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ABSTRACT

COMPARISON OF CONCURRENT LEARNING AND DERIVATIVE-FREE
MODEL REFERENCE ADAPTIVE CONTROL AGAINST PARAMETER
VARIATION

Sarsilmaz, Selahattin Burak
M.S., Department of Aerospace Engineering
Supervisor: Assist. Prof. Dr. Ali Turker Kutay

July 2016, 98 pages

For adaptive laws using only instantaneous data, it is well known that parameter
convergence is impossible without persistency of excitation. Concurrent Learning
Model Reference Adaptive Control (CL-MRAC) is a novel adaptive controller that
solves the parameter convergence problem, about forty year old adaptive control
problem, without requiring persistency of excitation. This solution relies on the
concurrent usage of recorded and current data. Derivative-Free Model Reference
Adaptive Control (DF-MRAC) is another novel adaptive controller that challenges the
derivative-based adaptive laws and the integral action of them. Instead of constant ideal
parameters assumption, DF-MRAC uses less strict assumption which allows time-
varying ideal parameters. Due to these contributions, both CL-MRAC and DF-MRAC
deserve attention. This research mainly addresses their robustness to parameter

variation.



In this thesis, standard exponential stability theorem of CL-MRAC and uniform ultimate
boundedness theorem of DF-MRAC with minor changes in their statements are proved.
Some missing parts in these theorems are either filled or emphasized. To make a fair
comparison between CL-MRAC and DF-MRAC, constant ideal parameters assumption
imposed in CL-MRAC is replaced with time-varying ideal parameters assumption which
is similar to the one in DF-MRAC but still stricter than it. Under this relaxed
assumption, uniform ultimate boundedness of the solution of the closed-loop system is
proved. According to this theorem, existing data recording algorithms are modified and
the performances of CL-MRAC with modified algorithms are inspected under time-
varying ideal parameters in a sample regulation and tracking problem. The simulation
results show that the performance of CL-MRAC is dependent on problems and data

recording algorithms.

Wing rock problem with time-varying angle of attack is considered a useful benchmark
for numerical illustration. Under high level uncertainty and random disturbance,
controllers are tested and DF-MRAC performs better than CL-MRAC. Since DF-MRAC
suppresses the uncertainty effectively and makes no attempt to learn it in the
simulations, its performances with different basis functions are also tested. The
simulation results present the excellent performance of DF-MRAC. Although it is
shown that both CL-MRAC and DF-MRAC have bounded solutions under parameter
variations, their adaptation strategies are completely different and the effect of this

difference in the performance is obviously seen in the simulations.

Keywords: Model Reference Adaptive Control, Time-Varying Parameters, Uniform
Ultimate Boundedness, Wing Rock Motion

Vi



0z

ES ZAMANLI OGRENEN VE TUREVSIiZ MODEL REFERANS ADAPTIF
KONTROLUN PARAMETRE DEGISIMINE KARSI KIYASLAMASI

Sarsilmaz, Selahattin Burak
Yiiksek Lisans, Havacilik ve Uzay Miihendisligi Bolimii
Tez Yoneticisi: Yrd. Dog. Dr. Ali Turker Kutay

Temmuz 2016, 98 sayfa

Sadece anlik veri kullanan adaptif yasalari igin, siirekli uyarim olmadan parametre
yakinsamasinin miimkiin olmadig: bilinmektedir. Yaklagik kirk yildir adaptif kontrolde
siiregelen parametre yakinsama sorununu, 6zgiin Es Zamanli Ogrenen Model Referans
Adaptif Kontrol (CL-MRAC) yontemi siirekli uyarima ithiyag duymadan ¢6zmektedir.
Bu ¢6ziim, kaydedilen ve anlik verinin es zamanl kullanimina dayanmaktadir. Bir diger
0zgun adaptif kontrol yontemi olan Tlrevsiz Model Referans Adaptif Kontrol (DF-
MRAC) yontemi, tiirev bazli adaptif yasalarina ve onlarin integral etkisine karsi
cikmaktadir. Sabit ideal parametre varsayimi yerine, DF-MRAC zamanla degisen ideal
parametrelere izin veren daha esnek bir varsayim kullanmaktadir. Bahsedilen bu katkilar
nedeniyle, hem CL-MRAC hem de DF-MRAC dikkate deger bulunmaktadir. Bu
aragtirma, ana hatlartyla bu kontrol yOntemlerinin parametre degisimine karsi

giirbiizliiklerini konu almaktadir.
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Bu tezde, CL-MRAC yonteminin standart Ustel kararlilik teoremi ve DF-MRAC
yonteminin dizgun nihai siirhilik teoremi, her iki teoremin de ifadelerinde ufak
degisiklikler yapilarak ispatlanmistir. Teoremlerdeki bazi eksik boliimler tamamlanmis
veya eksiklikleri vurgulanmistir. Bu iki kontrol yontemini adil bir sekilde
kiyaslayabilmek icin CL-MRAC yonteminde kullanilan sabit ideal parametre varsayimi
DF-MRAC yonteminde kullanilan varsayima benzer; ama daha kati olan zamanla
degisen ideal parameterler varsayimiyla degistirilmistir. Bu esnetilmis varsayim altinda,
kapal1 dongii sistem ¢Ozuminin diizgun nihai sinirliligr ispatlanmistir. Bu teoreme gore
mevcut veri kayit algoritmalart modifiye edilmis ve zamanla degisen ideal parametreler
iceren Ornek duzenleme ve takip problemlerinde, CL-MRAC yo6nteminin modifiye
edilen algoritmalarla birlikte performansi incelenmistir. Benzetim sonuglari, CL-MRAC
performansinin uygulandigi problemlere ve veri kayit algoritmalarina bagli oldugunu

gostermektedir.

