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ABSTRACT 

 

 

APPLICATION OF COPULAS IN GRAPHICAL MODELS FOR INFERENCE 

OF BIOLOGICAL SYSTEMS 

 

 

Dokuzoğlu, Damla 

MS, Department of Statistics 

Supervisor: Assoc. Prof. Dr. Vilda Purutçuoğlu 

 

June 2016, 81 pages 

 

 

Naturally, genes interact with each other by forming a complicated network and the 

relationship between groups of genes can be showed by different functions as gene 

networks. Recently, there has been a growing concern in uncovering these complex 

structures from gene expression data by modeling them mathematically. The Gaussian 

graphical model (GGM) is one of the very popular parametric approaches for modelling 

the underlying types of biochemical systems. In this study, we evaluate the performance 

of this probabilistic model via different criteria from the change in dimension of the 

systems to the change in the distribution of the data. Hereby, we generate high 

dimensional simulated data via copulas and apply them in GGM to compare sensitivity, 

specificity, F-measure and various other accuracy measures. We also assess its 

performance under real datasets. We consider that such comprehensive analyses can be 
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helpful for assessing the limitation of this common model and for developing alternative 

approaches to overcome its disadvantages.   

 

Keywords: Gaussian graphical model, Monte Carlo simulations, copula, accuracy 

measures, gene networks 
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ÖZ 

 

 

BİYOLOJİK AĞLARIN TAHMİNİNDEKİ GRAFİKSEL MODELLEMELERDE 

KOPULALARIN KULLANIMI 

 

Dokuzoğlu, Damla 

Yüksek Lisans, İstatistik Bölümü 

Tez Yöneticisi: Doç. Dr. Vilda Purutçuoğlu 

 

Haziran 2016, 81 sayfa 

 

 

Doğal ortamda, genler birbiri ile karmaşık bir ağ oluşturarak etkileşime girmektedir ve 

gen grupları arasındaki ilişki, gen ağları gibi farklı fonksiyonlar aracılığıyla gösterilebilir. 

Son zamanlarda, gen anlatım verilerinden matematiksel modelleme yaparak genler 

arasındaki bağlantıyı ortaya çıkarmak, artan bir ilgiye sahip olmaya başladı. Gaussian 

Grafiksel Modelleme (GGM), bahsedilen türdeki biyokimyasal sistemlerin 

modellenmesinde oldukça popüler olan, parametrik yaklaşımlardan biridir. Bu çalışmada, 

yukarıda bahsedilen olasılık modelinin performansı, sistemlerin boyutlarındaki 

değişimden, verilerin dağılımlarındaki değişime kadar, çeşitli ölçütler kullanılarak 

değerlendirilecektir. Bu amaçla, yüksek boyutlu veri, kopula fonksiyonları ve simülasyon 

yöntemi kullanılarak oluşturulacaktır. Oluşturulan bu veri; duyarlılık, özgüllük, F-ölçü ve 

diğer çeşitli doğruluk ölçülerini karşılaştırmak için Gaussian Grafiksel Modele 

uygulanacaktır. Ayrıca gerçek veri kümelerinde de performans değerlendirilecektir. Bu 

denli kapsamlı analizlerin, bu yaygın modelin sınırlamalarının değerlendirilebilmesinde 
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ve dezavantajlarını aşabilen alternatif yaklaşımlar geliştirilebilmesinde yardımcı olmasını 

düşünmekteyiz. 

 

Anahtar Kelimeler: Gaussian grafiksel model, Monte Carlo simülasyonları, doğruluk 

ölçütleri, kopula, gen ağları 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

The inference of gene networks plays an important role in enlightening the connections 

among genes that may lead to a better understanding of molecular mechanisms in 

organisms. The biologists routinely use high-throughput technologies, microarrays to 

measure expression of genes. Moreover, the statisticians are often in charge of exploring 

interactions among genes through statistical analysis by using large datasets. Accordingly, 

it is usual to apply multivariate methodologies to analyze these large datasets. Because 

multivariate methods may disclose various interactions among genes that cannot be 

established from individual gene-based approaches. 

In this study, I focus on a graphical modeling approach that purposes at finding 

relationships among a group of genes, where a graph is used for encoding relationships 

among multiple variables. When a graph is used for a gene network, the nodes represent 

genes and the edges indicate relationships between the linked genes (Figure 1.1). Here, 

the edges can be explained with various relationships among genes. For instance, the 

pairwise correlations are used to define edges in a “relevance network”.  

Moreover, we can define edges by means of the conditional independence. It implies that 

if any two genes connect each other with an edge, indirectly, they can be affected from 

other genes. Therefore, the appearance profiles of two genes are correlated as long as they 

are both regulated by some other genes. 
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Figure 1.1: An example for a representation of a complex biological network structure 

[5]. 

Additionally, it is necessary to assume gene networks together under various conditions, 

rather than considering them separately. The reason is that the large parts of the gene 

networks are probable to share common topologies corresponding to similar underlying 

biological processes [5]. Hereby, the large datasets allow us to infer the relationships 

among genes and the Gaussian graphical model (GGM) is one of the alternative 

approaches to get these findings. 

Accordingly, in the following chapters, the description of GGM and gene networks is 

shown. Morover, Gaussian graphical model application and the results of the simulations 

is represented. 
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1.1.Aim of the study 

 

The aim of the study is to understand how the Gaussian graphical model deals with the 

different dimensional systems and data types when inferencing the gene networks. 

In order to meet requirements of this aim, below questions are established. 

 Under which conditions does GGM work properly? 

 How does GGM work when the normality assumption is violated? 

 How does GGM behave when the dimension of the networks are getting larger? 

 What is the difference between gene structures when modeling with GGM? 

 How does GGM work with copula functions?  

 Which copula function is the most suitable to model gene networks? 

 Which marginals should be used to create multivariate biological data with the 

copula function? 

 How does GGM model give the result under different copula marginals? 

 

1.2. Motivation 

 

Recently, there exists a huge interest in the gene interactions. Most of the scientist try to 

understand their behaviors and relations with each others. Most of the biological activities 

and diseases are related with gene networks. In this scope, there exist some useful 

statistical tools such as graphical models to capture the biological networks. For this 

reason, I focus on a graphical modeling approach that purposes at finding relationships 

among a group of genes, where a graph is used for encoding relationships among multiple 

variables. Here, the Gaussian graphical model (GGM) is quite common and it is used to 

discover and estimate the biological networks. In this study, my motivation is to discover 

capabilities and deficiencies of GGM.  
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1.3. Thesis Overview   

 

This thesis starts with the description of the Gaussian graphical model and includes the 

theoretical background of the study. After the GGM section, it continues with the 

description of copulas, the measures of accuracy and the application. Then, the results of 

related simulations are presented for different scenarios. Finally, I review and discuss the 

key results derived from the simulations as well as the real dataset. 

Hereby, Chapter 2 shows the methods of the study. In this chapter, firstly, I explain the 

Gaussian graphical model and gene networks. Then, I discuss the estimation methods of 

the covariance matrix which are listed as the maximum likelihood approach, shrinkage 

covariance matrix and the lasso-based graphical model. After that, I explain the 

theoretical background of copulas. I review the dependence structure of the copula 

function and give detailed information about the most-known copula functions which are 

product copula, Gaussian (Normal) copula, student-t copula, Gumbel copula, Farlie-

Gumbel-Morgenstern copula, Clayton copula and Frank copula. Moreover, I turn to 

specific application areas of copula functions. Lastly, I explain the related measures of 

accuracy and show their calculations. Moreover, the general confusion matrix is added to 

define true positive, false negative, false positive and true negative values. 

Chapter 3 describes the application part of the study. This chapter consists of two main 

sections that are multivariate normal data and multivariate data via the Gaussian copula. 

In the multivariate normal data section, I simulate the normal data under different 

dimensions and network structures which are scale-free, random, cluster and hubs. Then, 

I model data with the Gaussian graphical model and show the results of the simulations 

for each dimension. Following that, in the multivariate data via the Gaussian copula 

section, the high dimensional data are created by the help of the Gaussian copula with 

different margins. Here, the student-t, log-normal, normal and the exponential 

distributions are used as margins of the Gaussian copula. I put the last touches on this 

http://tureng.com/tr/turkce-ingilizce/put%20the%20last%20touches%20on
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thesis by considering the semi-exponential and semi-normal marginal application with 

the Gaussian copula. Modeling with GGM and results of the simulations are shown in 

related tables.  

Chapter 4 presents the findings of the real data applications. Here, I use three different 

types of biologic real data and evaluate the performance of GGM. 

Finally, in Chapter 5, I conclude the findings of all simulations and real data and then, 

discuss possible further research topics. 
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CHAPTER 2 

 

 

METHODS 

 

 

 

2.1. Gaussian Graphical Models 

 

The Gaussian graphical model (GGM) is simply dependent on the estimated partial 

correlation matrix, whose interpretation is straightforward under the normality 

assumption of the data [46]. Here, the zero entry implies no relation between the 

associated pair of genes due to the feature of independence under the 

multivariate/univariate normal distribution.  

On the other hand, in spite of this underlying advantage, it also means that the linear 

interaction between genes can be descripted merely under the normality assumption. 

Unlike the Bayesian networks which are directed graphical model, the Gaussian graphical 

model produces undirected networks [27]. Statistically, the undirected edges imply the 

conditional independence. Accordingly, in GGM, if there is no edge between two nodes, 

it can be accepted as the evidence of the conditionally independent nodes [46]. 

For instance, there is no edge between the node 1 and the node 3 in Figure 2.1 even though 

they are related to each other via the node 2. Therefore, we can conclude that the node 1 

and the node 3 are conditionally independent. 
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Figure 2.1: The simple the representation of the conditional independence between the 

node 1 and the node 3 for the given node 2. 

Under the GGM assumption, the graph structure can be estimated using the sparsity 

pattern of the inverse covariance matrix. This independence structure is implicitly related 

with the variance-covariance matrix Σ [27]. But the basic concept of the independence 

structure is directly related to the inverse of the variance-covariance matrix, Θ which is 

the precision, also called the concentration matrix; Θ= Σ-1. 

The covariance matrix Σ has a distinct role in GGM, such that the zero entry in the 

covariance matrix implies the marginal independence while the zero entry in the precision 

matrix Θ means the conditional independence between related nodes, i.e., variables [46]. 

For this reason, the precision matrix Θ can be written in terms of the partial covariance. 

In the GGM approach, the derivation of the partial correlation from the precision matrix 

is quite common and there exists several approaches to find those partial correlations 

from data.  

In high dimensional datasets, as typically seen in gene expression networks, the 

estimation is always problematic. Below, we list the most common methods for the 
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covariance matrix selection methods among alternatives, which are designed specifically 

to unravel this challenge and explain most well-known ones in details in the following 

subsections. In this study, we use the glasso method to estimate the precision matrix of 

the system. 

