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ABSTRACT

ON PRODUCTS OF BLOCKS OF CONSECUTIVE INTEGERS

Yildiz, Burak
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Hursit Onsiper

Co-Supervisor : Assist. Prof. Dr. Erhan Giirel

July 2016, [51| pages

In this thesis, an old conjecture of Erdés and Graham concerning integer squares ob-
tained from products of disjoint blocks of consecutive integers is revisited. From
arithmetic geometry point of view, the conjecture concerns the structure of integral
points on certain projective hypersurfaces. These hypersurfaces are analyzed geo-
metrically. The relation between the Erdds-Graham conjecture and some well-known
conjectures in diophantine geometry and in number theory are explained. As for the
computational aspect of the problem, an efficient algorithm for computer search is
developed and in certain computationally challenging cases new numerical examples
are obtained.

Keywords: Diophantine geometry, elementary number theory, polynomial parametriza-
tions
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ARDISIK TAMSAYI BLOKLARININ CARPIMLARI UZERINE

Yildiz, Burak
Doktora, Matematik Bolimii

Tez Yoneticisi : Prof. Dr. Hursit Onsiper
Ortak Tez Yoneticisi : Yrd. Doc. Dr. Erhan Giirel

Temmuz 2016 , [51]sayfa

Bu tezde, ayrik tamsay1 bloklarinin carpimlarindan elde edilen tam kare sayilarla ilgili
Erdds ve Graham’a ait bir varsayim incelenmistir. Bu varsayimin sayilar teorisinde
ve diophantine geometride bilinen bazi tahminlerle iligkisi agiklanmigtir. C6ziimlerin
izerinde bulundugu projektif hiperylizeyin geometrik ve bilgisayarli hesaplamalar
acisindan analizi yapilmigtir. Bunlara ek olarak, bilgisayarli hesaplamalar agisindan
zorlu olan ve daha once 6rnegi verilmemis bazi 6zel durumlar i¢in yeni 6rnekler elde
edilmistir.

Anahtar Kelimeler: Diophantine geometri, elemanter sayilar teorisi, polinom para-
metrizasyonlari
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CHAPTER 1

INTRODUCTION

It was shown by Erdds and Selfridge [8] that a product of consecutive integers is
never a perfect power. In a subsequent article [7]], it was asked by Erdés and Graham
whether the same holds for products of disjoint blocks of consecutive integers. In
fact, they conjectured that only finitely many integer squares could be obtained from
products of disjoint blocks of four or more consecutive integers. Since then, consid-
erable work has been done concerning the products of disjoint blocks of consecutive
integers and some counterexamples to the conjecture were presented in [22, (17, 3} 4].
Recently, Bennett and Luijk [4] showed that infinitely many perfect integer squares
could be obtained from products of five or more disjoint blocks of five consecutive
integers by using a special univariate polynomial parametrization. We formulate the

problem and list the known conjectures and facts as follows:

1.1 Formulation of the problem

Given integer parameters » > 2, k > 4, and variables x; fort = 1,2,...,r, we
define each block starting at z; of length k with by(x;) = (x;)(z; + 1)+ (x; +
(k — 1)). We denote the products of blocks of length k with [y, 2o, ..., z]; =
b (z1)bg(z2) - - - br(x,). In this notation, the problem is to find (non-trivial) integer

solutions of the equation:

(21, T, ., Tl = bp(20) b () - - - bp(2) = 2, wit(h—1) < w4y, i =1,2,...,7—1.
(1.1)



In this study, (x1, x9, ..., x,,y) positive integer tuple solutions of (1.1) will be inves-
tigated.

1.2 Literature review

In this section, we list some results and conjectures about the problem collected from
various papers. As a supplementary note, some elementary number theoretical results

on product of consecutive integers are given.

1.2.1 Results and conjectures about the problem

e For (r = 4;k = 4) and (r > 6;k = 4), equation (1.1) has infinitely many
solutions [22].

e For (r = 3;k = 4) and (r = 5;k = 4), equation (1.1) has infinitely many

solutions [3]].
e For (r > 5;k = 5), equation (I.1]) has infinitely many solutions [4].

e For (r > 1;k > 4), equation (1.1)) may have at most finitely many solutions in

positive integers conjectured in [7]].

e For (r = 2;k = 4), equation (1.1) may have at most finitely many solutions

conjectured in [17, 3]

e For (r = 2,3;k = 5), equation (1.1) may have at most finitely many solutions

conjectured in [4]].

e For (r = 4;k = 5), equation (1.1) may have infinitely many solutions conjec-
tured in [4].

e For (r > k;k > 4), equation (1.1) may have infinitely many solutions conjec-
tured in [22].

e For (r > 2;k > 6), almost nothing known, see the discussion in [4]. However,
to the best our knowledge, we have shown the first numerical examples for

k=6and k =1T1.



e For (1 < r < k—1;k > 4), equation (1.1) may have only finitely many
solutions. Moreover, we have observed that product of square-free parts of
disjoint blocks of length % are less likely to match each other infinitely often

when the number of distinct blocks 7 is sufficiently less than block length k.

1.2.2 Results on products of consecutive integers

In this section, we present various results about products of consecutive integers ob-

tained by elementary techniques.

Theorem 1. Let k > 2 be given integer. Then, the equation
z(x+1)---(x+k—1)=y" withn>2and xy # 0

has no integer solutions.
Proof. See, [8]. O

Erd6s and Graham in [7]], mentioned the following fact without giving a proof:

Theorem 2. For any fixed b > 1,r > 1 € N, there exists only finitely many pos-
itive integer sequences 0 < m; < mo < ... < m, with m;z1 — m; < bfori =

1,2,--- ,r — 1 such that myms . . . m,. is a perfect integer square.

Proof. The cases r = 2 and r > 2 are considered separately.

For the case r = 2, first of all, forany 0 < s < b € Z,0 < x € Z,y € Z
integer solution of z(z + s) = (z + £)* — (£)* = y? gives a rational solution to
the equation 1 = U2 + VZ?withU = L0 <V = £0 < X =z+35Y =
y,0 < Z = 5. Also, (U,V) is a rational solution to 1 = U? + V* if and only if

(U, V) e {(:=4 ),t € Q} U{(—1,0)}. Using this rational parametrization,

1+t27 1+t2
one can obtain y = Y = Xlth2 witht € Q,or,y =Y = (z + )”2;% with
mn #0 € Z, ged(m,n) =land § = Z = X 25, 01, § = Z = (x + §) 3725 with
mn # 0 € Z, ged(m,n) =1, or, z = g(”%:? with mn # 0 € Z, ged(m,n) = 1.
Hence, © = %("z}ﬁ)2 and y = %”Zmzlz with mn # 0 € Z, ged(m,n) = 1. In the

case m < n, x(n> — m?) = y(n — m)? implies z(n + m) = y(n — m), which

3



4mn
n—m'

also impliesz =n—m,y =n+m,s = Since s = % is an integer, and
mn # 0 € Z, ged(m,n) = 1, implies (n — m) | 4, such that s = n? — 4n if
n—m=4,5s=2n>—4nifn—m = 2,s = 4n®> — 4n, if n — m = 1. Since
0 < s < b, only finitely many choices possible for s, n, m and also for z,y. In the
case n < m, x(n* —m?) = y(n — m)? implies z(n + m) = (—1)y(m — n), which
4mn

dmn - Qince s = is an integer, and

m—n" m—n

also implieszt =m —n,y = —n—m,s =
mn # 0 € Z, ged(m,n) = 1, implies (m — n) | 4, such that s = m? — 4m if
m-—n=4,s=2m>—4dmifm —n =2, s = 4m? — 4m, if m —n = 1. Since
0 < s < b, again just only finitely many choices possible for s, n, m and also for x, y,
so result follows for the case r = 2.

For the case r > 2, it is clear that m;ms ... m, is a perfect square if and only if m;

satisfies one of the following (b — 1)" !

equations inductively defined below. When
r > 2, each equation given in defines a smooth algebraic curve of genus g > 0,
by Siegel’s theorem stated in [15] on integral points of a smooth algebraic curve of
genus g, these equations each has only finitely many (z,y) integer tuple solutions.

Also, such possible equations is also bounded by (b — 1)"!, so result follows for



r > 2 as well.

/

rlx+1)(z+2)=y> — -
r(z+1)=9y>—

rlx+1)(z+b)=9y> — -

r(rx+2)(z+3)=y* — -
r(z+2)=9y> —

r =y’ — r(x+2)(z+b+1)=9y> — -

r(x+b—1)(r+b)=y* — -
r(x+b—1)=y> —

rx+b—1)(z+20—2)=y* — ---

(1.2)

Remark 3. Theorem could be extended to perfect powers as well.

Proof. For all cases, i.e. r > 1, Siegel’s theorem [15] could be applied, hence the

finiteness result follows immediately. [

Theorem 4. [[6,I8] Let oy, s # 1 be two positive rational numbers and [y, 32 be
two positive integers. Assume that A = (3;log(az) — f1log(ar) # 0 and h(™) :=
log(max{[m/, [n|}).

2
Then, log(|A|) > —22 (max{log(h&) + R+ 0.06,21}) h(ar)h(as).
Proof. See Remark 4 in [18]]. O
Lemma 5. log(1 — w) = =22, tw", when |w| < 1.



Proof. Taylor expansion of log(z) around z = 1, is 9%, (=D (z — 1)". By taking

n

into convergence interval log(z) = Eg‘;lw(z —1)", when |z —1| < 1. By taking

n

z—1=—w,log(l —w)=-X2,w", when |w| < 1. 0

n=1n

Lemma 6. Eff’zliw” < 2w, when 0 < w < %

Proof. Let f(w) := 2w — X532, w™. Since f(0) = 0, it is enough to show that f(w)

is non-decreasing to prove the lemma. f/(w) = 2 — X0 w" = 2 — 1= > 0, as

0<w< 3. O

Proposition 7. |log(1 + z)| < 2|z|, when |z| < 3.

Proof. Case (0 < x < 3): Itis clear that |log(1 + z)| = log(1 + z) < 2|z| = 2.

Case (—3 < x < 0): By a change of variable —z = w, and using Lemma |log(1+
z)| = [log(l — w)| = £22,2w", when 0 < w < 3. By also using Lemma |§|,
322 2w < 2w = 2|z). O
Evertse in [9]], mentioned the following fact without giving a proof:

Theorem 8. Let and a,b,c > 1 be integers. There is a computable number (, de-

pending only on a, b, c such that the equation
ax" —by" =cwithz > 1,y > 1,(x,y) # (1,1)
has no integer solutions if n > (.

Proof. Case (x >2,y=1):
Since az™ — by™ = ¢, then ax™ = b + c. This implies a2" < b+ c.

Case (x =1,y > 2):

Since ax™ — by"™ = c, then a — ¢ = by™. This implies b2" < a — c.

Case (z,y > 2)and (a =) :

Since az" — ay™ = c, then x > y.



Also, az™ — ay™ = a(z —y)(z" ' + 2" 2y + - -+ ay" 2+ 4" 1) = ¢ which implies

n2"t <yt < e

Case (x >y >2)and (a #b) :

Since az™ — by = ¢, wehave 1 — ()" = S and 1 — & = 2(¥),

By taking logarithms, log(1 — —%) = log(2) + nlog(¥%) = log(%) — nlog(;—”).

By using Pr0p0s1t10n 2 > |log(l — =5)| = ]log( ) — nlog(%)].

By using Theorem 4]

log(2%) > —22 (max{log(logl(x) + 1og(m£<{a,b})) + 0.06, 21})210g( )log(max{a,b}).

Then, n < 22 <max{log(lo lm) + togemaazy) + 0-06, 21}) log(max{a, b})+ li)ogg ))

Therefore, n < 22 (max{log( netl 2) + 0.06, 21}) log(max{a,b}) + li)fg((g)).

