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ABSTRACT 

 

 

 

COMPARISON OF CONCURRENT LEARNING AND DERIVATIVE-FREE 

MODEL REFERENCE ADAPTIVE CONTROL AGAINST PARAMETER 

VARIATION 

 

 

Sarsılmaz, Selahattin Burak 

M.S., Department of Aerospace Engineering 

Supervisor: Assist. Prof. Dr. Ali Türker Kutay 

 

 

July 2016, 98 pages 

 

For adaptive laws using only instantaneous data, it is well known that parameter 

convergence is impossible without persistency of excitation. Concurrent Learning 

Model Reference Adaptive Control (CL-MRAC) is a novel adaptive controller that 

solves the parameter convergence problem, about forty year old adaptive control 

problem, without requiring persistency of excitation. This solution relies on the 

concurrent usage of recorded and current data. Derivative-Free Model Reference 

Adaptive Control (DF-MRAC) is another novel adaptive controller that challenges the 

derivative-based adaptive laws and the integral action of them. Instead of constant ideal 

parameters assumption, DF-MRAC uses less strict assumption which allows time-

varying ideal parameters. Due to these contributions, both CL-MRAC and DF-MRAC 

deserve attention. This research mainly addresses their robustness to parameter 

variation. 
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In this thesis, standard exponential stability theorem of CL-MRAC and uniform ultimate 

boundedness theorem of DF-MRAC with minor changes in their statements are proved. 

Some missing parts in these theorems are either filled or emphasized. To make a fair 

comparison between CL-MRAC and DF-MRAC, constant ideal parameters assumption 

imposed in CL-MRAC is replaced with time-varying ideal parameters assumption which 

is similar to the one in DF-MRAC but still stricter than it. Under this relaxed 

assumption, uniform ultimate boundedness of the solution of the closed-loop system is 

proved. According to this theorem, existing data recording algorithms are modified and 

the performances of CL-MRAC with modified algorithms are inspected under time-

varying ideal parameters in a sample regulation and tracking problem. The simulation 

results show that the performance of CL-MRAC is dependent on problems and data 

recording algorithms. 

Wing rock problem with time-varying angle of attack is considered a useful benchmark 

for numerical illustration. Under high level uncertainty and random disturbance, 

controllers are tested and DF-MRAC performs better than CL-MRAC. Since DF-MRAC 

suppresses the uncertainty effectively and makes no attempt to learn it in the 

simulations, its performances with different basis functions are also tested. The 

simulation results present the excellent performance of DF-MRAC. Although it is 

shown that both CL-MRAC and DF-MRAC have bounded solutions under parameter 

variations, their adaptation strategies are completely different and the effect of this 

difference in the performance is obviously seen in the simulations. 

 

Keywords: Model Reference Adaptive Control, Time-Varying Parameters, Uniform 

Ultimate Boundedness, Wing Rock Motion 
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ÖZ 

 

 

 

Eġ ZAMANLI ÖĞRENEN VE TÜREVSĠZ MODEL REFERANS ADAPTĠF 

KONTROLÜN PARAMETRE DEĞĠġĠMĠNE KARġI KIYASLAMASI 

 

 

Sarsılmaz, Selahattin Burak 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Ali Türker Kutay 

 

 

Temmuz 2016, 98 sayfa 

 

Sadece anlık veri kullanan adaptif yasaları için, sürekli uyarım olmadan parametre 

yakınsamasının mümkün olmadığı bilinmektedir. YaklaĢık kırk yıldır adaptif kontrolde 

süregelen parametre yakınsama sorununu, özgün EĢ Zamanlı Öğrenen Model Referans 

Adaptif Kontrol (CL-MRAC) yöntemi sürekli uyarıma ithiyaç duymadan çözmektedir. 

Bu çözüm, kaydedilen ve anlık verinin eĢ zamanlı kullanımına dayanmaktadır. Bir diğer 

özgün adaptif kontrol yöntemi olan Türevsiz Model Referans Adaptif Kontrol (DF-

MRAC) yöntemi, türev bazlı adaptif yasalarına ve onların integral etkisine karĢı 

çıkmaktadır. Sabit ideal parametre varsayımı yerine, DF-MRAC zamanla değiĢen ideal 

parametrelere izin veren daha esnek bir varsayım kullanmaktadır. Bahsedilen bu katkılar 

nedeniyle, hem CL-MRAC hem de DF-MRAC dikkate değer bulunmaktadır. Bu 

araĢtırma, ana hatlarıyla bu kontrol yöntemlerinin parametre değiĢimine karĢı 

gürbüzlüklerini konu almaktadır. 
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Bu tezde, CL-MRAC yönteminin standart üstel kararlılık teoremi ve DF-MRAC 

yönteminin düzgün nihai sınırlılık teoremi, her iki teoremin de ifadelerinde ufak 

değiĢiklikler yapılarak ispatlanmıĢtır. Teoremlerdeki bazı eksik bölümler tamamlanmıĢ 

veya eksiklikleri vurgulanmıĢtır. Bu iki kontrol yöntemini adil bir Ģekilde 

kıyaslayabilmek için CL-MRAC yönteminde kullanılan sabit ideal parametre varsayımı 

DF-MRAC yönteminde kullanılan varsayıma benzer; ama daha katı olan zamanla 

değiĢen ideal parameterler varsayımıyla değiĢtirilmiĢtir. Bu esnetilmiĢ varsayım altında, 

kapalı döngü sistem çözümünün düzgün nihai sınırlılığı ispatlanmıĢtır. Bu teoreme göre 

mevcut veri kayıt algoritmaları modifiye edilmiĢ ve zamanla değiĢen ideal parametreler 

içeren örnek düzenleme ve takip problemlerinde, CL-MRAC yönteminin modifiye 

edilen algoritmalarla birlikte performansı incelenmiĢtir. Benzetim sonuçları, CL-MRAC 

performansının uygulandığı problemlere ve veri kayıt algoritmalarına bağlı olduğunu 

göstermektedir. 

Zamanla değiĢen hücum açısı barındıran kanat sallanma problemi  sayısal gösterim için 

kullanıĢlı bir kıstas olarak düĢünülmektedir. Yüksek seviyede belirsizlik ve rassal 

bozucu altında, iki kontrol yöntemi sınanmıĢ ve DF-MRAC yöntemi CL-MRAC 

yöntemine kıyasla daha yüsek performans göstermiĢtir. Benzetimlerde, DF-MRAC 

yöntemi belirsizliği etkin bir Ģekilde baskıladığı ve bu belirsizliği öğrenme giriĢiminde 

bulunmadığı için performansı, farklı taban foksiyonları kullanılarak da sınanmıĢtır. 

Benzetim sonuçları, DF-MRAC yönteminin mükemmel performansını ortaya 

koymuĢtur. Her iki kontrol yönteminin parametre değiĢimlerine karĢı sınırlı çözümlere 

sahip olduğu gösterilmiĢ olmasına rağmen, uyarlama stratejileri tamamen faklıdır ve bu 

farkın performanslara etkisi benzetimlerde açıkça görülmektedir. 

 

Anahtar Kelimeler: Model Referans Adaptif Kontrol, Zamanla DeğiĢen Parametreler, 

Düzgün Nihai Sınırlılık, Kanat Sallanma Hareketi 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Control technologies have become indispensable part of modern systems such as 

aircrafts and space vehicles. Historically, well-established control approaches have 

dominated modern systems and these approaches rely on mathematical models of 

systems. However, mathematical models do not represent physical systems exactly. On 

the contrary, there is a wide range of model uncertainty due to assumptions in modeling, 

linearization, model order reduction, and disturbances. With the increase in performance 

and safety demand of modern systems, researchers have extensively studied robust and 

adaptive controllers to deal with model uncertainty. In robust control, model uncertainty 

is regarded as perturbation of a nominal system and controller is designed to meet the 

stability and performance objectives for any model within the given bounds on the 

model uncertainty. Conservatism is inherent in robust control and degradation in 

performance may be experienced, depending on level of uncertainty. On the other hand, 

adaptive controller is designed to cancel the uncertainty online and thus the upper 

bounds on the uncertainty are not necessarily required to be known. Besides, adaptive 

controllers encounter less performance degradation than robust controllers under high 

level of uncertainty. These features of adaptive controllers make it attractive to 

researchers and engineers. 

Adaptive controllers can be put into two groups, namely “direct adaptive controllers” 

and “indirect adaptive controllers”. Direct adaptive controllers adapt controller 

parameters directly and they are known for fast control response but short-term learning. 

On the other hand, indirect adaptive controllers employ parameter estimation algorithm 



2 

 

to estimate the unknown parameters and use them to calculate the controller parameters. 

Their performances depend on the accuracy of the estimation. If the initial estimates are 

poor, then the transient response and stability cannot be guaranteed.  

Model Reference Adaptive Control (MRAC) is a popular and significant direct adaptive 

controller [1], [2], [3]. Concurrent Learning MRAC (CL-MRAC) is a novel adaptive 

controller which combines the advantages of direct and indirect adaptive controllers [4]. 

Derivative-Free MRAC (DF-MRAC) is another novel adaptive controller which is very 

responsive to sudden changes in system dynamics [5]. This study presents the 

comparison of CL-MRAC and DF-MRAC against parameter variations.  

 

1.1 Model Reference Adaptive Control  

 

The main objective of MRAC is to make an uncertain system track the desired response 

which is defined by a reference model. To achieve this goal, MRAC uses three main 

elements. These are reference model, uncertainty parameterization, and weight update 

law. Reference model characterizes the desired performance of the closed-loop system. 

Uncertainty parameterization component, which corresponds to adaptive control signal, 

is used to cancel the actual uncertainty. Based on the comparison between the state 

(output) of the uncertain system and reference model, weight update law tries to 

estimate the parameters required by adaptive control. 

In MRAC architecture, nominal controller is augmented by adaptive control signal to 

cancel the uncertainty. If the structure of the uncertainty is known, that is, uncertainty is 

a weighted combination of known basis functions, and then uniform cancellation of the 

uncertainty is possible. This type of uncertainty parameterization is extensively used in 

adaptive control, for example in [5], [6], [7], [8]. In this study, we also formulate 

problems assuming that basis functions are known. 

From Lyapunov stability theory, it was proved that conventional adaptive law in MRAC 

architecture guarantees the boundedness of the tracking and parameter (weight) error for 
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constant ideal parameters. With an application of Barbalat’s lemma, it can be shown that 

the tracking error goes to zero as time goes to infinity. However, same discussion is not 

valid for the weight error. These issues degrade the transient performance and 

robustness of the closed-loop system. Furthermore, weight error can be unbounded 

under bounded disturbances [1], [2], [3]. When the systems states are persistently 

exciting (PE), parameter convergence is achieved and thus tacking error vanishes 

exponentially. Therefore, performance and robustness of the closed-loop system 

improve. It should be noted that for adaptive laws using only instantaneous data, PE is 

necessary for parameter convergence and depends on reference inputs [10]. It means 

that reference inputs should be monitored such that PE is satisfied. However, this is not 

practical in online applications because reference inputs are in general event based and 

not known before the operation. Moreover, PE reference inputs may be unsuitable for 

desired missions [4]. 

In order to increase the robustness and efficiency of uncertainty suppression without PE 

reference inputs, many modifications to weight update law have been introduced in the 

literature. Fixed damping has been added to the weight update law by   modification 

[11]. It limits adaptation to the uncertainty. On the other hand,   modification adds 

variable damping such that damping increases with the tracking error and thus it allows 

adaptation process when the tracking error is small [12]. Both   and   modifications 

provide bounded weight error. Parameter projection is another modification which 

ensures that estimated weight stays in a predefined compact set [13]. In addition to these 

well-known modifications, some of the recently developed important modifications can 

be found in [14], [15], [16]. The main focus in these modifications is efficient 

uncertainty suppression instead of parameter convergence. 

 

1.2 Concurrent Learning Model Reference Adaptive Control  

 

As it is mentioned in the previous section, parameter convergence is impossible without 

persistency of excitation for adaptive laws using only instantaneous data. However, 
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persistency of excitation may not be necessary for parameter convergence if adaptive 

laws use memory. CL-MRAC has been motivated by the foregoing idea and introduced 

in [4]. CL-MRAC utilizes concurrent usage of recorded and current data to guarantee 

exponential convergence of tracking error and parameter. In the formulation of CL-

MRAC, PE reference inputs have been replaced with exciting reference inputs over 

finite interval. When sufficiently rich data is recorded during this finite interval, 

parameter convergence dependency of adaptive laws on future reference inputs are ruled 

out. The sufficiency of rich data can be easily determined by online verifiable rank 

condition on recorded data. It should also be noted that CL-MRAC requires first 

derivative of the state for a recorded data point. This additional information is the price 

we pay for non PE reference inputs. If this derivative is measured, it can be directly 

used. Otherwise, it should be estimated in finite time after the record. That is, it does not 

have to be estimated at the current time instant [4], [7]. 

