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ABSTRACT

DYNAMIC FORMATION CONTROL WITH HETEROGENEOUS MOBILE
ROBOTS

ÇİMENCİ, KADİR

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Aydan Müşerref Erkmen

June 2016, 152 pages

Formation control in robotics is a growing topic where research works are mainly
geared towards heterogeneous swarm colonies under either decentralized control or
limited centralization. Swarm robotics where decentralization is applied, neverthe-
less assume that the agents are capable of getting global information about the whole
swarm.Moreover in the literature, formation control is generally done for known fixed
shapes that can be defined mathematically. However no dynamically changing shapes
are envisaged and no shape transitions are clearly handled in those works. We attempt
to bring a clear impact to the literature by focusing on tracking and realising forma-
tion shapes under dynamically changing formation shape demands. Furthermore,in
our thesis work, we focus on robot colonies composed of heterogeneous robots of
different dynamics and sensor capabilities under decentralized dynamically changing
formation control. These robots are able furthermore, to just possess local mutual
interactions only with their close-by neighboring agents. In our approach communi-
cations of each agent with its neighbors converges to information about the whole
colony based on graph theory. Simulations in our work are generated using the
Gazebo environment by modelling a rough territory. Hardware applications which
implements the methods discussed in this thesis work are also developed. These ap-
plications are evaluated as proof of concept work which illustrates that the methods
can be implemented in real time applications.
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ÖZ

HETEROJEN ROBOTLARLA DİNAMİK FORMASYON KONTROLÜ

ÇİMENCİ, KADİR

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Aydan Müşerref Erkmen

Haziran 2016 , 152 sayfa

Formasyon kontrolü robotik alanında heterojen robot kolonilerinin merkezi yönetici
birimler olmadan ya da yerel merkezi birimleri barındıran sürülere yönelik büyüyen
bir araştırma alanıdır. Merkezi yönetim birimlerinin olmadığı robot sürüsü çalışmala-
rında ne yazık ki her üyenin, koloniye mensup diğer üyelerin tüm verilerine erişebil-
diği varsayımı yapılmaktadır.Öte yandan, literatürde formasyon kontrolü genellikle
matematiksel olarak ifade edilebilen geometrik şekillerle yapılmaktadır. Bununla bir-
likte bu çalışmalarda, dinamik olarak değişen şekiller ve bu şekiller arasında formas-
yon geçişleri konusu yeterli olarak ele alınmamaktadır. Bu çalışma kapsamında di-
namik olarak değişen şekiller için formasyon kontrolü sağlayarak literatüre katkıda
bulunmayı hedefledik. Öte yandan bu tez çalışmamızda, farklı dinamiklere ve sensör
yetkinliklerine sahip heterojen robot kolonileri kullanarak dinamik formasyon kont-
rolü problemini merkezi karar verici birimlerin olmadığı bir topolojide ele aldık. Ça-
lışma kapsamında ele alınan kolonilerdeki tüm robotlar yalnızca kendilerine en yakın
komşu üyelerle yerel etkileşimlerde bulunabilmektedir. Komşularıyla etkileşimde bu-
lunan üyeler, koloninin geri kalanı hakkında bilgi sahibi olabilmektedir. Çalışmamız
kapsamında simülasyonlar Gazebo ortamında üç boyutlu düzgün olmayan araziler
modellenerek yapılmıştır. Ayrıca donanımsal gerçeklemeler içeren çalışmalar da ya-
pılmıştır. Bu çalışmalar, tez kapsamında önerilen yöntemlerin gerçek zamanlı sistem-
lerde gerçeklenebileceğenin bir göstergesi olarak ele alınmaktadır.
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CHAPTER 1

INTRODUCTION

This thesis work focuses on dynamic adaptation to achieve changes in formation of

swarms consisting of heterogeneous mobile robots. The term of swarm has a meaning

[1], a large group of locally interacting individuals with common goals.

Self organizing swarm researches and its applications are generally inspired from the

biological systems existing in the nature. Behaviours of complex biological systems

remained unresolved for a long time, until recent researches that showed individuals

with supple functionalities can achieve complex tasks by cooperation [2]. Biological

systems (such as colonies of ants) have simple behaviours but they can accomplish

very complicated collective tasks in nature quite impossible to be achieved solely by

individual capabilities. Beni [3] describes this collaboration of members as follows:

Collaborative robot network is not just an agglomeration of robots, they have essential

characteristics, which are found in swarms of insects, that is, decentralised control,

which does not require synchronisation, and individuals which are simple and (quasi)

identical.

Properties of swarm robotics systems that make them unique are the simplicity of in-

dividuals, restricted sensing and communication capabilities, collaborative achieve-

ment of complex tasks, robustness and decentralization of control capabilities [4].

Swarm robotics has been studied to produce different collective behaviours to solve

different tasks such as as aggregation , pattern formation , self-assembly and morpho-

genesis , object clustering, assembling and construction , collective search&rescue

and exploration , coordinated motion , collective transportation , self-deployment ,
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foraging and others[5]. Dorigo and Trianni [6] are studied on controllers for aggre-

gation of coordinated motion of the identical mobile robots called swarm-bots. Their

implementation has a centralized structure in which a decision maker assigns roles to

individual agents. In our work, each agent is responsible to reach global consensus on

the final positions in formation which increase the robustness of the system against

to individual erroneous decisions. Hou et al. is focused on controlling of a swarm

within a dynamically changing formation [7]. In their work, it is needed to describe a

global objective function which requires analytical expression of the desired forma-

tion shape. But it may not be possible to define the desired formation shape with an-

alytical expressions in real world applications. In this thesis work, the solution does

not require the analytical expressions of the desired formation shape. Ganesh and

Lisa introduced two new strategies for collective search and exploration of fields with

swarm intelligence [8]. Their implementation requires a central controller to manage

the individuals and this type of solution has a single point of failure system charac-

teristic because of the dependence on single decision maker agent. Chaimowicz and

Campos proposed a new methodology which is based on a dynamic role assignment

mechanism in which the robots cooperate with each other and they demonstrate this

method in a cooperative transportation task [9]. Their work implements a leader fol-

lower structure in which following agents has no impact on the global consensus of

the swarm. This approach depends on the decisions of an individual agent and an

erroneous decisions of this individual may cause the failure of whole swarm.

There are lots of studies related with different problems in swarm robotics literature

as discussed briefly. In this thesis project, we are focused on dynamic pattern for-

mation control of swarms consist of heterogeneous robots. All agents contribute on

the decision process and they collaborate to minimize the total displacement while

achieving the desired formation shape.

1.1 Problem Definition

In this thesis work, we aimed to design a formation control system with heterogeneous

robots and dynamically changing complex shapes. Desired formation shapes for real

time applications, such as covering an area or a search&rescue operation, may not
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be simple geometrical shapes with analytical expressions. The solution which does

not require a mathematical definition of the desired formation shape is more suit-

able for these type of applications. On the other hand, this formation shape may be

dynamically changing to meet the requirements of the task in real time.

In literature, formation control systems generally include a decision making process

which is executed by an individual agent or a central server. This kind of approach

creates a single point of failure system and this ruler may cause a failure for the whole

swarm by making a mistake. In this work, it is aimed to implement a solution in which

each member of the swarm contributes on the decisions and global consensus of the

swarm.

Formation control systems which are implemented with swarms composed of homo-

geneous agents cannot achieve special tasks which requires different functionalities

of individual agents. In this work, we have focused on implementing a solution with

a swarm consisting of heterogeneous agents with different capabilities.

In this work, the main idea is to propose a complete design solution to a dynami-

cally changing formation system, including a local positioning and formation control

system. Formation control system heavily depends on the position data of individual

agents in the workspace. Since it is expected to have high number of agents in the

environment due to the nature of a swarm, the agents are assumed to have simple

structures with low capabilities including lack of certain types of sensors. On the

other hand, for indoor applications it will not be possible to use satellite dependent

positioning systems on agents [10]. Even if a positioning solution provided for an

indoor application by different methods including visual feedback(by image process-

ing), RSS(received signal strength) etc. , it is not possible to implement this solution

for each single agent in the environment due to the increasing complexity and the

costs by the number of agents. In literature, formation control systems are gener-

ally designed with the assumption of the positions of each agent is known exactly.

To propose a complete solution for the formation control problem, it is required to

implement a localization solution for the agents to provide the corrected positions in

the workspace which will be used by the formation control system. This localization

process must implement a solution to correct the position data of the agents within
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an maximum error bound. This error bound is determined by the requirements of the

formation control problem.

1.2 Motivation

The formation control problem is defined as the collaboration of a group of agents

towards maintaining a formation with a certain shape [11]. It focuses on leading the

individual agents of a swarm to perform collective tasks including shape generation

and formation reconfiguration while traversing a trajectory avoiding collisions. These

kind of tasks are achieved with a large group of simple robots that can cooperate with

each other. Formation control of multi agent systems is an actively growing research

field.

Swarms which are used in formation control systems, can be composed of homoge-

neous or heterogeneous agents according to the requirements of the problem. The

usage of the homogeneous agents increases the total impact and the coverage of the

system in the environment. This kind of a swarm has an increased redundancy and is

capable of resuming the current task in case of failures of some of the agents during

mission. On the other hand, a swarm composed of heterogeneous agents has different

capabilities of the agents. This kind of a system can be used in tasks which requires

different functionalities has to be performed individually or simultaneously.

In real world applications there may be need for different functionalities to achieve

some specific tasks. If this is the case, one solution may be to design a sophisticated

robot which includes all required capabilities for this task. In this scenario, this robot

will be the single point of failure in the system and if robustness is a vital feature for

this solution, some redundant robots have to be added to the system. It is clear that the

design of such an advanced robot and hold its redundant backups in the system will

increase the cost of the solution. In swarm robotics concept, one of the approaches

related with the usage of the heterogeneous agents is to gather some different types

of simple mobile robots which have their own specific functionalities to achieve a

collective task rather than designing an advanced robot for the solution [12]. With

this approach, the robustness of the system is increased, costs are reduced down and
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the reusability of the individual members of the swarm for other tasks is provided.

A project named Swarmanoid which is funded by European Commission, has an ob-

jective to implement and control of a novel distributed robotic system. The system

is designed with heterogeneous, dynamically connected, small autonomous robots

called foot-bots , hand-bots and eye-bots where foot-bots are responsible to trans-

port the required materials(including other types of robots) to a specific task area and

hand-bots are responsible for operations to be handled with their manipulators and

eye-bots are responsible of observations and reconnaissance on the workspace. This

project implements a system which has a leader follower structure in which a deci-

sion maker agent assign different tasks and roles to the other members of the swarm.

Wrong decisions or the failure of this decision maker may prevent the whole swarm

to achieve the desired task. In this thesis work, we have focused on a system in which

each agent is responsible to contribute on the decision process.

Figure 1.1: A Robot Team Consists of Eyebot, Handbot and Footbot Agents [12]
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A swarm which is composed with same type of homogeneous agents can be used to

increase the total impact and the energy of an individual agent. This kind of a system

can be used in missions like coverage, search and reconnaissance etc. Martin and

Kilberg have worked on formation control and formation tracking of microsatellites

to achieve continuous coverage and improved capability. They also mentioned that

small formations will reduce the fuel consumption for propulsion and expand the

sensing capabilities of microsatellites [13].

Figure 1.2: Sparse Aperture Formation of Micro Satellites [13]

Formation control solutions has lots of usage areas such as coverage missions, se-

curity patrols and search&rescue in hazardous environments etc.[14]. For missions

related with area coverage and reconnaissance, a group of autonomous vehicles may

be required to keep in a specified formation [14].

There are some hardware implementations to test the related formation control algo-

rithms in real time applications. Since the formation control problem requires lots

of agents in a swarm, these works have a common point of providing agents with

minimal costs and sensor capabilities. The Kilobot Project from Harvard university

have released their agents with the name of Kilobots and they have teams which are

working on different formation control problems with Kilobots [15].
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Figure 1.3: Formation Control with Kilobots [15]

These micro robots have a great reusability for different types of formation control

problems and they have biological inspiration from the nature in the sense of individ-

ual simplicity and power of collective behaviours. Common feature of these projects,

they implement formation control systems with swarms composed of homogeneous

agents. In real world applications, complex tasks may require different functionalities

which can be provided by different types of robots. In our work, we have focused on

implementing a formation control system with heterogeneous agents.

Figure 1.4: A) Swarm Robot Project from Universities of Stuttgart [16]

B) Colias Project from Lincoln University and Tsinghua University[17]

C) Marx bot developed at EPFL[18]

D)Swarm bots project conducted by European Commission [19]
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Hou et al. has implemented a formation control system with dynamically changing

formation shapes [7]. Their approach defines a global objective function which re-

quires the mathematical definition of the desired formation shape. But in real world

applications it may not be possible to derive the analytical expressions for the desired

shapes. In our work, control laws for individuals in the swarm does not require such

a global objective function definition.

Figure 1.5: Dynamical Formations with Global Objective Functions [7]

1.3 Objectives & Goals

In this thesis work, our aim is to provide different approaches & solutions to the

requirements in formation control problem. There are mainly different types of in-

frastructures which propose solutions to the formation control problems like the het-

erogeneity vs. homogeneity of the agents, communication structures, centralized vs.

decentralized structures, swarm control strategies like behaviour based and leader-

following approaches or virtual structure based approaches.
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Our main approach is to design a complete solution to the formation control prob-

lem by taking into account the requirements related with real world applications. In

literature, formation control systems generally implements solutions with simple ge-

ometrical shapes [7]. One of the objectives of this thesis work is to implement a

solution which does not require the mathematical definition of the desired formation

shape. Also it is aimed to design an algorithm which can adapt itself to the dynami-

cally changing formations.

On the other hand, most of the related work assumes that it is possible to measure

the exact positions of the agents in the workspace [15, 16]. Another objective of this

thesis work is to implement a localization solution for the agents by assuming they

may not able to measure their positions. With this approach, it is possible to provide

a complete solution to the formation control problem.

Specific tasks including different missions, requires agents with different capabilities

and this kind of tasks may not be achieved with swarms composed of homogeneous

agents [12]. In our work, one of the objectives is to implement a formation control

system with heterogeneous agents. Furthermore, proposed solutions for formation

control problem generally includes a decision making process which is executed by

an individual agent or a central server. This kind of approach creates a single point

of failure system and if this decision maker unit fails during mission, swarm cannot

achieve the desired task. In this thesis work, it is aimed to implement a solution in

which every agent is responsible of contributing on decisions and reaching a global

consensus.

In addition to choice of the formation control infrastructures, capabilities of the in-

dividual agents provide additional requirements and constraints while designing a

formation control system. One of the most important characteristic of an agent in

the swarm is its simplicity and limited sensor & communication capability [4]. This

approach results from the idea of achieving collective tasks with lots of simple indi-

viduals and it is based on biological inspirations in nature like colonies of ants etc. In

our work, it is aimed to propose a solution by taking into account that agents in the

swarm has simple structures and limited sensor capabilities.

To achieve these objectives and meet these requirements, the goals for this thesis work
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are defined in the following subsections of 1.3.

1.3.1 Heterogenous Robots with Different Dynamics

It is aimed to create a formation control system with heterogeneous agents to achieve

complex tasks which require different functionalities. To accomplish this objective, it

is assumed that agents have different dynamics from each other like different friction

surfaces, geometrical structures, dynamics and functionalities. They have different

volumes and masses and they may collide with the other ones and the obstacles in the

environment.

1.3.2 Communication Infrastructure

One of the objectives in this work is to implement a localization solution for the

agents. Also it is required to implement a communication backbone to execute a de-

centralized decision making process in which each agent reaches a global consensus.

To meet these requirements, it is needed to implement a communication infrastructure

in the proposed solution. By taking into account that the agents in the swarm have

limited communication capabilities and can only negotiate with its local neighbors in

a narrow line of sight range due to power consumption issues and their weak radio

links, this infrastructure must have following specifications.

Figure 1.6: Radio Links on Agents Have a Narrow LOS Range
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a)Communication Topology

Communication topology is a wireless mesh network in which each agent relays data

for the rest of the network. The network is fully connected and has routing technique

where the data is propagated along a route by transporting over the nodes(member

agents of the swarm).

Figure 1.7: Mesh Network Between Agents

b)Communication Bandwidth

Bandwidth of the communication between agents is limited and nodes can only trans-

port most critical data like heartbeats, agent IDs, type and position etc.

1.3.3 Decentralized Decision Making Process

Centralized formation controller systems implement a single controller server/root

node to process all the data needed to achieve the desired objectives. This type of

systems achieve superior performance and optimal decisions but they require high

computational power, high communication bandwidths and are not robust due to de-

pendence on a single controller [11]. Decentralized formation controller structures

have agents which are completely autonomous and responsible their own individual

decisions. In this work, a hybrid centralized/decentralized controller architecture in

which there is a central manager which partitions the desired formation shapes into

goal states. Agents report their costs to reach these goal states and try to reach a

consensus about final goal states to minimize the total displacement of the swarm.

11



Figure 1.8: Agents Reach a Global Consensus on Goal States

1.3.4 Complex and Dynamically Changing Formation Shapes

In literature, formation control systems are generally designed with a single or com-

bination of simple geometrical shapes and they require analytical expressions of these

shapes while implementing the proposed control laws for individual agents [20]. Spe-

cific tasks which requires more complex shapes cannot be achieved with this ap-

proach. In our work, we have focused on designing a formation control algorithm

which does not require the mathematical definition of the desired formation shape.

The goal to accomplish this objective is to design a solution which does not depend

on the analytical expression of the formation shape. Furthermore, in literature the

general approach is to implement a solution to cover a static formation shape. In real

world applications it may be needed to update the desired shape dynamically accord-

ing to the requirements of the task. In our work, one of the goals is to propose an

algorithm which can adapt itself to dynamically changing formation shapes.

Figure 1.9: Complex and Dynamically Changing Formation Shapes
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1.3.5 Simple Agents with Low Sensor Capabilities and Low Computing Powers

In this project, we have assumed that the agents have low sensor capabilities and

weak computing power [4]. These constraints must be taken into account during the

control system design, since individuals do not have a high resolution and sensitive

data about the workspace and their states, and they cannot execute high level complex

control algorithms.

1.4 Requirements

The goals of this project define some requirements about the implementation of the

formation control system. These requirements are listed as follows:

1. Agents have to propagate their positions and velocity states with the help of iner-

tial measurements.This process is handled with a Kalman estimator which takes the

translational acceleration data as an input to the observer model .The translational

acceleration data is calculated with the help of inertial measurements.

2. Agents have to update&adjust their position data with the help of agents which

have positioning sensors(we call these agents position beacons) by local trilatera-

tions.This position data is used in the estimator system as an external measurement to

correct the drifts caused by propagation error of translational accelerations.