Zamanla degisen hiicum acis1 barindiran kanat sallanma problemi sayisal gésterim igin
kullanigh bir kistas olarak disiiniilmektedir. Yuksek seviyede belirsizlik ve rassal
bozucu altinda, iki kontrol yontemi smanmis ve DF-MRAC yontemi CL-MRAC
yontemine kiyasla daha yiisek performans gostermistir. Benzetimlerde, DF-MRAC
yontemi belirsizligi etkin bir sekilde baskiladigi ve bu belirsizligi 6grenme girisiminde
bulunmadig1 i¢in performansi, farkli taban foksiyonlari kullanilarak da smanmustir.
Benzetim sonuglari, DF-MRAC yonteminin  miikemmel performansini ortaya
koymustur. Her iki kontrol yonteminin parametre degisimlerine karsi sinirli ¢éziimlere
sahip oldugu gosterilmis olmasina ragmen, uyarlama stratejileri tamamen faklidir ve bu

farkin performanslara etkisi benzetimlerde agikca goriilmektedir.

Anahtar Kelimeler: Model Referans Adaptif Kontrol, Zamanla Degisen Parametreler,

Duzgln Nihai Sinirlilik, Kanat Sallanma Hareketi
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CHAPTER 1

INTRODUCTION

Control technologies have become indispensable part of modern systems such as
aircrafts and space vehicles. Historically, well-established control approaches have
dominated modern systems and these approaches rely on mathematical models of
systems. However, mathematical models do not represent physical systems exactly. On
the contrary, there is a wide range of model uncertainty due to assumptions in modeling,
linearization, model order reduction, and disturbances. With the increase in performance
and safety demand of modern systems, researchers have extensively studied robust and
adaptive controllers to deal with model uncertainty. In robust control, model uncertainty
is regarded as perturbation of a nominal system and controller is designed to meet the
stability and performance objectives for any model within the given bounds on the
model uncertainty. Conservatism is inherent in robust control and degradation in
performance may be experienced, depending on level of uncertainty. On the other hand,
adaptive controller is designed to cancel the uncertainty online and thus the upper
bounds on the uncertainty are not necessarily required to be known. Besides, adaptive
controllers encounter less performance degradation than robust controllers under high
level of uncertainty. These features of adaptive controllers make it attractive to

researchers and engineers.

Adaptive controllers can be put into two groups, namely “direct adaptive controllers”
and “indirect adaptive controllers”. Direct adaptive controllers adapt controller
parameters directly and they are known for fast control response but short-term learning.

On the other hand, indirect adaptive controllers employ parameter estimation algorithm
1



to estimate the unknown parameters and use them to calculate the controller parameters.
Their performances depend on the accuracy of the estimation. If the initial estimates are

poor, then the transient response and stability cannot be guaranteed.

Model Reference Adaptive Control (MRAC) is a popular and significant direct adaptive
controller [1], [2], [3]. Concurrent Learning MRAC (CL-MRAC) is a novel adaptive
controller which combines the advantages of direct and indirect adaptive controllers [4].
Derivative-Free MRAC (DF-MRAC) is another novel adaptive controller which is very
responsive to sudden changes in system dynamics [5]. This study presents the
comparison of CL-MRAC and DF-MRAC against parameter variations.

1.1 Model Reference Adaptive Control

The main objective of MRAC is to make an uncertain system track the desired response
which is defined by a reference model. To achieve this goal, MRAC uses three main
elements. These are reference model, uncertainty parameterization, and weight update
law. Reference model characterizes the desired performance of the closed-loop system.
Uncertainty parameterization component, which corresponds to adaptive control signal,
is used to cancel the actual uncertainty. Based on the comparison between the state
(output) of the uncertain system and reference model, weight update law tries to

estimate the parameters required by adaptive control.

In MRAC architecture, nominal controller is augmented by adaptive control signal to
cancel the uncertainty. If the structure of the uncertainty is known, that is, uncertainty is
a weighted combination of known basis functions, and then uniform cancellation of the
uncertainty is possible. This type of uncertainty parameterization is extensively used in
adaptive control, for example in [5], [6], [7], [8]. In this study, we also formulate

problems assuming that basis functions are known.

From Lyapunov stability theory, it was proved that conventional adaptive law in MRAC

architecture guarantees the boundedness of the tracking and parameter (weight) error for

2



constant ideal parameters. With an application of Barbalat’s lemma, it can be shown that
the tracking error goes to zero as time goes to infinity. However, same discussion is not
valid for the weight error. These issues degrade the transient performance and
robustness of the closed-loop system. Furthermore, weight error can be unbounded
under bounded disturbances [1], [2], [3]. When the systems states are persistently
exciting (PE), parameter convergence is achieved and thus tacking error vanishes
exponentially. Therefore, performance and robustness of the closed-loop system
improve. It should be noted that for adaptive laws using only instantaneous data, PE is
necessary for parameter convergence and depends on reference inputs [10]. It means
that reference inputs should be monitored such that PE is satisfied. However, this is not
practical in online applications because reference inputs are in general event based and
not known before the operation. Moreover, PE reference inputs may be unsuitable for

desired missions [4].

In order to increase the robustness and efficiency of uncertainty suppression without PE
reference inputs, many modifications to weight update law have been introduced in the
literature. Fixed damping has been added to the weight update law by ¢ modification
[11]. It limits adaptation to the uncertainty. On the other hand, e modification adds
variable damping such that damping increases with the tracking error and thus it allows
adaptation process when the tracking error is small [12]. Both o and e modifications
provide bounded weight error. Parameter projection is another modification which
ensures that estimated weight stays in a predefined compact set [13]. In addition to these
well-known modifications, some of the recently developed important modifications can
be found in [14], [15], [16]. The main focus in these modifications is efficient

uncertainty suppression instead of parameter convergence.

1.2 Concurrent Learning Model Reference Adaptive Control

As it is mentioned in the previous section, parameter convergence is impossible without

persistency of excitation for adaptive laws using only instantaneous data. However,

3



persistency of excitation may not be necessary for parameter convergence if adaptive
laws use memory. CL-MRAC has been motivated by the foregoing idea and introduced
in [4]. CL-MRAC utilizes concurrent usage of recorded and current data to guarantee
exponential convergence of tracking error and parameter. In the formulation of CL-
MRAC, PE reference inputs have been replaced with exciting reference inputs over
finite interval. When sufficiently rich data is recorded during this finite interval,
parameter convergence dependency of adaptive laws on future reference inputs are ruled
out. The sufficiency of rich data can be easily determined by online verifiable rank
condition on recorded data. It should also be noted that CL-MRAC requires first
derivative of the state for a recorded data point. This additional information is the price
we pay for non PE reference inputs. If this derivative is measured, it can be directly
used. Otherwise, it should be estimated in finite time after the record. That is, it does not

have to be estimated at the current time instant [4], [7].

