = 0 by Corollary 2.1.3.

So, H0(P3, R2f∗L
∨
2 ⊗ L1 ⊗KY ) = 0.

Similarly, H1(P3, R1f∗L
∨
2 ⊗ L1 ⊗ KY ) = H1(P3, R1f∗OY (−2e) ⊗ OP3(2)) by the

projection formula and R1f∗OY (−3e) = 0 by Corollary 2.1.3.

So, H1(P3, R1f∗L
∨
2 ⊗ L1 ⊗KY ) = 0.

Also, by the projection formula, we know that

f∗(L
∨
2 ⊗ L1 ⊗KY ) = f∗OY (2h̃− 2e)

= OP3(2)⊗ f∗OY (−2e)

= I2C ⊗OP3(2)

= I2C(2).

SoH2(P3, f∗L
∨
2⊗L1⊗KY ) = H2(P3, I2C(2)). Hence, by the Leray spectral sequence,

H2(Y, L∨2 ⊗ L1 ⊗KY ) = H2(P3, I2C(2)).

But, h2(P3, I2C(2)) ≤ 8 by Remark 2.2.9, for a generic element of deformation class

Y .

Hence, ext1(L1, L2) ≤ 8 for a generic element of deformation class Y .

Theorem 2.2.14 Let E be a rank 2 vector bundle on Y obtained by a non-split exten-

sion

0→ L1 → E → L2 → 0

or

0→ L2 → E → L1 → 0

where L1 = OY (9h̃− 3e) and L2 = OY (3h̃). Then E is a simple Ulrich bundle with

c1(E) = 12h̃− 3e and c2(E) = 27h̃2 − 9h̃e.

Proof 2.2.15 By Theorem 2.1.17, L1 and L2 are Ulrich line bundles. Since they are

Ulrich, they have the same slope by Proposition 2.0.17. Since they are line bundles,

they are trivially stable. Clearly, they are non-isomorphic. Hence E is a simple vector

bundle by [5, Lemma 4.2].
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Since L1 and L2 are Ulrich bundles, E is an Ulrich bundle by [7, Proposition 2.8].

Moreover, we have

c1(E) = c1(L1) + c1(L2)

= (9h̃− 3e) + (3h̃)

= 12h̃− 3e

and

c2(E) = c1(L1)c1(L2)

= (9h̃− 3e)(3h̃)

= 27h̃2 − 9h̃e.

Theorem 2.2.16 Let E be a rank 2 simple Ulrich bundle on Y with c1(E) = 12h̃−3e

and c2(E) = 27h̃2 − 9h̃e. Then h1(E ⊗ E∨)− h2(E ⊗ E∨) = 15.

Proof 2.2.17 Note that the Chern polynomial of E is

ct(E) = (1 + (9h̃− 3e)t)(1 + (3h̃)t) =
2∏
i=1

(1 + ait)

where a1 = 9h̃− 3e and a2 = 3h̃.

Also,

c1(E∨) = (−1)1c1(E)

= −12h̃+ 3e

and

c2(E∨) = (−1)2c2(E)

= 27h̃2 − 9h̃e.

Then the Chern polynomial of E∨ is

ct(E∨) = (1 + (−9h̃+ 3e)t)(1 + (−3h̃)t) =
2∏
i=1

(1 + bit)

where b1 = −(9h̃− 3e) and b2 = −3h̃. Then we have

ct(E ⊗ E∨) =
2∏

i,j=1

(1 + (ai + bj)t)
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= (1 + 0t)(1 + (6h̃− 3e)t)(1 + (−6h̃+ 3e)t)(1 + 0t)

= 1 + 0t+ (−36h̃2 + 36h̃e− 9e2)t2 + 0t3 + 0t4.

So, c2(E ⊗ E∨) = −36h̃2 + 36h̃e− 9e2 and ci(E ⊗ E∨) = 0 for i = 1, 3, 4.

By Theorem 1.2.3, we have

c1(TY ) = 4h̃− e

c2(TY ) = 12h̃2 − 4h̃e

and

deg(h̃3) = 1

deg(h̃2e) = 0

deg(h̃e2) = −6

deg(ẽ3) = −28.

Apply the Riemann-Roch theorem for E⊗E∨ on Y if ci = ci(E⊗E∨) and di = ci(TỸ ):

χ(Ỹ , E ⊗ E∨) =
1

6
(c31 − 3c1c2 + 3c3) +

1

4
d1(c

2
1 − 2c2) +

1

12
(d21 + d2)c1

+
4

24
d1d2

=
1

4
(4h̃− e)(−2(−36h̃2 + 36h̃e− 9e2))

+
4

24
(4h̃− e)(12h̃2 − 4h̃e)

=
1

4
(−72) + 1

6
(24)

= −14.

