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Product and process designers need to find most preferable settings of design 

parameters to simultaneously achieve multiple quality objectives based on some 

performance measures such as means and variances of quality characteristics. In 

these optimization studies, typically empirical models of such performance 

measures are utilized. These models are usually developed based on data collected 

through statistically designed experiments using linear regression methods such as 

Ordinary Least Squares (OLS), Weighted Least Squares (WLS), and Seemingly 

Unrelated Regression (SUR). In multi-response design parameter optimization 

(MRDPO) problems, it is assumed that each response has a non-homogeneous 

variance. Furthermore, responses might be correlated. These linear regression 

methods might not be appropriate for a particular MRDPO problem due to their 

restrictive assumptions. Hence, estimation errors associated with model parameters 
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and prediction errors associated with individual observations might be large 

depending on the problem situation. In this study, we are interested in examining 

and comparing these errors on a typical MRDPO problem with two responses under 

different scenarios systematically generated by statistical design of experiments. In 

addition, we develop a bootstrapping approach to compute joint confidence and 

prediction regions for estimated mean responses and individual observations, 

respectively, since these regions are not analytically available for some methods. 

Our observations based on analysis of experimental results using certain 

performance measures and graphs of the confidence and prediction regions are 

presented. Concluding remarks are given and future studies are recommended for 

generalization of these observations.  

Keywords: multi-response design parameter optimization, linear regression, 

heteroscedasticity, correlated responses, bootstrap confidence and prediction 

regions.
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ÖZ 

 

 

ÇOK YANITLI TASARIM PARAMETRE OPTİMİZASYONU İÇİN 

KULLANILAN DOĞRUSAL REGRESYON YÖNTEMLERİNİN TAHMİN 

VE ÖNGÖRÜ HATASI BAKIMINDAN DENEYSEL KARŞILAŞTIRMASI 

 

 

Gökayaz, Gülten 

Yüksek Lisans Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülser Köksal 

 

Temmuz 2016, 137 sayfa 

 

 

Tasarım parametre optimizasyonu, bir ürün ya da sürecin kalitesini iyileştirmek için 

kullanılan bir kalite mühendisliği yaklaşımıdır. Bu problemde amaç, kontrol 

edilebilen ürün ve süreç parametrelerinin, kontrol edilemeyen faktörlerin 

değişkenliği artırıcı etkisine rağmen, hedeflenen kalite performansını istikrarlı bir 

şekilde sağlayacak en iyi seviyelerini belirlemektir. Bu optimizasyon 

çalışmalarında, istatistiksel olarak tasarlanmış deneylerden toplanan veriler 

kullanılarak tanımlanan kalite karakteristiği için ortalama değer ve varyans gibi 

performans ölçüleri ile tasarım parametreleri arasındaki ilişki ampirik olarak 

modellenir. Bu modeller genellikle en küçük kareler (OLS), ağırlıklı en küçük 

kareler (WLS) ve görünürde ilişkisiz regresyon (SUR) gibi doğrusal regresyon 

yöntemleri kullanılarak elde edilmektedir. Çok yanıtlı tasarım parametre 

optimizasyon (ÇYTPO) problemlerinde, her yanıt için farklı deney noktalarında 
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varyansın sabit (homojen) olmadığı varsayılır. Ayrıca, yanıtların birbiriyle ilişkili 

olması söz konusu olabilir. Bahsedilen doğrusal regresyon yöntemleri, sahip 

oldukları kısıtlayıcı varsayımlar sebebiyle belli bir ÇYTPO problemi için uygun 

olmayabilir. Dolayısıyla model parametreleri ve belli noktalarda yapılan ortalama 

değer tahmini ve tek bir gözlem için yapılan öngörüdeki hatalar duruma bağlı olarak 

büyük olabilir. Bu çalışmada, iki yanıtlı tipik bir ÇYTPO problemi ele alınıp, 

istatistiksel deney tasarımı ile sistematik olarak oluşturulan farklı senaryolar altında 

bahsedilen doğrusal regresyon yöntemleri incelenmiş ve karşılaştırılmıştır. Bu 

çalışmada ayrıca özyükleme yöntemi kullanılarak belli noktalarda, ortalama değer 

ve tek bir gözlemin değeri için, sırasıyla, güven ve tahmin bölgeleri elde edilmiştir. 

Son olarak, yapılan gözlemler paylaşılmış ve bu gözlemlerin genelleştirilebilmesi 

için gelecekte yapılabilecek çalışmalar hakkında öneriler verilmiştir.  

Anahtar Kelimeler: çok yanıtlı tasarım parametre optimizasyonu, doğrusal 

regresyon, değişen varyans, ilişkili yanıtlar, özyükleme güven ve tahmin bölgeleri 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Robust parameter design (RPD) or design parameter optimization (DPO) is a 

methodology widely used in quality engineering to improve the quality of products 

and processes. Using this methodology, settings (nominal or target values) of 

controllable product and process design parameters are determined to consistently 

achieve target quality performance subject to the effects of uncontrollable factors. 

RPD was defined by a Japanese engineer, Genichi Taguchi in the 1950s, and it has 

been widely used by industrial organizations since 1980s. Taguchi proposed some 

solution methods to the RPD problems based on statistical design and analysis of 

experiments, which brought about many criticisms and discussions. Following 

these criticisms, many research studies have been conducted on the RPD problem 

and many alternative approaches have been developed. The review paper by 

Robinson et al. [1] gives some important aspects of the RPD problem, the criticisms 

to Taguchi’s method and works that have addressed them since 1992. Park et al. [2] 

also give an overview of RPD problem and classify the RPD methods into three 

categories: The Taguchi method, robust optimization, and robust design with the 

axiomatic approach; then, they analyze these methods from both theoretical and 

application viewpoints.  

One widely used methodology for the RPD problems is the response surface 

methodology (RSM). It utilizes both mathematical and statistical techniques and is 

employed in basically three steps: Screening, modeling and optimization [3]. 

Screening step includes identifying the quality characteristic of interest and 

controllable factors affecting it. In the modeling step, the true relationship between 

the response and controllable factors, which is unknown, is approximated by a low-

degree polynomial model. Experiments are designed in order to collect data and 
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presumed model is fitted to the experimental data. At the final step, some 

optimization techniques are applied to the empirical model in order to find the 

optimal levels of the controllable factors over the region of interest.  

RSM approach traditionally considers a single response, i.e. a single quality 

characteristic. However, quality of a product or a process is naturally defined by 

more than one response, and these are most likely correlated. In such a case, 

multiple responses should be optimized simultaneously. This problem is called as 

multi-response design parameter optimization (MRDPO) problem, which is a 

multi-response surface optimization (MRSO) problem [4]. 

According to Costa and Pereira [3], multi-response surface optimization approaches 

can be classified into desirability function-based optimization, loss function-based 

optimization and generalized distance function-based optimization. These are all 

based on converting the multi-response problem into a single response problem. 

However, there are other methods handling the multi-response problem in different 

ways. Lee at al. [4] address the MRSO methods with the viewpoint of multi-

objective decision making and provide a broader classification for them. 

Regardless of the optimization approach used, response surface models need to be 

fit to performance measures such as mean, variance and correlation corresponding 

to each quality characteristic. In our study, we put emphasis on modeling mean 

responses. To obtain accurate models is quite important. Otherwise, selected 

operating levels may not result in desired and expected performance.  

Using collected data through statistically designed experiments, the parameters in 

the response surface models are usually estimated by ordinary least squares (OLS) 

method. One of the underlying assumptions of OLS is that the response has a 

constant variance at different design variable settings. However, this assumption is 

against the nature of the parameter design problems which are formulated and 

solved assuming that there exists a solution where the variance is minimal. In the 

case that the variance of the response differs according to the design variable 

setting, i.e. heteroscedasticity, some variance-stabilizing transformations may be 
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used before applying OLS. However, finding an appropriate transformation may 

not be easy or possible. Furthermore, after fitting linear models to the transformed 

response variables, estimating the responses in their original scales is not easy [5]. 

In the existence of both heteroscedasticity and correlation between observations of 

a response at different design variable settings, i.e. serial correlation or 

autocorrelation, generalized least squares (GLS) can be used to estimate the model 

parameters. In the parameter design problems, serial correlation is not usually 

expected, since the run sequence in the experiments is randomized. However, as it 

has previously been pointed out, it is quite expected to have non-homogeneous 

variances at different design variable settings. Then, weighted least squares (WLS), 

a special case of GLS, can be put in use.  

OLS, WLS and GLS regression techniques consider multiple responses separately. 

However, when there is more than one mean response to consider, a better practice 

is to build the empirical models simultaneously, especially if the responses are 

correlated. Multivariate regression (MVR) and seemingly unrelated regression 

(SUR) are methods that consider this correlation. However, they do not take the 

heteroscedasticity into account. There are some studies that consider 

heteroscedasticity in SUR such as Mandy and Martins-Filho [6]. However, they 

consider only certain types of heteroscedasticity. There are also some methods in 

time series literature such as vector autoregression which considers a general 

variance-covariance structure. However, they have not been adopted for use in 

MRDPO problems yet, to the best of our knowledge. Hence, these methods are left 

out of the scope of our study.  

In the statistics literature, linear regression methods mainly consist of OLS and 

MVR. They rarely cover WLS and GLS, and almost never cover SUR. However, 

in the context of robust parameter design, we observe an increasing interest of 

researchers in WLS and SUR. Ko et al. [7] use SUR in some cases of their study. 

Shah et al. [8] show that SUR estimates responses more precisely than OLS, if the 

responses are correlated. Fogliatto and Albin [9] give a regression tutorial including 
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OLS, GLS, MVR and SUR. However, none of these studies make a comprehensive 

comparison of these methods in terms of their estimation and prediction errors.  

MRDPO researchers and practitioners need empirical model building approaches 

that allow them to build models of performance measures with high accuracy and 

precision under heterocedasticity, and in some cases, correlated multiple responses. 

They seem to choose one of the linear regression methods such as OLS, WLS and 

SUR without knowing much about how much model uncertainty the chosen method 

introduces to the design parameter optimization problem.  

In this study, we are interested in examining and comparing the accuracy and 

precision of the linear regression methods typically used in formulating and solving 

MRDPO problems. The purpose of our study is to give an idea about magnitudes 

of model parameter uncertainty levels of these linear regression methods. Our 

comparison approach is experimental in the sense that it considers a typical 

MRDPO problem and makes observations based on several cases of this problem. 

The problem has two responses of which the true models and error distributions are 

known. The cases or scenarios are systematically generated by statistical design of 

experiments considering the following factors: number of replications, error 

variance homogeneity, correlation between responses and position of the design 

point. The response surface models use the same set of predictors, but certain 

methods are also compared allowing different sets of response predictors. For each 

scenario a data set is generated using simulation. Then, confidence regions of 

expected responses and prediction regions of future observations at different design 

parameter points are computed separately for each linear regression method using 

bootstrapping. Finally, observations are made about differences among the linear 

regression methods in magnitudes of estimation and prediction errors.  

The complexity in the application of the methods mentioned so far, apart from the 

OLS, is due to the lack of information about the values of the variances of the 

responses and the correlations among them. However, in order to obtain accurate 

models for the mean responses, we need to use information regarding the variance-
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covariance matrix, which is most probably unknown and needs to be estimated. 

Generalized linear models, maximum likelihood estimators are some methods used 

in this manner. In our study, however, we leave the variance and correlation 

estimation out of scope. We simply use sample variances while applying WLS. In 

order to apply SUR, we estimate the variance-covariance matrix based on the OLS 

residuals as Zellner [10], who developed SUR, suggests. Still, to exclude the effect 

of the accuracy in the estimation of variance-covariance matrix on the performances 

of the methods, we also make analyses under the assumption that variance-

covariance matrix of the mean responses is known. 

The performance measures used in the comparison are coefficient of determination 

(R2), mean square error (MSE), some measures related to the prediction variance of 

unknown parameters, variances of the predicted mean responses at certain design 

settings, Hellinger distance between true and predicted distributions of a single 

observation defined at certain design settings. Besides, we provide joint confidence 

and prediction regions for the estimated mean responses by using a bootstrap 

technique. 

The organization of the thesis is as follows: In Chapter 2, we give background 

information on design parameter optimization problem. Then, we introduce the 

model parameter estimation methods such as OLS, GLS, WLS, MVR and SUR in 

the context of RSM. Then, we define the accuracy measures used to compare these 

methods. Also, we provide a review on constructing the joint confidence and 

prediction regions by a bootstrap technique. In Chapter 3, we define the scenarios 

generated to evaluate the performances of the methods. Besides, a detailed 

explanation about how the regression methods and the bootstrap technique are 

applied is given. In Chapter 4, we show the computational results and provide a 

discussion about them. In Chapter 5, we provide concluding remarks and define 

possible future studies.   
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

 

In this section, we first give background information on the design parameter 

optimization problem. Then, we present the parameter estimation methods OLS, 

GLS, WLS, MVR and SUR in the context of RSM. Then, we define the 

performance measures used in comparison of these methods. Also, we provide a 

review on constructing the joint confidence and prediction regions by a bootstrap 

technique. 

2.1 Robust Parameter Design Problems  

RPD is a quality engineering methodology applied to improve the quality of the 

products and processes at the design stage. The idea is to determine the design 

parameters of the products and/or the processes so as to make them robust to 

uncontrollable sources of variation. The objective, meanwhile, is to minimize 

quality costs.  

RPD is first described by the Japanese engineer, Genichi Taguchi in the 1950s. 

Taguchi classifies the factors as controllable (design) factors and uncontrollable 

(noise) factors. The controllable factors are easily controlled by the designer while 

the uncontrollable factors are not. Accordingly, Taguchi suggests determining the 

levels of controllable factors in a way to achieve robustness on the response despite 

the existence of noise factors. He represents robustness by the quality loss function 

[2] which is 

L(𝑦) = 𝑏(𝑦 − 𝑡)2 (2.1) 
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where b is loss coefficient, y is the response, and t is the target value for the 

response. The loss, here, is considered as the cost incurred by the society due to the 

difference between the response and its target value. Derived from (2.1), the 

expected value of the loss function is 

E[L(𝑦)] = 𝑏[𝜎2 + (𝜇 − 𝑡)2] (2.2) 

where 𝜇 and σ2 are the mean and the variance of y, respectively.  

As can be seen in (2.2), the expected loss function has two components: variance 

(𝜎2) and square of the mean’s deviation from the target. In order to minimize the 

expected loss function, Taguchi proposes a two-step procedure. In the first step, the 

variability in response is minimized while, in the second step, the mean value is 

brought to the target as much as possible. Taguchi employs the crossed designs for 

RPD experiments and proposes the use of signal-to-noise ratio, SNR which is a 

criterion maximized to come up with the optimal product and process parameter 

settings. 

Robinson et al. [1] summarize Taguchi’s contributions to robust parameter design 

into three areas: Quality philosophy, experimental design and data analysis. They 

point out that although Taguchi’s quality philosophy gains acceptance and 

appreciation, his experimental design and data analysis are subjects of many 

criticisms. Most of the references related to RPD give an extensive coverage of 

these criticisms. Nair [11], Myers et al. [12], Khuri and Mukhopadhyay [13] and 

Montgomery [14] are among the references which discuss Taguchi’s methodology 

in detail. As Park et al. [2] do, it is possible to itemize the critics as follows: 1) 

Interactions among the controllable factors cannot be estimated through the design 

of experiment suggested by Taguchi. 2) The design of experiment is not efficient 

in terms of the number of experimental runs. 3) SNR is effective only in the cases 

where it is possible to distinguish the controllable factors affecting the mean from 

those affecting the variance. 4) Taguchi provides a solution methodology to handle 

a single quality characteristic. 
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Following the criticisms of Taguchi’s work, many research studies have been 

conducted on the RPD problem and many alternative approaches have been 

developed. The most popular approaches are based on the RSM. It was first 

introduced by [15], and it utilizes both mathematical and statistical techniques to 

solve many different industrial problems including RPD [16].  

Costa and Pereira [3] define three general phases in the RSM: Screening, modeling 

and optimization. In the screening phase, an experiment is designed to identify the 

significant controllable factors to the response of interest. In the modeling phase, 

the true relationship between the response and controllable factors, which is 

unknown, is approximated by a low-degree polynomial model.  Most frequently, a 

first-order or second-order model is used. Designing another experiment at this 

phase, the presumed model is fitted to the experimental data. At the final phase, 

some optimization techniques are applied to the empirical model in order to find 

the optimal levels of the factors over the region of interest.  

There are two RSM approaches to the RPD introduced in the 1990s: Single response 

approach and dual model approach. In the former approach, there are two separate 

response surface models for the mean and the variance. However, the mean surface 

model is first built including both controllable and uncontrollable variables, and 

then the variance model is obtained from the mean’s model theoretically. In the 

latter approach, again there are two response models: one for the mean and one for 

the variance. However, these models are fitted separately and empirically, also 

including only the controllable factors [13]. Afterwards, the optimal levels of 

controllable factors are determined by optimizing the primary response subject to 

the secondary response. Even though which response to be the primary is the 

decision of the designer, considering the Taguchi’s RPD philosophy, the primary 

response is generally taken as the variance and it is minimized while the secondary 

response is defined as the mean and it is forced to be on the target. An extensive 

knowledge of the theory and the application of the RSM can be achieved through 

Box and Draper [16], Myers and Montgomery [17], Khuri and Cornell [18]. 
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Besides, there are some review papers on RSM such as Myers et al. [19], Khuri and 

Mukhopadhyay [13]. 

The traditional RSM approach handles a single response, i.e. a single quality 

characteristic. However, quality of a product or a process is naturally defined by 

more than one response, and these are most likely to be correlated. In such a case, 

finding the optimal levels of controllable variables for each response separately 

cannot be a good approach since improvement in one response may result in a 

worsening of another one. The problem of finding optimal levels of controllable 

factors by considering the multiple responses simultaneously is called multi-

response design parameter optimization or multi-response surface optimization 

problem. 

According to Costa and Pereira [3], multi-response optimization approaches can be 

classified into desirability function-based optimization, loss function-based 

optimization and generalized distance function-based optimization.  

Desirability function approach is first introduced by Harrington [20] and then 

modified by Derringer and Suich [21]. The method basically converts each 

estimated response to a desirability value depending on the type of the quality 

characteristic. The operating conditions are determined by maximizing overall 

desirability which is the geometric mean of the individual desirability values. The 

main drawback of the method is that it totally ignores the variance-covariance 

structure of the responses.  

Loss function approach in multi-response context is originated from the Taguchi's 

univariate loss function. This approach aims to determine the optimal operating 

conditions by minimizing an expected loss. There are several methods using the 

loss function approach in the literature including Pignatiello [22], Vining [23] and 

Ko et al. [7]. Ko et al. [7] define three desirable properties: Small bias (small 

deviation of a response from its target), high robustness (small variance of true 

response), and high quality of predictions (small variance of the predicted 

responses). Accordingly, the existing methods define the expected loss considering 
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some or all of these properties. The advantages of loss function approach are that 

the variance-covariance structures of the responses and the process economics are 

taken into account. However, representing the process economics is not 

straightforward. 

Khuri and Conlon [24] suggested a generalized distance function-based 

optimization. It is a special case of loss functions. The advantage of their method is 

that it considers the correlation between responses and the quality of the predictions. 

However, it requires all responses to be modeled by the same set of control factors. 

Also, it considers neither the preferences of the decision maker nor the economic 

implications of the process.  

The classification made by Costa and Pereira [3] seems to consider MRSO 

approaches most frequently used in the literature. These are all based on converting 

the multi-response problem into a single response problem. For a more detailed 

classification, Lee at al. [4] can be used. They address the MRSO methods with the 

viewpoint of multi-objective decision making and provide a broader classification 

for them. 

No matter which optimization technique is used, response surface models need to 

be fit to the performance measures (mean, variance, correlation and so on) 

corresponding to each quality characteristic. In our study, we put emphasis on 

modeling mean responses. To obtain accurate models is quite important. Ouyang et 

al. [25] illustrate the importance of model uncertainty on the true performance of 

the system with the help of Figure 2.1. In this figure, true model is unknown and 

approximated by the empirical model. Considering that the aim is to maximize the 

performance response, result of the optimization will be point B. However, at point 

B, the true performance is quite low. On the other hand, the performance of the true 

optimal point, which is A, seems to be very low according to the empirical model. 

Thus, in order to get closer to the optimal performance, the accuracy of the 

empirical model should be high or somehow the error in the empirical model should 

be taken into account in the optimization. In order to increase the accuracy of the 
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estimation, we search for alternative regression methods. Also, we provide 

confidence and prediction regions for the estimated response so that the designer 

can determine the optimal design setting considering the accuracy at the 

corresponding point.  

 

 

Figure 2.1 Error in process optimization due to model uncertainty [25]  

 

However, in order to obtain accurate models for the mean responses, we need to 

use information regarding the variance-covariance matrix of them, which is most 

probably unknown and needs to be estimated. Still, we leave the estimation of the 

variance-covariance matrix out of our scope. We simply use sample variances while 

applying WLS. In order to apply SUR, we estimate the variance-covariance matrix 

based on the OLS residuals as Zellner [10], who developed SUR, suggests.  

2.2 Parameter Estimation in a Multi-Response System 

In RSM, the functional relationship between a response (y) and a set of controllable 

variables (x1, x2,…, xr) is approximated by a low-degree polynomial model. Mostly, 

a second-order model is used. The second order model is expressed as 

Performance

Design Variable

True Model

Empirical Model

A B

True performance at B

True performance at A
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𝑦 = 𝛽0 +∑𝛽𝑖

𝑟

𝑖=1

𝑥𝑖 +∑𝛽𝑖𝑖

𝑟

𝑖=1

𝑥𝑖
2 +∑∑𝛽𝑖𝑘

𝑟

𝑘=2𝑖<𝑘

𝑥𝑖𝑥𝑘 + 𝜀  (2.3) 

where β’s are unknown parameters and ε is a random error.  

The unknown parameters β’s in (2.3) are estimated using collected data through 

statistically designed experiments. Suppose that there are n observations. Then, for 

each observation 𝑦(𝑗), the model given in (2.3) is written as follows: 

𝑦(𝑗) = 𝛽0 +∑𝛽𝑖

𝑟

𝑖=1

𝑥𝑖(𝑗) +∑𝛽𝑖𝑖

𝑟

𝑖=1

𝑥𝑖(𝑗)
2 +∑∑𝛽𝑖𝑘

𝑟

𝑘=2𝑖<𝑘

𝑥𝑖(𝑗)𝑥𝑘(𝑗) + 𝜀(𝑗) (2.4) 

 

where 𝑗 = 1, 2, … , 𝑛  

The set of linear equations in (2.4) can be expressed in matrix notation. 

𝐲 = 𝐗𝛃 + 𝛆        (2.5) 

where 𝐲 = [

𝑦(1)
𝑦(2)
⋮

𝑦(𝑛)

] , 𝛃 =

[
 
 
 
 
 
 
 
 
 
𝛽0
𝛽1
⋮
𝛽𝑟
𝛽11
⋮
𝛽𝑟𝑟
𝛽12
⋮

𝛽𝑟−1 𝑟]
 
 
 
 
 
 
 
 
 

, 𝛆 = [

𝜀(1)
𝜀(2)
⋮
𝜀(𝑛)

] 

  𝐗 =

[
 
 
 
 1 𝑥1(1) … 𝑥𝑟(1) 𝑥1(1)

2 … 𝑥𝑟(1)
2 𝑥1(1)𝑥2(1) … 𝑥𝑟−1(1)𝑥𝑟(1)

1 𝑥1(2) … 𝑥𝑟(2) 𝑥1(2)
2 … 𝑥𝑟(2)

2 𝑥1(2)𝑥2(2) … 𝑥𝑟−1(2)𝑥𝑟(2)

⋮

1 𝑥1(𝑛) … 𝑥𝑟(𝑛) 𝑥1(𝑛)
2 … 𝑥𝑟(𝑛)

2 𝑥1(𝑛)𝑥2(𝑛) … 𝑥𝑟−1(𝑛)𝑥𝑟(𝑛)]
 
 
 
 

 

The response surface modeling problem described so far includes a single response, 

i.e. a single quality characteristic. However, quality of a product or a process is 
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naturally defined by more than one response. Then, for each response, a model, say 

the model given in (2.3), needs to be fit. Considering an experiment with m 

responses  𝑦1, 𝑦2, … 𝑦m and n observations on each response, the set of linear 

equations  for the ith response in matrix notation is 

𝐲𝑖 = 𝐗𝑖𝛃𝑖 + 𝛆𝑖  𝑖 = 1,2, … ,𝑚 (2.6) 

Equation (2.6) is equivalent to equation (2.5) written for each response. 

Accordingly, two approaches can be adopted to obtain unknown parameters in each 

response model. The first approach requires modeling each response individually. 

OLS, WLS and GLS are regression techniques that consider the responses 

separately. In the second approach, the models of the responses are built 

simultaneously. This approach gains importance especially when there is 

correlation between responses. MVR and SUR are techniques that fit models to the 

responses at the same time [9]. 

2.2.1 Ordinary Least Squares 

OLS is a widely used method in order to estimate unknown parameters in (2.5). In 

OLS regression, ε is assumed to be distributed independently and normally with a 

mean 0 and constant variance σ2 for any set of x1, x2, …, xr. One can denote this as 

follows: 

𝛆 ~ 𝐍(𝟎, 𝜎2𝐈𝑛) 

where 𝐈𝑛 is an 𝑛 × 𝑛 identity matrix. 

OLS determines estimates of the model parameters by minimizing the sums of the 

squares of the errors: 

Min  𝛆′𝛆 =∑𝜀(𝑗)
2

𝑛

𝑗=1

 

The OLS estimator of 𝛃 is obtained by 
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𝛃̂𝐎𝐋𝐒 = (𝐗′𝐗)−𝟏𝐗′𝐲 

Accordingly, the fitted values and the residuals are as given by the following 

equations: 

𝐲̂𝐎𝐋𝐒 = 𝐗 𝛃̂𝐎𝐋𝐒 

𝛆̂𝐎𝐋𝐒 = 𝐲 − 𝐲̂𝐎𝐋𝐒 

The OLS estimator shows the following properties:  

𝐄[𝛃̂𝐎𝐋𝐒] = 𝐄[(𝐗′𝐗)−𝟏𝐗′𝐲] = 𝐄[(𝐗′𝐗)−𝟏𝐗′(𝐗𝛃 + 𝛆)]

= 𝐄[(𝐗′𝐗)−𝟏𝐗′𝐗𝛃 + (𝐗′𝐗)−𝟏𝐗′𝛆] = 𝛃 

𝐂𝐨𝐯(𝛃̂𝐎𝐋𝐒) = 𝐕𝐚𝐫(𝛃̂𝐎𝐋𝐒) = 𝐕𝐚𝐫[(𝐗′𝐗)−𝟏𝐗′𝐲]

= (𝐗′𝐗)−𝟏𝐗′𝐕𝐚𝐫(𝐲)[(𝐗′𝐗)−𝟏𝐗′]′  = 𝜎2(𝐗′𝐗)−𝟏𝐗′𝐗(𝐗′𝐗)−𝟏

= 𝜎2(𝐗′𝐗)−𝟏 

Then, 

𝛃̂OLS ~ N(𝛃, 𝜎
2(𝐗′𝐗)−𝟏) 

Note that 𝜎2 is generally unknown and the mean square error (MSE) is used as an 

unbiased estimator of it.  