Standard exponential stability theorem of concurrent learning for a different class of
plants and its applications can be found in [4], [17], [7], [18], [19]. The estimate of
convergence rate has revealed that the convergence rate depends on the spectral
properties of recorded data. In [20], it was demonstrated that data recording algorithm
which relies on the estimate of convergence rate provides the fastest parameter

convergence among three data recording algorithms.

Similar to other derivative-based adaptive laws, all studies about CL-MRAC have the
underlying assumption that there exist constant unknown ideal weights. Under this
assumption, CL-MRAC provides long-term learning with the aid of parameter
convergence capability and improves performance when the system tracks repeated
commands. In [4], the author claims that CL-MRAC would recover the performance and
robustness of the reference model and could pave the way for flight certification of
adaptive controllers. However, its robustness to disturbances and/or time-varying ideal
parameters has not been analyzed yet. In this study, we analyze the robustness of CL-
MRAC and check the performances in sample problems to see whether the claim in [4]

deserves credit for the certification issue.



1.3 Derivative-Free Model Reference Adaptive Control

DF-MRAC has been developed for uncertain systems which experience sudden or fast
time-varying changes in dynamics [5]. For instance, these changes in dynamics can be
due to structural damage, disturbance, and deployment of a payload. In these situations,
MRAC may require so high learning rate that they may excite unmodeled dynamics and
cause high frequency oscillations in control. It may also fail to achieve the defined task
[5]. The constant unknown ideal weights assumption used in derivative-based adaptive
laws extensively has been replaced with the existence of time-varying ideal weights
during the construction of DF-MRAC. For this generalized assumption, parameter
convergence is not possible anymore. Instead, we can only achieve bounded weight
error. In [5], [21], using a Lyapunov-Krasovskii function, it has been proved that the
solution of the closed-loop system is uniformly ultimately bounded (UUB). It should be
noted that derivative-free weight update law does not require any modification term to

provide bounded weight error.

Derivative-free adaptive law uses both delayed weight estimates and current system
states and errors to suppress the effects of time-varying matched uncertainty. This
update law challenges the derivative-based adaptive laws and the integral action of
them. In other words, it queries the adaptive control usage for matched constant
disturbance. In fact, the authors in [5] support the usage of nonadaptive controllers with

integral action in bias correction.

1.4 Contributions of This Thesis

The purpose of this thesis is to make a fair comparison of CL-MRAC and DF-MRAC
against parameter variation. In order to make a fair comparison, we should make sure
that both CL-MRAC and DF-MRAC have similar theoretical results under similar

assumptions. Then, comparison of their performances is meaningful.



We planned to start with the robustness analysis of CL-MRAC to time-varying ideal

parameters. Since we have observed one misuse, one unnecessary use of stability

theorems and one claim without reasoning in the standard exponential stability theorem
of CL-MRAC developed in [4], [7], we start with the proof of this theorem. These

observations are given respectively:

In the proof of Theorem 3.2 in [4], the author uses Theorem 3.1 in [22] which is
applicable to autonomous systems. However, the closed-loop system in CL-
MRAC architecture is nonautonomous. The author should consider Theorem
4.10 in [9] or Theorem 4.6 in [22]. In the proof, we apply the correct theorem.
When the dynamic history-stack, that is, the online removal or inclusion of data
points is allowed, Remark 3.6 in [4] claims that exponential stability is still
guaranteed as long as the introduced rank condition for recorded data points is
satisfied. The author made reference to Theorem 1 in [23] and thus Theorem 2.1
in [24]. First, mentioned theorem in [24] applies to autonomous switched
systems. It should be clarified whether this theorem is applicable or not. Second,
even if this theorem is applicable to nonautonomous switched systems, we do
not have to use this theorem because Theorem 4.10 in [9] is still valid. It is
applicable to systems which have piecewise continuous right hand side in time.
Third, the introduced rank condition is not sufficient to guarantee the exponential
stability when we use dynamic history-stack because the derivative of the
Lyapunov function along the trajectories of the closed-loop system cannot be
upper bounded by one negative definite function. In order to solve this problem,
we introduce an additional condition in Remark 3. It actually emphasizes the
difference between being positive and being positive & separated from zero.

In the proof of Theorem 4.1 in [7], the author claims that minimum singular
value of the history-stack is monotonically increasing. When the number of
stored data points is equal to the maximum allowable number of recorded data
points, the claim is correct without any doubt due to the singular value
maximization algorithm. However, when the number of stored data points is less

than the maximum allowable number of recorded data points, the claimed
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monotonicity is not obvious. In Remark 6, we show that the claim is correct by
using one of the monotonicity theorems in [25]. Moreover, the condition

mentioned in the previous observation holds by means of this fact.

After the observations about the exponential stability theorem of CL-MRAC, its
robustness to time-varying ideal parameters is addressed. To analyze the robustness, the
constant ideal parameters assumption is replaced with uniformly bounded continuously
differentiable ideal parameters with uniformly bounded derivatives. Under this relaxed
assumption, we prove that the solution of the closed-loop system is UUB. This proof
also means that parameter drift instability in MRAC is ruled out by CL-MRAC without
adding a modification term. Moreover, estimates of the ultimate bound and exponential
convergence rate to that ultimate bound are provided. According to these estimates,
constraints due to the theorem, and intuitive explanations, existing data recording
algorithms are modified. We test CL-MRAC with modified algorithms in simulation by
using sample regulation and tracking problem which include time-varying ideal
parameters and disturbance. The simulation results show that the performance of CL-
MRAC is highly dependent on problems and data recording algorithms. Thus, this study
formally discusses the author’s expectation, in [4], that CL-MRAC would recover the
performance and robustness of the reference model and could pave the way for flight
certification of adaptive controllers. Furthermore, the simulation results show that CL-

MRAC is not as promising as it is expected in [4].