Accordingly, the coordinate-wise descent algorithm within the l1-penalized lasso [16], 

fused lasso [40], grouped lasso [48], adaptive lasso [50] and elastic net method [51] are 

well-known estimation techniques of GGM. These methods are highly related with the 

construction of the penalized maximum likelihood function under both l1-norm and l2-

norm terms. On the other hand, there are some recent approaches to estimate precision 

matrix without any use of optimization methods. These methods are fully parametric 

approaches that are based on the Bayesian techniques such as the birth-death Markov 

chain Monte Carlo approach [44] and some specific semi-parametric approaches such as 

the non-paranormal SKEPTIC algorithm [24]. There are also other Monte Carlo 

approaches as Atay –Kayis and Massam suggest [1]. They apply Monte Carlo methods 

for the calculation of Θ when there is non-decomposable network graph [1]. Furthermore, 

Dobra et al. [14] and Wang and Li [42] propose the reversible jump Markov Chain Monte 

Carlo (MCMC) method by combining the graphical model with Gaussian copula and 

Dauwels et al. [13] perform the Mont Carlo expectation maximization method in place of 

the reversible MCMC for the same type of models.  

Below, we explain the most common covariance matrix selection methods which are 

maximum likelihood approach, shrinkage covariance matrix and lasso-based graphical 

model. 

 

2.1.1. Maximum Likelihood Approach 

 

Let Y(1), …., Y(p) be a random sample of the p-dimensional vector Y whose likelihood 

function under the multivariate normal distribution is shown as in Equation (1). 
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𝐿(𝜇, Σ) = (2𝜋)−𝑛𝑝/2  ∏ 𝑑𝑒𝑡(Σ)−1/2𝑒𝑥𝑝 {𝑛
𝑖=1 −

1

2
(𝑦𝑖 − 𝜇)𝑇Σ−1(𝑦𝑖 − 𝜇)},         (1) 

where μ and Σ denote the mean vector and the variance-covariance matrix, respectively. 

Furthermore, n is the sample size and p represents the total number of genes in the system. 

Finally, det (.) stands for the determinant of the given matrix. Thereby, by converting 

Equation (1) into an expression based on Θ, the log-likelihood of Equation (1) can be 

written as 

 

 L (Θ)  =  
𝑛

2
log|Θ| −

𝑛

2
𝑇𝑟𝑎𝑐𝑒(𝑆Θ),                                                                               (2) 

 

in which S is the sample covariance matrix and Θ refers to the precision matrix. However, 

the solution via the maximum likelihood method has some challenges such that it can 

estimate fully connected Θ. Moreover, there is a possibility to not infer precision matrix 

Θ if the covariance matrix is non-invertible. These problems generally occur when the 

number of nodes p is higher than the number of observations n, i.e., p>>n. Under this 

condition, the MLE procedure may produce multiple solutions. Moreover, when the 

number of nodes is much higher than the number of observations, the computational 

demand of MLE increases as its estimators are found via further iterative steps [26]. 

 

2.1.2. Shrinkage Covariance Matrix 

 

If the sample size n is small and the number of variables p is large, the emprical 

estimators of the covariance may not be unique [33]. In order to infer the network under 

this challenge, the shrinkage estimator can be useful. Basically, the shrinkage estimator 
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is about taking a weighted average of the sample covariance matrix and a target matrix 

of the same dimensions as in Equation (3). 

 

𝑆′ = 𝜆𝑇 + (1 − 𝜆)𝑈,                                                                                                       (3) 

 

where T is the low dimensional target, λ denotes the shrinkage intensity lying in the range 

[0, 1] and U represents the unbiased sample covariance [33]. The unbiased estimator U 

exhibits a large variance because of the number of parameters. Whereas, the low 

dimensional T shows a lower variance with a considerable bias. In order to solve this 

problem, the shrinkage approach combines both estimators by using a weighted average. 

In Equation (2), λ shows the level of the shrinkage. For λ = 1, the shrinkage estimate 

equals to the shrinkage target T and when λ = 0, it equals to the unbiased sample 

covariance U. Hence, the main challenge in this estimator is the selection of the optimal 

value for the shrinkage intensity. According to Schafer [33], the most appropriate way to 

unravel this problem is to minimize the mean squared error as in Equation (4). 

 

R(λ)  =  E(L(λ))  =  E[∑ (𝜆𝑇 + (1 − 𝜆)𝑈 − 𝜎)2
𝑖 ].                                            (4) 

 

In this equation, E (.) implies the expectation of the given random variable. Here, the 

value of λ is correlated with the variance of the sample covariance. That is, when U 

becomes smaller, λ also gets smaller. Therefore, when the sample size increases, the 

dimension of the target T reduces. 
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2.1.3. Lasso-based Graphical Model 

 

This method is originated from the Lasso regression with the ℓ1-norm. Normally, in the 

multivariate regression method, there exists a response variable (dependent variable) y ∈ 

Rn and a predictor variable (independent variable) matrix X ∈ Rnxp. Assuming that 

X1, . . .,XP  are linearly independent, the linear regression solves the least squares problem 

and finds the unique solution for 
^
. But if the dimensions of data are much higher than 

the size of data, i.e., p>>n, this method becomes problematic [22]. In order to handle this 

challenge, the lasso regression can be a solution. Basically, the lasso regularization 

assumes that the observations have a multivariate Gaussian distribution with the mean 

vector μ and the covariance matrix Σ such that 

 

∑ (𝑦𝑖 −𝑁
𝑖=1 ∑ 𝛽𝑗𝑋𝑖𝑗𝑗 )2 + 𝜆 ∑ 𝛽𝑗𝑗 .              (5) 

 

Equation (5), the lasso regression is subjected to the ℓ1-norm which is the least absolute 

deviations (LAD) or least absolute errors (LAE) [26]. Statistically, the ℓ1-norm minimizes 

the sum of the absolute differences between dependent variable (yi) and the estimated 

values of independent value (Xi), where, the ℓ2-norm basically minimizes the sum of 

squares of differences between the dependent variable (yi) and the estimated values of the 

predictor variable (Xi). 

Moreover, the ℓ1-penalty is important for the estimation of Σ-1 to increase its sparsity [39]. 

By sparsity, we mean the property that all parameters, which are zero, are actually 

estimated as zero with a probability tending to one. The reason behind this conversion is 

to avoid over-fitting due to either high-dimensional data or collinearity of the variables 

[22].  
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 In addition, the estimation of a sparse graphical model is highly important in the high 

dimensional setting.  

In recent years, the researchers have proposed several estimation methods for the sparse 

undirected graphical models by using the ℓ1-lasso regularization. 

Meinshausen and Bühlmann (2006) [26] apply the lasso regression method for the 

selection of the covariance matrix. In this method, each node is linearly regressed on the 

rest of the nodes with an ℓ1-penalty. Basically, it uses the neighborhood selection method 

to find the relation between nodes. Later, they combine the neighborhoods to estimate the 

full graphical structure. In more detail, under the Gaussian neighborhood regression 

method, they study the lasso regression models as the Gaussian graphical model by 

proposing the neighborhood selection method, which tries to discover the smallest index. 

In this approach, the node Y (p), i.e., the last node, depends on the rest of the nodes Y (-p) 

[26] as shown by the following expression. 

𝑌(p) = 𝛽 𝑌(-p)+𝜀,                              (6) 

 

where β denotes the p-dimensional regression coefficients. Here, it is assumed that ε has 

p-dimensions and is a multivariate normally distributed random error with the mean 

vector zero and the covariance matrix ∑pxp. The estimator of β can be found by the least 

squares criterion in such a way that the lasso regression model provides the sparsity by 

applying the ℓ1-penalty on these regression coefficients. Thus, it is shown that the 

neighborhood selection aims to estimate the individual neighborhood of any given node. 

Moreover, it is found that the neighborhood selection method is much better than the 

MLE method in terms on computation time and its consistency for high-dimensional data. 

In 2008, by adding to above methods, Friedman [17] applied the coordinate descent 

algorithm for the lasso regression which is named as the graphical lasso, “glasso”. This 
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approach provides a computationally efficient method for performing the lasso-

regularized estimation of the sparse covariance matrix.  

In Equation (7), we present the objective functions that is maximized with respect to Θ 

under the ℓ1-penalized log-likelihood function. 

 

max   log det(Θ)-tr(S Θ)-λ|| Θ ||1 ,                                    (7) 

  Θ 

where n is the number observation and p denotes the number of nodes. Hence, we have 

the multivariate normal distribution with the mean μ and the covariance Σ. Θ = Σ −1 

indicates the precision matrix, i.e., inverse of the variance-covariance matrix, as used 

beforehand and S shows the empirical covariance matrix. Furthermore, λ is the non-

negative Lagrange multiplier. When λ is getting larger, the biological network becomes 

sparser [46]. Finally, tr (.) describes the trace and ‖Θ‖1 represents the ℓ1-norm of the 

precision matrix.  

In equation (7), the optimal selection of  λ can be succeed by using different methods 

such as the Banerjee method [4], the block diagonal update of the matrix [47] and k-cross 

validation method [17]. Furthermore, we can also use the rotation information criterion 

(RIC), the stability approach to regularization selection (STARS) and the extended 

Bayesian Information Criterion (EBIC). Whereas, in the application we select the optimal 

penalty constant by RIC among these alternatives since it is the most common measure 

of GGM if the inferences are conducted by the glasso method [49]. 
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2.2. Copula 

 

A copula method for understanding multivariate distributions has a relatively short 

history in the statistical literature. Most of the statistical applications has arisen in the last 

twenty years. However, by the Sklar theorem 1959 [37], it is showed that a multivariate 

distribution can be represented in terms of its underlying margins by gathering them 

together via a copula function. But the reason behind the popularity of copulas is that it 

can be applied to many fields from finance to insurance. 

In general, the copulas [28] provide the theoretical framework in which the multivariate 

associations can be modeled separately from the univariate distributions of the observed 

variables. Therefore, a copula is a function which connects the univariate marginals of 

variables to their multivariate distributions. Hereby, the copulas are useful approach for 

generating the joint distribution with a variety of dependence structures between variables 

by eliminating the influence of marginals.  

Typically, the pairwise dependence between two variables is explained with families of 

bivariate distributions such as bivariate normal, log normal and gamma. But this approach 

has a limitation. Because, the individual behavior of variables must be explained with the 

same family of the univariate distribution. But, the copula models relax these assumptions 

and apply different marginal distributions of the random variables by the following way. 

H(x,y)= C{F(x), G(y)}.                                                                                                  (8) 

 

Here, if x and y are two continuous random variables, the copula function C is unique. 

Otherwise, it is not unique. The reason is that the uniqueness is based on the 

multiplication of the range of x and y. Accordingly, H(x,y) is the joint distribution function 

of x and y. Moreover, F(x) = P(X ≤ x) refers to the marginal cumulative distribution of x, 

http://tureng.com/tr/turkce-ingilizce/continuous
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G(y)=P(Y ≤ y) denotes the marginal cumulative distribution of y and C presents the 

unique copula, which characterizes the joint dependency of x and y. That is, H(x, y) is the 

multivariate distribution with margins F(x) and G(y).  