𝜎̂2 = MSE =
SSE

𝑛 − (number of estimated 𝛽 parameters)
 

where 𝑆𝑆𝐸 is the sum of square error, i. e.  SSE = 𝛆̂𝐎𝐋𝐒
′𝛆̂𝐎𝐋𝐒   

According to the Gauss-Markov theorem, the OLS estimators are the best 

(minimum variance) linear unbiased estimators (BLUE) of unknown parameters 

when the underlying assumptions are valid [5]. However, in the design parameter 

optimization problems, the constant variance assumption does not make sense 

because these problems are formulated and solved assuming that there exists a 

solution where the variance is minimal.  
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Let Var(𝜺) =𝜎2𝐕 so that 𝐕 ≠ 𝐈𝑛. Then, 

𝐄[𝛃̂𝐎𝐋𝐒] = 𝛃 

𝐂𝐨𝐯(𝛃̂𝐎𝐋𝐒) =  𝐕𝐚𝐫(𝛃̂𝐎𝐋𝐒) = 𝐕𝐚𝐫[(𝐗′𝐗)−𝟏𝐗′𝐲]

= (𝐗′𝐗)−𝟏𝐗′𝐕𝐚𝐫(𝐲)[(𝐗′𝐗)−𝟏𝐗′]′ 

= 𝜎2(𝐗′𝐗)−𝟏𝐗′𝐕𝐗(𝐗′𝐗)−𝟏 [5]  

In such a case, the OLS estimator is still unbiased, but its BLUE property is not 

valid any more. It means that the standard errors of the estimated parameters are 

unnecessarily larger. Still, in practice, OLS is widely used and generally some 

variance-stabilizing transformations are made before applying OLS. However, 

transformations may not work to solve the problem. Besides, it takes time and needs 

expertise. Moreover, after fitting models to the transformed variables, it is not 

straightforward to turn back to the original scale. Direct inverse transformation does 

not always give the mean of the response. Confidence and prediction intervals can 

be transformed to the original scale by applying direct inverse operation since the 

percentiles are not affected by any transformation. Still, the resulting intervals in 

the original scale may not be the shortest [5]. There are some studies which suggest 

procedures to obtain unbiased point estimates for some transformations such as 

Neyman and Scott [26], Miller [27], Shen and Zhu [28]. However, in the scope of 

this study, we are interested in the alternative modeling approaches that deal with 

the deficiencies in OLS directly. 

2.2.2 Generalized Least Squares and Weighted Least Squares 

Concerning the model in (2.5), GLS assumes a more general variance-covariance 

matrix for the error terms, that is 

𝛆~𝐍𝑛(𝟎, 𝜎
2𝐕) 

where 𝐕 is a known, positive definite 𝑛 × 𝑛 matrix. If 𝐕 is the identity matrix (𝐕 =

𝐈), GLS and OLS are equivalent. Otherwise, GLS is capable of producing more 
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efficient estimators. If  𝐕 has off-diagonal elements rather than zero, it means that 

error terms at different design settings are correlated, i.e. serial correlation or 

autocorrelation exists. However, in the RPD problems, serial correlation is not 

expected since the run sequence in the experiments is randomized. Still, as 

previously pointed out, it is quite expected to have non-homogeneous variances at 

different design settings, i.e. heteroscedastic errors. In this case, 𝐕 can be 

considered as a diagonal matrix the diagonal elements of which are not equal. Then, 

the regression technique is called WLS. Although WLS is a special case of GLS, in 

our study they will be referred to as the same. Let 𝐕 have the following form: 

𝐕 = [

1/𝑤1 0     ⋯        0
0 1/𝑤2     ⋯        0
⋮
0

⋮
0

     ⋱
    ⋯

 
      0
1/𝑤𝑛

] 

WLS determines the estimates of the model parameters by minimizing the weighted 

sums of the squares of the errors which is  

Min  𝛆′𝐕−𝟏𝛆 =∑𝑤𝑖𝜀(𝑗)
2

𝑛

𝑗=1

 

WLS gives weights to each observation so that observations with large variances 

have less influence in determining the model parameters while the observations 

with small variances have more. By giving weights to the observations, the original 

model is actually transformed so that OLS assumptions are valid, and hence OLS 

is applicable. Since 𝐕 is a positive definite matrix, there exists a nonsingular matrix 

𝐏 such that 𝐏′𝐏 =  𝐕 . Then, premultiplying the original model in (2.5) by 𝐏−𝟏, we 

obtain: 

 𝐏−𝟏𝐲 = 𝐏−𝟏𝐗𝛃 + 𝐏−𝟏𝛆  

𝐲∗ = 𝐗∗𝛃 + 𝛆∗ (2.7) 

Then, 
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E(𝛆∗) = E(𝐏−𝟏𝛆) = 𝟎   

Cov(𝛆∗) = Cov(𝐏−𝟏𝛆) = 𝐏−𝟏Cov(𝛆)(𝐏−𝟏)′ = 𝜎2𝐏−𝟏𝐕(𝐏−𝟏)′

= 𝜎2𝐏−𝟏𝐏𝐏′(𝐏−𝟏)′ = 𝜎2𝐈 

Applying OLS to the transformed model, WLS estimators are obtained by 

𝛃̂WLS = (𝐗∗′𝐗∗)−𝟏𝐗∗′𝐲∗ = (𝐗′𝐕−𝟏𝐗)−𝟏𝐗′𝐕−𝟏𝐲 

Accordingly, the fitted values and the residuals are  

𝐲̂𝐖𝐋𝐒 = 𝐗 𝛃̂𝐖𝐋𝐒 

𝛆̂𝐖𝐋𝐒 = 𝐲 − 𝐲̂𝐖𝐋𝐒 

The WLS estimator shows the following properties:  

E[𝛃̂WLS] = E[(𝐗′𝐕−𝟏𝐗)−𝟏𝐗′𝐕−𝟏𝐲] = E[(𝐗′𝐕−𝟏𝐗)−𝟏𝐗′𝐕−𝟏(𝐗𝛃 + 𝛆)]

= E[(𝐗′𝐕−𝟏𝐗)−𝟏𝐗′𝐕−𝟏𝐗𝛃 + (𝐗′𝐕−𝟏𝐗)−𝟏𝐗′𝐕−𝟏𝛆] = 𝛃  

𝐂𝐨𝐯(𝛃̂𝐖𝐋𝐒) = 𝐕𝐚𝐫(𝛃̂𝐖𝐋𝐒) = 𝐕𝐚𝐫[(𝐗′𝐕−𝟏𝐗)−𝟏𝐗′𝐕−𝟏𝐲]

= (𝐗′𝐕−𝟏𝐗)−𝟏𝐗′𝐕−𝟏𝐕𝐚𝐫(𝐲)[(𝐗′𝐕−𝟏𝐗)−𝟏𝐗′𝐕−𝟏]′  

= 𝜎2(𝐗′𝐕−𝟏𝐗)−𝟏𝐗′𝐕−𝟏𝐕[(𝐕′)−𝟏𝐗(𝐗′(𝐕′)−𝟏𝐗)−𝟏] =

= 𝜎2(𝐗′𝐕−𝟏𝐗)−𝟏𝐗′(𝐕′)−𝟏𝐗(𝐗′(𝐕′)−𝟏𝐗)−𝟏 = 𝜎2(𝐗′𝐕−𝟏𝐗)−𝟏 

or basically, 

𝐂𝐨𝐯(𝛃̂𝐖𝐋𝐒) = 𝜎2(𝐗∗′𝐗∗)−𝟏 = 𝜎2((𝐏−𝟏𝐗)′𝐏−𝟏𝐗)−𝟏 = 𝜎2(𝐗′(𝐏′)−𝟏𝐏−𝟏𝐗)−𝟏

= 𝜎2(𝐗′(𝐏′𝐏)−𝟏𝐗)−𝟏 = 𝜎2(𝐗′𝐕−𝟏𝐗)−𝟏 

Then, 

𝛃̂WLS ~ N(𝛃, 𝜎
2(𝐗′𝐕−𝟏𝐗)−𝟏) 

Residuals for the transformed model (2.7) are 

𝛆̃𝐖𝐋𝐒 = 𝐕−
1
2(𝐲 − 𝐲̂𝐖𝐋𝐒) 
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The mean square error obtained from the transformed model is an unbiased 

estimator of 𝜎2  

𝜎̂2 = MSEWLS =
SSEWLS

𝑛 − (number of estimated 𝛽 parameters)
 

where SSEWLS is the sum of square error such that  

SSEWLS = 𝛆̃𝐖𝐋𝐒
′𝛆̃𝐖𝐋𝐒 = 𝛆̂𝐖𝐋𝐒

′ 𝐕−1𝛆̂𝐖𝐋𝐒 

Once the matrix 𝐕 is known, 𝛃̂WLS is the BLUE of 𝛃. However, in practice, 𝐕 is 

unknown and need to be estimated. Then, the method is called feasible WLS, and 

the model parameter estimator is obtained as  

𝛃̂FWLS = (𝐗′𝐕̂−𝟏𝐗)
−𝟏
𝐗′𝐕̂−𝟏𝐲 

If 𝐕 is estimated, then the WLS estimator is not necessarily BLUE [29]. 

2.2.3 Seemingly Unrelated Regression and Multivariate Regression 

Considering an experiment with m responses 𝑦1, 𝑦2, … 𝑦m and n observations on 

each response, the set of linear equations  for the ith response in matrix notation is  

𝐲𝑖 = 𝐗𝑖𝛃𝑖 + 𝛆𝑖 , 𝑖 = 1,2, … ,𝑚  

where 𝐲𝑖 is the vector of observations on the 𝑖th response, 𝐗𝑖 is the design matrix, 

𝛃𝑖 is the vector of unknown parameters, 𝛆𝑖 is a random error vector associated with 

the 𝑖th response. Each of these equations has the structure defined in (2.5).  

The assumptions related to the error terms are as follows: 

E(𝛆𝑖) = 𝟎  ∀𝑖 

Var(𝛆𝑖) = σ𝑖𝑖𝐈𝑛  ∀𝑖 

Cov(𝛆𝑖, 𝛆𝑘) = σ𝑖𝑘𝐈𝑛 ∀𝑖, 𝑘  where 𝑖 ≠ 𝑘 

In SUR formulation, these m models are stacked in one model  
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[

𝐲1
𝐲2
⋮
𝐲𝑚

] = [

𝐗1 𝟎 𝟎 … 𝟎
𝟎 𝐗2 𝟎 … 𝟎
⋮
𝟎

⋮
𝟎

  
⋮   ⋮
𝟎 …

⋮
𝐗𝑚

] [

𝛃1
𝛃2
⋮
𝛃𝑚

] + [

𝛆1
𝛆2
⋮
𝛆𝑚

] 

which can be written as  

𝐲 = 𝐗𝛃 + 𝛆 

Then, variance-covariance structure of 𝛆 can be expressed as  

Cov(𝛆) = E(𝛆′𝛆) = 𝐖⊗ 𝐈𝑛 = 𝛀 

where 𝐖  is the  𝑚×𝑚 variance-covariance matrix of the responses and so do the 

error terms such that                           

𝐖 = [

𝜎11 𝜎12 . . 𝜎1𝑚
𝜎21 𝜎22 . . 𝜎2𝑚
.

𝜎𝑚1

.
𝜎𝑚2  

.

.
.
.

.
𝜎𝑚𝑚

] 

The operator ⊗ denotes the Kronecker product, then 

𝛀 = 𝐖⊗ 𝐈𝑛 = [

𝜎11𝐈𝑛 𝜎12𝐈𝑛 . . 𝜎1𝑚𝐈𝑛
𝜎21𝐈𝑛 𝜎22𝐈𝑛 . . 𝜎2𝑚𝐈𝑛.
𝜎𝑚1𝐈𝑛

.
𝜎𝑚2𝐈𝑛  

.

.
.
.

.
𝜎𝑚𝑚𝐈𝑛

] 

Accordingly, SUR allows that the error terms are correlated and the variances at 

each design setting are constant. Then, SUR estimator of 𝛃 is obtained by applying 

the GLS method so that  

𝛃̂SUR = (𝐗′𝛀−𝟏 𝐗)−𝟏𝐗′𝛀−𝟏 𝐲 

Accordingly, the fitted values and the residuals are as given by the following 

equations: 

𝐲̂𝐒𝐔𝐑 = 𝐗 𝛃̂𝐒𝐔𝐑 

𝛆̂𝐒𝐔𝐑 = 𝐲 − 𝐲̂𝐒𝐔𝐑 
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SUR estimator shows the following properties:  

𝐄[𝛃̂𝐒𝐔𝐑] = 𝐄[(𝐗′𝛀−𝟏 𝐗)−𝟏𝐗′𝛀−𝟏 𝐲] = 𝐄[(𝐗′𝛀−𝟏 𝐗)−𝟏𝐗′𝛀−𝟏(𝐗𝛃 + 𝛆)]

= 𝐄[(𝐗′𝛀−𝟏 𝐗)−𝟏𝐗′𝛀−𝟏𝐗𝛃 + (𝐗′𝛀−𝟏 𝐗)−𝟏𝐗′𝛀−𝟏𝛆] = 𝛃 

𝐂𝐨𝐯(𝛃̂𝐒𝐔𝐑) = 𝐕𝐚𝐫(𝛃̂𝐒𝐔𝐑) = 𝐕𝐚𝐫[(𝐗′𝛀−𝟏 𝐗)−𝟏𝐗′𝛀−𝟏 𝐲]

= (𝐗′𝛀−𝟏 𝐗)−𝟏𝐗′𝛀−𝟏 𝐕𝐚𝐫(𝐲)[(𝐗′𝛀−𝟏 𝐗)−𝟏𝐗′𝛀−𝟏]′

= (𝐗′𝛀−𝟏 𝐗)−𝟏𝐗′𝛀−𝟏 𝛀 [(𝛀′)−𝟏 𝑿  (𝐗′(𝛀′)−𝟏 𝐗)−𝟏]

= (𝐗′𝛀−𝟏 𝐗)−𝟏(𝐗′(𝛀′)−𝟏 𝑿)(𝐗′(𝛀′)−𝟏 𝐗)−𝟏 = (𝐗′𝛀−𝟏 𝐗)−𝟏 

Also, assuming the error term is distributed multivariate normal 

𝛃̂SUR ~ N(𝛃, (𝐗
′𝛀−𝟏 𝐗)−𝟏) 

SUR is first introduced by Zellner [10].  Providing that 𝐖 is known, SUR estimator 

is BLUE by Aitken’s theorem [30]. However, if 𝐖 is not known, then it needs to 

be estimated. In this case, SUR estimator may not be BLUE. There are many ways 

to estimate 𝐖. Estimating it by using the OLS residuals as Zellner [10] suggests is 

the most common way, that is 

𝐖̂ =
𝛆̂𝐎𝐋𝐒
′  𝛆̂𝐎𝐋𝐒
𝑛

    (2.8) 

 

Accordingly, MVR and SUR fit these models to the data simultaneously and by 

taking the correlation among responses into consideration. MVR is a special case 

of SUR in which the responses are modeled by the same set of predictors. Thus, in 

MVR, there is a possibility that some of the models include insignificant terms. 

Since MVR is a special case of SUR, we only present the formulation of SUR here. 

However, there is an alternative way to formulate MVR. For this formulation and 

more details on MVR, multivariate analysis literature such as Johnson and Wichern 

[31], Mukhopadhyay [32] and Haase [33] can be referred to.  

For more details on SUR, [30] can be referred to.  
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2.3 Performance Measures Used to Compare the Regression Methods 

In our study, we are interested to examine and compare the accuracy and precision 

of the estimation methods presented in the previous section. To evaluate 

performances of the methods we have used the following performance measures. 

The corresponding formulations are written considering the response model in 

(2.4).  

 Coefficient of Determination, R2: It reveals the amount of the variation in 

response due to the model. A high value of this quantity indicates that the 

model fits the data well.  

R2 = 1 −
SSE

SST
= 1 −

∑ (𝑦(𝑗) − 𝑦̂(𝑗))
2𝑛

𝑗=1

∑ (𝑦(𝑗) − 𝑦̅)
2𝑛

𝑗=1

  

where 𝑦̅ =
1

𝑛
∑ 𝑦(𝑗)
𝑛
𝑗=1  

One disadvantage of using R2 is that it does not take the number of estimated 

parameters (complexity of the model) into account, which causes R2 to increase 

each time a parameter is added to the model. In other words, the highest R2 does 

not necessarily mean that the corresponding model is the best.  

 Mean Square Error (MSE): It is a measure which considers both the number 

of estimated parameters in the model and the residual sum of squares. A 

small MSE value is desired to ensure a better model.   

MSE =
SSE

𝑛 − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝛽 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 
=
∑ (𝑦(𝑗) − 𝑦̂(𝑗))

2𝑛
𝑖=1

𝑛 − 𝑝
 

The definition of R2 and MSE can easily be found in any statistics text book such 

as Mendenhall and Sincich [34], Kutner et al. [35], Montgomery et al. [5].  

Note that when WLS is applied, softwares like Minitab and R calculate SSE and 

SST by considering the weights as follows:  
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weighted SSE = ∑ 𝑤𝑗  (𝑦(𝑗) − 𝑦̂(𝑗))
2𝑛

𝑗=1  

weighted SST = ∑ 𝑤𝑗 (𝑦(𝑗) − 𝑦̅)
2𝑛

𝑖=1  

 Prediction Variance of Unknown Model Parameters: All estimation 

methods considered in the scope of this study and defined in the previous 

section produce unbiased estimators for the unknown model parameters. 

However, their efficiency, i.e. variance of the estimators, varies in different 

circumstances. For this reason, we examine the variance-covariance matrix 

of the estimated model parameters. In order to evaluate this matrix with a 

single numerical value, we use its trace and determinant which are regarded 

as overall measures of dispersion.  

Let 𝛃̂ be the estimator of 𝛃. Then, we report trace[𝐂𝐨𝐯(𝛃̂)] and 

det[𝐂𝐨𝐯(𝛃̂)]. Trace of the matrix gives the sum of variances of the 

estimated model parameters. It is also called as total variation. However, 

this measure does not take the correlation among the parameters into 

consideration. Thus, we also examine the determinant of the matrix which 

is also called generalized variance. The determinant being large denotes the 

data are dispersed much.  

 Variance of the Predicted Mean Response: For some selected points from 

the experiment design, we examine the prediction variance. We have chosen 

two points: A center point and a corner point of a central composite design, 

typically used in developing response surface models. Let 𝐱𝟎 be the column 

vector of predictors at such a chosen point and 𝛃̂ be the estimator of 𝛃. Then, 

predicted mean response is 

E ̂(𝐲) = 𝐱𝟎
′ 𝛃̂ 

and the prediction variance of the estimated mean response at 𝐱𝟎 is 

Var(E ̂(𝐲)) = Var (𝐱𝟎𝛃̂) = 𝐱𝟎
′  Var(𝛃̂) 𝐱𝟎 
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For more details on the measures defined above, Johnson and Wichern [31] can be 

referred to. 

 Hellinger Distance: Hellinger distance is one of the statistical distance 

metrics used to measure divergence between any two probability 

distributions.  

Pardo [36], and Abou-Moustafa and Ferrie [37] give the derivation of 

Hellinger distance for two multivariate normal distributions. Let P and Q be 

two multivariate normal distribution such that  P~N(𝛍𝟏, 𝚺𝟏) and 

 Q ~N(𝛍𝟐, 𝚺𝟐). Then, Hellinger distance for such two multivariate normal 

distributionsas follows: 

dH =

√
  
  
  
  
  

2 

(

 
 

1-
det(Σ1)

1
4  det(Σ2)

1
4

det (
Σ1+Σ2

2
)

1
2

 exp(-
1

8
 (μ

1
-μ

2
)

'
(
Σ1+Σ2

2
)

-1

(μ
1
-μ

2
))  

)

 
 

 

By definition, 0 ≤ 𝑑H ≤ 1. We use it to measure the distance between true and 

predicted distributions of a single observation defined at a certain design point. It 

also gives an idea about which prediction region is closer to the true region.  

2.4 Joint Confidence and Prediction Regions by Bootstrap Technique 

Ouyang et al. [25] define two categories for the approaches dealing with the model 

uncertainty in a MRDPO problem. First category includes the approaches based on 

ensemble of models obtained using different methods, like Zhou et al. [38] do, while 

the approaches in the second category are based on providing confidence intervals 

of estimated values and using this information in the optimization process. 

Considering the approaches in the latter category, we provide joint confidence and 

prediction regions for the multiple mean responses by using the bootstrap 

technique.  
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We provide joint regions instead of simultaneous confidence intervals because it is 

more precise. If we construct separate confidence intervals by specifying some 

coverage probability, we cannot obtain the same probability by taking all these 

intervals together. That is, to enable the specified coverage probability overall, we 

need to construct simultaneous intervals at larger probability levels [31]. 

Bootstrap technique was first introduced by Efron [39]. It is commonly used to 

evaluate the accuracy of the estimators, no matter how the statistic estimated is 

complicated. It is a computer-intensive method, but simple to apply. The idea of the 

method is to generate bootstrap samples from the original data (by resampling with 

replacement) and to calculate the statistic of interest for each of these samples. In 

this way, information about the empirical distribution of the statistic is obtained. 

Let Q be the statistic of interest. Then, the general idea of bootstrap can be 

represented as in Figure 2.2. For more details on bootstrap methods and their 

application, Tibshirani and Efron [40], [41], Diciccio and Efron [42] and can be 

referred to. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 A representation of the idea in bootstrapping (resampling) 

Original 

Dataset 

Resampled 

Dataset 1 

Resampled 

Dataset 2 

Resampled 

Dataset B 

Bootstrap 

Samples 

Bootstrap 

Replication 

of Statistic 

  

  

  

𝑄෠1
∗ 

𝑄෠2
∗ 

𝑄෠𝐵
∗  
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In our study, we apply bootstrap technique for several reasons. First, it is simple to 

apply as stated before. Second, to the best of our knowledge, there are no theoretical 

expressions defined for the confidence and prediction regions in the context of SUR 

(except when it is equivalent to MVR). Besides, obtaining such expressions are not 

straightforward. Also, we compare the theoretical confidence and prediction 

regions with the regions obtained by bootstrap for MVR. The regions are 

satisfactorily close to each other, so we conclude that bootstrap regions work well.  

Park [43] and Davison and Hinkley [44] present two ways of using the bootstrap 

samples to obtain joint confidence regions when multiple parameters are estimated. 

One way is to construct a rectangular region based on the Bonferroni approach. The 

other way is to construct an elliptical region by assuming multivariate normal 

distribution. By adopting the second way, we follow the procedure given in Park 

[43] and Davison and Hinkley [44].  

Let 𝛉 be the vector of unknown parameters and 𝛉̂ be an unbiased estimator of it. 

Then, a generalized squared distance can be expressed by  

𝑄 = (𝛉̂ − 𝛉)
′
(𝚺𝛉̂)

−𝟏(𝛉̂ − 𝛉) 

where 𝚺𝛉̂ is the variance-covariance matrix of 𝛉̂. Generating B bootstrap samples 

and calculating 𝑄 for each of these samples, 100 (1-α)% confidence region for 𝛉 

can be obtained by 

(𝛉̂ − 𝛉)
′
(𝚺𝛉̂)

−𝟏(𝛉̂ − 𝛉) ≤ q[(1+B)(1-α)]
*  

where 𝑞[𝑖]
∗  represents the ith  highest value in the sorted bootstrap estimates of 𝑄. 

The superscript notation is used to indicate that it was a bootstrap value. 

To calculate bootstrap estimates of 𝑄, we need to use an estimator of 𝚺𝛉̂. One way 

to find such an estimator, let say 𝚺̂𝛉̂
∗ , is as follows: 
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𝚺̂𝛉̂
∗ =

1

1 − 𝐼
 ∑(𝛉̂𝑖

∗∗ − 𝛉̅∗∗)(𝛉̂𝑖
∗∗ − 𝛉̅∗∗)

′
𝐼

𝑖=1

 

where 𝛉̅∗∗ = 
1

𝐼
∑𝛉̂𝑖

∗∗

𝐼

i=1

  

and 𝛉̂1
∗∗, 𝛉̂2

∗∗, … , 𝛉̂𝐼 
∗∗ are resampled among 𝐵 bootstrap estimates of 𝛉. 

Here, I is typically a value taken between 50 and 200.  
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CHAPTER 3 

 

 

DEVELOPMENT OF REGRESSION MODELS, EXPERIMENTS, DATA, 

CONFIDENCE AND PREDICTION REGIONS FOR COMPARISON 

 

 

 

In this chapter, we present our comparison approach. We first explain how we apply 

the regression methods simultaneously to model each mean response. Then, we 

design the experiments (scenarios) and generate data accordingly to evaluate and 

compare estimation and prediction errors of the methods. While designing the 

scenarios, we are particularly interested in answering the following research 

question: Under which circumstances (violation of certain assumptions, being at a 

far point from the design center, number of replications etc.), estimation errors 

associated with model parameters and prediction errors associated with individual 

observations are high  in MRDPO problems? 

Furthermore, we provide a detailed explanation about how we develop the 

confidence and prediction regions using the bootstrap technique.  

3.1 Simultaneous Modeling of the Mean Responses 

We can express all linear regression methods under consideration with the same 

formulation of SUR. Let  𝑦1, 𝑦2, … 𝑦𝑚 be the responses to be estimated. Assuming 

there are n observations at each design point for each response and d is the number 

of design points in the data collection experiment, the model for the 𝑖th response in 

matrix notation is  

𝐲𝑖 = 𝐗𝑖𝛃𝑖 + 𝛆𝑖 , 𝑖 = 1,2, … ,𝑚  

where 𝐲𝑖 is the vector of observations, 𝐗𝑖 the design matrix, 𝛃𝑖 is the vector of 

unknown parameters, 𝛆𝑖 is a random error vector, which are all associated with the 

𝑖th response.  
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These m models can be stacked in one model as follows: 

[

𝐲1
𝐲2
⋮
𝐲𝑚

]

𝑚𝑛𝑑×1

= [

𝐗1 𝟎 𝟎 … 𝟎
𝟎 𝐗2 𝟎 … 𝟎
⋮
𝟎

⋮
𝟎

  
⋮   ⋮
𝟎 …

⋮
𝐗𝑚

]

𝑚𝑛𝑑×𝑘

[

𝛃1
𝛃2
⋮
𝛃𝑚

]

𝑘×1

+ [

𝛆1
𝛆2
⋮
𝛆𝑚

]

𝑚𝑛𝑑×1

 

which can be written as  

𝐲 = 𝐗𝛃 + 𝛆 

Note that k represents the total number of estimated parameters for all responses. 

For example, if all design matrices, 𝐗1, 𝐗2, …, 𝐗𝑚, have the same set of predictors 

as given in (2.5), k equals to (1 + 2𝑟 + (
𝑟
2
))𝑚. 

Let the variance-covariance structure of 𝛆 be defined as follows: 

Cov(𝛆) = 𝚺⊗ 𝐈𝑛 

where  

𝚺 = [

𝚺11 𝚺12 … 𝚺1𝑚
𝚺21 𝚺22 … 𝚺2𝑚
⋮

𝚺𝑚1

⋮
𝚺𝑚2

⋱
…

⋮
𝚺𝑚𝑚

]

𝑚𝑑×𝑚𝑑

 

such that  

 𝚺𝑖𝑗 = 𝚺𝑗𝑖 =

[
 
 
 
𝜎𝑖𝑗1 0 … 0

0 𝜎𝑖𝑗2 … 0

⋮
0

⋮
0

⋱
…

⋮
𝜎𝑖𝑗𝑑  ]

 
 
 

𝑑×𝑑

 where 𝑖, 𝑗 = 1,2, … ,𝑚  

Then, the estimator of 𝛃 is defined as 

𝛃̂ = (𝐗′(𝚺⊗ 𝐈𝑛)
−𝟏 𝐗)−𝟏𝐗′(𝚺⊗ 𝐈𝑛)

−𝟏 𝐲 

Depending on 𝚺, the estimator is named. 
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Table 3.1 Summary of variance-covariance structures of the regression methods 

Method 𝚺𝑖𝑖 𝚺𝑖𝑗  (𝑖 ≠ 𝑗) 

OLS 𝚺𝑖𝑖 = 𝜎𝑖𝑖𝐈𝑑     ∀𝑖 𝚺𝑖𝑗 = 𝟎   ∀𝑖, 𝑗 

GLS (WLS) 𝚺𝑖𝑖 = 𝜎𝑖𝑖𝐕𝑑    ∀𝑖, 
𝐕𝑑  is diagonal matrix, 

( 𝐕𝑑 ≠ I𝑑) 

𝚺𝑖𝑗 = 𝟎   ∀𝑖, 𝑗 

SUR (MVR) 𝚺𝑖𝑖 = 𝜎𝑖𝑖𝐈𝑑     ∀𝑖 𝚺𝑖𝑗 = 𝜎𝑖𝑗𝐈𝑑    ∀𝑖, 𝑗 

 

The estimator shows the following properties:  

𝐄[𝛃̂] = 𝛃 

𝐂𝐨𝐯(𝛃̂) = 𝐕𝐚𝐫(𝛃̂) = (𝐗′(𝚺⊗ 𝐈𝐧)
−𝟏 𝐗)−𝟏 

3.2 Design of Comparison Experiments   

In our comparison study, we consider an MRPDO problem in a chemical process 

presented by Ko et al. [7]. In this problem, there are two responses of interest: the 

conversion of a polymer (y1) and its thermal activity (y2). Also, there are three 

controllable factors affecting the responses which are reaction time (x1), reaction 

temperature (x2), and the amount of catalyst (x3). The aim of the problem is to 

determine the best levels of the controllable factors so as to maximize y1 and make 

y2 as close as possible to a target value of 57.5. The acceptable ranges for y1 and y2 

are defined as (80,100) and (55,60), respectively.  