Case (y >z >2)and (a #b) :

Since az™ — by™ = ¢, we have %(%)” —l=;randl+ ;5 =
By taking logarithms, log(1 + ;%) = log() + nlog(}) = log(
By using Proposition é—i > |log(1 + by%)| = |log(§) —nlog(¥)].
By using Theorem 4]

2
log( =) > =22 (max{log(log o+ 1og(ma1{a,b})) + 0.06,21}> log(y) log(max{a,b}).

Then, n < 22 (maux{log(10g @ T log(maf({aﬂb})) + 0-06>21}> log(max{a, b})+ _1;)01 ))'

2
Therefore, n < 22 <max{log(lg;;)) +0.06, 21}> log(max{a,b}) + 1?5;(5))‘ O

Corollary 9. The equation
x(x+ 1) = 2y" withn > 6726 and z,y > 1
has no integer solutions.

Proof. For some u, v co-prime integers, x = v", x + 1 = 2u™. We have 2u" — v" =

1. Using above theorem, n < 22 (max{log(lgg-g)) +0.06 21}) log(2) + 1. Then

n < 6725 U

Theorem 10. The diophantine equation x(z+1) - - - (v+k—1) = p»q°, k > 2, p,q €
{2,3,5,7,11,13} with ey, e, € N, has only positive x solutions v = 1,2,3,4,7,8

7



when k = 2, has only positive x solutions v = 1,2 when k = 3, has only positive x

solution x = 1 when k = 4, and has no positive x integer solution when k > 4.

Proof. Using the method explained in [13], we could find solutions of the equations
of type p""t¢"t — p™2¢"? = 1. The method first given by Stgrmer in [21].

Case k& = 2: Since two consecutive integers always contain an even number, x(x +
1) = 2°2¢°.

Fundamental units of 5.3? Pell equations, a*—22¢“b* = 1 where g € {3,5,7,11,13}
and €3, ¢, € {0, 1,2} are found. For each fundamental unit the equation a’? —1 =

4x(x + 1) is solved for z. Then x = 1,2, 3,4, 7,8 could be obtained.

Case k = 3: Since three consecutive integers always divisible by 3! = 6,

z(x +1)(x +2) = 2°23%,

Fundamental units of 32 Pell equations, a® — 2©23%)? = 1 where €9, €3 € {0,1,2}
are found. For each fundamental unit the equation a? — 1 = 4¢(¢ + 1) is solved for ¢.
Then t = 1,2, 3, 8 could be obtained. From these solutions x = 1, 2 could be

obtained.

Case k = 4:Since four consecutive integers always divisible by 4! = 24,
z(z+1)(z+2)(z+ 3) = 2°23%.
Using the solutions found in Case &£ = 3, x = 1 could be obtained for the Case

k=4

Case k£ > 4: Since five or more consecutive integers always divisible by 5! = 120,
x(x+1) - (x+ k—1) = pq°, is not possible for any positive z value as left side

always contains at least three distinct prime numbers 2, 3, 5.

]

Lemma 11. Let k be any positive integer. Then, the following equality holds:

I, f(0)f (1) - flatk) = (T F(0)) (I fOF) (I f(n 4 1))

Proof. We prove the lemma by induction.

Case k = 1:
I, f(x) f(x+1) = f(1) (T, f (1)?) f(n+1)

8



holds. Assume that the result holds for the Case k = m.

Case k=m+ 1:
G f(z) - fle+m+1) =G f(x) - fle+m)) (L3, f(x + m+1)) =
(G2 f()") (T £ (™) (T f (0 4+ )™ ) (T f (e +m4-1)) =

(I (1)) (o f (£)F2) HE" 1f n )" (G, f(e+m+ 1)) =
(I F(0)) (T g2 f (6)F2) (TRZ f (n +6)™427)
Since result holds for Case k£ = m + 1 as well, by induction result holds for arbitrary

positive integer k. [

Remark 12. Let f(x) = ax® + bx + c. Then, integer solution of the diophantine
equation

o f(@)fz+1) =y

corrresponds to integer solution of the diophantine equation

(a+b+c)(aln+1)>+b(n+1)+c) =w

Proof. Using Lemma I 1] we have the following identity:
oy f(2)f(z+1) = f(1) (TG f(8)?) f(n+1).
Moreover, by setting f(x) = az? + bx + c, the equation transforms into
I f(2)f(z+1) = (a+b+c) (I f(¢)?) (a(ln+ 1)+ b(n+ 1) +c) = y*.
Hence, result follows. U]

Theorem 13. The diophantine equation
' z(z+ 1) (z +2) =y

has no integer solutions.

Proof. Using Lemma I 1] we have the following identity:
o f@) f@+ Df(r+2) = (L £ (1)) (ML f(1)°) (L2 f(n+ 1))
Moreover, by setting f(x) = x, the equation transforms into
I _yz(z + 1)(z+2) = (H§:1tt) (H?:3t3) (Hle(n + t)3_t) =y,

9



To have integer solutions, 4(n + 1)%(n + 2) = w® must be satisfied for some integers
n and w. Since n + 1 and n + 2 are coprime integers, the problem reduces to the
following two cases:

Case (n +2 = 2u,n+ 1 = v3): Theequationn +2 — (n + 1) = 2u® —v® = 1
is obtained. If we set z = 1,y = £, then the equation transforms into z* + 3 = 2.
It is well known that, this equation isomorphic to the elliptic curve Y? = X3 — 27

in [6]]. To show this fact, we set x = p + ¢,y = p — ¢, then the equation transforms

into p* + 3pg® = 1. If we further substitute p = 2, ¢* = )({33);)227, Y = 3¢X, then the
equation transforms into Y? = X3 — 27. Since this elliptic curve has rank 0, we only
have torsion points which is just (X,Y") = (3,0). This torsion point corresponds to
(p,q) = (1,0), (z,y) = (1,1) and (u,v) = (1,1). Then n + 2 = 2 implies n = 0.
Therefore, no integer solutions could be obtained.

Case (n+2 =v3,n+1 = 4u®): The equationn +2 — (n + 1) = v3 —4u® = 1is
obtained. If we set z = +,y = 2, then the equation transforms into 2*+y* = 4. Then,

we again set x = p + ¢,y = p — ¢, then the equation transforms into p* + 3pg® = 2.

2X3-27
(3X)2 9

into Y2 = 2X3—-27. Moreover, we set X’ = 2X, Y’ = 2Y and transform the equation

If we further substitute p = %, ¢ = Y = 3¢X, then the equation transforms

into Y’? = X’® — 108. Since this elliptic curve has rank 0 and has no rational torsion

points, no integer solutions could be obtained.

Theorem 14. The diophantine equation
°_ x(x + 1) (2 + 2)(x + 3) = ¢*

has infinitely many integer solutions.

Proof. Using Lemma I 1], we have the following identity:
oy f(@)f(z+ 1) f(z+2)f(e+3) = (T (1)) (T f ()" (L f(n +6)).
Moreover, by setting f(z) = z, the equation transforms into

I _yz(z+ 1)(z+2)(z +3) = (H?:ﬂft) (H?:4t4) (Hle(n + t)4_t) =y

To have integer solutions, 3(n + 1)(n + 3) = w? must be satisfied for some integers

n and w. Solution set is given by recurrence relations n;.; = 2n; + wy + 2 and

10



w1 = 3ng + 2w, + 6 with initial condition ng = 5, wy = 12. Hence infinitely many

integer solutions in n and y could be obtained from these solutions.

]

Remark 15. We could obtain a square from product of four disjoint blocks of k con-

secutive integers by using any integer solution of the diophantine equation

M°_ 2(x + k)(z + 2k)(z + 3k) = 3>

Proof. Let

A= (M) (20 #7) (Ep0t%) B = (G200 87) (G275, 1 #%) (25 1) -

Then, we have II”_ (z + k)(z + 2k)(z + 3k) = A (I, ,,t*) B = y*. To have in-
teger solutions, (IIf_,¢) (II%,, . ¢) (II}4F,  ¢) (I243%,, 1) = w? must be satisfied
for some integers n and w. Hence, a square from product of four disjoint blocks of &

consecutive integers could be obtained.

1.3 Results in this thesis

In this thesis, we present a new method generating parametrized integer solutions
on some special affine hypersurfaces by producing special univariate polynomial
parametrizations. Using some of these parametrizations, we verify all known coun-
terexamples to the conjecture, except the one given for three disjoint blocks of four

consecutive integers.

A full list of these parametrizations is given in the Appendix. These results, constitute

the main contribution of the thesis to the literature on the problem described in[I.1]

Moreover, to the best of our knowledge, we produce the first examples of integer
squares obtained from product of disjoint blocks of consecutive integers where each

block has length six or seven.

The rest of the thesis is structured as follows: In Chapter[2] we investigate the geome-

try of algebraic varieties used to study the products of blocks of consecutive integers.
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We also discuss the relation of the problem with some well-known conjectures in dio-
phantine geometry. In Chapter 3] we give our main method and results. Finally, the

thesis ends with some concluding remarks in Chapter [

12



CHAPTER 2

GEOMETRY OF PRODUCTS OF BLOCKS OF
CONSECUTIVE INTEGERS

We work with the affine variety X in A"™! with affine coordinates (1, s, . . ., Z,,y)

defined by the following equation:

yQ = br(x1)bk(x2) - - bp(z,), 1,k €Ny 2.1
be(w) == (zi) (i + 1) -+ (@i + (k — 1))

2.1 Compactifying X

We compactify X, using different methods by separating » = 1 case and r > 2 case,

as described in the following subsections.

211 Caser =1

By using the compactification explained in [19] for hyperelliptic algebraic curves,
we can compactify X smoothly by glueing two copies of X. This construction is

presented as follows:

13



If £k = 2m, then

Xy =z(zy+1)... (2, + (2m — 1)), (2.2)
Xy =0+2)...(14+2m— 1)),
1
/ _— —
xl - xla
Yy
/_ [E—
Yy = 1'5”
If K =2m + 1, then
Xy =a(zy +1)... (21 +2m), (2.3)
X'y? =21 +2) .. (14 2ma)),
1
I
xl - xlv
y/_ Yy
ngH*l

2.1.2 Caser > 2

We assume that 7k is an even positive integer and we let B be the divisor in P” defined
by
Wicqi2,.., r}wi(iﬂi +x9) -+ (@ + (k= 1)zo) = 0.

We take £ = Opr () so that L%2 = Op-(B). We have a section s € ['(P", Op+(B)),
vanishing exactly along B. If we denote by L the total space of £, then we have the
bundle projection 7 : L — P". Lett € I'(L, 7*(L£)) be the tautological section, then
7*s =t in L gives a double cover of " which ramifies only on B. Since B # 0 and
is reduced (as B consists of rk hyperplane divisors), the equation 7*s = ¢* defines an

irreducible normal analytic space in L [2, p. 42].

Letty, = 7=, (n,m) € {0,1,...,r} x {0,1,...,r}.

70 # 0, (2.4)
s0 = icror, mtoi(to; +1) - (to: + (K — 1)),
j 7£ 0’ Z; 7£ 07

sji=(L+t50) - (L+ (k= Dtj0)Licqoq, 5 mtiiltis +ti0) - (i + (k= 1)tjo).

Observe that, x’"mksm = x;’“sn, and X could be defined as sy = t? in L. Moreover, to

14



construct the normal variety 7*s = t2 in L, we need to glue these sections appropri-

ately, as follows:

TTn # 0, Sy = (;:_:)Tksn = (tm,n)rksn’

—_— —_— t
(tm,Oa 2('-m,lu v 7tm,ma s 7tm,7“7 t) ~ (tn,0> tn,la v atn,n) oo 7tn,r7 rk )
(tm,n)2

Therefore, {*s = t*} = Uyye, {51 = t°} = X C L is a normal ramified double

cover of P" compactifying X.

2.2 Notes on birational geometry

We will need and freely use the following general facts in the computations that will

appear in the following section.

e If X is a normal projective variety, then the dualizing sheaf wy = Ox(Kx).

(14} Prop. 5.75]

e Let X, Y be projective varieties of the same dimension and f : X — Y be a

generically finite map. Then [14, Prop. 5.77]

— we have a trace map, Trx y : felwx) — wy.