As a result, the properties of the copula can be listed as below [41]. 

1. N dimensional copula function Cn has the domain as the n-dimensional identity matrix.  

2. Cn consists of margins; Cn=C(1,….1, u,1,….,1)= u ; for every u ϵ I=[0,1]. 

3. Cn=C (u1,……, un)=0 if any um=0; m≤ n. 

4. C is the n-increasing. That is every n-copula is non-decreasing in each argument 

separately. 

In this list, the fourth property comes from the properties of the cumulative distribution. 

Last but not least is the invariance property. Hereby, the copula function is invariant with 

respect to the increasing and continuous transformation of marginal distributions. In this 

way, we can implement the same copula function for different transformations of random 

variables. For example, the copula function C which creates a joint distribution of x and 

y, can be used for the logarithmic transformation of x and y (lnX, lnY) [28].  

In order to see the relationship between cumulative distributions and the copula, the 

following example can be given: Let F(x,y) be the bivariate distribution function with 

univariate distributions Fx(X) and Fy(Y). The inverse functions of these cumulative 

distributions can be denoted as x=Fx(u1)
-1 and y=Fy(u2)

-1, respectively. 

So, let u1 and u2 be distributed as uniform due to the fact that the cumulative distribution 

functions are continuous. Hence, 
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F(x,y)=[ x=Fx(u1)
-1, y=Fy(u2)

-1 ] 

          =Prob (Ui≤ ui; where i=1, 2) 

          =C (u1, u2).                                                                                                                (9) 

 

As seen in Equation (9), the main advantage of the copula function is that the joint 

distribution or the dependence structure between X and Y can be determined without 

considering the marginal distributions of X and Y. As a result, the dependency structure 

of the copula function can be defined as 

F(x,y)=C(Fx(X), Fy(Y); θ),                                                                                          (10) 

 

where θ is the dependency parameter of the copula. This method is called as the inverse 

method and is based on the Sklar’s Theorem [37]. More mathematical details about this 

dependency parameter will be given in the following part.  

In literature, to regarding the dependency and the data structure, there exists many kinds 

of copulas. So it appears that the copulas form the dependence structure of the model. 

Thus, the choice of the copula that is going to fit the data is very important.  

 

2.2.1. Dependency Structure  

 

 “The dependence function” and “uniform representation” are the two alternative names 

of the copula [28]. Since the copula function is used to define the dependence structure 

between random variables, this dependence structure is invariant to increasing and 
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continuous transformations of marginal distributions thanking to the invariant property 

of copula function.  

Generally, the dependent structure between two variables (X, Y) is explained by the 

Pearson correlation coefficient. The correlation coefficient of two variables has some 

useful properties such that it implies the linear dependency, symmetry and the invariance 

property with respect to the linear transformation and finally, it has a range between -1 

and +1.  

Here, the zero correlation means that two variables are independent under normality. 

However, the correlation coefficient has some deficiencies too. For example, X and Y are 

two random variables and Y=X2 as well as cov [X, Y] =0. It means that the correlation of 

X and Y is zero and they are independent. But, it is obvious that X and Y are dependent 

[17]. Thus, the correlation coefficient can only handle the linear dependency structure. 

Moreover, it is not good at some heavy-tailed distributions and it is not invariant to non-

linear transformations. Because of these deficiencies, there exists alternative measures of 

dependency structures, namely, the rank correlations and the tail dependence. 

So, the copulas dependence structure can be represented by the Kendall’s Tau and 

Speaman’s rho under the rank correlations and the tail dependence coefficients, but not 

the Pearson’s linear correlation coefficient [41]. To calculate the Pearson’s linear 

correlation, the effects of the marginal distributions must be taken into consideration. This 

is totally contrary to the logic of the copula function. 

Below, we present the mathematical details of correlation measures and their plotting 

approach. 
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a) Spearman Rank Correlation: 

 

The Spearman rank correlation is a non-parametric approach, explaining the functional 

dependency between two variables (X, Y) within the range of -1 and +1 [17]. This value 

does not have any assumption about the distribution of the data and is related with the 

concordance and discordance terms. The former means ordered variables in a same way, 

while the latter implies the differently ordered variables. Furthermore, it is invariant to 

firmly increasing transformations and is symmetric, co-monotonic and counter- 

monotonic [41].  

Hereby, the expression of the Spearman rank correlation for the random variable X and Y 

with respect to the copulas C(.,.) is presented as below. 

ΡS(X, Y) = 12∬ {𝐶(𝑢1
1

0
,𝑢2) - 𝑢1𝑢2}𝑑𝑢1𝑑𝑢2 .                                                        (11) 

 

b) Kendall’s Tau Correlation: 

 

The Kendall’s Tau is the useful rank correlation for the copula application. It is a non-

parametric approach that measures the dependence between two variables within the 

range of -1 and +1 [17]. It is also subject to the concordance. Like Spearman’s rho, 

Kendall’s tau is invariant to firmly increasing transformations. It has some useful 

properties which are symmetry, normalization, co-monotonic and counter- monotonic. 

Finally, the expression of the Kendall’s tau for two random variable (X, Y) can be defined 

as the probability of the concordance minus the probability of the discordance [41] and 

its copula formulation can be written as 

 

Ρτ (X, Y) = 4∬ {𝐶(𝑢1
1

0
,𝑢2) d C (𝑢1, 𝑢2) – 1.                                                           (12)                       
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c) Graphical Tools (Chi-Plots, K-Plots)         

 

In order to visualize the dependent structure of the copula function, the 2-dimensional 

scatter plot can be helpful. In general the scatter plot is a useful tool to show the tail 

dependence of the copula function [17]. In addition to the scatter plot, Chi-plots and K-

plots are also well-known visual tools to show the dependency. The Chi-plots are created 

by depending on the dependent structure of the chi-square distribution and it shows the 

distance between pairs (X, Y). On the other side, K-plots visualize the dependency by 

using the expected value of the ith variable pairs. Hereby, in these plots, there exists two 

lines; one of them shows perfectly independent pairs. And other describes perfectly 

positive dependent pairs. Both graphs are based on the rank of the variables [17]. 

 

2.2.2. Copula Types 

 

There are seven major types of copulas. Each of them presents distinct ranges for the 

random variables and denotes different levels of correlations. These functions can be 

listed as below and shortly presented in Table 2.1.  

a. Product Copula 

b. Gaussian (Normal) Copula 

c. Student-t Copula 

d. Gumbel Copula 

e. Farlie-Gumbel-Morgenstern Copula 

f. Clayton Copula 

g. Frank Copula 
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a. Product Copula 

 

This copula [6] corresponds to the independence between random variables such 

that  

 

C(x, y) =xy,                                                                                                                                    (13) 

for the random variable x and y. 

 

b. Gaussian (Normal) Copula 

 

The Gaussian copula [6] can be shown by  

 

C(x, y; θ) =φG (φ-1(x), φ-1(y); θ),                                                                        (14) 

 

where φ is the standard normal distribution and φG(x,y) denotes the standard 

bivariate normal distribution by explaining the correlation parameter θ ϵ (-1,1). 

The normal copula is flexible in negative and positive dependence and shows a 

symmetric dependence in both tails. Moreover, it is suitable for every dimensional 

dataset as the copula parameter has a direct relation with the Pearson correlation 

coefficients. Therefore, it is the most common copula type.  

 

c. Student’s-t Copula 

 

The Student’s t-copula [6] which is created by the bivariate student-t distribution 

can be shown by  

 

C(x, y; θ) = Tv (Tv
-1 (x), Tv

-1 (y); θ),                                                       (15) 
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where Tν is the Student -t distribution with a degree of freedom ν and the shape 

matrix Σ. The Student–t copula belongs to the elliptical copula family with the 

correlation matrix Σ. This copula shows heavy tails and the symmetric 

dependence. For this reason, it is useful for modelling high correlations extreme 

values which are observed in the tails of the distribution. 

 

d. Gumbel Copula 

 

The Gumbel copula [6] can be represented as the expression below; 

 

C(x, y; θ) = exp {-[(-log x) θ+ (-log y) θ] 1/θ}.                                            (16) 

 

In this expression, the copula parameter θ may take all values in the interval [1, 

∞), where it does not allow negative dependence. This copula family is useful for 

capturing the upper tail dependence. Because it shows asymmetric dependence. 

In other words, if the results are strongly correlated with high values instead of 

low values, the Gumbel copula can be a good estimate [41]. The Gumbel copula 

also covers the Archimedean class and an extreme-value copula. The 

Archimedean copulas are very famous because of their capability of the large 

dependency range. Moreover, their mathematical applications and estimations are 

relatively simple.  

 

e. Farlie-Gumbel-Morgenstern Copula (FGM) 

 

It is remarkable when the dependence between two marginals is modest in terms 

of their magnitudes. Like the Gaussian copula, the Farlie-Gumbel-Morgenstern 

copula [41] indicates a symmetric dependence but, it cannot handle a large 

dependency structure. This copula can be represented by  
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C(x, y; θ) =xy (1+θ (1-x) (1-y)),                                                           (17) 

 

for the random variable x and y. Here, the copula parameter θ may take all values 

in the interval [-1, 1]. 

 

f. Clayton Copula 

 

The Clayton copula [6] is well-known as it has a straightforward functional 

application and belongs to the Archimedean copula family.  The Clayton copula 

is defined as  

 

C(x, y; θ) =(x-θ+y-θ-1)-1/θ,                                                                (18)   

 

 when θ ϵ (0,∞). Here, while θ converges to zero, the marginals become 

independent. Furthermore, it is not preferable for the negative dependence. This 

copula family is useful for capturing the lower tail dependence. Because it shows 

an asymmetric dependence. 

 

 

g. Frank Copula 

 

This copula [41] permits the negative and symmetric dependence for both tails. 

Moreover, it is also related with the weak tail dependence. The Frank copula can 

be expressed as the following way. 

 

C(x, y; θ) = -θ-1 log {1+ 
(𝒆𝒙𝒑{−𝜽𝒙}−𝟏) (𝒆𝒙𝒑{−𝜽𝒚}−𝟏)

(𝒆𝒙𝒑{−𝜽}−𝟏)
},                                 (19) 
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where θ ϵ (- ∞, ∞). Due to its range, it is good for the description of strong negative 

and positive correlational structures. Similar to the Gumbel and Clayton copula, 

the Frank copula belongs to the Archimedean copula family and it creates a wide 

range of dependence. 

 

Table 2.1: Copula Types, their ranges and functional forms for the two random variable 

x and y.    