We do not directly use the experimental results presented by Ko et al. [7]. We only 

use the design of experiments, i. e. design settings for the controllable factors, which 

is given in Table 3.2. We later define some true relationships between the responses 

and the controllable factors. In defining those relationships, we choose model 

parameters close to those of the models reported by Ko et al. [7], to have a 

meaningful MRDPO problem. 
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Table 3.2 Results of the polymer experiment 

Design 

Setting 
x1 x2 x3 

1 -1 -1 -1 

2 1 -1 -1 

3 -1 1 -1 

4 1 1 -1 

5 -1 -1 1 

6 1 -1 1 

7 -1 1 1 

8 1 1 1 

9 -1.68 0 0 

10 1.68 0 0 

11 0 -1.68 0 

12 0 1.68 0 

13 0 0 -1.68 

14 0 0 1.68 

15 0 0 0 

16 0 0 0 

17 0 0 0 

18 0 0 0 

19 0 0 0 

20 0 0 0 

 

In order to generate our comparison cases or scenarios, we first assume true 

functional relationships between the responses and the controllable factors. Also, 

we make some assumptions related to the error terms in these functions. Then, at 

each design setting in Table 3.2, we generate some replications by simulation using 

the presumed true models and error distributions. Then, we apply the regression 

methods separately to the generated data to obtain second-order surface models for 

the mean responses.  

We analyze twelve scenarios defined in Table 3.3 to compare the regression 

methods for this example problem. These scenarios are systematically generated by 

statistical design of experiments. The experiment considers the following factors: 

number of replications, error variance homogeneity and correlation between the 

responses. Number of replications assumes two levels: 5 and 25. Error variance is 
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taken as either homogeneous or heterogeneous. Finally, three correlation levels for 

the responses are studied: 0, 0.3 and 0.9 as shown in Table 3.3 to see the effects of 

changing levels of these factors on performances of the methods. The first eight 

scenarios constitute a fraction of the full factorial design of the comparison 

experiments, which has twelve scenarios in total. The remaining four scenarios have 

not been studied, since no appropriate linear regression method is readily available 

in the literature, to the best of our knowledge, to use in these scenarios.  In the first 

eight scenarios, for simplicity, the same set of predictors are used in modeling the 

responses using all regression methods.  For all scenarios, data are collected by 

simulation based on the true models and error distributions, and the performance 

measures are computed at two different design points: center and corner of the 

central composite design shown in Table 3.2.  

Effect of using a different set of predictors for a different response can be observed 

better when a regression method, such as SUR, allows use of a different set of 

predictors while the others do not. Therefore, four additional scenarios shown in 

the last four rows of Table 3.3. are considered to study the effect of having a 

different set of predictors for modeling a response.  

In Table 3.3, it is shown which method is the most appropriate or applicable for 

each scenario based on their assumptions. It is seen that for some scenarios, some 

of the methods are equivalent.    

When the sets of predictors of the responses are all the same, we assume the true 

functional relationship between the responses and the controllable factors are as 

follows: 

𝑦1 = f1(𝑥) + 𝜀1 where 

f1(𝑥) = 80 + 𝑥1 + 4𝑥2 + 6𝑥3 − 2𝑥1
2 + 3𝑥2

2 − 5𝑥3
2 + 2𝑥1𝑥2 + 12𝑥1𝑥3 − 4𝑥2𝑥3 

 𝑦2 = f2(𝑥) + 𝜀2 where 

f2(𝑥) = 60 + 4𝑥1 + 𝑥2 + 3𝑥3 + 𝑥1
2 + 𝑥2

2 − 𝑥3
2 − 𝑥1𝑥2 − 𝑥1𝑥3 + 𝑥2𝑥3 (3.1) 
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Table 3.3 Scenarios considered in the comparison study (A: applicable, NA: not applicable) 

  

Scenario 

# 

Number of 

replications, 

n 

Heteroscedasticity 

Correlation 

coefficient, 

ρ 

Position of 

the point 

Set of 

predictors 

of the 

responses 

OLS WLS MVR SUR 

1 5 No 0 center/corner Same A NA equal to OLS equal to MVR 

2 25 No 0 center/corner Same A NA equal to OLS equal to MVR 

3 5 Yes 0 center/corner Same NA A NA equal to MVR 

4 25 Yes 0 center/corner Same NA A NA equal to MVR 

5 5 No 0.3 center/corner Same NA NA A equal to MVR 

6 25 No 0.3 center/corner Same NA NA A equal to MVR 

7 5 No 0.9 center/corner Same NA NA A equal to MVR 

8 25 No 0.9 center/corner Same NA NA A equal to MVR 

9 5 No 0.3 center/corner Different NA NA NA A 

10 25 No 0.3 center/corner Different NA NA NA A 

11 5 No 0.9 center/corner Different NA NA NA A 

12 25 No 0.9 center/corner Different NA NA NA A 
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Accordingly, while fitting the second-order surface models, we consider all terms 

are significant for both responses. In such a case, SUR is equivalent to MVR. 

When the sets of predictors of the responses are taken different, we consider another 

true functional relationship between the second response and controllable variables, 

that is, instead of the equation (3.1), we assume the following equation 

f2(𝑥) = 60 + 4𝑥1 + 3𝑥3 

In this case, we expect different significant terms for each response, so SUR is 

different than MVR, and it dominates MVR because for some responses MVR 

includes insignificant terms in the model.  

In the true functions defined above, 𝜀1  and 𝜀2 are called as the random error terms. 

Let µ𝟎 be the mean vector and 𝚺𝟎(𝐱) be the variance-covariance matrix of the error 

terms. We assume that error terms are distributed as  

𝛆 = [
𝛆𝟏 
𝛆𝟐 
] ~N(µ𝟎, 𝚺𝟎(𝐱)) 

where µ𝟎 = [
0
0
] , 𝚺𝟎(𝐱) = [

𝜎11(𝐱) 𝜎12(𝐱)
𝜎21(𝐱) 𝜎22(𝐱)

]  and 𝐱 = (𝑥1,  𝑥2,  𝑥3) 

𝜎11(𝐱) and  𝜎22(𝐱) are the variances of 𝛆𝟏and 𝛆𝟐 at setting 𝐱 while 𝜎12(𝐱)  and 

σ21(𝐱) are covariances between these two terms at setting 𝐱 such that 

𝜎12(𝐱)  = 𝜎21(𝐱) = 𝜌√𝜎11(𝐱)𝜎22(𝐱)    

where 𝜌 is the Pearson correlation coefficient. 

When there is no heteroscedasticity, the following functions are presumed for the 

variances. 

𝜎11(𝐱) = 𝑒3 an𝑑 𝜎22(𝐱) = 𝑒2 

In the existence of heteroscedasticity, true functions of the variances are taken as 
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𝜎11(𝐱) = 𝑒3−𝑥1
2−3𝑥3

2
 and 𝜎22(𝐱) = 𝑒2−2𝑥1

2−𝑥3
2
      (3.2) 

The assumed functions for the variances in (3.2) are obtained from Ko et al. [7]. 

We generate data according to the number of replications (n=5 or n=25) and try to 

observe the effect of number of replications in the quality of estimation and 

predictions. Also, for the cases in which correlation among the error terms exists, 

we take into account the correlation level in generating the data (ρ=0 or 0.3 or 0.9) 

to draw conclusions about the behavior of the methods while correlation increases. 

Additionally, for some selected points from the experiment design, we examine the 

prediction variance. We have chosen two points of the design: The center point 

where all controllable factors are set to zero and a corner point where all 

controllable factors are set to one.  

While applying methods except OLS, we need to use the variance-covariance 

matrix of the responses, which is most probably unknown. Still, we leave the 

variance and correlation estimation out of our scope. We simply use sample 

variances while applying WLS. In this manner, number of replications affects the 

estimation of variance-covariance matrix, as well. In order to apply SUR, we 

estimate the variance-covariance matrix based on the OLS residuals as Zellner [10] 

suggests. Still, to exclude effect of the accuracy in the estimation of variance-

covariance matrix on the performances of the methods, we also make analyses 

under the assumption that variance-covariance matrix of the mean responses is 

known. 

Once we generate data under a scenario, we test it to ensure that it satisfies the 

assumptions of that scenario. First, we test for heteroscedasticity. There are plenty 

of formal tests such as Park test, Glejser’s test, Spearman’s rank correlation test, 

Goldfeld-Quandt test, Bartlett’s test, Breusch-Pagan test and White’s test [29]. 

These are commonly referenced in econometrics literature and most of them are 

based on the examination of the OLS residuals. However, in statistics literature, we 

mostly encounter with Bartlett’s and Levene’s tests which are utilized to test equal 
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variances across samples. If the data tested is normally distributed, Bartlett test can 

be used. However, if not, Levene’s test is a better alternative since it is less sensitive 

to the distribution of the data. We apply Levene’s test for heteroscedasticity. We 

also test whether there is a correlation among the responses at a defined design 

setting or not. All generated data meet the scenario requirements according to these 

tests. 

3.3 Application of Bootstrap Technique to Obtain Joint Confidence and 

Prediction Regions 

We construct elliptical confidence and prediction regions following the procedure 

described in Section 2.4. First, we set B=999 and α=0.10 and define 𝛉 as y. Then, 

we follow these steps: 

1) Generating bootstrap samples (resampling): At each design point, we 

sample from the original data with replacement and with a number of 

replications n as seen in Table 3.4. We call the resulting new experimental 

data a bootstrap sample. In this manner, we produce B bootstrap samples. 

 

Table 3.4 A Representation of resampling in this study 

Design 

Point 
Observation 

Number x1 x2 x3 y1 y2  y1
* y2

* 

1 

1 -1 -1 -1 74.74 52.52 sampling with 

replacement, 

sample size n 

74.74 52.52 

2 -1 -1 -1 73.99 52.76 74.74 52.52 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

n -1 -1 -1 74.58 51.03 75.58 51.03 

2 

1 1 -1 -1 48.39 63.86  

sampling with 

replacement, 

sample size n 

49.31 64.19 

2 1 -1 -1 49.37 64.07 48.11 63.84 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

n 1 -1 -1 48.11 63.84 48.11 63.84 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  ⋮ ⋮ 
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2) Applying the regression method: For each bootstrap sample, we apply the 

regression method and make prediction at the point of interest (either the 

center or the corner point), 𝐲̂b
∗ = [

𝑦̂1,𝑏
∗

𝑦̂2,𝑏
∗ ]. 

3) Obtaining bootstrap estimate of variance-covariance matrix of 𝐲̂, 𝚺̂𝐲̂
∗: 

𝐲̂1
∗∗, 𝐲̂2

∗∗, … , 𝐲̂𝐼
∗∗ are resampled among B bootstrap estimates of 𝐲, and 𝚺̂𝐲̂

∗ 

calculated by 

𝚺̂𝐲̂
∗ =

1

1 − 𝐼
 ∑(𝐲̂𝑖

∗∗ − 𝐲̅∗∗)(𝐲̂𝑖
∗∗ − 𝐲̅∗∗)′

𝐼

𝑖=1

 

where  𝐲̅∗∗ = 
1

𝐼
∑ 𝐲̂𝑖

∗∗𝐼
𝑖=1  and I=150. 

4) Calculating bootstrap estimates of the statistic of interest, Q: Q is the 

generalized squared distance and its bootstrap estimates are calculated by  

 

𝑞̂𝑏
∗ = (𝐲̂b

∗ − 𝐲̂)′(𝚺̂𝐲̂
∗)
−𝟏
(𝐲̂b

∗ − 𝐲̂) 

 

5) Constructing confidence region for 𝐸(𝐲): 90% elliptical confidence region 

for 𝐲 is constructed by 

     (𝐲̂ − 𝐲)′(𝚺𝐲̂)
−𝟏
(𝐲̂ − 𝐲) ≤ 𝑞[𝟗𝟎𝟎]

∗  

𝑞[𝟗𝟎𝟎]
∗  is the 900th highest value in the sorted bootstrap estimates of 𝑄. 

To obtain the prediction region, we need to consider the inherent variation in 𝐲, as 

well [25]. Suppose it is has a variance-covariance matrix defined by 𝚺𝐲. Then, by 

making analogy to the theoretical prediction ellipsoid of MVR given by Johnson 

and Wichern [31], we suggest to construct 90% prediction region for 𝐲 by 

              (𝐲̂ − 𝐲)′(𝚺𝐲 + 𝚺𝐲̂)
−𝟏
(𝐲̂ − 𝐲) ≤ 𝑞[𝟗𝟎𝟎]

∗  

𝚺𝐲 is generally unknown and needs to be estimated. We use MSE values to estimate 

its elements, i.e. variances, while applying OLS and WLS. However, for MVR and 

SUR, we estimate it based on the OLS residuals as given in (2.8). 
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CHAPTER 4 

 

 

NUMERICAL RESULTS AND DISCUSSION 

     

 

 

In this chapter, we show the computational results for each scenario defined in the 

previous chapter and give some discussions indicating how the methods applied 

perform in each situation. Besides, we provide joint confidence and prediction 

regions for the estimated mean responses at the center and corner points of the 

experimental design by using the bootstrap technique.  

Note that results presented in the following sections include weighted performance 

measures in parenthesis when WLS is applied.  

4.1 Scenarios 1-2: OLS Case 

OLS is applicable when the responses are not correlated and the error variances are 

homogeneous. True mean, variance and covariance values at each design point of 

the experimental design for this case, which are all predetermined, are given in 

Table A.1 in Appendix A. Data in scenarios 1 and 2 are generated accordingly. OLS 

is applicable for both of the scenarios. The only difference between these scenarios 

is the number of replications. We make an analysis by choosing different numbers 

of replications (n=5 and n=25) and try to observe the effect of number of 

replications on quality of the predictions. Generated data are given in Table A.2 for 

scenario 1 and in Table A.3 for scenario 2. After the data are generated, second-

order response surface models are fitted to the responses by applying all regression 

methods under consideration, and performances of them are analyzed. Estimated 

model coefficients and predictions made at the center and the corner points of the 

designed experiment are given in Table A.4 through Table A.9. 
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Table 4.1 Performance measures (scenario 1) 

Performance 

Measures 

OLS             

(Variance 

Known) 

OLS WLS MVR 

trace[Cov(𝛃̂)] 5.332 4.685 3.877 4.216 

det[Cov(𝛃̂)]  872.241 х10-17 24.325 х10-17 0.097 х10-17 1.525 х10-17 

MSE1 18.548 18.548 18.924 (1.182) 18.548 

MSE2 5.594 5.594 5.644 (0.962) 5.594 

R1
2 0.883 0.883 0.881 (0.885) 0.883 

R2
2  0.816 0.816 0.814 (0.882) 0.816 

 

Table 4.2 Performance measures at the center point (scenario 1) 

Performance 

Measures 

OLS             

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.668 0.617 0.285 0.555 

Var(Ê(𝑦2)) 0.246 0.186 0.176 0.167 

𝑑H 0.159 0.196 0.936 0.264 

 

Table 4.3 Performance measures at the corner point (scenario 1) 

Performance 

Measures 

OLS             

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 2.692 2.486 1.605 2.237 

Var(Ê(𝑦2)) 0.990 0.750 0.556 0.675 

𝑑H 0.242 0.272 0.863 0.319 
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          Figure 4.1 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points (scenario 1)
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Table 4.4 Performance measures (scenario 2) 

Performance 

Measures 

OLS             

(Variance 

Known) 

OLS WLS MVR 

trace[Cov(𝛃̂)] 1.066 0.951 0.927 0.932 

det[Cov(𝛃̂)]  91.461х10-30 7.301 х10-30 2.706 х10-30 4.851 х10-30 

MSE1 18.167 18.167 18.176 (1.004) 18.167 

MSE2 6.345 6.345 6.346 (1.004) 6.345 

R1
2 0.871 0.871 0.871 (0.881) 0.871 

R2
2  0.776 0.776 0.776 (0.782) 0.776 

 

Table 4.5 Performance measures at the center point (scenario 2) 

Performance 

Measures 

OLS             

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.134 0.121 0.126 0.118 

Var(Ê(𝑦2)) 0.049 0.042 0.039 0.041 

𝑑H 0.063 0.091 0.959 0.099 

 

Table 4.6 Performance measures at the corner point (scenario 2) 

Performance 

Measures 

OLS             

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.538 0.487 0.555 0.477 

Var(Ê(𝑦2)) 0.198 0.170 0.193 0.167 

𝑑H 0.058 0.088 0.906 0.096 
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         Figure 4.2 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points  (scenario 2)
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Scenarios 1 and 2 have the circumstances that OLS is appropriate for use. 

Furthermore, OLS is known as BLUE if the variance-covariance matrix of the error 

terms is known. Still, for this particular example, we observe that both WLS and 

MVR seem to outperform in terms of the dispersion of the estimated parameters, 

i.e. they estimate β with lower values of  trace[Cov(𝛃̂)] and det[Cov(𝛃̂)]. 

Accordingly, they predict mean responses Ê(𝑦1) and Ê(𝑦2) with smaller variances 

at the center and corner points of the experimental design. However, these methods 

use estimated variance-covariance matrix of the responses: Sample variances are 

used while applying WLS and an estimation is made based on OLS residuals to 

apply MVR. Moreover, when the variance-covariance matrix is assumed to be 

unknown, OLS underestimates the variances too (MSE values are used as the 

variance estimates of the responses in this case). Thus, it is seen that these measures 

are affected by the accuracy in estimation of the variance-covariance matrix. When 

the number of replications is increased in scenario 2, variance-covariance matrices 

used are estimated more accurately as well. Hence, values of  trace[Cov(𝛃̂)] and 

det[Cov(𝛃̂)] decrease and performances of the methods get closer to the OLS 

estimation with known variance-covariance matrix.   

Considering MSE and R2, WLS seems to be slightly worse. However, if the 

measures of WLS given in parenthesis are considered, which are the weighted 

performance measures, WLS seems to outperform. Still, we can say that when 

heteroscedasticity does not exist, weighted measures are misleading because errors 

are weighted in inverse proportion of the sample variances although they should be 

weighted equally. On the other hand, OLS (variance-covariance matrix is 

known/unknown) and MVR do not differ in terms of MSE and R2 due to the 

estimated β values’ being same. It is expected because when the responses are not 

correlated and the set of predictors for the responses is the same, OLS and MVR 

are equivalent. Even if correlation exists, OLS and MVR produce the same 

estimates for β, but with a different prediction variance.  
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Considering 𝑑H, we observe that OLS estimates the true distribution of a single 

observation at some design (center or corner)  point better than the other methods. 

When variance-covariance matrix is known, it even estimates better. Estimation of 

MVR is very close to OLS and it gets closer when the number of replications is 

increased. On the other hand, WLS estimation is the worst, and it is far from the 

true distribution. Considering the confidence and prediction regions, we can make 

similar observations to those of 𝑑H. WLS gives very narrow prediction regions 

However, the main reason of this is that weighted MSE is not a good estimator of 

true error variation at any specified design point.   

Generally, methods perform better at the center points which is expected because 

estimation and prediction errors are higher outside the center of the design region 

when the error variance is homogeneous. 

4.2 Scenarios 3-4: WLS Case 

WLS is applicable when the responses are not correlated and the error variances are 

not homogeneous. True mean, variance and covariance values at each design point 

of the experimental design for this case, which are all predetermined, are given in 

Table B.1 in Appendix B. Data in scenarios 3 and 4 are generated accordingly. WLS 

is applicable for both of the scenarios. The only difference between these scenarios 

is the number of replications. We make an analysis by choosing different number 

of replications (n=5 and n=25) and try to observe the effect of number of 

replications in the quality of the predictions. Generated data is given in Table B.2 

for scenario 3 and in Table B.3 for scenario 4. After the data are generated, second-

order response surface models are fitted to the responses by applying all regression 

methods under consideration, and performances of them are analyzed. Estimated 

model coefficients and predictions made at the center and the corner points of the 

designed experiment are given in Table B.4 through Table B.9. 
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Table 4.7 Performance measures (scenario 3) 

Performance 

Measures 

WLS             

(Variance 

Known) 

OLS WLS MVR 

trace[Cov(𝛃̂)] 1.355 2.249 0.714 2.024 

det[Cov(𝛃̂)]  410.732х10-47 57.853х10-24 0.036х10-47 4.238х10-24 

MSE1 9.416 (0.927) 9.110 9.555 (1.170) 9.110 

MSE2 2.567 (0.757) 2.478 2.583 (0.975) 2.478 

R1
2 0.938 (0.999) 0.940 0.937 (0.999) 0.940 

R2
2  0.903 (0.999) 0.906 0.902 (0.998) 0.906 

 

Table 4.8 Performance measures at the center point (scenario 3) 

Performance 

Measures 

WLS             

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.663 0.303 0.284 0.273 

Var(Ê(𝑦2)) 0.244 0.082 0.174 0.074 

𝑑H 0.160 0.489 0.938 0.547 

 

Table 4.9 Performance measures at the corner point (scenario 3) 

Performance 

Measures 

WLS             

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.053 1.221 0.031 1.099 

Var(Ê(𝑦2)) 0.052 0.332 0.024 0.299 

𝑑H 0.261 0.993 0.506 0.965 
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         Figure 4.3 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points  (scenario 3)
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Table 4.10 Performance measures (scenario 4) 

Performance 

Measures 

WLS             

(Variance 

Known) 

OLS WLS MVR 

trace[Cov(𝛃̂)] 0.271 0.417 0.243 0.409 

det[Cov(𝛃̂)]  43.068х10-60 3.977х10-37 1.350х10-60 2.635х10-37 

MSE1 8.207 (0.913) 8.054 8.22 (1.018) 8.054 

MSE2 2.692 (0.856) 2.687 2.692 (1.001) 2.687 

R1
2 0.940 (0.999) 0.941 0.940 (0.999) 0.941 

R2
2  0.891 (0.996) 0.891 0.891 (0.996) 0.891 

 

Table 4.11 Performance measures at the center point (scenario 4) 

Performance 

Measures 

WLS             

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.133 0.054 0.125 0.053 

Var(Ê(𝑦2)) 0.049 0.018 0.039 0.018 

𝑑H 0.057 0.465 0.957 0.474 

 

Table 4.12 Performance measures at the corner point (scenario 4) 

Performance 

Measures 

WLS             

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.011 0.216 0.012 0.212 

Var(Ê(𝑦2)) 0.010 0.072 0.010 0.071 

𝑑H 0.022 0.989 0.473 0.984 



 

 

4
9
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 4.4 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points (scenario 4) 
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Scenarios 3 and 4 have the circumstances that WLS is appropriate for use, further 

WLS is known as BLUE if the variance-covariance matrix of the error terms is 

known. We observe that WLS, no matter variance-covariance matrix is known or 

not, seems to outperform in terms of the spread of the estimated parameters, i.e. it 

estimates β with lower values of  trace[Cov(𝛃̂)] and det[Cov(𝛃̂)].  Especially, 

det[Cov(𝛃̂)] is lower a lot more in WLS. However, when it uses the estimate of 

variance-covariance matrix in scenario 3, it seems much better than it is. However, 

in scenario 4, since the number of replications is increased, variance-covariance 

matrices used are estimated more accurately, and so performances of the WLS with 

and without known variance-covariance matrix get closer.  MVR seems slightly 

better than OLS; however, this might be due to randomness. Variance-covariance 

matrix used in MVR see a small correlation in the sample data, so it affects the 

variance of estimated β, but not the estimated β itself.  When the set of predictors 

for the responses is the same, OLS and MVR produce the same estimates for β, but 

with a different prediction variance depending on the existence of correlation. 

At the center point, OLS and MVR predict mean responses Ê(𝑦1) and Ê(𝑦2)  with 

smaller variances than WLS. At the corner point, however, WLS is much better 

than OLS and MVR. Moreover, WLS performs better at the corner point rather than 

the center point in contrast to OLS and MVR. Then, we can conclude that 

performance of WLS in terms of the variances of the predicted mean responses 

depends on the position of the design point. Further, we may say that WLS performs 

better when the true error variance is small at the selected design point, which is the 

corner point in this particular example. Additionally, performance of WLS in terms 

of the variances of the predicted mean responses depends on the number of 

replications. Its performance is better when the number of replications is high, 

which is expected.  

Considering MSE and R2 in parentheses, which are the weighted performance 

measures and valid for scenario 3 and 4 because heteroscedasticity exists, WLS is 

much better than OLS and MVR. WLS gives weights to each observation so that 
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observations with large variances have less influence in determining the model 

parameters while the observations with small variances have more. Thus, while 

evaluating the error in prediction, we should give more weights to the observations 

with smaller variances. OLS and MVR give same values for MSE and R2 since they 

produce the same estimates for β (but with different variances). R2 values of the 

responses given in parentheses are very high, which may be interpreted as an 

indicator of an overfitting problem. However, this can be expected aside from 

overfitting since the true mean functions are also second-order polynomials as the 

fitted models and adjusted R2 values of these models are also 0.99.  

Considering 𝑑H, we observe that WLS estimates the true distribution of a single 

observation much better than the other methods when variance-covariance matrix 

is known. However, when it is not known, it may not perform so well depending on 

the position of the design point. For example, when variance-covariance matrix is 

unknown, it still estimates closer to the true distribution at the corner point, but not 

at the center point. This might be because of the fact that weighted MSE provides 

a good estimate of the true error variance at the corner point while for some other 

points it does not. Estimates made by OLS and MVR seem to have similar distances 

from the true distribution. Their performance gets worse even more at the corner 

point as expected. Additionally, when the number of replications is high, we 

observe improvement in 𝑑H for all methods. 

Considering the confidence and prediction regions, we can make similar 

conclusions. WLS produces better confidence regions (using the confidence region 

by BLUE as base), especially when the number of replications is high and/or 

variance-covariance matrix is known. Also, depending on the position of the design 

point, its performance gets even better than other methods. For example, we observe 

that confidence region of WLS is much better at the corner point.  

At the center point, all methods give narrow prediction regions when the variance-

covariance matrix is not known, and WLS gives much narrower ones. On the other 

hand, at the corner point, all methods give larger prediction regions, and OLS and 
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MVR give much larger ones. This is because the methods estimate true error 

variances as defined previously, but this estimation is not done according to the 

design point. We simply use MSE values. Thus, true error variances are 

underestimated at some points, and overestimated at other points. In other words, 

prediction regions seem to highly depend on the estimation of true error variances 

at the specified design point. In order to improve prediction regions of the methods, 

some other estimators of true error variance can be used. If the variance-covariance 

matrix is known, heteroscedasticity exists and there is no correlation, prediction 

region by WLS is the closest to the true region.  

4.3 Scenarios 5-8: MVR Case 

MVR is applicable when the responses are correlated, the error variances are 

homogeneous and sets of predictors of the responses are the same. True mean, 

variance and covariance values at each design point of the experimental design for 

this case, which are all predetermined, are given in Table C.1 in Appendix C for 

scenarios 5 and 6, and in Table C.2 for scenarios 7 and 8. MVR is applicable for all 

of these scenarios. SUR is also applicable, but it is actually equivalent to MVR 

since the set of the predictors of the responses are the same. The difference between 

these scenarios is due to the number of replications and value of the correlation 

coefficient. We make an analysis by choosing different number of replications (n=5 

and n=25) and try to observe the effect of number of replications in the quality of 

the predictions. We also try some low (0.30) and high (0.90) values of correlation 

coefficients to draw conclusions about the behavior of the methods while 

correlation increases. Generated data are given in Table C.3 through Table C.6. 