Then we have

h0(E ⊗ E∨)− h1(E ⊗ E∨) + h2(E ⊗ E∨)− h3(E ⊗ E∨) = −14

⇒ h1(E ⊗ E∨)− h2(E ⊗ E∨) = 14 + h0(E ⊗ E∨)− h3(E ⊗ E∨)

= 14 + hom(E , E)− hom(E(1), E)

where hom(E , E) = 1 since E is simple. So

h1(E ⊗ E∨)− h2(E ⊗ E∨) = 14 + 1− hom(E(1), E)

where hom(E(1), E) = 0 by [20, Proposition 1.2.7]. So

h1(E ⊗ E∨)− h2(E ⊗ E∨) = 14 + 1− 0

= 15.
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2.2.2 Quot Scheme

The general reference for this section is [20, Section 2.2].

The Quot schemeQuotX(F, P ) parametrizes quotient sheaves of a givenOX-module

F with Hilbert polynomial P . In this subsection, we briefly review some properties

of the Quot scheme, including properties about its local dimension.

Let κ be a field, S be κ-scheme of finite type and Sch/S be the category of S-

schemes. Let φ : X → S be a projective morphism and OX(1) an φ-ample line

bundle on X . Let H be a coherent OX-module and P ∈ Q[z] a polynomial. The

functor

Q := Quot
X/S

: (Sch/S)o → (Sets)

is defined as follows:

If T → S is an object in Sch/S, let Q(T ) be the set of all T -flat coherent quotient

sheaves HT = OT ⊗ H → F with Hilbert poynomial P . And if h : T
′ → T is

an S-morphism, let Q(h) : Q(T ) → Q(T ′
) be the map that sends HT → F to

HT ′ → h∗XF .

Theorem 2.2.18 The functor Quot
X/S

(H, P ) is represented by a projective

S-scheme π : QuotX/S(H, P )→ S.

Proof 2.2.19 See [20, Theorem 2.2.4].

Proposition 2.2.20 Let X be a projective scheme over a field κ and H a coherent

sheaf on X . Let [q : H → F ] ∈ Quot(H, P ) be a κ-rational point and K = ker(q).

Then

hom(K,F ) ≥ dim[q]Quot(H,P ) ≥ hom(K,F )− ext1(K,F ).

If equality holds at the second place, Quot(H, P ) is a local complete intersection

near [q]. If ext1(K,F ) = 0, then Quot(H, P ) is smooth at [q].

Proof 2.2.21 See [20, Proposition 2.2.8].
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2.2.3 Stable Ulrich Bundles on Y with c1 = 3H

We review some well-known facts.

Proposition 2.2.22 Let E be a stable bundle on X . Then E is simple; i.e, End(E) ∼=
K.

Proof 2.2.23 Since K is algebraically closed, it follows from [20, Corollary 1.2.8].

Theorem 2.2.24 Let E be an Ulrich bundle of rank r on a nonsingular projective

variety X . Then,

• E is semistable and µ-semistable,

• If E is stable, then it is also µ-stable.

Proof 2.2.25 See [5, Theorem 2.9].

Hence, (semi)stability and µ-(semi)stability are equivalent for an Ulrich bundle E by

Lemma 2.0.13 and Theorem 2.2.24.

Proposition 2.2.26 Let E be an Ulrich bundle of rank r on a nonsingular projective

variety X . Then E is globally generated.

Proof 2.2.27 See [7, Corollary 2.5].

Lemma 2.2.28 Let E be an Ulrich bundle on X . Then for any Jordan-Hölder filtra-

tion

0 = E0 ⊆ E1 ⊆ · · · ⊆ Em−1 ⊆ Em = E

we have that Ei is an Ulrich bundle for 1 ≤ i ≤ m. In particular, if E is a strictly

semistable Ulrich bundle of rank r ≥ 2, then there exist a subbundle F of E having

rank s < r which is Ulrich.

Proof 2.2.29 See [6, Lemma 2.15].
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Definition 2.2.30 Let E be a nontrivial locally free sheaf on X . The trace map tr :

End(E) → OX induces tri : Exti(E,E) ∼= H i(End(E)) → H i(OX). These

homomorphisms are surjective. Let Exti(E,E)o denote the kernel of tri.