3. Agents have to update their route tables to create a communication backbone with

the mesh network topology. Since agents are assumed to have low range&bandwidth

radio links, the propagation of a data between each agent in the swarm will be handled

over this mesh network.

4. Desired formation shape will be partitioned into potential goal states for different

types of agents in shape partitioning based approaches. Performance analysis on

proposed shape partitioning methods have to be done with some different criterias.

5. Assignment of the agents to their target goal states should be done to minimize the

total displacement of the agents while travelling towards the desired formation shape

in shape partitioning based approaches.

13



6. Simulations should be performed to compare the efficiency of different methods

proposed in this thesis work. Different types of agents have to be represented with

different dynamical and physical models during simulations.

7. Hardware demonstrations should be performed to illustrate the applicability of

the proposed solution in real time systems. These applications may not contain the

full implementation of the proposed system, but they must demonstrate a proof of

concept(POC) environment.

1.5 Methodology

During the first part of the project, a local positioning system(LPS) is designed. In

this system, agents which does not have position sensors, propagate their position

and velocity states with their inertial measurements. Due to drift problems on this

solution [21], a position update process is handled with the help of local trilateration

process. During the update phase of the solution, route tables for individual agents are

determined with the help of Destination-Sequenced Distance Vector Routing Protocol

(DSDV) algorithms. This process provides the required information to the agents

about the position beacons which are their direct neighbors in the swarm. Position

measurements are handled for each agent by local trilateration process with the help of

position beacons which are direct neighbors of them. A Kalman observer is designed

to fuse these propagation and update phases of the solution.

On the second part of the thesis work, formation control system is designed with two

novel methods based on Bubble Packing method and Randomized Fractals method.

Desired complex formation shapes are partitioned into goal states according to the

heterogeneous agents in the swarm for both of these two methods. Decision process

of the agents about their target goal states to minimize the total displacement of the

swarm is implemented with the help of Visibility Graphs and Hungarian algorithms.

Internal velocity controllers for individual agents to reach the goal states are imple-

mented with a full state feedback method by regulating the augmented dynamical

system with the gains optimized by Linear Quadratic Regulators (LQR).
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1.6 Contribution of Thesis

The main contributions of thesis are:

1. Designing a local positioning system(LPS) based on local trilaterations to provide

position data to the agents which do not have specific position sensors on their boards.

2. Implementing a wireless mesh network between agents in the swarm and designing

a communication infrastructure and related routing algorithms to exchange the local

data globally in the network

3. Implementing a formation control system with complex and dynamically changing

formation shapes by using swarms composed of heterogeneous agents.

4. Designing and implementing the rules&algorithms for the decentralized decision

making process of the individual agents about the goal states in desired formation

shape.

1.7 Outline of the Thesis

This thesis work is organized into 6 main sections. Chapter 1 introduces the main

theme and the potential usage areas of formation control, while specifying our moti-

vation and the requirements&problems to meet&solve related with the topic.

Chapter 2 gives literature reviews about the related works and discuss about the

advantages&disadvantages of the proposed method.

Chapter 3 introduces the methods and solutions used in two different parts of the

problem; local positioning system and formation control system. In this chapter,

routing algorithms and mathematical aspects of the trilateration process is introduced.

On the other hand methods&algorithms used for formation control is discussed in

details.

Chapter 4 provides simulation analysis on the local positioning system and gives mu-

tual evaluations of the performances of different methods used in formation control

system.

15



Chapter 5 provides and discuss the details of hardware implementations and the ex-

perimental results.

Chapter 6 concludes the thesis and defines the future works related with the thesis.
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CHAPTER 2

LITERATURE SURVEY

Formation control requires local positioning, detection of the general shape, task allo-

cation to individual agents and task dispatching [11]. There are related works in liter-

ature focusing on these different fields but these works lack some of the requirements

& objectives we have presented in Section 1. This chapter is intended to motivate

the need for the topic of this thesis by underlying the gap it has filled by reviewing

existing works in related fields.

2.1 Formation Control Systems

Formation control problem have different subproblems like formation shape genera-

tion, formation reconfiguration&selection and formation tracking [11]. In formation

shape generation, agents are expected to get a formation shape which can be defined

by external commands or with some mathematical constraint functions [22]. One

general approach is to consider artificial potential functions. Samitha and Pubudu

[23] have presented an artificial potential function method based on the consideration

of the problem as controlling the position of a swarm into a shape, bounded by a

simple closed contour. This approach results in deploying uniformly of swarm agents

within the contour. Their work provides analysis about the stability and robustness of

the proposed system based on Lyapunov like functions. Figure 2.1 illustrates a simu-

lation environment of a swarm getting the desired pentagonal like formation shape in

presence of obstacles. Here the desired formation shape is defined with an analytical

expression and individual control laws for agents are composed with artificial poten-
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tial functions using this analytical expression. In real world applications, it may not

be possible to have the analytical expressions of the desired formation shape. In our

thesis work, we have focused on designing control laws which do not depend on the

analytical expressions of the formation shapes.

Figure 2.1: Motions and Formation of the Agents in Presence of Obstacles [23]

In some applications, it may be needed to change the formation shape or splitting and

joining of the agents together due to either a change in coordinated task requirements

or change in environmental conditions such as narrow corridors. In such a scenario,

the swarm has to propagate in a narrow corridor before reaching the desired goal

state and it is not possible to follow this path by keeping the final desired formation

shape. Hence, swarm has to adapt itself to environmental conditions while following

a predetermined trajectory. This task requires formation reconfiguration and dynamic

task assignment of swarm agents to be dispatched. Hou et al. [7] have defined a

method based on global objective functions to provide formation control of a swarm.

In their approach it is possible to implement scaling and rotating functions into control

laws to adapt the swarm to environmental conditions while achieving a specific task.
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Figure 2.2: A Swarm in Rotating and Scaling Ellipse Formation [7]

Figure 2.2 illustrates a simulation environment with a swarm of 100 mobile agents

with an ellipsoidal formation shape. The formation shape is rotated dynamically to

follow a path through a narrow corridor. Swarm has to adapt this rotation maneuver to

follow the desired trajectory. This kind of dynamical adaptations are always required

in complex tasks in real time applications. Their approach also requires the analytical

expressions for the desired formation shapes.

One of the subproblems studied in formation control is formation tracking. The main

objective of this problem is to maintain a desired formation with a group of robots,

while tracking or following a reference trajectory. The solutions for the formation

tracking approaches can be classified into three basic strategies as leader-following,

virtual structure and behaviour based approaches [11]. The most general strategy to

provide a solution for this problem is leader-following swarm structures [24]. Other

strategies have a basis on optimization and graph theory approaches [11]. Kumar

et al. proposed a vision based formation control framework for this problem. This

framework has a leader following infrastructure [24]. Figure 2.3 illustrates a simu-
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lation environment of this leader follower approach on formation tracking problem.

The individual agents achieve a coordinated turn by keeping their relative positions

to their local neighbors.

Figure 2.3: Five Robot Formation With Trajectory Tracking [24]

In leader following strategy, some of the agents in the swarm are the leaders to manage

the rest of the swarm to achieve a desired specific task and the rest of the agents act as

followers. This approach reduces the formation control problem into tracking control
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problem of individuals to follow the leader from a desired distance and bearing angle,

thus the stability and convergence analysis of the formation can be done with the

usage of single tracking controllers of members. This approach simplifies the tracking

problem of a network of agents to a single agent. Kumar et al. at [24], proposed a

control framework in which follower agents move along a trajectory afterwards the

leader agent with a desired separation distance li j and desired relative bearing angle

ψi j. Figure 2.4 represents a formation control with three agents where R3 is the leader

and R1,R2 are the follower agents.

Figure 2.4: Leader-Follower Systems [24]

In this approach it is hard to gather the agents in a certain shape. Another drawback

is that, determining the separation and bearing angles for individual agents is getting

harder as the number of agents in the swarm increases and this strategy is not fault

tolerant to the absence of communication between agents.

In virtual structure approach, the formation is composed with a virtual rigid body.

Formation control is applied to the whole virtual structure and then the individual

agent control laws are determined with inverse dynamic solutions [11]. Lewis and

Tan [25] proposed a virtual structure based method for formation control with a bidi-

rectional flow control where robots move to keep the virtual structure when the swarm
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is following a trajectory and virtual structure adapt itself to the robots’ current posi-

tions to compensate the relative errors at the end of a maneuver. Figure 2.5 illustrates

such a maneuver implemented with their approach.

Figure 2.5: Maneuver of a Formation and Compensation of Virtual Structure

In virtual structure strategy it is easy to achieve a coordinated behaviour for the group

to maintain the formation during a trajectory tracking or a maneuvering, but it is not

a suitable strategy to apply a formation control to achieve certain geometrical shape

with the swarm agents.

Behaviour based strategies model every agents’ behaviours to achieve specific tasks

with swarm. These behaviours may be very simple like randomly walk and avoid-

ance of obstacles in the environment or they may be defined in a very complicated

manner in order to achieve complex formation shapes with the entire swarm while for

example optimizing the overall energy consumption depending upon the implemen-

tation of the controller structures. One of the main usage of this strategy is artificial

potential field based implementations . Cheng and Nagpal have introduced a robust

and self repairing formation control method for swarms [26]. In this approach, indi-

vidual control laws for the agents are defined with the artificial forces between agents

themselves (to avoid collisions) and between the desired formation shape and agents.

This solution provides robustness to the agent losses in the swarm during formation

control and the rest of the swarm has the ability to refiil their absence in real time

without changing the dynamics and the parameters of the formation controller. Be-

cause individual control laws are not dependent on the other member of the swarm.

Each agent can calculate its own control input at an instant time with current forma-
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tion shape and current members of the swarm and the whole swarm converge another

equilibrium with current members [26]. Figure 2.6 shows a simulation output of their

work. Some of the agents from the right bottom corner of the desired formation shape

are removed away from the swarm and the rest of the agents refill their absence during

runtime. One of the main disadvantage of the artificial potential based approaches is

that , the control forces applied to individual agents are determined instantaneously

in accordance with that agent’s and the other agents’ positions and they cannot guar-

antee the optimization of the total distance travelled by the agents. Another drawback

related with this type of solution is that, there is a possibility to have local minimas

in the solution where an agent reaches an undesired point in configuration space un-

der the equilibrium of different types of artificial force components. In that case the

total control input acting on the agent will be zero because of cancelling force vec-

tors which has opposite directions to each other generated by formation shape and

obstacles etc. In this strategy, the solution may converge slowly to the steady state

due to absence of generalized goal states for individual agents in the final formation

shape. Because, there are no specific goal states for the individual agents to reach at

the final configuration and they are expected to get a global equilibrium with the help

of different artificial force components.

Figure 2.6: Formation Control with Artificial Forces [26]

Another approach is to define mathematical constraints and objective functions to

achieve a specific formation shape by controlling the shape of the swarm colony while

following a trajectory. Kumar and Belta [27] presented an abstraction method of con-

figuration space to a manifold defined as A = GxS where G is a lie group representing

the position and the orientation of the swarm and S represents the shape of the man-

ifold. They provide individual control laws which can be separately handled to ma-
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nipulate the lie group G to achieve formation tracking and orientation control and to

manipulate the shape S to achieve different geometrical shapes.Their method defines

the desired formation shape with shape manifold equations and control the orientation

and the scale of this shape with lie group. Figure 2.7 shows a simulation output in

which the shape is defined as a rectangular area. The orientation and the scaling of the

formation shape is dynamically changed to adapt the swarm different environmental

conditions. Similarly Cheah and Slotine [7] proposed a method based on objective

functions. Common drawback for these researches, they can only implement a lim-

ited number of simple geometrical shapes because the desired formation shapes must

be analytically identified in order to compose the related objective functions or shape

manifolds. Even if it is possible to define a simple geometrical shape and to control

the rotation and the scaling of this shape dynamically, there may be need for more

complex and dynamically changing formation shapes rather than scaling and rotation

maneuvers in real time applications.

Figure 2.7: Formation Control with Objective Functions [27]

2.2 Partitioning Complex Geometrical Shapes

In this thesis work, one of the proposed solutions, shape partitioning based approach,

requires the partitioning of the desired formation shapes into subsets of goal states for

each type of agent in the swarm. Our main idea in this approach, is to dynamically
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assign the agents to these goal states on runtime to minimize the overall displacement

of the agents. Shape partitioning process is used to determine the goal states of the

agents within the formation to cover the formation shape. There are some different

solutions in literature including fractal filling of space algorithms and bubble&circle

packing algorithms used to create regular meshes over surfaces and volumes. We

have adapted these solutions to partition our formation shape into goal states. The

implementation details are presented in Section 3.

Fractals are self similar patterns in all scales of themselves. They are defined with

simple rules and they can cover any complex shape in the nature by progressing this

simple rules iteratively. This approach is widely used in mesh generating algorithms

and space filling problems. Shier and Bourke [28] have introduced a randomized

fractal filling of space algorithm. They proposed a fractal based method to cover a

given geometrical shape with the desired shapes and they provide the proof of their

algorithm is space-filling with the following equations. Let A be the total area to be

filled. In our case, A will be the area of the desired formation shape. If we choose the

area of the fractals sequentially (i.e. circles which are representing the collision sur-

faces of the agents) while filling the desired formation shape as Ai with the following

equation

Ai =
A

ζ (c,N)(i+N)c (2.1)

where ζ (c,N) is the Hurwitz zeta function defined by

ζ (c,N) =
∞

∑
i=0

(
1

(i+N)c

)
(2.2)

This Hurwitz zeta function will converge to zero while i→ ∞ with selection of c > 1

and N > 0. In view of Equation 2.1 one can write by replacing the Hurwitz zeta

function with the definition given in Equation 2.2
∞

∑
i=0

Ai =
∞

∑
i=0

(
A

ζ (c,N)(i+N)c

)
= A (2.3)

such that the sum of all areas Ai is the total area A to be filled, that is, if the algorithm

does not halt then it is space-filling. Thus, it is possible to fill the desired shape

with fractals chosen with areas defined in Equation 2.3. Some of the outputs of their
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algorithm is given at Figure 2.8. The desired shapes are filled with rectangular and

star shaped fractals by selecting the areas as described in Equation 2.3.

Figure 2.8: Space Filling Examples with Randomized Fractals [28]

Bubble&Circle packing algorithms are widely used for mesh generation problems

in finite element method. Shimada and Gossard [29] proposed a method based on

interbubble forces to provide close packaging of bubbles in desired geometrical shape.

They define artificial interbubble forces to avoid collisions between bubbles and shape

forces to keep the bubbles at the interior region of the desired shape. This idea is

similar to the potential field based approaches in formation control problem since

they both define artificial force components on individuals to cover a desired shape

homogeneously. The related interbubble forces are described at Figure 2.9. These

forces have a nonlinear function of distance between the center of each bubbles and

if this distance is larger than lo, the interbubble forces are negative which means they

attract each bubble towards each other. Interbubble forces increase while the distance

between bubbles are decreasing to provide collision avoidance between bubbles. lo

is the stable distance in which there is no interbubble force acting on bubble and it

reaches an equilibrium point in the workspace.

Figure 2.9: Interbubble Forces [29]
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The main idea is provide a close packing of bubbles which mimics a pattern of Voroni

tessellation, corresponding to well shaped Delaunay triangles or tetrahedras.Figure

2.10 shows the corresponding voronoi polygons and delaunay triangles of a set of

packed bubbles. The center of the cells in voronoi polygons are selected as the centers

of the bubbles. Delaunay triangles corresponding to the set of uniformly packed of

bubbles are well-shaped triangles [29].

Figure 2.10: Uniform and Non-Uniform Node Spacing [29]

With the help of these interbubble forces, they provide an adaptive bubble packing

algorithm for mesh generation. A result with a 2D shape is given at Figure 2.11. At

the end of 50 iterations, bubbles cover the desired shape with uniform spacing with

the help of interbubble forces and the resultant delaunay triangulation corresponding

to the set of packed bubbles are well-shaped triangles.
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Figure 2.11: Mesh Generation with Interbubble Forces [29]

This approach can easily be augmented for different types and number of shapes to

partition a complex geometrical shape with regular sets. It is possible to generate a

mesh with different shapes which represents different types of agents in the swarm,

rather than using identical bubbles with same radius. With this adaptation on the

proposed method, it is possible to partition the desired shape into goal states which

are subsets of different types of agents in the swarm with the help of interbubble

forces.
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2.3 Local Positioning Systems

Positioning systems are used to provide the required position data to the systems

where it is desired to control the location of the mobile agent in the workspace. These

systems fall into two main branches, global positioning systems and local positioning

systems. Global positioning systems(GPS) has become increasingly popular for a

couple of last decades for tracking location. In outdoor formation control applications

this solution is used for positioning [30]. It is a precise system depends on satellite

based positioning mainly developed for direction finding and navigation. Some of

the problems encountered with the usage of GPS systems: (1) the signal from the

satellites cannot penetrate to the indoor space so it doesn’t perform in such areas,

(2) it looses its precision in rich scattering environments such as urban areas [10].

A local positioning system can provide a position information where GPS systems

are unavailable,with the usage of signaling beacons which are placed at the exactly

known locations. In indoor formation control applications this kind of approach is

used for positioning [17].

Figure 2.12: Accuracy Statistics of Different Positioning Sources [31]

Figure 2.12 represents an overview of current positioning systems [31]. Global po-

sitioning systems are widely used and they provide accuracies in the range of 3-30

meters. They can operate in outdoor environments requiring radio signals from satel-
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lites. Differential GPS systems decrease these accuracy range below 3 meters with

the help of additional local static beacons. GSM based solutions have the worst ac-

curacy performance because they localize the nodes in the network by checking the

relative signal strengths from different beacons, but they can perform in indoor en-

vironments partially [31]. Local positioning systems have the capability of working

indoor environments because they use the signaling beacons which are placed at the

exactly known locations [31].

Local positioning systems has different system topologies illustrated in the Table 2.1.

Table 2.1: Local Posititioning Systems with Different System Topologies [31]

Concept Concept Definition

Remote Positioning Measurement from remote site to
mobile device

Self Positioning
Measurement from mobile
unit to usually fixed transpon-
ders(landmarks)

Indirect remote positioning
Self positioning system with data
transfer of measuring result to re-
mote site

Indirect self positioning
Remote positioning system with
data transfer of measuring result
to mobile unit

Two main topologies are self positioning and remote positioning systems [31]. In a

self positioning system, a mobile device finds its own position with the help of a pre-

determined reference such as a starting point or a beacon node with exactly known

positions. On the other hand, in remote positioning systems a mobile node locates

other objects’ positions relative to its own position [10]. These two type of topologies

can be converted to each other with the help of communication structures integrated

on the devices to share the result of position measurement and thus indirect remote

positioning and indirect self positioning system topologies can be implemented. Self

positioning systems can be implemented to provide position data to the individual

agents in formation control problems. The approach is to distribute the position data

to the individual agents from beacon nodes with exactly known positions. The indi-
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vidual agents which do not have a positioning sensor on their boards, measure their

distance to these beacons and correct their position data with these external measure-

ments. In this project, beacons are assumed to have a GPS sensor on their boards for

outdoor applications. They are assumed to have a special tag to locate them in an

indoor environment with the help of external devices such as an E/O camera.