Copula Type Range of Copula θ Functional Form 
 

Gaussian Copula θ ϵ (-1,1) 
φG (φ-1(x), φ-1(y); θ) 

 

Student’s t-Copula θ ϵ (-1,1) 
Tv (Tv

-1 (x), Tv
-1 (y); θ) 

 

Gumbel Copula θ ϵ [1, ∞) 
exp {-[(-log x) θ+ (-log y) θ] 1/θ} 

 

FGM Copula θ ϵ [-1,1] 
xy (1+θ (1-x) (1-y)) 

 

Clayton Copula θ ϵ (0,∞) 
(x-θ+y-θ-1)-1/θ 

 

Frank Copula θ ϵ (- ∞, ∞) -θ-1 log {1+ 
(𝒆𝒙𝒑{−𝜽𝒙}−𝟏) (𝒆𝒙𝒑{−𝜽𝒚}−𝟏)

(𝒆𝒙𝒑{−𝜽}−𝟏)
} 

 

 

2.2.3. Fields Where Copula Can Be Used 

 

The most famous application field for the copulas is the finance. Maximizing the asset 

return and allocating bank capitals are very tough topics in finance due to the high risk 

factor. Generally, maximizing expected return is solved with the Gaussian assumption 

while the capital allocation is the topic of the joint distribution, namely, both related to 

the logic of copulas. The copula functions are useful in managing risk and also they are 
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very good at the value-at-risk computation. Moreover, the asset return data have nonlinear 

dependency structure (asymmetric dependence). This type of structures can be explained 

by the Archimedean copula family. So, the Student’s t-copula and the Gaussian copula 

are commonly used copula functions in finance [8].  

The second most famous application field for the copulas is the economics. For example, 

the risk management and modelling the non-linear dependence between economic and 

financial multivariate time series models are created by gathering univariate time series 

models via the copula function. To explain the correlation structure of the multivariate 

distribution in economical application, the Pearson’s linear correlation is used. But, the 

Pearson correlation matrix is fully applicable when the economic variables are coming 

from the multivariate normal distribution. As long as the economic variables are not 

normal, the copula functions are required to model the correlation structure. Under this 

condition, as mentioned before, Spearman’s Rho and Kendall’s Tau approaches could be 

the best alternatives to the linear correlation coefficient in the copula application, instead 

of the Pearson’s linear correlation. [30] 

Accordingly, in this study, we evaluate the performance of the GGM method under 

different multivariate distributions. In the implementation, we use the Gaussian copula 

since it is applicable for any dimensional networks. Because for the remaining types, apart 

from the student’s t-copula, they have explicit functional forms for only small/ toy 

systems. On the other hand, the student’s t-copula is more flexible, whereas, it is 

computationally problematic and cannot produce very different results than the outputs 

of the Gaussian copula [43]. 
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2.3. Measure of Accuracy  

 

Generally, in the comparative analyses, different measures of accuracy can be used to 

evaluate the performance of different methods or control the findings. In this research, in 

order to assess the performance of the Monte Carlo runs, we apply the well-known 

accuracy measures which are the precision, recall, F1-score, false positive rate, true 

positive rate and the accuracy. All these values are the functions of the scores in Table 

2.2. This table, also called the confusion matrix [21], gives information about the actual 

and the predicted classification. The meanings of its entries are presented below.  

Table 2.2: The general confusion matrix. 

 

 PREDICTION CLASS 

 

ACTUAL 

CLASS 

 Positive (1) Negative(0) 

Positive (1) True Positive False Negative 

Negative(0) False Positive True Negative 

 

True Positive (TP): The number of correct prediction of actually positive entry. 

False Positive (FP): The number of incorrect prediction of actually negative entry. 

False Negative (FN): The number of incorrect prediction of actually positive entry. 

True Negative (TN): The number of correct prediction of actually negative entry. 

Hereby, the description of the selected accuracy measures can be defined as follows: 
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Precision: It is also known as the positive predictive value (PPV). The higher the 

precision value, the better classification. A low precision shows that there exists a large 

number of false positives. In the calculation, the number of correctly estimated edges is 

divided by the total number of edges in the estimated graph. It is calculated by using the 

below equation: 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 .                                                                                                         (20)                                                                                        

 

Recall: It is also named as the true positive rate. A low recall implies that there exist 

many false negatives. Finally, in the computation, the number of correctly estimated 

edges is divided by the total number of edges in the true graph, as below. 

Recall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 .                                                                                                              (21) 

 

F1-score: It is a weighted average of the precision and recall scores. F1-score reaches its 

best value at 1 and worst score at 0. Hence, it is calculated by performing the below 

equation: 

F1-Score =2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑋𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 .                                                                                    (22) 

 

Accuracy: The accuracy (AC) is the proportion of the total number of correct predictions 

to the total number of all classified object and is determined by the following equation. 

AC=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
.                                                                                                        (23) 
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False Positive Rate: This values (FPR) is the proportion of negatives which are 

incorrectly classified as positives among the total number of negatives in the true graph 

and is calculated by using the expression below. 

FPR=
𝐹𝑃

𝑇𝑁+𝐹𝑃
.                                                                                                                  (24) 

 

 

In Chapter 2, we have explained the methods in the application. In that scope, GGM, 

Copula functions and measure of accuracies have been represented in details. Hence, in 

Chapter 3, we show the application of these methods and discuss the results. 
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CHAPTER 3 

 

 

APPLICATION UNDER SIMULATED DATA 

 

 

 

In this chapter, more detailed information is given about the application of the Gaussian 

graphical model under different multivariate data types. In the light of the assessment for 

the limitation of this common model, different runs are completed under various scenarios 

by performing the Monte Carlo simulation. In each analysis, we use 1000 iterations.  

As we mentioned in Chapter 1, the precision matrix is our main interest to understand the 

network structure of the biological systems. Thus, the main purpose of this study is to 

estimate the precision matrix by using GGM. To evaluate the adequacy of GGM, we 

compare the exact graph path, i.e., the population graph path, with the estimated graph 

path, i.e., sample graph path, under different dimensions, graph structures and copula 

functions.  

In order to decide on the suitable number of trials for the Monte Carlo simulation, we 

complete the first simulation under different trials. In that scope, we generate the 

multivariate normal data under the scale-free network structure with 20 numbers of nodes 

and a random sample of size twenty (n=20) under 1000, 2000, 5000 and 10000 Monte 

Carlo runs. According to the results of different trials as seen in Figure 3.1, the accuracy 

measures are identical under each trial. 

 Hereby, in the remaining of analyses, we set the number of Monte Carlo iterations as 

1000 for convenience. 
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Figure 3.1: The results of the Monte Carlo simulations with different trials, namely, 1000, 

2000, 5000 and 10000 runs. 

Moreover, in our simulation, we take the total number of nodes, i.e. genes, that is also 

named as the dimension of the networks as 20, 50 and 100 nodes. For each dimension, a 

random sample of size twenty (n=20) is drawn from the simulated multivariate data to be 

modeled by GGM. The findings are shown tables below. In these comparative analyses, 

the simulations are separated into two parts which are the GGM application in 

multivariate normal data and multivariate data with the Gaussian copula function.  

First of all, the multivariate normally distributed data are created under different biologic 

networks and dimensions. Four types of biologic networks, which are scale-free, cluster, 

random and hubs are used to assess their differences in the implementation of GGM. 

Thereby, after generating 20 observations for each node in the system, the graphical lasso 

(glasso) method is implemented to infer the graph path. To compare the estimated graph 
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path with the actual one; the values of the precision, recall, F1-score, accuracy and the 

false positive rate are calculated.  

Then in the second stage of the study, the multivariate data are simulated via the copula 

functions and applied in GGM. Due to the computational feasibility, the Gaussian 

(Normal) copula function is taken to create multivariate data under different dimensional 

systems. In the Gaussian copula application, distinct marginals are considered. In this 

assessment, we use the normal, student-t, log-normal and the exponential marginals 

within the copula function with their suitable parameters. Then, similar to the previous 

part of analyses, the generated data are modelled via GGM and the inference of the model 

parameters is conducted by the glasso approach. 

Finally, as selected for the first part of the analyses, the accuracies of the results are 

evaluated under a wide range of measures, namely, the precision, recall, F1-score, 

accuracy and the false positive rate. By this way, we aim to comprehensively analyze the 

plausible limitation of GGM and its advantages. 

 

3.1. Simulation under Multivariate Normal Distribution  

 

Nowadays, thanks to the high-throughput data-collection techniques and the microarrays, 

we can visualize the negotiation of cell's components at any time. Also new technologies 

which are “Protein Chips” or “semi-automated Yeast Two-Hybrid Screens”, allow us to 

understand how and when these cell's components interact with each other [5]. In order 

to describe the underlying interactions, there exist different types of undirected biological 

networks structures. These are scale-free, hubs, cluster and random networks. Among 

them, the scale-free networks are the most common type [5]. Although, most of the 

cellular networks are scale-free, we also want to check the capability of GGM on other 

biological network types which are hubs, cluster and random. 

 

http://www.nature.com/nrg/journal/v5/n2/glossary/nrg1272.html#df1
http://www.nature.com/nrg/journal/v5/n2/glossary/nrg1272.html#df2
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To be more precise, the scale-free network means that most nodes participate in only a 

few interactions while a few nodes participates in dozens that is in strong contrast to the 

random networks. Whereas, the random networks assume that a fixed number of nodes 

is connected randomly to each other. The major reason behind the popularity of the scale-

free network is that new nodes are prone to link to the node which has many links. On the 

other hand, the hubs networks imply that most of the nodes have only a few links when a 

few nodes have a very large number of links. So we can conclude that the presence of the 

large hubs create scale-free networks.  

Lastly, the cluster networks describe locally distributed various subgraphs of highly 

linked groups of nodes. These subgraphs capture specific patterns of connections [5]. 

In this part, we show the application of the Gaussian Graphical Model in the multivariate 

normally distributed data. In more details, to understand the adequacy of GGM, we 

simulate multivariate normal data under the mentioned different graph structures and the 

biological systems under distinct dimensions. 

In the application of the Gaussian graphical model, as stated in previous chapters, there 

exist three different methods, listed as the maximum likelihood approach, the shrinkage 

covariance matrix and the lasso-based graphical methods in order to estimate the 

precision matrix. Among them, we use the lasso-based graphical method (glasso) in 

inference due to its computational efficiency and accuracy in the application of the sparse 

covariance matrix. 

In the application of the glasso method, the estimation of the Lagrange multiplier, λ, has 

a crucial role. In order to find to the optimal λ, there exist different methods such as the 

Baneerjee method and k-cross validation method [4]. Among alternatives, we apply the 

rotation information criterion (RIC) to find the optimal λ due to its gain in accuracy [49]. 

In our analyses, we initially estimate the precision matrix and compare the population 

(true) precision matrix with the estimated graph one based on their adjacency (path) 

matrices. The adjacency matrix is a square matrix and represents the graph linkages. It 

http://tureng.com/tr/turkce-ingilizce/to%20be%20more%20precise
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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contains zero and one entries and its elements show whether pairs of nodes are adjacent 

or not in the biological graph. The table, in the following part, show the simulation results 

of quantitative comparisons of different methods and dimensional systems, where we 

repeat the experiments 1000 times and report the average of the precision, recall, F1-

score, false positive rate, true positive rate and the accuracy values.  