With the uniform ultimate boundedness theorem of CL-MRAC, the prerequisite for the
fair performance comparison is completed. However, we have observed one missing
part and one incorrect expression in the uniform ultimate boundedness theorem of DF-
MRAC developed in [5], [21]. Therefore, this theorem with minor variations in its

statements is also proved. These observations are given respectively:

¢ In the proof of Corollary 2 in [5], the authors upper bound the derivative of the
Lyapunov-Krasovskii function by an expression which is a function of the error

vector defined in Lyapunov-Krasovskii function. However, the intermediate



steps are not given in [5]. Therefore, we emphasize this missing part. The
authors should explain the rationale behind this inequality.

e In the proof of Corollary 2 in [5], the authors end up with an incorrect expression
for the exponential convergence rate to the ultimate bound. We correct this

expression.

Wing rock problem with time-varying angle of attack is considered a useful benchmark
for numerical illustration. Under high level uncertainty and random disturbance,
controllers are tested and DF-MRAC performs better than CL-MRAC. Although it is
shown that both CL-MRAC and DF-MRAC have bounded solutions under parameter
variations, their adaptation strategies are completely different and the effect of this

difference in the performance is obviously seen in the simulations.

1.5 Outline of this Thesis

In the first chapter, we make a brief introduction about the adaptive control. Then, a
literature survey about MRAC and two novel adaptive controllers, namely CL-MRAC
and DF-MRAC is presented. Finally, the contribution of this thesis is given.

In the second chapter, we start with the formulation of MRAC. Then, standard
exponential stability theorem of CL-MRAC with minor changes in its statement is
proved. With the aid of some remarks, missing parts of the theory are filled. For
switching ideal parameters, the performances of CL-MRAC with existing two different
data recording algorithms are evaluated in a sample problem. To analyze the robustness
of CL-MRAC to time-varying ideal parameters, constant ideal parameters assumption is
replaced with uniformly bounded continuously differentiable ideal parameters with
uniformly bounded derivatives. Under this relaxed assumption, we prove that the
solution of the closed-loop system is UUB. Moreover, estimates of the ultimate bound
and exponential convergence rate to that ultimate bound are provided. According to

these estimates, constraints due to the theorem, and intuitive explanations, existing data



recording algorithms are modified. We test CL-MRAC with modified algorithms in
simulation by using sample regulation and tracking problem which include time-varying
ideal parameters and disturbance. Under further relaxed assumption, uniformly bounded
piecewise continuous ideal parameters, the uniform ultimate boundedness proof of DF-
MRAC is examined. A missing part in the proof is emphasized and incorrect expression

for the exponential convergence rate to the ultimate bound is corrected.

In the third chapter, wing rock problem with time-varying angle of attack is studied for
numerical illustration. Under high level uncertainty and random disturbance, controllers
are tested and it is shown that DF-MRAC performs better than CL-MRAC. Due to the
excellent performance of DF-MRAC and its efficient adaptation strategy, its

performances with different basis functions are also tested.

In the fourth chapter, the thesis is concluded with recommended future research

directions.
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CHAPTER 2

CONCURRENT LEARNING & DERIVATIVE-FREE MODEL
REFERENCE ADAPTIVE CONTROL

2.1 Introduction

Concurrent Learning Model Reference Adaptive Control (CL-MRAC) is a recently
introduced controller which utilizes concurrent usage of recorded and current data to
guarantee exponential convergence of tracking error and parameter. Its theorem for
different class of plants can be found in [4], [17], [7], [18], [19]. This theorem depends
on the existence of constant unknown ideal parameters. Derivative-Free Model
Reference Adaptive Control (DF-MRAC) is another recently introduced controller
which allows time-varying ideal parameters and provides uniformly ultimately bounded
(UUB) closed-loop solution [5], [21].

In this chapter, the constant ideal parameters assumption of CL-MRAC is replaced with
time-varying ideal parameters assumption which is similar to the one in DF-MRAC but
still stricter than it. Then, we prove that the solution of the closed-loop system is UUB.
Moreover, estimates of the ultimate bound and exponential convergence rate to that
ultimate bound are provided. According to these estimates, constraints due to the
theorem, and intuitive explanations, existing data recording algorithms are modified. We
test CL-MRAC with modified algorithms in simulation by using sample regulation and
tracking problem. Besides this new analysis, the proofs of the existing CL-MRAC and

DF-MRAC theorems are examined to fill or emphasize the observed missing parts.
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2.2 Model Reference Adaptive Control (MRAC)

In this section, we start with a formulation of MRAC problem. Consider the following

uncertain system
x(t) = Ax(t) + B[u(t) + A(x(®))], 1)

where x(t) € R™ is the state vector, u(t) e R™ is the control input vector, A e R**™ and
B € R™*™ are known matrices such that the pair (4, B) is controllable, and 4(x(¢)) :
R™ - R™ is a matched uncertainty. It is also assumed that full state is available for

feedback and control input is restricted to the class of admissible controls consisting of

measurable functions.

A reference model that characterizes the desired closed-loop response of the system in

(1) is given by
J.Cm(t) = Amxm(t) + er(t): (2)

where x,,(t) e R™ is the reference state vector, r(t) e R™ is bounded piecewise
continuous reference input, 4,, € R™*™ is Hurwitz, and B,, e R™*" with r < m. Since

A, is Hurwitz and r(t) is bounded, x,, (t) is uniformly bounded for all x,,(0).
Assumption 1 The matched uncertainty in (1) can be linearly parameterized as

Ax) =WTB(x),  xell, ®3)

where W e RS*™ is the unknown constant weight matrix, f(x(t)) : R* - R® is a
vector of known basis functions B(x) = [B1(x), B2(x), ..., Bs(x)]T e RS and 2, is a
sufficiently large compact subset of R™. Note that (1) is either linear or nonlinear

uncertain system, depending on S (x).

An example of (3):
A(x) = wy sin(x) + w, cos(x) + wsx?, x€R,
where W = [wy, w,, ws]”, B(x) = [sin(x), cos(x), x?].

12



The tracking control law is specified by
u(t) = up () — ugq(0), (4)
where u,, (t) is a nominal controller given by
u,(t) = —K;x(t) + K,r(t), (5)

where K; e R™*™ and K, e R™*" are nominal controller gains, and adaptive feedback

control component given by
Uga (£) = WT()B(x(D)), (6)
where W (t) € RS *™ denotes the estimate of W.