2.3.1 Measurement Principles

Local positioning systems can be used to provide position data in formation control

problem by using robot networks. These systems differ mainly based on their mea-

surement approaches which are the angle of arrival (AOA), received signal strength(RSS)

and propagation-time based systems used in local positioning systems.

Figure 2.13: Different Measurement Principles [31]
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Angle-of-arrival (AOA) systems use directional antennas to measure the bearing an-

gle to the points located at known positions are measured. The position value of

device can be calculated with the intersection of several measurements, but the accu-

racy is limited by shadowing and multipath reflections of radio signals [31].

Received signal strength (RSS) systems calculate the distance value by taking the

difference of the received signal power from the transmitted power. Some advanced

propagation models are required to calculate the distance from the transmission loss

in the air to eliminate the multipath fading and shadowing effects [32].

Time based systems calculates the distance between measuring unit and signal trans-

mitter with the help of propagation time like used in the global positioning systems

generally. This process requires a perfect time synchronization between the mobile

and stationary units [31].

In this thesis work, we implement a self positioning system in which every agent

localize itself with the help of position beacons in the swarm with exactly known

positions. The distance from the agents to these beacons in the swarm are assumed

to be calculated with the help of a time of arrival(TOA) solution in which a node can

calculate its distance to the transmitter beacon by measuring the difference between

the timestamps of transmission and reception of the signal.

2.3.2 Trilateration Process

Trilateration process is used to determine the position of unknown locations with

the help of distance measurement to known positions [33]. In self positioning sys-

tems, the main approach is to calculate the position of mobile agents with the help

of distance measurements to the beacons with exactly known positions. This posi-

tion calculations are handled with trilateration process. It is widely used in wireless

sensor network topologies and local positioning systems. It is needed to have at least

four beacon nodes to calculate an unknown position in 3D, and at least three beacon

nodes to calculate an unknown position in 2D environment. Figure 2.14 demonstrates

a simple trilateration process in 2D environment with the help of three position bea-

cons. Suppose a mobile device which tries to estimate its position with the help of
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local positioning system is at the red point in the figure. If it can measure its distance

to the beacons named A,B and C with exactly known positions, it will be possible to

estimate the unknown position of this mobile device with the same approach used in

global positioning systems.

Figure 2.14: Trilateration Process [34]
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CHAPTER 3

METHODOLOGY

In this thesis work, the problem of dynamical formation control of heterogeneous

mobile robots is reduced down to two subproblems such as local positioning and

formation control. In our implementation there are two main types of agents in the

swarm. First type agents have position measurement sensors on their boards. We call

these agents position beacons and only limited number of agents are position bea-

cons in our swarm. Second type agents do not have position sensors on their boards.

Local positioning subsystem proposes a solution for the localization of agents in the

workspace for second type of agents. On the other hand, formation control subsystem

implements algorithms to cover the desired formation shape homogeneously with the

agents in the swarm. In this chapter, our solutions for these subproblems are presented

in details.

A general block diagram of the system design is illustrated in Figure 3.1. According

to this diagram, local positioning system provides a basis for the formation control

problem with agents’ state vectors composed of translational positions and velocities.

Basically, this subsystem provides position and velocity data to the second type of

agents in the swarm. Formation control subsystem proposes a solution to achieve

desired complex shapes with heterogeneous agents in the swarm. Formation control

system gets the requested formation shape externally and creates individual control

laws for agents to cover the desired shape homogeneously. The implementation de-

tails of these subsystems are given in the following sections.
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Figure 3.1: General Block Diagram of the Provided Solution

3.1 LOCAL POSITIONING SYSTEM

Local positioning system is a subsystem to provide a complete solution to the lo-

calization of the second type agents in the workspace. As discussed in Section 1.3,

agents are expected to have low sensor capabilities and only a limited number of them

have external position measurement sensors on their boards and we call these agents

position beacons in our project. The rest of the swarm which is composed of second

type agents, has to maintain their position&velocity data with the help of their inertial

measurements and local trilateration process. Propagation of the states with these in-

ertial measurements are always inclined to drift problems due to the error&noise and

bias problems of the sensors [21]. Because of this problem, we have corrected these

state vectors with an external measurement provided by local trilateration process.

We have proposed a complete solution for this subsystem as illustrated in Figure 3.2.

As illustrated in Figure 3.2, agents propagate their states with the help of inertial mea-

surements. This state propagation process is executed with high speed data provided

by the inertial sensors. On the other hand, trilateration and route table determination

processes require iterative and time consuming algorithms and their implementation

details are given in the following sections. It is not possible to execute the trilatera-

tion and route table determination algorithms with the same execution frequency of

state propagation process. Because of this reason, a localization timer to provide the
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minimum required time for the route table determination and trilateration process is

implemented to the solution. Agents will correct their state vectors with the local-

ization period by measuring their positions with trilateration process and execute the

update procedure in their state estimator algorithms. The requirement about the max-

imum value of the localization period is determined with the help of Monte Carlo

simulations discussed in Section 4.2 by defining a maximum allowable error on the

position data.

Figure 3.2: Local Positioning System

Local trilateration process requires distance measurements to the position beacons

which are direct neighbors of an agent. Route table algorithms are used to provide

information to the agents about the position beacons whether they are direct neigh-

bors or not. On the other hand, route tables also implement a mesh network between

agents. This network is used to transport data globally over the network. It is com-

posed with a bidirectional graph in which each agent can communicate with its direct

neighbors. In this graph, we have assigned an edge between two nodes if there is a

radio link between them. This line of sight(LOS) radio link is the main criteria for

the agents to become direct neighbors in the network. Thus, having a physical Eu-

clidian distance to an agent within the communication range is not enough to be the

direct neighbor with that agent, i.e. even if two agents are very close to each other

in the workspace, they are not direct neighbors if there is no radio link between them

because of an obstacle preventing the line of sight. Figure 3.3 shows an example of a

mesh network created with 8 agents in the environment.
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Figure 3.3: A Sample Mesh Network Created with 8 Agents

3.1.1 Local Trilateration Process

Trilateration process helps the second type agents to localize themselves with the help

of position beacons which are their direct neighbors. Trilateration calculations use

distance measurements to the position beacons with known positions, to determine

the coordinates of second type agents [33]. These measurements are assumed to be

done with the help of time of arrival(TOA) methods as discussed in Section 2.3.1.

In a TOA solution, an agent is able to measure the distance from itself to a position

beacon only if it is a direct neighbor of that position beacon.

Figure 3.4: Environment for Trilateration Process

Figure 3.4 illustrates simulation environment of a swarm. Here agent C tries to lo-

calize itself with the help of distance measurements ri and the position data Bi of the
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position beacons. It has 4 position beacons as direct neighbors in the network and

this information is provided by the route table of agent C as defined in Section 3.1.2.

For the simulation environment illustrated in Figure 3.4, the distance function to any

position beacon can be written as follows [33];

ri =
√

(x− xi)2 +(y− yi)2 +(z− zi)2 (i = 1,2, ...,n) (3.1)

where i denotes the beacon number and n is the total number of position beacons

which is equal to 4 in our case. In general, we have n number of constraints in

the solution of the localization problem. These constraints are defined as spherical

functions for a localization problem in 3 dimensional workspace [33]. In our work,

we have implemented a two dimensional localization solution with the assumption of

each agent of the swarm conserve the same vertical position within the Earth centered

coordinate system. With this assumption, the problem for the localization process has

constraints with circle functions rather than spherical ones, presented with

(x− xi)
2 +(y− yi)

2 = ri
2 (i = 1,2, ...,n) (3.2)

It is possible to use these n circular constraints to calculate the unknown position of

the agent C. For this purpose, lets assume θ = (x,y) is representing the coordinates of

agent C and B1 = (x1,y1);B2 = (x2,y2);B3 = (x3,y3); ...;Bi = (xi,yi) are the measured

positions of the position beacons.

If any of these beacons is considered as the reference beacon and named with an index

of r, the distance equations can be provided as following:

The distance between the agent C and any beacon i represented as

di(θ) =
√
((x− xi)2 +(y− yi)2) (3.3)

The distance between the reference beacon which is located at Br = (xr,yr) and the

other beacons is evaluated as
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dir(θ) =
√
((xi− xr)2 +(yi− yr)2) (3.4)

The distance between the agent C and the reference beacon is obtained as

dr(θ) =
√
((x− xr)2 +(y− yr)2) (3.5)

Adding and subtracting xr,yr and zr in equation 3.3 gives

d2
i (θ) =(x− xr + xr− xi)

2 +(y− yr + yr− yi)
2

=(x− xr)
2 +2(xr− xi)(x− xr)+(xr− xi)

2

+(y− yr)
2 +2(yr− yi)(y− yr)+(yr− yi)

2

(3.6)

Replacing the expressions in equation 3.6 by dir and dr, the equation can be written

as:

2((xi− xr)(x− xr)+(yi− yr)(y− yr)) = d2
r (θ)+d2

ir−d2
i (θ) (3.7)

this general expression is valid for each beacon with i changing from 2 to n (by

assuming that we have chosen the first position beacon with ”r = 1” as reference

beacon)

(x2− x1)(x− x1)+(y2− y1)(y− y1) =
1
2
[d2

1(θ)+d2
21−d2

2(θ)]

(x3− x1)(x− x1)+(y3− y1)(y− y1) =
1
2
[d2

1(θ)+d2
31−d2

3(θ)]

...

(xn− x1)(x− x1)+(yn− y1)(y− y1) =
1
2
[d2

1(θ)+d2
n1−d2

n(θ)]

(3.8)

if bir is defined for each beacon as follows:

bir :=
1
2
[d2

r (θ)+d2
ir−d2

i (θ)] (3.9)

40



then the linearized system equations can be represented with A~x =~b type equation

where;

A =


x2− x1 y2− y1

x3− x1 y3− y1

... ...

xn− x1 yn− y1

 (3.10)

x =

x− x1

y− y1

 (3.11)

b =


b21

b31

...

bn1

 (3.12)

with A is a (n−1) x 2 matrix and b is a (n−1) x 1 vector.

There are some possible solutions to this type of equation regarding with the structure

of matrix A and vector b.

Solution to A~x =~b Problem

In a localization problem handled in two dimensional space, the A matrix has (n−1)

rows and 2 columns, where n is the number of position beacons which are direct

neighbors of an agent. There is no solution when the number of neighbors lower

than 3 (i.e. n < 3) [33]. When the number of neighbor position beacons are equal

or greater than 3 we have three different solutions according to the structure of the

linearized equations.

1) Unique Solution:

If A is a 2 x 2 matrix (i.e. n = 3) and the its rank is 2, then the solution of~x is unique

with [35]
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~x = A−1~b (3.13)

where~x is the unique solution.

2) Minimum Norm Solution With Pseudo Inverse:

If A is a (n− 1) x 2 dimensional matrix where n > 3 ,which means the number of

neighboring position beacons greater than 3, and if columns of A matrix form a lin-

early independent set (full column rank matrix) then the solution can be found with

the projection of~b over range space of A, Pro jR(A)~b where [35]

Pro jR(A)~b = A(AT A)−1AT~b (3.14)

Ax̂ = Pro jR(A)~b

Ax̂ = A(AT A)−1AT~b
(3.15)

We can justify this expression by passing the righthand side term to the left

A(x̂− (AT A)−1AT~b) = 0 (3.16)

then

x̂ = (AT A)−1AT~b (3.17)

(AT A) is invertible since A matrix is full column rank matrix, so

N (A) = {0} and N (A)⊥ = Rn (3.18)

then
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Pro jN (A)⊥ x̂ = x̂ (3.19)

this concludes that x̂ is the unique minimum norm solution to the A~x =~b problem

3) Minimum Error Solution with Newton Iteration Method

If matrix A has the dimensions of 2 x 2 or (n−1) x 2 with n> 3 and if rank of A matrix

is equal to 1 then the solution to the Ax̂ =~b problem can be found iteratively with

the help of nonlinear least squares method that minimizes the cost function which is

defined as sum of squares of the distance errors [33] :

F(θ) =
n

∑
i=1

(
f 2
i (x,y)

)
(3.20)

with

fi(x,y) =
√

(x− xi)2 +(y− yi)2− ri = fi(θ) (3.21)

where ri is the measured distance to a position beacon i and (xi,yi) is calculated

position data of agent C iteratively.

There are various algorithms to minimize the cost functions in the literature. We have

used Newton iteration to find the optimal solution in this thesis work. Because con-

vergence of this method is quadratic in general and the performance of the algorithm

is extremely increased by choosing proper initial conditions [36]. We have used the

propagated position data as an initial condition for the optimization process to make

the algorithm terminated very fast with correct results. Algorithm is implemented as

follows:

Considering f (θ) as
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f (θ) =


f1(θ)

f2(θ)

...

fn(θ)

 (3.22)

We have defined the Jacobian matrix as follows:

J(θ) =


∂ f1(θ)

∂x
∂ f1(θ)

∂y
∂ f2(θ)

∂x
∂ f2(θ)

∂y

... ...
∂ fn(θ)

∂x
∂ fn(θ)

∂y

 (3.23)

Suppose we are trying to find the position of an agent defined with the vector of ~R

~R =

x

y

 (3.24)

To optimize the cost function, Newton iteration is implemented as follows;

~R{k+1} = ~R{k}− (JT
{k}J{k})

−1JT
{k}

~f{k} (3.25)

where ~R{k}, J{k} and ~f{k} denotes the variables calculated at kth iteration. The explicit

form of the equations can be derived as follows;

JT J =

 ∑
n
i=1

(x−xi)
2

( fi+ri)2 ∑
n
i=1

(x−xi)(y−yi)
( fi+ri)2

∑
n
i=1

(x−xi)(y−yi)
( fi+ri)2 ∑

n
i=1

(y−yi)
2

( fi+ri)2

 (3.26)

and

JT~f =

∑
n
i=1

(x−xi) fi
( fi+ri)

∑
n
i=1

(y−yi) fi
( fi+ri)

 (3.27)
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3.1.2 Route Table Determination

We have implemented a localization solution in which each second type agent is

getting in trilateration process with the position beacons in the swarm as we have

introduced previously. It is needed to be direct neighbors of the position beacons to

get in trilateration process. In our project, route tables are used to provide information

to the agents about the position beacons whether they are direct neighbors or not. On

the other hand, they are used to create a mesh network in the swarm to provide a

communication backbone. With this mesh network it is possible to send any data

globally over the network to any destination by using agents as relays to transmit

the data. In our implementation, each agent had its own route table in the network.

These route tables include the information about the next nodes and costs to any

destination in the network. Next nodes are representing the node which the data

will be transferred next for that destination and costs are representing the minimum

number of hops (i.e. number of relay agents on the path) for that destination. We

have used the cost information for the position beacon destinations to check whether

the agent is direct neighbor of that position beacon or not. In other words, the cost to

a position beacon is equal to 1 in the route table, if that agent is the direct neighbor of

the position beacon

3.1.2.1 Routing Algorithm- Bellman Ford

As mentioned in the Section 1.3, agents are assumed to have a limited communication

range and bandwidth and the communication topology in the swarm must be imple-

mented with a wireless mesh network. In this type of topology, each agent is a relay in

the network and the data is transferred to the related destination with the help of route

tables. This makes it possible to have the capability of transferring low bandwidth

data through the network with multiple hops. In this work, we have implemented

this topology with a table driven routing scheme known as Bellman Ford algorithm.

Bellman Ford is an algorithm that computes the shortest paths between any two node

in a weighted graph [37]. It has a drawback related with the routing loop problem

which occurs in an event of one or more nodes in the graph are lost during the pro-

cess. The probability of vanishing vertices during the execution of the algorithm is
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very high since the agents in the swarm have a small range of communication and

have a great possibility to lose their connection with the rest of the swarm. For this

reason we have implemented an extension of the Bellman Ford algorithm known as

Destination-Sequenced Distance Vector Routing Protocol(DSDV) algorithm.

Figure 3.5: Costs for Shortest Paths to Each Nodes from Agent ’B’

A simulation of the DSDV algorithm with a simple robot network in our problem is

given in the Figure 3.5. The algorithm to calculate the shortest paths from agent ‘B‘

to each destination on network, terminates at the end of 3 iterations. At the beginning

of the process, the costs for each destinations are determined as infinitive. Then

the shortest paths to the each agent in the given bidirectional graph are determined

iteratively with the help of the DSDV algorithm. Since we have defined the shortest

paths with the number of hops to each destination, we have used unit weight for

each edge in the graph representing the cost of each hop while getting the related

destination in the network is equal to 1.

We have implemented DSDV algorithm to solve the routing problem in the mesh

network. Figure 3.6 shows a simulation output illustrating routing loop problem.
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Figure 3.6: Routing Problem Engaged by a Lost of a Node in Network

Suppose that agent D has lost its contact with the network due to some malfunction or

by being lost wandering outside of the communication range of its closest neighbor.

Before this event, agent C had a unit distance to agent D and consequently agent B

had a 2 unit distance to agent D , agent A had a 3 unit distance to agent D. In case of a

failure of agent D, on the next iteration, C updates its route table with 3 unit distance

to agent D by taking as reference the agent B. Then agent B updates its route table

with the shortest distance of 4 units to agent D referencing to agent C. This process

diverges to infinity on the shortest paths with the increasing number of iterations.

Figure 3.7: Route Table for Agent B in Robot Network
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To provide a solution for this routing loop problem, DSDV algorithm implements the

destination sequence numbers into the route tables of the nodes. A simulation output

showing the route table for a node in a robot network is given in Figure 3.7. In the

DSDV algorithm, each node transmits the updates in its own sequence number and

routing table. In the network, when two routes to the same destination are received

from two different neighbors, the algorithm executes the following rules;

- Choose the node with the larger destination sequence number

- If the sequence numbers are equal, then choose the route with minimum number of

hops and update the route table.

In Figure 3.7, node B has destination sequence numbers to each destination in its

route table. These numbers are used to update the network with the rules defined

above, in the case of link addition and link brakes defined in following sections.