Standard exponential stability theorem of concurrent learning for a different class of 

plants and its applications can be found in [4], [17], [7], [18], [19]. The estimate of 

convergence rate has revealed that the convergence rate depends on the spectral 

properties of recorded data. In [20], it was demonstrated that data recording algorithm 

which relies on the estimate of convergence rate provides the fastest parameter 

convergence among three data recording algorithms.  

Similar to other derivative-based adaptive laws, all studies about CL-MRAC have the 

underlying assumption that there exist constant unknown ideal weights. Under this 

assumption, CL-MRAC provides long-term learning with the aid of parameter 

convergence capability and improves performance when the system tracks repeated 

commands. In [4], the author claims that CL-MRAC would recover the performance and 

robustness of the reference model and could pave the way for flight certification of 

adaptive controllers. However, its robustness to disturbances and/or time-varying ideal 

parameters has not been analyzed yet. In this study, we analyze the robustness of CL-

MRAC and check the performances in sample problems to see whether the claim in [4] 

deserves credit for the certification issue. 
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1.3 Derivative-Free Model Reference Adaptive Control 

 

DF-MRAC has been developed for uncertain systems which experience sudden or fast 

time-varying changes in dynamics [5]. For instance, these changes in dynamics can be 

due to structural damage, disturbance, and deployment of a payload. In these situations, 

MRAC may require so high learning rate that they may excite unmodeled dynamics and 

cause high frequency oscillations in control. It may also fail to achieve the defined task 

[5]. The constant unknown ideal weights assumption used in derivative-based adaptive 

laws extensively has been replaced with the existence of time-varying ideal weights 

during the construction of DF-MRAC. For this generalized assumption, parameter 

convergence is not possible anymore. Instead, we can only achieve bounded weight 

error. In [5], [21], using a Lyapunov-Krasovskii function, it has been proved that the 

solution of the closed-loop system is uniformly ultimately bounded (UUB). It should be 

noted that derivative-free weight update law does not require any modification term to 

provide bounded weight error. 

Derivative-free adaptive law uses both delayed weight estimates and current system 

states and errors to suppress the effects of time-varying matched uncertainty. This 

update law challenges the derivative-based adaptive laws and the integral action of 

them. In other words, it queries the adaptive control usage for matched constant 

disturbance. In fact, the authors in [5] support the usage of nonadaptive controllers with 

integral action in bias correction. 

 

1.4 Contributions of This Thesis 

 

The purpose of this thesis is to make a fair comparison of CL-MRAC and DF-MRAC 

against parameter variation. In order to make a fair comparison, we should make sure 

that both CL-MRAC and DF-MRAC have similar theoretical results under similar 

assumptions. Then, comparison of their performances is meaningful. 
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We planned to start with the robustness analysis of CL-MRAC to time-varying ideal 

parameters. Since we have observed one misuse, one unnecessary use of stability 

theorems and one claim without reasoning in the standard exponential stability theorem 

of CL-MRAC developed in [4], [7], we start with the proof of this theorem. These 

observations are given respectively:  

 In the proof of Theorem 3.2 in [4], the author uses Theorem 3.1 in [22] which is 

applicable to autonomous systems. However, the closed-loop system in CL-

MRAC architecture is nonautonomous. The author should consider Theorem 

4.10 in [9] or Theorem 4.6 in [22]. In the proof, we apply the correct theorem.  

 When the dynamic history-stack, that is, the online removal or inclusion of data 

points is allowed, Remark 3.6 in [4] claims that exponential stability is still 

guaranteed as long as the introduced rank condition for recorded data points is 

satisfied. The author made reference to Theorem 1 in [23] and thus Theorem 2.1 

in [24]. First, mentioned theorem in [24] applies to autonomous switched 

systems. It should be clarified whether this theorem is applicable or not. Second, 

even if this theorem is applicable to nonautonomous switched systems, we do 

not have to use this theorem because Theorem 4.10 in [9] is still valid. It is 

applicable to systems which have piecewise continuous right hand side in time. 

Third, the introduced rank condition is not sufficient to guarantee the exponential 

stability when we use dynamic history-stack because the derivative of the 

Lyapunov function along the trajectories of the closed-loop system cannot be 

upper bounded by one negative definite function. In order to solve this problem, 

we introduce an additional condition in Remark 3. It actually emphasizes the 

difference between being positive and being positive & separated from zero. 

 In the proof of Theorem 4.1 in [7], the author claims that minimum singular 

value of the history-stack is monotonically increasing. When the number of 

stored data points is equal to the maximum allowable number of recorded data 

points, the claim is correct without any doubt due to the singular value 

maximization algorithm. However, when the number of stored data points is less 

than the maximum allowable number of recorded data points, the claimed 
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monotonicity is not obvious. In Remark 6, we show that the claim is correct by 

using one of the monotonicity theorems in [25]. Moreover, the condition 

mentioned in the previous observation holds by means of this fact.  

After the observations about the exponential stability theorem of CL-MRAC, its 

robustness to time-varying ideal parameters is addressed. To analyze the robustness, the 

constant ideal parameters assumption is replaced with uniformly bounded continuously 

differentiable ideal parameters with uniformly bounded derivatives. Under this relaxed 

assumption, we prove that the solution of the closed-loop system is UUB. This proof 

also means that parameter drift instability in MRAC is ruled out by CL-MRAC without 

adding a modification term. Moreover, estimates of the ultimate bound and exponential 

convergence rate to that ultimate bound are provided. According to these estimates, 

constraints due to the theorem, and intuitive explanations, existing data recording 

algorithms are modified. We test CL-MRAC with modified algorithms in simulation by 

using sample regulation and tracking problem which include time-varying ideal 

parameters and disturbance. The simulation results show that the performance of CL-

MRAC is highly dependent on problems and data recording algorithms. Thus, this study 

formally discusses the author’s expectation, in [4], that CL-MRAC would recover the 

performance and robustness of the reference model and could pave the way for flight 

certification of adaptive controllers. Furthermore, the simulation results show that CL-

MRAC is not as promising as it is expected in [4]. 

With the uniform ultimate boundedness theorem of CL-MRAC, the prerequisite for the 

fair performance comparison is completed. However, we have observed one missing 

part and one incorrect expression in the uniform ultimate boundedness theorem of DF-

MRAC developed in [5], [21]. Therefore, this theorem with minor variations in its 

statements is also proved. These observations are given respectively: 

 In the proof of Corollary 2 in [5], the authors upper bound the derivative of the 

Lyapunov-Krasovskii function by an expression which is a function of the error 

vector defined in Lyapunov-Krasovskii function. However, the intermediate 
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steps are not given in [5]. Therefore, we emphasize this missing part. The 

authors should explain the rationale behind this inequality. 

 In the proof of Corollary 2 in [5], the authors end up with an incorrect expression 

for the exponential convergence rate to the ultimate bound. We correct this 

expression.  

Wing rock problem with time-varying angle of attack is considered a useful benchmark 

for numerical illustration. Under high level uncertainty and random disturbance, 

controllers are tested and DF-MRAC performs better than CL-MRAC. Although it is 

shown that both CL-MRAC and DF-MRAC have bounded solutions under parameter 

variations, their adaptation strategies are completely different and the effect of this 

difference in the performance is obviously seen in the simulations. 

 

1.5 Outline of this Thesis 

 

In the first chapter, we make a brief introduction about the adaptive control. Then, a 

literature survey about MRAC and two novel adaptive controllers, namely CL-MRAC 

and DF-MRAC is presented. Finally, the contribution of this thesis is given.   

In the second chapter, we start with the formulation of MRAC. Then, standard 

exponential stability theorem of CL-MRAC with minor changes in its statement is 

proved. With the aid of some remarks, missing parts of the theory are filled. For 

switching ideal parameters, the performances of CL-MRAC with existing two different 

data recording algorithms are evaluated in a sample problem. To analyze the robustness 

of CL-MRAC to time-varying ideal parameters, constant ideal parameters assumption is 

replaced with uniformly bounded continuously differentiable ideal parameters with 

uniformly bounded derivatives. Under this relaxed assumption, we prove that the 

solution of the closed-loop system is UUB. Moreover, estimates of the ultimate bound 

and exponential convergence rate to that ultimate bound are provided. According to 

these estimates, constraints due to the theorem, and intuitive explanations, existing data 
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recording algorithms are modified. We test CL-MRAC with modified algorithms in 

simulation by using sample regulation and tracking problem which include time-varying 

ideal parameters and disturbance. Under further relaxed assumption, uniformly bounded 

piecewise continuous ideal parameters, the uniform ultimate boundedness proof of DF-

MRAC is examined. A missing part in the proof is emphasized and incorrect expression 

for the exponential convergence rate to the ultimate bound is corrected.  

In the third chapter, wing rock problem with time-varying angle of attack is studied for 

numerical illustration. Under high level uncertainty and random disturbance, controllers 

are tested and it is shown that DF-MRAC performs better than CL-MRAC. Due to the 

excellent performance of DF-MRAC and its efficient adaptation strategy, its 

performances with different basis functions are also tested. 

In the fourth chapter, the thesis is concluded with recommended future research 

directions. 
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CHAPTER 2 

 

 

CONCURRENT LEARNING & DERIVATIVE-FREE MODEL 

REFERENCE ADAPTIVE CONTROL 

 

 

 

2.1 Introduction 

 

Concurrent Learning Model Reference Adaptive Control (CL-MRAC) is a recently 

introduced controller which utilizes concurrent usage of recorded and current data to 

guarantee exponential convergence of tracking error and parameter. Its theorem for 

different class of plants can be found in [4], [17], [7], [18], [19]. This theorem depends 

on the existence of constant unknown ideal parameters. Derivative-Free Model 

Reference Adaptive Control (DF-MRAC) is another recently introduced controller 

which allows time-varying ideal parameters and provides uniformly ultimately bounded 

(UUB) closed-loop solution [5], [21]. 

In this chapter, the constant ideal parameters assumption of CL-MRAC is replaced with 

time-varying ideal parameters assumption which is similar to the one in DF-MRAC but 

still stricter than it. Then, we prove that the solution of the closed-loop system is UUB. 

Moreover, estimates of the ultimate bound and exponential convergence rate to that 

ultimate bound are provided. According to these estimates, constraints due to the 

theorem, and intuitive explanations, existing data recording algorithms are modified. We 

test CL-MRAC with modified algorithms in simulation by using sample regulation and 

tracking problem. Besides this new analysis, the proofs of the existing CL-MRAC and 

DF-MRAC theorems are examined to fill or emphasize the observed missing parts. 
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2.2 Model Reference Adaptive Control (MRAC) 

 

In this section, we start with a formulation of MRAC problem. Consider the following 

uncertain system 

 ̇           [      (    )]  (1) 

 

where           is the state vector,           is the control input vector,            and 

           are known matrices such that the pair       is controllable, and  (    )  

      is a matched uncertainty. It is also assumed that full state is available for 

feedback and control input is restricted to the class of admissible controls consisting of 

measurable functions. 

A reference model that characterizes the desired closed-loop response of the system in 

(1) is given by  

 ̇                     (2) 

 

where            is the reference state vector,           is bounded piecewise 

continuous reference input,             is Hurwitz, and             with    . Since 

   is Hurwitz and      is bounded,       is uniformly bounded for all      . 

Assumption 1 The matched uncertainty in (1) can be linearly parameterized as 

                    (3) 

  

where            is the unknown constant weight matrix,  (    )        is a 

vector of known basis functions      [                   ]
       and    is a 

sufficiently large compact subset of   . Note that (1) is either linear or nonlinear 

uncertain system, depending on     . 

An example of (3):  

                          
                 

 where   [        ]
       [                ] . 
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The tracking control law is specified by  

                   (4) 

 

where       is a nominal controller given by 

                      (5) 

 

where       
      and       

      are nominal controller gains, and adaptive feedback 

control component given by  

        ̂     (    )  (6) 

 

where  ̂             denotes the estimate of  . 

Assumption 2 (Matching Condition) There exist       
      and       

      such that 

         and       . 

Define the state tracking error as 

                 (7) 

 

Differentiating (7) 

 ̇                  (    )                  (8) 

 

using the control law in (4) 

 ̇                                       

                                 [ (    )        ]  
(9) 

 

(9) subject to Assumption 2 

 ̇            [ (    )        ]  (10) 

 

(10) represents the state tracking error dynamics. 
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Since    is Hurwitz, for every symmetric positive-definite matrix           , there 

exists a unique symmetric positive-definite solution            to the Lyapunov equation 

  
           (11) 

 

For the uncertainty given in Assumption 1, it is well known from [1], [2] that the 

baseline adaptive law  

 ̇̂      (    )         (12) 

 

where   is a positive learning rate, guarantees that  ̂    remains bounded and        

as    . However, (12) does not guarantee the convergence of  ̂    and rate of 

convergence of     . It is also known that        and  ̂      as     if and 

only if         is persistently exciting (PE) [1], [10]. 