— if XY are normal varieties and f is a birational morphism, then Try /y is

an isomorphism over the points where f~! is an isomorphism.

e Let X be a projective variety, D C X be an effective Cartier divisor. Then we
have the adjunction formula which relates the dualizing sheaves wp, wx with

wp = wx (D) @ Op.[14, Prop. 5.73]

2.3 X is a variety of general type

We show that X is variety of general type, using different methods again by separating

r = 1 case with » > 2 case, described in the following subsections.
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23.1 Caser =1

After compactification of X, we have X := X U X" and the following ramified double

cover map between smooth complex compact algebraic curves:

7: X — P! (2.5
(«Tl,y> = 2,

(21, 9) = .

If £ = 2m, then

i (x1=—-t,y=0), te{0,1,2,...,2m — 1},
T (t) =
() =0,y ==+1), t=oc0.

If Kk =2m + 1, then

ry=—-t,y=0), t€{0,1,2,...,2m},
I [ ) ted )

/

(7 =0,y =0), t=o0.

Finally, we obtain the geometric genus of X by using Riemann-Hurwitz formula as

follows:

If & > 4, then g(X) > 2 and we can conclude that the algebraic curve X is a variety

of general type.

16



2.3.2 Caser > 2

Using recipes given in [2, p. 42, 182, 183], with the assumption that rk is an even

positive integer, we have the following maps and results:

m: L — P
o X — X
p:=mlzo0
p: X — P
L% = Op:(B)
L= OPT(@
p.Ox = Opr @ L7 (2.6)
Ky = p"(Kp @ L) (2.7)
Py=h"(X,K%) (2.8)
= WP, p. K%)= hO(P", p.(p" (Ker ® £)7)) (2.9)
= (P, (Kpr @ L)@ (Opr © L7Y)) (2.10)
= hO(P", (Kpr ® £)*) + B°(P", Kt @ L) (2.11)

= KB, O (d(~(r + 1) + 2)) + KB, O (~(r+ D+ 5 (d 1))

_ (d(—<r+1>+%>+r) . (—(r+1)d+%(d—1)+r

)[11], (2.12)

Whenever & > 2 + % G.e., k> 3;r =2, k> 2;r > 2), we can conclude that the
algebraic hypersurface X is a variety of general type, as d-th plurigenera F,; becomes

a polynomial of degree r in the variable d.

2.3.3 Relations with diophantine geometry

We have shown that the variety X is of general type. This fact enables us to extract
some conjectural information about the rational points on X using the following con-

jectures stated in [[12], in the order of increasing precision.
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Conjecture 16 (Bombieri-Lang Conjecture I). Given a variety of general type X
defined over an number field k, then k-rational points on X is not Zariski dense in

X.

Conjecture 17 (Bombieri-Lang Conjecture II). Given a variety of general type X
defined over an number field k, then there is a dense Zariski open set U C X such

that for all number fields k' / k, k'-rational points on U is finite.

Conjecture 18 (Bombieri-Lang Conjecture IIl). Given a variety of general type X
defined over an number field k, and U := X \{union of all subvarieties of X that are not
of general type}, then for all number fields k' |k, k'-rational points on Zariski dense

open set U is finite.

Remark 19. Counterexamples to the Erdds-Graham conjecture producing infinitely
many integer solutions lie on a rational algebraic curve. These solutions do not

contradict with Bombieri-Lang conjectures.

2.3.4 Birational Automorphism Group of X

First of all, let use denote the Symmetric group of r! elements with S,. An element
o of S,, maps the set {1,2,... 7} into {1,2,...,r} such that set-wise the equality
{1,2,...,r} = {o(1),0(2),...,0(r)} holds. Let us also denote the multiplicative
Cyclic group of m elements with C,,,. Also, there exists an element 7 in C,,, such

that set-wise the equality {7, 72,...,7™ = 1¢,,} = C,, holds.

Now, we are able to give the following obvious automorphisms of X C A", over
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an algebraically closed field with characteristic 0 or p { m as follows:

Aut, : X — X (2.13)
(@1, 2, y) = (Totys -5 To(r), Y),

Aut.: X — X (2.14)
(T1,. T y) = (T1, .o, Ty TY),

Aut,, o Aut,, = Auty, o0, Aut,, o Aut,, = Aut,, o Aut,, = Aut,,r,
{Autai ’ o; € Sr} = Sr {Autﬂ T; € CQ} =~ C2

Therefore, we have S, x Cy C Aut(X) and |S, x Cy| = 2r! < |Aut(X)].

Theorem 20. There exists a constant \,, depending only on the dimension n of the
projective variety X such that the birational automorphism group of any projective

variety X of general type has at most \,vol(X, K x) elements.

Proof. See [10]. O

Corollary 21. 2r! < [Aut(X)| < A\vol(X, Kx)

Proof. Above theorem implies the result immediately. [
Theorem 22. Ifr = 1, then 2 < |Aut(X)| < 42(2 |5 ] — 2)
Proof. Since r = 1 case gives us an algebraic curve X, we applied the well-known

upper bound \;vol(X, Kx) = 42(2g — 2) for curves, where ¢ is the geometric genus

of the curve. L]
Theorem 23. Ifr = 2, then 4 < |Aut(X)| < 4222(k — 3)?

Proof. Since r = 2 case gives us an algebraic surface X, we applied the well-known
upper bound A\pvol( X, Kx) = 422¢? given in [23]] for surfaces, where ¢? is computed

using the formula in [2} p. 183]. [l
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Figure 2.1: Enriques—Kodaira classification of compact complex surfaces, Wikipedia

2.4 Connections with some well-know conjectures in number theory
In this section, we give strong numerical evidence on possible connections of product
of consecutive integers with some well-known conjectures in number theory. From

now on, we assume that k,m,n € N,k > 2,m > 2,n > 2 with + + = + =+ < 1 holds
and bi(z) := x(z + 1)(x + 2) - - - (x + k — 1) throughout the section.
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Table 2.1: 1 < ¥, y™ 2" < 10'° with ged(2F,y™, 2") =1

x |k |y |m|z n |k +ym=2"

1 | M2 |3 |3 |2](0M+(2)?°=(3)?

2 |5 |7 [2 3 |[4|@2°+(71)*=@3)*

2 |7 |17 (3 |71 |2 (27+(17)3=(71)?
1312 |7 312 [9]13)2+(7)°=(2)°
315 [11]4 [122]2 | 3+ (11)* = (2.61)2

Conjecture 24 (Fermat-Catalan Conjecture). z* + y™ = 2™ with ged(z,y, 2) = 1,
|xyz| > 0, has only finitely many integer solutions.

Conjecture 25 (Beal’s Conjecture). 2 + y™ = 2" with ged(z,y, 2) = 1, |[ryz| > 0,
has any integer solution, then 2 € {k, m,n}.

Table 2.2: 1 < bi(2),bn(y),bu(z) < 109 with ged(bg(x), bn(y), bu(z)) =

min(k!, m!)

x|k |y|m]|z n bk(x) +bim(y) = bu(2)

1|5 |15 |15 |2](2%3.5)+(2%3.5) = (21.3.5)

1|5 |16 |4 [4](2%35)+(21.325)=(2%3.5.7)

1|5 |25 |4 [4](2%35)+(24325) = (233.5.7)

1|5 [4]5 |18 |3](2%35)+(20.3.5.7) = (2%.3%.5.19)

116 |3]6 | 144 |2 | (24.32.5) +(20.325.7) = (24.32.5.29)

19 [1]10|6 |7](27.315.7)+(28.34.5%7) = (27.31.5.7.11)

119 [2]9 |6 |7|(27.305.7)+ (28.31.5%7) = (27.31.5.7.11)

Tl11 1114 |9 (283452.7.11) + (28.31.52.7.11) = (2°.3* 52.7.11)
{11 {1129 |8 ] (28315%7.11) + (219.35.52.7.11) = (28.31.5%.7.11.13)
LTI (2119 |8 (28.31.52.7.11) + (219.3°.52.7.11) = (28.31.5%.7.11.13)

Conjecture 26. b, (x) + by, (y) = by, (2) with ged(bg(x), by (y), bn(2)) = min(k!, m!),
x,y,z > 0, has only finitely many integer solutions.

Conjecture 27. by (x) + b, (y) = by (2) with ged(bg(x), by (y), bn(z)) = min(k!, m!),
x,y,z > 0, has any integer solution, then 2 € {k, m,n}.
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Table 2.3: 1 < bi(), by (y), 2™ < 10 with ged (b (), by (y), 2™) = min(k!, m!)

k |y m |z |n | b(x)+by(y) =2"
3022 |2 |2 |9 | (23)+(211.23) = (2)°
41 5 (122 | (253)+ (22.35) = (22.3)?
801 | 3 140393 | 2 |2 |31 | (2.32.11.73.89.401) + (2.19.31.1063.1303) = (2)3!

Conjecture 28. b(z) + by, (y) = 2™ with ged(bg(x), by (), 2™) = min(k!, m!),
x,y, 2z > 0, has only finitely many integer solutions.

Conjecture 29. by.(z) + by, (y) = 2™ with ged(bg(x), by (), 2™) = min(k!, m!),
x,y,z > 0, has any integer solution, then 2 € {k, m,n}.

Table 2.4: 1 < bi(x),y™, b,(2) < 1010 with ged(bg(z), y™, b, (2)) = min(k!, n!)

x |k |y m |z n | bi(z) +y™ =b,(2)
1 |7 1420 |2 |3 |7 | (2°3%57) + (223572 = (25.3%5.7)
7 12940 |2 |7 |7 | (2%825.7) + (2235702 = (25.33.5.7.11.13)
3713 |2 11238 |2 |(2.3.13.19.37) + (2)! = (2.7.17.239)
1 | 1155440 |2 |3 | 11| (253%52.7.11) + (2%.32.5.7.11)% = (2°.3%.5%.7.11.13)

Conjecture 30. b, (x) + y™ = b, (z) with ged(b (), y, b, (2)) = min(k!, n!),
x,y,z > 0, has only finitely many integer solutions.

Conjecture 31. b,(z) + y™ = b,(2) with ged(bg(x), y, b, (2)) = min(k!, n!),
x,y,z > 0, has any integer solution, then 2 € {k, m,n}.
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Table 2.5: 1 < 2% y™ b, (2) < 1010 with ged (2, y™, b,(2)) = 1

T kE |y m n | of +y™ = b,(2)
1 |M|1 |M|1 2 | (MM + ()M =(2)

M |11 |3 |36 2 | (DM + (11)3 = (22.32.37)
19 |5 |83 |5 |62781 |2 | (19)°+ (83)° = (2.3.17.1231.31391)
7 18 2993 |5700 |2 | (7)®+(13.23)3 = (22.3.52.19.5701)
323 (3 |5 |12 ]16668 | 2 | (17.19)% + (5)'%? = (22.32.79.211.463)

Conjecture 32. ¥ + y™ = b,(2) with ged(z,y,b,(2)) = 1,
x,y,z > 0, has only finitely many integer solutions.

Conjecture 33. 2% + y™ = b, (2) with ged(x,y,b,(2)) = 1,
x,y,z > 0, has any integer solution, then 2 € {k, m,n}.

Theorem 34. 2% + y? = by(2), has infinitely many integer solutions.

Proof. Letby(z) = 2(241)(242)(2+3) = 2*+623+1122+6z, and sety = 22 +bz+c,
then by(z) — y? = (6 — 2b)2% + (11 — 2¢ — b?)2% + (6 — 2cb)z — ¢* = 22 If we also
setb=3then,y =2+ 32 +cand by(z) —y* =2(1 — ¢)2> + 6(1 — ¢)z — * = 2°.
Moreover, the quadratic equation 2(1 — ¢)2% + 6(1 — ¢)z — ¢ = z? has infinitely
many integer solutions (z, z) for infinitely many integer parameter ¢ < 1, and this
completes the proof.