Assumption 2 (Matching Condition) There exist K; e R™* ™ and K, ¢ R™* " such that

Define the state tracking error as
e(t) = x () = % (0). (7)
Differentiating (7)
é(t) = Ax(t) + Bu(t) + BA(x(t)) — Apxn(t) — Bur (D), (8)
using the control law in (4)

é(t) = (A — BK)x(t) + BK,r(t) — Ay x, (£) — Byr(t)

9
FB[AG(D) = ua ()], ©)

(9) subject to Assumption 2
é(t) = Ape(t) + B[A(x(D) — uaa (D), (10)

(10) represents the state tracking error dynamics.
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Since A,, is Hurwitz, for every symmetric positive-definite matrix Q e R™*", there

exists a unique symmetric positive-definite solution P ¢ R™*™ to the Lyapunov equation
AL P + PA,, = —Q. (11)

For the uncertainty given in Assumption 1, it is well known from [1], [2] that the

baseline adaptive law
W(t) = TB(x(t))e” (t)PB, (12)

where T is a positive learning rate, guarantees that W (t) remains bounded and e(t) — 0
as t - oo. However, (12) does not guarantee the convergence of W (t) and rate of
convergence of e(t). It is also known that e(t) — 0 and W(t) - W as t — oo if and
only if g(x(t)) is persistently exciting (PE) [1], [10].

2.3 Concurrent Learning Model Reference Adaptive Control (CL-MRAC)

Concurrent learning adaptive control uses recorded and current data concurrently to
guarantee exponential tracking and parameter error convergence without requiring

persistence excitation of the states [4].

Concurrent learning adaptive law has the following form
14
W =T | BE®)eT©OPB + Y plx)e @ ) (13)
j=1

where j denotes the recorded data point at time ¢;, and

To evaluate (13), B(x;) and A(x;) are required for the j** data point. The basis vector
B(x;) € RS is stored in a history-stack such that the Condition 1 is satisfied.
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Condition 1 If Z = [B(xy), B(x2), .., B(x,)]e RS*P represents the history-stack,
then rank(Z) = s. That is, the history stack contains as many linearly independent

columns as the dimension of the basis vector.

Note that Condition 1 directly implies that the number of basis vectors p stored in Z
must be at least the dimension of the basis vector s, i.e. p > s. In addition to the basis

vector B(x;), (13) requires the associated model error A(x;).

Remark 1 If B has full column rank, A(xj) can be observed from (1) by using left

pseudo inverse of B
A(xj) = (BTB)"'BT[x; — Ax; — Bu;]. (15)

In order to estimate the system uncertainty, we require only the estimation of x because
A, B, x;j, and u; are known. If the explicit measurement of x is available, (15) can be
directly used to calculate the system uncertainty. Otherwise, x; can be estimated using
an implementation of a fixed point smoother as it is done in [17], [7]. In the thesis, it is
assumed that the explicit measurement of x is available or x; is estimated without any

error.
Define the weight error as
W(t) =W —W(¢). (16)
Then, the state tracking error dynamics in (10) with Assumption 1 is given by
é(t) = Ape(t) + BWT(©)B(x(1)). (17)
(14) can be written as
g(0) = WT )L (x)). (18)

Using (18) and noting that W is constant, the weight error dynamics can be obtained
from (13):
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4
W) = -1 p(x(®)e"@PB + ) BB ()W (@ ) (19)
j=1

The following theorem and its proof for different class of plants can be found in [4],
[17], [7], [18], [19]. For the sake of completeness, the theorem with minor variations in
its statement is proved. Remarks about its usage and missing parts are made in this

section.

Theorem 1 Consider the system in (1) subject to Assumption 1, the reference model in
(2), and the tracking control law in (4), with the nominal control component given by (5)
subject to Assumption 2 and the adaptive feedback control component given by (6)
which has the concurrent learning weight update law in (13). It is also assumed that the

recorded data points satisfy Condition 1 at t = t, and the history-stack is static, i.e. it is
not overwritten, then the origin, i.e. (e(t), VT/(t)) = 0 of the system given by (17) and

(19) is exponentially stable.

Proof: To keep the formulas short, drop the argument ¢ in the proof.

- T
Define ¢ := [eT, vec(W)T] and try the following continuously differentiable function

as a Lyapunov function candidate
. 1 1 I
V(e W) ==e"Pe +—tr(WTW). (20)
2 2r
By using tr(WTW) = vec(W)' vec(W), we have
1 ...
V() = EfTPf, (21)
where P = diag[P, T'"'I]. Then, (21) can be bounded from below and above by
1 : -1 2 1 -1 2
= Min{Znin (P), TT}HISI® < V(E) < — max{Aimax (P), T IS (22)

Note that V(0) = 0and V(¢) >0, V& # 0.
16



From (22), define the following positive constants,

=2, (23)

1
kl = Emin{ﬂ-min(P)' F_l}’ (24)
k= 5 max{es (P), 1) (25)

The time derivative of (20) along trajectories of (17) and (19) can be expressed as

. . 1 — N
V(te W)= EeT[AInP + PA,,le + eTPBWTB(x) + T 1tr (WTW)

1 ~
= EeT[A%P + PA,Je + eTPBWTB(x)

p (26)
—tr| WTB(x)e™PB + VT/Tz B(x)BT(x) )W |.