After the data are generated, second-order response surface models are fitted to the 

responses by applying all regression methods under consideration, and 

performances of them are analyzed. Estimated model coefficients and predictions 

made at the center and the corner points of the designed experiment are given in 

Table C.7 through Table C.18. 
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Table 4.13 Performance measures (scenario 5) 

Performance 

Measures 

MVR          

(Variance 

Known) 

OLS WLS MVR 

trace[Cov(𝛃̂)] 5.332 4.533 3.646 4.079 

det[Cov(𝛃̂)]  339.665х10-17 5.365х10-17 0.014х10-17 0.594х10-17 

MSE1 18.548 18.548 18.924 (1.182) 18.548 

MSE2 4.809 4.809 4.890 (1.028) 4.809 

R1
2 0.883 0.883 0.881 (0.885) 0.883 

R2
2  0.839 0.839 0.836 (0.881) 0.839 

 

Table 4.14 Performance measures at the center point (scenario 5) 

Performance 

Measures 

MVR 

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.668 0.617 0.285 0.555 

Var(Ê(𝑦2)) 0.246 0.160 0.089 0.144 

𝑑H 0.159 0.256 0.938 0.264 

 

Table 4.15 Performance measures at the corner point (scenario 5) 

Performance 

Measures 

MVR 

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 2.692 2.486 1.605 2.237 

Var(Ê(𝑦2)) 0.990 0.645 0.537 0.580 

𝑑H 0.242 0.308 0.854 0.319 
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         Figure 4.5 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points  (scenario 5)

 

  

  

 



 

55 

 

Table 4.16 Performance measures (scenario 6) 

Performance 

Measures 

MVR          

(Variance 

Known) 

OLS WLS MVR 

trace[Cov(𝛃̂)] 1.066 0.949 0.926 0.930 

det[Cov(𝛃̂)]  35.616х10-30 6.736х10-30 2.144х10-30 1.889х10-30 

MSE1 18.167 18.167 18.177 (1.004) 18.167 

MSE2 6.294 6.294 6.295 (1.004) 6.294 

R1
2 0.871 0.871 0.871 (0.881) 0.871 

R2
2  0.772 0.772 0.772 (0.785) 0.772 

 

Table 4.17 Performance measures at the center point (scenario 6) 

Performance 

Measures 

MVR 

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.134 0.121 0.126 0.118 

Var(Ê(𝑦2)) 0.049 0.042 0.042 0.041 

𝑑H 0.063 0.171 0.950 0.099 

 

Table 4.18 Performance measures at the corner point (scenario 6) 

Performance 

Measures 

MVR 

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.538 0.487 0.555 0.477 

Var(Ê(𝑦2)) 0.198 0.169 0.201 0.165 

𝑑H 0.058 0.172 0.897 0.096 
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         Figure 4.6 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points  (scenario 6)
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Table 4.19 Performance measures (scenario 7) 

Performance 

Measures 

MVR          

(Variance 

Known) 

OLS WLS MVR 

trace[Cov(𝛃̂)] 5.332 4.640 3.784 4.176 

det[Cov(𝛃̂)]  534.777х10-24 159.338х10-18 0.160х10-18 0.932х10-24 

MSE1 18.548 18.548 18.924 (1.182) 18.548 

MSE2 5.362 5.362 5.689 (1.276) 5.362 

R1
2 0.883 0.883 0.881 (0.885) 0.883 

R2
2  0.827 0.827 0.816 (0.933) 0.827 

 

Table 4.20 Performance measures at the center point (scenario 7) 

Performance 

Measures 

MVR 

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.668 0.617 0.285 0.555 

Var(Ê(𝑦2)) 0.246 0.178 0.144 0.161 

𝑑H 0.159 0.705 0.829 0.265 

 

Table 4.21 Performance measures at the corner point (scenario 7) 

Performance 

Measures 

MVR 

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 2.692 2.486 1.605 2.237 

Var(Ê(𝑦2)) 0.990 0.719 0.574 0.647 

𝑑H 0.242 0.718 0.795 0.320 
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         Figure 4.7 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points  (scenario 7)
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Table 4.22 Performance measures (scenario 8) 

Performance 

Measures 

MVR          

(Variance 

Known) 

OLS WLS MVR 

trace[Cov(𝛃̂)] 1.066 0.958 0.930 0.938 

det[Cov(𝛃̂)]  56.075х10-37 9.408х10-30 2.180х10-18 2.971х10-37 

MSE1 18.167 18.167 18.176 (1.004) 18.167 

MSE2 6.508 6.508 6.513 (1.001) 6.508 

R1
2 0.871 0.871 0.871 (0.8813) 0.871 

R2
2  0.755 0.755 0.754 (0.795) 0.755 

 

Table 4.23 Performance measures at the center point (scenario 8) 

Performance 

Measures 

MVR 

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.134 0.121 0.126 0.118 

Var(Ê(𝑦2)) 0.049 0.043 0.048 0.042 

𝑑H 0.063 0.709 0.865 0.099 

 

Table 4.24 Performance measures at the corner point (scenario 8) 

Performance 

Measures 

MVR 

(Variance 

Known) 

OLS WLS MVR 

Var(Ê(𝑦1)) 0.538 0.487 0.555 0.477 

Var(Ê(𝑦2)) 0.198 0.174 0.205 0.171 

𝑑H 0.058 0.710 0.829 0.096 
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         Figure 4.8 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points  (scenario 8)
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Scenarios from 5 to 8 are generated considering MVR assumptions under which 

MVR is BLUE if the variance-covariance matrix is known. For each of these 

scenarios, OLS and MVR (either variance-covariance matrix is known or unknown) 

estimate β the same. They differ by their spread or efficiency, i.e. variance-

covariance matrix of estimated β. Thus, for each of the scenarios here MSE and R2 

are the same for OLS and MVR, and for WLS is not so much different. However, 

according to the weighted performance measures in parenthesis given for WLS, 

WLS is the best by landslide, which is a misleading situation since weights are 

given to the observations according to the sample variances which are statistically 

not different from each other.  

We expect that gain in the efficiency in the parameter estimation to be higher when 

correlation between responses are high and when we use MVR. Although we cannot 

observe this expectation completely in terms of trace[Cov(𝛃̂)], det[Cov(𝛃̂)] is in 

accordance with it. det[Cov(𝛃̂)] obtained by using MVR is much lower than those 

obtained by other methods in scenario 7 and 8. Further, gain in the efficiency 

increases much more when the number of replications is increased. We also observe 

that when methods use estimated variance-covariance matrix, their performance 

can be better than it really is. However, this cannot be a conclusion since it might 

be due to the randomness in data. Still, when the number of replications, i.e. 

accuracy in estimation of the variance-covariance matrix, is increased, their 

performances get much closer to each other.  

Considering 𝑑H, we observe that MVR estimates the true distribution of a single 

observation at design point selected much better than the other regression methods 

especially when the number of replications and/or correlation between responses 

are high. OLS estimates the true distribution with a close performance to MVR if 

the number of replications and correlation are low, otherwise it is worse. WLS 

always seems to make a prediction far from the true distribution, which is again due 

to the fact that weighted MSE is not a good estimator of true error variation at 

specified design points for these particular scenarios. 
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We observe that methods perform better at the center points than at the corner 

points, i.e. estimation error in mean responses seems to be lower.  

Considering the confidence and prediction regions, WLS always produces very 

small regions compared to OLS and MVR. When both of the correlation and 

number of replications are low, regions of OLS and MVR do not differ much. When 

the correlation is low, but the number of replications is high they slightly differ. 

When the correlation is high, MVR captures it and presents totally different regions. 

WLS and OLS give larger confidence regions unnecessarily. OLS also gives larger 

prediction regions and still cannot cover the observations well. On the other hand, 

WLS has too small prediction regions. However, prediction regions of MVR are 

very close to the true prediction in scenarios through 5 to 8. 

4.4 Scenarios 9-12: SUR Case 

SUR is applicable when the responses are correlated and the error variances are 

homogeneous. Sets of predictors of the responses are not necessarily the same. True 

mean, variance and covariance values at each design point of the experimental 

design for this case, which are all predetermined, are given in Table D.1 in 

Appendix D for scenarios 9 and 10, and in Table D.2 for scenarios 11 and 12. SUR 

is applicable for all of these scenarios. Difference between these scenarios is due to 

the number of replications and the value of correlation coefficient. We make 

analysis by choosing different number of replications (n=5 and n=25) and try to 

observe the effect of number of replications in the quality of the predictions. We 

also try some low (0.30) and high (0.90) values of correlation coefficients to draw 

conclusions about the behavior of the methods while the correlation increases. 

Generated data are given in Table D.3 through Table D.6. After the data are 

generated, second-order response surface models are fitted to the responses by 

applying all regression methods under consideration, and performances of them are 

analyzed. Estimated model coefficients and predictions made at the center and the 

corner points of the designed experiment are given in Table D.7 through Table 

D.18. 
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Table 4.25 Performance measures (scenario 9) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

trace[Cov(𝛃̂)] 3.908 3.787 3.091 3.398 

det[Cov(𝛃̂)]  467.840х10-11 145.329х10-11 4.949х10-11 42.340х10-11 

MSE1 18.628 18.548 18.924 (1.182) 18.559 

MSE2 4.765 4.765 4.877 (1.140) 4.765 

R1
2 0.883 0.883 0.881 (0.885) 0.883 

R2
2  0.789 0.789 0.784 (0.810) 0.789 

 

Table 4.26 Performance measures at the center point (scenario 9) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

Var(Ê(𝑦1)) 0.626 0.617 0.285 0.552 

Var(Ê(𝑦2)) 0.074 0.048 0.030 0.046 

𝑑H 0.126 0.230 0.914 0.222 

 

Table 4.27 Performance measures at the corner point (scenario 9) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

Var(Ê(𝑦1)) 2.521 2.486 1.605 2.224 

Var(Ê(𝑦2)) 0.291 0.187 0.149 0.182 

𝑑H 0.220 0.270 0.846 0.274 
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         Figure 4.9 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points  (scenario 9)
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Table 4.28 Performance measures (scenario 10) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

trace[Cov(𝛃̂)] 0.782 0.755 0.729 0.695 

det[Cov(𝛃̂)]  38.325х10-19 22.476х10-19 8.963х10-19 7.693х10-19 

MSE1 18.193 18.167 18.176 (1.004) 18.192 

MSE2 6.312 6.312 6.313 (1.008) 6.312 

R1
2 0.871 0.871 0.871 (0.881) 0.871 

R2
2  0.731 0.731 0.731 (0.733) 0.731 

 

Table 4.29 Performance measures at the center point (scenario 10) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

Var(Ê(𝑦1)) 0.125 0.121 0.126 0.112 

Var(Ê(𝑦2)) 0.015 0.013 0.012 0.013 

𝑑H 0.051 0.165 0.951 0.087 

 

Table 4.30 Performance measures at the corner point (scenario 10) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

Var(Ê(𝑦1)) 0.504 0.487 0.555 0.450 

Var(Ê(𝑦2)) 0.058 0.050 0.052 0.049 

𝑑H 0.045 0.167 0.909 0.084 
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      Figure 4.10 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points (scenario 10)
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Table 4.31 Performance measures (scenario 11) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

trace[Cov(𝛃̂)] 1.671 3.808 3.055 1.468 

det[Cov(𝛃̂)]  7.366х10-16 200.299х10-11 1.754х10-11 3.385х10-16 

MSE1 19.326 18.548 18.924 (1.182) 19.424 

MSE2 5.303 5.303 5.422 (1.292) 5.303 

R1
2 0.878 0.883 0.881 (0.885) 0.878 

R2
2  0.781 0.781 0.777 (0.8824) 0.781 

 

Table 4.32 Performance measures at the center point (scenario 11) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

Var(Ê(𝑦1)) 0.290 0.617 0.285 0.258 

Var(Ê(𝑦2)) 0.074 0.053 0.037 0.051 

𝑑H 0.159 0.703 0.831 0.209 

 

Table 4.33 Performance measures at the corner point (scenario 11) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

Var(Ê(𝑦1)) 1.151 2.486 1.605 1.029 

Var(Ê(𝑦2)) 0.291 0.208 0.146 0.202 

𝑑H 0.229 0.719 0.877 0.255 
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    Figure 4. 11 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points  (scenario 11)

  

  

 



 

69 

 

Table 4.34 Performance measures (scenario 12) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

trace[Cov(𝛃̂)] 0.334 0.757 0.729 0.306 

det[Cov(𝛃̂)]  6.034х10-25 25.671х10-19 8.655х10-11 3.063х10-25 

MSE1 18.573 18.167 18.176 (1.004) 18.564 

MSE2 6.598 6.598 6.601 (1.019) 6.598 

R1
2 0.868 0.871 0.871 (0.881) 0.869 

R2
2  0.710 0.710 0.710 (0.740) 0.710 

 

Table 4.35 Performance measures at the center point (scenario 12) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

Var(Ê(𝑦1)) 0.058 0.121 0.126 0.053 

Var(Ê(𝑦2)) 0.015 0.013 0.012 0.013 

𝑑H 0.067 0.709 0.869 0.082 

 

Table 4.36 Performance measures at the corner point (scenario 12) 

Performance 

Measures 

SUR 

(Variance 

Known) 

OLS WLS SUR 

Var(Ê(𝑦1)) 0.230 0.487 0.555 0.210 

Var(Ê(𝑦2)) 0.058 0.052 0.046 0.052 

𝑑H 0.064 0.709 0.830 0.079 
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      Figure 4.12 Confidence (at top) and prediction (at bottom) regions for the center (on left) and the corner (on right) points (scenario 12) 
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Scenarios from 9 to 12 are generated considering SUR assumptions under which 

SUR is BLUE if the variance-covariance matrix is known. The only difference of 

these scenarios from the scenarios in MVR case is that the second response has a 

different set of significant predictors. Thus, SUR estimators of model parameters 

are different in their values from OLS estimators. Thus, MSE and R2 are now 

different for these methods, but still they are very close. However, when correlation 

exists, SUR is capable of producing more efficient estimators of model parameters, 

which we observe through the results we obtain, as well. We observe maximum 

gain in the efficiency in the parameter estimation by SUR when correlation between 

responses and number of replications are high.  This observation is the same as that 

we have in the previous heading. Further, we see that all comments we make in the 

previous heading are still valid here. 

4.5 Statistical Analysis of Hellinger Distance Differences  

Considering all scenarios together, we make a statistical analysis of the Hellinger 

distance results to draw conclusions about whether or not each method estimates 

the distribution of a single observation significantly different from that of the BLUE 

estimator. If so, we are also particularly interested in the factors which make the 

difference. Accordingly, we conduct ANOVA of differences between Hellinger 

distances of a method from that of the BLUE estimator for the scenarios. Analyzed 

data are given in Table E.1 in Appendix E, and the results obtained are provided in 

Tables E.2 through E.4. To satisfy the ANOVA assumptions a log transformation 

is applied to the difference data when it is necessary, and residual and main effects 

plots are shown in Figures E.1 through E.6.  

We can make the following comments based on the ANOVA results: First comment 

is that, the difference between distance of BLUE and that of OLS on the average 

depends on whether OLS is applicable for that case or not. In the main effects plot 

in Figure E.2, it is seen that when OLS is not applicable, this difference is 

significantly larger than that when OLS is applicable. The difference also seems to 

depend on correlation between the responses and the number of replications. In 
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Figure E.2, we observe that when correlation is very high (0.9), the difference is 

significantly larger. Also, when the number of replications is high (n=25), the 

distance seems to be slightly larger, which is expected because of that BLUE does 

not necessarily correspond to the OLS in every scenario. When it does not, we 

expect the difference to be bigger when the number of replications is high. 

Otherwise, the difference is expected to be smaller. 

On the average, the difference between distance of BLUE and  that of WLS seems 

to significantly depend on the number of replications, heteroscedasticity, and 

position of the design point. This is similar to what we observe in the prediction 

region plots. It may be interesting to see that WLS applicability for the case is not 

a significant factor. This may be due to that even in the scenarios where WLS is 

applicable, WLS may perform poorly in terms of Hellinger distance depending on 

the design point and this seems due to the estimation of true error variation. We use 

weighted MSE as its estimator while applying WLS. We observe in the previous 

parts that this estimator does not work well at every design point. If another 

estimator were used for this variation, then we could expect WLS applicability to 

be a significant factor. Furthermore, we could expect WLS to outperform the others 

for the scenarios where WLS is applicable. Considering the main effects plot in 

Figure E.4, the difference between the distances of BLUE and WLS seems to be 

high when the number of replications is high (n=25), heteroscedasticity does not 

exist and position of the design point is the center, which we have already observed 

and discussed while analyzing the scenarios one by one.  

Finally, the difference between distances of BLUE and that of SUR on the average 

seems to significantly depend on the number of the replications and 

heteroscedasticity. In Figure E.6, it is seen that the difference is small on the average 

when the number of replications is high (n=25) and there is no heteroscedasticity, 

which is expected. Correlation is not a significant factor for this difference because 

when correlation and heteroscedasticity do not exist, OLS is BLUE and SUR is 

already equivalent to OLS. When there is correlation and heteroscedasticity does 

not exist, SUR is already BLUE.  
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CHAPTER 5 

 

 

CONCLUSION 

 

 

 

In this study, we consider linear regression methods OLS, WLS, MVR and SUR 

typically used in MRDPO problems to fit response surface models to the data 

collected through statistically designed experiments. In MRDPO problems, it is 

assumed that each response has a non-homogeneous variance. Also, responses 

might be correlated. The methods we consider might not be appropriate for a 

particular MRDPO problem due to their restrictive assumptions. Thus, our interest 

in this study is to examine and compare these linear regression methods for their 

estimation and prediction errors. We are particularly interested in answering the 

following research question: Under which circumstances (violation of certain 

assumptions, being at a far point from the design center, number of replications 

etc.), estimation errors associated with model parameters and prediction errors 

associated with individual observations are high  in MRDPO problems? 

We base our conclusions on systematically generated scenarios on a typical 

MRDPO problem, and our observations of experimental results using certain 

performance measures and graphs of the confidence and prediction regions 

developed by a bootstrap approach.  

First of all, we observe that OLS estimates the true distribution of a single 

observation at some design (center or corner)  point better than the other methods 

only when it is applicable. When OLS is not applicable for a given scenario, 

difference between the distances of BLUE and OLS is considerable. We also 

observe that when correlation is high, the difference is considerably larger. 

Additionally, when the number of replications is high, the difference seems to be 

slightly larger, which is most probably due to that BLUE estimator estimates even 
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better when the sample size is high and that BLUE does not necessarily correspond 

to the OLS in every scenario we consider. 

Second, we observe that WLS, no matter variance-covariance matrix of error terms 

is known or not, seems to outperform the others in terms of the spread of the 

estimated parameters and model fit. Also, it estimates the true distribution of a 

single observation much better than the other methods when its assumptions are 

satisfied and variance-covariance matrix is known. However, when the variance-

covariance matrix is not known, WLS may not perform so well depending on how 

well true error variation is estimated. Moreover, the difference between the 

distances of BLUE and WLS seems to significantly depend on the number of 

replications, heteroscedasticity, and position of the design point. When the number 

of replications is high, heteroscedasticity does not exist and position of the design 

point is where true error variance is high, WLS seems to be far from BLUE. 

Additionally, WLS might produce misleading results if its assumptions, which are 

heteroscedastic errors and uncorrelated responses, are not satisfied. In other words, 

when the assumptions are not satisfied, weighted performance measures (as those 

given by software such as Minitab and R) make us to consider we have good results 

in terms of model fit, but it may not be the true. However, it seems much better to 

use it when heteroscedasticity exists. Thus, WLS should be used when 

heteroscedasticity is highly expected as in MRDPO problems and there is no 

correlation of the responses or it is not high. Some statistical tests can be applied to 

data before applying WLS, but power of the tests is an important issue in that case.  

When correlation among responses does not exist, OLS and MVR (SUR) perform 

similarly. However, when there is correlation and it is high, variances of the 

estimated model parameters, so the prediction variances and the distance from the 

true distribution get smaller in MVR (SUR). They all become much smaller when 

the number of replications is high. The difference between the distances of BLUE 

and SUR seems to significantly depend on the number of the replications and 

heteroscedasticity. It is seen that the difference is small on the average when sample 

size is high and there is no heteroscedasticity. 
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Observations obtained in this study is based on an experimental study. In order to 

generalize these observations, computational experiments can be expanded. As 

another future work, an appropriate linear regression method for the scenarios that 

have not been studied in this thesis can be searched. In these scenarios, not only 

heteroscedasticity should exist but also there should be correlation between 

responses. A regression method applicable for such scenarios is not readily 

available in the literature, or at least such a method has not been adopted for use in 

MRDPO problems, to the best of our knowledge. However, it would be very useful 

for both the product and process designers and researchers working in other fields 

of statistics and econometrics, since circumstances of these scenarios might be 

commonly encountered in these fields.  
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APPENDIX A  

 

 

GENERATED DATA AND MODEL PARAMETER ESTIMATES UNDER 

SCENARIOS 1-2: OLS CASE 

 

 

 

Table A.1 True mean, variance and covariance values at experimental design 

points (scenarios 1&2) 

Design 

Setting 
x1 x2 x3 µ1 µ2 𝜎11 𝜎22 𝜎12 

1 -1 -1 -1 75.00 52.00 20.09 7.39 0 

2 1 -1 -1 49.00 64.00 20.09 7.39 0 

3 -1 1 -1 87.00 54.00 20.09 7.39 0 

4 1 1 -1 69.00 62.00 20.09 7.39 0 

5 -1 -1 1 71.00 58.00 20.09 7.39 0 

6 1 -1 1 93.00 66.00 20.09 7.39 0 

7 -1 1 1 67.00 64.00 20.09 7.39 0 

8 1 1 1 97.00 68.00 20.09 7.39 0 

9 -1.68 0 0 72.68 56.10 20.09 7.39 0 

10 1.68 0 0 76.04 69.54 20.09 7.39 0 

11 0 -1.68 0 81.75 61.14 20.09 7.39 0 

12 0 1.68 0 95.19 64.50 20.09 7.39 0 

13 0 0 -1.68 55.81 52.14 20.09 7.39 0 

14 0 0 1.68 75.97 62.22 20.09 7.39 0 

15 0 0 0 80.00 60.00 20.09 7.39 0 

16 0 0 0 80.00 60.00 20.09 7.39 0 

17 0 0 0 80.00 60.00 20.09 7.39 0 

18 0 0 0 80.00 60.00 20.09 7.39 0 

19 0 0 0 80.00 60.00 20.09 7.39 0 

20 0 0 0 80.00 60.00 20.09 7.39 0 
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Table A.2 Data generated at experimental design points (scenario 1) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y2,1 y2,2 y2,3 y2,4 y2,5 

1 73.06 67.54 75.56 76.29 69.86 55.24 55.23 51.90 52.89 52.47 

2 48.16 52.25 46.36 58.78 48.39 64.31 66.90 64.16 63.74 61.74 

3 88.32 81.01 90.20 94.28 83.90 56.33 57.41 49.67 50.08 55.55 

4 67.21 72.09 72.66 72.19 74.78 63.82 65.24 58.73 61.95 61.57 

5 63.81 72.15 66.27 77.34 67.39 59.44 58.60 55.49 52.10 57.84 

6 88.47 95.75 95.28 100.58 95.65 64.25 67.03 63.26 65.95 65.87 

7 67.00 65.58 71.91 58.60 68.92 66.43 65.99 65.57 64.11 65.84 

8 99.55 95.85 95.31 95.67 90.39 67.36 68.32 68.86 71.92 67.05 

9 75.47 76.26 76.89 68.23 73.63 56.75 53.36 54.09 59.04 55.74 

10 77.78 76.43 73.19 73.53 78.02 66.96 71.67 71.09 67.31 68.82 

11 76.42 71.88 86.17 79.42 83.21 61.78 61.20 58.41 58.57 60.12 

12 89.87 90.45 101.79 95.44 89.73 64.39 61.44 60.83 63.79 67.09 

13 56.38 58.75 50.57 53.74 54.63 48.84 48.55 54.67 52.17 50.38 

14 79.58 77.01 71.53 81.97 77.27 66.24 65.31 60.36 58.71 62.02 

15 78.52 76.22 82.23 86.67 77.55 57.70 59.33 61.80 57.68 56.73 

16 79.46 79.71 82.17 77.33 79.33 58.82 59.78 64.17 58.35 56.34 

17 82.10 75.95 80.16 77.19 82.40 61.50 59.45 54.42 60.36 64.33 

18 84.56 72.92 79.65 76.95 75.41 56.64 60.79 58.83 60.15 59.00 

19 77.92 81.66 83.26 89.47 73.92 57.22 62.82 58.94 56.25 60.86 

20 86.96 83.17 88.77 82.26 88.36 59.08 56.90 59.43 63.24 56.97 
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Table A.3 Data generated at experimental design points (scenario 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y1,6 y1,7 y1,8 y1,9 y1,10 y1,11 y1,12 y1,13 

1 73.06 67.54 75.56 76.29 69.86 80.34 80.33 74.83 76.47 75.78 74.16 78.25 72.36 

2 44.47 51.75 51.28 56.58 51.65 46.12 50.70 44.48 48.91 48.78 49.00 47.58 53.91 

3 81.68 77.13 91.42 84.68 88.47 88.05 87.10 82.50 82.76 85.32 81.69 82.27 93.60 

4 68.46 68.71 71.17 66.33 68.33 67.05 68.64 75.88 66.28 62.96 71.10 64.95 69.16 

5 73.85 68.30 73.47 66.07 71.39 62.02 68.79 73.07 69.56 76.54 68.17 60.58 65.48 

6 97.44 93.98 94.17 98.44 91.77 92.40 87.31 85.54 89.85 94.26 90.57 87.02 97.81 

7 62.98 67.61 66.38 61.79 72.31 66.93 69.40 63.79 64.06 68.41 67.48 75.28 65.77 

8 98.98 102.74 94.77 91.99 100.62 97.18 93.61 96.60 88.00 101.86 92.60 93.91 103.00 

9 72.35 73.93 78.83 73.48 70.25 80.00 76.37 73.71 75.69 70.40 76.51 73.88 75.48 

10 75.51 76.79 73.79 72.88 78.31 74.15 77.06 71.74 75.38 79.37 72.04 76.66 74.98 

11 75.28 84.49 75.82 78.78 81.09 82.86 81.40 89.54 89.02 84.55 82.16 78.13 79.68 

12 98.17 88.95 89.36 92.48 88.52 97.69 93.94 89.39 91.21 90.77 94.87 84.37 92.08 

13 60.93 62.76 62.01 52.41 57.79 59.89 50.99 56.71 59.23 50.03 51.54 59.30 55.78 

14 75.58 77.43 74.47 74.52 74.25 71.70 77.01 81.50 73.38 73.72 79.21 76.15 82.88 

15 78.33 76.27 81.29 71.85 72.95 89.03 79.68 91.78 78.91 80.78 84.14 79.20 77.66 

16 79.94 81.59 75.99 83.64 80.49 92.24 81.84 74.14 81.72 82.24 77.71 81.05 77.32 

17 83.40 76.90 83.05 75.19 84.03 70.48 81.28 76.71 76.53 80.68 78.49 84.35 79.52 

18 75.85 79.50 76.40 72.54 75.96 82.64 82.48 78.14 80.28 82.05 80.89 81.15 89.33 

19 81.98 82.53 76.89 83.74 69.97 84.92 79.99 72.76 74.49 80.93 80.99 75.49 77.97 

20 84.41 87.90 86.40 84.09 81.46 80.31 73.28 78.13 79.91 81.02 75.48 77.02 82.50 
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Table A.3 (cont’d) Data generated at at experimental design points (scenario 2) 

 

 

  