3.1.2.2 DSDV Link addition

Figure 3.8 shows a sample link addition condition to the robot network. In this ex-

ample, robot A joins the network by creating a radio link with robot B. When a new

node A joins the network, it transmits of its own route table including the destination

to itself < A,A,0,101 >. Then the following procedure will be handled during itera-

tions;

-Node B receives the the transmission of A and inserts a new line into its route table

with < A,A,1,101 > and propagates this new node to its neighbors

-Node C and Node D receives this transmission and inserts the new route to their

route tables with < A,B,2,101 >

Figure 3.8: An Example for Route Table
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3.1.2.3 DSDV link breaks

Figure 3.9 shows a sample link brake condition to the robot network. Robot B lost

its connection with robot D. When the link between B and D breaks, node B gets

no transmission from the D and notices the link breaks, then the following procedure

will be handled;

- Node B update the cost for node D and E destinations to the infinity and increments

the sequence numbers to these routes

- Node B propagates the updates to its neighbors and node A and node C updates the

lines of the routes to the D and E, since the message from B includes higher sequence

numbers for those routes.

Figure 3.9: An Example for Route Table

3.1.3 Handling Lost Agents

The minimum number of position beacons required for the trilateration process is

three for a two dimensional localization problem as illustrated in Section 2.3.2 . Since

the agents are assumed to have a narrow communication range, it is possible to not

to find three position beacons as direct neighbors for any agent at an instant time.

In this case, it will not be possible to relocate these agents with trilateration and the

position&velocity data will drift from the real values with the increasing time passed

without trilaterations. It is important to have a solution for this problem to keep the

swarm together and to increase the robustness of the system against different environ-

mental conditions. In our algorithm, concept of ‘Lost‘ agents and the procedures for

these type of agents are described as follows:
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* An agent gets into ’Lost’ mode, if it doesn’t find at least three direct neighbors of

position beacons at an instant time

* If an agent is in ’Lost’ mode and missed the localization process for three times, it

will get into ’Return to Home’ mode

* If an agent is in ’Return to Home’ mode, it will directly try to reach to the center of

the desired formation shape.

Figure 3.10: Return to Home Approach of a Lost Agent

The idea behind the ’Return to Home’ mode is basically to increase the possibility of

finding position beacons which are direct neighbors of the lost agent by directing it

to the center of the swarm. A simple demonstration of this procedure is illustrated in

Figure 3.10

The lost agent aims to reach to the center of the formation and due to the errors on its

position&velocity data, it is expected to arrive to the red point illustrated in the figure.

With this maneuver, the lost agent still have a chance to meet some position beacons

in the swarm even if it directs itself to an incorrect goal state.

3.1.4 State Estimation Procedure

In local positioning subsystem, second type agents are expected to execute a state

estimator algorithm in which they propagate their state vectors composed of transla-

tional position and velocities with the help of inertial measurements. As discussed at
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the introduction of Section 3.1 agents will update and correct their positions with the

measurements provided by the trilateration process execeuted with the localization

timer period. A Kalman estimator algorithm which uses the trilateration outputs as

external measurements and the inertial measurements as inputs, is designed to fuse the

inertial measurements with the trilateration calculations. The model for this observer

system is defined as follows:

The state vector for each agent is defined as:

~xk =


Xk

Ẋk

Yk

Ẏk

 (3.28)

where Xk and Yk are the positions; Ẋk and Ẏk are the velocities of the agents in two

dimensional workspace.

The discrete linear model is defined with the state equation of [38]:

~xk+1 = Fk~xk +Bk~uk +~wk (3.29)

where ~wk is the process noise and

F =


1 dt 0 0

0 1 0 0

0 0 1 dt

0 0 0 1

 (3.30)

B =


dt

2

2 0

dt 0

0 dt
2

2

0 dt

 (3.31)

where dt is the propagation period and ~uk is the translational accelerations measured

with the help of inertial sensors. During simulations, a random bias and a white
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noise with zero mean and σacc standart deviation is added on the correct acceleration

measurements.

The observation(external measurement) which will be calculated with the trilateration

process :

~zk = Hk~xk +~vk (3.32)

where ~vk is the measurement noise. We add a noise component to the correct posi-

tion measurement modelled with a Gaussian distribution with zero mean and σmeas

standart deviation during simulations. This noise simulates the errors on the distance

measurements handled with TOA methods. Since the trilateration process will pro-

vide new position data to the agents:

Hk =

1 0 0 0

0 0 1 0

 (3.33)

The noise models for the process and the measurement are modelled with:

~wk = N (0,Qk) (3.34)

~vk = N (0,Rk) (3.35)

where ~wk is the process noise with zero mean multivariate normal distribution with

covariance of Qk and~vk is the measurement noise with zero mean multivariate normal

distribution with covariance of Rk.

The filter has two main subsections named propagate and update phases. The update

phase of the filter is executed after each trilateration process. The filter equations are

as follows:

Propagation phase:

x̂k,k−1 = Fkx̂k−1,k−1 +Bk~uk (3.36)
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Pk,k−1 = FkPk−1,k−1FT
k +Qk (3.37)

Update Phase:

ỹk =~zk−Hkx̂k,k−1 (3.38)

Sk = HkPk,k−1HT
k +Rk (3.39)

Kk = Pk,k−1HT
k S−1

k (3.40)

x̂k,k = x̂k,k−1 +Kkỹk (3.41)

Pk,k = (I−KkHk)Pk,k−1 (3.42)

where Qk is the process covariance matrix and Rk is the measurement covariance

matrix. These variables are calculated as follows

Qk =


(σacc)

2 ∗ d2
t
2 0 0 0

0 (σacc)
2 ∗dt 0 0

0 0 (σacc)
2 ∗ d2

t
2 0

0 0 0 (σacc)
2 ∗dt

 (3.43)

Rk =

(σmeas)
2 0

0 (σmeas)
2

 (3.44)

In the above equations Kk represents the Kalman gain matrix and Sk is the residual

covariance of the system at time k. x̂k,k is the posteriori state estimate updated with

measurements at time k ; x̂k,k−1 is the priori estimate of the state vector predicted with

inputs at time k; Pk,k is the posteriori error covariance matrix updated with measure-

ments at time k; Pk,k−1 is the priori estimate covariance predicted with the inputs at

time k.
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3.2 FORMATION CONTROL SYSTEM

The details of different methodologies for dynamical formation control with hetero-

geneous mobile robots is presented in this subsection. We have implemented three

different approaches as Artificial Forces method, Bubble Packing method and Ran-

domized Fractals method. It is possible to classify these methods in two sub cate-

gories. Potential field based approaches implements artificial forces acting on agents

to get inside and cover the desired formation shape homogeneously by avoiding col-

lisions between the agents. The resultant positions of the agents in the formation

shape is not certain, it dynamically changes with the instantaneous positions and in-

teractions of the agents with each other and environment. Two other methods , shape

partitioning based approaches which are Bubble Packing and Randomized Fractals

methods, share a common structural basis. In these approaches the complex forma-

tion shape is partitioned into goal states to cover the shape homogeneously with the

mobile robots. The assignment of the agents to these goal states is handled with spe-

cial algorithms to optimize the total displacements of the agents in the environment.

The difference between these two methods is the partitioning approach of the forma-

tion shape. Artificial Forces method is fully decentralized, each agent calculates its

own control inputs based upon instant conditions of workspace and formation shape.

On the other hand, Bubble Packing and Randomized Fractals methods are partially

decentralized, the shape partitioning process is executed on a central server and each

agent contributes on the assignment procedure to the goal states.

Figure 3.11: Formation Control Topologies
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Figure 3.11 illustrates different methodologies implemented in this project.

3.2.1 Potential Field Based Approach

3.2.1.1 Artificial Forces Method

In Artificial Forces method we have implemented potential fields over each agent

arised from the interactions between agents, formation shape and environment. The

positions of the agents at the formation shape are determined with local equilibrium

of the swarm in which every agent is at balance under the total force acting from

the environment. There are basically three different kinds of artificial forces named;

intermember forces representing the forces created by the other agents in the swarm

to achieve collision avoidance, the attractive forces representing the forces created

by the desired formation shape to attract the agent into the shape and repulsive forces

created by the formation shape to keep agents inside the desired formation shape. It is

possible to augment these type of forces for specific tasks and objectives. For exam-

ple, obstacle forces created by the obstacles in the environment can be implemented

to achieve obstacle avoidance. Since the method to calculate the artificial forces in-

volves contour integrals, it will be useful to give mathematical definition of contour

integrals.

Consider a curve C which is a set of points z = (x,y) in the complex plane defined by

[41]

x = x(t), y = y(t), a≤ t ≤ b (3.45)

where x(t) and y(t) are continuous functions of the real parameter t. It is possible to

write

z(t) = x(t)+ iy(t), a≤ t ≤ b (3.46)

This curve is called smooth if z(t) has continuous derivative for all points along the

curve, and it is called simple if it does not cross itself as defined in Equation 3.47
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z(t1) 6= z(t2) whenever t1 6= t2 (3.47)

On the other hand if z(a) = z(b) is the only intersection point, the curve is said to be

simple closed curve [41]. Regarding with these given definitions, an example for a

simple smooth closed curve is illustrated in Figure 3.12

Figure 3.12: A Simple Closed Curve

Let f (z) is a complex function in a domain D in the complex plane and let C be simple

closed contour contained in D with initial point a and terminal point b. It is possible

to take the integral of f (z) along the contour C [41]

∮
C

f (z)dz =
∫ b

a
f (z(t))

dz(t)
dt

dt (3.48)

where
dz(t)

dt
=

dx(t)
dt

+ i
dy(t)

dt
, a≤ t ≤ b (3.49)

To simplify this equation, one can write f (z) = u(x,y)+ iv(x,y) and dz = dx+ idy

into the statements,

∮
C

f (z)dz =
∮

C
udx− vdy+ i

∮
C

udy+ vdx

=
∫ b

a

[
u(x(t),y(t))

dx(t)
dt
− v(x(t),y(t))

dy(t)
dt

]
dt

+ i
∫ b

a

[
u(x(t),y(t))

dy(t)
dt

+ v(x(t),y(t))
dx(t)

dt

]
dt

(3.50)
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We have used this explicit form of the contour integrals in utility functions described

in the following section.

Utility Functions

As it is mentioned in the Section 1.3, the formation shapes will be simple closed con-

tours which cannot be identified analytically. Definitions of the utility functions given

in the following section are given with continuous contour integrals which requires

the analytical expression of the curve on which the integral will be taken. In our thesis

work, we have modified these expressions in discrete domain to provide a solution to

these type of calculations without analytical expressions of the closed curves.

1- Cauchy Winding Number:

Cauchy winding number of a curve in the plane around a given point is the number of

times that curve travels counter-clockwise around the point. Suppose C is the closed

curve which is a set of points z = (x,y) in the complex plane and zi is a point to check

whether it is inside of the curve or not, then the Cauchy winding number is [23] :

n(C,zi) =
1

2πi

∮
C

dz
z− zi

(3.51)

The winding number for agent i in the swarm,

n(C,zi) =

 1 when member i is inside C

0 when member i is outside C
(3.52)

We have used this winding number to switch on/off some of the artificial forces while

the agent is inside or outside of the formation shape. We have redefined this statement

in discrete domain as:

n(C,zi) =
1

2πi

∮
C

f (z)dz (3.53)

where

f (z) =
1

z− zi
(3.54)
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Function of f (z) can be partitioned into real and complex parts as:

u(x,y) = real( f (z)) and v(x,y) = imag( f (z)) (3.55)

partitioning this function as mentioned in Equation 3.50∮
C

f (z)dz =
∮

C
udx− vdy+ i

∮
C

udy+ vdx (3.56)

then

n(C,zi) =
1

2πi

[∫ b

a

(
u

dx
dt
− v

dy
dt

)
dt + i

∫ b

a

(
u

dy
dt

+ v
dx
dt

)
dt
]

(3.57)

Discrete contour integral representation of this equation is

n(C,zi) =
1

2πi

[
K

∑
k=1

Ak + i
K

∑
k=1

Bk

]
(3.58)

where

Ak = u(xk+1− xk)− v(yk+1− yk) (3.59)

Bk = u(yk+1− yk)+ v(xk+1− xk) (3.60)

‖zk− zk−1‖= ‖zk+1− zk‖ , ∀k; k = 1,2, ...,K when K→ ∞ (3.61)

The assumption of K→∞ makes it possible to calculate the integral of Cauchy wind-

ing number with a small error with large number of K which can be achieved by

partitioning the desired formation shape into small pieces with equal p2 norms of

∆z. We have used this approach to provide representations of the contour integrals in

discrete domain.

Figure 3.13 shows the test results for the grid map of an environment with a formation

shape, where green dots represents the inner points of formation shape and red dots

represents the outer points of the formation shape. Inner points in the grid map have
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a Cauchy winding number of 1, and the outer points have a Cauchy winding number

of 0 .

Figure 3.13: Formation Shape in an Environment

2- Length of a formation shape

The length of a formation shape can be calculated with the equation of [23];

l(C) =
∮

C
‖dz‖ (3.62)

We have redefined this expression for this contour integral with points of zk = (xk,yk)

in the complex plane

l(C) =
K

∑
k=1

√
(xk+1− xk)2 +(yk+1− yk)2 (3.63)

where

‖zk− zk−1‖= ‖zk+1− zk‖ , ∀k; k = 1,2, ...,K when K→ ∞ (3.64)

3-Center of a Formation Shape

The center of a formation shape can be calculated with the equation of [23];
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zc =

∮
C z‖dz‖
l(C)

(3.65)

We have redefined the discrete domain expression for Equation 3.65 with points of

zk = (xk,yk) in the complex plane

zcx =
∑

K
k=1 x(k)

K

zcy =
∑

K
k=1 y(k)

K

(3.66)

where zcx and zcy are the x and y coordinates of the center of formation shape respec-

tively and

‖zk− zk−1‖= ‖zk+1− zk‖ , ∀k; k = 1,2, ...,K when K→ ∞ (3.67)

4- Area of a Formation Shape

Green’s theorem can be used to calculate the area of a closed curve. According to this

theorem, the area of D given by the double integral [42]

A =
∫ ∫

D
dA (3.68)

can be calculated with counter-clockwise order line integral of

A =
∮

D
Fds =

1
2

∮
D

xdy− ydx (3.69)

where

F(x,y) = (−y/2,x/2) (3.70)

This contour integral can be reduced down to
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Area =
1
2

∮
C

xdy− 1
2

∮
C

ydx

=
1
2

∫ b

t=a
x(t)

dy(t)
dt

dt− 1
2

∫ b

t=a
y(t)

dx(t)
dt

dt
(3.71)

We have implemented the expression in Equation 3.71 in discrete domain with points

of zk = (xk,yk) in the complex plane

Area =
1
2

K

∑
k=1

xk(yk+1− yk)−
1
2

K

∑
k=1

yk(xk+1− xk) (3.72)

where

‖zk− zk−1‖= ‖zk+1− zk‖ , ∀k; k = 1,2, ...,K when K→ ∞ (3.73)

Artificial Forces

Artificial forces are defined to gather the agents inside a formation shape and make

them distributed homogeneously in the shape. It is possible to define some additional

artificial forces to implement features like obstacle&collision avoidance or smooth

transitions between the boundaries of the formation shape. We have implemented

attractive forces, repulsive forces, intermember forces, obstacle forces and transition

forces to generate individual control laws for all agents in the swarm. Summation of

these different types of artificial force components define the individual control law

of a single agent. Suppose the state of a member i is described by

Xi =

zi

żi

 (3.74)

where zi ∈C, represents the position of the ith member of the swarm. The state of the

whole swarm x =
[
X1 X2 ...Xn

]
is determined by the linear equations of [23]

ẋ = Ax+Bu (3.75)
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where

A = diag
(
Â
)

nxn

B =
1
m

diag
(
B̂
)

nxn

(3.76)

with

Â =

0 1

0 0

 , B̂ =
[
0 1

]
(3.77)

The vector for individual control laws of the swarm

u =
[
u1 u2 ... un

]
(3.78)

where

ui = Fi,a +Fi,r +Fi,m +Fi,t (3.79)

We have defined the concept of "coverage circle" for the agents which will be used in

the artificial forces calculations. Coverage circle of agent i, Ci, is defined as the circle

with minimum radius which can cover the whole agent’s collision surface. The radius

of this circle is given with dc. Some of the examples of coverage circles for different

types of mobile robots are illustrated in Figure 3.14 below

Figure 3.14: Coverage Circles of Different Types of Agents
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Different artificial force components are described in details at the following section.

1- Attractive Forces

Attractive forces are the artificial force components generated by the formation shape

to attract the agent towards the center of the formation .They are active when the

agents are outside of the shape.

Figure 3.15: Attractive Forces Generated by the Formation Shape

The equations for the attractive forces are defined as follows in [23]:

Fi,a := ka(1−n(C,αXi))
∮

C
(z−αXi)‖dz‖ (3.80)

where ka is the variable gain and α =
[
1 0

]
. Equation 3.80 takes the contour integral

of the curve defined by desired formation shape. Since we don’t have the analytical

expression of the desired formation shape, we have redefined this expression in dis-

crete domain. The representation of the attractive forces on agent i on zi = (xi,yi)

with the points of zk = (xk,yk) of formation shape in the complex plane [23]:

Fiax =
ka(1−n(C,αXi))

l(C)

K

∑
k=1

(xk− xi)

Fiay =
ka(1−n(C,αXi))

l(C)

K

∑
k=1

(yk− yi)

(3.81)
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where

‖zk− zk−1‖= ‖zk+1− zk‖ , ∀k; k = 1,2, ...,K when K→ ∞ (3.82)

and Fiax,Fiay are the attractive force components in x,y coordinates respectively. We

have divided the artificial forces by l(C) to prevent the dependency of the force on

the different length of curves.

2- Repulsive Forces

Repulsive forces are the artificial force components generated by the formation shape

to keep the agents inside the shape. They are active when the agents are inside the

shape.

Figure 3.16: Repulsive Forces Generated by the Formation Shape

The equations for the repulsive forces are defined as follows [23]:

Fi,r := krn(C,αXi)
∮

C

[
αXi− z

‖αXi− z‖3

]
‖dz‖ (3.83)

where kr is the variable gain for the repulsive forces. We have redefined the Equation

3.83 in discrete domain to calculate the repulsive forces for complex shapes. The

representation of the repulsive forces on agent i on zi = (xi,yi) with the points of

zk = (xk,yk) of formation shape in the complex plane:
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Firx = krn(C,αXi)
K

∑
k=1

xi− xk

‖αXi− zk‖3

Firy = krn(C,αXi)
K

∑
k=1

yi− yk

‖αXi− zk‖3

(3.84)

where

‖zk− zk−1‖= ‖zk+1− zk‖ , ∀k; k = 1,2, ...,K when K→ ∞ (3.85)

and Firx,Firy are the repulsive force components in x,y coordinates respectively.

3- Inter-member repulsion forces

Intermember forces are the artificial force components generated by the agents in the

swarm to avoid collisions between themselves.