 

2.3 Concurrent Learning Model Reference Adaptive Control (CL-MRAC) 

 

Concurrent learning adaptive control uses recorded and current data concurrently to 

guarantee exponential tracking and parameter error convergence without requiring 

persistence excitation of the states [4]. 

Concurrent learning adaptive law has the following form 

 ̇̂     ( (    )        ∑ (  )  
    

 

   

)  (13) 

 

where   denotes the recorded data point at time   , and  

       (  )   ̂     (  )  (14) 

 

To evaluate (13),  (  ) and  (  ) are required for the     data point. The basis vector 

 (  )    
  is stored in a history-stack such that the Condition 1 is satisfied. 
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Condition 1 If   [               (  )]   
      represents the history-stack, 

then          . That is, the history stack contains as many linearly independent 

columns as the dimension of the basis vector. 

Note that Condition 1 directly implies that the number of basis vectors   stored in   

must be at least the dimension of the basis vector  , i.e.    . In addition to the basis 

vector  (  ), (13) requires the associated model error  (  ). 

Remark 1 If   has full column rank,  (  ) can be observed from (1) by using left 

pseudo inverse of   

 (  )           [ ̇         ]  (15) 

 

In order to estimate the system uncertainty, we require only the estimation of  ̇ because 

        and    are known. If the explicit measurement of  ̇ is available, (15) can be 

directly used to calculate the system uncertainty. Otherwise,  ̇  can be estimated using 

an implementation of a fixed point smoother as it is done in [17], [7]. In the thesis, it is 

assumed that the explicit measurement of  ̇ is available or  ̇  is estimated without any 

error. 

Define the weight error as 

 ̃       ̂     (16) 

 

Then, the state tracking error dynamics in (10) with Assumption 1 is given by 

 ̇             ̃     (    )  (17) 

 

(14) can be written as 

       ̃     (  )  (18) 

 

Using (18) and noting that   is constant, the weight error dynamics can be obtained 

from (13): 
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 ̇̃      ( (    )        ∑ (  ) 
 (  ) ̃   

 

   

)  (19) 

 

The following theorem and its proof for different class of plants can be found in [4], 

[17], [7], [18], [19]. For the sake of completeness, the theorem with minor variations in 

its statement is proved. Remarks about its usage and missing parts are made in this 

section. 

Theorem 1 Consider the system in (1) subject to Assumption 1, the reference model in 

(2), and the tracking control law in (4), with the nominal control component given by (5) 

subject to Assumption 2 and the adaptive feedback control component given by (6) 

which has the concurrent learning weight update law in (13). It is also assumed that the 

recorded data points satisfy Condition 1 at      and the history-stack is static, i.e. it is 

not overwritten, then the origin, i.e. (      ̃   )    of the system given by (17) and 

(19) is exponentially stable. 

Proof: To keep the formulas short, drop the argument   in the proof.  

Define   *      ( ̃)
 
+
 

 and try the following continuously differentiable function 

as a Lyapunov function candidate 

 (   ̃)  
 

 
     

 

  
  ( ̃  ̃)  (20) 

 

By using   ( ̃  ̃)     ( ̃)
 
     ̃ , we have 

     
 

 
   ̃   (21) 

 

where  ̃      [      ]  Then, (21) can be bounded from below and above by 

 

 
   {           } ‖ ‖       

 

 
   {           } ‖ ‖   (22) 

 

Note that        and                . 
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From (22), define the following positive constants, 

     (23) 

   
 

 
   {           }  (24) 

   
 

 
   {           }  (25) 

 

The time derivative of (20) along trajectories of (17) and (19) can be expressed as  

 ̇(     ̃)  
 

 
  [  

      ]       ̃             ̃  ̇̃   

    
 

 
  [  

      ]       ̃      

                               ( ̃           ̃ ∑ (  ) 
 (  ) ̃

 

   

)  

(26) 

 

For any arbitrary matrices             ,                    . Using the given 

property of trace and the Lyapunov equation in (11), we have 

 ̇(     ̃)   
 

 
          ̃        ( ̃         )              

(27) 

      ( ̃ ∑ (  ) 
 (  ) ̃

 

   

)                         

 

For any arbitrary row vectors              ,             ∑     
 
   . Therefore, 

     ̃        ( ̃         ). (27) can be written as  

 ̇(     ̃)   
 

 
       ( ̃ ∑ (  ) 

 (  ) ̃

 

   

)  (28) 
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To analyze the second term on the right hand side of (28), define the following matrix 

  ∑ (  ) 
 (  )

 

   

  (29) 

 

Claim: If Condition 1 is satisfied, then       . 

Proof: Note that ∑  (  ) 
 (  )

 
                     , then  

                     (30) 

 

Symmetry arises from the fact that         . To show that   is positive-definite, 

we pick an arbitrary vector        and compute the following inner product 

                                  ‖   ‖    (31) 

 

‖   ‖  is positive unless      . Due to Condition 1,           . Therefore, 

         { }. It implies that       if and only if    .                                □             

For conformable matrices      and  ,                             [26]. By 

using the mentioned fact, (28) can be rewritten as 

 ̇(     ̃)   
 

 
        ( ̃)

 
 ̃   ( ̃)  (32) 

 

where  ̃      [       ]  ̃                      . Hence, we have the following 

inequalities 

 ̇(     ̃)   
 

 
                     ( ̃)

 
   ( ̃)  (33) 

 ̇          {
 

 
               } ‖ ‖

   (34) 

 

From (34), define the following positive constant 

      {
 

 
               }   (35) 
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By (22), (34) with   in (23),    in (24),    in (25),     in (35), and Theorem 4.10 in [9], 

the origin, i.e.    , of the system given by (17) and (19) is exponentially stable. If 

Assumption 1 holds globally, i.e.      , then     is globally exponentially stable.  

                                     ∎                                                                                                                                                                      

Remark 2 From the proof of Theorem 4.10 in [9], we know that ‖    ‖ is bounded 

from above by exponentially decaying function such that  

‖    ‖  √
  

  

‖     ‖ 
                       (36) 

 

where               ,
 

 
               -     {           }   It is obviously 

seen that the rate of convergence is dependent on the spectral properties of  ,  ,  , and 

 .   and   are determined by the reference model (nominal controller) and   is the 

positive constant learning rate in (13). On the other hand,   is specified by the choice of 

recorded data. 

Remark 3 The static history-stack assumption of Theorem 1 can be relaxed if  

            ̅                   (37) 

 

Then, (34) becomes 

 ̇          {
 

 
         ̅} ‖ ‖   (38) 

 

The online removal or inclusion of data points in (13) does not affect the inequalities 

(22) and (38) as long as (37) holds. Therefore,     is still exponentially stable 

according to Theorem 4.10 in [9]. If the imposed condition in (37) is queried, one should 

review the Nonautonomous Systems part of Chapter 4 in [9] or Example 2.1 in [24].  

Remark 4 In cases where a pre-recorded data is not available at     , the second 

sentence of Theorem 1 should be replaced with the following one: 
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i. Consider a data recording algorithm which selects data points  (  ) and the 

associated model error  (  ) , then the origin, i.e. (      ̃   )    of the 

closed-loop system given by (17) and (19) is uniformly stable. 

ii. In addition to i, if      is such that  (    ) is exciting over a finite interval 

      , such that, for  , Condition 1 is satisfied by a data recording algorithm, 

and (37) is satisfied for all    , then the origin, i.e. (      ̃   )    of the 

closed-loop system given by (17) and (19) is exponentially stable for all    .  

The effects of the new statement on the proof of Theorem 1 are examined as follows: 

i. Now,      is positive-semidefinite for all     . Hence, (33) can be written as 

 ̇(     ̃)   
 

 
       ‖ ‖     (39) 

 

(39) implies that the origin of the system given by (17) and (19) is uniformly 

stable. 

ii. In addition to the first part, assume that      is such that  (    ) is exciting over 

a finite interval       . Then, a data recording algorithm guarantees that the 

history-stack contains as many linearly independent columns as the dimension of 

the basis vector for all     and (37) holds:             ̅    for all    . 

Now, the inequality (38) is valid for all    . Therefore,     is exponentially 

stable for all    . 

Remark 5 In [20], the performance of three different data point selection methods, 

namely static history-stack, cyclic history-stack, and singular value maximizing, were 

compared. Among them, singular value maximizing approach provides the fastest 

parameter convergence. The idea behind the singular value maximizing approach is the 

following. From (36), it is known that rate of convergence is directly proportional to the 

minimum eigenvalue of  . We also know that 
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        [       
  ]    [       ]

     (40) 

 

Hence, the history-stack is populated to maximize the minimum singular value of it. 

In the simulations, we will also utilize the singular value maximizing algorithm for 

recording data points. Thus, the algorithm used in [17], [7], [20] is described here. 

Algorithm 1 

if     then 

          

             (    ) 

                     [ ̇               ] 

else if 
‖ (    )  (   )‖

 

‖ (    )‖
   or     ([    (    )])           then 

    if    ̅ then 

              

                 (    ) 

                          [ ̇               ] 
    else 

             

                       
        for     to   do 

                       (    ) 

                             
                   

        end for 

        find max    and let   denote the corresponding column index 

        if             then 

         (    ) 

                             [ ̇               ] 
        end if 

    end if 

end if 

end if 

 

In Algorithm 1,       and       represent the number of stored points and the stored 

last point respectively.    denotes the history-stack at time  . Similar to   ,    denotes 

the matrix containing the associated model error information. The     column of    and 

   are denoted by         and         respectively.   is a positive constant and  ̅     is 

the maximum allowable number of recorded data points. Furthermore, the first condition 
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of          should be modified to avoid numerical problems if ‖ (    )‖  has a 

possibility of being around zero. 

Remark 6 After    ̅, the minimum singular value of    is nondecreasing because one 

of the old data points is replaced with the new data point such that the minimum singular 

value of    is increased, if possible. Now, suppose that            when    . Is 

the minimum singular of    nondecreasing for     [   ̅]? Yes, because 

      (    )      (      (  ) 
 (  ))           [   ̅] (41) 

 

from the special application of Theorem 10.3.1, one of the monotonicity theorems, in 

[25]. Hence, it can be concluded that (37) holds after           . 

 

2.4 Robustness of CL-MRAC to Switching in Ideal Weights 

 

If the ideal weights in (3) switch in an unknown or undetectable manner, then 

Assumption 1 is violated. In that case, two questions arise: 

i. What happens if irrelevant data points are not replaced with the relevant ones 

after a switch in the ideal weights? 

It is proved in [7] that the origin of the new system is ultimately bounded. 

ii. How do we modify Algorithm 1 to remove irrelevant recorded data? 

Proposed algorithm for switched linear systems in [27] can also be used for the 

uncertain system given in (1). This algorithm is described in Algorithm 2. 

In Algorithm 2, entire recorded data points are removed or added according to the 

switching surface determined by   ,   ,   ,  ̅,     , and     . We utilize     ,     , and 

     for concurrent learning adaptive law in (13). Note that   ,   , and    are positive 

constants.       is initialized to   and any data for use is equal to the recorded one 

until the singular value inequality is satisfied for the first time. Then,      ensures the 

positive-definiteness of      
 
   .  
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Algorithm 2 

Use Algorithm 1 (replace    and    with      and      respectively) 

if         then 

              

               

           

end if 

if                         
       ̅     then 

            

              

               

           
 

           

           

        

     ̅    

end if 

 

 

2.5 Simulation Example 

 

We compare the effectiveness of Algorithm 1 with Algorithm 2 on the following simple 

system: 

[
 ̇ 

 ̇ 
]  *

  
  

+ *
  

  
+  *

 
 
+ [           ]  (42) 

 

where the ideal weights of the system switch at an unknown time  

      {
[     ]                          

[         ]                       
 , (43) 

 

and      [          ]
 . Furthermore,   *

  
  

+ and   *
 
 
+. 
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System and input matrix of the reference model are selected as 

   [
  

   
      

]        [
 
  

 ] (44) 

 

with a pair of complex conjugate eigenvalues which have natural frequency      and 

damping ratio      . From the matching condition given in Assumption 2, nominal 

controller gains are    [        ] and     .  

In the simulations, three adaptive controllers are tested. These are the baseline adaptive 

law in (12), concurrent learning adaptive law in (13) with Algorithm 1 and Algorithm 2. 

For all adaptive controllers, the learning rate   is set to   and       [      ]. In the 

concurrent learning cases, maximum number of recorded data points  ̅  is    and   used 

in data recording algorithms is     . The switching surface parameters of Algorithm 2 

are chosen as                         and  ̅      . We run the simulations 

with a       sec time step using Euler integration.  