]

For any arbitrary matrices S, T € R™*™, tr(S + T) = tr(S) + tr(T). Using the given

property of trace and the Lyapunov equation in (11), we have

V(te, W)= —%eTQe +eTPBWTB(x) — tr(WTB(x)e"PB)

P (27)
—or [ W7 ()BT (o)W .
j=1

For any arbitrary row vectors a, b € R**™, tr(a”b) = ba” = 3%, a;b;. Therefore,

eTPBWTB(x) = tr(WTB(x)eTPB). (27) can be written as

p
V(te, W)= —%eTQe — tr WTZﬁ(xj)ﬁT(xj)W : (28)
=1
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To analyze the second term on the right hand side of (28), define the following matrix
p
n= . BB (x). (29)
j=1
Claim: If Condition 1 is satisfied, then n = nT > 0.
Proof: Note that X7_, B(x;)B" (x;) = ZZ", Z e R*P, then
n=2Z2ZZT, neRS*". (30)

Symmetry arises from the fact that n7 = ZZT = n. To show that 7 is positive-definite,

we pick an arbitrary vector w € R and compute the following inner product

<wnw>=onw=w"2ZTw=< ZTw,Z"w > = ||ZTw|% (31)

IZTw]| is positive unless ZTw = 0. Due to Condition 1, rank(ZT) = s. Therefore,
null(ZT) = {0}. It implies that ZTw = 0 if and only if w = 0. O

For conformable matrices E,F, and G, tr(EFG) = vec(ET)T(I ® F)vec(G) [26]. By

using the mentioned fact, (28) can be rewritten as

V(te W)= —%eTQe - vec(W)Tﬁvec(W), (32)
where 7j = diag[n, 1, .., n], € REXM XXM Hence, we have the following
inequalities

V(te W) < —%Amin(Q)eTe - Amin(n)vec(W)Tvec(W), (33)
V(66 < = min 3 i (@), Ain (D} €11 34

From (34), define the following positive constant

= i {5 2 (@0, Ain () @)
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By (22), (34) with a in (23), k; in (24), k, in (25), k5 in (35), and Theorem 4.10 in [9],
the origin, i.e. £ = 0, of the system given by (17) and (19) is exponentially stable. If
Assumption 1 holds globally, i.e. 2, = R™, then & = 0 is globally exponentially stable.

Remark 2 From the proof of Theorem 4.10 in [9], we know that ||€(¢)]| is bounded

from above by exponentially decaying function such that
k2 —A(t-
IEOI < k—IIE(to)IIe =t vt>t,>0, (36)
1

where 1 = k3 /(ak,) = min {%Amin(Q),Amm(n)}/max{ﬂmax(P), I'~13}. Itis obviously

seen that the rate of convergence is dependent on the spectral properties of Q, P, T', and
n.Q and P are determined by the reference model (nominal controller) and I is the
positive constant learning rate in (13). On the other hand, 7 is specified by the choice of

recorded data.
Remark 3 The static history-stack assumption of Theorem 1 can be relaxed if

dnin(M(@®) =1>0, Vt=>t,>0. (37)

Then, (34) becomes
. 1 _
V(6,) < = min {5 Amin (@, A} 111 (3)

The online removal or inclusion of data points in (13) does not affect the inequalities
(22) and (38) as long as (37) holds. Therefore, & = 0 is still exponentially stable
according to Theorem 4.10 in [9]. If the imposed condition in (37) is queried, one should

review the Nonautonomous Systems part of Chapter 4 in [9] or Example 2.1 in [24].

Remark 4 In cases where a pre-recorded data is not available at t = t,, the second

sentence of Theorem 1 should be replaced with the following one:
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Consider a data recording algorithm which selects data points B(x;) and the

associated model error 4(x;), then the origin, i.e. (e(t), W(t)) = 0 of the

closed-loop system given by (17) and (19) is uniformly stable.
In addition to i, if 7(¢) is such that B(x(t)) is exciting over a finite interval

(to, T), such that, for T, Condition 1 is satisfied by a data recording algorithm,
and (37) is satisfied for all t > T, then the origin, i.e. (e(t), I/T/(t)) = 0 of the

closed-loop system given by (17) and (19) is exponentially stable forall t > T.

The effects of the new statement on the proof of Theorem 1 are examined as follows:

Now, n(t) is positive-semidefinite for all t > t,. Hence, (33) can be written as
S 1 ,
V(te, W) < =5 Amin(@llell* < 0. (39)

(39) implies that the origin of the system given by (17) and (19) is uniformly

stable.

In addition to the first part, assume that r(t) is such that ,B(x(t)) is exciting over
a finite interval (t,,T). Then, a data recording algorithm guarantees that the
history-stack contains as many linearly independent columns as the dimension of
the basis vector for all t > T and (37) holds: A,,;,,(n(t)) =1 > 0forall t > T.
Now, the inequality (38) is valid for all t > T. Therefore, & = 0 is exponentially

stable forall t > T.

Remark 5 In [20], the performance of three different data point selection methods,

namely static history-stack, cyclic history-stack, and singular value maximizing, were

compared. Among them, singular value maximizing approach provides the fastest

parameter convergence. The idea behind the singular value maximizing approach is the

following. From (36), it is known that rate of convergence is directly proportional to the

minimum eigenvalue of . We also know that
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Umin(Z) = [Amin(ZZT)]l/Z = [Amin(n)]l/z- (40)
Hence, the history-stack is populated to maximize the minimum singular value of it.

In the simulations, we will also utilize the singular value maximizing algorithm for
recording data points. Thus, the algorithm used in [17], [7], [20] is described here.

Algorithm 1
if p = 0 then
p=p+1

Zt(:'p) = B(X(t))
Ac(:,p) = (BTB)T'BT[x() — Ax(t) — Bu(t)]

else if [ G<(0) =8, ) >eor rank([Zt,ﬁ(x(t))]) > rank(Z,) then

IB(x@)
if p < pthen
p=p+1

Z:(:,p) = B(x(1))
A¢(:,p) = (BTB)'BT[x(t) — Ax(t) — Bu(t)]
else
T =27,
SVola = Omin(Zt)
forj=1topdo
Z:(:,)) = B(x(D))
SV() = omin(Ze)
Z,=T
end for
find max SV and let k denote the corresponding column index
if max SV > SV,,;; then
Z,(, k) = B(x(®))
A.(:, k) = (BTB) BT [x(t) — Ax(t) — Bu(t)]
end if
end if
end if
end if

In Algorithm 1, p e N and p~¢ N represent the number of stored points and the stored
last point respectively. Z, denotes the history-stack at time ¢t. Similar to Z;, 4, denotes
the matrix containing the associated model error information. The p** column of Z, and
A; are denoted by Z,.(:,p) and 4.(:, p) respectively. € is a positive constant and p € N is

the maximum allowable number of recorded data points. Furthermore, the first condition
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of else if should be modified to avoid numerical problems if ||8(x(¢))]|| has a

possibility of being around zero.