Figure 3.17: Intermember Forces Generated by Agents

The equations for the intermember forces on the agent i on zi = (xi,yi) in the complex

plane [23],

Fi,m = km

N

∑
j=1, j 6=i

αXi−αX j

(
∥∥αXi−αX j

∥∥) 1
(
∥∥αXi−αX j

∥∥−do)2 (3.86)
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where do is the total distance between the center of coverage circles of agents which

can be calculated with

do = dci +dc j (3.87)

The force components in x,y coordinates respectively,

Fimx = km

N

∑
j=1, j 6=i

xi− x j∥∥αXi−αX j
∥∥ 1
(
∥∥αXi−αX j

∥∥−do)2

Fimy = km

N

∑
j=1, j 6=i

yi− y j∥∥αXi−αX j
∥∥ 1
(
∥∥αXi−αX j

∥∥−do)2

(3.88)

where km is the variable gain for the intermember forces.

4- Transition Forces

Transition forces are the artificial force components to force the agent to get inside

the formation shape when they are close to the boundaries. Since the attractive forces

have a decreasing nature while the agent getting closer to the formation shape, we

need to add this type of forcing function to ensure the agents to get inside the shape.

Transition forces are active outside of the desired formation shape.

Figure 3.18: Comparison of Attractive and Transition Forces
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The equation for the transition forces are defined as follows [23]:

Fi,t = kt(1−n(C,αXi)
∮

C

z−αXi

‖z−αXi‖
‖dz‖ (3.89)

where kt is the variable gain for the transition forces. The representation of the tran-

sition forces on agent i on zi = (xi,yi) with the points of zk = (xk,yk) of formation

shape in the complex plane:

Fitx = kt(1−n(C,αXi)
K

∑
k=1,

xk− xi

‖αXi− zk‖

Fity = kt(1−n(C,αXi)
K

∑
k=1,

yk− yi

‖αXi− zk‖

(3.90)

where Fitx,Fity are the transition force components in x,y coordinates respectively and

‖zk− zk−1‖= ‖zk+1− zk‖ , ∀k; k = 1,2, ...,K when K→ ∞ (3.91)

5- Obstacle forces

Obstacle forces are the artificial force components generated by the obstacles in the

environment to achieve obstacle avoidance of the agents during formation control.

The equation for the obstacle forces are defined as follows [23]:

Fi,o := ko

∮
O

[
αXi− zo

(‖αXi− zo‖−dci)
4

]
‖dzo‖ (3.92)

where ko is the variable gain for the transition forces and dci is the radius of coverage

circle of agent i . This contour integral is taken on the curve of the obstacle with

points of zo = (xo,yo) in the complex plane. Obstacles in the workspace are assumed

to have complex shapes without mathematical definitions. Because of this, we have

expressed the Equation 3.92 in discrete domain. The representation of the obstacle

forces on agent i on zi = (xi,yi) with the points of zok = (xok,yok) of formation shape

in the complex plane:
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Fiox = ko

K

∑
k=1

xi− xok

(‖αXi− zok‖−dci)
4

Fioy = ko

K

∑
k=1

yi− yok

(‖αXi− zok‖−dci)
4

(3.93)

where

‖zk− zk−1‖= ‖zk+1− zk‖ , ∀k; k = 1,2, ...,K when K→ ∞ (3.94)

Buffer Zone Implementation

The attractive and transition forces are defined to be active when the agents are out-

side of the shape. On the other hand, the repulsive forces are active when agents are

inside the shape. Because of the sharp transitions on the total artificial force acting on

an agent which is crossing the boundary of the formation shape, it is possible to have a

chattering effect. To avoid this chattering effect and provide a smooth transition of the

agent to pass the boundary of formation shape, we have implemented a buffer zone

defined around the boundaries of the formation shape. The main approach during

the transition on the boundaries is to dynamically change the variable gains of these

artificial forces linearly between zero and nominal values at the boundary conditions.

The variable gains of the attractive and transition force components have their nomi-

nal values at the outer boundary of shape and these gains are decreased down to zero

linearly while travelling towards the inner boundary of the shape. On the other hand,

the variable gain for the repulsive forces has its nominal value at the inner boundary

of the shape and this gain is decreased down to zero linearly while travelling towards

to outer boundary of the shape.
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Figure 3.19: Transition of the Artificial Forces on Buffer Zone

3.2.2 Shape Partitioning Based Approaches

In shape partitioning methods we have reduced down the formation control prob-

lem into two subproblems. The first part of the solution is to partition the desired

formation shape into potential goal states according to the agent types to cover the

desired formation shape homogeneously. We have proposed two different solutions

to the shape partitioning problem in this thesis work, Bubble Packing method and

Randomized Fractals method. The second part of the solution is the decision process

to assign the agents to these goal states continuously to minimize the total displace-

ment of swarm while achieving the desired formation shape. During this decision

process, the cost of reaching different goal states is defined with the displacement on

the shortest path while reaching that goal state. Our algorithm tries to reduce down

the total cost value by assigning each agent to proper goal states.

Shape partitioning methods have an approach to direct the agents to the goal states

in which they have assigned dynamically. In this approach it is still needed to have

collision avoidance algorithms to prevent the agents to collide with each other and

workspace obstacles while travelling towards these goal states. For this purpose we

add obstacle and inter-member forces to the individual control laws defined in shape

partitioning approaches.
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3.2.2.1 Determining the Potential Goal States

Bubble Packing Method

Bubble Packing method is widely used in mesh generation problems. It basically

depends on covering a curve, surface or a volume with a proper number of bubbles

by packing them tightly which mimic a Voronoi diagram, from which a set of well-

shaped Delaunay triangles can be created by connecting the centers of the bubbles

[29]. The algorithm places the bubbles with their initial conditions in the environment

and apply them interbubble forces which imitates the Van der Waals forces between

the molecular bonds to distribute the bubbles homogeneously inside the shape. Here,

the main idea is to generate a mesh for a surface with identical bubbles to mimic a

regular Voronoi diagram with the vertices represented by the centers of these bubbles.

On the other hand, adaptive population control methods are developed to increase the

number of bubbles to fill the gaps in the shape and to remove the excess bubbles

which are overlapping with each other and the shape boundaries [29].

Since the numbers and the the radius of coverage circles defined at Section 3.2.1.1 are

predetermined in our formation control problem, the general bubble meshing algo-

rithm have to be adapted to meet the requirements for shape partitioning in formation

control. In our project we have adapted this algorithm to represent the agents in the

swarm as bubbles with the radius of their coverage circles and create a mesh by using

these bubbles. The details of the implementation are given in following sections.

I - Initial Placements of the Bubbles

The initial bubble placements are important because it will greatly reduce the con-

vergence time of the partitioning process. In this work, we have initiated the bubbles

close to the center of the formation shape randomly. The algorithm for initial bubble

placements is implemented as follows:
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Data: Set of Bubbles, Desired Formation Shape

Result: Initial Placements of the Bubbles

Initialize free configuration space C f ree as the desired formation shape

for <Each Bubble i> do

*Calculate the free configuration space,C f ree, for bubble i;

*Put the Bubble i to the closest point to formation center zc in the free

configuration space;

*Add the agent i into the configuration space as an obstacle ;

end

Algorithm 1: INITIALIZE_BUBBLE_POSITIONS

The term free configuration space C f ree will be analyzed in detail in Section 3.2.2.2.

A simulation output, with a sample formation shape and 11 coverage circles which

are representing a heterogeneous swarm composed of agents from 3 different size is

illustrated in Figure 3.20 below.

Figure 3.20: Initialization of the Bubble Packing Algorithm

II- Bubble Meshing Process

The bubbles are distributed homogeneously with this process under two kinds of

forces, interbubble forces and shape repulsive forces. The interbubble forces are

proximity-based forces so that a system of bubbles is in equilibrium when bubbles

are distributed over the whole formation shape. The implemented force equation is

given

fi(l) =

 al3 +bl2 + cl +d when 0 ≤ l ≤ l0

0 l > l0
(3.95)
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where l is the distance between the centers of the related bubbles and a,b,c,d and l0

are the variables to tune the force acting on the bubbles.

Figure 3.21: Interbubble Forces

The shape repulsive forces have the same characteristics with the repulsive artificial

forces discussed in Section 3.2.1.1. The representation of shape repulsive forces for

the desired formation shape C with the points of zk = (xk,yk) the complex plane:

fr(Xi) :=
∮

C

[
αXi− z

‖αXi− z‖3

]
‖dz‖ (3.96)

where kr is the variable gain for the shape repulsive forces. We have defined the

shape repulsive forces on agent i in discrete domain with the points of zk = (xk,yk) on

formation shape in the complex plane:

fr(Xi) =
K

∑
k=1

αXi−Zk

‖αXi− zk‖3 (3.97)

where

‖zk− zk−1‖= ‖zk+1− zk‖ , ∀k; k = 1,2, ...,K when K→ ∞ (3.98)

The bubbles are distributed homogeneously under the influence of these two forces

and they get an equilibrium state in which the total net forces acting on individual
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bubbles reaches zero. Figure 3.22 shows a simulation output of Bubble Packing

algorithm which is initialized with coverage circles derived from the output of the

INITIALIZE_BUBBLE_POSITIONS algorithm. The coverage circles are homoge-

neously distributed in the formation shape with the help of inter-bubble and shape

repulsive forces. The final equilibrium states of the bubbles determine the potential

goal states gi ∈ G of the agents in the swarm to cover the formation shape.

Figure 3.22: Bubble Packing Algorithm

Randomized Fractals Method

Randomized fractals methods are used to cover surfaces or volumes randomly with

fractals. The main idea is to fill the shapes iteratively with fractals which has the areas

determined by the rule of [28] :

Ai =
A

ζ (c,N)(i+N)c (3.99)

where A is the total area to cover and Ai is the area of the ith fractal. The parameters of

c and N can be chosen to implement different changes on the fractals’ areas with the

increasing number of iterations with c > 1 and N > 0. Here ζ is the Hurwitz function

defined by

ζ (c,N) =
∞

∑
i=0

1
(i+N)c (3.100)

It is possible to write,

∞

∑
i=0

Ai =
∞

∑
i=0

(
A

ζ (c,N)(i+N)c

)
(3.101)
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which tells us the sum of the all areas Ai is the total area of A and the algorithm is

space filling. This approach implements the fractals infinitely by reducing the areas

in accordance with the Equation 3.99, to cover the desired formation shape randomly.

Figure 3.23: Randomized Fractals [28]

Types and the number of the agents, which will be represented with their coverage

circles, are predetermined in our work. By using this constraint, we have adapted the

randomized fractals algorithm as follows:

Data: Set of Coverage Circles, Desired Formation Shape

Result: Potential Goal States

Initialize free configuration space C f ree as the desired formation shape

for <Each Coverage Circle i> do

*Calculate the free configuration space C f ree for circle i;

if C f ree 6= Full then

*Put the circle i randomly in C f ree ;

*Add the agent i into configuration space as an obstacle ;

else
*Break and warn the operator to increase the size of formation shape

end

end

Algorithm 2: RANDOMIZED_FRACTALS_ALGORITHM
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The algorithm iteratively checks the free configuration space that if there is enough

space. If so, it inserts a coverage circle which is representing the current agent in

the swarm, randomly in the desired formation shape. At the end of each insertion,

it updates the free configuration space and jumps to next iteration. When algorithm

terminates, the positions of the coverage circles which are randomly placed in desired

formation shape gives us the goal states gi ∈ G of the agents.

Figure 3.24: Simulation Output of the Algorithm

Figure 3.24 shows a simulation output of the Randomized Fractals algorithm. In this

figure, coverage circles are representing the members of a swarm which consist of

11 heterogeneous agents from 3 different sizes. These coverage circles are randomly

distributed in the desired formation shape with the help of Randomized Fractals al-

gorithm. Positions of the coverage circles define the goal states gi ∈ G of the agents

in the formation shape.

3.2.2.2 Decision Process on Goal States

In Section 3.2.2.1, we have reduced down the formation control problem in which

every agent is expected to decide where to position in a given set of possible goal

states gi ∈ G . During this decision process, the cost of reaching different goal states

will be the main criteria for each agent. Given goal states and cost values to these

goal states, each agent must decide where to position in the formation. This process

must be held to optimize the utility of swarm with a collaboration. It is obvious that

some of the agents may want to choose the same goal point to reach, so the swarm

must reach a global consensus on target points and cases including conflictions must

be handled. Our main approach to provide a solution for this problem is to make each

agent to calculate the costs of its own to reach the goal states gi ∈ G and then reach a
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global consensus with the other agents to minimize the overall displacements of the

swarm.

The algorithm which handles the assignment process of the agents to the goal states,

is implemented in four stages. At the first stage, each agent calculates its own free

configuration space. Secondly, agents calculate their visibility graphs by using their

free configuration space. At the third stage, agents calculate and report their costs to

reach each of the goal states gi ∈ G with the help of Dijkstra’s algorithm. These cost

values are defined as the displacements to reach a goal state on shortest path. Finally,

agents are assigned to the goal states with the help of Hungarian algorithm which uses

the cost values reported by the agents. Hungarian algorithm handles the assignment

process to minimize the overall cost(i.e. total displacement) of the swarm.

Free Configuration Space

We have defined the shortest paths to the goal states of gi ∈G in the free configuration

space to avoid collisions with the workspace obstacles [43]. In our implementation,

each agent calculates its free configuration space by extracting their forbidden spaces

from the configuration space itself. Forbidden space is calculated by augmenting the

workspace obstacles with the help of Minkowski sums and we have implemented this

process as follows.

Assume an environment with set of obstacles S =
{

P1,P2, ..Pt

}
. Configuration for

agent i can be described with the position of the center of its coverage circle with

R =
{

xi,yi

}
. Configuration space of ith agent is the workspace itself and represented

by C(Ri). This configuration space is composed of two subspaces; free configuration

space and forbidden configuration space of agent i [43].

C(Ri) =C f ree(Ri,S)+C f orb(Ri,S) (3.102)

In our implementation each agent calculates its forbidden space by augmenting the

workspace obstacles with the help of Minkowski sum method. Minkowski sum

method is implemented as follows:

Let a single obstacle is described with a point set of S1 and the agent is described with
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a point set of S2. The Minkowski sum of these two sets S1 ⊂ R2 and S2 ⊂ R2 can be

calculated with the following [43],

S1⊕S2 :=
{

p+q : p⊂ S1,q⊂ S2

}
(3.103)

where p+q denotes the vector sum of the vectors p and q.

Figure 3.25: Forbidden Space Caused by an Obstacle [43]

Figure 3.25 shows a forbidden space related with an obstacle. Forbidden space for

agent i, C f orb(Ri,S), is the sum of the forbidden spaces calculated for each obstacle

in the environment [43]. Agents extract their forbidden space C f orb(Ri,S) from the

configuration space itself to calculate their free configuration spaces.

Visibility Graphs and Dijkstra′s Algorithm

We have provided collision avoidance while travelling towards to the goal states gi ∈
G by defining the shortest paths in the free configuration spaces of the agents. In [43],

an additional constraint for the shortest path is defined as follows :

The shortest path between pstart and pgoal among a set S of augmented
polygonal obstacles consists of the arcs of the visibility graph γvis(S∗)
where S∗ := S∪

{
pstart , pgoal

}
A visibility graph, γvis(S∗), is a graph which is set of interior nodes representing

the vertices of the set of obstacles, S, in the environment and edges which represents
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visible (which are not intersecting interior region of an obstacle) connections between

these nodes [43]. In this project we have updated this constraint in our algorithm.

We have inserted all of the goal states gi ∈ G in the visibility graphs of each agent

to calculate the shortest paths to all of these goal states rather than a specific pstart

and pgoal points given in the definition. In the implementation phase, we have used

the obstacles which are augmented with the Minkowski sums to calculate the free

configuration space. Let these set of augmented polygonal obstacles represented with

Si ⊂ S. Algorithm to calculate the visibility graph of S∗ := S∪
{

gi ∈ G
}

Data: Set of Vertices Included in S∗

Result: Visibility Graph of S∗

Initialize a graph γ = (V,E) where V is the set of all vertices in S∗ and E =�
for <all vertices v⊂V > do

W = VISIBLE_VERTICES(v,S);

Add edges W to list E;

end

Algorithm 3: VISIBILITY_GRAPH

where V ISIBLE_V ERT ICES(v,S) algorithm checks whether line segments drawn

from v to all vertices in S is intersecting an interior area of any obstacle in the envi-

ronment and returns the non-intersecting edges. By using this V ISIBILITY _GRAPH

algorithm, SHORT EST _PAT H algorithm is defined as follows:

Data: A set S of disjoint polygonal obstacles, position of agent, pstart , and all

goal states gi ∈ G

Result: The shortest collision-free paths from pstart to all goal states gi ∈ G

* Assign γ = VISIBILITY_GRAPH(S∗)

* Assign each arc (v,w) in γvis a weight, which is the Euclidian length of line

segment drawn from v to w

for <Each goal state gi ∈ G> do
* Use Dijkstra’s algorithm to compute a shortest path between pstart and

gi ∈ G in γvis

end
Algorithm 4: SHORTEST_PATH
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Figure 3.26: Shorthest Paths to Goal States gi ∈ G in a Visibility Graph

Figure 3.26 shows a simulation output executed with 5 workspace obstacles and 6

goal states in desired formation shape. In this algorithm, agent first calculates its own

visibility graph by adding goal states gi ∈ G in graph as nodes. The visibility graph

is illustrated with red edges in the figure. Then it calculates the shortest paths to the

goal states, which are given with green edges in the figure. We have used Dijkstra

algorithm to compute the shortest path between two nodes in graph with multiple

edges, each having a non-negative weight. In our work, the weights of the edges in γvis

, are calculated with the Euclidian distance between nodes in the workspace. Dijkstra

algorithm is a tree search algorithm and time complexity of the original algorithm is

O(n2) where n is the number of the nodes in the graph. With the usage self balancing

binary search tree, the algorithm requires O(k+nlogn) time in the worst case where k

is the number of edges in the graph. The algorithm for the Dijkstra’s is implemented

as follows [43]:
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Data: γvis , Position of the agent "source_node"

Result: Shortest Distance to goal states gi ∈ G from the source_node in γvis

for <Each Vertex v⊂ γvis> do

Distance[v] := ∞ ;

Previous[v] := unde f ined ;

end

Distance[source_node] :=0 ;

Q:= The set of all vertices gi ⊂ γvis ;

while <Q 6= null> do

u:= Node in Q with smallest distance to source_node;

remove u from Q;

for <Each Neighbor v of u> do

alt:= Distance[u] + Cost Between u and v nodes;

if alt<Distance[v] then

Distance[v] :=alt;

Previous[v] :=u;

end

end

end

return Distance[ ], Previous[ ];

Algorithm 5: DIJKSTRA_ALGORITHM

In algorithm above Distance[x] function call, calculates the total cost from the

source_node to the x vertex, and Previous[x] function call, returns the previous node

in optimal path from source_node. This algorithm calculates the shortest paths from

the position of an agent to all available goal states. If there is a line segment between

the position of an agent and a goal state(i.e. agent can reach that goal state directly

without colliding with any workspace obstacle), cost of reaching that goal state is the

length of that line segment. These cost values are used to assign the agents to the goal

states by minimizing the total displacement.