Figure 1 shows the reference model tracking performance of the nominal controller and 

Figure 2  shows the control input. It is obviously seen that nominal controller cannot 

achieve reference model tracking. Moreover, bounded input yields unbounded state after 

switching in ideal weights at         . Consider the system in (42) with nominal 

controller after switching in ideal weights, i.e.              

 ̇          *
 
 
+ [         ] [

 
  

  

]  

         *
  
     

+       *
 

    
+          

 *
  
     

+     (  
   

 
)                     (45) 

 

(45) is a linear time-invariant system with system matrix      *
  
     

+ and input 

matrix   . For the ongoing analysis, let initial condition be zero and    be measured. 

Then, output matrix is   [  ]. Since the pair          is controllable and the pair 
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        is observable, the realization is minimal. In this case, the characteristic 

polynomial of     is equal to the pole polynomial      of the transfer function from 

input to output. Therefore, we can directly conclude that (45) with output matrix   is not 

bounded-input, bounded-output (BIBO) stable because     is not Hurwitz [28]. 

If we had known the ideal weights of the system during the nominal controller synthesis, 

we would have realized and solved the instability problem described in the foregoing 

analysis. However, we do not know the ideal weights. Thus, it explains why we use 

adaptive controllers to suppress or cancel the effects of the matched uncertainty. 

 

Figure 1 Responses with nominal controller 

In Figure 3, the tracking performance of the baseline adaptive law is demonstrated and it 

is clearly better than nominal controller. Figure 4 shows the control input and 

uncertainty estimation. Note that uncertainty estimation does not uniformly cancel the 

matched uncertainty because the estimated weights do not converge to their ideal values 

as it is seen in Figure 5. It is the well-known issue of the baseline adaptive law because 

for weight convergence, basis vectors must be PE. 
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Figure 2 Control input with nominal controller 

 

Figure 3 Responses with baseline MRAC 
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Figure 4 Control input and uncertainty estimation with baseline MRAC 

  

Figure 5 Estimate of the ideal weights with baseline MRAC 
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After the introductory simulation results with nominal controller and MRAC, it is time 

to present the outcomes of CL-MRAC. Figure 6 and Figure 10 demonstrate the tracking 

performance of CL-MRAC with Algorithm 1 and Algorithm 2 respectively. Their 

performance evaluation is divided into two parts: 

i. Before the Switch in Ideal Weights, i.e.          

In this part, ideal weights can be considered constant. Therefore, weight 

convergence is expected. As it is seen in Figure 8 and Figure 12, CL-MRAC 

with Algorithm 1 and Algorithm 2 achieve weight convergence. Thus, adaptive 

control inputs are very close to the matched uncertainty as it is seen in Figure 7 

and Figure 11. At this point, it should be noted that Algorithm 1 provides faster 

parameter convergence than Algorithm 2. The difference in convergence rate is 

due to the difference in minimum singular value evolution; see Figure 9 and 

Figure 13. The history-stack of Algorithm 1 reaches higher minimum singular 

value. For example,              by Algorithm 1,                by 

Algorithm 2 at          . The following explanation clarifies this difference. 

Algorithm 1 does not remove relevant data. However, Algorithm 2 replaces data 

with the recent ones though ideal weights do not vary. In other words, it causes 

unnecessary removal of relevant data because of the switching surface, thus 

limited time periods can be devoted to minimum singular value maximization. 

The fast convergence property of Algorithm 1 is also seen in the tracking 

performance when Figure 6 is compared with Figure 10. Furthermore, tracking 

performance and parameter convergence superiority of CL-MRAC over MRAC 

is clearly demonstrated in this part. 

ii. After the Switch in Ideal Weights, i.e.          

In contrast to previous part, weight convergence is not guaranteed in theory but 

ultimate boundedness is expected. If the minimum singular value evolution is 

evaluated to figure out the algorithm which provides faster convergence, one can 

draw wrong conclusion. Although the minimum singular values with Algorithm 

1 is higher than the ones with Algorithm 2; see Figure 9 and Figure 13, one third 

of the data points, i.e.      are irrelevant even at           when Algorithm 
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1 is used. As it is seen in Figure 8, estimated weights do not converge to ideal 

values. Tracking performance of Algorithm 1 improves gradually but adaptive 

control input cannot uniformly cancel the matched uncertainty due to lack of 

parameter convergence; see Figure 6 and Figure 7. On the other hand, Figure 13 

shows that Algorithm 2 gets rid of irrelevant data points at             . 

Therefore, Algorithm 2 achieves parameter convergence, see Figure 12. 

However, during the period from switching in ideal weights to irrelevant data 

removal, except one recent data point, Algorithm 2 uses irrelevant data points. 

Hence, it degrades the tracking performance and the uncertainty estimation in 

this period compared to Algorithm 1. With the removal of irrelevant data points, 

the tracking performance and the uncertainty estimation are immediately 

improved because of the parameter convergence; see Figure 10 and Figure 11. 

Moreover, both concurrent learning adaptive controllers perform better than 

baseline adaptive controller except the mentioned period encountered in 

Algorithm 2.     

 

Figure 6 Responses with CL-MRAC & Algorithm 1 
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Figure 7 Control input and uncertainty estimation with CL-MRAC & Algorithm 1 

 

Figure 8 Estimate of the ideal weights with CL-MRAC & Algorithm 1 
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Figure 9 Minimum singular value of the history-stack with CL-MRAC & 

Algorithm 1 

 

Figure 10 Responses with CL-MRAC & Algorithm 2 
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Figure 11 Control input and uncertainty estimation with CL-MRAC  

& Algorithm 2   

 

Figure 12 Estimate of the ideal weights with CL-MRAC & Algorithm 2 
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Figure 13 “Record” and “Use” minimum singular value of the history-stack with 

CL-MRAC & Algorithm 2 

In Algorithm 2, we have supplementary tuning parameters,  ,   ,   , due to the 

switching surface.            can be considered a norm of an initial condition of 

exponentially stable system. Then,    and    determine the amplitude and decay rate of 

the exponential decaying function, which bounds the solution of exponentially stable 

system, respectively. On the other hand,    is treated as a small bias just to guarantee 

positive-definiteness of      
 
   .  

In Figure 14, for three different    values, the tracking performances of CL-MRAC are 

seen. Since these responses differ from each other approximately for 15 seconds after 

switching in ideal weights, we present the simulation results from          to 

        . By looking Figure 14 over, it is hard to understand the effects of    

variation. Thus, after switching in ideal weights, we should check the first and second 

time that singular value inequalities are satisfied. Furthermore, the ratio of the relevant 
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data points in “use” to the total data points in “use” between the first and second time 

should be figured out.  

 

Figure 14 Responses with CL-MRAC & Algorithm 2 &        ,        , 

 ̅        

In Table 1, demanded useful information is given. For all given    values, every 

irrelevant data point is replaced with the relevant one at the second time. From the 

second time values, we can deduce that the time required for removal of irrelevant data 

points decreases as    decreases. Therefore,        converges to reference model fast, 

see Figure 14. However,        performs better than        &        cases until 

the removal of irrelevant data points. It may be explained by the ratio of the relevant 

data points in “use” to the total data points in “use” between the first and second time. 

That is,         has more relevant data points than      and        cases. 

Figure 15 shows the tracking performances of CL-MRAC for three different    values. 

Similar to the previous case, the responses differ from each other approximately for 15 
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Table 1: 1
st
 & 2

nd
 time that singular value inequality is satisfied and ratio between 

relevant and total data points in “use” during this time interval when    changes 

   1
st
 time (sec) Ratio of relevant data points in “use” to 

total data points in “use” 

2
nd

 time (sec)  

                      

                      

                      

 

seconds after switching in ideal weights. Thus, we present the simulation results from 

         to         . To evaluate the responses, consider the useful information 

given in Table 2. From the second time values, we can deduce that the time required for 

removal of irrelevant data points decreases as    increases. Therefore,         

converges to reference model fast, see Figure 15. However,         performs better 

than         &         cases until the removal of irrelevant data points. It may be 

again due to the ratio between the relevant and the total data points.  

Before the simulation results were obtained, we intuitively expected that decreasing 

amplitude    or increasing decay rate    could result in reduction of the required time 

for irrelevant data removal. The inferences, especially about the required time for 

irrelevant data removal, we drew from the simulation results are consistent with the 

expectations. On the other hand, we have observed that high amplitude or low decay rate 

could yield better tracking performance until the removal of irrelevant data points. In 

conclusion, tuning the switching surface parameters is not trivial even in this simple 

example. We have trade-off between the time required for removal of irrelevant data 

points and the performance up to the removal of them. 

Table 2: 1
st
 & 2

nd
 time that singular value inequality is satisfied and ratio between 

relevant and total data points in “use” during this time interval when    changes 

   1
st
 time (sec) Ratio of relevant data points in “use” to 

total data points in “use” 

2
nd

 time (sec)  
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Figure 15 Responses with CL-MRAC & Algorithm 2 &     ,        , 

 ̅        

 

2.6 Robustness of CL-MRAC to Time-Varying Ideal Weights 

  

In this section, time-varying ideal weights are allowed in the matched uncertainty. Thus, 

the uncertainty is changed from  (    ) to  (      ). Now, (1) is replaced with the 

following system 

 ̇           [      (      )] (46) 

 

Assumption 3 The matched uncertainty in (46) can be linearly parameterized as 

                         (47) 
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where               is the unknown time-varying weight matrix that satisfies 

‖    ‖    and ‖ ̇   ‖
 
  ̇ with positive constants   and  ̇,  (    )        

is a vector of known basis functions      [                   ]
       and    is 

a sufficiently large compact subset of   . 

An example of (47): 

                                                     

where      [                    ] ,       [                ] . 

For time-varying ideal weights, the weight error is defined as  

 ̃          ̂     (48) 

 

and thus 

 ̇̃     ̇     ̇̂     (49) 

 

(14) can be written as 

      ( (  )   ̂   )
 

 (  )  (50) 

 

Using (49) and (50), the weight error dynamics can be obtained from (13): 

 ̇̃     ̇      (    )                                             

(51) 
   ∑ (  ) 

 (  ) ( (  )   ̂   )  

 

   

 

 

Using (29) and (48),  ̇̃    can be written as 

 ̇̃     ̇      (    )             ̃          

(52) 
  ∑ (  ) 

 (  ) (  )                         
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The weight error dynamics for time-varying ideal weights is obviously different from 

the one for constant ideal weights; see (52) and (19). On the other hand, there is no 

variation in the state tracking error dynamics given in (17). 

In this section, we aim to show that the solutions of the system given by (17) and (52) 

are uniformly ultimately bounded (UUB) under Assumption 3. Consider the error vector 

  *      ( ̃)
 
+
 

, the Lyapunov function in (21), and  

   {                |‖ ‖   }      (53) 

 

where    is a sufficiently large compact set. Let   be the minimum value of      on the 

boundary of   . Using (22) and (24),  

     ‖ ‖          
   (54) 

 

Define 

   {      |      }  (55) 

 

and notice that (54) ensures that      . These sets are presented in Figure 16. 

 

Figure 16 Geometric representation of the sets   ,    (solid) and    (dashed)   
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Assumption 4 Assume 

  √
  

  
     (56) 

 

  is defined as 

  
    ̇    ‖ ‖   ‖ ‖  

        
 (57) 

 

where      . 

Theorem 2 Consider the system in (46) subject to Assumption 3, the reference model in 

(2), and the tracking control law in (4), with the nominal control component given by (5) 

subject to Assumption 2 and the adaptive feedback control component given by (6) 

which has the concurrent learning weight update law in (13). It is also assumed that the 

recorded data points satisfy Condition 1 at      and the history-stack is static, i.e. it is 

not overwritten. Furthermore, let Assumption 4 hold. Then,    is positively invariant 

and             , there exists                such that  

‖    ‖  √
  

  

‖     ‖ 
                          (58) 

 

where               ,
 

 
                    -     {           }     is 

defined in the proof, 

‖    ‖  √
  

  
                (59) 

 

If Assumption 3 holds globally, i.e.      , then (58) and (59) hold        ,  without 

limitation on  how large   is.   
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Proof: To keep the formulas short, drop the argument   in the proof. 