 

3.1.1. Scale-Free Network 

 

As it’s mentioned previously, the scale-free network whose representation for 50 genes 

is shown in Figure 3.2 as example, means that many of the genes cooperate with only a 

few genes while a few cooperate with dozens. Moreover, most of the cellular networks 

have the scale-free graph structure [5]. Here, we show the results of the Gaussian 

graphical model in the application of the multivariate normal data which have the scale-

free graph structure. There are four different tables below. The confusion matrices in 

Tables 3.1-3.3 show the true positive, false negative, false positive and the true negative 

values for the different dimensional systems. Additionally, Table 3.4 presents the 

comparison of the precision, recall, F1-score, false positive rate, true positive rate and the 

accuracy values for the selected dimensional scale-free networks. 
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Figure 3.2: An example of Scale-free network with 50 nodes whose data are generated 

from multivariate normal distribution. 

 

Table 3.1: The confusion table for a scale-free system with 20 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

 

 

 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.020 0.075 

Negative(0) 0.022 0.883 
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Table 3.2: The confusion table for a scale-free system with 50 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

 

Table 3.3: The confusion table for a scale-free system with 100 nodes based on 1000 

Monte Carlo runs. 

 

 

 

 

 

 

 

As we see in the above tables, the number of true positive percentage, which is the number 

of the correct prediction of the actual linkage over all edges in the system (sum of the 

direct edges and conditional edges), is quite low. When the system has twenty nodes, 

GGM model only finds 2% of ones truly. However, it can find 88% of zeros correctly. 

When the dimension of the system is getting larger, the effectiveness of GGM to find the 

edges between genes decreases. On the other hand, GGM is good at to find the conditional 

independence and it can capture the sparsity of the graph by finding the true zero values. 

As stated beforehand, GGM applies the sparsity pattern of the inverse covariance matrix 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.001 0.038 

Negative(0) 0.001 0.960 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.020 

Negative(0) 0.000 0.980 
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to estimate the graph structure. This situation becomes better when the data have larger 

dimensions. We mean that GGM can detect the zero values better than ones. 

 

Table 3.4: The accuracy table for a scale-free system based on 1000 Monte Carlo runs. 

 

 

In Table 3.4, we represent the accuracy measures and their perfection levels which are 

the best values. From the results, it is seen that the accuracy measures of GGM decrease 

sharply while the network becomes larger. Accordingly, the accuracy value shows the 

overall performance of the model to estimate zeros and ones, properly. Moreover, we 

expect FPR closer to zeros. Because it is the proportion of wrongly estimated zeros in the 

sample to all zeros in the population.  

Here, when the dimensions increase, the precision values get smaller and become far from 

to 1. It means that the model loses the classification power when the dimensions raise. 

Similar to the precision, the recall and the F1-score values decrease when GGM describes 

larger systems.  

To the contrary, the accuracy measure increases when the dimension of the system 

reaches 100 nodes. Because GGM is more successful in estimating the zero values. Also, 

as we expected, FPR decreases when the dimension of the scale-free network increases. 

 Precision Accuracy 

Recall

(TPR) FPR 

F1-

score 

                      Perfection   Level 

Number of  Nodes  1 1 1 0 1 

20 0.467 0.902 0.207 0.0262 0.320 

50 0.390 0.960 0.016 0.001 0.030 

100 0.249 0.980 0.001 0.000 0.001 
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Since, the ability of GGM to predict ones decreases, while to predict zeros increases under 

higher dimensional systems. 

 

3.1.2. Random Network 

 

As it is mentioned beforehand, the random networks whose visual example is represented 

in Figure 3.3 for system with 50 nodes assume that a fixed number of genes is connected 

randomly to each other [5]. Here, we show the application of GGM on the multivariate 

normal data which have the random network feature. There are four different tables which 

list the true positive, false negative, false positive and the true negative values for the 20, 

50 and 100 dimensional systems under this network type. Additionally, Table 3.8 

indicates the comparison of the precision, recall, F1-score, false positive rate, true positive 

rate and the accuracy values for these random systems. 

 

Figure 3.3: An example of Random network with 50 nodes whose data are generated from 

multivariate normal distribution. 
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Table 3.5: The confusion table for a random system with 20 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

Table 3.6: The confusion table for a random system with 50 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

 

Table 3.7: The confusion table for a random system with 100 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

 

In Table 3.5, GGM only finds 2.7% of the actual linkage of the population path (ones). 

Also, it can find 83.5% of the conditional dependence of the population path (zeros), 

correctly. The percentage of the correctly estimated conditional dependence of the 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.027 0.115 

Negative(0) 0.023 0.835 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.001 0.057 

Negative(0) 0.001 0.941 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.030 

Negative(0) 0.000 0.970 
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population path is lower than the scale-free network results. For the estimation of the true 

edge, the situation is vice versa.  When the dimension of the system is getting larger, in 

Table 3.6 and 3.7, the effectiveness of GGM to find the edges between genes decreases. 

However, GGM is good at to find the conditional independence, i.e., zero values. Because, 

it can capture the sparsity of the graph much better. When the data have larger dimensions, 

GGM is getting better to find sparse relation of the graph path. As a conclusion, GGM 

can detect the zero values better than ones, especially, when the dimension of the system 

increases. 

 

 

Table 3.8: The accuracy table for a random system based on 1000 Monte Carlo runs. 

 

 

 

 

In Table 3.8, there exist the mean values of accuracy measures for 1000 Monte Carlo runs 

and their perfection levels which are the best scores. Accordingly, the accuracy value 

shows the overall performance of the model to estimate zeros and ones, properly. For the 

random network results, GGM has better precision values than the scale-free networks. 

Because the random network has more ones (1) in its path. With detail, 14% of the random 

 Precision Accuracy 

Recall

(TPR) FPR 

F1-

score 

                      Perfection   Level 

Number of  Nodes  1 1 1 0 1 

20  0.540 0.862 0.192 0.028 0.303 

50  0.497 0.942 0.018 0.001 0.035 

100  0.492 0.970 0.001 0.000 0.002 
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network has direct edges (1) for 20 dimensional systems when only 9.5% of the scale-

free networks has direct edges (1) under this condition. Moreover, FPR, which is the 

power of the estimated conditional dependence, closer to zero. Once again, it is seen that 

the accuracy measures of GGM decrease sharply while the network becomes larger. For 

the precision value, it means that the model loses the classification power. Similar to the 

precision, the recall and the F1-score values decrease when GGM works with the larger 

dimensional systems. To the contrary, the accuracy measure increases when the 

dimension of the system reaches 100 nodes because of the power of GGM under sparsity. 

 

3.1.3. Cluster Network 

 

As distinct from other network structures, the cluster networks, as simply drawn via 50 

genes in Figure 3.4 for an illustration, create the network’s subgroups within genes. In 

detail, the cluster networks mean that there exist locally distributed various subgraphs of 

highly linked groups of genes. These subgraphs capture the specific patterns of 

connections [5].  Here, we present the application of GGM on the multivariate normal 

data which have this network feature. Tables 3.9-3.11 display the associated results. From 

these tables, we observe the true positive, false negative, false positive and the true 

negative percentages for the three different dimensions, i.e., network with 20, 50, 100 

nodes, and Table 3.12 indicates the comparison of the precision, recall, F1-score, false 

positive rate, true positive rate and the accuracy values for these systems. 
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Figure 3.4: An example of Cluster network with 50 nodes whose data are generated from 

multivariate normal distribution. 

 

Table 3.9: The confusion table for a cluster system with 20 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.031 0.238 

Negative(0) 0.024 0.707 
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Table 3.10: The confusion table for a cluster system with 50 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

 

Table 3.11: The confusion table for a cluster system with 100 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

 

 

In Table 3.9, GGM only finds 3.1% of the actual linkage of the population path, i.e., ones, 

and can detect 71% of the conditional dependence of the population path, i.e., zeros, 

correctly. The percentage of the truly estimated conditional dependence of the population 

path is lower than both the scale-free and the random networks. Furthermore, for the 

estimation of the true edge, GGM gives the highest percentage among other network types. 

Moreover, when the dimension of the system gets larger, the effectiveness of GGM to 

find the edges between genes decreases as similar to previous cases. To conclude, GGM 

can detect the zero values better than ones; especially, as the dimension of the system 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.110 

Negative(0) 0.000 0.890 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.057 

Negative(0) 0.000 0.943 
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increases. But it has the best performance to truly estimate direct edge between nodes 

among others. 

 

Table 3.12: The accuracy table for a cluster system based on 1000 Monte Carlo runs. 

 

 

 

 

In Table 3.12, there exists the mean value of accuracy measures for 1000 Monte Carlo 

runs and their perfection levels. From the results of the cluster network results, it is 

observed that GGM has the highest precision value because of the power to estimate 

present links. According to the precision value, the model loses the classification power 

moderately when the dimension raises. Also, FPR, which is the power of the estimation 

of the conditional dependence, is closer to the zero when the dimension of the systems 

gets larger. Because when the dimension increases, GGM starts to assign more zeros to 

the estimated path due to its sparse nature. So, the recall, FPR and the F1-score of GGM 

reach zero while the network has 100 nodes. 

 

 Precision Accuracy 

Recall

(TPR) FPR 

F1-

score 

                      Perfection   Level 

Number of  Nodes  1 1 1 0 1 

20  0.573 0.738 0.118 0.035 0.198 

50  0.540 0.888 0.015 0.002 0.030 

100  0.485 0.943 0.000 0.000 0.002 
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3.1.4. Hubs Network  

 

Shortly, the hubs networks mean that most of the genes have only a few links when a few 

genes have a very large number of links. A simple visual representation of this network 

type for n systm with 50 nodes is shown in Figure 3.5. Moreover, the large number of 

hubs creates scale-free networks by getting together [5]. Here, we present the application 

of the GGM on the multivariate normal data which have the hubs network feature. Similar 

to previous findings, we construct Tables 3.13-3.15 to show the true positive, false 

negative, false positive, true negative values and the comparison of the precision, recall, 

F1-score, false positive rate, true positive rate and the accuracy values for 20, 50 and 100 

dimensional systems.  

 

Figure 3.5: An example of Hubs network with 50 nodes whose data are generated from 

multivariate normal distribution. 
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Table 3.13: The confusion table for a hubs system with 20 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

 

Table 3.14: The confusion table for a hubs system with 50 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

Table 3.15: The confusion table for a hubs system with 100 nodes based on 1000 Monte 

Carlo runs. 

 

 

 

 

 

 

From Table 3.13, it is observed that the results of the hubs almost are close to the outputs 

of the scale-free. But GGM under the hubs network is more effective to estimate the actual 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.027 0.063 

Negative(0) 0.028 0.882 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.001 0.036 

Negative(0) 0.001 0.961 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.073 

Negative(0) 0.000 0.927 
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linkage than its performance under the scale-free network. Moreover, the true positive 

percentage, which is the number of the correct prediction of the actual linkage is divided 

by all edges in the system (sum of the direct edges and conditional edges), is 2.7%. When 

the system has twenty nodes, GGM models only find 88% of zeros truly. As expected, 

when the dimension of the system becomes larger, the effectiveness of GGM to find the 

edges between genes decreases. Additionally, GGM is successful in finding the 

conditional independence and it can capture the sparsity of the graph by finding the true 

zero values. This situation becomes better when the data have larger dimensions. 