Proposition 2.2.31 If E is locally free sheaf on Y , then Exti(E,E)o = Exti(E,E)

for 0 < i < 3.

Proof 2.2.32 Note that H i(Y,OY ) = 0 for 0 < i < 3. So the kernel of tri is

Exti(E,E) for 0 < i < 3.

We want to analyze the local dimension of Quot scheme. For this, we will follow the

discussion and the notation of [20, Section 4.3].

Let F be semistable sheaf on X . Let m be a sufficiently large integer such that

F (m) is globally generated, V be a vector space of dimension PX(m) and H :=

V ⊗k OX(−m). Let R ⊂ Quot(H, P ) be the open subscheme of those quotients

[ρ : H → E ] where V → H0(E) is an isomorphism.

Proposition 2.2.33 H i(Y,OY ) ∼= 0 for i > 0.

Proof 2.2.34 See [19, p. 153].

Theorem 2.2.35 Let E be a rank 2 simple Ulrich bundle on Y , with c1(E) = 12h̃−3e
and c2(E) = 27h̃2 − 9h̃e. Then dim[ρ]R ≥ 1614 for a fixed [ρ : H → E ].

Proof 2.2.36 We will follow the construction in [20, p.115].

First, note that E is semistable by Theorem 2.2.24. Second, E is globally generated

by Proposition 2.2.26.

So V is a vector space of dimension 40, since PY (0) = 20 · 2
(
3+0
3

)
= 40.

ThenH := V ⊗K OY = O⊕40Y .

Fix [ρ : H → E ] ∈ R.

1. Let K be the kernel of ρ; that is, we have

0→ K → H→ E → 0.
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Then we have the long exact sequence of cohomology

0 → H0(Y,K)→ H0(Y,H)→ H0(Y, E)

→ H1(Y,K)→ H1(Y,H)→ H1(Y, E)

→ H2(Y,K)→ H2(Y,H)→ H2(Y, E)

→ H3(Y,K)→ H3(Y,H)→ H3(Y, E)→ 0.

SinceH = O⊕40Y and E is globally generated by Proposition 2.2.26,

H0(Y,H) ∼= H0(Y, E). So H0(Y,K) ∼= 0. Then, since Hom(H, K) ∼=
Hom(OY , K)⊕40 ∼= H0(Y,K)⊕40, Hom(H, K) ∼= 0.

Since H1(Y,H) ∼= H1(Y,OY )⊕40 ∼= 0 by Proposition 2.2.33 and H0(Y,H) ∼=
H0(Y, E), H1(Y,K) ∼= 0. Then, since Ext1(H, K) ∼= Ext1(OY , K)⊕40 ∼=
H1(Y,K)⊕40, Ext1(H, K) ∼= 0.

Since H2(Y,H) ∼= H2(Y,OY )⊕40 ∼= 0 by Proposition 2.2.33 and H1(Y, E) ∼=
0 by being that E is Ulrich, H2(Y,K) ∼= 0. Then, since Ext2(H, K) ∼=
Ext2(OY , K)⊕40 ∼= H2(Y,K)⊕40, Ext2(H, K) ∼= 0.

Since H3(Y,H) ∼= H3(Y,OY )⊕40 ∼= 0 by Proposition 2.2.33 and H2(Y, E) ∼=
0 by being that E is Ulrich, H3(Y,K) ∼= 0. Then, since Ext3(H, K) ∼=
Ext3(OY , K)⊕40 ∼= H3(Y,K)⊕40, Ext3(H, K) ∼= 0.

Hence Hom(H, K) ∼= 0 and Exti(H, K) ∼= 0 for i > 0.

2. Consider the short exact sequence

0→ K → H→ E → 0.

Then take the functor Hom(H,−)

0 → Hom(H, K)→ Hom(H,H)→ Hom(H, E)

→ Ext1(H, K)→ Ext1(H,H)→ Ext1(H, E)

→ Ext2(H, K)→ Ext2(H,H)→ Ext2(H, E)

→ Ext3(H, K)→ Ext3(H,H)→ Ext3(H, E)→ 0.

By step (1), we know that Hom(H, K) ∼= 0 and Exti(H, K) ∼= 0 for i > 0.

So, Hom(H,H) ∼= Hom(H, E) and Exti(H,H) ∼= Exti(H, E) for i > 0.