Consider the Lyapunov function given in (20). The time derivative of (20) along 

trajectories (17) and (52) can be expressed as  

 ̇(     ̃)  
 

 
  [  

      ]       ̃           ( ̃  ̇̃)  

                      
 

 
  [  

      ]       ̃            ( ̃  ̇) 

         ( ̃         )    ( ̃  ( ̃   ))    

     ( ̃ ∑ (  ) 
 (  ) (  )

 

   

)                 

(60) 

 

Define the following matrix 

  ∑ (  ) 
 (  ) (  )

 

   

  (61) 

 

Noting that      ̃        ( ̃         ) and using the Lyapunov equation in 

(11), we have  

 ̇(     ̃)   
 

 
       ( ̃   ̃)    ( ̃   )       ( ̃  ̇) 

(62) 

      ( ̃  )                                                              
 

Revisit the equalities and inequality used in the proof of Theorem 1:    ( ̃   ̃)  

    ( ̃)
 
 ̃   ( ̃)             ( ̃)

 
   ( ̃)          ‖ ̃‖

 

 
  Hence, we 

have the following inequality 

 ̇(     ̃)   
 

 
       ‖ ‖         ‖ ̃‖

 

 
   ( ̃   ) 

(63) 

          ( ̃  ̇)    ( ̃  )                  
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From Cauchy-Bunyakovskii-Schwarz (CBS) inequality, we know that for any arbitrary 

matrices             , |     |  ‖ ‖ ‖ ‖ . Using CBS, (63) becomes 

 ̇(     ̃)   
 

 
       ‖ ‖         ‖ ̃‖

 

 
 

(64) 

                                            ‖ ‖ ‖ ‖     ‖ ̇‖
 
 ‖ ‖  ‖ ̃‖

 
   

 

With the upper bounds given in Assumption 3, (64) can be upper bounded as 

 ̇(     ̃)   
 

 
       ‖ ‖         ‖ ̃‖

 

 
 

(65) 

                                            ‖ ‖      ̇  ‖ ‖  ‖ ̃‖
 
                  

 

In order to complete the proof, we require an upper bound on ‖ ‖ . It can be 

established as follows: 

‖ ‖  ‖      
              (  ) 

 (  ) (  )‖ 
 

(66) 
                    ‖      

          ‖    ‖ (  ) 
 (  ) (  )‖ 

  

  ‖      
     ‖ ‖     ‖    ‖ (  ) 

 (  )‖ 
‖ (  )‖ 

        

 

With the upper bound in Assumption 3, we can further upper bound (66) as 

‖ ‖    ‖      
     ‖    ‖ (  ) 

 (  )‖ 
  (67) 

 

Claim: ‖ (  ) 
 (  )‖ 

 ‖ ‖                  

Proof: The Frobenius norm of  (  ) 
 (  ) can be written as 

‖ (  ) 
 (  )‖ 

 √∑  

 

   

[ (  )  (  )]
 
  (68) 
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Since  (  ) 
 (  ) is a symmetric positive-semidefinite matrix, we have 

  [ (  ) 
 (  )]  √  [( (  )  (  ))

 

]  (69) 

 

where √  [( (  )  (  ))
 

]  √  [ (  )  (  )]
 
   [ (  ) 

 (  )]   Thus, (68) 

can be rewritten as 

‖ (  ) 
 (  )‖ 

 √∑  

 

   

[ (  )  (  )]
 
  (70) 

 

Define     (  ) and       
 . If     , it is clear that ‖ ‖   . Now, suppose 

that      and let {          } be an orthogonal basis for   , that is,   
         

and   
      for    .       for        . Thus,         {       }  and 

   [       ]     . Note that        
     

     . Then,         . Thus, 

the minimal polynomial of   is                    . The minimal 

polynomial directly implies that the eigenvalues of   are       {    } . We 

have                         and thus    [           ]   . Finally, we 

get the characteristic polynomial of  :                .  

Using the result of the foregoing analysis, (70) is rewritten as 

‖ (  ) 
 (  )‖ 

     [ (  ) 
 (  )]  (71) 

 

One can quickly realize ‖ (  ) 
 (  )‖ 

 ‖ (  ) 
 (  )‖

 
. Similar to (69), the 

following equality can be easily shown in few steps 

‖ ‖  ‖   ‖      [  
 ]  (72) 

 

Let the eigenvalues be labeled in nondecreasing order, i.e.           . From 

Theorem 10.3.1 in [25], we know that for any symmetric matrices             ,  
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                                          (73) 

 

Let        . Recall that   is positive-semidefinite,   is either positive-

semidefinite or positive-definite, and     is positive-definite. Then, we can lower 

bound (73) as 

                                            (74) 

 

Let    , we have the following inequalities 

                                     (75) 

                                           (76) 

                               (77) 

 

The following inequality is obtained from (77) 

    [ (  ) 
 (  )]      [  

 ]   (78) 

 

Recalling (71) & (72), and noting (78), the target inequality in the claim is met.            □              

In the light of this discussion, (67) is upper bounded as 

‖ ‖    ‖ ‖   (79) 

 

Now, we are ready to continue Lyapunov analysis. Using (79), we upper bound (65) as 

 ̇(     ̃)   
 

 
       ‖ ‖         ‖ ̃‖

 

 
 

(80) 

                                                (    ̇    ‖ ‖   ‖ ‖  )‖ ̃‖
 
                  

 

 The foregoing inequality can be rewritten as 

 ̇(     ̃)   
 

 
       ‖ ‖              ‖ ̃‖

 

 
                     

(81) 

                                        ‖ ̃‖
 

 
 (    ̇    ‖ ‖   ‖ ‖  )‖ ̃‖
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where      . Then, we get 

 ̇          {
 

 
                    } ‖ ‖

   ‖ ‖  ‖ ̃‖
 
    (82) 

 

where   (    ̇    ‖ ‖   ‖ ‖  )           . From (82), define the following 

positive constant 

      {
 

 
                    }   (83) 

 

Define the compact set 

   {      |‖ ‖   }  (84) 

 

It should be noted that (56) ensures that      . Let   be the maximum value of      

on the boundary of   . Using (22) and (25), 

     ‖ ‖          
   (85) 

 

Define 

   {      |      }  (86) 

 

(85) guarantees that       and from the condition in (56), we ensure that       . 

All sets used in the proof are presented in Figure 17.  

By (22), (82) with    in (24),    in (25),    in (83), Assumption 4, and Theorem 4.5 in 

[29],    is positively invariant and for all initial errors       belong to   , there exists 

               such that (58) and (59) are satisfied.           ∎ 
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Figure 17 Geometric representation of the sets   ,   ,    (solid) and   ,    

(dashed) 

Remark 7 Theorem 2 provides not only UUB solutions of the system given by (17) and 

(52) but also estimates for the ultimate bound and the exponential convergence rate to 

that bound. When (58) is compared with (36), it is noticed that there is no variation in 

the convergence rate   except the new term  . Since   is not a design parameter and it is 

restricted to       in the proof, the discussions we had in Remark 2 are still valid. 

It should also be kept in mind that   is the convergence rate to the origin in constant 

ideal weight case, while it is the convergence rate to the ultimate bound in time-varying 

ideal weight case. Moreover, consider the ultimate bound given in (59). It is rewritten as  

  √
  

  
  √

   {           }

   {           }
.
    ̇    ‖ ‖   ‖ ‖  

        
/  (87) 

 

From (87), we can deduce that ultimate bound   is dependent on the spectral properties 

of  ,  ,  , the number of recorded data points  , and the upper bounds on the ideal 

weight and its derivative, i.e.  ,  ̇ . Note that  ,  ,  , and   are controller design 

parameters, while   and  ̇ are the inherent properties of  the system. It should also be 

noted that high learning rate    decreases the effect of  ̇ but it can amplify √      in  . 
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Remark 8 The static history-stack assumption of Theorem 2 can be relaxed if (37) and 

the following inequality hold 

‖    ‖   ̅               (88) 

 

where  ̅ is a positive constant. Note that ‖    ‖  ‖    ‖ .  Then, (82) becomes 

 ̇          {
 

 
              ̅} ‖ ‖       ‖ ‖  ‖ ̃‖

 
    (89) 

 

where        ̇       ̅  ̅     ̅  In time-varying history-stack case, the 

remaining part of the proof of Theorem 2 is completely same. 

Remark 9 When we use baseline adaptive law in (12) instead of concurrent learning 

adaptive law in (13), weight error dynamics can be written as 

 ̇̃     ̇      (    )         (90) 

 

and the following inequality is obtained after Lyapunov analysis 

 ̇(     ̃)   
 

 
       ‖ ‖      ̇‖ ̃‖

 
  (91) 

 

From (91), we cannot conclude that the solutions of the system given by (17) and (90) 

are UUB. Actually, it is well known that baseline adaptive law suffers from the 

parameter drift, which is one of the instability phenomena in adaptive systems. 

Therefore, the baseline adaptive control is not appropriate for practical applications [11], 

[3]. 

 

2.7 Data Point Selection Methods 

 

In this section, we intend to share data recording algorithms which can be used for time-

varying ideal weights. All algorithms, which are going to be presented, take account of 

the constraints mentioned in Remark 10. 
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Remark 10 The following constraints on algorithms are quite simple: 

i. Pre-recorded data which satisfies Condition 1 is required due to Theorem 2. 

ii. From Remark 8, we know that the inequalities in (37) and (88) are also required. 

The efficiency of singular value maximizing algorithm for constant ideal weights is 

known from Remark 5. However, its performance in time-varying ideal weights has not 

been investigated yet. Moreover, is there any reason for maximizing the minimum 

singular value of the history-stack? The answer is still “yes” because the convergence 

rate to the ultimate bound is directly proportional to the minimum singular value of the 

history-stack, see (58). Thus, Algorithm 1 is modified and the modified version is given 

in Algorithm 3. Since the first constraint given in Remark 10 implies that   cannot be 

initialized to  , the first    condition in Algorithm 1 is removed. Furthermore, additional 

   condition is included to ensure that (88) holds. On the other hand, as it is described in 

Remark 6, (37) holds without any modification. 

In Algorithm 3, the upper bound of ‖    ‖ , i.e.  ̅ is a new parameter which should be 

selected by considering the pre-recorded data, i.e. ‖     ‖ .   

We aimed to increase the convergence rate to the ultimate bound in Algorithm 3. Now, 

consider also the ultimate bound given in (87). Note that the ultimate bound is directly 

proportional to  . Then, we separate   into two parts: 

         (92) 

 

where        ̇            and      ‖ ‖   ‖ ‖             . It is clear that 

increasing the minimum singular value of the history-stack decreases   . On the other 

hand,    is directly proportional to  ‖ ‖   ‖ ‖          . This ratio can be upper 

and lower bounded as  

 √    ‖ ‖ 

       
 

‖ ‖   ‖ ‖ 

       
 

     ‖ ‖ 

       
  (93) 

 

In order to decrease   , it seems reasonable to minimize ‖ ‖          for constant  . It 

is nothing but the squared condition number of the history-stack as follows: 
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‖ ‖ 

       
 

       

       
 

       

       
 .

       

       
/

 

  (94) 

 

In the light of this discussion, we can populate the history-stack such that not only its 

minimum singular value is maximized but also its condition number is minimized. 

Hence, Algorithm 3 is modified and modified version is called Algorithm 4. Only the 

modified part of Algorithm 3 is demonstrated in Algorithm 4. 

Algorithm 3 

if 
‖ (    )  (   )‖

 

‖ (    )‖
   then 

    if    ̅ then 

              

                 (    ) 

              ‖    
 ‖  

        if        ̅ then 

                              [ ̇               ] 
        else 

                      

                   

        end if  

    else 

             

                       
        for     to   do 

                       (    ) 

                             
                   

        end for 

        find max    and let   denote the corresponding column index 

                 (    ) 

              ‖    
 ‖  

        if             and        ̅  then 

                             [ ̇               ] 
        else 

                 

        end if 

    end if  

end if 
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Algorithm 4 

  
             

                       
                                 
        for     to   do 

                       (    ) 

                             
                                      

                   

        end for 

        find max    and let   denote the corresponding column index 

        find min    and let    denote the corresponding column index 

        if      

                    (    ) 

                 ‖    
 ‖  

           if             and              and        ̅  then 

                                [ ̇               ] 
           else 

                    

           end if 

        end if 

  
 

Instead of Algorithm 4, one can use another algorithm which maximizes minimum 

singular value and minimizes condition number of the history-stack. 

Remark 11 The estimate of the ultimate bound given in (87) would lead to conservative 

bounds because of norm inequalities. Therefore, Algorithm 4  may not improve the 

performance of the controller significantly, although it decreases the ultimate bound. 

Due to Remark 11, it makes sense to look for an alternative algorithm which uses recent 

data points mostly. Similar to Algorithm 1, one can modify Algorithm 2 to use it for 

time-varying ideal weights. Since Algorithm 2 has additional three tuning parameters 

and tuning them is not trivial issue, instead of modifying Algorithm 2, we will use cyclic 

history-stack approach, simpler than Algorithm 2, to record the most recent data points. 

As mentioned in Remark 5, cyclic history-stack approach does not perform as well as 

singular value maximizing method for constant ideal weights. However, for time-
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varying ideal weights, it gives us a chance to record data points such that new data point 

is replaced with the oldest one after    ̅. Thus, we modify Algorithm 3 and call it 

Algorithm 5. In contrast to Algorithm 3 and Algorithm 4, (37) does not hold 

automatically after    ̅. To satisfy (37), it is included in    condition in Algorithm 5. 