Design 

Setting 
y1,14 y1,15 y1,16 y1,17 y1,18 y1,19 y1,20 y1,21 y1,22 y1,23 y1,24 y1,25 

1 84.78 74.39 75.51 79.78 75.27 74.57 71.27 76.32 69.01 78.20 82.28 71.90 

2 40.60 50.92 53.01 52.28 51.59 49.18 52.03 51.55 47.85 47.31 47.67 42.39 

3 87.25 81.54 86.82 81.94 80.95 85.83 91.27 87.58 89.94 81.77 84.94 85.82 

4 66.19 71.40 71.48 68.09 59.79 69.59 76.14 73.56 61.92 68.65 65.95 64.41 

5 75.73 70.49 72.70 75.23 61.50 68.11 67.84 66.44 70.18 77.82 70.83 76.50 

6 89.81 92.95 93.00 91.88 94.78 91.82 85.54 88.39 94.09 87.37 91.44 88.78 

7 76.92 73.76 58.28 59.47 64.43 66.17 67.04 70.75 63.76 63.77 66.10 66.91 

8 92.93 95.15 94.73 104.26 97.36 92.16 91.96 104.78 105.68 104.33 91.37 96.04 

9 67.98 79.56 74.62 64.08 74.78 78.39 75.54 78.86 78.59 68.60 62.34 80.69 

10 75.70 74.43 66.72 75.39 82.28 78.96 74.35 73.07 77.15 74.32 73.67 76.28 

11 75.45 80.07 79.64 89.60 85.12 82.04 80.44 82.12 85.18 91.77 83.21 85.62 

12 88.95 96.66 97.87 95.85 94.73 83.38 95.31 91.26 94.00 93.72 90.00 97.79 

13 58.16 61.92 57.97 52.28 59.18 55.06 52.15 65.19 56.17 51.61 58.66 63.35 

14 68.34 71.34 72.55 85.72 77.90 73.98 76.10 74.55 80.35 76.05 79.63 79.12 

15 86.42 76.10 83.62 77.71 83.33 83.80 76.28 82.39 84.63 75.29 81.62 79.84 

16 80.09 81.88 85.34 83.46 68.15 81.28 83.70 79.96 83.85 83.47 85.85 85.52 

17 84.54 77.87 80.31 81.79 85.00 82.78 78.71 73.85 76.93 81.49 75.53 81.31 

18 69.79 81.52 81.30 82.97 77.40 83.98 80.77 83.80 84.32 85.92 79.71 85.90 

19 86.27 77.93 80.15 83.58 84.02 80.62 72.74 72.62 81.92 76.70 82.53 73.80 

20 74.67 76.52 81.21 86.88 75.28 82.80 76.43 78.59 77.30 85.64 83.85 70.56 
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 Table A.3 (cont’d) Data generated at experimental design points (scenario 2) 

 

 

 

 

 

 

 

 

Design 

Setting 
y2,1 y2,2 y2,3 y2,4 y2,5 y2,6 y2,7 y2,8 y2,9 y2,10 y2,11 y2,12 y2,13 

1 54.33 55.41 47.67 48.08 53.55 50.91 53.88 54.22 53.94 55.51 53.82 55.24 48.73 

2 63.36 64.32 64.86 67.92 63.05 65.69 66.17 66.56 61.30 64.58 64.65 61.26 61.98 

3 50.70 50.41 56.53 54.03 52.25 56.19 54.63 51.31 57.64 54.79 58.02 57.09 52.14 

4 58.64 62.79 60.83 62.15 61.00 60.74 63.01 63.98 67.74 58.31 59.22 64.82 60.94 

5 56.11 58.02 55.87 59.60 57.32 59.31 59.82 57.79 60.42 64.28 59.43 57.97 60.48 

6 62.81 63.22 64.91 66.47 65.68 68.89 65.33 61.87 66.03 66.19 66.86 67.36 69.47 

7 64.76 66.88 65.69 59.24 65.90 66.21 65.73 67.56 64.89 62.17 63.59 57.34 65.29 

8 67.46 68.84 66.44 65.34 66.79 70.94 74.45 68.62 67.28 69.91 66.67 73.06 71.01 

9 57.16 56.16 55.00 51.93 56.70 52.37 53.82 55.54 58.16 57.12 52.45 60.13 56.19 

10 72.95 62.69 71.13 66.80 72.11 62.95 68.93 69.70 68.39 68.99 65.43 66.48 67.33 

11 62.99 62.65 63.87 64.57 61.26 60.29 61.76 63.85 64.45 59.67 63.62 60.67 60.23 

12 65.15 63.55 66.93 68.79 61.49 64.43 61.48 66.54 65.86 63.10 62.98 62.45 67.02 

13 53.75 54.29 52.42 51.71 54.50 51.61 52.34 50.71 50.27 51.41 48.91 52.81 52.42 

14 61.59 61.91 62.57 60.04 61.57 61.97 59.44 64.77 59.14 60.29 59.04 65.11 60.37 

15 56.66 59.25 59.56 57.05 54.69 57.53 59.98 55.32 63.43 58.37 54.39 60.30 64.04 

16 62.61 55.50 57.31 61.86 57.35 58.35 61.87 60.05 62.89 56.35 61.30 55.56 56.08 

17 63.01 60.67 60.45 61.10 63.31 63.94 57.21 60.56 61.60 59.28 66.78 62.33 57.69 

18 60.62 56.11 59.59 58.63 55.30 58.87 58.33 61.96 60.92 62.40 60.77 59.60 59.76 

19 61.25 61.71 61.03 57.25 59.06 61.20 55.68 58.09 57.07 62.72 64.70 61.93 57.97 

20 59.02 61.50 55.77 59.44 58.84 61.34 57.63 60.22 58.58 56.16 58.96 58.76 59.21 
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Table A.3 (cont’d) Data generated at at experimental design points (scenario 2)

Design 

Setting 
y2,14 y2,15 y2,16 y2,17 y2,18 y2,19 y2,20 y2,21 y2,22 y2,23 y2,24 y2,25 

1 51.95 51.57 47.64 52.70 49.13 55.85 49.81 53.44 52.60 49.49 46.10 51.84 

2 66.94 63.64 65.06 64.24 62.27 62.48 65.21 61.42 66.12 65.55 61.77 63.28 

3 50.49 53.80 53.10 51.71 55.35 58.05 52.51 51.70 53.33 55.80 51.68 50.73 

4 58.25 62.86 66.22 63.92 67.32 63.37 67.07 61.08 58.90 61.43 65.24 58.97 

5 58.15 54.99 59.32 57.99 57.25 61.47 63.07 56.58 58.28 55.80 59.85 51.57 

6 64.51 66.71 65.96 64.42 71.81 65.30 62.17 70.81 66.88 62.96 67.69 69.45 

7 64.32 62.39 62.22 61.06 63.87 65.03 63.10 62.64 63.90 63.52 61.40 67.51 

8 64.66 66.18 71.65 69.05 69.07 63.36 68.62 69.86 66.27 65.27 67.50 65.13 

9 61.19 52.82 53.97 54.02 55.81 53.45 53.48 49.64 53.82 56.80 55.60 55.65 

10 70.54 67.95 73.72 69.92 64.48 68.31 67.77 69.82 68.94 68.78 67.55 69.37 

11 62.61 63.68 59.59 57.07 61.01 62.65 61.37 65.43 60.24 63.30 59.01 57.71 

12 63.83 64.10 61.08 65.35 71.82 65.29 60.63 65.17 60.60 64.91 59.90 66.46 

13 52.03 46.03 50.75 52.82 53.14 52.62 52.04 47.78 53.06 51.78 53.46 53.77 

14 57.53 64.43 66.14 64.05 62.59 59.88 60.17 65.56 65.35 60.56 64.41 62.81 

15 60.14 60.44 59.93 60.47 62.40 60.50 62.05 61.38 60.36 60.76 57.33 57.43 

16 60.80 59.62 56.93 59.20 58.42 57.56 60.68 55.95 60.85 54.50 61.44 60.93 

17 62.21 61.90 62.07 55.34 64.18 55.62 63.02 56.98 61.05 62.62 62.22 60.10 

18 60.79 63.17 62.19 56.31 60.33 59.40 61.55 59.18 63.08 59.51 56.01 63.79 

19 60.62 59.39 57.68 60.94 60.30 56.92 58.14 59.24 61.78 56.61 58.38 58.69 

20 59.18 55.68 62.97 63.60 59.66 58.00 60.58 58.91 60.18 55.22 64.59 60.89 



 

87 

 

Table A.4 Estimated model parameters (scenario 1) 

  

 Table A.5 Prediction at the center point (scenario 1) 

Real 

OLS    

(Variance 

Known) 

OLS WLS SUR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.72 59.23 80.72 59.23 80.57 59.08 80.72 59.23 

 

Table A.6 Prediction at the corner point (scenario 1) 

Real 

OLS    

(Variance 

Known) 

OLS WLS SUR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 68.00 95.31 68.97 95.31 68.97 95.13 69.11 95.31 68.97 

 

 

 

 

 

 Real 

OLS 

 (Variance 

Known) 

OLS WLS SUR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.72 59.23 80.72 59.23 80.57 59.08 80.72 59.23 

𝛽̂1 1.00 4.00 1.48 3.90 1.48 3.90 1.11 3.78 1.48 3.90 

𝛽̂2 4.00 1.00 4.17 1.21 4.17 1.21 4.28 1.20 4.17 1.21 

𝛽̂3 6.00 3.00 5.99 3.08 5.99 3.08 6.16 3.14 5.99 3.08 

𝛽̂11 -2.00 1.00 -1.93 1.33 -1.93 1.33 -2.04 1.40 -1.93 1.33 

𝛽̂22 3.00 1.00 2.14 1.07 2.14 1.07 2.47 1.13 2.14 1.07 

𝛽̂33 -5.00 -1.00 -5.05 -0.72 -5.05 -0.72 -5.04 -0.56 -5.05 -0.72 

𝛽̂12 2.00 -1.00 1.14 -0.95 1.14 -0.95 1.53 -1.01 1.14 -0.95 

𝛽̂13 12.00 -1.00 11.52 -0.92 11.52 -0.92 11.28 -0.93 11.52 -0.92 

𝛽̂23 -4.00 1.00 -4.86 1.75 -4.86 1.75 -5.20 1.88 -4.86 1.75 
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Table A.7 Estimated model parameters (scenario 2) 

  

 Table A.8 Prediction at the center point (scenario 2) 

Real 

OLS    

(Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.21 59.68 80.21 59.68 80.16 59.64 80.21 59.68 

 

Table A.9 Prediction at the corner point (scenario 2) 

Real 

OLS    

(Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 68.00 96.58 67.80 96.58 67.80 96.41 67.78 96.58 67.80 

 

 

 

 

 

 Real 

OLS 

 (Variance 

Known) 

OLS WLS MVR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.21 59.68 80.21 59.68 80.16 59.64 80.21 59.68 

𝛽̂1 1.00 4.00 0.76 4.04 0.76 4.04 0.74 4.05 0.76 4.04 

𝛽̂2 4.00 1.00 3.49 0.87 3.49 0.87 3.48 0.87 3.49 0.87 

𝛽̂3 6.00 3.00 5.80 3.04 5.80 3.04 5.82 3.05 5.80 3.04 

𝛽̂11 -2.00 1.00 -2.07 0.84 -2.07 0.84 -2.12 0.86 -2.07 0.84 

𝛽̂22 3.00 1.00 2.46 1.28 2.46 1.28 2.47 1.30 2.46 1.28 

𝛽̂33 -5.00 -1.00 -4.88 -0.88 -4.88 -0.88 -4.85 -0.89 -4.88 -0.88 

𝛽̂12 2.00 -1.00 2.24 -0.89 2.24 -0.89 2.26 -0.92 2.24 -0.89 

𝛽̂13 12.00 -1.00 11.90 -1.10 11.90 -1.10 11.84 -1.11 11.90 -1.10 

𝛽̂23 -4.00 1.00 -3.32 0.92 -3.32 0.92 -3.39 0.93 -3.32 0.92 
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APPENDIX B  

 

 

GENERATED DATA AND MODEL PARAMETER ESTIMATES UNDER 

SCENARIOS 3-4: WLS CASE 

 

 

 

Table B.1 True mean, variance and covariance values at experimental design 

points (scenarios 3&4) 

Design 

Setting 
x1 x2 x3 µ1 µ2 𝜎11 𝜎22 𝜎12 

1 -1 -1 -1 75.00 52.00 0.37 0.37 0.00 

2 1 -1 -1 49.00 64.00 0.37 0.37 0.00 

3 -1 1 -1 87.00 54.00 0.37 0.37 0.00 

4 1 1 -1 69.00 62.00 0.37 0.37 0.00 

5 -1 -1 1 71.00 58.00 0.37 0.37 0.00 

6 1 -1 1 93.00 66.00 0.37 0.37 0.00 

7 -1 1 1 67.00 64.00 0.37 0.37 0.00 

8 1 1 1 97.00 68.00 0.37 0.37 0.00 

9 -1.68 0 0 72.68 56.10 1.19 0.03 0.00 

10 1.68 0 0 76.04 69.54 1.19 0.03 0.00 

11 0 -1.68 0 81.75 61.14 20.09 7.39 0.00 

12 0 1.68 0 95.19 64.50 20.09 7.39 0.00 

13 0 0 -1.68 55.81 52.14 0.00 0.44 0.00 

14 0 0 1.68 75.97 62.22 0.00 0.44 0.00 

15 0 0 0 80.00 60.00 20.09 7.39 0.00 

16 0 0 0 80.00 60.00 20.09 7.39 0.00 

17 0 0 0 80.00 60.00 20.09 7.39 0.00 

18 0 0 0 80.00 60.00 20.09 7.39 0.00 

19 0 0 0 80.00 60.00 20.09 7.39 0.00 

20 0 0 0 80.00 60.00 20.09 7.39 0.00 
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Table B.2 Data generated at experimental design points (scenario 3) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y2,1 y2,2 y2,3 y2,4 y2,5 

1 74.74 73.99 75.08 75.17 74.30 52.72 52.72 51.98 52.20 52.11 

2 48.89 49.44 48.64 50.32 48.92 64.07 64.65 64.04 63.94 63.50 

3 87.18 86.19 87.43 87.98 86.58 54.52 54.76 53.03 53.13 54.35 

4 68.76 69.42 69.49 69.43 69.78 62.41 62.72 61.27 61.99 61.90 

5 70.03 71.16 70.36 71.86 70.51 58.32 58.13 57.44 56.68 57.96 

6 92.39 93.37 93.31 94.03 93.36 65.61 66.23 65.39 65.99 65.97 

7 67.00 66.81 67.66 65.86 67.26 64.54 64.44 64.35 64.02 64.41 

8 97.35 96.84 96.77 96.82 96.11 67.86 68.07 68.19 68.88 67.79 

9 73.36 73.55 73.70 71.59 72.91 56.14 55.94 55.98 56.28 56.08 

10 76.46 76.13 75.34 75.42 76.52 69.39 69.67 69.63 69.41 69.50 

11 76.42 71.88 86.17 79.42 83.21 61.78 61.20 58.41 58.57 60.12 

12 89.87 90.45 101.79 95.44 89.73 64.39 61.44 60.83 63.79 67.09 

13 55.82 55.85 55.73 55.78 55.79 51.33 51.26 52.75 52.15 51.71 

14 76.02 75.98 75.90 76.06 75.99 63.20 62.97 61.76 61.36 62.17 

15 78.52 76.22 82.23 86.67 77.55 57.70 59.33 61.80 57.68 56.73 

16 79.46 79.71 82.17 77.33 79.33 58.82 59.78 64.17 58.35 56.34 

17 82.10 75.95 80.16 77.19 82.40 61.50 59.45 54.42 60.36 64.33 

18 84.56 72.92 79.65 76.95 75.41 56.64 60.79 58.83 60.15 59.00 

19 77.92 81.66 83.26 89.47 73.92 57.22 62.82 58.94 56.25 60.86 

20 86.96 83.17 88.77 82.26 88.36 59.08 56.90 59.43 63.24 56.97 
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Table B.3 Data generated at experimental design points (scenario 4) 

 

 

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y1,6 y1,7 y1,8 y1,9 y1,10 y1,11 y1,12 y1,13 

1 74.74 73.99 75.08 75.17 74.30 75.72 75.72 74.98 75.20 75.11 74.89 75.44 74.64 

2 48.39 49.37 49.31 50.03 49.36 48.61 49.23 48.39 48.99 48.97 49.00 48.81 49.66 

3 86.28 85.66 87.60 86.69 87.20 87.14 87.01 86.39 86.43 86.77 86.28 86.36 87.89 

4 68.93 68.96 69.29 68.64 68.91 68.74 68.95 69.93 68.63 68.18 69.28 68.45 69.02 

5 71.39 70.64 71.33 70.33 71.05 69.78 70.70 71.28 70.81 71.75 70.62 69.59 70.25 

6 93.60 93.13 93.16 93.74 92.83 92.92 92.23 91.99 92.57 93.17 92.67 92.19 93.65 

7 66.46 67.08 66.92 66.29 67.72 66.99 67.33 66.57 66.60 67.19 67.06 68.12 66.83 

8 97.27 97.78 96.70 96.32 97.49 97.02 96.54 96.95 95.78 97.66 96.40 96.58 97.81 

9 72.60 72.98 74.18 72.87 72.08 74.46 73.58 72.93 73.41 72.12 73.61 72.97 73.36 

10 75.91 76.22 75.49 75.26 76.59 75.58 76.29 74.99 75.88 76.85 75.06 76.19 75.78 

11 75.28 84.49 75.82 78.78 81.09 82.86 81.40 89.54 89.02 84.55 82.16 78.13 79.68 

12 98.17 88.95 89.36 92.48 88.52 97.69 93.94 89.39 91.21 90.77 94.87 84.37 92.08 

13 55.88 55.91 55.90 55.76 55.84 55.87 55.74 55.82 55.86 55.72 55.75 55.86 55.81 

14 75.96 75.99 75.95 75.95 75.94 75.91 75.98 76.05 75.93 75.94 76.01 75.97 76.07 

15 78.33 76.27 81.29 71.85 72.95 89.03 79.68 91.78 78.91 80.78 84.14 79.20 77.66 

16 79.94 81.59 75.99 83.64 80.49 92.24 81.84 74.14 81.72 82.24 77.71 81.05 77.32 

17 83.40 76.90 83.05 75.19 84.03 70.48 81.28 76.71 76.53 80.68 78.49 84.35 79.52 

18 75.85 79.50 76.40 72.54 75.96 82.64 82.48 78.14 80.28 82.05 80.89 81.15 89.33 

19 81.98 82.53 76.89 83.74 69.97 84.92 79.99 72.76 74.49 80.93 80.99 75.49 77.97 

20 84.41 87.90 86.40 84.09 81.46 80.31 73.28 78.13 79.91 81.02 75.48 77.02 82.50 



 

 

 9
2
 

Table B.3 (cont’d) Data generated at experimental design points (scenario 4) 

 

  

Design 

Setting 
y1,14 y1,15 y1,16 y1,17 y1,18 y1,19 y1,20 y1,21 y1,22 y1,23 y1,24 y1,25 

1 76.32 74.92 75.07 75.65 75.04 74.94 74.50 75.18 74.19 75.43 75.98 74.58 

2 47.86 49.26 49.54 49.44 49.35 49.02 49.41 49.35 48.84 48.77 48.82 48.11 

3 87.03 86.26 86.97 86.32 86.18 86.84 87.58 87.08 87.40 86.29 86.72 86.84 

4 68.62 69.32 69.34 68.88 67.75 69.08 69.97 69.62 68.04 68.95 68.59 68.38 

5 71.64 70.93 71.23 71.57 69.71 70.61 70.57 70.38 70.89 71.92 70.98 71.74 

6 92.57 92.99 93.00 92.85 93.24 92.84 91.99 92.38 93.15 92.24 92.79 92.43 

7 68.34 67.91 65.82 65.98 66.65 66.89 67.01 67.51 66.56 66.56 66.88 66.99 

8 96.45 96.75 96.69 97.98 97.05 96.34 96.32 98.05 98.18 97.99 96.24 96.87 

9 71.53 74.35 73.15 70.58 73.19 74.07 73.37 74.18 74.12 71.68 70.16 74.63 

10 75.95 75.64 73.76 75.88 77.56 76.75 75.62 75.31 76.31 75.62 75.46 76.10 

11 75.45 80.07 79.64 89.60 85.12 82.04 80.44 82.12 85.18 91.77 83.21 85.62 

12 88.95 96.66 97.87 95.85 94.73 83.38 95.31 91.26 94.00 93.72 90.00 97.79 

13 55.84 55.90 55.84 55.76 55.86 55.80 55.75 55.94 55.81 55.75 55.85 55.92 

14 75.86 75.90 75.92 76.11 76.00 75.94 75.97 75.95 76.03 75.97 76.02 76.01 

15 86.42 76.10 83.62 77.71 83.33 83.80 76.28 82.39 84.63 75.29 81.62 79.84 

16 80.09 81.88 85.34 83.46 68.15 81.28 83.70 79.96 83.85 83.47 85.85 85.52 

17 84.54 77.87 80.31 81.79 85.00 82.78 78.71 73.85 76.93 81.49 75.53 81.31 

18 69.79 81.52 81.30 82.97 77.40 83.98 80.77 83.80 84.32 85.92 79.71 85.90 

19 86.27 77.93 80.15 83.58 84.02 80.62 72.74 72.62 81.92 76.70 82.53 73.80 

20 74.67 76.52 81.21 86.88 75.28 82.80 76.43 78.59 77.30 85.64 83.85 70.56 
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Table B.3 (cont’d) Data generated at experimental design points (scenario 4) 

 

 

 

 

 

Design 

Setting 
y2,1 y2,2 y2,3 y2,4 y2,5 y2,6 y2,7 y2,8 y2,9 y2,10 y2,11 y2,12 y2,13 

1 52.52 52.76 51.03 51.13 52.35 51.76 52.42 52.49 52.43 52.78 52.41 52.72 51.27 

2 63.86 64.07 64.19 64.88 63.79 64.38 64.48 64.57 63.40 64.13 64.14 63.39 63.55 

3 53.26 53.20 54.56 54.01 53.61 54.49 54.14 53.40 54.81 54.18 54.90 54.69 53.59 

4 61.25 62.18 61.74 62.03 61.78 61.72 62.22 62.44 63.28 61.18 61.38 62.63 61.76 

5 57.58 58.00 57.53 58.36 57.85 58.29 58.41 57.95 58.54 59.40 58.32 57.99 58.55 

6 65.29 65.38 65.76 66.11 65.93 66.65 65.85 65.08 66.01 66.04 66.19 66.30 66.78 

7 64.17 64.64 64.38 62.94 64.42 64.49 64.39 64.79 64.20 63.59 63.91 62.51 64.29 

8 67.88 68.19 67.65 67.41 67.73 68.66 69.44 68.14 67.84 68.43 67.70 69.13 68.67 

9 56.17 56.11 56.04 55.85 56.14 55.88 55.97 56.07 56.22 56.16 55.88 56.34 56.11 

10 69.75 69.14 69.64 69.38 69.70 69.15 69.51 69.55 69.47 69.51 69.30 69.36 69.41 

11 62.99 62.65 63.87 64.57 61.26 60.29 61.76 63.85 64.45 59.67 63.62 60.67 60.23 

12 65.15 63.55 66.93 68.79 61.49 64.43 61.48 66.54 65.86 63.10 62.98 62.45 67.02 

13 52.53 52.66 52.21 52.03 52.71 52.01 52.19 51.79 51.68 51.96 51.35 52.30 52.21 

14 62.06 62.14 62.30 61.69 62.06 62.16 61.54 62.84 61.47 61.75 61.44 62.92 61.77 

15 56.66 59.25 59.56 57.05 54.69 57.53 59.98 55.32 63.43 58.37 54.39 60.30 64.04 

16 62.61 55.50 57.31 61.86 57.35 58.35 61.87 60.05 62.89 56.35 61.30 55.56 56.08 

17 63.01 60.67 60.45 61.10 63.31 63.94 57.21 60.56 61.60 59.28 66.78 62.33 57.69 

18 60.62 56.11 59.59 58.63 55.30 58.87 58.33 61.96 60.92 62.40 60.77 59.60 59.76 

19 61.25 61.71 61.03 57.25 59.06 61.20 55.68 58.09 57.07 62.72 64.70 61.93 57.97 

20 59.02 61.50 55.77 59.44 58.84 61.34 57.63 60.22 58.58 56.16 58.96 58.76 59.21 
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Table B.3 (cont’d) Data generated at experimental design points (scenario 4) 

 

  

 

Design 

Setting 
y2,14 y2,15 y2,16 y2,17 y2,18 y2,19 y2,20 y2,21 y2,22 y2,23 y2,24 y2,25 

1 51.99 51.90 51.03 52.16 51.36 52.86 51.51 52.32 52.13 51.44 50.68 51.96 

2 64.66 63.92 64.24 64.05 63.61 63.66 64.27 63.42 64.47 64.35 63.50 63.84 

3 53.22 53.96 53.80 53.49 54.30 54.90 53.67 53.49 53.85 54.40 53.48 53.27 

4 61.16 62.19 62.94 62.43 63.19 62.31 63.13 61.79 61.31 61.87 62.72 61.32 

5 58.03 57.33 58.29 58.00 57.83 58.77 59.13 57.68 58.06 57.51 58.41 56.57 

6 65.67 66.16 65.99 65.65 67.30 65.84 65.15 67.07 66.20 65.32 66.38 66.77 

7 64.07 63.64 63.60 63.34 63.97 64.23 63.80 63.70 63.98 63.89 63.42 64.78 

8 67.26 67.59 68.81 68.24 68.24 66.96 68.14 68.42 67.61 67.39 67.89 67.36 

9 56.40 55.91 55.98 55.98 56.09 55.94 55.95 55.72 55.97 56.14 56.07 56.08 

10 69.60 69.45 69.79 69.57 69.24 69.47 69.44 69.56 69.51 69.50 69.42 69.53 

11 62.61 63.68 59.59 57.07 61.01 62.65 61.37 65.43 60.24 63.30 59.01 57.71 

12 63.83 64.10 61.08 65.35 71.82 65.29 60.63 65.17 60.60 64.91 59.90 66.46 

13 52.11 50.65 51.80 52.30 52.38 52.26 52.11 51.07 52.36 52.05 52.46 52.53 

14 61.07 62.76 63.17 62.66 62.31 61.65 61.72 63.03 62.98 61.81 62.75 62.36 

15 60.14 60.44 59.93 60.47 62.40 60.50 62.05 61.38 60.36 60.76 57.33 57.43 

16 60.80 59.62 56.93 59.20 58.42 57.56 60.68 55.95 60.85 54.50 61.44 60.93 

17 62.21 61.90 62.07 55.34 64.18 55.62 63.02 56.98 61.05 62.62 62.22 60.10 

18 60.79 63.17 62.19 56.31 60.33 59.40 61.55 59.18 63.08 59.51 56.01 63.79 

19 60.62 59.39 57.68 60.94 60.30 56.92 58.14 59.24 61.78 56.61 58.38 58.69 

20 59.18 55.68 62.97 63.60 59.66 58.00 60.58 58.91 60.18 55.22 64.59 60.89 
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Table B.4 Estimated model parameters (scenario 3) 

  

 Table B.5 Prediction at the center point (scenario 3) 

Real 

WLS    

(Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.63 59.20 80.72 59.25 80.55 59.02 80.72 59.25 

 

Table B.6 Prediction at the corner point (scenario 3) 

Real 

WLS    

(Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 68.00 96.83 68.30 96.52 68.14 96.80 68.33 96.52 68.14 

 

 

 

 

 Real 

WLS 

 (Variance 

Known) 

OLS WLS MVR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.63 59.20 80.72 59.25 80.55 59.02 80.72 59.25 

𝛽̂1 1.00 4.00 1.11 4.00 1.04 3.98 1.06 3.99 1.04 3.98 

𝛽̂2 4.00 1.00 4.02 1.07 4.09 1.06 4.03 1.07 4.09 1.06 

𝛽̂3 6.00 3.00 6.01 3.01 5.96 3.02 6.01 3.02 5.96 3.02 

𝛽̂11 -2.00 1.00 -2.13 1.28 -2.06 1.35 -2.18 1.34 -2.06 1.35 

𝛽̂22 3.00 1.00 2.72 1.28 2.18 0.98 2.86 1.34 2.18 0.98 

𝛽̂33 -5.00 -1.00 -5.23 -0.73 -5.11 -0.69 -5.20 -0.66 -5.11 -0.69 

𝛽̂12 2.00 -1.00 1.88 -0.99 1.88 -0.99 1.92 -1.00 1.88 -0.99 

𝛽̂13 12.00 -1.00 11.93 -0.98 11.93 -0.98 11.91 -0.98 11.93 -0.98 

𝛽̂23 -4.00 1.00 -4.12 1.17 -4.12 1.17 -4.15 1.20 -4.12 1.17 
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Table B.7 Estimated model parameters (scenario 4) 

  

 Table B.8 Prediction at the center point (scenario 4) 

Real 

WLS    

(Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.15 59.70 80.18 59.70 80.09 59.67 80.18 59.70 