 

 

Table 3.16: The accuracy table for a hubs system based on 1000 Monte Carlo runs. 

 

 

 

On the other hand, the accuracy value shows the overall performance of the model to 

estimate zeros and ones, simultaneously. From the results of Table 3.16, we represent the 

accuracy measures and their perfection levels. In this table, the precision values do not 

change too much when the system becomes larger. The possible reason behind it could 

be the compact structure of the hubs networks. It is seen that the recall, FPR and the F1-

 Precision Accuracy 

Recall

(TPR) FPR 

F1-

score 

                      Perfection   Level 

Number of  Nodes  1 1 1 0 1 

20  0.487 0.909 0.296 0.033 0.428 

50  0.456 0.962 0.033 0.002 0.061 

100  0.466 0.926 0.002 0.000 0.004 



47 
 

score of GGM decrease sharply while the network has high dimensions. Here, when the 

dimensions increase, the precision values do not change much. On the other side, for the 

hubs networks, the model has a similar classification power when the dimensions raise. 

But for the accuracy, TPR and the FPR, GGM loses the power in estimation when the 

dimensions increase. 

 

3.2. Simulation under Multivariate Data with the Gaussian Copula 

 

In this part, we show the application of GGM in the multivariate data bounded via the 

Gaussian Copula. Hereby, at this chapter, the main aim is to understand how GGM works 

with the copula functions when modeling the cellular network. Here, similar to previous 

applications of multivariate normal data, we compare the structure of the population 

graph with the structure of the sample graph.  

In our assessment, we produce the multivariate data by using the Gaussian copula 

function. Because, GGM assumes that the linkage between genes can be explained by 

using the precision matrix which is an inverse of the covariance matrix. Here, to explain 

the multivariate dependence, we have to put all dependent measurements of variables into 

a complete and positive defined matrix which implies the covariance structure in the 

Gaussian copula. On the other hand, the Archimedean copula families, which are 

composed of the Gumbel, Frank and Clayton, copulas are constructed with only a single 

dependency parameter θ [28]. Furthermore, according to Whittaker [45], it is not clear 

which parameters create a reliable model under which values and which dependence 

structure can be created by the given copula function. Moreover, the Archimedean family, 

the Gumbel and Clayton copula do not have explicit density expressions if we infer their 

copula terms [43]. Hereby, as the Gaussian copula does not have these limitations, we 

perform it in our analyses with a wide variety of marginals. 
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Accordingly, the multivariate data are simulated with student- t, log-normal and semi-

normal, semi-exponential marginals and fully exponential scenarios. At this point, we 

choose the log-normal distribution as the marginal of the Gaussian copula because of its 

wide application in biological systems [23].  

In the application of GGM, as stated in previous chapters, there exist three different 

methods, listed as the maximum likelihood approach, the shrinkage covariance matrix 

and the lasso-based graphical methods in order to estimate the precision matrix. Among 

them, we use the lasso-based graphical method (glasso) in inference due to its 

computational efficiency and the accuracy in the sparse covariance matrix. 

In the application of the glasso method, the selection of the Lagrange multiplier, λ, is 

another important point. In order to find the optimal λ, there exist various approaches 

such as the Baneerjee method and the k-cross validation method [49]. In this study, we 

apply the rotation information criterion (RIC) to find the optimal λ due to its high 

accuracies among alternatives [2]. 

 

The following sections represent the mean results of the 1000 Monte Carlo simulations 

for distinct marginals and dimensional systems. To carry out the evaluation of GGM 

under the Gaussian copula function, we tabulate the average of all selected accuracy 

measures, namely, the true positive, false positive, false negative, true negative, precision, 

recall, F1-score, false positive rate, true positive rate and the accuracy by comparing the 

estimated adjacency matrix with the true ones generated under the scale-free feature. 
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3.2.1. The Student-t Marginals 

 

The student-t distribution has the rising sloping curve at the right-hand side and the 

descending sloping curve at the left-hand side. These tails tell us that there exist the 

extreme quantiles for the student-t distributions. The tails of the student-t distributions 

decrease more slowly than the tails of the normal distribution. Hereby, the distribution of 

student-t decreases when the degrees of freedom increase. Accordingly, when the degrees 

of freedom approach to infinity, this distribution approaches to the standard normal 

distribution. Hence, the student-t distribution with an infinity number of degrees of 

freedom implies that it is completely same as the standard normal distribution. But in 

general, the student- t distribution has more widespread shape than the normal distribution 

[15]. 

Thus, when simulating the multivariate data with the Gaussian Copula function, we apply 

the student-t margins with the degrees of freedom 10 to assess its performance far from 

normality. Because as mentioned above, the higher degrees of freedom bring us the wider 

data distribution. Then, similarly, we repeat the experiments under 1000 Monte Carlo 

runs and report the average of these related values. The results of these simulations are 

given in Tables 3.17-3.19. The findings indicate that the performance of GGM under all 

accuracy measures decreases with respect to the outputs under the normality. 

Table 3.17: The confusion table for student-t margins with 10 degrees of freedom and 20 

nodes based on 1000 Monte Carlo runs. 

 

 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.005 0.090 

Negative (0) 0.004 0.901 

http://tureng.com/tr/turkce-ingilizce/upward%20sloping%20curve
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Table 3.18: The confusion table for student-t margins with 10 degrees of freedom and 50 

nodes based on 1000 Monte Carlo runs. 

 

 

 

 

Table 3.19: The confusion table for student-t margins with 10 degrees of freedom and 

100 nodes based on 1000 Monte Carlo runs. 

 

 

 

 

 

 

In Table 3.17, there are 400 edges between 20 nodes, i.e., (20x20)-dimensional matrix, 

and almost 10% of these edges are direct, i.e., the entries ones in θ. But GGM only finds 

almost 1% of them under the student-t marginals. Hence, it is seen that the student-t 

marginals are modelled with suitable parameters (degree of freedom for similar features 

to the normal distribution), the result are drastically low. Moreover, when the dimension 

of the system gets larger, the effectiveness of GGM to find the edges between genes 

decreases. For the (100x100)-dimensional precision matrix, GGM cannot find any 

relation between nodes, i.e., it can only assign zero values. 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.039 

Negative (0) 0.000 0.961 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.020 

Negative (0) 0.000 0.980 
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Table 3.20: The accuracy table for student-t margins with 10 degrees of freedom based 

on 1000 Monte Carlo runs. 

 

 

 

 

In Table 3.20, the precision values are quite high even higher than the result of the 

multivariate normal data. But other measures such as the recall and the F1-score are quite 

low. The precision values are high. Because if we check Table 3.17, we realize that the 

model estimates only 1% of the edges as one (1) and 99% of them as zero (0). Indeed, 

this is the deficiency of GGM in the sense that when the data are far from the normality, 

GGM starts to assign zero values (conditional independence) for each node. Moreover, 

these values reach zero when the dimensions of the systems reach 50 nodes. The accuracy 

measure, which is the proportion of the total number of correct predictions to the total 

number of all classified object, reaches 0.98, almost one. So as it is expected, GGM 

cannot capture the direct edges between nodes successfully, rather, it can assign zero 

values in the majority of the entry in the precision matrix. 

 Precision Accuracy 

Recall

(TPR) FPR 

F1-

score 

                      Perfection   Level 

Number of  Nodes  1 1 1 0 1 

20  0.575 0.906 0.053  0.004 0.092 

50  0.533 0.961 0.000 0.000 0.000 

100  

Not 

Computable 0.980 0.000 0.000 0.000 



52 
 

3.1.2.2. The Log-Normal Marginals 

 

The log-normal distribution is an asymmetric and continuous distribution which is a good 

representative for the data with the extreme positive values. Furthermore, it has a strong 

alliance with the normal distribution. Because if the log transformation of random 

variables distributes normally, the random variables can distribute log-normally. 

Although, the normal distribution is the most well-known density and has many 

application areas, the log-normal distribution is prevalent in many fields too [23]. For 

example, the multiplicative rule which is essential in chemistry and physics also valid for 

the log-normal distribution while the normal distribution has the additive rule [20]. 

Hence, we choose this density as a marginal of the Gaussian copula as the most biological 

mechanisms (exponential growth), chemical phenomenon (the velocity of a simple 

reaction) and biological systematics induce in this distribution [20]. Additionally,  

according to Kapteyn (1903) [19], if the data from one-dimensional measurements in 

nature fit the normal distribution, but if two and three dimensional results such as surfaces 

and volumes cannot be symmetric, the log-normal distribution has quite profitable 

features.  

Moreover, at different standard deviation levels, it has different distributional shapes in 

such a way that for higher standard deviations, it becomes more skewed and captures 

more extreme values. When the standard deviation decreases, the shape of the distribution 

looks like more symmetric similar to the normal distribution.  

Thus, in order to evaluate this characteristics, we simulate multivariate data under 

different parameters of the log-normal distribution. In this regard, we take the value of 

the standard deviation as 8 to assess the performance of GGM under the skewed log-

normal. Also, we generate data with a lower standard deviation value, taken as 0.5, in 

order to evaluate the outcomes under a more symmetric log-normal density.  
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The findings of the simulations can be seen in Tables 3.21-3.23. From the results, it is 

observed that the performance of GGM becomes even worse than the results under the 

student-t distribution and all accuracy measures decrease sharply regarding the outputs 

under the normality. 

 

Table 3.21: The confusion table for log-normal margins (mean=10, standard deviation=8) 

with 20 nodes based on 1000 Monte Carlo runs. 

 

 

 

 

 

 

Table 3.22: The confusion table for log-normal margins (mean=10, standard deviation 

=8) with 50 nodes based on 1000 Monte Carlo runs. 

 

 

 

 

 

 

 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.095 

Negative (0) 0.000 0.905 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.039 

Negative (0) 0.000 0.961 
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Table 3.23: The confusion table for log-normal margins (mean=10, standard deviation 

=8) with 100 nodes based on 1000 Monte Carlo runs. 

 

 

 

 

 

Table 3.24: The accuracy table for log-normal margins (mean=10, standard deviation=8) 

based on 1000 Monte Carlo runs. 

 

 

 

 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.020 

Negative (0) 0.000 0.980 

 Precision Accuracy 

Recall

(TPR) FPR 

F1-

score 

                      Perfection   Level 

Number of  Nodes  1 1 1 0 1 

20  

Not 

Computable 0.905 0.000 0.000 0.000 

50  

Not 

Computable 0.9608 0.000 0.000 0.000 

100  

Not 

Computable 0.9802 0.000 0.000 0.000 
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Table 3.25: The confusion table for log-normal margins (mean=10, standard 

deviation=0.5) with 20 nodes based on 1000 Monte Carlo runs. 