The lower bound of           , i.e.  ̅ is a new parameter which should be selected by 

considering the pre-recorded data, i.e.            . 

Algorithm 5 

  
             

                              
                 (    ) 

              ‖    
 ‖  

                       
   

        if        ̅ and        ̅  then 

                                  
                             [ ̇               ] 
        else 

                 

        end if 

  
 

 

2.8 Simulation Examples 

 

In this section, we evaluate the performance of Algorithm 3, Algorithm 4, and 

Algorithm 5 through simulations. For the evaluation, one regulation and one tracking 

problem are considered. 

 

2.8.1 Regulation Problem 

 

Consider the scalar system: 

 ̇              (95) 
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where     is an unknown constant and      is a time-varying disturbance such that it is 

uniformly bounded, continuously differentiable, and its derivative is uniformly bounded. 

Recall that Theorem 2 allows time-varying ideal weights in the matched uncertainty. 

Therefore, (95) can be rewritten by including a bias term in the basis function 

 ̇               (96) 

 

where       [       ] and      [   ] . Note that     and    .  In the 

simulations,                       and     . 

System and input constants of the reference model are selected as 

    
 

  
        

 

  
 (97) 

 

with an eigenvalue which has time constant     . From the matching condition given 

in Assumption 2, nominal controller gains are        and       .  

In the simulations, four adaptive controllers are tested. These are the baseline adaptive 

law in (12), concurrent learning adaptive law in (13) with Algorithm 3, Algorithm 4, and 

Algorithm 5. For all controllers, learning rate   is set to   and    . In the concurrent 

learning cases, maximum number of recorded data points  ̅  is   and   used in data 

recording algorithms is     . Simulations are started with pre-recorded history-stack 

satisfying Condition 1. It has 2 linearly independent columns, i.e.     and ‖    ‖  

   ,                , which are required to determine  ̅ and  ̅. Considering these 

initial values,  ̅ and  ̅ are set to    and      respectively. Furthermore, the responses of 

the closed-loop system are obtained with the initial conditions:       ,        , 

and  ̂     [   ] and we run the simulations with a       sec time step using Euler 

integration. 

In Figure 18, the regulation and the weight estimation performance of the baseline 

adaptive law is presented. Norm of the error vector   is also given to discuss the 

boundedness of the closed-loop system. If we consider only the regulation performance, 

it may be satisfactory. However, it should be noted that  ̂     drifts to infinity. Thus, 



52 

 

the closed-loop system is unbounded. This example shows the parameter drift instability 

characteristics of the baseline adaptive law which is mentioned in Remark 9. 

 

Figure 18 Responses and error norm with baseline MRAC 

As it is described in [3], this parameter drift instability can also be explained by solving 

for the “quasi” steady state response of (96) and (12). Since         and        for 

all    ,         for all     and thus           for all    . From (12), 

     . Moreover, we substitute   into (96) 

          ̂   ̂              (98) 

 

and (98) can be rewritten as 

    
   ̂ 

 ̂       
  (99) 
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It is clear from (99) that for given  ,   , and   ,     goes to zero when either  ̂    or 

 ̂   . Since   is unknown time-varying signal,  ̂  cannot converge to  . Thus, 

 ̂   . This conclusion is consistent with the simulation result. 

In Figure 19, the regulation and the weight estimation performances of CL-MRAC with 

Algorithm 3, Algorithm 4, and Algorithm 5 are demonstrated. Norms of the error 

vectors are also given. In contrast to baseline MRAC, it is obviously seen that closed-

loop systems with CL-MRAC are bounded as Theorem 2 promises. Among three 

algorithms, Algorithm 5 has the best performance in terms of regulation. On the other 

hand, Algorithm 4 achieves the lowest error norm. 

 

Figure 19 Responses and error norm with CL-MRAC  

In Figure 20, the evolution of the minimum singular value and the condition number of 

the history-stacks is shown. In the left part of Figure 20,   is less than  ̅ up to 13.72 sec 
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and thus algorithms are exactly the same algorithm. Although algorithms differ from 

each other after            , difference in the evolution appears in the right part of 

the figure. Furthermore, since new data points were not recorded by algorithms from 

             to          , that part is omitted from the figure.  

Even though the only thing we expect from Algorithm 3 is minimum singular value 

maximization of the history-stack, it is clearly seen that the condition number of it also 

decreases. Algorithm 4 maximizes the minimum singular value and minimizes the 

condition number of the history-stack as it is desired and it achieves the maximum 

minimum singular value and the minimum condition number of the history-stack among 

three algorithms. Since Algorithm 5 records data in a cyclic manner, neither minimum 

singular value nor condition number behaves in a monotonic way.  

 

Figure 20 Minimum singular value and condition number evolution of the history-

stacks with CL-MRAC 



55 

 

Algorithm 4 minimizes the condition number of the history-stack and thus the ultimate 

bound of the solution of the closed-loop system. It also maximizes the minimum 

singular value of the history-stack and thus the convergence rate to the ultimate bound. 

In the light of this information, the following question arises: 

 When we quantify the estimate of the ultimate bound, does it give us practical 

information? In other words, is the estimated ultimate bound value of Algorithm 

4 around  , see Figure 19? 

Instead of evaluating (87) throughout the simulation, we can answer this question just by 

calculating its lower bound. Since     and    ,     for the given example. Using 

(93) and (94),   can be conservatively lower bounded as 

  
 ̇    ‖ ‖   ‖ ‖  

        
 

      ‖ ‖ 

       
         (100) 

 

Note that the upper bound on the ideal weight   is √  and the number of recorded data 

points   is   after             for all algorithms used in the simulation. We can 

further lower bound (100) as 

        (101) 

 

(101) implies that the ultimate bound lower than      cannot be guaranteed by (87). 

Therefore, without explicitly evaluating (87) we can conclude that the estimated 

ultimate bound overestimates the simulation result given in Figure 19, regardless of 

algorithm. It should be noted that this result is consistent with Remark 11. 

When we evaluate (87) at        , the estimated ultimate bound is very high, i.e. 

     . As it is expected, Algorithm 4 attains the minimum value,       , among 

three algorithms, see Figure 21. From the foregoing discussion, we know that the 

attained value is still high. However, even if the attained value does not give us practical 

information, it is meaningful because Algorithm 4 constantly improves the ultimate 

bound which we guarantee in theory.   
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Figure 21 Estimated ultimate bound evolution of the solution of the closed-loop 

system with CL-MRAC 

In order to use most recent data points, Algorithm 5 was proposed in the previous 

section. In Table 3, we see when the last data points were recorded by algorithms. That 

is, data points of history-stacks at            were recorded at given instants. Among 

three algorithms, Algorithm 5 has the most recent data points. However, it does not 

update its history-stack after          and variation in history-stack is not as frequent 

as it is desired for the given example. 

Table 3: The time when the last data points were recorded by algorithms in 

regulation problem 

 Algorithm 3 Algorithm 4 Algorithm 5 

 time (sec) 
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2.8.2 Tracking Problem 

 

Consider the system given in (42) with the following ideal weights 

      [                 ], (102) 

 

where  

                                                 (103) 

        
 

      
  (104) 

      

{
 

 
                                                              

                                         

                                          

                                                             

  (105) 

 

In the simulations, three adaptive controllers are tested. These are the concurrent 

learning adaptive law in (13) with Algorithm 3, Algorithm 4, and Algorithm 5. We use 

the same reference model, nominal controller gains, and adaptive controller parameters 

as the section: 2.5 Simulation Example. The difference is in the algorithms and its 

parameters. The maximum number of recorded data points  ̅   is  . Simulations are 

started with pre-recorded history-stack satisfying Condition 1. It has 3 linearly 

independent columns, i.e.     and ‖    ‖     ,                , which are 

required to determine  ̅ and  ̅. Considering these initial values,  ̅ and  ̅ are set to    and 

     respectively. We run the simulations with a       sec time step using Euler 

integration. 

In Figure 22, the tracking performances of the concurrent learning adaptive controllers 

are presented and the ideal weight estimation performances of them are demonstrated in 

Figure 23. Norms of the error vectors   are also shown in Figure 24. In contrast to the 

regulation problem in the previous section, Algorithm 5 achieves the lowest error norm 

after           Moreover, tracking and weight estimation performances of Algorithm 

5  are better than Algorithm 3 and Algorithm 4.  
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Figure 22 Responses with CL-MRAC 

 

Figure 23 Estimate of the ideal weights with CL-MRAC 
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Figure 24 Norm of the error vector with CL-MRAC 

The superiority of Algorithm 5 in this example is not very surprising because we know 

from Remark 11 and the previous regulation problem that even if the ultimate bound is 

minimized by Algorithm 4, this value will be still large. Actually, Algorithm 4 achieves 

the lowest condition number of the history-stack as it is desired. On the other hand, 

Algorithm 5 updates its history-stack frequently most probably due to the richness of the 

reference input. Therefore, it has the most current data points, see Table 4. Since the 

ideal weights vary slowly, this frequent update improves the weight estimation and thus 

the tracking performance. 

Table 4: The time when the last data points were recorded by algorithms in 

tracking problem 

 Algorithm 3 Algorithm 4 Algorithm 5 

 time (sec) 
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2.9 Derivative-Free Model Reference Adaptive Control (DF-MRAC) 

 

Derivative-free weight update law uses both delayed weight estimates and current 

system states and errors to cancel the effects of the matched uncertainty which has time-

varying ideal weights [5], [21]. In this section, we consider again the system given in 

(46). In contrast to derivative-based adaptive laws, derivative-free approach does not 

require continuous ideal weights in Lyapunov analysis. Therefore, Assumption 3 is 

relaxed as follows: 

Assumption 5 The matched uncertainty in (46) can be linearly parameterized as 

                         (106) 

  

where               is the unknown time-varying weight matrix that satisfies 

‖    ‖    with positive constant   and  (    )        is a vector of known 

basis functions      [                   ]
       and    is a sufficiently large 

compact subset of   . 

Derivative-free adaptive law has the following form 

 ̂       ̂       ̂      (107) 

 

where    , 

    
        (108) 

 

and  

 ̂                       (109) 

 

with     . Using (107), define     

                     (110) 
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With the upper bound given in Assumption 5 and (108), ‖     ‖  can be upper 

bounded as 

‖     ‖  ‖    ‖  |  |‖      ‖      √    (111) 

 

Using (107), (110) and the definition in (48), the weight error can be rewritten as 

 ̃       ̃       ̂            (112) 

 

On the other hand, there is no variation in the state tracking error dynamics given in 

(17). To keep the formulas short, we will drop the argument   in the following analysis 

as long as explicit explanation is not required. 

The following theorem and its proof can be found in [5], [21]. For the sake of 

completeness, the theorem with minor variations in its statement and correction in the 

corollary about convergence rate to the ultimate bound is proved here.  

Define the error vector   [       ̃     ]   where  ̃         (∫  ̃     ̃     
 

   
) 

and consider the following continuously differentiable Lyapunov-Krasovskii function 

 (   ̃ )          .∫  ̃     ̃     
 

   

/  (113) 

 

where     and  ̃  represents  ̃    over the time interval     to    (113) can be 

rewritten as 

        ̃   (114) 

 

where  ̃      [   ]. Then, (114) can be lower and upper bounded as 

   {         } ‖ ‖          {         } ‖ ‖   (115) 

 

Note that        and                . 
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From (115), define the following positive constants, 

      {         }  (116) 

      {         }  (117) 

 

Consider the sets represented in Figure 16 with a variation in the dimension due to the 

new definition of the error vector. This variation is obviously seen in the following 

definition of      

   {          |‖ ‖   }      (118) 

  

Assumption 6 Assume 

  √
  

  
     (119) 

 

  is defined as 

   (  √  )√
 

                  
 (120) 

 

where       and        
  . 

Theorem 3 Consider the system in (46) subject to Assumption 5, the reference model in 

(2), and the tracking control law in (4), with the nominal control component given by (5) 

subject to Assumption 2 and the adaptive feedback control component given by (6) 

which has the derivative-free weight update law in (107). Moreover, let Assumption 6 

hold. Then,    is positively invariant and             , there exists                

such that 

‖    ‖  √
  

  

‖     ‖ 
                          (121) 
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where                              {         }     is defined in the 

proof, 

‖    ‖  √
  

  
                (122) 

 

If Assumption 5 holds globally, i.e.      , then (121) and (122) hold        ,  

without limitation on  how large   is.  

Proof: Consider the Lyapunov-Krasovkii function given in (113). The time derivative of 

(113) along trajectories (17) and (112) can be expressed as 

 ̇(     ̃ )    [  
      ]        ̃                                             

     ( ̃  ̃   ̃       ̃     )              

(123)     [  
      ]      

    ̃           

        ̂ 
             

                       

                       (    ̃
  ̃     ̃

  ̃   ̃       ̃     )  

 

where         and     . Thus,     . 