 

Table B.9 Prediction at the corner point (scenario 4) 

Real 

WLS    

(Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 68.00 96.97 68.00 96.42 67.94 96.95 68.00 96.42 67.94 

 

  

 Real 

WLS 

 (Variance 

Known) 

OLS WLS MVR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.15 59.70 80.18 59.70 80.09 59.67 80.18 59.70 

𝛽̂1 1.00 4.00 0.98 4.00 0.94 4.01 0.97 4.00 0.94 4.01 

𝛽̂2 4.00 1.00 3.97 0.98 3.56 0.90 3.96 0.97 3.56 0.90 

𝛽̂3 6.00 3.00 6.00 3.01 5.99 3.01 6.00 3.01 5.99 3.01 

𝛽̂11 -2.00 1.00 -2.01 1.08 -1.98 1.08 -2.02 1.10 -1.98 1.08 

𝛽̂22 3.00 1.00 2.83 1.15 2.64 1.18 2.89 1.17 2.64 1.18 

𝛽̂33 -5.00 -1.00 -5.05 -0.92 -5.01 -0.92 -5.03 -0.90 -5.01 -0.92 

𝛽̂12 2.00 -1.00 2.03 -0.97 2.03 -0.97 2.03 -0.97 2.03 -0.97 

𝛽̂13 12.00 -1.00 11.99 -1.02 11.99 -1.02 11.98 -1.02 11.99 -1.02 

𝛽̂23 -4.00 1.00 -3.91 0.98 -3.91 0.98 -3.91 0.98 -3.91 0.98 
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APPENDIX C  

    

 

GENERATED DATA AND MODEL PARAMETER ESTIMATES UNDER 

SCENARIOS 5-8: MVR CASE 

 

Table C.1 True mean, variance and covariance values at experimental design 

points (scenarios 5&6) 

Design 

Setting 
x1 x2 x3 µ1 µ2 𝜎11 𝜎22 𝜎12 

1 -1 -1 -1 75.00 52.00 20.09 7.39 3.65 

2 1 -1 -1 49.00 64.00 20.09 7.39 3.65 

3 -1 1 -1 87.00 54.00 20.09 7.39 3.65 

4 1 1 -1 69.00 62.00 20.09 7.39 3.65 

5 -1 -1 1 71.00 58.00 20.09 7.39 3.65 

6 1 -1 1 93.00 66.00 20.09 7.39 3.65 

7 -1 1 1 67.00 64.00 20.09 7.39 3.65 

8 1 1 1 97.00 68.00 20.09 7.39 3.65 

9 -1.68 0 0 72.68 56.10 20.09 7.39 3.65 

10 1.68 0 0 76.04 69.54 20.09 7.39 3.65 

11 0 -1.68 0 81.75 61.14 20.09 7.39 3.65 

12 0 1.68 0 95.19 64.50 20.09 7.39 3.65 

13 0 0 -1.68 55.81 52.14 20.09 7.39 3.65 

14 0 0 1.68 75.97 62.22 20.09 7.39 3.65 

15 0 0 0 80.00 60.00 20.09 7.39 3.65 

16 0 0 0 80.00 60.00 20.09 7.39 3.65 

17 0 0 0 80.00 60.00 20.09 7.39 3.65 

18 0 0 0 80.00 60.00 20.09 7.39 3.65 

19 0 0 0 80.00 60.00 20.09 7.39 3.65 

20 0 0 0 80.00 60.00 20.09 7.39 3.65 
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Table C.2 True mean, variance and covariance values at experimental design 

points (scenarios 7&8) 

Design 

Setting 
x1 x2 x3 µ1 µ2 𝜎11 𝜎22 𝜎12 

1 -1 -1 -1 75.00 52.00 20.09 7.39 10.96 

2 1 -1 -1 49.00 64.00 20.09 7.39 10.96 

3 -1 1 -1 87.00 54.00 20.09 7.39 10.96 

4 1 1 -1 69.00 62.00 20.09 7.39 10.96 

5 -1 -1 1 71.00 58.00 20.09 7.39 10.96 

6 1 -1 1 93.00 66.00 20.09 7.39 10.96 

7 -1 1 1 67.00 64.00 20.09 7.39 10.96 

8 1 1 1 97.00 68.00 20.09 7.39 10.96 

9 -1.68 0 0 72.68 56.10 20.09 7.39 10.96 

10 1.68 0 0 76.04 69.54 20.09 7.39 10.96 

11 0 -1.68 0 81.75 61.14 20.09 7.39 10.96 

12 0 1.68 0 95.19 64.50 20.09 7.39 10.96 

13 0 0 -1.68 55.81 52.14 20.09 7.39 10.96 

14 0 0 1.68 75.97 62.22 20.09 7.39 10.96 

15 0 0 0 80.00 60.00 20.09 7.39 10.96 

16 0 0 0 80.00 60.00 20.09 7.39 10.96 

17 0 0 0 80.00 60.00 20.09 7.39 10.96 

18 0 0 0 80.00 60.00 20.09 7.39 10.96 

19 0 0 0 80.00 60.00 20.09 7.39 10.96 

20 0 0 0 80.00 60.00 20.09 7.39 10.96 
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Table C.3 Data generated at experimental design points (scenario 5) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y2,1 y2,2 y2,3 y2,4 y2,5 

1 73.06 67.54 75.56 76.29 69.86 54.74 53.73 52.00 53.08 51.52 

2 48.16 52.25 46.36 58.78 48.39 64.14 67.36 63.67 65.53 61.73 

3 88.32 81.01 90.20 94.28 83.90 56.46 56.16 50.45 51.59 54.92 

4 67.21 72.09 72.66 72.19 74.78 63.41 65.65 59.55 62.53 62.65 

5 63.81 72.15 66.27 77.34 67.39 58.06 58.78 54.75 53.53 57.19 

6 88.47 95.75 95.28 100.58 95.65 63.51 67.49 63.80 67.33 66.36 

7 67.00 65.58 71.91 58.60 68.92 66.32 65.64 66.39 62.58 66.10 

8 99.55 95.85 95.31 95.67 90.39 67.86 68.10 68.51 71.50 65.89 

9 75.47 76.26 76.89 68.23 73.63 57.23 54.14 54.95 58.10 55.93 

10 77.78 76.43 73.19 73.53 78.02 67.40 71.64 70.50 66.96 69.22 

11 76.42 71.88 86.17 79.42 83.21 60.78 59.40 59.34 58.26 60.44 

12 89.87 90.45 101.79 95.44 89.73 63.43 60.72 62.20 63.87 65.98 

13 56.38 58.75 50.57 53.74 54.63 49.10 49.25 53.60 51.79 50.25 

14 79.58 77.01 71.53 81.97 77.27 66.71 65.36 59.64 59.96 62.26 

15 78.52 76.22 82.23 86.67 77.55 57.53 58.67 62.13 59.00 56.44 

16 79.46 79.71 82.17 77.33 79.33 58.77 59.74 64.38 57.94 56.38 

17 82.10 75.95 80.16 77.19 82.40 61.82 58.73 54.70 59.83 64.57 

18 84.56 72.92 79.65 76.95 75.41 57.63 59.46 58.82 59.59 58.21 

19 77.92 81.66 83.26 89.47 73.92 56.97 62.99 59.58 58.14 59.71 

20 86.96 83.17 88.77 82.26 88.36 60.39 57.62 61.05 63.50 58.63 
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Table C.4 Data generated at experimental design points (scenario 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y1,6 y1,7 y1,8 y1,9 y1,10 y1,11 y1,12 y1,13 

1 73.06 67.54 75.56 76.29 69.86 80.34 80.33 74.83 76.47 75.78 74.16 78.25 72.36 

2 44.47 51.75 51.28 56.58 51.65 46.12 50.70 44.48 48.91 48.78 49.00 47.58 53.91 

3 81.68 77.13 91.42 84.68 88.47 88.05 87.10 82.50 82.76 85.32 81.69 82.27 93.60 

4 68.46 68.71 71.17 66.33 68.33 67.05 68.64 75.88 66.28 62.96 71.10 64.95 69.16 

5 73.85 68.30 73.47 66.07 71.39 62.02 68.79 73.07 69.56 76.54 68.17 60.58 65.48 

6 97.44 93.98 94.17 98.44 91.77 92.40 87.31 85.54 89.85 94.26 90.57 87.02 97.81 

7 62.98 67.61 66.38 61.79 72.31 66.93 69.40 63.79 64.06 68.41 67.48 75.28 65.77 

8 98.98 102.74 94.77 91.99 100.62 97.18 93.61 96.60 88.00 101.86 92.60 93.91 103.00 

9 72.35 73.93 78.83 73.48 70.25 80.00 76.37 73.71 75.69 70.40 76.51 73.88 75.48 

10 75.51 76.79 73.79 72.88 78.31 74.15 77.06 71.74 75.38 79.37 72.04 76.66 74.98 

11 75.28 84.49 75.82 78.78 81.09 82.86 81.40 89.54 89.02 84.55 82.16 78.13 79.68 

12 98.17 88.95 89.36 92.48 88.52 97.69 93.94 89.39 91.21 90.77 94.87 84.37 92.08 

13 60.93 62.76 62.01 52.41 57.79 59.89 50.99 56.71 59.23 50.03 51.54 59.30 55.78 

14 75.58 77.43 74.47 74.52 74.25 71.70 77.01 81.50 73.38 73.72 79.21 76.15 82.88 

15 78.33 76.27 81.29 71.85 72.95 89.03 79.68 91.78 78.91 80.78 84.14 79.20 77.66 

16 79.94 81.59 75.99 83.64 80.49 92.24 81.84 74.14 81.72 82.24 77.71 81.05 77.32 

17 83.40 76.90 83.05 75.19 84.03 70.48 81.28 76.71 76.53 80.68 78.49 84.35 79.52 

18 75.85 79.50 76.40 72.54 75.96 82.64 82.48 78.14 80.28 82.05 80.89 81.15 89.33 

19 81.98 82.53 76.89 83.74 69.97 84.92 79.99 72.76 74.49 80.93 80.99 75.49 77.97 

20 84.41 87.90 86.40 84.09 81.46 80.31 73.28 78.13 79.91 81.02 75.48 77.02 82.50 
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Table C.4 (cont’d) Data generated at experimental design points (scenario 6) 

 

 

 

Design 

Setting 
y1,14 y1,15 y1,16 y1,17 y1,18 y1,19 y1,20 y1,21 y1,22 y1,23 y1,24 y1,25 

1 84.78 74.39 75.51 79.78 75.27 74.57 71.27 76.32 69.01 78.20 82.28 71.90 

2 40.60 50.92 53.01 52.28 51.59 49.18 52.03 51.55 47.85 47.31 47.67 42.39 

3 87.25 81.54 86.82 81.94 80.95 85.83 91.27 87.58 89.94 81.77 84.94 85.82 

4 66.19 71.40 71.48 68.09 59.79 69.59 76.14 73.56 61.92 68.65 65.95 64.41 

5 75.73 70.49 72.70 75.23 61.50 68.11 67.84 66.44 70.18 77.82 70.83 76.50 

6 89.81 92.95 93.00 91.88 94.78 91.82 85.54 88.39 94.09 87.37 91.44 88.78 

7 76.92 73.76 58.28 59.47 64.43 66.17 67.04 70.75 63.76 63.77 66.10 66.91 

8 92.93 95.15 94.73 104.26 97.36 92.16 91.96 104.78 105.68 104.33 91.37 96.04 

9 67.98 79.56 74.62 64.08 74.78 78.39 75.54 78.86 78.59 68.60 62.34 80.69 

10 75.70 74.43 66.72 75.39 82.28 78.96 74.35 73.07 77.15 74.32 73.67 76.28 

11 75.45 80.07 79.64 89.60 85.12 82.04 80.44 82.12 85.18 91.77 83.21 85.62 

12 88.95 96.66 97.87 95.85 94.73 83.38 95.31 91.26 94.00 93.72 90.00 97.79 

13 58.16 61.92 57.97 52.28 59.18 55.06 52.15 65.19 56.17 51.61 58.66 63.35 

14 68.34 71.34 72.55 85.72 77.90 73.98 76.10 74.55 80.35 76.05 79.63 79.12 

15 86.42 76.10 83.62 77.71 83.33 83.80 76.28 82.39 84.63 75.29 81.62 79.84 

16 80.09 81.88 85.34 83.46 68.15 81.28 83.70 79.96 83.85 83.47 85.85 85.52 

17 84.54 77.87 80.31 81.79 85.00 82.78 78.71 73.85 76.93 81.49 75.53 81.31 

18 69.79 81.52 81.30 82.97 77.40 83.98 80.77 83.80 84.32 85.92 79.71 85.90 

19 86.27 77.93 80.15 83.58 84.02 80.62 72.74 72.62 81.92 76.70 82.53 73.80 

20 74.67 76.52 81.21 86.88 75.28 82.80 76.43 78.59 77.30 85.64 83.85 70.56 
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Table C.4 (cont’d) Data generated at experimental design points (scenario 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design 

Setting 
y2,1 y2,2 y2,3 y2,4 y2,5 y2,6 y2,7 y2,8 y2,9 y2,10 y2,11 y2,12 y2,13 

1 53.87 53.89 47.97 48.50 52.55 51.93 54.76 54.08 54.11 55.49 53.58 55.68 48.40 

2 62.57 64.81 65.23 69.12 63.57 65.09 66.38 65.62 61.41 64.51 64.62 61.13 62.97 

3 49.89 48.78 57.22 53.61 52.59 56.28 54.62 50.61 56.70 54.45 56.87 56.09 53.43 

4 58.70 62.70 61.28 61.66 60.92 60.44 62.90 65.14 66.98 57.38 59.73 63.95 61.02 

5 56.71 57.53 56.42 58.63 57.42 57.61 59.33 58.17 60.04 65.00 58.85 56.07 59.36 

6 63.76 63.53 65.17 67.44 65.47 68.65 64.33 60.71 65.45 66.41 66.38 66.21 70.19 

7 63.99 66.85 65.50 58.51 66.77 66.09 66.09 66.81 64.31 62.51 63.70 59.16 65.00 

8 67.84 69.84 66.11 64.55 67.50 70.84 73.54 68.52 65.67 70.70 65.94 72.27 71.96 

9 57.06 56.38 56.17 52.27 56.23 53.87 54.60 55.75 58.61 56.66 53.31 60.16 56.70 

10 72.70 63.15 70.65 66.35 72.41 62.91 69.15 68.91 68.32 69.62 64.89 66.74 67.24 

11 61.73 63.08 62.66 63.87 61.14 60.53 61.67 65.14 65.62 60.25 63.58 60.04 59.90 

12 65.67 62.46 65.76 68.10 60.41 64.89 61.40 65.39 65.07 62.36 62.99 60.58 66.34 

13 54.61 55.45 53.54 51.11 54.76 52.38 51.46 50.94 50.98 50.39 48.28 53.42 52.40 

14 61.55 62.19 62.28 59.88 61.29 61.21 59.75 65.66 58.81 59.97 59.77 65.01 61.71 

15 56.51 58.61 59.82 55.71 53.65 59.29 59.93 57.67 63.08 58.58 55.40 60.14 63.43 

16 62.47 56.00 56.70 62.44 57.56 60.65 62.12 58.99 63.07 56.93 60.83 55.95 55.77 

17 63.49 60.07 60.98 60.18 63.89 62.02 57.57 59.93 60.90 59.44 66.20 63.01 57.71 

18 59.84 56.20 58.96 57.33 54.78 59.40 58.86 61.53 60.93 62.66 60.90 59.83 61.46 

19 61.55 62.09 60.42 58.05 57.28 62.04 55.88 56.86 56.20 62.77 64.66 61.02 57.69 

20 59.87 62.87 57.13 60.21 59.16 61.34 56.52 59.87 58.63 56.52 58.18 58.27 59.70 



 

 

 1
0
3
 

Table C.4 (cont’d) Data generated at experimental design points (scenario 6) 

  

 

  

Design 

Setting 
y2,14 y2,15 y2,16 y2,17 y2,18 y2,19 y2,20 y2,21 y2,22 y2,23 y2,24 y2,25 

1 53.73 51.48 47.93 53.54 49.31 55.59 49.23 53.61 51.48 50.19 47.70 51.28 

2 65.28 64.01 65.74 64.82 62.82 62.58 65.70 62.00 65.82 65.17 61.63 62.11 

3 50.70 52.82 53.11 50.89 54.19 57.65 53.36 51.91 53.90 54.77 51.41 50.67 

4 57.91 63.25 66.48 63.67 65.40 63.42 68.13 61.95 57.76 61.39 64.53 58.27 

5 59.01 55.04 59.57 58.76 55.55 60.78 62.26 55.81 58.12 57.15 59.73 52.87 

6 64.00 66.67 65.97 64.29 71.86 65.12 60.99 69.75 67.04 62.07 67.33 68.52 

7 66.11 63.70 60.72 59.83 63.41 64.83 63.15 63.39 63.32 62.96 61.35 67.33 

8 64.08 65.93 71.06 70.33 69.09 62.69 67.67 71.19 67.93 66.73 66.49 65.09 

9 60.10 54.22 54.43 52.55 56.21 54.61 54.12 51.06 55.01 56.03 53.75 57.13 

10 70.43 67.73 71.83 69.79 65.85 68.90 67.54 69.27 69.17 68.51 67.21 69.42 

11 61.40 63.25 59.28 58.68 61.63 62.63 61.12 65.30 60.91 65.03 59.37 58.57 

12 62.72 64.38 61.73 65.43 71.40 63.10 60.84 64.43 60.56 64.62 59.17 66.84 

13 52.46 47.42 51.21 52.14 53.71 52.47 51.38 49.69 53.08 51.03 53.91 55.06 

14 56.36 63.48 65.33 65.74 62.93 59.63 60.29 65.15 66.00 60.66 64.98 63.35 

15 61.31 59.71 60.59 60.03 62.89 61.16 61.28 61.75 61.18 59.87 57.75 57.52 

16 60.78 59.98 58.04 59.87 56.33 57.91 61.32 56.13 61.51 55.38 62.44 61.89 

17 62.93 61.43 62.03 55.88 64.90 56.33 62.64 56.00 60.44 62.77 61.31 60.33 

18 58.89 63.30 62.33 57.02 59.84 60.15 61.62 59.91 63.73 60.61 56.14 64.69 

19 61.73 59.04 57.81 61.55 61.02 57.17 56.91 57.94 62.05 56.16 58.91 57.62 

20 58.25 55.25 63.06 64.69 58.81 58.60 59.90 58.71 59.68 56.47 65.07 59.13 
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Table C.5 Data generated at experimental design points (scenario 7) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y2,1 y2,2 y2,3 y2,4 y2,5 

1 73.06 67.54 75.56 76.29 69.86 52.35 49.33 52.26 53.09 49.40 

2 48.16 52.25 46.36 58.78 48.39 63.68 67.04 62.63 69.23 62.68 

3 88.32 81.01 90.20 94.28 83.90 55.74 52.22 53.86 56.26 52.98 

4 67.21 72.09 72.66 72.19 74.78 61.81 65.10 62.57 63.72 64.97 

5 63.81 72.15 66.27 77.34 67.39 54.70 58.89 54.32 58.89 55.96 

6 88.47 95.75 95.28 100.58 95.65 62.76 67.95 66.05 70.12 67.39 

7 67.00 65.58 71.91 58.60 68.92 65.06 64.09 67.36 59.46 65.85 

8 99.55 95.85 95.31 95.67 90.39 69.11 67.51 67.45 68.99 63.98 

9 75.47 76.26 76.89 68.23 73.63 57.91 56.86 57.53 54.96 56.47 

10 77.78 76.43 73.19 73.53 78.02 69.37 70.68 68.66 67.20 70.31 

11 76.42 71.88 86.17 79.42 83.21 58.51 55.78 62.37 58.75 61.50 

12 89.87 90.45 101.79 95.44 89.73 61.55 60.58 66.51 64.33 62.65 

13 56.38 58.75 50.57 53.74 54.63 51.01 52.18 50.38 51.02 50.73 

14 79.58 77.01 71.53 81.97 77.27 65.94 64.13 58.99 63.96 62.84 

15 78.52 76.22 82.23 86.67 77.55 58.19 57.64 62.00 62.63 57.24 

16 79.46 79.71 82.17 77.33 79.33 59.19 59.75 63.01 57.82 58.04 

17 82.10 75.95 80.16 77.19 82.40 61.80 57.55 57.65 58.62 63.20 

18 84.56 72.92 79.65 76.95 75.41 61.03 56.48 59.30 58.40 57.06 

19 77.92 81.66 83.26 89.47 73.92 57.65 62.14 61.32 63.53 57.05 

20 86.96 83.17 88.77 82.26 88.36 63.40 60.38 64.54 62.64 63.24 
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Table C.6 Data generated at experimental design points (scenario 8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y1,6 y1,7 y1,8 y1,9 y1,10 y1,11 y1,12 y1,13 

1 73.06 67.54 75.56 76.29 69.86 80.34 80.33 74.83 76.47 75.78 74.16 78.25 72.36 

2 44.47 51.75 51.28 56.58 51.65 46.12 50.70 44.48 48.91 48.78 49.00 47.58 53.91 

3 81.68 77.13 91.42 84.68 88.47 88.05 87.10 82.50 82.76 85.32 81.69 82.27 93.60 

4 68.46 68.71 71.17 66.33 68.33 67.05 68.64 75.88 66.28 62.96 71.10 64.95 69.16 

5 73.85 68.30 73.47 66.07 71.39 62.02 68.79 73.07 69.56 76.54 68.17 60.58 65.48 

6 97.44 93.98 94.17 98.44 91.77 92.40 87.31 85.54 89.85 94.26 90.57 87.02 97.81 

7 62.98 67.61 66.38 61.79 72.31 66.93 69.40 63.79 64.06 68.41 67.48 75.28 65.77 

8 98.98 102.74 94.77 91.99 100.62 97.18 93.61 96.60 88.00 101.86 92.60 93.91 103.00 

9 72.35 73.93 78.83 73.48 70.25 80.00 76.37 73.71 75.69 70.40 76.51 73.88 75.48 

10 75.51 76.79 73.79 72.88 78.31 74.15 77.06 71.74 75.38 79.37 72.04 76.66 74.98 

11 75.28 84.49 75.82 78.78 81.09 82.86 81.40 89.54 89.02 84.55 82.16 78.13 79.68 

12 98.17 88.95 89.36 92.48 88.52 97.69 93.94 89.39 91.21 90.77 94.87 84.37 92.08 

13 60.93 62.76 62.01 52.41 57.79 59.89 50.99 56.71 59.23 50.03 51.54 59.30 55.78 

14 75.58 77.43 74.47 74.52 74.25 71.70 77.01 81.50 73.38 73.72 79.21 76.15 82.88 

15 78.33 76.27 81.29 71.85 72.95 89.03 79.68 91.78 78.91 80.78 84.14 79.20 77.66 

16 79.94 81.59 75.99 83.64 80.49 92.24 81.84 74.14 81.72 82.24 77.71 81.05 77.32 

17 83.40 76.90 83.05 75.19 84.03 70.48 81.28 76.71 76.53 80.68 78.49 84.35 79.52 

18 75.85 79.50 76.40 72.54 75.96 82.64 82.48 78.14 80.28 82.05 80.89 81.15 89.33 

19 81.98 82.53 76.89 83.74 69.97 84.92 79.99 72.76 74.49 80.93 80.99 75.49 77.97 

20 84.41 87.90 86.40 84.09 81.46 80.31 73.28 78.13 79.91 81.02 75.48 77.02 82.50 
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Table C.6 (cont’d) Data generated at experimental design points (scenario 8) 

 

 

  

Design 

Setting 
y1,14 y1,15 y1,16 y1,17 y1,18 y1,19 y1,20 y1,21 y1,22 y1,23 y1,24 y1,25 

1 84.78 74.39 75.51 79.78 75.27 74.57 71.27 76.32 69.01 78.20 82.28 71.90 

2 40.60 50.92 53.01 52.28 51.59 49.18 52.03 51.55 47.85 47.31 47.67 42.39 

3 87.25 81.54 86.82 81.94 80.95 85.83 91.27 87.58 89.94 81.77 84.94 85.82 

4 66.19 71.40 71.48 68.09 59.79 69.59 76.14 73.56 61.92 68.65 65.95 64.41 

5 75.73 70.49 72.70 75.23 61.50 68.11 67.84 66.44 70.18 77.82 70.83 76.50 

6 89.81 92.95 93.00 91.88 94.78 91.82 85.54 88.39 94.09 87.37 91.44 88.78 

7 76.92 73.76 58.28 59.47 64.43 66.17 67.04 70.75 63.76 63.77 66.10 66.91 

8 92.93 95.15 94.73 104.26 97.36 92.16 91.96 104.78 105.68 104.33 91.37 96.04 

9 67.98 79.56 74.62 64.08 74.78 78.39 75.54 78.86 78.59 68.60 62.34 80.69 

10 75.70 74.43 66.72 75.39 82.28 78.96 74.35 73.07 77.15 74.32 73.67 76.28 

11 75.45 80.07 79.64 89.60 85.12 82.04 80.44 82.12 85.18 91.77 83.21 85.62 

12 88.95 96.66 97.87 95.85 94.73 83.38 95.31 91.26 94.00 93.72 90.00 97.79 

13 58.16 61.92 57.97 52.28 59.18 55.06 52.15 65.19 56.17 51.61 58.66 63.35 

14 68.34 71.34 72.55 85.72 77.90 73.98 76.10 74.55 80.35 76.05 79.63 79.12 

15 86.42 76.10 83.62 77.71 83.33 83.80 76.28 82.39 84.63 75.29 81.62 79.84 

16 80.09 81.88 85.34 83.46 68.15 81.28 83.70 79.96 83.85 83.47 85.85 85.52 

17 84.54 77.87 80.31 81.79 85.00 82.78 78.71 73.85 76.93 81.49 75.53 81.31 

18 69.79 81.52 81.30 82.97 77.40 83.98 80.77 83.80 84.32 85.92 79.71 85.90 

19 86.27 77.93 80.15 83.58 84.02 80.62 72.74 72.62 81.92 76.70 82.53 73.80 

20 74.67 76.52 81.21 86.88 75.28 82.80 76.43 78.59 77.30 85.64 83.85 70.56 



 

 

 1
0
7
 

Table C.6 (cont’d) Data generated at experimental design points (scenario 8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design 

Setting 
y2,1 y2,2 y2,3 y2,4 y2,5 y2,6 y2,7 y2,8 y2,9 y2,10 y2,11 y2,12 y2,13 

1 51.96 49.41 50.42 51.00 49.87 54.44 55.73 52.87 53.64 53.96 52.34 55.19 49.14 

2 61.25 65.64 65.62 69.85 65.03 63.16 65.88 62.65 62.78 64.13 64.28 62.03 65.80 

3 49.66 47.05 57.52 52.74 54.04 55.53 54.33 50.37 53.27 53.43 52.85 52.77 56.79 

4 60.24 62.18 62.68 60.61 61.20 60.39 62.25 66.62 63.02 57.10 61.94 61.02 61.63 

5 58.73 56.54 58.42 56.00 57.91 53.66 57.59 59.04 58.27 63.76 57.08 52.30 56.07 

6 67.03 65.33 66.16 69.17 65.19 66.94 62.60 60.13 64.29 66.77 65.05 63.33 70.14 

7 62.14 65.58 64.40 59.08 67.72 64.92 66.07 63.80 62.78 63.97 64.08 65.62 63.89 

8 68.84 71.50 66.10 64.10 69.45 69.38 68.96 68.05 62.77 71.48 65.02 68.52 72.59 

9 56.39 56.81 58.98 54.72 55.04 58.47 57.13 56.42 58.64 55.30 56.60 58.52 57.67 

10 70.74 66.97 69.01 66.62 71.90 65.64 69.84 67.26 68.68 71.12 65.57 68.55 68.00 

11 58.41 63.30 59.09 61.02 60.84 61.38 61.22 66.58 66.55 62.03 62.45 58.96 59.62 

12 66.42 60.68 62.38 64.89 59.55 65.84 62.51 62.23 62.92 61.48 63.66 57.70 63.90 

13 55.63 56.87 55.65 50.10 54.25 54.14 49.60 52.01 53.19 48.67 48.40 54.34 52.24 

14 61.73 62.88 61.55 60.48 61.00 59.78 61.58 66.35 59.46 60.15 62.60 63.58 65.18 

15 57.63 57.64 60.51 54.27 53.84 63.85 59.82 64.39 60.90 59.71 59.81 59.69 60.49 

16 61.10 58.91 56.64 62.80 59.11 65.96 61.82 56.83 62.20 59.63 59.32 58.64 56.83 

17 63.17 58.60 61.86 57.86 63.64 56.52 59.48 58.45 58.81 60.06 62.13 63.39 58.73 

18 58.00 58.03 57.86 55.33 55.75 60.94 60.63 59.84 60.55 62.17 60.82 60.46 64.98 

19 61.62 62.13 58.75 60.84 54.11 63.21 58.11 55.22 55.72 61.69 62.59 58.38 58.01 

20 61.98 64.97 61.65 61.99 60.30 60.76 55.30 59.07 59.33 58.88 57.08 57.83 61.02 
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Table C.6 (cont’d) Data generated at experimental design points (scenario 8) 