 

 

 

 

 

Table 3.26: The confusion table for log-normal margins (mean=10, standard 

deviation=0.5) with 50 nodes based on 1000 Monte Carlo runs. 

 

 

 

 

 

 

Table 3.27: The confusion table for log-normal margins (mean=10, standard 

deviation=0.5) with 100 nodes based on 1000 Monte Carlo runs. 

 

 

 

 

 

 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.095 

Negative (0) 0.000 0.905 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.039 

Negative (0) 0.000 0.961 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.020 

Negative (0) 0.000 0.980 
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Table 3.28: The accuracy table for log-normal margins (mean=10, standard 

deviation=0.5) based on 1000 Monte Carlo runs. 

 

 

 

We compare the results of two data with different standard deviations, but results are 

identical. For each standard deviation, GGM cannot capture any direct edge between 

nodes and the model assigns only zeros. In Tables 3.24 and 3.27, the recall and F1-score 

are zero and the precision value cannot be calculated because of zero results. Hence, we 

conclude that, because of the violation of the normality assumption (even working with 

the Gaussian copula and log-normal marginals), GGM cannot give effective results for 

the estimated path.  

 

3.2.3. Semi-Exponential and Semi-Normal Marginals 

 

Previously, the multivariate data are simulated by the help of the Gaussian copula 

function with single types of marginals. In these simulations, student’s-t, log-normal and 

 Precision Accuracy 

Recall

(TPR) FPR 

F1-

score 

                      Perfection   Level 

Number of  Nodes  1 1 1 0 1 

20  

Not 

Computable 0.905 0.000 0.000 0.000 

50  

Not 

Computable 0.9608 0.000 0.000 0.000 

100  

Not 

Computable 0.9802 0.000 0.000 0.000 
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the exponential distributions are used as marginals, separately. In addition to the 

simulation of the Gaussian copula with these single marginal types, we also model the 

copula function with mixed marginals. Thereby, our main purpose is to observe how 

results of GGM change when the Gaussian copula function is described under combined 

marginals. Hereby, we bind the exponential and normal distributions, in our 

measurements so that the Gaussian copula function can be used for half exponential 

margins and half normal margins. Here, we take the exponential marginals’ rate 

parameter λ as 4 and the normal marginals’ mean as 0 with the standard deviation 2. The 

results of the Monte Carlo simulations are represented in Tables 3.29- 3.32. 

 

Table 3.29: The confusion table for semi-exponential (rate=4), semi normal marginals 

(mean=0, standard deviation=2) with 20 nodes based on 1000 Monte Carlo runs. 

 

 

 

 

 

 

Table 3.30: The confusion table for semi-exponential (rate=4), semi normal (mean=0, 

standard deviation=2) marginals with 50 nodes based on 1000 Monte Carlo runs. 

 

 

 

 

 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.095 

Negative(0) 0.000 0.905 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.039 

Negative(0) 0.000 0.961 
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Table 3.31: The confusion table for semi-exponential (rate=4), semi normal (mean=0, 

standard deviation=2) marginals with 100 nodes based on 1000 Monte Carlo runs. 

 

 

 

 

 

 

Table 3.32: The accuracy table for semi-exponential (rate=4), semi normal (mean=0, 

standard deviation=2) marginals based on 1000 Monte Carlo runs. 

 

 

 

Similar to the result of the log-normal marginals, GGM cannot capture any direct edge 

between nodes and the model can merely assign zeros. Due to the deviation from the 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.000 0.020 

Negative(0) 0.000 0.980 

 Precision Accuracy 

Recall

(TPR) FPR 

F1-

score 

                      Perfection   Level 

Number of  Nodes  1 1 1 0 1 

20  

Not 

Computable 0.905 0.000 0.000 0.000 

50  

Not 

Computable 1 0.000 0.000 0.000 

100  

Not 

Computable 1 0.000 0.000 0.000 
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normality assumption (even working with the semi normal data), GGM cannot give 

effective result for the estimated path. Accordingly, in Table 3.32, the recall and F1-score 

are zero for each dimensional size and the precision value cannot be calculated because 

of these zero results. 

 

3.2.4. Exponential Marginals 

 

The exponential distribution is a well- known continuous distribution with the rate 

parameter λ (λ>0) which is the only parameter of the distribution. Furthermore, it is 

positive defined with an interval [0, ∞).  Moreover, it has the positive-skewed (inverse J) 

shape [3]. In this study, when simulating the multivariate data with the Gaussian copula 

function, we use the exponential margins with the rate λ=4. 

Tables 3.17-3.19 show the simulation results from the comparison of different 

dimensional systems under 1000 Monte Carlo runs. Here, we report the average of these 

related values.  

 

Table 3.33: The confusion table for exponential margins with 20 nodes based on 1000 

Monte Carlo runs. 

 

 

 

 

 

 

 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.070 0.026 

Negative(0) 0.428 0.476 
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Table 3.34: The confusion table for exponential margins with 50 nodes based on 1000 

Monte Carlo runs. 

 

 

 

 

 

 

 

Table 3.35: The confusion table for exponential margins with 100 nodes based on 1000 

Monte Carlo runs. 

 

 

 

 

 

 

 

In Tables 3.33, 3.34 and 3.35, surprisingly, GGM can capture some direct edges between 

nodes. It can find almost 7% of the true links for 20-dimensional system. But it is not 

good at the detection of zeros truly as much as under the multivariate normal data. For 

the dimensional size 20, it is approximately equal to 0.5 chance to assign 0 and 1 values. 

The reason behind this results can be the skewed shape of the exponential distribution 

which can simplify the visibility of the link in the estimation via the penalized maximum 

likelihood approach. Finally, similar to previous findings, when the dimension of the 

system increases, GGM loses the power. 

  

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.020 0.019 

Negative(0) 0.331 0.630 

 Estimated Path 

 

True Path 

 Positive (1) Negative(0) 

Positive (1) 0.007 0.013 

Negative(0) 0.240 0.740 
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Table 3.36: The accuracy table for exponential margins (rate=4) based on 1000 Monte 

Carlo runs. 

 

 

 

In Table 3.36, GGM has the highest recall and F1-score values which indicate even better 

output under the multivariate normality. On the other hand, the precision values are low 

since GGM can estimate some of the true links.  Whereas, the accuracy values still 

increase while the number of nodes increases as the model still tends to assign more zero 

values.  

 

 

 

 

 

 

 

 

 Precision Accuracy 

Recall

(TPR) FPR 

F1-

score 

                      Perfection   Level 

Number of  Nodes  1 1 1 0 1 

20  0.138 0.545 0.723 0.501 0.648 

50  0.058 0.650 0.515 0.352 0.550 

100  0.028 0.748 0.347 0.247 0.434 
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CHAPTER 4 

 

 

REAL DATA APPLICATION 

 

 

 

In this chapter, in order to detect the deficiency of GGM on real systems, we implement 

GGM on the real data and show their results. Previously, we have found that GGM starts 

to fail when the data are not normally distributed. In here, we apply GGM on the two 

different biological dataset whose descriptions are presented below. 

 

4.1. Application via Cell Signalling Protein Data 

 

In the application of GGM in biological data, we use the cell signalling data which contain 

information about 11 phosphoproteins and some phospholipids [32]. These 11 proteins 

are called as praf, pmek, plcg, PIPP2, PIP3, p44.42, pakts473, PKA, PKC, P38 and pjnk 

where each of them has 1000 observations, resulting in 11000 measurement totally. Here, 

our main purpose is to model the data with GGM and to compare the estimated network 

with the true system to evaluate the efficiency of GGM. This dataset is gathered to 

measure the biologic relations of proteins and the true structure of the network is 

represented in Figure 4.1. 
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Figure 4.1: The true network of the cell signaling proteins from the study of Sachs’ et al., 

(2005) [32]. 

 

According to the study Sachs et al., (2005) [32], we create the above figure (Figure 4.1) 

to visualize the true network of the proteins. In Figure 4.1, the protein PIP2 has direct 

edges with the protein PIP3, PKC and the protein plcg. Also, the protein plcg has direct 

linkages with PIP2, PIP3 and PKC. The protein praf has direct edges with the protein 

PKC, PKA and pmek. Moreover, according to Sim and Scott (1999) [36], there exists the 

direct linkage between the PKA and PKC proteins [36]. But, from the modeling of this 

dataset via GGM, we find none of the underlying true links in Figure 4.1. GGM can 

merely assign zero entries in the precision matrix for all estimated interactions. As a 

conclusion, GGM cannot capture any true network between 11 proteins.  

In order to critic the plausible reason behind this estimation, we check the QQ-plots of 

each protein. As seen in Figure 4.2, we find that the distributions of each marginal protein 

are far from the normal density, although the structure of the system is suitable for the 

GGM-type of the mathematical modelling 
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Figure 4.2: The QQ-plots of cell signalling data by comparing the normal density. 

 

Hence, we check whether the data can be multivariate normal after transformations. As 

seen in Figure 4.2, since the protein have heavy right hand side tails, we initially eliminate 

outliers and among the remaining 320 observations, we perform log and log (log) 

transformations as these two types of the transformations are biologically meaningful. 
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We see that both transformations cannot solve the non-normality problem. On the other 

hand, we also find that some proteins indicate constant value, i.e. no change during whole 

activation time of experiment. Such type of fixed value can be observed for the proteins 

controlling the growth factor or the proteins whose degradation rates, i.e. half- life, are 

very slow. These type of proteins typically have crucial role in the initiation of the cellular 

activation of apoptosis. Thus, they may not be converted normal in any transformation. 

On the other side, if we remove these proteins in the modelling, we cannot use the same 

true network for comparison. Because, the activation of whole system can change as the 

proteins are dependent on each other from the nature of their activations. 

 

4.2. Application via Human Gene Expression Data 

 

In the second real data application, we use the human gene expression data which contain 

100 transcripts (with unique Illumina TargetID) measured on 60 unrelated individuals. 

The data are collected by Stranger et al., (2007) [38] and are defined by Bhadra and 

Mallick (2013) [7] and Chen et al., (2007) [11]. The purpose of the data is to understand 

the gene expression in the B-lymphocyte cells from the Northern and Western European 

ancestry from Utah (CEU). The main focus of these studies is the 3125 Single Nucleotide 

Polymorphisms (SNPs) which are found in the 5 UTR (untranslated region). Because 

UTR (untranslated region) of mRNA is quite important to control the gene expression.  

In order to find the biological links in these data, we use GGM with the glasso approach. 

But, similar to the previous results GGM cannot discover any of the validated links 

presented in Table 4.1. On the other hand, according to the study of Bhadra and Mallick 

(2013) [7], 26 biological interactions of these data are discovered. We create Table 4.1 

from the study of Bhadra and Mallick (2013) [7] to show all the validated interactions 

with the name of the genes. Thus, similar to the cell signaling data, we conclude that the 

application of GGM can be restricted for small and moderately large systems as its 
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inference can be better accomplished via approximate methods for high dimensional 

networks.  