Using the Lyapunov equation in (11) and expanding       ̃
  ̃ , we have 

 ̇(     ̃ )            
    ̃                                                    

       ̂ 
             

                       

    (    ̃
  ̃   ̃       ̃     )    

                   (    
  ̃       ̃     )     (   ̂ 

  ̂ )   

           
        (      ̂ 

  ̃     )  

          (      ̃
        )     (    ̂ 

   )  

(124) 
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For conformable matrices   and  ,                              , where 

   . This inequality is obtained from Young’s inequality in [5]. The following term in 

(124) can be upper bounded as 

    (      ̃
        )       (  

  ̃       ̃     )          

                            
      

      . 

(125) 

 

Using (109) with             , we have the following three equalities. 

The first one is 

    
    ̃              (      ̂ 

  ̃     ) (126) 

 

because 

    
    ̃                (         ̃      ) 

                                       
 

  
    ( ̂  ̃

      ) 

(127) 

 

and 

   (      ̂ 
  ̃     )  

 

  
    ( ̂ 

  ̃     ) 

                                                     
 

  
    ( ̂  ̃

      )  

(128) 

 

The second one is  

       ̂ 
         (   ̂ 

  ̂ )   
 

  
  ( ̂ 

  ̂ ) (129) 

 

because 

       ̂ 
          (         ̂ 

 )                   

                                        
 

  
  ( ̂  ̂ 

 )   
 

  
  ( ̂ 

  ̂ ) 
(130) 
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and 

   (   ̂ 
  ̂ )  

 

  
  ( ̂ 

  ̂ )  (131) 

 

The third one is  

       
         (    ̂ 

   ) (132) 

 

because 

       
                    

   
 

  
  ( ̂   

 )  
 

  
  ( ̂ 

   ) (133) 

 

and 

   (    ̂ 
   )  

 

  
  ( ̂ 

   )  (134) 

 

Using the inequality (125) and the equalities (126), (129), and (132), we upper bound 

(124) as 

 ̇(     ̃ )         
 

  
  ( ̂ 

  ̂ )       ( ̃
  ̃)                           

              (           
   ̃       ̃     )  

    (.   
  
 

 
/  

   )                              

(135) 

 

Letting              and using the inequality (108), we can easily show that 

           
    . Using positive-definiteness of    (111), and Frobenius norm 

properties, we can further upper bound (135) as 

 ̇(     ̃ )      ‖ ‖
    ‖ ̃‖

 

    
   ‖ ̃     ‖

 

 
     (136) 

 

where 
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              (137) 

          (138) 

         
    

      (139) 

   .   
  
 

 
/  (  √  )

 
   (140) 

 

In [5], it is claimed that the following inequality, i.e. (141), can be obtained by selecting  

   such that       . Although we could not establish that inequality, we continue 

with the ongoing analysis by assuming that their claim is correct: 

 ̇          ‖ ‖
      (141) 

 

The foregoing inequality can be rewritten as 

 ̇               ‖ ‖
     ‖ ‖

      (142) 

 

where      . Then, we get 

 ̇               ‖ ‖
   ‖ ‖     (143) 

 

where   √       . Since       ,    ,      
    , and     , it is 

obvious that           
   . Using            and     

     ,   can  be rewritten 

as 

   (  √  )√
 

                  
  (144) 

 

One can find an alternative representation for (144) if        is used. From (143), 

define the following positive constant 

                 (145) 

 

The following steps are very similar to the steps in the proof of Theorem 2. Define the 

compact set 
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   {      |‖ ‖   }  (146) 

 

It should be noted that (119) ensures that      . Let   be the maximum value of      

on the boundary of   . Using (115) and (117), 

     ‖ ‖          
   (147) 

 

Define 

   {      |      }  (148) 

 

(147) guarantees that       and from the condition in (119), we ensure that       . 

All sets used in the proof are presented in Figure 17.  

By (115), (143) with    in (116),    in (117),    in (145), Assumption 6, and Theorem 

4.5 in [29],    is positively invariant and for all initial errors       belong to   , there 

exists                such that (121) and (122) are satisfied.                                 ∎ 

Remark 12 In Theorem 3, it is proved that the error vector   [       ̃     ]  is 

uniformly bounded. Does bounded   imply bounded weight error  ̃? The answer is 

“yes”. Since   and    are bounded,   is bounded. Since   and   are bounded,  ̂  is 

bounded. (107) is a difference equation and it can be regarded as       first order 

discrete-time linear time-invariant systems.    is the system matrix and the elements of 

 ̂  are the inputs. Since |  |    and  ̂  is bounded,  ̂ is bounded. Then, noting that 

ideal weights are bounded, we can conclude that  ̃ is bounded.  

Remark 13 Due to the typing or calculation mistake made in Corollary 2 in [5], the 

authors ended up with an incorrect expression for the exponential convergence rate to 

the ultimate bound. The corrected version is given in (121) and it is independent of  . 

One can still find out an expression dependent on   using         and        . 

Then, convergence rate becomes independent of         and it increases with decrease 

in  . This inference is the exact opposite of the one in [5]. However, it should be noted 
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that the estimated ultimate bound and convergence rate to that bound depend on the 

inequality in (141) that we have doubt in the correctness of it.  

Remark 14 If   is regarded as step size,    is set to   , and    is set to 1, Euler 

discretization of (12) results in (107). However,      is not allowed and   does not 

have to be equal to step size in DF-MRAC. (108) introduces forgetting property into the 

weight update law that is effective when ideal weights encounter sudden changes. On 

the other hand, selecting   greater than step size provides short-term memory. 

Moreover,    acts as a learning rate   in MRAC. To sum up, DF-MRAC has more 

tuning flexibility than MRAC because of the additional design parameters,    and  . 

 

2.10 Conclusion 

 

This chapter extends the field of application of CL-MRAC by relaxing the constant ideal 

parameters assumption. In order to apply this extended theorem to problems, existing 

data recording algorithms are modified. We test CL-MRAC with modified algorithms in 

simulation by using sample regulation and tracking problem.  The simulation results 

show that the performance of CL-MRAC is highly dependent on problems and data 

recording algorithms. In addition to this extension, we repeat the proofs of the existing 

CL-MRAC and DF-MRAC theorems to fill or emphasize the observed missing parts. 
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CHAPTER 3 

 

 

CONTROL OF WING ROCK MOTION 

 

 

 

3.1 Introduction 

 

Wing rock is a complicated aerodynamic phenomenon for slender delta wing aircraft. Its 

onset is observed in high angles of attacks below the occurrence of stall. If it is 

uncontrolled, then it causes limit cycle, even instability in body roll axis. Theoretical 

results which have performed to understand the dynamics of wing rock, predict the 

frequency & amplitude of limit-cycle, and roll divergence can be found in [30], [31]. 

Since it degrades the performance of aircraft at high angles of attack, the control of wing 

rock motion has been extensively studied in the literature. Approaches used in wing rock 

control can be divided into two groups. One approach is that controller is developed at 

fixed angle of attack and it is sometimes tested other angles to claim robustness. In [32], 

[33], this approach was used.  Another approach is that angle of attack is allowed to vary 

with time and thus controller design can take account of time variation in angle of 

attack. The latter was applied to wing rock control in [34], [35]. In this study, we apply 

the second one because it is more general and it corresponds to parameter variation that 

fıts our comparison purposes. The uncertainty in [35] and the random disturbance in 

[36] are also added to test the performance of controllers under high level of uncertainty 

and problematic disturbance.  
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3.2 Wing Rock Dynamics 

 

Analytical nonlinear models that describe subsonic wing rock phenomenon for slender 

delta wings have been developed in [30], [31]. In [37], [34], the wing rock equation of 

motion presented in [31] has been used. In [34], an interpolation function has also been 

proposed to interpolate the aerodynamic coefficients smoothly with corresponding 

angles of attack. Thus, time-varying model of the wing rock has been built. In this 

chapter, we use the model presented in [34] and it is given by 

 ̈          ̇     
     

  ̇      ̇      (     ̇) (149) 

 

where   is the roll angle,   is the aileron deflection,       is the input gain, and   

includes unmodeled function and disturbance input as follows: 

 (     ̇)    (   ̇)       (150) 

 

 The aerodynamic coefficients in (149) are functions of the angle of attack  : 

            

(151) 

               

           

           

            
 

where          and         . Using Table 1 in [34], interpolated aerodynamic 

coefficients are reproduced here in Figure 25. In [31], uncontrolled wing rock model 

with      was analyzed and the authors showed that the origin of (149) is a stable 

focus for            approximately. For higher angles, the origin is an unstable 

focus and it is enclosed by a limit cycle. This qualitative behavior is represented for 

         and          in Figure 26. In this study, we consider that the angle of 

attack varies between        and       . Thus, the qualitative behavior presented in 

Figure 26 changes with angle of attack.  
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Figure 25 Interpolated aerodynamic coefficients 

 

Figure 26 Phase Plane Trajectories for          and          with initial 

conditions of             and  ̇               
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Define the state vector   [     ]
  [   ̇]

 
, then (149) can be written in the state 

space form given in (46) as  

[
 ̇ 

 ̇ 
]  *

  
  

+ *
  

  
+  [

 
 
] [        ]  (152) 

 

where  

       
               

      
          

        

 
  (153) 

 

Furthermore,   *
  
  

+ and   [
 
 
]. Using (150) and (151), we can rewrite (153) as 

                          (154) 

 

where the basis function 

     [            
   

       
 ]

 
 (155) 

 

and the ideal weights  

     

[
 
 
 
 
 
 
      

     

     

     

     

     ]
 
 
 
 
 
 

    

[
 
 
 
 
 
 

    
       

          
       

       

       ]
 
 
 
 
 
 

  (156) 

 

Similar to the assumption in [34], we assume that the angle of attack varies according to 

the following exogenous function  

               (
 

 
 )     (

  

 
 )              (157) 

 

As it is seen in Figure 27, the angle of attack varies between        and         

periodically. The variation in angle of attack could be due to the pilot inputs in 

longitudinal axis. 
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Figure 27 Angle of attack  

 

3.3 Nominal Controller 

 

System and input matrix of the reference model are selected as (44) with a pair of 

complex conjugate eigenvalues which have natural frequency      and damping ratio 

     .  From the matching condition given in Assumption 2, nominal controller gains 

are    [          ] and       . Performance of nominal controller is going to be 

presented prior to the adaptive augmentation. 

 

3.3.1 Simulation Results with      &      

 

Figure 28 shows the reference model tracking performance of the nominal controller and 

Figure 29 shows the aileron deflection. It is obvious that the nominal controller performs 

well and adaptive augmentation is not required. This satisfactory performance can be 

explained by the low uncertainty level presented in Figure 29.  
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Figure 28 Responses with nominal controller with      &     

 

Figure 29 Aileron deflection with nominal controller with      &     
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3.3.2 Simulation Results with      &      

 

In this section, we are going to check the performance of the nominal controller in the 

presence of unmodeled function   . We consider the following function given in [35] 

                  ̇                    ̇         ̇   (158) 

 

Note that this unmodeled function    is going to be used throughout the simulations. 

(158) can be rewritten as 

      [                                   ]      (159) 

 

Now, (154) becomes  

                  (160) 

 

where 

     

[
 
 
 
 
 
 
      

     

     

     

     

     ]
 
 
 
 
 
 

    

[
 
 
 
 
 
 

    

              

                 

              

              

             ]
 
 
 
 
 
 

  (161) 

 

In Figure 30 and Figure 31, the first three seconds of the simulation is demonstrated 

because bounded reference input yields unbounded states. It is clear that nominal 

controller cannot survive the uncertainty shown in Figure 31. Therefore, adaptive 

augmentation is considered a solution to suppress or cancel the current uncertainty.  

 

3.4 Adaptive Augmentation 
  

In the simulations, three different adaptive controllers are used to augment the nominal 

controller. The first adaptive controller which are going to be tested is the baseline 

adaptive law (12) with e modification [12]:   
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Figure 30 Responses with nominal controller with      &     

 

Figure 31 Aileron deflection with nominal controller with      &     
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 ̇̂     ( (    )         ‖    ‖ ̂)  (162) 

 

where   is a positive modification gain. Instead of (12), we select (162) to test in the 

simulations because of its robustness to bounded perturbations. The second adaptive 

controller which is going to be tested is the concurrent learning adaptive law in (13). 

Derivative-free adaptive law in (107) is the third one. Since                 is 

maximized with the choice       [      ] (Example 9.1 in [9]) and convergence rate 

to the ultimate bound in (58) & (121) is proportional to this ratio, we choose   

    [      ]  for all adaptive controllers and this parameter is not going to be tuned.  