  

  

Design 

Setting 
y2,14 y2,15 y2,16 y2,17 y2,18 y2,19 y2,20 y2,21 y2,22 y2,23 y2,24 y2,25 

1 57.32 51.48 50.38 54.91 50.89 53.44 49.01 53.35 48.99 52.66 53.40 50.24 

2 60.70 64.89 66.65 65.89 64.66 63.44 66.18 64.27 64.30 63.75 62.30 60.08 

3 52.61 50.94 53.51 50.24 51.29 55.12 55.69 53.31 55.31 51.93 51.86 51.93 

4 58.83 63.68 65.19 62.34 59.29 62.92 68.11 64.09 56.78 61.56 61.74 58.17 

5 60.65 56.41 59.50 60.30 52.49 57.94 58.48 54.89 57.68 60.76 58.71 58.20 

6 63.61 66.28 65.98 64.70 69.50 65.05 60.26 65.58 66.98 61.60 65.89 65.20 

7 69.55 66.99 58.47 58.61 62.54 63.99 63.63 65.46 62.19 62.03 62.37 65.48 

8 64.32 66.20 68.35 72.42 68.66 63.33 65.52 73.06 71.99 70.81 64.71 66.23 

9 55.76 58.43 56.24 50.50 57.13 58.06 56.52 56.66 58.34 54.18 50.24 60.28 

10 69.79 67.97 66.28 69.36 70.74 70.60 67.85 68.05 69.89 68.27 67.38 69.60 

11 58.34 61.33 59.31 63.65 62.93 61.96 60.53 63.21 62.62 67.56 61.01 61.76 

12 60.80 65.13 64.48 65.23 67.44 58.40 62.89 62.65 62.15 63.88 59.66 66.77 

13 53.37 52.81 52.71 50.51 54.41 51.94 50.10 55.36 52.74 49.69 54.27 56.96 

14 56.01 60.65 62.06 68.34 63.44 60.11 61.40 62.90 65.97 61.54 65.17 64.19 

15 63.57 58.06 61.94 58.96 62.86 62.29 58.86 61.91 62.68 57.76 59.72 58.79 

16 60.40 60.86 61.57 61.54 52.84 59.64 62.32 58.22 62.47 59.50 63.82 63.42 

17 63.44 59.67 61.07 58.95 64.55 59.61 60.61 55.33 58.78 61.96 58.53 60.76 

18 54.77 62.21 61.66 60.01 58.72 61.91 61.10 61.72 63.70 63.02 58.10 64.88 

19 63.69 58.61 59.07 62.36 62.32 58.99 55.23 55.64 61.82 56.72 60.67 56.04 

20 56.74 56.22 61.96 65.32 57.28 60.66 58.30 58.76 58.60 61.00 64.10 55.24 
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Table C.7 Estimated model parameters (scenario 5) 

  

 Table C.8 Prediction at the center point (scenario 5) 

Real 

MVR 

   (Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.72 59.40 80.72 59.40 80.57 58.98 80.72 59.40 

 

Table C.9 Prediction at the corner point (scenario 5) 

Real 

MVR 

    (Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 68.00 95.31 68.62 95.31 68.62 95.13 68.85 95.31 68.62 

 

 

 

 

 Real 

MVR 

 (Variance 

Known) 

OLS WLS MVR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.72 59.40 80.72 59.40 80.57 58.98 80.72 59.40 

𝛽̂1 1.00 4.00 1.48 3.99 1.48 3.99 1.11 3.94 1.48 3.99 

𝛽̂2 4.00 1.00 4.17 1.23 4.17 1.23 4.28 1.21 4.17 1.23 

𝛽̂3 6.00 3.00 5.99 3.07 5.99 3.07 6.16 3.07 5.99 3.07 

𝛽̂11 -2.00 1.00 -1.93 1.32 -1.93 1.32 -2.04 1.48 -1.93 1.32 

𝛽̂22 3.00 1.00 2.14 0.91 2.14 0.91 2.47 1.02 2.14 0.91 

𝛽̂33 -5.00 -1.00 -5.05 -0.74 -5.05 -0.74 -5.04 -0.60 -5.05 -0.74 

𝛽̂12 2.00 -1.00 1.14 -1.11 1.14 -1.11 1.53 -1.04 1.14 -1.11 

𝛽̂13 12.00 -1.00 11.52 -1.01 11.52 -1.01 11.28 -0.94 11.52 -1.01 

𝛽̂23 -4.00 1.00 -4.86 1.56 -4.86 1.56 -5.20 1.73 -4.86 1.56 
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Table C.10 Estimated model parameters (scenario 6) 

  

 Table C.11 Prediction at the center point (scenario 6) 

Real 

MVR 

   (Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.21 59.73 80.21 59.73 80.16 59.71 80.21 59.73 

 

Table C.12 Prediction at the corner point (scenario 6) 

Real 

MVR 

    (Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 68.00 96.58 67.74 96.58 67.74 96.41 67.68 96.58 67.74 

 

 

 

 

 

 Real 

MVR 

 (Variance 

Known) 

OLS WLS MVR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.21 59.73 80.21 59.73 80.16 59.71 80.21 59.73 

𝛽̂1 1.00 4.00 0.76 4.00 0.76 4.00 0.74 3.98 0.76 4.00 

𝛽̂2 4.00 1.00 3.49 0.78 3.49 0.78 3.48 0.77 3.49 0.78 

𝛽̂3 6.00 3.00 5.80 3.01 5.80 3.01 5.82 3.01 5.80 3.01 

𝛽̂11 -2.00 1.00 -2.07 0.83 -2.07 0.83 -2.12 0.84 -2.07 0.83 

𝛽̂22 3.00 1.00 2.46 1.17 2.46 1.17 2.47 1.19 2.46 1.17 

𝛽̂33 -5.00 -1.00 -4.88 -0.86 -4.88 -0.86 -4.85 -0.87 -4.88 -0.86 

𝛽̂12 2.00 -1.00 2.24 -0.85 2.24 -0.85 2.26 -0.88 2.24 -0.85 

𝛽̂13 12.00 -1.00 11.90 -1.12 11.90 -1.12 11.84 -1.12 11.90 -1.12 

𝛽̂23 -4.00 1.00 -3.32 1.05 -3.32 1.05 -3.39 1.06 -3.32 1.05 
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Table C.13 Estimated model parameters (scenario 7) 

  

 Table C.14 Prediction at the center point (scenario 7) 

Real 

MVR 

    (Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.72 60.06 80.72 60.06 80.57 60.37 80.72 60.06 

 

Table C.15 Prediction at the corner point (scenario 7) 

Real 

MVR 

    (Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 68.00 95.31 67.50 95.31 67.50 95.13 67.50 95.31 67.50 

 

 

 

 

 Real 

MVR 

 (Variance 

Known) 

OLS WLS MVR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.72 60.06 80.72 60.06 80.57 60.37 80.72 60.06 

𝛽̂1 1.00 4.00 1.48 4.22 1.48 4.22 1.11 4.00 1.48 4.22 

𝛽̂2 4.00 1.00 4.17 1.18 4.17 1.18 4.28 1.35 4.17 1.18 

𝛽̂3 6.00 3.00 5.99 3.03 5.99 3.03 6.16 3.14 5.99 3.03 

𝛽̂11 -2.00 1.00 -1.93 1.18 -1.93 1.18 -2.04 1.05 -1.93 1.18 

𝛽̂22 3.00 1.00 2.14 0.56 2.14 0.56 2.47 0.64 2.14 0.56 

𝛽̂33 -5.00 -1.00 -5.05 -0.90 -5.05 -0.90 -5.04 -1.35 -5.05 -0.90 

𝛽̂12 2.00 -1.00 1.14 -1.45 1.14 -1.45 1.53 -1.07 1.14 -1.45 

𝛽̂13 12.00 -1.00 11.52 -1.23 11.52 -1.23 11.28 -1.30 11.52 -1.23 

𝛽̂23 -4.00 1.00 -4.86 0.86 -4.86 0.86 -5.20 0.65 -4.86 0.86 
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Table C.16 Estimated model parameters (scenario 8) 

  

 Table C.17 Prediction at the center point (scenario 8) 

Real 

MVR 

    (Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.21 59.97 80.21 59.97 80.16 60.00 80.21 59.97 

 

Table C.18 Prediction at the corner point (scenario 8) 

Real 

MVR 

    (Variance 

Known) 

OLS WLS MVR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 68.00 96.58 67.69 96.58 67.69 96.41 67.48 96.58 67.69 

 

 

  

 Real 

MVR 

 (Variance 

Known) 

OLS WLS MVR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.21 59.97 80.21 59.97 80.16 60.00 80.21 59.97 

𝛽̂1 1.00 4.00 0.76 3.89 0.76 3.89 0.74 3.83 0.76 3.89 

𝛽̂2 4.00 1.00 3.49 0.67 3.49 0.67 3.48 0.65 3.49 0.67 

𝛽̂3 6.00 3.00 5.80 2.91 5.80 2.91 5.82 2.91 5.80 2.91 

𝛽̂11 -2.00 1.00 -2.07 0.89 -2.07 0.89 -2.12 0.85 -2.07 0.89 

𝛽̂22 3.00 1.00 2.46 0.83 2.46 0.83 2.47 0.82 2.46 0.83 

𝛽̂33 -5.00 -1.00 -4.88 -0.88 -4.88 -0.88 -4.85 -0.90 -4.88 -0.88 

𝛽̂12 2.00 -1.00 2.24 -0.82 2.24 -0.82 2.26 -0.85 2.24 -0.82 

𝛽̂13 12.00 -1.00 11.90 -1.10 11.90 -1.10 11.84 -1.13 11.90 -1.10 

𝛽̂23 -4.00 1.00 -3.32 1.34 -3.32 1.34 -3.39 1.30 -3.32 1.34 
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APPENDIX D  

 

 

GENERATED DATA AND MODEL PARAMETER ESTIMATES UNDER 

SCENARIOS 9-12: SUR CASE 

 

 

 

Table D.1 True mean, variance and covariance values at experimental design 

points (scenarios 9&10) 

Design 

Setting 
x1 x2 x3 µ1 µ2 𝜎11 𝜎22 𝜎12 

1 -1 -1 -1 75.00 53.00 20.09 7.39 3.65 

2 1 -1 -1 49.00 61.00 20.09 7.39 3.65 

3 -1 1 -1 87.00 53.00 20.09 7.39 3.65 

4 1 1 -1 69.00 61.00 20.09 7.39 3.65 

5 -1 -1 1 71.00 59.00 20.09 7.39 3.65 

6 1 -1 1 93.00 67.00 20.09 7.39 3.65 

7 -1 1 1 67.00 59.00 20.09 7.39 3.65 

8 1 1 1 97.00 67.00 20.09 7.39 3.65 

9 -1.68 0 0 72.68 53.28 20.09 7.39 3.65 

10 1.68 0 0 76.04 66.72 20.09 7.39 3.65 

11 0 -1.68 0 81.75 60.00 20.09 7.39 3.65 

12 0 1.68 0 95.19 60.00 20.09 7.39 3.65 

13 0 0 -1.68 55.81 54.96 20.09 7.39 3.65 

14 0 0 1.68 75.97 65.04 20.09 7.39 3.65 

15 0 0 0 80.00 60.00 20.09 7.39 3.65 

16 0 0 0 80.00 60.00 20.09 7.39 3.65 

17 0 0 0 80.00 60.00 20.09 7.39 3.65 

18 0 0 0 80.00 60.00 20.09 7.39 3.65 

19 0 0 0 80.00 60.00 20.09 7.39 3.65 

20 0 0 0 80.00 60.00 20.09 7.39 3.65 
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Table D.2 True mean, variance and covariance values at experimental design 

points (scenarios 11&12) 

Design 

Setting 
x1 x2 x3 µ1 µ2 𝜎11 𝜎22 𝜎12 

1 -1 -1 -1 75.00 53.00 20.09 7.39 10.96 

2 1 -1 -1 49.00 61.00 20.09 7.39 10.96 

3 -1 1 -1 87.00 53.00 20.09 7.39 10.96 

4 1 1 -1 69.00 61.00 20.09 7.39 10.96 

5 -1 -1 1 71.00 59.00 20.09 7.39 10.96 

6 1 -1 1 93.00 67.00 20.09 7.39 10.96 

7 -1 1 1 67.00 59.00 20.09 7.39 10.96 

8 1 1 1 97.00 67.00 20.09 7.39 10.96 

9 -1.68 0 0 72.68 53.28 20.09 7.39 10.96 

10 1.68 0 0 76.04 66.72 20.09 7.39 10.96 

11 0 -1.68 0 81.75 60.00 20.09 7.39 10.96 

12 0 1.68 0 95.19 60.00 20.09 7.39 10.96 

13 0 0 -1.68 55.81 54.96 20.09 7.39 10.96 

14 0 0 1.68 75.97 65.04 20.09 7.39 10.96 

15 0 0 0 80.00 60.00 20.09 7.39 10.96 

16 0 0 0 80.00 60.00 20.09 7.39 10.96 

17 0 0 0 80.00 60.00 20.09 7.39 10.96 

18 0 0 0 80.00 60.00 20.09 7.39 10.96 

19 0 0 0 80.00 60.00 20.09 7.39 10.96 

20 0 0 0 80.00 60.00 20.09 7.39 10.96 
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Table D.3 Data generated at experimental design points (scenario 9) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y2,1 y2,2 y2,3 y2,4 y2,5 

1 73.06 67.54 75.56 76.29 69.86 55.74 54.73 53.00 54.08 52.52 

2 48.16 52.25 46.36 58.78 48.39 61.14 64.36 60.67 62.53 58.73 

3 88.32 81.01 90.20 94.28 83.90 55.46 55.16 49.45 50.59 53.92 

4 67.21 72.09 72.66 72.19 74.78 62.41 64.65 58.55 61.53 61.65 

5 63.81 72.15 66.27 77.34 67.39 59.06 59.78 55.75 54.53 58.19 

6 88.47 95.75 95.28 100.58 95.65 64.51 68.49 64.80 68.33 67.36 

7 67.00 65.58 71.91 58.60 68.92 61.32 60.64 61.39 57.58 61.10 

8 99.55 95.85 95.31 95.67 90.39 66.86 67.10 67.51 70.50 64.89 

9 75.47 76.26 76.89 68.23 73.63 54.41 51.32 52.12 55.28 53.11 

10 77.78 76.43 73.19 73.53 78.02 64.57 68.82 67.68 64.13 66.39 

11 76.42 71.88 86.17 79.42 83.21 59.64 58.26 58.20 57.12 59.30 

12 89.87 90.45 101.79 95.44 89.73 58.93 56.21 57.70 59.37 61.48 

13 56.38 58.75 50.57 53.74 54.63 51.92 52.07 56.42 54.61 53.07 

14 79.58 77.01 71.53 81.97 77.27 69.53 68.18 62.46 62.78 65.09 

15 78.52 76.22 82.23 86.67 77.55 57.53 58.67 62.13 59.00 56.44 

16 79.46 79.71 82.17 77.33 79.33 58.77 59.74 64.38 57.94 56.38 

17 82.10 75.95 80.16 77.19 82.40 61.82 58.73 54.70 59.83 64.57 

18 84.56 72.92 79.65 76.95 75.41 57.63 59.46 58.82 59.59 58.21 

19 77.92 81.66 83.26 89.47 73.92 56.97 62.99 59.58 58.14 59.71 

20 86.96 83.17 88.77 82.26 88.36 60.39 57.62 61.05 63.50 58.63 
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Table D.4 Data generated at experimental design points (scenario 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y1,6 y1,7 y1,8 y1,9 y1,10 y1,11 y1,12 y1,13 

1 73.06 67.54 75.56 76.29 69.86 80.34 80.33 74.83 76.47 75.78 74.16 78.25 72.36 

2 44.47 51.75 51.28 56.58 51.65 46.12 50.70 44.48 48.91 48.78 49.00 47.58 53.91 

3 81.68 77.13 91.42 84.68 88.47 88.05 87.10 82.50 82.76 85.32 81.69 82.27 93.60 

4 68.46 68.71 71.17 66.33 68.33 67.05 68.64 75.88 66.28 62.96 71.10 64.95 69.16 

5 73.85 68.30 73.47 66.07 71.39 62.02 68.79 73.07 69.56 76.54 68.17 60.58 65.48 

6 97.44 93.98 94.17 98.44 91.77 92.40 87.31 85.54 89.85 94.26 90.57 87.02 97.81 

7 62.98 67.61 66.38 61.79 72.31 66.93 69.40 63.79 64.06 68.41 67.48 75.28 65.77 

8 98.98 102.74 94.77 91.99 100.62 97.18 93.61 96.60 88.00 101.86 92.60 93.91 103.00 

9 72.35 73.93 78.83 73.48 70.25 80.00 76.37 73.71 75.69 70.40 76.51 73.88 75.48 

10 75.51 76.79 73.79 72.88 78.31 74.15 77.06 71.74 75.38 79.37 72.04 76.66 74.98 

11 75.28 84.49 75.82 78.78 81.09 82.86 81.40 89.54 89.02 84.55 82.16 78.13 79.68 

12 98.17 88.95 89.36 92.48 88.52 97.69 93.94 89.39 91.21 90.77 94.87 84.37 92.08 

13 60.93 62.76 62.01 52.41 57.79 59.89 50.99 56.71 59.23 50.03 51.54 59.30 55.78 

14 75.58 77.43 74.47 74.52 74.25 71.70 77.01 81.50 73.38 73.72 79.21 76.15 82.88 

15 78.33 76.27 81.29 71.85 72.95 89.03 79.68 91.78 78.91 80.78 84.14 79.20 77.66 

16 79.94 81.59 75.99 83.64 80.49 92.24 81.84 74.14 81.72 82.24 77.71 81.05 77.32 

17 83.40 76.90 83.05 75.19 84.03 70.48 81.28 76.71 76.53 80.68 78.49 84.35 79.52 

18 75.85 79.50 76.40 72.54 75.96 82.64 82.48 78.14 80.28 82.05 80.89 81.15 89.33 

19 81.98 82.53 76.89 83.74 69.97 84.92 79.99 72.76 74.49 80.93 80.99 75.49 77.97 

20 84.41 87.90 86.40 84.09 81.46 80.31 73.28 78.13 79.91 81.02 75.48 77.02 82.50 
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Table D.4 (cont’d) Data generated at experimental design points (scenario 10) 

 

 

 

Design 

Setting 
y1,14 y1,15 y1,16 y1,17 y1,18 y1,19 y1,20 y1,21 y1,22 y1,23 y1,24 y1,25 

1 84.78 74.39 75.51 79.78 75.27 74.57 71.27 76.32 69.01 78.20 82.28 71.90 

2 40.60 50.92 53.01 52.28 51.59 49.18 52.03 51.55 47.85 47.31 47.67 42.39 

3 87.25 81.54 86.82 81.94 80.95 85.83 91.27 87.58 89.94 81.77 84.94 85.82 

4 66.19 71.40 71.48 68.09 59.79 69.59 76.14 73.56 61.92 68.65 65.95 64.41 

5 75.73 70.49 72.70 75.23 61.50 68.11 67.84 66.44 70.18 77.82 70.83 76.50 

6 89.81 92.95 93.00 91.88 94.78 91.82 85.54 88.39 94.09 87.37 91.44 88.78 

7 76.92 73.76 58.28 59.47 64.43 66.17 67.04 70.75 63.76 63.77 66.10 66.91 

8 92.93 95.15 94.73 104.26 97.36 92.16 91.96 104.78 105.68 104.33 91.37 96.04 

9 67.98 79.56 74.62 64.08 74.78 78.39 75.54 78.86 78.59 68.60 62.34 80.69 

10 75.70 74.43 66.72 75.39 82.28 78.96 74.35 73.07 77.15 74.32 73.67 76.28 

11 75.45 80.07 79.64 89.60 85.12 82.04 80.44 82.12 85.18 91.77 83.21 85.62 

12 88.95 96.66 97.87 95.85 94.73 83.38 95.31 91.26 94.00 93.72 90.00 97.79 

13 58.16 61.92 57.97 52.28 59.18 55.06 52.15 65.19 56.17 51.61 58.66 63.35 

14 68.34 71.34 72.55 85.72 77.90 73.98 76.10 74.55 80.35 76.05 79.63 79.12 

15 86.42 76.10 83.62 77.71 83.33 83.80 76.28 82.39 84.63 75.29 81.62 79.84 

16 80.09 81.88 85.34 83.46 68.15 81.28 83.70 79.96 83.85 83.47 85.85 85.52 

17 84.54 77.87 80.31 81.79 85.00 82.78 78.71 73.85 76.93 81.49 75.53 81.31 

18 69.79 81.52 81.30 82.97 77.40 83.98 80.77 83.80 84.32 85.92 79.71 85.90 

19 86.27 77.93 80.15 83.58 84.02 80.62 72.74 72.62 81.92 76.70 82.53 73.80 

20 74.67 76.52 81.21 86.88 75.28 82.80 76.43 78.59 77.30 85.64 83.85 70.56 
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Table D.4 (cont’d) Data generated at experimental design points (scenario 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design 

Setting 
y2,1 y2,2 y2,3 y2,4 y2,5 y2,6 y2,7 y2,8 y2,9 y2,10 y2,11 y2,12 y2,13 

1 54.87 54.89 48.97 49.50 53.55 52.93 55.76 55.08 55.11 56.49 54.58 56.68 49.40 

2 59.57 61.81 62.23 66.12 60.57 62.09 63.38 62.62 58.41 61.51 61.62 58.13 59.97 

3 48.89 47.78 56.22 52.61 51.59 55.28 53.62 49.61 55.70 53.45 55.87 55.09 52.43 

4 57.70 61.70 60.28 60.66 59.92 59.44 61.90 64.14 65.98 56.38 58.73 62.95 60.02 

5 57.71 58.53 57.42 59.63 58.42 58.61 60.33 59.17 61.04 66.00 59.85 57.07 60.36 

6 64.76 64.53 66.17 68.44 66.47 69.65 65.33 61.71 66.45 67.41 67.38 67.21 71.19 

7 58.99 61.85 60.50 53.51 61.77 61.09 61.09 61.81 59.31 57.51 58.70 54.16 60.00 

8 66.84 68.84 65.11 63.55 66.50 69.84 72.54 67.52 64.67 69.70 64.94 71.27 70.96 

9 54.24 53.56 53.35 49.45 53.41 51.05 51.78 52.93 55.79 53.84 50.49 57.34 53.87 

10 69.88 60.32 67.83 63.53 69.58 60.09 66.33 66.09 65.50 66.80 62.07 63.91 64.41 

11 60.58 61.94 61.52 62.73 60.00 59.39 60.53 64.00 64.48 59.10 62.44 58.90 58.75 

12 61.17 57.95 61.25 63.60 55.91 60.39 56.89 60.89 60.57 57.85 58.49 56.08 61.83 

13 57.43 58.27 56.36 53.93 57.58 55.20 54.28 53.76 53.80 53.21 51.10 56.24 55.22 

14 64.37 65.01 65.10 62.70 64.11 64.03 62.58 68.48 61.63 62.79 62.60 67.83 64.53 

15 56.51 58.61 59.82 55.71 53.65 59.29 59.93 57.67 63.08 58.58 55.40 60.14 63.43 

16 62.47 56.00 56.70 62.44 57.56 60.65 62.12 58.99 63.07 56.93 60.83 55.95 55.77 

17 63.49 60.07 60.98 60.18 63.89 62.02 57.57 59.93 60.90 59.44 66.20 63.01 57.71 

18 59.84 56.20 58.96 57.33 54.78 59.40 58.86 61.53 60.93 62.66 60.90 59.83 61.46 

19 61.55 62.09 60.42 58.05 57.28 62.04 55.88 56.86 56.20 62.77 64.66 61.02 57.69 

20 59.87 62.87 57.13 60.21 59.16 61.34 56.52 59.87 58.63 56.52 58.18 58.27 59.70 
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Table D.4 (cont’d) Data generated at experimental design points (scenario 10) 

  

  

 

  

Design 

Setting 
y2,14 y2,15 y2,16 y2,17 y2,18 y2,19 y2,20 y2,21 y2,22 y2,23 y2,24 y2,25 

1 54.73 52.48 48.93 54.54 50.31 56.59 50.23 54.61 52.48 51.19 48.70 52.28 

2 62.28 61.01 62.74 61.82 59.82 59.58 62.70 59.00 62.82 62.17 58.63 59.11 

3 49.70 51.82 52.11 49.89 53.19 56.65 52.36 50.91 52.90 53.77 50.41 49.67 

4 56.91 62.25 65.48 62.67 64.40 62.42 67.13 60.95 56.76 60.39 63.53 57.27 

5 60.01 56.04 60.57 59.76 56.55 61.78 63.26 56.81 59.12 58.15 60.73 53.87 

6 65.00 67.67 66.97 65.29 72.86 66.12 61.99 70.75 68.04 63.07 68.33 69.52 

7 61.11 58.70 55.72 54.83 58.41 59.83 58.15 58.39 58.32 57.96 56.35 62.33 

8 63.08 64.93 70.06 69.33 68.09 61.69 66.67 70.19 66.93 65.73 65.49 64.09 

9 57.28 51.40 51.60 49.73 53.39 51.79 51.30 48.24 52.18 53.21 50.92 54.30 

10 67.61 64.91 69.01 66.97 63.03 66.07 64.72 66.45 66.35 65.68 64.39 66.60 

11 60.26 62.11 58.14 57.54 60.48 61.49 59.98 64.16 59.77 63.89 58.23 57.43 

12 58.22 59.88 57.22 60.93 66.89 58.60 56.33 59.93 56.06 60.12 54.67 62.34 

13 55.28 50.24 54.03 54.96 56.53 55.29 54.20 52.51 55.91 53.86 56.74 57.88 

14 59.18 66.31 68.16 68.56 65.75 62.45 63.11 67.97 68.82 63.48 67.80 66.18 

15 61.31 59.71 60.59 60.03 62.89 61.16 61.28 61.75 61.18 59.87 57.75 57.52 

16 60.78 59.98 58.04 59.87 56.33 57.91 61.32 56.13 61.51 55.38 62.44 61.89 

17 62.93 61.43 62.03 55.88 64.90 56.33 62.64 56.00 60.44 62.77 61.31 60.33 

18 58.89 63.30 62.33 57.02 59.84 60.15 61.62 59.91 63.73 60.61 56.14 64.69 

19 61.73 59.04 57.81 61.55 61.02 57.17 56.91 57.94 62.05 56.16 58.91 57.62 

20 58.25 55.25 63.06 64.69 58.81 58.60 59.90 58.71 59.68 56.47 65.07 59.13 
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Table D.5 Data generated at experimental design points (scenario 11) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y2,1 y2,2 y2,3 y2,4 y2,5 