Remark 6 After p = p, the minimum singular value of Z; is nondecreasing because one
of the old data points is replaced with the new data point such that the minimum singular
value of Z; is increased, if possible. Now, suppose that rank(Z;) = s whenp = s. Is

the minimum singular of Z, nondecreasing for p € [s, p]? Yes, because
0< Amin(n(t)) < Amin (Tl(t) + ﬁ(xp)ﬁT(xp))’ v pe [S' 15] (41)

from the special application of Theorem 10.3.1, one of the monotonicity theorems, in
[25]. Hence, it can be concluded that (37) holds after rank(Z;) = s.

2.4 Robustness of CL-MRAC to Switching in Ideal Weights

If the ideal weights in (3) switch in an unknown or undetectable manner, then

Assumption 1 is violated. In that case, two questions arise:

I.  What happens if irrelevant data points are not replaced with the relevant ones
after a switch in the ideal weights?
It is proved in [7] that the origin of the new system is ultimately bounded.

ii.  How do we modify Algorithm 1 to remove irrelevant recorded data?
Proposed algorithm for switched linear systems in [27] can also be used for the
uncertain system given in (1). This algorithm is described in Algorithm 2.

In Algorithm 2, entire recorded data points are removed or added according to the
switching surface determined by g1, g2, 93, t, Zyec, and Z,,... We utilize Z,,5., 4yse, and
Puse TOr concurrent learning adaptive law in (13). Note that g,, g, and g5 are positive
constants. Count is initialized to 0 and any data for use is equal to the recorded one
until the singular value inequality is satisfied for the first time. Then, g; > 0 ensures the

positive-definiteness of Z,,.oZ7 ,;ce.
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Algorithm 2

Use Algorithm 1 (replace Z; and 4; with Z,... and 4, respectively)
if Count = 0 then
Zyse = Zrec
Ayse = Arec
Puse =P
end if
if O-min(zrec) > O-min(Zuse)gle_gz(t_E) + g3 then
Count =1
Zyse = Zyec
Ayse = Arec
Puse =D
Zrec =0
Ayec =0
p=20
t=t
end if

2.5 Simulation Example

We compare the effectiveness of Algorithm 1 with Algorithm 2 on the following simple

system:
=10 ]+ [ w+wr@s (42)

where the ideal weights of the system switch at an unknown time

[0 1 25], if 0 <t<50sec

wr(t) = {[_0_5 4 —05], if50<t<100sec’ )

and B(x) = [1, x5, x,]". Furthermore, A = [8 é] and B == [(1)]
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System and input matrix of the reference model are selected as

1 0
tn=| g 2z, Bn=ud] 4
with a pair of complex conjugate eigenvalues which have natural frequency w,, = 2 and
damping ratio ¢ = 0.7. From the matching condition given in Assumption 2, nominal

controller gains are K; = [4, 2.8] and K, = 4.

In the simulations, three adaptive controllers are tested. These are the baseline adaptive
law in (12), concurrent learning adaptive law in (13) with Algorithm 1 and Algorithm 2.
For all adaptive controllers, the learning rate I' is set to 2 and Q = diag[1, 1]. In the
concurrent learning cases, maximum number of recorded data points p is 15 and & used
in data recording algorithms is 0.08. The switching surface parameters of Algorithm 2
are chosen as g; =1, g, = 0.02, g; = 1073, and £ = —103. We run the simulations

with a 0.005 sec time step using Euler integration.

Figure 1 shows the reference model tracking performance of the nominal controller and
Figure 2 shows the control input. It is obviously seen that nominal controller cannot
achieve reference model tracking. Moreover, bounded input yields unbounded state after
switching in ideal weights at t = 50 sec. Consider the system in (42) with nominal

controller after switching in ideal weights, i.e. 50 < t < 100 sec

1
X = Amx + Bpr + [(1)] [-0.5 4 —0.5] [xll
X2

=A,x + [2 _8.5] X + B, + [_8.5]

B o2

0
0

matrix B,,. For the ongoing analysis, let initial condition be zero and x; be measured.

(45) is a linear time-invariant system with system matrix A.: = [ _; 3] and input

Then, output matrix is C = [1  0]. Since the pair (4., By,) is controllable and the pair
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(A., C) is observable, the realization is minimal. In this case, the characteristic
polynomial of A, is equal to the pole polynomial d(s) of the transfer function from
input to output. Therefore, we can directly conclude that (45) with output matrix C is not

bounded-input, bounded-output (BIBO) stable because A; is not Hurwitz [28].

If we had known the ideal weights of the system during the nominal controller synthesis,
we would have realized and solved the instability problem described in the foregoing
analysis. However, we do not know the ideal weights. Thus, it explains why we use

adaptive controllers to suppress or cancel the effects of the matched uncertainty.

x,(0

X, (1)

0 10 20 30 40 50 60 70 80 90 100
time (sec)

_4 1 1 1 1 1

Figure 1 Responses with nominal controller

In Figure 3, the tracking performance of the baseline adaptive law is demonstrated and it
is clearly better than nominal controller. Figure 4 shows the control input and
uncertainty estimation. Note that uncertainty estimation does not uniformly cancel the
matched uncertainty because the estimated weights do not converge to their ideal values
as it is seen in Figure 5. It is the well-known issue of the baseline adaptive law because

for weight convergence, basis vectors must be PE.
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Figure 2 Control input with nominal controller
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Figure 3 Responses with baseline MRAC
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control input
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Figure 4 Control input and uncertainty estimation with baseline MRAC
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Figure 5 Estimate of the ideal weights with baseline MRAC
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After the introductory simulation results with nominal controller and MRAC, it is time

to present the outcomes of CL-MRAC. Figure 6 and Figure 10 demonstrate the tracking

performance of CL-MRAC with Algorithm 1 and Algorithm 2 respectively. Their

performance evaluation is divided into two parts:

Before the Switch in Ideal Weights, i.e. t < 50 sec

In this part, ideal weights can be considered constant. Therefore, weight
convergence is expected. As it is seen in Figure 8 and Figure 12, CL-MRAC
with Algorithm 1 and Algorithm 2 achieve weight convergence. Thus, adaptive
control inputs are very close to the matched uncertainty as it is seen in Figure 7
and Figure 11. At this point, it should be noted that Algorithm 1 provides faster
parameter convergence than Algorithm 2. The difference in convergence rate is
due to the difference in minimum singular value evolution; see Figure 9 and
Figure 13. The history-stack of Algorithm 1 reaches higher minimum singular
value. For example, 0,,;,(Z;) = 1.2 by Algorithm 1, 0., (Zyse) = 0.1 by
Algorithm 2 at t = 1.5 sec. The following explanation clarifies this difference.
Algorithm 1 does not remove relevant data. However, Algorithm 2 replaces data
with the recent ones though ideal weights do not vary. In other words, it causes
unnecessary removal of relevant data because of the switching surface, thus
limited time periods can be devoted to minimum singular value maximization.
The fast convergence property of Algorithm 1 is also seen in the tracking
performance when Figure 6 is compared with Figure 10. Furthermore, tracking
performance and parameter convergence superiority of CL-MRAC over MRAC
is clearly demonstrated in this part.