Other constant parameters are as follows. Modification gain   in (162) is tried to be kept 

small because it increases high frequency oscillations in control inputs. It is set to    . In 

concurrent learning, maximum number of recorded data points  ̅ is    and   used in 

data recording algorithms is     . It should be noted that as we increase  ̅, minimum 

singular value of the history stack may increase, see Remark 6, but it causes irrelevant 

memory which lags the system response to variation in dynamics. Therefore, we kept it 

small compared to constant ideal parameter problems.  is also kept small to make 

algorithms less selective about data recording.  Simulations are started with pre-recorded 

history-stack satisfying Condition 1. These data points are obtained from the simulation 

when      &    . It has 6 linearly independent columns, i.e.     and ‖    ‖  

   ,                , which are required to determine  ̅ and  ̅. Considering these 

initial values,  ̅ and  ̅ are set to    and      respectively. In order to allow new data 

inclusion or old data removal, we usually choose  ̅ three-six times higher than ‖    ‖ . 

Otherwise,   saturates for a long time and variation in history-stack is hindered.  In 

derivative-free,   is set to 0.01 seconds and    is set to     . To make adaptive law 

responsive to variation in dynamics,   is kept small and thus it acts as a short-term 

memory. To get benefit from this memory,    is set to a value which is close to the 

upper bound given in (108). 

 

 



78 

 

3.4.1 Simulation Results with      &     

 

Figure 32 shows the tracking performance and aileron deflection of MRAC with e 

modification for     &     . In Figure 33, the weight estimation performances of 

them are demonstrated. As learning rate is increased, transient response of roll angle and 

roll rate is improved. However, high learning rate causes high frequency oscillations in 

weight estimation & aileron input and thus in states. Moreover, weight estimation 

performance is not improved by increasing learning rate. 

In Figure 34, the tracking performances and aileron deflection of the concurrent learning 

adaptive controllers are presented for    . Figure 35 shows the weight estimation 

performances of them. There is no considerable difference in the performance and the 

weight estimation of the algorithms. Both roll angle and roll rate encounter overshoot in 

the first ten seconds. Their tracking performances are satisfactory except that overshoot. 

 

Figure 32 Responses and aileron deflection with MRAC with e modification 
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Figure 33 Estimate of the ideal weights with MRAC with e modification 

It is also clearly seen from the weight evolution that the estimated weights are close to 

the ideal weights, especially       and   . Recall from nominal controller part that the 

uncertainty level due to the angle of attack variation is low compared to unmodeled 

function    and    has constant weights. It may explain why the weight estimation 

performance is good though the ideal weights are time-varying and vary fast.  

All algorithms properly work as it is desired. Algorithm 4 achieves the lowest condition 

number of the history-stack. Although Algorithm 5 uses the most recent data points, 

these data points can be considered irrelevant due to the fast variation in ideal weights. 

This may explain why the estimation of        and    is poor.  

In order to see whether high learning rate improves transient response of roll angle and 

roll rate, causes high frequency oscillations in weight estimation & aileron input, we 

increase it from     to     . In Figure 36, the tracking performances and aileron 

deflection of the concurrent learning adaptive controllers are presented for     . 

Figure 37 shows the weight estimation performances of them. There is no considerable 
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difference in the performance and the weight estimation of the algorithms again. 

Transient response of roll angle and roll rate is improved. In contrast to MRAC with e 

modification, CL-MRAC does not encounter any high frequency oscillation in weight 

estimation & aileron input due to the increase in learning rate. Discussions we have had 

about the weight estimation performance and algorithms for      are still valid for 

    . The only difference is that Algorithm 3 achieves the lowest condition number 

of the history-stack for     .  

Figure 38 shows the tracking performance and aileron deflection of DF-MRAC for 

        &       . Tracking performance of DF-MRAC with        is the best 

one we obtain among the tested controllers. Furthermore, aileron deflection time history 

is acceptable. In Figure 39, the weight estimation performances of DF-MRAC are 

demonstrated. Estimated weights are not close to the ideal weights. However, it is highly 

responsive to the uncertainty and suppresses it very effectively. According to the 

simulation results, we can conclude that while CL-MRAC cares about long-term 

learning, DF-MRAC does not care about learning. 

  

Figure 34 Responses and aileron deflection with CL-MRAC,     
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Figure 35 Estimate of the ideal weights with CL-MRAC,     

 

Figure 36 Responses and aileron deflection with CL-MRAC,      
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Figure 37 Estimate of the ideal weights with CL-MRAC,      

 

Figure 38 Responses and aileron deflection with DF-MRAC  
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Figure 39 Estimate of the ideal weights with DF-MRAC 

 

3.4.2 Simulation Results with      &      

 

In addition to   , we consider random disturbance   presented in [36]. It is introduced to 

represent the effects of the gust and wind on the rolling dynamics. In contrast to the 

uncertainty due to angle of attack variation and unmodeled function    random 

disturbance    is nonvanishing perturbation. Therefore, it should be uniformly cancelled 

by control to stabilize the origin. Since uniform cancellation is not possible for unknown 

time-varying signal, we can only achieve practical stabilization in that case. This feature 

of the disturbance increases the difficulty of the problem. The disturbance we are going 

to use in the simulations is presented in Figure 40.  
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Figure 40 Random disturbance 

Figure 41 shows the tracking performance and aileron deflection of MRAC with e 

modification for     &     . In Figure 42, the weight estimation performances of 

them are demonstrated. Similar to      &     case, increase in learning rate 

improves tracking performance with unacceptable high frequency oscillations in aileron. 

Moreover, weight estimation performance is not improved by increasing learning rate. 

Figure 43 and Figure 45 show the tracking performance and aileron deflection of the 

concurrent learning adaptive controllers for     and      respectively. Moreover, 

Figure 44 and Figure 46 present the weight estimation performance of the algorithms for 

    and      respectively. As it is seen in Figure 43 and Figure 45, none of the 

algorithms achieve satisfactory tracking performance regardless of learning rate. In 

contrast to      &     case, the estimated weights are not close to the ideal 

weights, see Figure 44 and Figure 46 . It may be explained by the increase in the time-

varying uncertainty level due to the random disturbance   and fast variation in it. 
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Figure 41 Responses and aileron deflection with MRAC with e modification 

 

Figure 42 Estimate of the ideal weights with MRAC with e modification 



86 

 

 

Figure 43 Responses and aileron deflection with CL-MRAC,     

 

Figure 44 Estimate of the ideal weights with CL-MRAC,     
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Figure 45 Responses and aileron deflection with CL-MRAC,      

 

Figure 46 Estimate of the ideal weights with CL-MRAC,      
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Figure 47 demonstrates the tracking performance and aileron deflection of DF-MRAC 

for         &       . In Figure 48, the weight estimation performances of DF-

MRAC are shown. Similar to      &     case, DF-MRAC with         

outperforms other tested controllers in terms of tracking performance and it has 

reasonable aileron deflection history. The inference about the weight estimation we 

drew from      &     case is still valid when we have random disturbance  . It is 

again observed that CL-MRAC tries to learn the uncertainty. On the other hand, DF-

MRAC tries to suppress it. Actually, it is very powerful in uncertainty suppression. 

Until now, we assume that uncertainty basis is exactly known since all theorems in 

Chapter 2 were proved by using this information. However, uncertainty basis is not 

exactly known in real applications. Since DF-MRAC tries to suppress the uncertainty 

without learning it, we are motivated to test the performance of DF-MRAC by 

approximating the uncertainty in (160) with functions different than (155). Three 

different functions are selected for this comparison. The first one is symmetric sigmoid 

functions used in [5]: 

     [           ]
   (163) 

 

where       
      

      
        The second one is Fourier series with a long enough 

period and sufficient series length used in [36]:  

     [                     ]
   (164) 

 

where          (
   

 
 )             and          (

       

 
 )              

In [36], the author proposes that period should be selected at least three times longer 

than the simulation or operation time. Therefore,   is set to     seconds. The third and 

the last one we are going to test is just bias. That is,    . 
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Figure 47 Responses and aileron deflection with DF-MRAC 

 

Figure 48 Estimate of the ideal weights with DF-MRAC 
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As it is seen in Figure 49, the responses of DF-MRAC with symmetric sigmoid 

functions, Fourier series, and bias are almost indistinguishable from the response with 

the known basis in (155). In this problem, DF-MRAC performs excellent even if the 

uncertainty is approximated by using only bias as a basis function.  

 

Figure 49 Responses and aileron deflection with DF-MRAC,         

 

3.5 Conclusion 

 

In this chapter, wing rock problem with time-varying angle of attack is studied for 

numerical illustration. Under high level uncertainty and problematic disturbance, 

controllers are tested and it is shown that DF-MRAC performs better than CL-MRAC. 

Due to the excellent performance of DF-MRAC and its efficient adaptation strategy, its 

performances with different basis functions are also tested. The simulation results still 

present the excellent performance of DF-MRAC. 
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CHAPTER 4 

 

 

CONCLUDING REMARKS 

 

 

 

4.1 Conclusions 

 

The intent of this thesis has been to make a fair comparison of CL-MRAC and DF-

MRAC against parameter variation. For this purpose, we extend the field of application 

of CL-MRAC by relaxing the constant ideal parameters assumption and prove that the 

solution of the closed-loop system is UUB. In order to apply this extended theorem to 

problems, we also modify the existing data recording algorithms. We then test CL-

MRAC with modified algorithms in simulation by using sample regulation and tracking 

problem. The simulation results show that the performance of CL-MRAC is highly 

dependent on problems and data recording algorithms. It should be noted that CL-

MRAC is not as promising as it is expected in [4]. We believe that CL-MRAC cannot 

pave the way for flight certification of adaptive controllers. In addition to this extension, 

we repeat the proofs of the existing CL-MRAC and DF-MRAC theorems because we 

have observed one misuse, one unnecessary use of stability theorems and one claim 

without reasoning in the standard exponential stability theorem of CL-MRAC developed 

in [4], [7] and one missing part and one incorrect expression in the uniform ultimate 

boundedness theorem of DF-MRAC developed in [5], [21]. 

Using wing rock problem with time-varying angle of attack, we have compared the 

performances of two controllers. Under high level uncertainty and random disturbance, 

controllers are tested and DF-MRAC performs better than CL-MRAC. Perfect 

performance of DF-MRAC and its efficient adaptation strategy motivate us to test its 
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performances when different basis functions are used. The simulation results still 

present the excellent performance of DF-MRAC. Although we have similar theoretical 

results for CL-MRAC and DF-MRAC, their adaptation strategies are completely 

different and the effect of this difference in the performance is obviously seen in the 

simulations. 

Even though CL-MRAC is more complicated than DF-MRAC in terms of 

implementation, DF-MRAC outperforms CL-MRAC in the simulations. It sounds 

interesting but this is what we have observed. CL-MRAC requires an efficient data 

recording algorithm, a memory and first derivative of the state for a recorded data point. 

These requirements make it an expensive controller. On the other hand, DF-MRAC 

requires neither data recording algorithm nor derivative of the state. Thus, it is obviously 

cheaper than CL-MRAC and its implementation is quite easy. Besides, the lack of 

performance in CL-MRAC may be due to the data usage. In other words, data usage 

lags the system response to fast variation in dynamics. However, it should be kept in 

mind that it guarantees the boundedness of the closed-loop system solution. 

 

4.2 Recommended Future Research 

 

In this work, we present the simulation results which reveal that CL-MRAC is not 

promising in terms of performance under fast time-varying ideal parameters or 

disturbance. However, it is still effective in time-invariant systems or time-varying 

systems with slow variation in dynamics because of its parameter convergence 

capability. This capability can be useful in closed-loop system identification of 

nonlinear time-invariant systems. Moreover, identified model can be used to improve 

the nominal controller synthesis. For example, we can decide whether identified 

nonlinear term is stabilizing or destabilizing and if it is stabilizing, we should not try to 

cancel it in stabilization problem. Thus, it may reduce the control effort.  

To improve the performance of CL-MRAC under time-varying ideal parameters, one 

can still look for alternative data recording algorithms. Besides, different learning rates 
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for instantaneous update and update on recorded data can be considered. This will add a 

new dimension to the controller design. 

In the simulation results presented in this thesis, the performance of DF-MRAC is 

outstanding. This superiority of derivative-free weight update law should be transferred 

to general class of nonlinear plants. Furthermore, DF-MRAC performs excellent even if 

the uncertainty is approximated by using only bias as a basis function in wing rock 

problem. However, selecting bias as a basis is an intuitive approach. Thus, it requires 

rigorous analysis. Another research direction of interest is to compare derivative-free 

weight update law with disturbance estimators. For example, derivative-free disturbance 

estimator may require less strict assumptions than extended high-gain observer as 

disturbance estimator in [38]. It may also be combined with high-gain observers in 

output feedback control. 
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