1 73.06 67.54 75.56 76.29 69.86 53.35 50.33 53.26 54.09 50.40 

2 48.16 52.25 46.36 58.78 48.39 60.68 64.04 59.63 66.23 59.68 

3 88.32 81.01 90.20 94.28 83.90 54.74 51.22 52.86 55.26 51.98 

4 67.21 72.09 72.66 72.19 74.78 60.81 64.10 61.57 62.72 63.97 

5 63.81 72.15 66.27 77.34 67.39 55.70 59.89 55.32 59.89 56.96 

6 88.47 95.75 95.28 100.58 95.65 63.76 68.95 67.05 71.12 68.39 

7 67.00 65.58 71.91 58.60 68.92 60.06 59.09 62.36 54.46 60.85 

8 99.55 95.85 95.31 95.67 90.39 68.11 66.51 66.45 67.99 62.98 

9 75.47 76.26 76.89 68.23 73.63 55.09 54.04 54.70 52.14 53.64 

10 77.78 76.43 73.19 73.53 78.02 66.55 67.86 65.84 64.38 67.49 

11 76.42 71.88 86.17 79.42 83.21 57.37 54.64 61.22 57.61 60.36 

12 89.87 90.45 101.79 95.44 89.73 57.05 56.08 62.00 59.83 58.15 

13 56.38 58.75 50.57 53.74 54.63 53.84 55.00 53.21 53.85 53.55 

14 79.58 77.01 71.53 81.97 77.27 68.76 66.96 61.81 66.79 65.66 

15 78.52 76.22 82.23 86.67 77.55 58.19 57.64 62.00 62.63 57.24 

16 79.46 79.71 82.17 77.33 79.33 59.19 59.75 63.01 57.82 58.04 

17 82.10 75.95 80.16 77.19 82.40 61.80 57.55 57.65 58.62 63.20 

18 84.56 72.92 79.65 76.95 75.41 61.03 56.48 59.30 58.40 57.06 

19 77.92 81.66 83.26 89.47 73.92 57.65 62.14 61.32 63.53 57.05 

20 86.96 83.17 88.77 82.26 88.36 63.40 60.38 64.54 62.64 63.24 
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Table D.6 Data generated at experimental design points (scenario 12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design 

Setting 
y1,1 y1,2 y1,3 y1,4 y1,5 y1,6 y1,7 y1,8 y1,9 y1,10 y1,11 y1,12 y1,13 

1 73.06 67.54 75.56 76.29 69.86 80.34 80.33 74.83 76.47 75.78 74.16 78.25 72.36 

2 44.47 51.75 51.28 56.58 51.65 46.12 50.70 44.48 48.91 48.78 49.00 47.58 53.91 

3 81.68 77.13 91.42 84.68 88.47 88.05 87.10 82.50 82.76 85.32 81.69 82.27 93.60 

4 68.46 68.71 71.17 66.33 68.33 67.05 68.64 75.88 66.28 62.96 71.10 64.95 69.16 

5 73.85 68.30 73.47 66.07 71.39 62.02 68.79 73.07 69.56 76.54 68.17 60.58 65.48 

6 97.44 93.98 94.17 98.44 91.77 92.40 87.31 85.54 89.85 94.26 90.57 87.02 97.81 

7 62.98 67.61 66.38 61.79 72.31 66.93 69.40 63.79 64.06 68.41 67.48 75.28 65.77 

8 98.98 102.74 94.77 91.99 100.62 97.18 93.61 96.60 88.00 101.86 92.60 93.91 103.00 

9 72.35 73.93 78.83 73.48 70.25 80.00 76.37 73.71 75.69 70.40 76.51 73.88 75.48 

10 75.51 76.79 73.79 72.88 78.31 74.15 77.06 71.74 75.38 79.37 72.04 76.66 74.98 

11 75.28 84.49 75.82 78.78 81.09 82.86 81.40 89.54 89.02 84.55 82.16 78.13 79.68 

12 98.17 88.95 89.36 92.48 88.52 97.69 93.94 89.39 91.21 90.77 94.87 84.37 92.08 

13 60.93 62.76 62.01 52.41 57.79 59.89 50.99 56.71 59.23 50.03 51.54 59.30 55.78 

14 75.58 77.43 74.47 74.52 74.25 71.70 77.01 81.50 73.38 73.72 79.21 76.15 82.88 

15 78.33 76.27 81.29 71.85 72.95 89.03 79.68 91.78 78.91 80.78 84.14 79.20 77.66 

16 79.94 81.59 75.99 83.64 80.49 92.24 81.84 74.14 81.72 82.24 77.71 81.05 77.32 

17 83.40 76.90 83.05 75.19 84.03 70.48 81.28 76.71 76.53 80.68 78.49 84.35 79.52 

18 75.85 79.50 76.40 72.54 75.96 82.64 82.48 78.14 80.28 82.05 80.89 81.15 89.33 

19 81.98 82.53 76.89 83.74 69.97 84.92 79.99 72.76 74.49 80.93 80.99 75.49 77.97 

20 84.41 87.90 86.40 84.09 81.46 80.31 73.28 78.13 79.91 81.02 75.48 77.02 82.50 



 

 

 1
2
2
 

Table D.6 (cont’d) Data generated at experimental design points (scenario 12) 

 

 

  

Design 

Setting 
y1,14 y1,15 y1,16 y1,17 y1,18 y1,19 y1,20 y1,21 y1,22 y1,23 y1,24 y1,25 

1 84.78 74.39 75.51 79.78 75.27 74.57 71.27 76.32 69.01 78.20 82.28 71.90 

2 40.60 50.92 53.01 52.28 51.59 49.18 52.03 51.55 47.85 47.31 47.67 42.39 

3 87.25 81.54 86.82 81.94 80.95 85.83 91.27 87.58 89.94 81.77 84.94 85.82 

4 66.19 71.40 71.48 68.09 59.79 69.59 76.14 73.56 61.92 68.65 65.95 64.41 

5 75.73 70.49 72.70 75.23 61.50 68.11 67.84 66.44 70.18 77.82 70.83 76.50 

6 89.81 92.95 93.00 91.88 94.78 91.82 85.54 88.39 94.09 87.37 91.44 88.78 

7 76.92 73.76 58.28 59.47 64.43 66.17 67.04 70.75 63.76 63.77 66.10 66.91 

8 92.93 95.15 94.73 104.26 97.36 92.16 91.96 104.78 105.68 104.33 91.37 96.04 

9 67.98 79.56 74.62 64.08 74.78 78.39 75.54 78.86 78.59 68.60 62.34 80.69 

10 75.70 74.43 66.72 75.39 82.28 78.96 74.35 73.07 77.15 74.32 73.67 76.28 

11 75.45 80.07 79.64 89.60 85.12 82.04 80.44 82.12 85.18 91.77 83.21 85.62 

12 88.95 96.66 97.87 95.85 94.73 83.38 95.31 91.26 94.00 93.72 90.00 97.79 

13 58.16 61.92 57.97 52.28 59.18 55.06 52.15 65.19 56.17 51.61 58.66 63.35 

14 68.34 71.34 72.55 85.72 77.90 73.98 76.10 74.55 80.35 76.05 79.63 79.12 

15 86.42 76.10 83.62 77.71 83.33 83.80 76.28 82.39 84.63 75.29 81.62 79.84 

16 80.09 81.88 85.34 83.46 68.15 81.28 83.70 79.96 83.85 83.47 85.85 85.52 

17 84.54 77.87 80.31 81.79 85.00 82.78 78.71 73.85 76.93 81.49 75.53 81.31 

18 69.79 81.52 81.30 82.97 77.40 83.98 80.77 83.80 84.32 85.92 79.71 85.90 

19 86.27 77.93 80.15 83.58 84.02 80.62 72.74 72.62 81.92 76.70 82.53 73.80 

20 74.67 76.52 81.21 86.88 75.28 82.80 76.43 78.59 77.30 85.64 83.85 70.56 
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Table D.6 (cont’d) Data generated at experimental design points (scenario 12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Design 

Setting 
y2,1 y2,2 y2,3 y2,4 y2,5 y2,6 y2,7 y2,8 y2,9 y2,10 y2,11 y2,12 y2,13 

1 52.96 50.41 51.42 52.00 50.87 55.44 56.73 53.87 54.64 54.96 53.34 56.19 50.14 

2 58.25 62.64 62.62 66.85 62.03 60.16 62.88 59.65 59.78 61.13 61.28 59.03 62.80 

3 48.66 46.05 56.52 51.74 53.04 54.53 53.33 49.37 52.27 52.43 51.85 51.77 55.79 

4 59.24 61.18 61.68 59.61 60.20 59.39 61.25 65.62 62.02 56.10 60.94 60.02 60.63 

5 59.73 57.54 59.42 57.00 58.91 54.66 58.59 60.04 59.27 64.76 58.08 53.30 57.07 

6 68.03 66.33 67.16 70.17 66.19 67.94 63.60 61.13 65.29 67.77 66.05 64.33 71.14 

7 57.14 60.58 59.40 54.08 62.72 59.92 61.07 58.80 57.78 58.97 59.08 60.62 58.89 

8 67.84 70.50 65.10 63.10 68.45 68.38 67.96 67.05 61.77 70.48 64.02 67.52 71.59 

9 53.57 53.99 56.16 51.90 52.22 55.65 54.30 53.60 55.82 52.48 53.78 55.69 54.85 

10 67.92 64.15 66.19 63.80 69.08 62.82 67.02 64.44 65.86 68.30 62.75 65.73 65.18 

11 57.27 62.16 57.95 59.87 59.69 60.23 60.08 65.43 65.41 60.89 61.31 57.82 58.47 

12 61.92 56.18 57.88 60.39 55.05 61.34 58.01 57.72 58.42 56.97 59.16 53.20 59.40 

13 58.46 59.69 58.47 52.92 57.07 56.96 52.42 54.83 56.01 51.49 51.22 57.16 55.07 

14 64.56 65.70 64.37 63.30 63.82 62.60 64.40 69.17 62.28 62.97 65.42 66.40 68.00 

15 57.63 57.64 60.51 54.27 53.84 63.85 59.82 64.39 60.90 59.71 59.81 59.69 60.49 

16 61.10 58.91 56.64 62.80 59.11 65.96 61.82 56.83 62.20 59.63 59.32 58.64 56.83 

17 63.17 58.60 61.86 57.86 63.64 56.52 59.48 58.45 58.81 60.06 62.13 63.39 58.73 

18 58.00 58.03 57.86 55.33 55.75 60.94 60.63 59.84 60.55 62.17 60.82 60.46 64.98 

19 61.62 62.13 58.75 60.84 54.11 63.21 58.11 55.22 55.72 61.69 62.59 58.38 58.01 

20 61.98 64.97 61.65 61.99 60.30 60.76 55.30 59.07 59.33 58.88 57.08 57.83 61.02 
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Table D.6 (cont’d) Data generated at experimental design points (scenario 12) 

 Design 

Setting 
y2,14 y2,15 y2,16 y2,17 y2,18 y2,19 y2,20 y2,21 y2,22 y2,23 y2,24 y2,25 

1 58.32 52.48 51.38 55.91 51.89 54.44 50.01 54.35 49.99 53.66 54.40 51.24 

2 57.70 61.89 63.65 62.89 61.66 60.44 63.18 61.27 61.30 60.75 59.30 57.08 

3 51.61 49.94 52.51 49.24 50.29 54.12 54.69 52.31 54.31 50.93 50.86 50.93 

4 57.83 62.68 64.19 61.34 58.29 61.92 67.11 63.09 55.78 60.56 60.74 57.17 

5 61.65 57.41 60.50 61.30 53.49 58.94 59.48 55.89 58.68 61.76 59.71 59.20 

6 64.61 67.28 66.98 65.70 70.50 66.05 61.26 66.58 67.98 62.60 66.89 66.20 

7 64.55 61.99 53.47 53.61 57.54 58.99 58.63 60.46 57.19 57.03 57.37 60.48 

8 63.32 65.20 67.35 71.42 67.66 62.33 64.52 72.06 70.99 69.81 63.71 65.23 

9 52.93 55.60 53.42 47.68 54.30 55.24 53.70 53.84 55.52 51.36 47.42 57.46 

10 66.97 65.15 63.46 66.53 67.92 67.78 65.02 65.22 67.07 65.45 64.56 66.78 

11 57.20 60.19 58.17 62.51 61.78 60.81 59.38 62.07 61.48 66.41 59.87 60.62 

12 56.30 60.63 59.97 60.73 62.94 53.90 58.38 58.15 57.65 59.37 55.16 62.27 

13 56.19 55.63 55.53 53.33 57.24 54.76 52.92 58.18 55.56 52.51 57.09 59.78 

14 58.83 63.47 64.88 71.16 66.26 62.94 64.22 65.72 68.80 64.36 68.00 67.02 

15 63.57 58.06 61.94 58.96 62.86 62.29 58.86 61.91 62.68 57.76 59.72 58.79 

16 60.40 60.86 61.57 61.54 52.84 59.64 62.32 58.22 62.47 59.50 63.82 63.42 

17 63.44 59.67 61.07 58.95 64.55 59.61 60.61 55.33 58.78 61.96 58.53 60.76 

18 54.77 62.21 61.66 60.01 58.72 61.91 61.10 61.72 63.70 63.02 58.10 64.88 

19 63.69 58.61 59.07 62.36 62.32 58.99 55.23 55.64 61.82 56.72 60.67 56.04 

20 56.74 56.22 61.96 65.32 57.28 60.66 58.30 58.76 58.60 61.00 64.10 55.24 
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Table D.7 Estimated model parameters (scenario 9) 

  

 Table D.8 Prediction at the center point (scenario 9) 

Real 

SUR    

(Variance 

Known) 

OLS WLS SUR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.89 59.74 80.72 59.74 80.57 59.48 80.78 59.74 

 

Table D.9 Prediction at the corner point (scenario 9) 

Real 

SUR 

(Variance 

Known) 

OLS WLS SUR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 67.00 94.91 66.80 95.31 66.80 95.13 66.23 95.17 66.80 

 

 

 

 

 Real 

SUR  

(Variance 

Known) 

OLS WLS SUR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.89 59.74 80.72 59.74 80.57 59.48 80.78 59.74 

𝛽̂1 1.00 4.00 1.48 3.99 1.48 3.99 1.11 3.75 1.48 3.99 

𝛽̂2 4.00 - 4.05 - 4.17 - 4.28 - 4.13 - 

𝛽̂3 6.00 3.00 5.99 3.07 5.99 3.07 6.16 2.99 5.99 3.07 

𝛽̂11 -2.00 - -2.09 - -1.93 - -2.04 - -1.99 - 

𝛽̂22 3.00 - 2.19 - 2.14 - 2.47 - 2.16 - 

𝛽̂33 -5.00 - -5.18 - -5.05 - -5.04 - -5.10 - 

𝛽̂12 2.00 - 1.20 - 1.14 - 1.53 - 1.16 - 

𝛽̂13 12.00 - 11.52 - 11.52 - 11.28 - 11.52 - 

𝛽̂23 -4.00 - -5.13 - -4.86 - -5.20 - -4.96 - 
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Table D.10 Estimated model parameters (scenario 10) 

  

 Table D.11 Prediction at the center point (scenario 10) 

Real 

SUR 

(Variance 

Known) 

OLS WLS SUR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.25 59.83 80.21 59.83 80.16 59.84 80.25 59.83 

 

Table D.12 Prediction at the corner point (scenario 10) 

Real 

SUR 

(Variance 

Known) 

OLS WLS SUR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 67.00 96.63 66.83 96.58 66.83 96.41 66.84 96.63 66.83 

 

 

 

 

 

 Real 

SUR  

(Variance 

Known) 

OLS WLS SUR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.25 59.83 80.21 59.83 80.16 59.84 80.25 59.83 

𝛽̂1 1.00 4.00 0.76 4.00 0.76 4.00 0.74 4.02 0.76 4.00 

𝛽̂2 4.00 - 3.60 - 3.49 - 3.48 - 3.60 - 

𝛽̂3 6.00 3.00 5.80 3.01 5.80 3.01 5.82 2.98 5.80 3.01 

𝛽̂11 -2.00 - -1.98 - -2.07 - -2.12 - -1.99 - 

𝛽̂22 3.00 - 2.38 - 2.46 - 2.47 - 2.38 - 

𝛽̂33 -5.00 - -4.95 - -4.88 - -4.85 - -4.95 - 

𝛽̂12 2.00 - 2.16 - 2.24 - 2.26 - 2.17 - 

𝛽̂13 12.00 - 11.96 - 11.90 - 11.84 - 11.95 - 

𝛽̂23 -4.00 - -3.34 - -3.32 - -3.39 - -3.34 - 
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Table D.13 Estimated model parameters (scenario 11) 

  

 Table D.14 Prediction at the center point (scenario 11) 

Real 

SUR 

(Variance 

Known) 

OLS WLS SUR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.56 59.95 80.72 59.95 80.57 60.03 80.55 59.95 

 

Table D.15 Prediction at the corner point (scenario 11) 

Real 

SUR 

(Variance 

Known) 

OLS WLS SUR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 67.00 96.34 67.19 95.31 67.19 95.13 67.45 96.40 67.19 

 

 

 

 

 Real 

SUR  

(Variance 

Known) 

OLS WLS SUR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.56 59.95 80.72 59.95 80.57 60.03 80.55 59.95 

𝛽̂1 1.00 4.00 1.48 4.22 1.48 4.22 1.11 4.03 1.48 4.22 

𝛽̂2 4.00 - 3.89 - 4.17 - 4.28 - 3.88 - 

𝛽̂3 6.00 3.00 5.99 3.03 5.99 3.03 6.16 3.38 5.99 3.03 

𝛽̂11 -2.00 - -2.20 - -1.93 - -2.04 - -2.21 - 

𝛽̂22 3.00 - 2.80 - 2.14 - 2.47 - 2.84 - 

𝛽̂33 -5.00 - -5.20 - -5.05 - -5.04 - -5.21 - 

𝛽̂12 2.00 - 1.81 - 1.14 - 1.53 - 1.85 - 

𝛽̂13 12.00 - 11.86 - 11.52 - 11.28 - 11.88 - 

𝛽̂23 -4.00 - -4.65 - -4.86 - -5.20 - -4.63 - 
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Table D.16 Estimated model parameters (scenario 12) 

  

 Table D.17 Prediction at the center point (scenario 12) 

Real 

SUR 

(Variance 

Known) 

OLS WLS SUR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

80.00 60.00 80.04 59.86 80.21 59.86 80.16 59.84 80.04 59.86 

 

Table D.18 Prediction at the corner point (scenario 12) 

Real 

SUR 

(Variance 

Known) 

OLS WLS SUR 

𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 𝑦̂1 𝑦̂2 

97.00 67.00 96.54 66.66 96.58 66.66 96.41 66.55 96.54 66.66 

 

  

 Real 

SUR  

(Variance 

Known) 

OLS WLS SUR 

𝛃̂ 
For 

y1 

For 

y2 

For 

y1 

For 

y2 

For 

y1 

For 

y2 

For   

y1 

For   

y2 

For 

y1 

For 

y2 

𝛽̂0 80.00 60.00 80.04 59.86 80.21 59.86 80.16 59.84 80.04 59.86 

𝛽̂1 1.00 4.00 0.76 3.89 0.76 3.89 0.74 3.82 0.76 3.89 

𝛽̂2 4.00 - 3.99 - 3.49 - 3.48 - 3.98 - 

𝛽̂3 6.00 3.00 5.80 2.91 5.80 2.91 5.82 2.89 5.80 2.91 

𝛽̂11 -2.00 - -1.91 - -2.07 - -2.12 - -1.91 - 

𝛽̂22 3.00 - 2.72 - 2.46 - 2.47 - 2.72 - 

𝛽̂33 -5.00 - -5.06 - -4.88 - -4.85 - -5.06 - 

𝛽̂12 2.00 - 1.97 - 2.24 - 2.26 - 1.98 - 

𝛽̂13 12.00 - 12.05 - 11.90 - 11.84 - 12.05 - 

𝛽̂23 -4.00 - -3.82 - -3.32 - -3.39 - -3.81 - 
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APPENDIX E  

 

 

DATA USED TO CONDUCT ANOVA AND RESULTS   

 

 

 

Table E.1 Data used in ANOVA 

No. 

Number of 

replications 

n 

Correlation 

Coefficient,  ρ 

Heterosce- 

dasticity  

(0: No, 1: Yes) 

Set of 

Predictors of 

the Responses  

(0: Same,         

1: Different) 

Position of 

the Design 

Point 

(0: Center,    

1: Corner) 

1 5 0 0 0 0 

2 5 0 0 0 1 

3 25 0 0 0 0 

4 25 0 0 0 1 

5 5 0 1 0 0 

6 5 0 1 0 1 

7 25 0 1 0 0 

8 25 0 1 0 1 

9 5 0.3 0 0 0 

10 5 0.3 0 0 1 

11 25 0.3 0 0 0 

12 25 0.3 0 0 1 

13 5 0.9 0 0 0 

14 5 0.9 0 0 1 

15 25 0.9 0 0 0 

16 25 0.9 0 0 1 

17 5 0.3 0 1 0 

18 5 0.3 0 1 1 

19 25 0.3 0 1 0 

20 25 0.3 0 1 1 

21 5 0.9 0 1 0 

22 5 0.9 0 1 1 

23 25 0.9 0 1 0 

24 25 0.9 0 1 1 
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Table E.1 Data used in ANOVA (cont’d)   

No. 

OLS 

Applicability  

(0: Not 

Applicable,  

1: 

Applicable) 

WLS 

Applicability 

(0: Not App.,     

1: App.) 

SUR 

Applicability 

(0: Not App., 

1: App.) 

dH 

BLUE 

dH 

OLS 

dH 

WLS 

dH 

SUR 

1 1 0 0 0.159 0.196 0.936 0.264 

2 1 0 0 0.242 0.272 0.863 0.319 

3 1 0 0 0.063 0.091 0.959 0.099 

4 1 0 0 0.058 0.088 0.906 0.096 

5 0 1 0 0.16 0.489 0.938 0.547 

6 0 1 0 0.261 0.993 0.506 0.965 

7 0 1 0 0.057 0.465 0.957 0.474 

8 0 1 0 0.022 0.989 0.473 0.984 

9 0 0 1 0.159 0.256 0.938 0.264 

10 0 0 1 0.242 0.308 0.854 0.319 

11 0 0 1 0.063 0.171 0.95 0.099 

12 0 0 1 0.058 0.172 0.897 0.096 

13 0 0 1 0.159 0.705 0.829 0.265 

14 0 0 1 0.242 0.718 0.795 0.32 

15 0 0 1 0.063 0.709 0.865 0.099 

16 0 0 1 0.058 0.71 0.829 0.096 

17 0 0 1 0.126 0.23 0.914 0.222 

18 0 0 1 0.22 0.27 0.846 0.274 

19 0 0 1 0.051 0.165 0.951 0.087 

20 0 0 1 0.045 0.167 0.909 0.084 

21 0 0 1 0.159 0.703 0.831 0.209 

22 0 0 1 0.229 0.719 0.877 0.255 

23 0 0 1 0.067 0.709 0.869 0.082 

24 0 0 1 0.064 0.709 0.83 0.079 
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Table E.1 Data used in ANOVA (cont’d)   

No. 
diffOLS=  

dHOLS - dHBLUE 

diffWLS= 

dHWLS-dHBLUE 

diffSUR=  

dHSUR-dHBLUE 

1 0.037 0.777 0.105 

2 0.03 0.621 0.077 

3 0.028 0.896 0.036 

4 0.03 0.848 0.038 

5 0.329 0.778 0.387 

6 0.732 0.245 0.704 

7 0.408 0.9 0.417 

8 0.967 0.451 0.962 

9 0.097 0.779 0.105 

10 0.066 0.612 0.077 

11 0.108 0.887 0.036 

12 0.114 0.839 0.038 

13 0.546 0.67 0.106 

14 0.476 0.553 0.078 

15 0.646 0.802 0.036 

16 0.652 0.771 0.038 

17 0.104 0.788 0.096 

18 0.05 0.626 0.054 

19 0.114 0.9 0.036 

20 0.122 0.864 0.039 

21 0.544 0.672 0.05 

22 0.49 0.648 0.026 

23 0.642 0.802 0.015 

24 0.645 0.766 0.015 
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Table E.2 Result of ANOVA analysis for logarithm of diffOLS values 

General Linear Model: logdiffOLS versus n, rho, heteroscedas, set of 

predi, position of , ...  

 
Method 

 

Factor coding  (-1, 0, +1) 

 

Stepwise Selection of Terms 

 

α to enter = 0.15, α to remove = 0.15 

 

Factor Information 

 

Factor            Type   Levels  Values 

n                 Fixed       2  5, 25 

rho               Fixed       3  0.0, 0.3, 0.9 

OLSapplicability  Fixed       2  0, 1 

 

Analysis of Variance 

 

Source              DF   Adj SS   Adj MS  F-Value  P-Value 

  n                  1  0.06056  0.06056     4.72    0.043 

  rho                2  2.96238  1.48119   115.37    0.000 

  OLSapplicability   1  3.13525  3.13525   244.20    0.000 

Error               19  0.24394  0.01284 

Total               23  6.26504 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.113309  96.11%     95.29%      92.97% 

 

Coefficients 

 

Term                 Coef  SE Coef  T-Value  P-Value   VIF 

Constant          -1.1346   0.0353   -32.11    0.000 

n 

  5               -0.0502   0.0231    -2.17    0.043  1.00 

rho 

  0.0              0.2530   0.0422     5.99    0.000  2.22 

  0.3             -0.5219   0.0353   -14.77    0.000  1.56 

OLSapplicability 

  0                0.6260   0.0401    15.63    0.000  1.67 
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Figure E.1 Residual plots for ANOVA analysis for logarithm of diffOLS values 

 

 

Figure E.2 Main effects plots for logarithm of diffOLS values   
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Table E.3 Result of ANOVA analysis for diffWLS values 

General Linear Model: diffWLS versus n, rho, heteroscedas, set of predi, 

position of , ...  
 
Method 

 

Factor coding  (-1, 0, +1) 

 

Stepwise Selection of Terms 

 

α to enter = 0.15, α to remove = 0.15 

 

Factor Information 

 

Factor                        Type   Levels  Values 

n                             Fixed       2  5, 25 

heteroscedasticity            Fixed       2  0, 1 

position of the design point  Fixed       2  0, 1 

 

Analysis of Variance 

 

Source                          DF   Adj SS    Adj MS  F-Value  P-Value 

  n                              1  0.15958  0.159577    16.94    0.001 

  heteroscedasticity             1  0.08808  0.088075     9.35    0.006 

  position of the design point   1  0.13605  0.136052    14.45    0.001 

Error                           20  0.18836  0.009418 

Total                           23  0.57207 

 

Model Summary 

 

        S    R-sq  R-sq(adj)  R-sq(pred) 

0.0970471  67.07%     62.13%      37.27% 

 

 

Coefficients 

 

Term                             Coef  SE Coef  T-Value  P-Value   VIF 

Constant                       0.6748   0.0266    25.39    0.000 

n 

  5                           -0.0815   0.0198    -4.12    0.001  1.00 

heteroscedasticity 

  0                            0.0813   0.0266     3.06    0.006  1.00 

position of the design point 

  0                            0.0753   0.0198     3.80    0.001  1.00 
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Figure E.3 Residual plots for ANOVA analysis for diffWLS values 

 

 

Figure E.4 Main effects plots for logarithm of diffWLS values 
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Table E.4 Result of ANOVA analysis for logarithm of diffSUR values 

General Linear Model: logdiffSUR versus n, heteroscedasticity  

 
Method 

 

Factor coding  (-1, 0, +1) 

 

Factor Information 

 

Factor              Type   Levels  Values 

n                   Fixed       2  5, 25 

heteroscedasticity  Fixed       2  0, 1 

 

Analysis of Variance 

 

Source                DF  Adj SS   Adj MS  F-Value  P-Value 

  n                    1  0.5062  0.50621    12.45    0.002 

  heteroscedasticity   1  3.9327  3.93269    96.73    0.000 

Error                 21  0.8538  0.04066 

  Lack-of-Fit          1  0.1683  0.16828     4.91    0.038 

  Pure Error          20  0.6855  0.03428 

Total                 23  5.2927 

 

Model Summary 

 

       S    R-sq  R-sq(adj)  R-sq(pred) 

0.201634  83.87%     82.33%      76.91% 

 

Coefficients 

 

Term                   Coef  SE Coef  T-Value  P-Value   VIF 

Constant            -0.7834   0.0552   -14.19    0.000 

n 

  5                  0.1452   0.0412     3.53    0.002  1.00 

heteroscedasticity 

  0                 -0.5431   0.0552    -9.84    0.000  1.00 

 

 

 



 

137 

 

 

Figure E.5 Residual plots for ANOVA analysis for logarithm of diffSUR values 

 

 

Figure E.6 Main effects plots for logarithm of diffSUR values 