Collaborative Decision Process of Final Goal States

We have provided an algorithm to calculate the costs to the goal states gi ∈G with the
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help of Visibility Graphs and Dijkstra’s algorithm in previous sections. These costs

are defined as displacements on the shortest paths to the goal states in the visibility

graphs for each agent. In this project, our aim is to minimize the total displacement

of the individuals while achieving the desired formation shape. For this purpose we

have implemented an algorithm to minimize the overall displacement of whole swarm

while achieving a formation shape. The problem related with this process can be

defined as follows:

We have n number of agents in our swarm and n number of goal states gi ∈ G placed

in desired formation shape. Each agent has reported their costs (i.e. minimum dis-

placements) to reach each of these goal states and we have to implement an algorithm

to assign the agents to these goal states by minimizing the total displacement of the

swarm. This is a generalized assignment problem and we have used Hungarian al-

gorithm which is a combinational optimization algorithm that solves this assignment

problem. To implement this algorithm, a complete bipartite graph G = (S,T,E) with

n ∈ S agents and gi ∈ T goal states is constructed.In this graph, each agent has a cost

which is defined by the shortest path to the destination in the workspace for different

goal points.

Figure 3.27: Sample Bipartite Graph Used in Assignment Problem [44]
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We have defined a cost matrix C to implement the Hungarian algorithm. The dimen-

sions of the cost matrix is nxm in which each element represents the cost of assigning

the goal state m to the agent n. Since we have equal number of agents and goal states,

the cost matrix will be a square nxn matrix. The algorithm for the assignment process

as follows:

Data: Cost Matrix , C

Result: Assignment Array of Agents to Goal States

Label1 ;

for Each Row, R, in C do
Find the smallest element and subtract it from every element

end

Label 2 ;

if A column,K, contains more than one zero then
Repeat Label1 for each column, K

end

Label 3 ;

Select element in columns for which a distinct minimum weight has been

determined and add to solution

Label 4 ;

If it is not possible to reach the full solution, flag rows without solutions. Flag

all columns in flagged rows that contain a zero. Flag all rows with a previously

determined solution in previously flagged columns.

Label 5 ;

From elements remaining in flagged rows and unflagged rows, determine the

element which has smallest value and assign this value to γ . Subtract γ from

every unflagged element and add γ to every element that has been flagged

twice.

Label6 ;

Goto Label3 until full solution has been achieved.

Algorithm 6: HUNGARIAN_ALGORITHM

Hungarian algorithm returns a vector of nx1 and each row in this vector represents

the goal state that the related agent is assigned. With this assignment, the total cost

(i.e. total displacement) of the swarm is minimized.
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3.2.3 Mesh Quality Measurement

We have provided two different solutions to the shape partitioning problem. Bubble

Packing method partitions the desired formation shape into goal states by distributing

the bubbles which are representing our agents in the swarm. On the other hand,

Randomized Fractals method randomly places the fractals in the desired shape and

these fractals are representing our agents in the swarm. In this project one of our aims

is to distribute the agents in the formation shape homogeneously. So it is useful to

define a metric to compare the performances of these algorithms, i.e. a metric which

represents how these methods homogeneously distribute the agents in the formation

shape. One of the criterias we have used is topological mesh irregularity [29] which

is commonly used by mesh generation problems. To measure the topological mesh

irregularity in our swarm, first we have constructed a Voronoi diagram with the nodes

which are the center positions of the agents’ coverage circles. Figure 3.28 shows a

simulation output about the final states of the agents in the desired formation shape.

Centers of these coverage circles are used as positions of nodes while constructing the

Voronoi diagram as illustrated in the right hand side of the figure. We have created

an equivalent Delaunay triangulation by connecting the centers of cells which are

neighbors in the Voronoi diagram.

Figure 3.28: Voronoi Diagram Constructed with Final Positions of Agents

With the help of this Voronoi diagram, the topological mesh irregularity is defined

by:
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εt =
1
n

n

∑
i=0
|γi−D| (3.104)

where

D =

 6 for triangles in Voronoi Diagram

12 for tetrahedras in Voronoi Diagram
(3.105)

and γi represents the degree, or the number of neighboring nodes connected to the ith

interior node, and n represents the total number of interior nodes. In this implementa-

tion, topological mesh irregularity vanishes when all nodes have D neighbors, but this

ideal case is almost not possible in practical applications. D number is determined as

6 since we have a Voronoi diagram and equivalent Delaunay triangulation defined in

a two dimensional surface. Figure 3.29 shows a node with 6 neighbors in an example

Voronoi diagram.

Figure 3.29: A Node with 6 Neighbors

Another metric we have used is geometrical mesh irregularity [29] With the help of

the Voronoi diagram generated for the final state of the swarm, this irregularity is

defined as [29]:

εg =
1
m

m

∑
i=0

(A− ri

Ri
) (3.106)
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where

A =

 0.5 for triangles in Voronoi Diagram√
2/11 for tetrahedras in Voronoi Diagram

(3.107)

and m represents the number of nodes, ri is the radii of inscribed circle of Voronoi

cell belonging to node i and Ri is the radii of the circumscribing circle of Voronoi cell

belonging to node i. A number is determined as 0.5 since we have a Voronoi diagram

and equivalent Delaunay triangulation defined in a two dimensional surface. Figure

3.30 shows inscribing and circumscribing circles of a Voronoi cell.

Figure 3.30: Inscribing and Circumscribing Circle of a Voronoi Cell of Node i

These irregularities show that how homogeneously the agents cover the desired for-

mation shape in their final states. We expect to have lower values of irregularities for

more homogeneous distributions.

3.2.4 Control System Design for Individual Agents

In shape partitioning methods we have implemented algorithms to calculate the po-

tential goal states in desired formation shape. Then we have defined the assignment

procedure of the agents to these goal states to minimize the total displacement of the

agents in previous chapters. At this point, it is needed to implement navigation control
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laws for individual agents to make them reached to the goal states they have assigned.

Since the environment is dynamically changing with lots of mobile agents, it is very

probable to have different assignments to these goal states at each execution step of

formation control algorithm. Control system must react to these dynamically chang-

ing setpoints. For these purposes, we have designed a velocity controller with a large

bandwidth as the inner loop of the control system and the outer loop is composed with

a velocity setpoint generator. The block diagram for the proposed controller structure

is presented in Figure 3.31.

Figure 3.31: General Scheme of the Control System

In our implementation, velocity setpoint generator provides instant setpoints for the

inner loop based on the current position of the agent and the desired goal state posi-

tion. This loop calculates the amplitude of the velocity setpoint proportional with the

Euclidian distance of agent to the desired goal state. The direction of this velocity set-

point vector has a bearing angle of the line segment drawn from the agent to the goal

state. The additional terms discussed in Section 3.2.2 related with collision avoidance

is added to this velocity setpoint. This generator saturates the amplitude of the set-

point vector with 0.5 [m/sec] to prevent the agents’ travelling in the environment so

fast. Figure 3.32 shows the amplitude and the bearing angle to the destination goal

state used by the velocity setpoint generator.

Figure 3.32: Velocity Setpoint Generation
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The inner loop is designed to track the velocity setpoint provided by the generator and

it has a state feedback structure. The gains for the feedback states are calculated with

LQR methodology. A simple mass, damper type second order linear system is used

to provide a linear model for the controller design. The translational friction force

is assumed to be linear with the velocity of each agent. Different mass and friction

coefficients for heterogeneous mobile robots are used in control system design. To

track the desired velocity setpoint, the model of the system is augmented with an

artificial error state e,

v̇

ė

=

−b/m 0

1 0

v

e

+
1/m

0

Fnet and y =
[
1 0

]v

e

 (3.108)

where b is the linear friction force coefficient and m is the mass, v is the linear velocity

of the agent and e is the augmented error state which is the integral of the velocity

state. Here the v state is the stabilizing part of the controller and the e error state is

the tracker part of the controller. The state feedback gain, K, which minimizes the

quadratic cost function of

J =
∫ t1

to
(xT Qx+uT Ru)dt (3.109)

is calculated with help of ′lqr′ function of MATLAB for the given system in Equation

3.108 with the gain matrices of

Q =

q1 0

0 q2

 and R = r1 (3.110)

The parameters for the controller design are determined with the approach presented

below,

q1 =
1

t1(x1max)2 ; q2 =
1

t2(x2max)2 ; and r1 =
1

(u1max)2 ; (3.111)

Here ti is the desired settling time for xi which is determined as 1.5 seconds for the

velocity and 0.01 seconds for the integral state. The statement of ximax represents the
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expected maximum value of the state i , which is defined 1 [m/sec] for the velocity

state and 4 [m] for the error state. u1max represent the maximum allowable input signal

which is defined as 3 [N]. The structure of the inner loop is illustrated in Figure 3.33

Figure 3.33: Inner Loop Structure

The error state ([m]) between the reference and the velocity feedback is integrated and

multiplied with the error gain, and the velocity state is multiplied with the velocity

gain. These two components generate the total control input of the system.

Figure 3.34: Step Response of the Closed Loop(Inner Loop)

According to the Figure 3.34, the settling time for the inner loop is around 0.5 seconds

for a step input. System has an overshoot around %10 .
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Figure 3.35: Closed Loop Bode Plot(Inner Loop)

Figure 3.35 shows the bode plot for the closed loop of the velocity controller. Ac-

cording to this figure inner loop which control the desired velocity setpoint has a

bandwidth nearly 10 rad/sec.
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CHAPTER 4

SIMULATION ENVIRONMENT & RESULTS

In this section, the simulation environment is detailed and the results are analyzed

and extensively discussed in terms of local positioning and formation control. Three

different methods of formation control system which were developed in Chapter 3

are evaluated and compared with each other. Simulations are done on the Gazebo

simulator using a swarm of 50 agents which includes three different types of robots.

We have determined the position beacon ratio as %15, so we have 8 position bea-

cons in our swarm. The main system frequency in which each agent propagates its

state vector, calculates artificial forces and executes goal state assignment process is

determined as 2Hz.

4.1 Simulation Environment

Block diagram of the simulation environment is illustrated in Figure 4.1. Gazebo is

an open source multi robot simulator developed by Open Source Robotics Founda-

tion(OSRF). It has multiple physics engines; Open Dynamics Engine(ODE), Bullet,

Dynamic Animation and Robotics Toolkit(DART) and Simbody. Gazebo can execute

simulations with multiple agents in an environment that is fully created by the user.

The dynamics and the physical properties of the robots are determined by the user. It

can be integrated with Robot Operating System(ROS). We have used this simulator to

run the dynamics of the agents with the help of ODE physics engine. We have created

plugins dedicated on each agent to execute the algorithms in a decentralized topology.

Agents use these plugins to listen goal states from Matlab environment, execute their
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decision process algorithms and calculate their artificial forces. These plugins also

execute controller algorithms to make the agents reached to the goal states they have

assigned.

Figure 4.1: Simulation Environment

Shape partitioning algorithms are executed in Matlab environment and goal states are

published over a network socket. A plugin working in Gazebo environment, listens

the packets sent by Matlab and parse the data for each agent type. The state vectors of

the agents are published with a plugin from the Gazebo simulator and they are used

to visualize the workspace in a Matlab plot. We have designed the workspace as a

rough 3D territory and each agent have different interactions with the environment

with different mass and friction characteristics. This workspace is defined with a

square area with boundaries placed at +/-50 meters in x and y coordinates. We have

assumed that the communication range of an agent is 25 meters. To simulate the radio

link between any two agent, we use a line segment drawn between the centers of these

agents’ coverage circles. It is assumed that these two agents have a direct radio link

(i.e. they are direct neighbors in the mesh network) if the p2 norm of this vector

is smaller than the communication range and this line segment doesn’t intersect any

workspace obstacles.

Figure 4.2 illustrates the Gazebo simulation environment.
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Figure 4.2: Simulation Environment in Gazebo

In this simulation environment, each agent is designed with collision surfaces com-

posed of four spheres, assumed to have point interaction with the environment. Agents

have cylindrical links binding these spherical contact points. The collision surfaces

and physical dimensions of these links are variable according to the different agent

types to create heterogeneous swarm. The mass and friction coefficients for different

types of agents are given in Table 4.1. Here there are two different types of frictions,

µ1 represents the dry friction coefficient and the µ2 is the fluid friction coefficient.

These different friction coefficients and collision surfaces of agents are used to create

agents with different physical and dynamical properties.

Table 4.1: Parameters for Different Types of Agents

Agent Type Mass[kg] µ1 µ2 Coverage Circle Radius[m]

Agent 1 0.8 0.21 0.13 0.15

Agent 2 1 0.18 0.18 0.3

Agent 3 1.5 0.21 0.13 0.5

Full state feedback gains for the agents are calculated with the help of LQR method-

ology by using the linear system definitions of different types of agents. Calculated

feedback gains are given in Table 4.2.
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Table 4.2: State Feedback Gains for Different Types of Agents

Agent Type Ke Kv

Agent 1 237 96

Agent 2 263 112

Agent 3 297 121

Figure 4.3 illustrates the visualization of the workspace in the Matlab environment.

Red circles are the coverage circles representing the different types of agents in the

environment. The shape defined with blue line is the desired formation shape and the

obstacles are represented with green lines in the environment.

Figure 4.3: Visualization of Workspace in Matlab

4.2 Local Positioning System

In the local positioning system, the main aim is to design an architecture in which

every second type agent can localize itself with the help of the position beacons. In

this architecture, second type agents need external position measurements for their

state estimator systems to prevent a potential drift in their position data. In our imple-

mentation, the state propagation frequency is determined as 2Hz which is equal to the

main system frequency since the new position datas for the formation control system
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are required to be determined with this rate. We have proposed a localization timer to

provide the required minimum time to the DSDV algorithm and trilateration process.

We are expecting that the position data in the state vector will drift with the increas-

ing time because of the errors and noise in inertial measurements unless they are not

corrected with the external measurements [21]. So it is possible to determine a min-

imum execution period of this trilateration process to satisfy a maximum error in the

position data. For this purpose we have executed Monte Carlo simulations to observe

the drift in the position data with state propagation process. We add a random bias

on the acceleration measurements on each agents’ acceleration input with maximum

value of 0.1 mg [39]. Also, we add a white noise to the acceleration values with zero

mean and 0.01 [m/s2] standart deviation [40]. The values of bias and noise terms are

added to the measurements consistent with the specifications of industry grade iner-

tial measurement units presented by the manufacturers. Moreover, a noise component

is added to the correct position measurements modelled with a Gaussian distribution

with zero mean and 2[m] standart deviation during simulations. Figure 4.4, 4.5 and

4.6 illustrate the simulation outputs showing the error on the estimated position data

for different agents with variable periods of localization timer.

Figure 4.4: Total Error with Localization Timer Period of 3 Seconds
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Figure 4.5: Total Error with Localization Timer Period of 5 Seconds

Figure 4.6: Total Error with Localization Timer Period of 8 Seconds

According to these figures, it is clear that the total error norm on position datas are

decreased dramatically with the localization period which includes 6 iterations in 3

seconds period, 10 iterations in 5 seconds and 16 iterations in 8 seconds period. The

peak values on the error norms are always observed at the iterations just before the

localization process. It can be concluded that the peak values on the error norms are

greatly related with the localization period and they have higher values according to

the increasing number of this period. The maximum error norm is below 3 meters

with localization period of 3 seconds, below 10 meters with localization period of 5

seconds and below 12 meters with localization period of 8 seconds. In this work, it

is assumed that the error norm of 3 meters is the maximum tolerable value for the

formation control system in order to satisfy a successful collision avoidance by the

agents. Thus, the localization period for the trilateration process is determined as 3
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seconds in simulations.

The performance of the LPS design is tested in simulations with different conditions

in which the swarm propagates to a desired formation shape while agents are self

dispatched to new positions according to the changing needs of the formation or pre-

serves their previous positions. In both cases in which agents are moving or stationary,

it is observed that the position datas of the agents are drifted with an increasing error

between two sequential localization process as we have discussed previously. A sam-

ple case for this situation is illustrated in Figure 4.7 and Figure 4.8. In these figures,

red circles are representing the estimated positions of the agents where blue circles

are representing the real positions.

In Figure 4.7, blue and red circles do not coincide with each other. This shows us,

there are errors on the estimated positions which are represented with red circles be-

fore the localization process. Figure 4.8 shows the workspace just after a localization

process and it is possible to see that blue and red circles are getting close to each other

with this process. This concludes that the error on the estimated position datas are

reduced with the help of this process.

Figure 4.7: Positions of the Agents Before Localization Process
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Figure 4.8: Positions of the Agents After Localization Process

In our project, an agent gets in ’Lost’ mode if it cannot find at least three position

beacons as its direct neighbor. This requirement is related with local trilateration

process and the details of handling procedures of the lost agents are presented in

Section 3.1.3. According to these procedures, if any agent which is in ’Lost’ mode,

misses three localization process, it will get into ’Come Home’ mode. When an agent

is in ’Come Home’ mode, it tries to reach the center of the formation shape in order

to increase the possibility of meeting some position beacons to localize itself. A

simulation result in which two agents do not have three position beacons as direct

neighbors around themselves is illustrated in following figures. They get into ’Lost’

mode first, when they cannot find three position beacons as direct neighbors. After

they miss three localization process, they get into ’Come Home’ mode in which they

are trying to reach to the center of formation shape.