O

Remark 35. Above theorem shows that the conjecture is very sensitive to the inequal-
ity condition % + % + % <1
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Table 2.6: 1 < by (), y™, 2" < 10'° with ged(bg(x), y™, 2") = 1
x kly m |z n bk(a:) +ym=2z"
2 |31 M |5 2 (223)+ ()M = (5)?
1 |51 M |11 |2 |(2335)+ ()M = (11)
4 |31 M |11 | 2] (2%3.5)+ ()M = (11)?
18 |21 M |7 3 1(2.32.19) + ()M = (7)?
1 |64 |2 |7 4| (24.3%5) + (41)* = (7)*
2 |5 041 |2 |7 4| (24.32.5) + (41)* = (7)*
3 |5 |11 |4 | 131 |2 (23.3%5.7)+ (11)* = (131)?
15 3337 [2 |7 6 (24 5.17) + (337)2 = (7)°
64 |2 4 |3 8 | (205 ) + (7))t = (3)8

7 M |71 |2 (24.325.7) + ()M = (71)?

2 |6 M7 |2 (24 32 5.7) + ()M = (71)?
4 |58 |2 |11 |4 |(2035.7)+(89)% = (11)*
4 |5]1679 (2 |41 |4 | (25.3.5.7) +(23.73)% = (41)*
103217 |3 |5 6 | (22.13.103) + (17)® = (5)"
22 3159 |2 |5 6 | (24.3.11.23) + (59)* = (5)°
5 |5 |13 |4 [209 |2 | (243%5.7) + (13)* = (11.19)?
3 16[5039]2 |71 |4 (25.3%5.7)+ (5039)% = (71)*
7 |5]19 |4 [431 |2 (24 32, 5 7.11) + (19)* = (431)2
4 16]929 |2 |31 |4 | (253%5.7)+(929)% = (31)*
40 (311 |4 [17 |4 | (2235741 + (1) =(17)4
44 131163 |2 |7 6 (23 32.5.11.23) + (163)* = (7)°
9 |5]23 |4 |659 |2 |(23.3%5.11.13) + (23)* = (659)>
55 | 3|1 M| 419 |2 (23 3.5.7.11.19) + (1)M = (419)?
3 |7 (12612 |11 |6 | (25.325.7)+ (13.97)2 = (11)8
10 [5[199 |2 |23 [4](2*3.57.11.13) + (199)? = (23)*
10 |5]17 |4 |569 |2 (2%3.5.7.11.13) + (17)* = (569)?
10 |54l |4 | 1751 |2 | (24.3.5.7.11.13) + (41)* = (17.103)?
6 | 6|13 |4 |601 |2 (2°.3%5.7.11) + (13)* = (601)?
70 | 31189 |2 |11 |6 | (24.3%5.7.71) + (29.41)? = (11)°
11 [5(589 [2 |29 |4 (23 32 5.7.11.13) + (19.31)? = (29)*
72 |3]41 |2 |5 8 | (20.3%2.37.73) + (41)% = (5)®
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Table 2.7: Table continued

12 [5]19 4 | 809 |2 (2. 32 5.7.13) + (19)* = (809)2

88 | 3|7 4 129 4| (22.32.5.11.89) + (7)* = (29)*

13 | 541 4 [ 1889 |2 (2°.3.5.7.13.17) + (41)* = (1889)?

90 |3 |1009 |2 |11 6 | (23.3%.5.7.13.23) + (1009) = (11)¢

968 | 2 | 13 6 |7 8 | (23.3.112.17.19) + (13)¢ = (7)8

968 | 21169 |3 |7 8 | (23.3.112.17.19) + (13%)3 = (7)8

8 |6]23 4 11231 |2 (26.33.5.11.13) + (23)* = (1231)?

8 |6]19289 |2 [139 |4 | (26.335.11.13) + (19289)? = (139)*

9 |6]1121 |2 |43 4| (24.3%.5.7.11.13) + (19.59)% = (43)*

9 |6|61 4 14001 |2 (243%.5.7.11.13) + (61)* = (4001)2
136 [ 3|5 8 | 1721 | 2| (2%.3.17.23.137) + (5)% = (1721)?

138 | 3| 14549 [ 2 | 11 8 | (23.3.5.7.23.139) + (14549)% = (11)®
18 |5 |17 4 11801 |2 (2433.5.7.11.19) + (17)* = (1801)?

152 3|5 8 | 1993 |2 (2%.3%7.11.17.19) + (5)% = (1993)?

154 | 312013 | 2 | 23 6 | (23.3.5.7.11.13.31) + (41.293)2? = (23)5
21 | 5] 13 6 | 3347 | 2| (2*.3%.5%.7.11.23) + (13)® = (3347)?

21 | 5] 19 6 | 7309 | 2| (2*.3%2.52.7.11.23) + (19)® = (7309)?
22 | 5| 78911 | 2 [ 281 |4 | (2°.3.5%.11.13.23) + (7.11273)% = (281)*
12 629 6 | 24571 | 2 (27 32.5.7.13.17) + (29)% = (24571)?

24 |5 |569 |2 |59 4| (25.31.5%.7.13) + (569)% = (59)*

24 | 5136319 | 2 | 191 |4 | (26.31.5%.7.13) + (36319)% = (191)*

13 683 417799 | 2| (25.33.5.7.13.17) + (83)* = (11.709)?
238 | 328321 |2 |13 8 | (25.3.5.7.17.239) + (127.223)% = (13)®
238 | 3| 13 8 | 28799 | 2 | (2°.3. 5 7.17.239) + (13)% = (31.929)?
26 | 5|23 414169 |2 | (24.3%.5.7.13.29) + (23)* = (11.379)>

8 |71 M | 4159 | 2| (27.3%.5.7.11.13) + (1) = (4159)*

260 | 3| 11413 | 2 |23 6 | (23.32.5.13.29.131) + (101.113)2 = (23)5
3 191439 |2 |67 4| (27.3%.5%.7.11) + (439)% = (67)*

5 | 81439 |2 |67 4| (27.3%.52.7.11) + (439)% = (67)*

15 | 6|89 419521 |2 (27.33.52.17.19) + (89)* = (9521)?

20 | 519169 |2 | 103 |4 | (25.3%25.11.29.31) + (53.173)% = (103)*
354 | 3| 1519 |2 |19 6 | (23.3.5.59.71.89) + (7%.31)% = (19)"

32 | 5|53 4 17289 |2 (28.3%5.7.11.17) + (53)* = (37.197)>
10 | 77409 |2 | 103 |4 (28.3%2527.11.13) + (31.239)% = (103)*
34 | 518919 | 2 | 143 |4 | (2432.5.7.17.19.37) + (18919)% = (11.13)4
4 19]781 |2 | 109 |4 | (2°.3252.7.11) + (41.191)% = (109)*
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Table 2.8: Table continued

434 [3]8107 [2]23 [6 [ (25.35.7.29.31.109) + (112.67)2 = (23)°
37 | 5[8551 | 2113 |4 | (2%3.5.13.19.37.41) + (17.503)% = (113)2
9674 | 2379 [3]23 |6 | (2.32.52.7.43.691) + (379)3 = (23)°

40 5871 [2]107 |4 | (26.35.7.11.41.43) + (13.67)% = (107)2

A1 5| 14341 [ 2| 137 |4 | (25.33.5.7.11.41.43) + (14341)% = (137)4
14832 [2 |17 |65 12 | (2%.32.7.13.103.163) + (17)° = (5)12

14832 [2 289 |35 12 | (2%.32.7.13.103.163) + (17%) = (5)%2

50 522721 [ 2173 |4 | (2%.3%.52.13.17.53) + (22721)% = (173)
776 | 320455 | 2 | 31 6 | (29.3.7.37.97.389) + (5.4091)2 = (31)°

53 5]31681 | 2197 |4 | (243%5.7.11.19.53) + (13.2437)2 = (197)*
26 6103 |4 |25351 |2 | (29.3%5.7.13.29.31) + (103)* = (101.251)2
834 | 3[44537 [ 2|37 |6 | (25.3.5.11.19.139.167) + (44537)% = (37)°
55 5[2609 [2]157 |4 [ (23.5.7.11.19.29.59) + (2609)% = (157)*
55 5131 |4 ]29921 |2 | (2%3.5.7.11.19.29.59) + (131)* = (29921)?
55 5167 437129 |2 | (2%3.5.7.11.19.29.59) + (167)* = (107.347)2
6 041791 [ 2223 |4 | (28.3%.5.72.11.13) + (232.79)2 = (223)*
003 | 342743 [ 2|37 |6 | (23.3.5.7.43.113.181) + (42743)2 = (37)°
912 | 332821 | 235 6 | (25.3.11.19.83.457) + (23.1427)% = (5.7)°
034 | 3[41813 |2 |37 |6 | (2%.3%5.11.13.17.467) + (41813)% = (37)°
17 | 7139 [4]40111 |2 | (2%.3%5.7.11.17.19.23) + (139)* = (40111)>
64 | 5| 167 |4 |45041 |2 | (29.3.5.11.13.17.67) + (167)* = (73.617)2
1240 | 3| 53281 | 241 6 | (21.3%.5.17.23.31.73) + (53281)% = (41)°
75 5[167 |4 ]59011 |2 | (28.32.52.7.11.13.19.79) + (167)* = (59011)2
1604 | 3| 24811 | 2|41 6 | (23.3.5.11.73.107.401) + (43.577)2 = (41)°
82 5247 488889 |2 | (2%3.5.7.17.41.43.83) + (13.19)* = (103.863)>
1614 | 3| 23191 | 241 6 | (25.3.5.17.19.101.269) + (7.3313) = (41)°
1664 | 3| 11591 | 2 | 41 6 | (25.32.5.72.13.17.37) + (67.173)2 = (41)°
84 |5 |7001 |2]41 6 | (26.32.5.7.11.17.29.43) + (7001)2 = (41)°
1826 |3 |2263 |25 14 | (2%.32.7.11.29.83.457) + (31.73)% = (5)14
1008 |3 [4339 |2]17 |8 | (2%.32.5.23.53.83.191) + (4339)2 = (17)°

Conjecture 36. b, (z) + y™ = 2" with ged(bg(z), y, 2) = 1,
x,y,z >0, k # 4 ory # 1, has only finitely many integer solutions.

Conjecture 37. bi(z) + y™ = 2" with ged(bg(z), y, 2) = 1,
x,y,z >0, k # 4 ory # 1, has any integer solution, then 2 € {k,m,n}.

Remark 38. The condition k # 4 or y # 1 is necessary for the conjecture as there
exists a trivial equality by(z) + 1 = (z* 4+ 3z + 1)~
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Theorem 39 (Darmon and Granville). If A, B, C, k, m,n are fixed positive integers

with 1

+ —i— < 1, then
Az* + By™ = C2"

has at most finitely many solutions in coprime nonzero integers x, 1, z.

Proof. See [3]

Remark 40. If k, m,n are fixed positive integers with %

has at least the following list of solutions in coprime nonzero integers x, 1, z.

n

1F 4+ 2% =32,

2°+ 7 =3,

3% 4+ 114 = 1222,

2T+ 17 =712,

7 4+132 =2

438 + 96222 = 300429072,
33% 4 15490342 = 156133,
177 4+ 76271% = 210639282,
14143 4 22134592 = 657,
9262° + 15312283% = 113",

Conjecture 41. Above list contains all the solutions.

—|—%+%<1,then

Conjecture 42. If k, m,n are fixed positive integers with % + % + % < 1, then any

(x,y, z) positive integer tuple solutions to the below equations satisfy exactly only

one of them.

"4y =" ged(z,y, 2) =1,
oty = bn(Z% ged(z, y, bn(2)) =
br(z) +y™ = 2", ged(br(z),y,2) = 1,

br(x) + 4™ = bu(2),  ged(bi(2), y, bu(2)) = min(k!, nl),

bi() + bm(y) = 2", ged(bi(z), b (y), 2

) =
b () + bm(y) = bn(2), ged(be (), bm (y), bn(2))

min(k!, m!),

min(k!, m!).
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CHAPTER 3

MAIN METHOD AND RESULTS

In this chapter,we will give details of the method we developed and also give the
main results. In [4], Bennett and Luijk have given a special univariate polynomial
parametrization which is the linear translate of the parametrization written bold in
Table to attack the problem for the k& = 5 case. The method we present here,
is designed to find such polynomial parametrizations for arbitrary r, k. Using this
method, we constructed new families of infinitely many solutions in the following
cases: k = 4,1 > 4 (Theorem[d6) and & = 5,r > 5 (Theorem [47)). Moreover, it has
been observed that one might find infinitely many such parametrizations for the case

k = 4. Details of the method is given below.