On the other hand, Exti(H,H) ∼= Exti(O⊕40Y ,O⊕40Y ) ∼= H i(Y,OY )⊕1600 for

i > 0. Since H i(Y,OY ) ∼= 0 for i > 0 by Proposition 2.2.33, Exti(H,H) ∼= 0.

Hence Hom(H,H) ∼= Hom(H, E) and Exti(H, E) = 0, i > 0.
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3. Again consider the short exact sequence

0→ K → H→ E → 0.

Then take the functor Hom(−, E) of it

0 → Hom(E , E)→ Hom(H, E)→ Hom(K, E)

→ Ext1(E , E)→ Ext1(H, E) = 0→ . . .

leads to equality hom(K, E) = hom(H, E) + ext1(E , E)− hom(E , E).
Since Exti(H, E) = 0 for i > 0, Exti(K, E) ∼= Exti+1(E , E) for i > 0.

4. The boundary map Ext1(K, E) → Ext2(E , E) maps the obstruction to extend

[ρ] onto the obstructions to extend [E ] (see [20, 2.A.8]). The latter is contained

in the subspace Ext2(E , E)o. This gives the dimension bound, using Proposi-

tion 2.2.20,

dim[ρ]R ≥ hom(K, E)− ext2(E , E)o.

Then, by step (3), we have

dim[ρ]R ≥ hom(H, E) + ext1(E , E)− hom(E , E)− ext2(E , E)o.

Then, by Proposition 2.2.31

dim[ρ]R ≥ hom(H, E) + ext1(E , E)− hom(E , E)− ext2(E , E).

Then, by step (2), we have

dim[ρ]R ≥ hom(H,H) + ext1(E , E)− hom(E , E)− ext2(E , E).

Since E is simple andH = O⊕40Y , we have

dim[ρ]R ≥ 1600 + ext1(E , E)− 1− ext2(E , E).

Then, by Theorem 2.2.16 and the equality hi(E ⊗ E∨) = exti(E , E), we have

dim[ρ]R ≥ 1600 +−1 + 15 = 1614.

Let R′ ⊂ Quot(H, P ) be the subset parametrizing the quotients [ρ : H → E ] where

E is obtained as an extension of L2 by L1.
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Proposition 2.2.37 dim[ρ]R
′
= 1606 for a fixed [ρ : H → E ].

Proof 2.2.38 The projectivization ofExt1(L2, L1) has dimension 8−1 = 7 by Corol-

lary 2.2.10. R
′

is the union of all orbits of extensions of L2 by L1 under the action of

PGL(V ), so around each fixed [ρ : H → E ], dim[ρ]R
′
= 1599 + 7 = 1606.

Let R′′ ⊂ Quot(H, P ) be the subset parametrizing the quotients [ρ : H → E ] where

E is obtained as an extension of L1 by L2.

Proposition 2.2.39 dim[ρ]R
′′ ≤ 1606 for a fixed [ρ : H → E ].

Proof 2.2.40 The projectivization of Ext1(L1, L2) has dimension ≤ 8 − 1 = 7 by

Corollary 2.2.12. R
′′

is the union of all orbits of extensions of L1 by L2 under the

action of PGL(V ), so around each fixed [ρ : H → E ], dim[ρ]R
′′ ≤ 1599+7 = 1606.

Theorem 2.2.41 There exist rank 2 stable Ulrich bundles with c1(E) = 12h̃− 3e on

a generic element of the deformation class Y .

Proof 2.2.42 By Theorem 2.2.14, there are rank 2 simple Ulrich bundle E with the

given Chern classes.

We know that the property of being Ulrich is an open condition. So there is an open

subset U of R around [ρ : H → E ] containing Ulrich bundles. By Theorem 2.2.35, U

has dimension at least 1614.

We also know that every Ulrich bundle is semistable by Theorem 2.2.24. If all ele-

ments of U were strictly semistable, then by Lemma 2.2.28 and [7, Proposition 2.8],

they would be extensions of Ulrich line bundles. But there are only two Ulrich line

bundles L1 and L2 on Y . So they would be extensions of L2 by L1 or extensions of L1

by L2.

However, the dimension of R
′

at the points that are extensions of L2 by L1 is 1606

by Proposition 2.2.37 and the dimension of R
′′

at the points that are extensions of L1

by L2 is at most 1606 by Proposition 2.2.39. Since both these dimensions are strictly

smaller than 1614, not all Ulrich bundles with the given Chern classes are obtained

by extensions. In other words, not all Ulrich bundles in U are strictly semistable.

Hence there are rank 2 stable Ulrich bundles with c1(E) = 12h̃− 3e.
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