Here, in order to check the normality of this dataset as the source of deficiencies of the 

model, we compute the Shapiro-Wilk test for the multivariate normality in the R 

programme and we take the significance level 0.05. As a result, we obtain p-value < 2.2e-

16 which is smaller than any significance level and we conclude that at least one of the 

variable is not coming from the normal distribution. Also, the QQ-plots of the first fifteen 

genes are drawn, as examples in Figure 4.3, to visualize the distribution of the gene 

expressions. Both test results and plots show that the human gene expression data do not 

have normal distribution.  

 

Table 4.1: Biologically validated links in the human gene expression data [7]. 

 

LINKS 

 

GI.7019408.S-GI.4504436.S 

GI.28610153.S-GI.4504436.S 

GI.20070269.S-GI.28610153.S 

GI.18379361.A-GI.20070269.S 

GI.17981706.S-GI.13514808.S 

GI.20302136.S-GI.7661757.S 

GI.4505888.A-GI.41350202.S 

GI.27754767.I-GI.16554578.S 

GI.9961355.S-GI.27754767.I 

GI.27754767.I-GI.27754767.A 

GI.22027487.S-GI.27754767.I 

GI.38569448.S-GI.22027487.S 

GI.34222299.S-GI.22027487.S 

 

 

GI.21614524.S-GI.34222299.S 

GI.37537705.I-GI.31652245.I 

GI.18641371.S-GI.41197088.S 

GI.16159362.S-GI.31652245.I 

GI.21389558.S-GI.16159362.S 

GI.28557780.S-GI.16159362.S 

GI.27477086.S-GI.16159362.S 

GI.23510363.A-GI.28557780.S 

GI.27482629.S-GI.23510363.A 

GI.28416938.S-GI.27482629.S 

GI.30795192.A-GI.27482629.S 

GI.24308084.S-GI.27477086.S 

GI.4504700.S-GI.19224662.S 
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Figure 4.3: The QQ-plots of the human gene expression data [7] by comparing the normal 

density. 

 

According to tests’ results and plots, it is detected that the human gene expression data 

are not normal. Furthermore, like cell signaling data, we cannot apply the transformation 

to the measurements to make them normal. Because, we face with the same challenges in 
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the cell signaling protein data in the sense that they are heavily right tailed and certain 

genes show no change in their activation throughout the experiment. 

 

4.3. Application via Palm Oil Data 

 

As a part of the real data application we use the palm oil data which contain information 

about the lipid contents of the developing palm oil related with the major lipid metabolites 

[29]. The data are gathered by the Oo et al., (1985) [29]. The lipid biosynthesis is an 

important topic in order to develop the nutritional and technical properties of the crop oil. 

The lipid biosynthesis process is highly related with the formation of the triacyl-glycerols 

(TAGs). Because they are the end products of the lipid biosynthesis process. TAGs have 

commercial interest and they can be modified in their relative quantities to increase the 

quality of the overall oil due to their feature to store oils [31]. The data show the changes 

in the lipid content (gram) of triacylglycerols (TAG), fatty acids (FA), diacylglycerols 

(DAG), monoacylglycerols (MAG) and polar lipids (PL) for five different measurement 

periods as presented in Table 4.2. 

 

Table 4.2: The palm oil dataset [29]. 

 

Weeks TAG FA DAG MAG PL 

8 0.01 0.01 0.02 0.00 0.05 

12 0.02 0.01 0.03 0.00 0.08 

16 5.08 0.51 0.39 0.08 0.34 

20 36.75 6.17 2.69 1.76 0.41 

24 19.32 39.06 3.95 0.21 4.15 
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In Table 4.2, the entries under the proteins names show the observed concentration during 

the given weeks. 

In order to discover the network of the lipids, we model this dataset by using GGM with 

the glasso method and compare the findings with the quasi true structure of the network 

given in Figure 4.4. As a result, we detect that GGM cannot infer any link between the 

selected variable. 

 

 

Figure 4.4: The network of the lipid metabolites 

 

In order to investigate the cause of nonmorality behind this result, we apply the one-sided 

Kolmogorov-Smirnov (KS) test. The tabulated values with respect to the significance 

level α=0.05 are shown in Table 4.3.  

Here, the null hypothesis is taken as the normality of the data. According to the findings 

of the test, we conclude that FA, DAG, MAG and PL proteins are distributed normally, 

except TAG since all the associated p-values are greater than the significance level, 

α=0.05. 
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Table 4.3: The results of the Kolmogorov- Smirnov (KS) Test under significance level 

α=0.05 

Variables P-values of KS Test Conclusion  

TAG 0.030 Reject Null Hypothesis 

FA 0.158 Fail to Reject Null Hypothesis 

DAG 0.102 Fail to Reject Null Hypothesis 

MAG 0.164 Fail to Reject Null Hypothesis 

PL 0.088 Fail to Reject Null Hypothesis 

 

Then to convert all measurements to normal, we apply log transformation to the TAG 

Lipid content as it is the only non-normal protein. After the transformation, we compute 

the KS value again and show that the new measurements are also normal at α=0.05. 

Whereas, after performing GGM in this normal dataset, we observe that GGM cannot still 

estimate any true link. We consider that this situation may be caused by the limitation of 

GGM under very mall dataset even under normality. 
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CHAPTER 5 

 

 

CONCLUSION and OUTLOOK 

 

 

 

In this study, we have considered to comprehensively evaluate the performance of 

Gaussian graphical model (GGM) which is one of the common modelling approaches for 

the description of the steady-state behaviors of biological systems. For this purpose, we 

have assessed the findings of GGM, first of all, under different dimensions and then the 

topology of the networks and under various distributions. 

In all these calculations, we have computed the accuracy of the estimates based on various 

accuracy measures. 

Thus, for the analyses in the first stage we have applied GGM in multivariate normal data 

under distinct graph structures and dimensional sizes. In the analyses via Monte Carlo 

simulations, we have detected that the hubs network have the best precision, TPR and F1-

score values. Then, the scale-free networks and the hubs network have relatively better 

performance in terms of the underlying accuracy measures. Because these network types 

have quite similar features. Although, the random and the cluster networks have higher 

precision value, their F1-score and TPR values are lower. But, in general, for all networks 

types, the power of the GGM estimation decreases when the size of the system increases. 

In other words, with moderately small number of genes, GGM can successfully explain 

the true structure of the networks, whereas, with large number of genes and multivariate 

normally distributed data, GGM cannot find the true links.  
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On the other side, in the second stage of the analyses, we have conducted simulations 

with the Gaussian copula under different marginals. We have prefered the Gaussian 

copula since the Archimedean copulas which are Gumbel, Frank and Clayton, are 

considered by only one parameter θ and they do not have explicit solutions [43]. 

Furthermore, only the Gaussian copula can create multivariate data by using the positive 

defined covariance matrix.  

At first stage, as marginals of the Gaussian copula, we have used the student-t and the 

log-normal because of their similar features with the normal distribution. After that, we 

have also used semi marginals (semi-normal and semi–exponential) choices and lastly we 

use the exponential distribution as margins. 

 From the analyses, we have observed that the results of the student-t are similar to the 

results of the multivariate normal data. Also, it has higher precision values. But for other 

accuracy measures, it has lower values. Here, we have found that this is the deficiency of 

GGM in the sense that when data are far from the normality, GGM starts to assign zero 

values (conditional independence) for each node. Moreover, these values reach zero when 

the dimensions of the systems reach 50 nodes.   

But for the log-normal and the semi-normal, semi- exponential data, the results become 

worse. When the marginals of the joint function contain both normal and exponential 

distributions, the true networks cannot be modelled well under the Gaussian copula. 

GGM cannot capture any direct edge between nodes and the model can merely assign 

zeros. Due to the deviation from the normality assumption (even working with the semi-

normal data), GGM cannot give effective results for the estimated paths. 

On the other side, the results of the exponential margins are surprisingly good in such a 

way that they have higher TPRs and F1-scores than the application of the multivariate 

normal data. Furthermore, we have seen that with small number of genes and Gaussian 

Copula under exponential marginals, GGM is succesful in capturing the true links. Here, 

GGM can give better classification due to the fact that its underlying estimation method, 
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MLE, is working with the skewed data better. More specifically, the exponential 

distribution is good for the signaling data and the measurements of our networks indicate 

a kind of signal data containing extreme values.  

On conclusion from the Monte Carlo simulation analyses, GGM is effective in modelling 

the small and moderately large systems under the multivariate normally distributed data. 

However, the performance of GGM becomes worse when the data are far from normality.  

On the other hand, in real data applications, we model the three different datasets which 

are cell signaling, human gene expression and palm oil.  Although, the true networks of 

the variable are already known, GGM cannot find any linkage between variables. On the 

contrary, it assigns only zero values for each network between variables.  

Therefore, from this study, we have realized that GGM is not sufficient to estimate 

network structures under all conditions and it has certain strong drawbacks. Generally, it 

cannot capture true links when the size of the system increases and the normality 

assumption is violated. Hence, we consider that the modelling of complex biological 

systems can be performed by non-parametric models in place of GGM as they are free 

from any distributional assumptions. Thereby, MARS method can be applied as it is a 

good substitute for dealing with linear and nonlinear relationship between variables when 

they are highly correlated [25]. In order to handle the non-normal data, the non-

paranormal SKEPTIC algorithm can be also another strong alternative that is based on 

the non-parametric optimization [25].  

Moreover, Conic MARS (CMARS) and Robust Conic MARS (RCMARS) which are the 

extended version of the MARS method can be performed since they are promising 

competitive of MARS. Furthermore the algorithms which are designed for particularly 

high dimensional and correlated measurements such as the random forest algorithm can 

be implemented for the construction of networks [44].  
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Additionally, in our study, we only use to the RIC criterion for the estimation of the 

inverse covariance matrix. Hence, GGM can be applied under different criteria such as 

ICOMP [9], CAIC [10] and BIC [35] during the selection of the best fitted model which 

means the selection of the optimal penalty constant. 

Finally, in the simulation part of the study, we have faced with the difficulties in the 

construction of multivariate copulas. Creating a bivariate copula function is not 

problematic, but when the dimension of copulas increases, obtaining the density of 

copulas get progressively difficult. To handle that, we can create multivariate 

distributions via a copula-vine method by identifying marginals and their dependence 

structures. So, the analyses of the copula can be extended by the application of the 

Canonical vine (C-vine) and D-vine method [34]. These vines have similar constructions 

for any number of variables. Here, in C-vine, one variable links to all other variables and 

determines the dependency structure. In the D-vine method, the linkage is more 

symmetric and each node has at most two links [43]. Therefore, both methods, C-vine 

and D-vine can be used for more comparative analyses with GGM under large scales of 

copulas. 

 

Moreover, in this study, we have only applied GGM on the biologic datasets. As the future 

work, we intent to evaluate its performance on the financial datasets. Because modelling 

the non-linear dependence between economic and financial variables have an increasing 

concern and GGM can be applied for modelling these datasets. 
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