3.1 The Method

Our algorithmic method provides two different options divided into two algorithms

and a sketch of these algorithms is given below in the corresponding subsections.

3.1.1 Algorithm I (Linear parametrization)

Algorithm starts with a linear polynomial z;(z) whose coefficients are bounded by
an integer parameter B. Then, it takes a linear polynomial x5 (z) from the list L}, =
{az1(z)+b | 0 < a < H—k < b < 0,a,b € Z} of polynomials and checks

degree of the square-free part of [x1(x), xo(x)]x. If the degree is less than three, then
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it records the result and passes to the next element in the list L}, and applies the
same steps. If the degree is greater than two, then a new list L%, which consists of
scaled and translated non-eliminated factors of square-free part of [z1(x), z2(x)], is
created. Iterate routines until degree of square-free part of the product of all blocks is
less than three. Furthermore, a more detailed algorithm for generating at most three

disjoint blocks is given in the Appendix.

3.1.2 Algorithm II (Quadratic and linear parametrization)

Algorithm starts with a quadratic polynomial z;(z) whose coefficients are bounded
by an integer parameter B. If number of irreducible quadratic factors of by (x;(x))
over Z[z] is less than two, then algorithm tries to eliminate remaining linear factors
of the square-free part of by(z1(x)) by applying Method 1. If number of irreducible
quadratic factors of by (z1(z)) over Z[z] is greater than one, then algorithm takes a
quadratic polynomial z»(z) from the list Q5 = {azi(z) + 0| 0 < a < H,—k <
b < 0,a,b € Z} where z7}(x) is any irreducible quadratic factor of by (z1(x)). Then,
it checks number of irreducible quadratic factors of [x1(x), x2(x)]x. If the number is
less than two, then algorithm tries to eliminate remaining linear factors of the square-
free part of [z1(z), z2(x)]x by applying Method 1. If the number is greater than one,
then a new list Q%, which consists of scaled and translated non-eliminated irreducible
quadratic factors of [z1(z), z2(x)]y, is created. Iterate routines until finding suitable
quadratic polynomials. If suitable quadratic polynomials are found, then algorithm
tries to eliminate remaining linear factors by applying the Method 1 until degree of

square-free part of product of all blocks is less than three.

3.1.3 Notes about algorithms

Disjointness of the polynomial blocks is checked when a new polynomial block is
added. Number of linear and quadratic polynomial blocks is bounded by parameters
[ and g, respectively. Hence, algorithms search for only finitely many combinations

for given positive integer parameters B, k, [ and ¢g. On the other hand, the number

30



of elements in the lists L}, ..., Ly and QL. ..., Q% generally grows with increasing
number of polynomial blocks. For optimization purposes, these lists could be ordered

and trimmed, so that each trimmed list could have the same cardinality.

3.1.4 Notes about polynomials

The following facts have been taken into consideration in constructing algorithms.

Theorem 43. Let p(x) € Z[z], if degp(x) > 3, then p(x) or q(x) = p(z) + 1 can not

be written as a product of linear polynomials over Z.

Proof. 1f deg p(x) = 2, then the polynomial p(z) = (x — (r —1))(x — (r + 1)) could
be chosen for any integer r, such that ¢(z) = p(x)+1 = (z—7)* means p(z) and ¢(z)
could be written as a product of linear polynomials over Z. Moreover, this quadratic

polynomial is unique up to the integer parameter r which is also proved below.

Firstly, we suppose that deg p(z) > 3 and the contrary holds, then p(x) and ¢(z) =
p(z)+1 must have both integer roots. Now, for any integer m > 3, let the integer roots
of p(x) be given as r1, 79, . .., 7, and integer roots of ¢(x) be given as s1, So, . . ., Sy
Since p(z) and g(z) could be written as p(z) = apz™+a; 2™ '+ - -+a,,_1x+a,, and

q(z) = apr™ +a1x™ + -+ -+ ap_17 + a,, + 1 for some integers ag # 0, ay, . . ., Gp,.

Secondly, reading the product of integer roots from coefficients of their equations,
(—=D)™am/ag € Z and (—1)"(a, + 1)/ag € Z, we obtain |ag| = 1. Reading the
sum of integer roots from coefficients of their equations, —a;/ag € Z, we obtain

r1+ro+- -+ = S1+S9+- - -+, Which is also equivalent to saying » _ (r;—s;) = 0.
t=1

Thirdly, p(r;) = ¢(s;) = 0and r; # s;, fori,j € {1,2,...,m}. Since p(r;) =
q(s;) = 0, we obtain CLO(TT—ST)—FM(T’T*I—87"71)+~ - +py—1(r;—s;) = 1. There-
fore, forall 4,5 € {1,2,...,m}, |r; — s;|/ = 1 holds which also means (|s; — s;| = 2
or |s; — sj| = 0) and (|r; — ;| = 2 or |r; — r;| = 0). In order for these equations

to hold, either r;’s or s;’s must be fixed. From now on, without loss of generality
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r;’s fixed as r; = r for some integer r, such that |r; — r;| = 0 is trivially satisfied

in this case. Also, using |r;—s;| = 1, we obtain that for any j, s; = r—1ors; = r+1.

Finally, if the degree misodd, ry +7ro + -4+ 1y, = mr = sy +s9 + -+ S, =
mr + k4 (1) + k_(—1) is not possible, since k, + k_ = m is an odd integer, and this
contradicts with our assumption. If the degree m is even, we again get a contradiction,
since riro - Ty 1 =14+ 1 = 51898, = (r — 1)*(r + 1) if and only if
m = 2,and k, = 1,k_ = 1. In addition to that, p(z) = (z — (r — 1))(z — (r + 1))
is the unique quadratic polynomial up to integer parameter r satisfying the condition.
Therefore, excluding the degree two case, p(x) or ¢(x) = p(x) + 1 can not be written

as a product of linear polynomials over Z when deg p(z) > 3. U

Theorem 44. Let p(x) € Zlx], if degp(x) > 2, then p(x), q(x) = p(x) + 1 or

w(x) = p(x) + 2 can not be written as a product of linear polynomials over 7.

Proof. For the proof of the theorem, if deg p(z) > 3, then using Theorem 43| p(z) or
q(z) = p(x) + 1 can not be written as a product of linear polynomials over Z, so the

theorem is proved in this case.

Firstly, we suppose that degp(x) = 2 and the contrary holds, then p(x), q(z) =
p(z) + 1 and w(z) = p(x) + 2 must have both integer roots. Let the integer roots
of p(x) be given as 1,19, integer roots of ¢(x) be given as sy, sy and integer roots
of w(x) be given as tq,t5. Since p(x), ¢(x) and w(x) could be written as p(x) =
aor? + a1 + as, q(x) = apr® + a1 + as + 1 and w(z) = apx? + a1x + ay + 2 for

some integers ag # 0, a1, as.

Secondly, reading the product of integer roots from coefficients of their equations,
as/ap € Z and (as+1)/ay € Z, we obtain |ag| = 1. Reading the sum of integer roots
from coefficients of their equations, —a;/ay € 7Z, we obtain 11 + 19 = s + So =

2 2

t1 + t2 which is also equivalent to saying > (r; — s;) = 0,>_(r; —t;) = 0 and
j=1 j=1

(s; —1;) = 0.

2
Jj=1
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Thirdly, p(r;) = q(s;) = 0 with r; # s;, p(r;) = w(ty) = 0 with r; # ¢;, and
q(s;) = w(ty) = 0 with s; # t; for i, 5,k € {1,2}. Since p(r;) = ¢(s;) = 0, we
obtain ag(r; —s3)+ay(r;—s;) = 1. Therefore, forall i, j € {1,2}, |r; —s;| = 1 holds
which also means (|s; — s3] = 2 or |s1 — so| = 0) and (|r1 —ra| = 2 or |11 — 73] = 0).
In order for these equations to hold, either r;’s or s;’s must be fixed. From now on,
without loss of generality r;’s fixed as 7y = r, ro = r for some integer r, such that
|11 — 73| = 0 is trivially satisfied in this case. Also, using |r; — s;| = 1, we obtain

without loss of generality s; =r — 1, so = r 4 1.

Finally, using q(s;) = w(t;) = 0, we obtain ag(s7 — t3) + a1(s; — tx) = 1 and for
all j,k € {1,2},

([t1 —t2| = 2 or [t; — t3] = 0). Moreover, s; =7 —1,so =7+ 1, and [s; — t| =1

s; — tg| = 1 holds. Hence, (|s; — s2| = 2 or |s; — s3] = 0) and

implies that ¢, = r, t, = r which is not possible, since r; # t; for all i, k € {1,2}

and this contradicts with our assumption. 0
Corollary 45. Let n > 1 for some integer n, ¥ = (r1,x2, -+ ,2,) and p(T) €
Zlxy, xo, -+, xy,)], if degp(Z) > 3, then p(Z) or q¢(¥) = p(Z) + 1 can not be written

as a product of linear polynomials over 7.

Proof. For the proof of the corollary, assume on the contrary that deg p(#) > 3 and
both p(Z) and ¢(¥) = p(Z) + 1 could be written as a product of linear polynomials
over Z. Therefore, there exists linear polynomials /,,(t) € Z|[t], such that we can
form polynomials p(t) = p(l1(t),12(t), -+ ,1,(t)) and g(t) = p(t) + 1 in Z[t] with
deg p(¥) = degp(t) = degq(t) > 3 and both p(t) and g(t) could be written as a
product of linear polynomials over Z, which contradicts the Theorem [

3.2 Polynomial parametrizations

We have implemented the algorithms discussed briefly in the previous section in Sage
[20]. Then, we have produced parametrized family of integer solutions to equa-
tion (I.1) by using this implementation. In Table [3.1} we present a brief list of se-
lected parametrizations. A full list of polynomial parametrizations (which are dis-

tinct up to affine coordinate changes) can be found in the Appendix. Furthermore, if
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t = z + 13/4 is substituted into the parametrization written bold in Table one
obtains 422 + z — 5,822 4+ 22 — 4,42 — 4,42 + 1 which is given in [4].

Table 3.1: A brief list of polynomial parametrizations

square-free part of
k|r | xzi(t),z2(t)y...,x.(t) [Z1(t), z2(t)y ...,z (t)]k
4 | 4 | 4t% — 25t + 36,8t2 — 50t + 74,4t — 16,4t — 12 1
4 | 4 | 12t — 48,36t — 141, 8t — 32, 72t — 281 576t% — 4336t + 8149
4 | 6 | 14t + 18,42t + 57,21t + 27, 18t + 24, 126t + 175,63t + 88 1
4 | 6| 3t—>50,6t—101,2t — 33,6t — 94,9t — 138, 18t — 275 324t% — 10404t + 83325
5| 4| 2t—>50,6t —150,3t — 74,6t — 142 21612 — 10368t + 124266
5| 4| 4t2 — 25t + 34, 8t2 — 50t + 74,4t — 17,4t — 12 8t2 — 50t + 70
5|6 | 12t> — 43t + 35,24t% — 86t + 74,12t — 28,4t — 8,3t — 7,6t — 14 | 3

3.2.1 Use of Table[3.1

Suppose that we try to find a parametrized family of solutions to the equation [x1, 5, .
y*. Firstly, we compute square-free part([1, 12,24, 38, 285]5) = 22. Secondly, we see
from the Table |3.1|that square-free part([12u® — 43u + 35, 24u? — 86u + 74, 12u —
28, 4u—8,3u—"7,6u—14]5) = 3 and square-free part([2t — 50, 6t — 150, 3t — 74, 6t —
142]5) = 216t>—10368t+124266. In addition, it can be shown that the quadratic Dio-
phantine equation 66v* = 216t> — 10368t + 124266 has infinitely many (v, t) positive
integer tuple solutions by using Dario Alpern’s generic two integer variable equation
solver in [1]]. Finally, if we concatenate all these blocks, we get a parametrized family
of solutions as [1,12, 24, 38,285, 2t — 50,6t — 150, 3t — 74, 6t — 142, 12u* — 43u +
35, 24u? — 86u + 74,12u — 28, 4u — 8, 3u — 7,6u — 14]5 = y(t, u)>.