Simulation outputs related with lost agents are illustrated in Figures 4.9 and Figure

4.10. According to these figures, two of the agents which are far away from the

formation center get in ’Lost’ mode first, then they get in ’Come Home’ mode after

three localization period.
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Figure 4.9: Agents will be in ’Lost’ Mode When They Do Not Have 3 Neighbors

Figure 4.10: Agents will be in ’Come Home’ Mode After 3 Localization Period

4.3 Formation Control System

We have implemented three different methods; Artificial Forces, Bubble Packing and

Randomized Fractals in formation control systems. In this section, these different

methods are evaluated according to their settling times, mesh qualities and total dis-
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placements. During the simulations, the variables which are described in Section 3

are chosen as:

ka = 250 (Variable Gain f or Attractive Forces)

kr = 150 (Variable Gain f or Repulsive Forces)

km = 1500 (Variable Gain f or Intermember Forces)

kt = 1000 (Variable Gain f or Transition Forces)

ko = 5000 (Variable Gain f or Obstacle Forces)

∆z = 0.01[m] (p2 Norm used in Contour Integrals)

a =−0.1 (Parameter used in Interbubble Forces)

b =−0.2 (Parameter used in Interbubble Forces)

c =−0.3 (Parameter used in Interbubble Forces)

d = 4 (Parameter used in Interbubble Forces)

lo = 2.5[m] (Parameter used in Interbubble Forces)

4.3.1 Mesh Qualities

Mesh quality is a measure of how the agents are homogeneously distributed while

covering the desired formation shape. In this project, two different types of quality

measurements are used to evaluate the performance of the formation control methods,

topological mesh irregularity εt and geometrical mesh irregularity εg. To compare the

performances of formation control systems based on these two parameters, we use

Monte Carlo simulations with 1000 iterations handling the same formation shapes

with different initial conditions for the agents in the environment. Sample outputs for

three different types of formation control algorithms are illustrated in the following

Figures 4.11, 4.12, 4.13, 4.14, 4.15, 4.16. In these figures, red circles are representing

the coverage circles of three different type of agents. Mesh irregularities are calcu-

lated by constructing the Voronoi diagrams with nodes located at the centers of these

coverage circles.
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Figure 4.11: Shape 1 with Artificial Forces Methods:εt = 2.1 and εg = 0.32

Figure 4.12: Shape 2 with Artificial Forces Methods:εt = 2.6 and εg = 0.4

Figure 4.13: Shape 1 with Bubble Packing Method:εt = 2.1 and εg = 0.24
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Figure 4.14: Shape 2 with Bubble Packing Method:εt = 2.3 and εg = 0.28

Figure 4.15: Shape 1 with Randomized Fractals Method:εt = 2.6 and εg = 0.63

Figure 4.16: Shape 2 with Randomized Fractal Method:εt = 3.1 and εg = 0.61

According to these figures, it can be concluded that Randomized Fractals method

has the worst mesh performance. It is because of the randomized assignment of

goal states into the formation shape in this methodology. Bubble Packing and Ar-

tificial Forces methods give similar results since they both have analogous in their

implementations of inter member/bubble forces which distributes the agents/bubbles

within the formation shape more homogeneously. Artificial force method applies this
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intermember forces directly to the agents in formation control while Bubble Packing

method uses this force on artificial bubbles to partition the shape into goal states.

Figure 4.17: Formation Shape 1 Topological Mesh Irregularities

Figure 4.18: Formation Shape 1 Geometrical Mesh Irregularities
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Figure 4.19: Formation Shape 2 Topological Mesh Irregularities

Figure 4.20: Formation Shape 2 Geometrical Mesh Irregularities

Monte Carlo simulations with 1000 iterations for both formation shapes with different

initial conditions are done and the results are illustrated in Figure 4.17, 4.18, 4.19 and

4.20 . In Figures 4.17 and 4.18, Randomized Fractals method has greater mean values

for both topological and geometrical mesh irregularities as expected. Bubble Pack-
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ing and Artificial Forces methods have similar performances on mesh quality. This

shows us the Randomized Fractals method has the worst mesh quality performance.

Similarly in Figure 4.19 and 4.20, Randomized Fractals method has the highest mean

value on both geometrical and topological irregularities.

4.3.2 Total Displacement of the Agents

In this project, we aim to minimize the overall displacement of the agents in the

swarm while getting the desired formation shape to achieve homogeneous coverage.

The main consideration in this thesis is to reduce the expected energy consumption

of the swarm by decreasing the required displacements of agents. To compare the

total displacement of the swarm while getting the desired shape for three different

methods, we have done Monte Carlo simulations with 1000 iterations. These sim-

ulations are handled for the same formation shapes with different initial conditions

of the agents in the environment. Trajectories of the agents are recorded from the

initial positions to the goal states for three different types of formation control sys-

tems. Sample outputs for three different types of formation control algorithms are

illustrated in the following figures.

4.3.2.1 Shape 1

Figure 4.21: Formation Shape 1 in MATLAB environment
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Figure 4.22: Formation Shape 1 in Gazebo environment

Figure 4.23: Artificial Forces Method Trajectories for Shape 1

Trajectories of the agents towards to the desired shape in Artificial Forces method are

shown at the Figure 4.23. It is possible to see that agents are not directed towards

some predetermined goal states, they are randomly placed in the desired shape. This

approach increased the total displacements and settling times of the agents.
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Figure 4.24: Bubble Packing Method Trajectories for Shape 1

Figure 4.25: Randomized Fractals Method Trajectories for Shape 1

Trajectories of the agents towards to the desired shape in Bubble Packing and Ran-

domized Fractals methods are shown at the Figure 4.24 and 4.25. In these methods,

each agent directly tries to reach its goal state. This approach reduces the total dis-

placement and settling time.
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It can be seen that the trajectories of the agents are more chaotic and complex in

the Artificial Forces method when compared to the other two solutions. Main cause

for this situation, the agents are under the effect of a total force which is instantly

changing both in amplitude and direction with the local interactions with the envi-

ronment in Artificial Forces method. The only force component which provides the

distribution of the agents in the formation shape homogeneously is the intermember

forces which is dynamically changing so much with the local instant neighbors of

the agents in the environment. On the other hand, Bubble Packing and Randomized

Fractal methods implement an algorithm in which every agent is directed to a goal

state where total displacements in the environment is minimized. This approach pre-

vents the chaotic appearance of the trajectories and minimizes the displacements of

the agents. Because agents are trying to reach their goal states directly within these

two methods.

To compare the total displacements, we have done Monte Carlo simulations with

1000 iterations and the results are presented in Figure 4.26. According to this figure,

Artificial Forces method has a higher mean value of total travelled distance while

achieving the same formation shape with same initial conditions. Performances of

Bubble Packing and Randomized Fractals method seem similar, because the only

difference between these two methods is their shape partitioning approaches. The

assignment procedure of the agents to these goal states is implemented identically.

Figure 4.26: Total Travelled Distances for Shape 1
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4.3.2.2 Shape 2

Second formation shape gives similar results with three different formation control

methods, because of the reasons discussed for the Formation Shape 1. Artificial

Forces method has the worst performance on total travelled distance metric.

Figure 4.27: Formation Shape 2 in MATLAB environment

Figure 4.28: Formation Shape 2 in Gazebo environment
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Figure 4.29: Artificial Forces Method Trajectories for Shape 2

Trajectories of the agents towards to the desired shape in Artificial Forces method are

shown at the Figure 4.29. It is possible to see that the movements of the agents in the

workspace are chaotic and agents are placed in the desired shape randomly.

Figure 4.30: Bubble Packing Method Trajectories for Shape 2
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Figure 4.31: Randomized Fractals Method Trajectories for Shape 2

Trajectories of the agents towards to the desired shape in Bubble Packing and Ran-

domized Fractals methods are shown at the Figure 4.30 and 4.31. In these methods,

each agent directly tries to reach its goal state. This approach reduces the total dis-

placement and settling time.

Figure 4.32: Total Travelled Distance for Shape 2

The results of the Monte Carlo simulations with 1000 iterations are illustrated in
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Figure 4.32 . In this figure, Artificial Forces method has a higher mean value on total

travelled distance for the same formation shape with same initial conditions.

4.3.3 Settling Time

Settling time is defined as delta time ”t f inal− tstart” ,where tstart is the initial time and

t f inal is the time when all agents are inside the desired formation shape and the norm

of the velocity vector for each agent ‖vi‖ is

‖vi(t)‖< 0.01 [m/sec] ∀ t > t f inal (4.1)

To compare the settling time performances of three different methods, we have mea-

sured the settling times of three different methods for the same formation shapes and

initial condition with the help of Monte Carlo simulations. The results are illustrated

in Figure 4.33 and 4.34. According to these figures, Artificial Forces method has a

higher mean value on settling time higher than the other two methods.

Figure 4.33: Total Settling Time for Shape 1
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Figure 4.34: Total Settling Time for Shape 2

According to the Figure 4.33 and 4.34, Artificial Forces method demonstrates the

worst performance because agents are expected to need more time to reach the steady

state under the effect of different artificial force components. Since there are no

predetermined goal states for the agents in the desired formation shape, the settling of

the agents in random places under the equilibrium of the artificial force components

takes more time than the other two formation control methods. The agents have

reached the steady state at their goal states with the Bubble Packing and Randomized

Fractals methods faster than the Artificial Forces Methods.

4.3.4 Dynamically Changing Formations

In dynamic formation control, desired formation shape is changed dynamically in a

smooth fashion. Agents have to adapt themselves to this changing formation shape

and cover the shape in a smooth continuous manner. Since the formation shape is

expected to have smooth changes in local regions, it is aimed to adapt the agents

which are positioned at these local regions rather than replacing all agents simulta-

neously. To minimize the total displacement of the swarm, the general approach is

to make the agents which are close to the changing regions take action and replace
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themselves while others which are far from that region remain in their positions. Ran-

domized fractals method does not provide a solution for this type of problem since its

nature of task assignment for agents is done randomly for a given formation shape.

These assignments made by the randomized fractals method do not generate con-

tinuous transitions on goal states between sequential changes of formation shapes.

On the other hand, it is possible to adapt the Bubble Packing algorithm to provide a

solution for the dynamically changing formations. Since Bubble Packing algorithm

determines goal states in a formation shape by applying interbubble forces, it is possi-

ble to keep this shape partitioning process running in the background to dynamically

adapt the goal states to the changing formation shape. The assignments to these goal

states are achieved with Hungarian algorithm in Bubble Packing method. This pro-

cess will adapt the swarm to the dynamically changing formation shape. Artificial

forces method calculates control inputs for the individuals according to the current

environment conditions and the formation shape. There is no need to update the al-

gorithm for dynamically changing formation shapes, it already supports dynamically

changing formations.

Figure 4.35 shows a simulation result for dynamical formation control implemented

with Bubble Packing Method. Agents adapt themselves to the dynamically changing

formation shape by assigning new positions of the goal states at each iterations. The

positions of these goal states are determined with shape partitioning process imple-

mented with Bubble Packing algorithm.
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Figure 4.35: Dynamic Formation Control with Bubble Packing Method

Figure 4.36 illustrates a simulation result of Artificial Forces method. In this method

agents reposition in the changing formation shape with the help of artificial force

components calculated with current formation shape. Since, agents directly adapts

themselves to the changing formations shape in Artificial Forces method, it is ex-

pected to have a faster response than the Bubble Packing method. In Bubble Packing

method, goal states are adapted to the changing formation shape and agents try to
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reach these goal states in runtime. This kind of approach introduces an additional

latency to the response of the swarm to dynamically changing formation shapes. This

situation is illustrated in following Figure 4.37, 4.38 and 4.39.

Figure 4.36: Dynamic Formation Control with Artificial Forces Method

Figure 4.37, 4.38 and 4.39 compares the responses of these two algorithms to dynam-

ically changing formation shapes. We have executed Bubble Packing and Artificial

Force algorithms with the same dynamical formation shapes and same initial posi-

tions of the agents. In these figures, red circles are representing the agents’ positions

with Bubble Packing method and green circles are representing the agents’ positions

with Artificial Forces method at the same time instance relative to the beginning of the

simulations. Formation shape with blue line illustrates the current formation shape.

It can be seen that the green agents are adapted to the current formation shape better

than the red ones. The shape with dotted red line, represents the estimated coverage

116



area of red agents in the environment and this shape differs from the current forma-

tion shape locally at some boundary regions. This shows that agents response to the

dynamically changing formation shape faster with Artificial Forces method. Bubble

Packing algorithm has a slower response to the dynamically changing shapes. It is

appropriate to use Artificial Forces method in rapidly changing dynamical shapes if

it is critical to adapt the swarm to the formation with low latency.

Figure 4.37: Latency in Bubble Packing Method-1

Figure 4.38: Latency in Bubble Packing Method-2
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Figure 4.39: Latency in Bubble Packing Method-3

4.3.5 Sensitivity on Mesh Irregularities

In this project, we have made sensitivity analysis on mesh irregularities to check

how this metric is affected by the parameters of formation control system. Mesh

irregularities are expected to be increasing at boundary layers due to discontinuties

and singularities [45]. This is a known fact in mesh generation problems and there are

some solutions which dynamically adapts the density of the mesh(i.e. size of mesh

elements) in boundary layers to decrease irregularities. In our implementation, it is

not possible to implement this kind of solution because the number and size of mesh

elements(i.e. different types of agents in our problem) are known and fixed. To check

the effect of increasing length of boundary layers, we have defined a dynamically

changing formation shape by keeping the interior area constant. All of the parameters

related with the formation control system are kept fixed except for the total boundary

length with this approach.
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Figure 4.40: Sensitivity Analysis with Dynamically Changing Formation

Figure 4.40 shows some snapshots from a dynamically changing formation shape

trial. We have initiated the desired formation as a circular shape and then we have

changed it into rectangular shapes dynamically. Final shape is a complex contour

without an analytical expression. Blue lines represents the related Voronoi diagrams

composed with the agents in a particular moment of dynamical formation control.

These Voronoi diagrams are used to calculate the topological mesh irregularity.

Table 4.3: Sensitivity Analysis on Topological Mesh Irregularity

Shape Area Total Boundary Topological Mesh

Length Irregularity

1 314[m2] 62.8m 2.46

2 314[m2] 82.8m 2.96

3 314[m2] 116.82m 3.45

4 314[m2] 128.36m 3.95
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Table 4.3 shows the topological mesh irregularity calculations of the formation shape

at four different moments. Topological mesh irregularity is increasing with the in-

creasing number of perimeter length as expected. This is because of we have in-

creased the total length of boundary layer at which the irregularities has the highest

value while keeping the interior area, agent number&size and other parametric vari-

ables of formation control system.

4.3.6 Evaluation

Three different formation control approaches are evaluated with different kinds of

metrics including the total displacement, settling time, mesh quality and dynamically

changing formations. Artificial forces method has the worst performance in settling

time and total displacement metrics due to the absence of predetermined goal states.

On the other hand the Randomized Fractals method has the worst mesh quality per-

formance because of its randomized nature of assignment the goal states in the de-

sired formation shape. It is not possible to adapt the agents for dynamically changing

formations with this method. Artificial forces method has better response to the dy-

namically changing formations than the Bubble Packing method, because it directly

applies individual control laws based upon the instant conditions of the workspace.

Table 4.4 summarizes the worst performances of three methods in the related metrics.

Table 4.4: Formation Control Methods with Worst Performance

Method/Metric Total Settling Mesh Dynamical

Displacement Time Quality Formation

Artificial Force X X

Bubble Packing X

Randomized Fractals X N/A

Bubble Packing Method has the best performance for all metrics except for dynamical

formation shapes. In fact, Bubble Packing method combines the efficient approaches

of the other two methods. In the shape partitioning phase of the algorithm, it uses in-

terbubble forces which have a similar structure with the intermember forces applied

by the Artificial Forces method in formation control. This force yields the greatest
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effect on the homogeneity of the agents in the desired formation shape because it

provides a global consensus for the agents in which each agent reaches an equilib-

rium state under the total force acting by their neighbors and the formation shape.

Moreover, Bubble Packing method implements an algorithm in which every agent is

assigned to a goal state instantly at each execution period of the algorithm to minimize

the overall displacement of the swarm. This approach reduces the settling time and

the total displacements of the agents from the initial state to their final states since

their final positions in the formation shape is predetermined. It is possible that the

agents’ goal states may be changed with the execution of the algorithm at different

steps, but these assignments will converge to a unique subset while the agents are

getting closer to the goal states.

Artificial forces method has better performance on dynamically changing formations

because it directly generates individual control signals on the agents according to the

current formation shape. Bubble Packing method has a slower response to the dy-

namically changing formations due to its solution with two stages, shape partitioning

and goal state assignment.

We have made some different formation shape trials by using these different methods.

Following figures and tables, illustrate these trials and their performance metrics.

Figure 4.41: Formation Shape - 1 in Gazebo Environment
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Figure 4.42: Formation Shape - 1 in MATLAB Environment

Table 4.5: Performance Metrics for Shape - 1

Total Total Settling

Method Displacement[m] Time[sec] εt εg

Artificial

Forces 1889 164 2.54 0.62

Bubble

Packing 1750 151 2.44 0.67

Randomized

Fractals 1762 153 3.14 0.92

Table 4.5 illustrates different performance metrics related with three different meth-

ods. According to this table, it is possible to state that the Artificial Forces method

has the worst total displacement and settling time performances. On the other hand

Randomized Fractals method has the worst mesh irregularity performance.
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Figure 4.43: Formation Shape - 2 in Gazebo Environment

Figure 4.44: Formation Shape - 2 in MATLAB Environment
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Table 4.6: Performance Metrics for Shape - 2

Total Total Settling

Method Displacement[m] Time[sec] εt εg

Artificial

Forces 1611 153 2.95 0.73

Bubble

Packing 1550 141 2.84 0.77

Randomized

Fractals 1522 140 3.24 1.12

Table 4.6 illustrates different performance metrics related with three different meth-

ods. According to this table, it is possible to state that the Artificial Forces method

has the worst total displacement and settling time performances. On the other hand

Randomized Fractals method has the worst mesh irregularity performance.

Figure 4.45: Formation Shape - 3 in Gazebo Environment
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Figure 4.46: Formation Shape - 3 in MATLAB Environment

Table 4.7: Performance Metrics for Shape - 3

Total Total Settling

Method Displacement[m] Time[sec] εt εg

Artificial

Forces 1432 126 2.23 0.45

Bubble

Packing 1330 115 2.14 0.52

Randomized

Fractals 1350 112 3.15 0.89

Similarly, Table 4.7 illustrates different performance metrics related with three differ-

ent methods. According to this table, it is possible to state that the Artificial Forces

method has the worst total displacement and settling time performances. On the other

hand Randomized Fractals method has the worst mesh irregularity performance.
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Figure 4.47: Formation Shape - 4 in Gazebo Environment

Figure 4.48: Formation Shape - 4 in MATLAB Environment
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Table 4.8: Performance Metrics for Shape - 4

Total Total Settling

Method Displacement[m] Time[sec] εt εg

Artificial

Forces 1578 142 2.15 0.56

Bubble

Packing 1345 112 2.34 0.66

Randomized

Fractals 1321 121 3.23 1.05

Table 4.8 illustrates different performance metrics related with three different meth-

ods. According to this table, it is possible to state that the Artificial Forces method

has the worst total displacement and settling time performances. On the other hand

Randomized Fractals method has the worst mesh irregularity performance. A sim-

ulation with multiple formation shapes sequentially is illustrated in Figure 4.49. In

this figure, trajectories of the agents are drawn while reaching and covering the de-

sired shapes sequentially. It is possible to see that the agents do not collide with the

workspace obstacles while travelling towards the desired shapes.

Figure 4.49: Multiple Formations
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Table 4.9: Performance Metrics for Multiple Formation Shapes

Total Total Settling εt εg

Method Displacement[m] Time[sec] Mean Mean

Artificial

Forces 4216 435 2.21 0.68

Bubble

Packing 3876 367 2.31 0.56

Randomized

Fractals 3769 372 3.35 1.16
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CHAPTER 5

HARDWARE IMPLEMENTATION & RESULTS

In this project, we have done a hardware demonstration with five mobile robots from

different sizes, to achieve a proof of concept related with the topics we have focused

on. In this implementation, agents are mobile robots equipped with three omni-

wheels which allows navigation to every direction without the need for changing

their headings. We have designed both hardware and software systems of the mobile

robots. Since the demonstration is held at indoor environment, we have implemented

image processing algorithms to provide position information for each agent with the

help of an E/O camera. These image processing algorithms are executed on a mission

computer. This mission computer is also responsible of execution of shape parti-

tioning algorithms. Local positioning system is not implemented for this hardware

demonstration because it may not be possible for an agent to find enough position

beacons to localize itself in a swarm with five agents. Formation control algorithms

are implemented with Bubble Packing method which has the best performance on

different metrics described in 4.3.6

5.1 Hardware Demonstration Environment

The schematic of the hardware implementation environment is illustrated in Figure

5.1. As illustrated in Figure 5.1, each agent and the mission computer has a radio

link to create a mesh network in which every node can transfer messages between

each other directly or with the help of their neighbors. Moreover, each agent has its

individual CPU. This processor unit is used to execute goal state decision process

129



and to control the actuators of the agents. These processors also execute the control

system which is used to navigate the agent to their target goal states and manage the

messaging operations within the mesh network. This architecture supports the idea

of decentralized formation control with Bubble Packing method in which each agent

is responsible to take decisions and reach to a global consensus with the rest of the

swarm on the potential goal states. These potential goal states are determined by

the mission computer which takes the desired formation shape from the operator and

executes shape partitioning algorithms. The data including the potential goal states is

broadcasted to all of the agents in the environment with the help of mesh network.

Figure 5.1: Implementation Environment

Since the workspace is an indoor environment, it is impossible to use a GNSS system

to provide position measurements to the agents. To provide this external measure-

ments, a visual feedback system is designed with the help of an E/O camera and

image processing algorithms. We have implemented image processing algorithms

depending on the color classification of different cover planes placed on the top of the

mobile robots. These covers are illustrated in Figure 5.2
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Figure 5.2: Covers for Different Types of Agents

Covers have different sizes to represent the coverage circles of the agents in 2D en-

vironment. These covers are used to create a swarm with heterogeneous agents par-

tially. In our implementation, each cover has two different size of circles with the

same color. Colors of these circles are used to classify the agent with the help of

color classification algorithms. We have used different sized circles placed on the

same cover, to calculate the heading angle of the agent with the help of circle de-

tection algorithms. These algorithms can detect the positions and the radius of the

circles in an image. In our project, heading angle of an agent is determined with the

clockwise bearing angle of the vector from the center of the large circle to the center

of the small circle. Figure 5.3 illustrates a sample bearing angle calculation for an

agent.

Figure 5.3: Orientation of an Agent in the Environment

The video of the environment is transmitted to the mission computer in nearly real
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time with the help of an E/O camera. Mission computer executes the image process-

ing algorithms which filters the desired colors and detects the positions of the colored

circles and broadcasts the position and heading angle datas of the agents. A sample

output of the image processing algorithm is illustrated in Figure 5.4.

Figure 5.4: Sample Output of the Image Processing Algorithm

Figure 5.5: Hardware of an Agent
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A block diagram of an individual agent’s hardware is illustrated in Figure 5.5. Each

agent has its individual processor unit and radio link onboard. We use Microchip’s

Pic16f690 microcontroller as processor unit and write the related embedded software

to drive the other peripherals on the board. This unit executes the decision process

on formation control and the navigation control system and drives the 3 step motor

control units, ULN2003APG, via GPIO peripherals.

Figure 5.6: Command Mixture of Step Motors

In our embedded software, instant rotational velocity setpoints for the stepper motors

are determined with the command mixture algorithm illustrated in Figure 5.6. The

desired velocity vector for the agent is distributed to the stepper motors in accordance

with the heading of the agent . Let ‖Vel‖ be the amplitude of the desired velocity

and α is the angle representing the desired direction of the movement in clockwise

direction with respect to mobile robot’s body frame. The velocities for the stepper

motors is determined with following equations,
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VA = ‖Vel‖cos(150−α) (5.1)

VB = ‖Vel‖cos(30−α) (5.2)

VC = ‖Vel‖cos(270−α) (5.3)

where VA,VB,VC represents the desired rotational velocities of stepper motor A,B and

C respectively.

Microcontroller also drives the radio link via UART peripheral and manages the com-

munication of the agent with the mesh network. All of the units onboard are supplied

with a 5VDC regulator, 7805. The schematic of the circuit which controls the agent

is illustrated in Figure 5.7 and 5.8.

Figure 5.7: Schematic of the Circuit on the Board
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Figure 5.8: 3D Visualization of the Layout

Figure 5.9 and Figure 5.10 shows the hardware parts used on a mobile robot. Each

mobile unit has its own control board, battery and radio links onboard. Also each of

them has three stepper motor control units to drive omni-wheels.

Figure 5.9: Hardware of an Agent - Top View
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Figure 5.10: Hardware of an Agent - Bottom View

5.2 Performance Analysis

The system is tested with several formation shapes and results are analyzed with

total displacements of the agents and the settling time metrics. Sample formation

shapes are covered and the algorithm proposed for Bubble Packing method is tested

in real time. Traces of agents are plotted with continuous blue lines from their initial

positions to the goal states in the following figures. The desired formation shape is

plotted with black circles. The environment is a square area which has 2x2 meter

size and there are three different types of agents which have different coverage circles

represented in Table 5.1

Table 5.1: Three Different Agent Configuration

Agent Color Agent Type Coverage Circle Radius[cm]

Red 1 16

Blue 2 11

Green 2 11

Yellow 3 8

Pink 3 8
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Figure 5.11: Formation Shape 1- Matlab Environment

Figure 5.12: Formation Shape 1- Test Environment

Table 5.2: Performance Metrics for Shape - 1

Total Displacements[m] Settling Time[sec]

1.75 23

As illustrated in Figure 5.11, agents cover trapezoidal shape formation from their

initial positions. Their trajectories in the workspace are plotted with blue lines. The

total displacement for this trial is 1.75m and the settling time of the agents is 23

seconds.
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Figure 5.13: Formation Shape 2- Matlab Environment

Figure 5.14: Formation Shape 2- Test Environment

Table 5.3: Performance Metrics for Shape - 2

Total Displacements[m] Settling Time[sec]

1.63 19

As illustrated in Figure 5.13, agents cover square shape formation from their initial

positions. Their trajectories in the workspace are plotted with blue lines. The total

displacement for this trial is 1.63m and the settling time of the agents is 19 seconds.
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Figure 5.15: Formation Shape 3- Matlab Environment

Figure 5.16: Formation Shape 3- Test Environment

Table 5.4: Performance Metrics for Shape - 3

Total Displacements[m] Settling Time[sec]

1.95 26

As illustrated in Figure 5.15, agents cover pentagonal shape formation from their

initial positions. Their trajectories in the workspace are plotted with blue lines. The

total displacement for this trial is 1.95m and the settling time of the agents is 26
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seconds.

Figure 5.17: Formation Shape 4- Matlab Environment

Figure 5.18: Formation Shape 4- Test Environment

Table 5.5: Performance Metrics for Shape - 4

Total Displacements[m] Settling Time[sec]

2.16 29

As illustrated in Figure 5.17, agents cover arrow like shape formation from their initial

positions. Their trajectories in the workspace are plotted with blue lines. The total

displacement for this trial is 2.16m and the settling time of the agents is 29 seconds.
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Figure 5.19: Formation Shape 5- Matlab Environment

Figure 5.20: Formation Shape 5- Test Environment

Table 5.6: Performance Metrics for Shape - 5

Total Displacements[m] Settling Time[sec]

1.80 25

As illustrated in Figure 5.19, agents cover line shape formation from their initial

positions. Their trajectories in the workspace are plotted with blue lines. The total
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displacement for this trial is 1.80m and the settling time of the agents is 25 seconds.

We have defined the settling time as delta time ”t f inal− tstart” ,where tstart is the initial

time and t f inal is the time that the all of the agents are inside of the desired formation

shape and the norm of the velocity vector for each agent ‖vi‖ is

‖vi(t)‖< 0.01 [m/sec] ∀ t > t f inal (5.4)

Desired formations are simple geometrical shapes since it will not be possible to cover

more complicated shapes with five agents. In Bubble Packing algorithm, goal states

gi ∈ G are determined with the help of shape partitioning algorithm. This algorithm

partitions the desired formation shape into goal states which are classified according

to different agent types as we have discussed previously. In this demonstration we

have implemented 3 different types of agents, so we have 3 different type goal states

after each shape partitioning process. Red agent is the only type ’1’ agent in our

system. So it always tries to reach the goal state which is dedicated to itself in dif-

ferent formation shapes given above. On the other hand, shape partitioning algorithm

provides 2 goal states for type ’2’ agents which are blue and green ones. Decision

process on the goal states, assign these agents to these 2 goal states to minimize the

total displacement of the agents. Since we have 2 goal states, the assignment process

has only two options in our case. It is possible to see that if the assignment of type

’2’ agents is switched (i.e. blue and green agents reach the other goal points rather

than the current ones), total displacement will increase. This shows us the decision

process works successfully in the assignment of the agents to minimize the total dis-

placement. Similarly, we have 2 type ’3’ agents which are yellow and pink ones. It is

possible to observe the same results for type ’3’ agents as we have discussed on type

’2’ agents.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In this thesis work, we proposed novel contributions to the dynamic formation control

of heterogeneous mobile robots. These solutions are constructed with the help of two

different subsystems, local positioning systems and formation control systems.

A local positioning system is designed to provide agents accurate position and veloc-

ity data. It is assumed that only a percentage of the swarm has position measurement

sensors (e.g. a GNSS solution) due to the low sensor capabilities of the agents. So

there is a necessity to implement a solution for estimating the positions and the veloc-

ities of the rest of the agents which do not have external position measurement sensors

onboard. We have proposed a solution including the fusion of inertial measurements

of the agents and the position data calculated with the help of trilateration process.

Propagation of the positions with the help of inertial measurements are vulnerable

due to the drift problems and measurement noise of the sensors. Because of this rea-

son, an external position measurement based on local trilateration process is provided

to each agent to correct their estimations . Local trilateration process is implemented

with the help of position beacons which are direct neighbors of each agent. This po-

sition data is used in the Kalman observers as the external measurement data. It is not

possible to execute the route table determination and the local trilateration process

with the main process period of the agents (which controls the actuators, propagates

inertial measurements etc.) due to the computational complexity of the algorithm.

Because of this reason, we have defined a localization period to execute the trilater-
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ation process and call the update procedure of the Kalman observer. This period is

chosen with the help of an upper error bound allowable to achieve formation control

with success.

In the second subsystem of the solution, we have introduced three types of methods

based on potential field approach and shape partitioning approaches. Potential field

approach implements artificial forces to the agents created by the desired formation

shape, obstacles in the environment and the other agents. We have defined the in-

dividual control laws for agents as sum of these different artificial forces. We have

observed that the agents are capable of homogeneously covering the desired forma-

tion shape with the help of these artificial forces.

The other two methods based on shape partitioning approaches, are Bubble Packing

method and Randomized Fractals method . These methods have different solutions to

partition the desired formation shape into potential goal states. The algorithms which

determines the assignment of the agents to these goal states in a decentralized manner

is identical for these two methods.

Bubble Packing algorithm introduces a method to partition the desired formation

shape based on interbubble forces, similar to the Van der Waals forces between the

molecular bonds, to distribute the bubbles homogeneously. It is widely used in mesh

generation problems. The idea is to generate a mesh for a surface with identical bub-

bles to mimic a regular Voronoi diagram including the vertices representing the center

of the bubbles. In our problem, the agents are represented by bubbles with equal ra-

dius’ of their coverage circles and the algorithm is executed to generate the desired

homogeneous mesh to partition the shape into potential goal states. Each goal state

has the information of agent type (i.e. coverage circle radius) to be placed at the final

configuration. The Bubble Packing method have a similar approach with the potential

fields since they both implement intermember&interbubble forces to homogeneously

distribute the agents&bubbles in the desired formation&surface.

Randomized fractals method is based on randomly distributing the coverage circles

which represent the different agent types in the desired formation shape. This algo-

rithm is faster than the Bubble Packing method since it randomly determines potential

goal states. Because of this randomized approach, it is not applicable to implement a
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dynamic formation control solution with this method.

The assignment process of the agents to the potential goal states is identical for these

two different shape partitioning methods. First, the obstacles in the environment is

augmented with Minkowski sums for different types of agents. The total coverage

of the augmented obstacles represents the forbidden space for each agent. The free

configuration space is calculated by extracting these forbidden spaces from the con-

figuration space itself. Then each agent calculates their own visibility graphs in the

environment with augmented obstacles by including its current position and the po-

tential goal states determined by the shape partitioning algorithms. Shortest paths in

these visibility graphs to the each potential goal states are calculated with the help of

Dijkstra’s Algorithm. Hungarian algorithm is implemented to reach a global consen-

sus on the assignment of the agents to the goal states based on minimizing the total

displacement of the swarm by taken into consideration the costs reported by each

agent.

Monte Carlo simulations with 1000 iterations are run with the same initial conditions

and formation shapes for the three different proposed solution. To evaluate the perfor-

mance of these methods, mesh quality, total displacement, settling time and dynamic

formation performance metrics are calculated. As expected the worst mesh quality

performance belongs to the Randomized Fractals method since it has an approach to

randomly distribute the coverage circles in the desired formation shape. The Artificial

Forces method and the Bubble Packing method have similar mesh qualities because of

their nature of implementing intermember&interbubble forces which contributes the

homogeneously distribution of the agents&bubbles in the desired formation shape.

On the other hand, Artificial Forces method has the worst settling time and total dis-

placement performance due to the lack of predetermined goal states for the agents

in the desired formation shapes. The best performance is achieved with the Bubble

Packing method in terms of these three metrics.

At the end of the work, a hardware implementation of Bubble Packing method is done

with 5 mobile robots from different sizes. Since this implementation is done at the

indoor environment and the number of agents is not sufficient, it is not possible to im-

plement the local positioning system at this demonstration. The position and heading
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data for the agents are calculated with image processing algorithms based on visual

feedbacks provided by an E/O camera. A mesh network established with Zigbee mod-

ules and these modules are used to provide a communication backbone between the

agents and the mission computer. The agents are designed as 3 axis omni-wheel mo-

bile robots which have the capability to change position in the environment without

the need for adapting their heading. Each agent has its own processor module to ex-

ecute the goal state decision process, artificial force calculations, control algorithms

and step motor control routines. This feature demonstrates the decentralized manner

of the solution. Several formation shape trials are done and the performance is eval-

uated with total displacement and settling time metrics. It is observed that the agents

are capable to achieve different formation shapes as desired. This work is important

to show that the proposed solution about the formation control problem can be im-

plemented in real time environment. The results represent a proof of concept (POC)

of the thesis work rather than implementing the extensive detailed evaluations of the

proposed solution that we preferred to do within the Gazebo simulation environment.

In this project, we aim to implement a complete solution to the formation shape gener-

ation problem including both local positioning system and formation control system.

With the usage of local positioning system, it is possible to implement our solution

for different workspaces in both indoor and outdoor environments. Moreover, we

have implemented two novel methods on formation control problem; Bubble Packing

and Randomized Fractals methods. The usage of these shape partitioning based algo-

rithms eliminates some drawbacks related with potential field based approaches like

unwanted equilibrium states and higher settling times.

On the other hand, we have shown that our formation control algorithms can be im-

plemented in real world applications. During these hardware implementations, local

positioning system is not tested because of limited number of mobile agents. Local

positioning system is tested in Gazebo environment by simulating radio signals with

some assumptions. We have assumed that an agent can receive and transmit radio

signal to another one if the line segment between them does not cross any workspace

obstacles and norm of this line segment is smaller than the radio link coverage. More-

over, it is assumed that agents can calculate distance to their direct neighbors with the

help of time of arrival(TOA) methods. In real world applications, these kind of as-
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sumptions on radio signal may fail due to other dynamics of physical workspace like

multipath reflection, interference etc. It may be required to use some other alter-

natives to measure distance between agents(e.g. ultrasonic sensors, radars etc.) to

implement the local positioning system in a real time applications.

6.2 Future Works

It is important to realize that there is a need to make hardware implementation with

more agents within the environment. This kind of implementation will give a more

insight about the performance and the drawbacks of the system with the tests held in

real time environment. The implementation with more number of agents in real time

is one of the next steps for this project.

Even if the Bubble Packing method has the best performance in the sense of both

mesh quality, total displacement and settling time issues, it is not a fully decentral-

ized method since the shape partitioning process is executed on a central server node.

Shape partitioning algorithm is not deterministic and it doesn’t converge to the same

potential goal states even if the initial states are identical. If it is possible to implement

a method to partition the desired formation shape with a similar mesh quality perfor-

mance in a more deterministic manner, it will be possible to distribute the partitioning

process to individual agents.

Since our main focus is not on the obstacle avoidance of the agents, all three methods

are augmented with only potential fields created by the obstacles in the environment

just to implement a basic obstacle avoidance. It is needed to implement a more con-

venient obstacle avoidance algorithm (e.g. tangent bug algorithm) to avoid the cases

in which some of the agents get into unwanted equilibriums under the effect of the

desired setpoints and the obstacle forces.

In this thesis work, one of the main metrics to evaluate the performance of the pro-

posed solutions is the total displacement of the swarm while achieving the desired

formation shape. Moreover, in the shape partitioning methods the goal state assign-

ment algorithms are designed to minimize the total displacement of the swarm. But,

there may be cases in which some of the agents are more critical to reach the goal
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state or some of the agents are running out of battery&energy. In such conditions, it

will be appropriate to improve the goal state assignment algorithm to prioritize the

agents to handle these kind of special cases.

Our main aim is to create a swarm with heterogeneous agents to achieve a desired

complex formation. One of the purposes related with this concept is to achieve some

complex tasks collectively with the agents which have different individual capabil-

ities. In our thesis work, we have focused on achieving complex formation shapes

with heterogeneous mobile robots rather than achieving complex tasks after getting

the desired formation shapes. The next step for this project is to add the capability of

doing these kind of tasks with the agents from different capabilities.

We have implemented our formation control algorithms in two dimensional workspaces.

It is possible to augment our solutions to three dimensional workspaces. One of the

future works for this project is to adapt our local positioning and formation control

algorithms for three dimensional environments. With this work it will be possible to

test the related algorithms in real world applications such as search&rescue opera-

tions, surveillance and coverage operations.
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