3.2.2 Verifying square-free part of [z (t), z2(t), . .., x.(t)]k

To begin with, we create a function called VerifyList(k, L) in the following lines of

Sage code:

def VerifyList (k,L):

Uni.<x>=PolynomialRing (Z7) ;
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block=lambda m,k: prod([m+i for i in range(k)]);
product=1;
for polynomial in L:
product*=block (Uni (polynomial), k) ;
return prod([p” (e%2) for (p,e) in list (product.factor())])

Then, we select a parametrization from Table[3.1] We could assume that the polyno-
mial parametrization 12¢ — 48, 36t — 141, 8t — 32, 72t — 281 with block length & = 4 is
selected. If we call VerifyList(4, [12 xx — 48,36 * x — 141,8 x x — 32,72 % x — 281])
in Sage, then we get the output as 576x* — 43362 + 8149 which completes the verifi-

cation.

3.3 New families of solutions

By using the polynomial parametrizations given in the previous section, we construct
new families of solutions to equation (I.1I) in the proofs of Theorem 6] and Theo-

rem [47] as follows:

Theorem 46. For (r > 3; k = 4), equation has infinitely many solutions.

Proof. Case r = 3 is proved by by Bauer and Bennett using bivariate polynomial
parametrizations in [3]. Moreover, in cases (r = 4orr > 6) and r = 5, a uni-
fied proof using just univariate polynomials is presented below alternative to the ones

given in [22, 3], respectively.

By using the parametrizations given in Table[3.1]together with Dario Alpern’s generic
two integer variable equation solver in [1]], we get the following parametrized solu-
tions:

Case r = 4: [4t? — 25t + 36,812 — 50t + 74,4t — 16,4t — 12],

6,12t — 48,36t — 141, 8t — 32,72t — 281],

[14¢ + 18,42t + 57,21t + 27, 18t + 24,126t + 175,63t + 88|,

Caser = T: [6,3t — 50,6t — 101, 2t — 33,6t — 94,9t — 138, 18t — 275],

Case r = 5:

Caser = 06:
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As there is no fixed block in the parametrization of the case » = 4, we can duplicate
it to obtain new solutions for cases £ = 4, = 4¢,¢ > 1. In addition to that, by
concatenating above blocks with disjoint copies of the blocks associated to the case
r = 4 appropriately, infinitely many solutions can be obtained for each r > 4,k = 4

case, that is, Uy>o{4t + 4,4t + 5,4t + 6,4t + 7} = {r e N | r > 4}.

Theorem 47. For (r > 5;k = 5), equation has infinitely many solutions.

Proof. In [4], this theorem is proved by Bennett and Luijk, but an alternative proof

using new parametrizations is presented here.

By using the parametrizations given in Table [3.I|together with Dario Alpern’s generic
two integer variable equation solver in [1], we get the following parametrized solu-
tions:

Case r = 5: [6,2t — 50,6t — 150, 3t — 74, 6t — 142];

Case r = 6: [38,285, 2t — 50,6t — 150, 3t — 74, 6t — 142]5

Caser = T: [3,36, 74,2t — 50, 6t — 150, 3t — 74, 6t — 142];

Case r = 8: [13, 30,45, 90, 2t — 50,6t — 150, 3t — 74,6t — 142]5

Caser = 9: [1,12,24, 12t —43t+35, 241> — 86t + 74, 12t — 28, 4t —8, 3t — 7, 6t — 14]5
Case r = 10: [1,16, 62,152, 12t? — 43t + 35, 24t* — 86t + 74,12t — 28,4t — 8, 3t —

7,6t — 14]5
Case r = 11: [6, 38, 285, 2t — 50, 6t — 150, 3t — 74, 6t — 142, 2u — 50, 6u — 150, 3u —
74, 6u — 142]5

Case r = 12: [12t% — 43t + 35, 24t% — 86t + 74, 12t — 28,4t — 8, 3t — 7, 6t — 14, 12u* —
43u + 35, 24u* — 86u + 74, 12u — 28, 4u — 8,3u — 7, 6u — 145

Case r = 13: [6, 13,30, 45,90, 2t — 50, 6t — 150, 3t — 74,6t — 142, 2u — 50, 6u —
150, 3u — 74, 6u — 142];

Case r = 14: [13, 30, 38,45, 90, 285, 2t — 50, 6t — 150, 3t — 74, 6t — 142, 2u— 50, 6u—
150, 3u — 74, 6u — 142]5

Case r = 15: [1,12,24, 38,285, 2t — 50, 6t — 150, 3t — 74,6t — 142, 12u* — 43u +
35, 24u? — 86u + 74,12u — 28, 4u — 8, 3u — 7, 6u — 14];

Case r = 16: [1, 16, 38,62, 152, 285, 2t — 50, 6t — 150, 3t — 74, 6t — 142, 12u? — 43u+
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35, 24u? — 86u + 74, 12u — 28, 4u — 8,3u — 7, 6u — 14]5

As there is no fixed block in the parametrization of the case » = 12, we can du-
plicate it to obtain new solutions for cases & = 5,r = 12¢,¢ > 1. In addition to
that, by concatenating above blocks with disjoint copies of the blocks associated to
the case r = 12 appropriately, infinitely many solutions can be obtained for each
r > 12,k = 5 case, that is, Up>o{12¢t + 5,12t + 6,12t + 7,12t + 8,12t 4+ 9,12t +
10,126+ 11,12t + 12,12t 4+ 13,12t + 14, 12t + 15,12t + 16} = {r e N | r > 5}. O

3.4 Numerical results

We produce examples of block products for k£ = 6 and £ = 7, as follows:

[1,7,13,19, 30, 166, 275, 830, [1, 7, 13, 20, 42, 91, 340],
[1,7,13,20,42,154,470,527), [1,7, 13,21, 28,49, 114, 527},
[1,7,13,21,28,170, 341}, [1,7, 13,22, 28, 169, 341,
[1,7,13,22,31,54,172,341]g, [1,7,13,22,171, 284, 341, 492],
[1,7,13,23,29,52,115,527], [1,7, 13, 26, 44, 56,91, 117],
[1,7,13,27,44, 165, 185,663)q, [1,7, 13, 28, 39, 81, 245, 285]4,
[1,7,13,29,61,242,285]6, [1,7, 13,29, 84, 128,262, 525,
[1,7,13,29,90, 111, 185, 338]g, [1, 7, 13, 29, 245, 290, 528, 581],
[1,7,13,32,46, 61, 183], [1,7, 13, 34, 82, 245, 258, 524]5,
[1,7,13, 34,120,140, 183, 779]¢, [1, 7, 13, 36, 45, 203, 256, 512],
[1,7,13,37,46, 170,203, 515]¢, [1,7, 13,41, 75, 85,492, 710]s,
[1,8,15,22,40,152,471,527)7, 1,8, 15, 26, 42,114, 152, 470];,
[1,8,15,27,54,115, 169, 340)7, [1, 8, 15, 28, 38, 82, 284, 492];,
[1,8,15,29,49, 56,242, 527]7, [1, 8, 15, 32, 46, 60, 182],

1,8, 15, 33,46, 60, 183];, are all perfect squares.

Additionally, we produce examples for some cases mentioned in [4], as follows:

[47 13a 48]5a [57 137 48]57
1,14, 24, 48]5, [1, 15, 62, 152]5, [1, 44, 62, 905, [2, 13, 30, 625, [6, 13, 31, 62]5,
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[6,17,62,152]5, [6, 54, 84, 168]5, [9, 15, 55, 116]5, [10, 18, 31, 152]5, [12, 17, 56, 116]s,
13,20, 91, 186]5, [15, 44, 90, 1525, [17, 24, 33, 74]5, [18, 32, 62, 152]5, [23, 46, 152, 186]5,
28,44, 54,92]5, [28, 55, 117, 152]5, [30, 64, 132, 152]5, [35, 45, 152, 184]5,

are all perfect squares.
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CHAPTER 4

CONCLUSION

In this thesis, we have investigated both geometric and arithmetic aspects of the prob-
lem introduced in (I} We have produced polynomial parametrizations for cases k = 4
and £ = 5. It has been observed that number of distinct univariate polynomial
parametrizations (two parameterizations are distinct if and only if they produce dif-
ferent families of integer solutions) grows as the number of blocks r increases. On
the other hand, it is not known whether number of all distinct univariate polynomial
parametrizations for fixed parameters r, k with &k > 4 and » > k — 1 is finite or integer
solutions obtained by them lie on a Zariski closed subvariety since the equation (I.T))
defines a variety of general type in these cases. In a personal communication, Erhan
Giirel from METU, suggested extending each block of length £ left or right to obtain
a parametrization for k + 1 case. However, extending current parametrizations have
not produced a suitable one for £ = 6. He also asks whether there always exists a
parametrization just consisting of linear polynomials. Moreover, we have illustrated
connections with some well-known conjectures in number theory. Finally, we have
shown the first examples of block products for £ = 6 and k£ = 7 in Section 3.4} and

their pattern gives some support to the conjecture of Ulas in [22].
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APPENDIX A

ALGORITHMS

Table A.1: Adding linear polynomial block

1: procedure LINBLOCK(k, L, p, sfreeq)

2 flag =1,q =product([p+j|7in[0,..., k —1]])
3 sq =square-free part of ¢ * s freeq

4 sq’ =divide sq by degree zero integer-factor of sq
5: qL = list of degree one polynomial factors of sq’
6 if degree of sq < 3 then

7 flag =10

8 write L + [p]

9: end if

10: return qL, sq, flag

11: end procedure
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Table A.2: Good linear factors

1: procedure GOODLINF(k, L)

2 count =0, L, =[], Ly =[], result =[]

3 for ax +bin L do

4 for cin[1,...,2%] do

5: for shiftin[l —k,...,k—1] do

6 S = [cax + cb+ shift+j|jin|0,...,k —1]]
7 count = 0

8 for uz +vin S do

9 for mx +nin L do

10: if u x n == m *x v then

11: count = count + 1

12: end if

13: end for

14: end for

15: if count = 2 then

16: Ly = Ly + [cax + cb + shift]

17: end if

18: if count >= 3 then

19: L, = L, + [cax + cb+ shift]
20: end if
21: end for
22: end for
23: end for
24: Eliminate duplicate elements in the lists L,, and L
25: result = L, + Ly
26: return first ten elements of the list result starting from L,

27: end procedure
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Table A.3: Main algorithm generating at most three disjoint polynomial blocks

1: procedure MAIN(k, B)

2 L=[]P=]]

3 forwin[1,...,B| do

4 forvin[—B,..., B] do

5: L =L+ [ux + v

6 end for

7 end for

8 for p; in L do

9 sfreeq = product([p; +j | jin[0,..., k —1]})

10: sfreeq; =divide s freeq; by degree zero integer-factor of s freeq;
11: gL, = list of degree one polynomial factors of s freeq,

12: for p; in GOODLINF(k, gL) do

13: P = [p]

14: if p, is disjoint from P then

15: qLo, sfreeqs, flag =LINBLOCK(k, P, p2, sfreeq;)
16: if flag = 1 then

17: for p; in GOODLINF(k, L) do

18: P = [p1,p2)

19: if p3 is disjoint from P then
20: qLs3, sfreeqs, flag =LINBLOCK(k, P, p3, sfreegs)
21: end if
22: end for
23: end if
24: end if
25: end for
26: end for
27: return 0

28: end procedure
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APPENDIX B

POLYNOMIAL PARAMETRIZATIONS

Table B.1: Polynomial parametrizations I

=~

z1(2), 22 (T), . - s 2 ()™

square-free part of the product
b (#1) b (22) - - - bp (zr)

3z —48,6x — 94,22 — 33

3622 — 1140z + 9009

3z — 48,6 — 94,27 — 32

3622 — 1068z + 7917

27x — 48,542 — 94,18z — 33

32472 — 1140z + 1001

36@ — 48, 72x — 94,24 ¢ — 33

576z2 — 1520 + 1001

3z — 48,6 — 95,2z — 33

3622 — 1164z + 9405

48 =

— 48,96z — 95,321 — 32

92162~ — 17472z 4 8265

52 —48,10x — 96,20 — 186,4x — 38

400x2 — 7160z + 32025

10z — 50,20z — 97,8« — 40,40 — 197 160022 — 15280z + 36445
120 — 48,36 — 141,8x — 32,72 x — 281 576x2 — 4336x + 8149
25z — 50,50« — 97,20« — 41, 100z — 196 10000x2 — 39800z + 39565
272z — 48,81z — 141,18z — 32, 162« — 281 291642 — 97562 + 8149
33z — 48,99z — 141, 198z — 281,22z — 32 435602 — 11924z + 8149
35z — 50,70x — 97,28 ¢ — 41,140z — 196 19600z2 — 55720z + 39565
36z — 48,108« — 141,216z — 281,24« — 33 5184x2 — 13872z + 9273
427 — 49,841 — 94,56 x — 64,241 — 29 2822427 — 64848x + 37149
42z — 49,84z — 94,56z — 64,24z — 28 28224z° — 60144z + 32025
45x — 48,1352 — 141,30z — 32,270« — 281 810042 — 16260z + 8149
422 — 252 + 36,822 —50x + 74,4z — 16,4 — 12 1

422 — 232+ 30,822 —46x + 62,4z — 15,42 — 11 1

422 — 25z + 36,822 —50x + 74,4z — 13,4z — 17 1622 — 104z + 153

3x —45,9x — 132,27x — 393,54z — 785,2x — 31

324z2 — 9732 + 73005

5z — 50,10z — 97,6 — 60,20 — 196,12z — 119

3600z° — 70440z + 344505

52 — 50,10@ — 97,30 @ — 294,60z — 586, 4 — 40

360042 — 68280z + 323565

[NV E¥ KV RV.) K.Y K} KV RV7Y V) K} RV RV2Y RV2Y KO') KV RV RV7Y KUY KO KU RS RU'Y KO KOO INN) IS (Y () ) S NG IV (N (N NG ) (NG N [ROR (KO0 [EORY (RO JORY O0)

10z — 42,30z — 126,61z — 25,30z — 117,15z — 58 22522 — 1770z + 3472
122 — 48,36 ¢ — 141,108 & — 420,216 2 — 838,82 — 33 518402 — 41424z + 82665
14z — 49,427 — 144,21z — 72,12z — 43,84z — 289 705622 — 49560z + 86989
152 — 48,45¢ — 141,102 — 33,135 @ — 420,270 = — 838 810042 — 51780z + 82665
18z — 48,54z — 141,162 x — 420, 12 — 32,324z — 839 1166422 — 58392z + 72993
21z — 17,42« — 35,18 — 15,36 ¢ — 29,28 © — 22 705602 — 10472z + 3857
25z — 50,50z — 97,20z — 41, 150 x — 294, 300 = — 586 9000022 — 359400z + 358545
27@ — 48,81 — 141, 18 — 32, 243 ¢ — 420, 486 © — 839 2624422 — 87588 + 72993
27z — 33,81z — 96,9z — 12,6z — 9,162z — 190 32422 — 860z + 561
30x — 42,90« — 126, 18 x — 27,10 — 15,45 — 65 22522 — 590z + 384
30z — 42,90z — 126, 18« — 27,10z — 16,45z — 65 22522 — 680z + 512
33z — 48,99 x — 141,297z — 420,594 = — 839,22z — 32 3920422 — 107052z + 72993
33z — 5,66z — 11,22z — 3,198z — 12,18z — 3 980122 — 1584z + 55
39z — 48,78« — 93,52« — 65,3122 — 378,24z — 31 9734422 — 242736z + 151125
39z — 48,78« — 93,52« — 65,312 — 378,24z — 30 1081622 — 25168z + 14625
39z — 48,117 ¢ — 141,351 — 420,26 = — 32, 702z — 839 5475622 — 1265162 + 72993
427 — 49,126z — 144,63z — 72,2522 — 289, 36 © — 42 63504z° — 141624z + 78897
427 — 48,126 — 141,28z — 33,378 x — 420, 756  — 838 63504z° — 144984z + 82665
427 — 17,126z — 51,18z — 9,63z — 28, 14z — 8 44122 — 434z + 104
44z — 28,1322 — 78,33 @ — 22,36 @ — 24,396 © — 243 15681622 — 195624z + 60973
45z — 50,90 x — 97,270 @ — 294, 540 ¢ — 587,36 & — 40 291600z2 — 616680z + 325785
50 @ — 46,150 @ — 132,30z — 29, 75« — 72, 150 & — 145 2250022 — 41100 + 18733

5 | 422 — 25z + 36,822 —50x + 74,4z — 13,6z — 24, 122 — 46 14422 — 840z + 1161

5 | 422 — 25z + 36,822 —50x + 74,4x — 13,62 — 24, 122 — 47 14422 — 888z + 1269

5 | 427 — 252 +36,8x2 — 50w+ 74,4x — 16,4a — 11,z — 4 22 — 5z + 4

5 1222 — 492 + 47,2422 — 982 + 93,42 — 9,122 — 27,6z — 15 144z2 — 600z + 589

BN N N N N N S N N N N N N N N N N R R R N R R R R R R R R RN R R R R N R R R N R R R R R R RS

W

1202 — 44 + 37,3622 — 132z + 111,32 — 6,6 — 15,22 — 5

3622 — 132z + 113
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Table B.2: Polynomial parametrizations II

=

z1(x), z2(x), ..., zr(x)

square-free part of the product
b (1) b (22) - - - b (z)

14z + 18,42 @ + 57,21 @ + 27, 18 x + 24,126 = + 175, 63« + 88

21z — 9,422 — 18,14z — 7,18 — 9,126 ¢ — 52,63 = — 28

21x + 16,422 4 32,142 + 11,18 x + 15,126 x 4+ 116,63 = + 56

28 — 27,84x — 78,21l w — 21,36 — 36,252 @ — 245, 126 @ — 122

28 x + 21,84 x + 66,42 + 33,36 x + 27,126 z + 98,252 = + 200

287 + 32,84z + 99,42 + 48,36 @ + 42, 126 + 151, 252  + 301

28« + 46,84z + 141,42z + 69,36 = + 60, 126« + 214, 252 + 427

355 + 14,1052 + 48,21 + 9,152 + 6,35z + 18, 105« + 54

40z + 16,120 + 54,455 + 18, 72« + 30,360 + 153, 180 = + 75

40x 4 21,120 + 63,45« 4 24,72 = + 39, 360 = 4 204, 180 = + 102

42x — 40,84 — 77,28z — 28,36 — 36,252x — 245,126 — 122

42 x 4 23,84 x 4 49,28 x 4 14,36 = 4 18,126  + 67,252 x 4 133

42 x 4 33,84 x 4 66,28 x 4 21,36 = 4 27,126 = + 98,252 = 4 200

Rl === === ===

3z — 50,6z — 101,22 — 33,6 — 94,9z — 138, 18 — 275

324z2 — 10404z + 83325

3z — 48,6z — 95, 18z — 288,21z — 32,27« — 432, 564z — 862

324z2 — 9852z + 74733

3z — 45,9 — 132,272 — 393,81 ¢ — 1176, 162 — 2350, 2« — 31

324z2 — 9716w + 72757

3z — 45,9z — 132,272 — 393,81« — 1176, 162« — 2350, 2z — 30

324z2 — 9068« + 63369

5z — 50,10 — 97,6z — 60, 122 — 118, 30 @ — 294, 60 = — 587

360022 — 69720 + 337525

5x — 50,10 — 97,30 — 294,90z — 879,180 x — 1757, 4x — 41

360022 — 72040z + 360185

5z — 50,10 — 97,30 @ — 294,90 — 879, 180« — 1757, 4z — 40

360022 — 68440z + 325045

11a —47,33x — 138,66« — 275, 12@ — 51,22x — 94,44 x — 187

1742422 — 144408z + 299145

12z — 43,362 — 126,92 — 33,36z — 131,54z — 198, 108z — 395

1166452 — 83160z + 148125

14z —49,42x — 144,21 x — 71,18 ¢ — 63,126 x — 430, 63z — 217

44122 — 2940z + 4896

14z — 35,422 — 102,21« — 51,12 — 30, 126 2 — 306, 252z — 611

7056z° — 32984z + 38493

152 —49,30x — 96,60 x — 186,12z — 38,20x — 61,60 x — 177

22522 — 1395z + 2156

152 — 29,30z — 58,10z — 20,6z — 13,45z — 78,90z — 154

8100z2 — 31140z + 29445

16x — 48,48 ¢ — 141, 12x — 36,48« — 136, 72 @ — 201, 144z — 400

2073622 — 1172162 + 165549

18z — 48,36z — 94, 108« — 273, 122 — 32, 162« — 408, 324 ¢ — 815

1166452 — 57528z + 70905

20x 4 41,60z + 123,152 + 30,180« 4 384,36 + 74,18 x + 35

81002 + 33120z + 33775

21x — 36,42x — 71,126 — 216, 14z — 25, 189 © — 324, 378 = — 646

1587652 — 553567 + 48225

21z — 30,42x — 58,126 x — 165,14 x — 21,189 = — 246,378 x — 490

15876x2 — 44268z + 30681

21 — 17,42x — 35,187 — 15,54z — 42,108 — 82, 28z — 23

63504z2 — 98616 + 38157

21z + 14,422 + 32,62 + 3,14z + 11,7z + 3,14z + 6

19622 + 308z + 117

22x — 39,66 — 114,332 — 57,44 x — 78,24 — 43,264 x — 453

69696x2 — 244464z + 214269

24x — 48,48 x — 95,144 x — 288,16 x — 32,216 x — 432,432 — 863

2073622 — 79008 + 75081

25z — 46,50 — 88,30 x — 54,90 x — 159,450 — 786,225 — 395

5625z° — 20200z + 18124

25 — 45,50 x — 88,30 x — 54,90 x — 159,450z — 786,225 x — 395

562502 — 19300z + 16548

27x —24,54x — 47,162x — 144,18z — 16,243z — 216,486 x — 431

26244x2 — 42228 + 16809

28x — 45,842 — 135,36 x — 57,252z — 388,63z — 98,126 x — 193

15876x2 — 49392z + 38391

30z — 50,60z — 100,202 — 33,60 x — 94,90 x — 138,180z — 274

32400z2 — 101160z + 78861

30x — 49,60 — 97,120 x — 197,24z — 39,120z — 186,40 x — 62

1440042 — 44880z + 34869

30x — 48,60 — 95,122 — 19,202 — 33,18 x — 27,36z — 52

360022 — 10840z + 8085

320 — 48,96 — 138,36x — 54, 72x — 107, 96 & — 143, 288 & — 429

82044x2 — 241344z + 175497

33x — 45,66 — 87,22x — 30,442 — 57,264 x — 342,24 — 33

7744z2 — 20592z + 13673

33z — 45,66 x — 88,198 x — 255,22 x — 30,297z — 381,594 x — 761

3920422 — 98340 + 61641

330 — 45,66z — 88, 198 © — 255,22z — 31,297 — 381,594 x — 760

39204z2 — 105204z + 70401

350 — 50, 70x — 98,42z — 60, 126 x — 177, 630 © — 876, 315 @ — 440

1102522 — 30170z + 20633

35x — 46,70x — 88,422 — 54,126 x — 159,630z — 786,315 x — 395

11025z2 — 28280z + 18124

350 — 19,105@ — 57, 1050 — 51,21 — 12, 14z — 8,30 @ — 17

4410022 — 40740z + 8925

35z — 19,105 — 57,105z — 51,42z — 22,152 — 9,10 — 7

4410022 — 50820z + 13965

36 — 44,108 x — 129,27 x — 33,108 x — 124,162 x — 183,324 = — 365

10497622 — 241704z + 139065

39x —48,117x — 138,234 — 275,78 x — 94,468 x — 552,522 — 64

2433622 — 58136 + 34713

390 — 48, 78w — 93,52« — 65,36 — 45,312 @ — 379, 72z — 89

876096x2 — 2147184 + 1315509

39x — 48,78 x — 93,522 — 65,36z — 45,156 x — 189,468 x — 561

1368922 — 33111z + 20020

39x — 48,78 — 93,52« — 65,468z — 567,936z — 1132,24 2 — 30

97344x° — 226928z + 132093

39x — 48,78z — 93,522 — 65,468 x — 567,936 z — 1133,24 xz — 30

97344x? — 2273447 + 132561

391 — 42,78 — 83,234z — 252,26 — 29,351z — 378, 7027 — 754

54756x° — 119652z + 65337

390 — 42,78 x — 83,2341 — 252,26 x — 28,351 — 378, 702 — 755

5475622 — 111540z + 56625

39x — 29,117« — 87,2341 — 172,52z — 39, 18w — 15,36 = — 30

24336z~ — 36920x + 13949

420 — 47,84 x — 94,28 — 31,252 — 264,504z — 527,24 ¢ — 27

28224z2 — 61264 + 33201

421 — 35,126 — 102,63z — 51,378z — 306, 756 — 611, 36 © — 31

571536z2 — 954072z + 397761

440 — 47,1322 — 138,33z — 36, 132z — 143,198 x — 216, 396 © — 431

15681622 — 333432z + 177141

44z — 39,132z — 114,66 — 57,88 x — 78,528 ¢ — 452, 48 © — 43

278784x2 — 4868167 + 212377

N FS FN FN FS) Sy FSS ) ) () N S (FSS ) ) SO ) ) ) S S ) S S S SO ) (S ) ISS (S () Y S F S (S S S ) IFS) ) ) ) ) S Y S FSS () ) FSS FSS ) S ) ) I S S IS) Y S SO S

o] |a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|aa|a|a|a|a|a|a|a|a|a|a|a| |||

452 — 50,90 — 98,54 — 60,162z — 177,810 x — 876, 405« — 440

1822542 — 38790z + 20633
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Table B.3: Polynomial parametrizations III

z1(x), z2(2), ..., zr(x)

square-free part of the product
b (z1)bg (x2) - - - b (xr)

452 — 42,90 x — 82,270 x — 237,302 — 29,405 x — 354,810 x — 706

72900x2 — 133740z + 61161

19z — 49, 147z — 144,294 — 287,84z — 84,98 — 95, 196 x — 189

345744x2 — 6714967 + 325941

49z — 49,147 x — 144,294z — 287,98 © — 95,294z — 282,42z — 42

8643622 — 162876x + 76713

19z — 45, 147z — 132,294 — 262,98z — 90, 294 — 267, 42z — 38

1764x2 — 3060z + 1325

50 — 45,100 ¢ — 86,60« — 54, 180 & — 159, 450 © — 396, 900 © — 788

9000022 — 1534002 + 65321

50z — 18,150z — 54, 75z — 27,450z — 162,452 — 16,90 = — 28

8100z2 — 5148z + 805

1222 —4lx + 32,2422 — 82z + 63,122 — 17,42 — 10,32 — 7,6z — 15

1

1222 —31a + 17,2422 — 62z + 33,42 — 5,122 — 22,6x — 6,32 — 5

3622 —3x —3,7222 —6x — 4,122 — 2,4z — 1,6z + 1,32 — 1

48z2 —34x +3,96x2 — 68x + 5,24z — 5,82 — 6,6x — 4,122 — 9

4822 + 1da — 2,962 + 282 — 5,8 — 2,122 — 3,24z + 7,6 — 1

===

422 — 25z + 36,822 —50x + 74,42 — 13,6z — 24,18z — 69,36« — 137

144z? — 872z + 1233

422 — 25z + 36,822 — 50x + 74,4x — 13,62 — 24,18 — 69,36 — 136

144z2 — 856x + 1197

1222 —3la + 17,2422 — 62z + 33,122 — 22,92 — 15,4z — 6, 18 — 29

324x2 — 792x + 435

3622 — 20w, 10822 — 60z + 6,6 — 3,92 — 5,27a — 12,54z — 23

291622 — 1404z + 69

36x2 — 20x,108x2 —60x +6,6x — 3,92 — 5,27 — 12,54z — 22

291622 — 1188z + 57

3622 — 20w, 10822 —60x + 6,182 — 9,182 — 4,92 — 6,3z — 3

9z2 — 10z + 1

1222 — 432 + 35,2422 — 86z + 74,12z — 28,4z — 8,3z — 7,6z — 14

9z2 — 33z + 30

1222 —29x + 14,2422 — 58z + 32,42 — 8,32 — 6,122 — 12,6z — 8

922 — 152 + 6

1222 — 31z + 17,2422 — 62z + 33,122 — 22,9z — 15,27z — 42,42 — 6,54z — 83

3242 — 768z + 415

1222 —3la + 17,2422 — 62x + 33,122 — 22,97 — 15,27x — 42,4x — 6,54z — 82

32422 — 744z + 395

3622 +20x, 10822 +60x + 6,18z + 6,90 +4,9x,18z,3x — 1

81x2 + 36x — 21

30 + 31,60« + 62,36z + 38, 180« + 204, 20 + 20, 18« + 18,45z + 51,90 x + 102

22522 + 535z + 318

2x — 50,6 — 150,3x — 74,6 — 142

21622 — 10368z + 124266

422 — 252+ 34,822 — 50 + 74,4z — 17,42 — 12

8x2 — 50z + 70

10z — 42,30z — 126, 15z — 62,30z — 118,12z — 50,24 — 98

1728x2 — 13824z + 27645

(RN ETN RV EN FN FN NN N NN (NN N ) ) (N N (N (NS (Y (N (N ) IS (Y (N (N S

10z — 42,302 — 126, 150 — 62,30« — 118,62 — 26,3z — 15

322 — 292 + 70

5 21z + 15,42z + 31,14z + 10, 18 x + 15, 126 x + 116,63 = + 56 226842 + 4068z + 1767

5 30z — 32,902 — 96,452 — 47,902 — 88,182 — 20,9z — 11 24322 — 486z + 231

5 420 + 14,841 + 34,24z + 8,168z + 74,28 ¢ + 10,56 = + 21 4939222 + 39102z + 7728

5 422 + 42,84 x + 87,36 © + 36,252 x + 258, 126 = + 130, 63 = + 66 11113222 + 237699z + 127092
5 1222 — 43 @ + 35,2402 — 86w + 74,122 — 28,40 — 8,32 — 7,6 x — 14 3

5 1222 —4la + 31,2422 — 82z + 62,122 — 18,4z — 10,35 — 8,6z — 16 3

5 1222 —31la + 16,2422 — 62w + 32,40 — 6,12x — 22,32z — 5,6x — 6 3

5 1222 — 29z + 14,2422 —58x + 32,4z — 8,32z — 6,12z — 12,6 — 8 3

1222 —49x + 46,2422 — 98w + 92,4z — 10, 12x — 28,62 — 13,122 — 22

48x2 — 208 + 217

1222 — 43z + 35,2422 — 86z + 74,4z — 9,32z — 7,6z — 14,12z — 28

1222 — 39z + 27

1222 — 43 @ + 35,2422 — 86w + 74,122 — 28,40 — 8,6« — 14,3z — 8

3z2 — 11z + 8

1222 — 41z + 31,2422 — 82z + 62,12z — 18,4z — 10,3z — 8,6x — 15

108z2 — 486x + 528

1222 —4la@ + 31,2402 — 822 + 62,12z — 18,30 — 7,12x — 28,4z — 8

9622 — 320z + 250

2422 —37x + 10,4822 — 74z + 20,6z — 7,24z — 16,8x — 7,12z — 10

48z% — 74z + 23

10z + 20,202 + 42,122 4 24,242 4 50,152 4 32,60 x 4 132,120z + 264,40 x 4 85

120022 + 5170 + 5568

20z — 35,607 — 96,30z — 48,10z — 17,122 — 22,62 — 11,157 — 22,30z — 39

36002 — 10380z + 7326

21w — 7,42x — 16,42@ — 10,140 — 7,84x — 36, 12x — 6,28z — 11,84z — 30

2469622 — 18522z + 3451

21z + 3,420 + 6,287 + 4,84z + 13,168z + 32,24z + 4,56z + 8, 168 = + 26

8064z> + 3744z + 406

30 + 31,60z + 62,36z + 38, 180« + 204, 20 + 20, 18 + 18,45z + 51,90« + 102

45022 + 1015 + 572

355 — 18,140z — 64,60z — 28,4205 — 186,84z — 38,42z — 21, 105x — 50, 70 = — 36

10290022 — 94570z + 21714

35x — 18,140z — 64,602 — 28,420 @ — 186,842 — 38,422 — 21, 70x — 36,210 — 100

46305022 — 416745z + 93702

35z — 18,140z — 64,60z — 28,420 x — 186,84 — 38,42z — 21,1052 — 53,210z — 108

308700z2 — 292530z + 68908

40@ +6,120x + 21,482 + 8,60z + 9, 160 2 + 32,96 = + 18, 240z + 48,480« + 95

11520022 + 45360 4 4462

42 x 4 20,126  + 66,252 4 133,36 = + 16,28z 4 12,252z + 116,63 = + 27,126 = 4 59

666792x2 + 685314z + 175497

45@ —24,90@ — 48, 72 — 36,3602 — 170, 720z — 336, 144z — 70,240 @ — 115, 720 & — 342

19440022 — 193590 + 48081

1222 — 43z + 35,2422 — 86z + 74,6z — 11,4z — 8,32 — 9,2x — 6,12z — 28,6z — 17

36x2 — 144x + 119

1222 —43x + 35,2422 — 86w + 74,60 — 11,4x — 8,30 — 9,20 — 6,6x — 16, 122 — 29

144z2 — 516z + 406

1222 — 35z + 22,2422 — 70z + 48,122 — 18,4z — 7,12z — 12,2z — 4,3z — 4,6 — 6

7222 — 186z + 92

1222 — 35x + 22,2422 — 70x + 48,122 — 18,40 — 7,22 — 4,32 — 4,6x — 6, 12z — 13

28822 — 864z + 598

1222 — 35z + 22,2422 — 70z + 48,122 — 18,122 — 24,122 — 12,6z — 11,42 — 6,6z — 6

54z — 81w 4 21

1222 —35x + 22,2422 — 70x + 48,122 — 18,122 — 24,122 — 12,62 — 12,40 — 6,6 — 6

622 — 14z + 4

1222 —31la@ + 16,2422 — 62w + 32,40 —5,6x — 5,12z — 6,120 — 22,3z — 6,2z — 5

7222 — 210z + 75

1222 — 297 + 14,2422 —58x + 32,122 — 12,6 — 10,40 — 9,2x — 4,3z — 4,62 — 5

14422 — 348z + 54

1222 —19x +4,24x2 —38x + 12,4x — 4,3z —4,18x — 16,9z — 11,122 — 16, 18z — 24

648x2 — 1296z + 598

(V) KVY KV RVY RV} K KV RV RV'Y V) K} RV RV2Y RV KO) KU RV RV-Y RV NN KV RU7S RV KO K RO) RN

oo|oo|oo|ow|oofoofoo|w|w|oofoe|o|w|w|w|w|w|w|w|w|w|a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|a|sr|r|e|w|x]a|a|alaa|a|a|a|a|a|a|a|a|a|a|a|a|an|a

1222 + 13,2422 + 262 + 4,122, 6z + 1,122 + 12,6z + 6,42 + 2,12z + 5

21622 + 450z + 150
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