After the Switch in Ideal Weights, i.e. t > 50 sec

In contrast to previous part, weight convergence is not guaranteed in theory but
ultimate boundedness is expected. If the minimum singular value evolution is
evaluated to figure out the algorithm which provides faster convergence, one can
draw wrong conclusion. Although the minimum singular values with Algorithm
1 is higher than the ones with Algorithm 2; see Figure 9 and Figure 13, one third

of the data points, i.e. 5/15 are irrelevant even at t = 100 sec when Algorithm
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1 is used. As it is seen in Figure 8, estimated weights do not converge to ideal
values. Tracking performance of Algorithm 1 improves gradually but adaptive
control input cannot uniformly cancel the matched uncertainty due to lack of
parameter convergence; see Figure 6 and Figure 7. On the other hand, Figure 13
shows that Algorithm 2 gets rid of irrelevant data points at t = 57.665 sec.
Therefore, Algorithm 2 achieves parameter convergence, see Figure 12.
However, during the period from switching in ideal weights to irrelevant data
removal, except one recent data point, Algorithm 2 uses irrelevant data points.
Hence, it degrades the tracking performance and the uncertainty estimation in
this period compared to Algorithm 1. With the removal of irrelevant data points,
the tracking performance and the uncertainty estimation are immediately
improved because of the parameter convergence; see Figure 10 and Figure 11.
Moreover, both concurrent learning adaptive controllers perform better than
baseline adaptive controller except the mentioned period encountered in
Algorithm 2.

30 40 50 60 70 80 90 100
time (sec)

Figure 6 Responses with CL-MRAC & Algorithm 1
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Figure 8 Estimate of the ideal weights with CL-MRAC & Algorithm 1
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Figure 9 Minimum singular value of the history-stack with CL-MRAC &
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Figure 10 Responses with CL-MRAC & Algorithm 2
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Figure 12 Estimate of the ideal weights with CL-MRAC & Algorithm 2
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Figure 13 “Record” and “Use” minimum singular value of the history-stack with
CL-MRAC & Algorithm 2

In Algorithm 2, we have supplementary tuning parameters, g,, g, g3, due to the
switching surface. 0,,;,(Z,s.) Can be considered a norm of an initial condition of
exponentially stable system. Then, g, and g, determine the amplitude and decay rate of
the exponential decaying function, which bounds the solution of exponentially stable
system, respectively. On the other hand, g is treated as a small bias just to guarantee

positive-definiteness of Z,,s,Z7 .

In Figure 14, for three different g, values, the tracking performances of CL-MRAC are
seen. Since these responses differ from each other approximately for 15 seconds after
switching in ideal weights, we present the simulation results from t = 40 sec to
t = 70 sec. By looking Figure 14 over, it is hard to understand the effects of g,
variation. Thus, after switching in ideal weights, we should check the first and second

time that singular value inequalities are satisfied. Furthermore, the ratio of the relevant
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data points in “use” to the total data points in “use” between the first and second time

should be figured out.

2
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..... x,(), g, =0.8
2 1 | | | |
40 45 50 55 60 65 70
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Figure 14 Responses with CL-MRAC & Algorithm 2 & g, = 0.02, g; = 1073,
t=-103

In Table 1, demanded useful information is given. For all given g, values, every
irrelevant data point is replaced with the relevant one at the second time. From the
second time values, we can deduce that the time required for removal of irrelevant data
points decreases as g, decreases. Therefore, g; = 0.9 converges to reference model fast,
see Figure 14. However, g; = 1.1 performs better than g, = 1.0 & g; = 0.9 cases until
the removal of irrelevant data points. It may be explained by the ratio of the relevant
data points in “use” to the total data points in “use” between the first and second time.

That is, g; = 1.1 has more relevant data points than g; = 1 and g; = 0.9 cases.

Figure 15 shows the tracking performances of CL-MRAC for three different g, values.

Similar to the previous case, the responses differ from each other approximately for 15
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Table 1: 1% & 2" time that singular value inequality is satisfied and ratio between

relevant and total data points in “use” during this time interval when g, changes

g, | L time (sec) | Ratio of relevant data points in “use” to | 2™ time (sec)
total data points in “use”

1.0 50.445 1/8 57.665
1.1 54.385 4/8 61.105
0.9 50.445 1/8 56.340

seconds after switching in ideal weights. Thus, we present the simulation results from
t =40sectot =70 sec. To evaluate the responses, consider the useful information
given in Table 2. From the second time values, we can deduce that the time required for
removal of irrelevant data points decreases as g, increases. Therefore, g, = 0.04
converges to reference model fast, see Figure 15. However, g, = 0.01 performs better
than g, = 0.02 & g, = 0.04 cases until the removal of irrelevant data points. It may be

again due to the ratio between the relevant and the total data points.

Before the simulation results were obtained, we intuitively expected that decreasing
amplitude g, or increasing decay rate g, could result in reduction of the required time
for irrelevant data removal. The inferences, especially about the required time for
irrelevant data removal, we drew from the simulation results are consistent with the
expectations. On the other hand, we have observed that high amplitude or low decay rate
could yield better tracking performance until the removal of irrelevant data points. In
conclusion, tuning the switching surface parameters is not trivial even in this simple
example. We have trade-off between the time required for removal of irrelevant data

points and the performance up to the removal of them.

Table 2: 1% & 2" time that singular value inequality is satisfied and ratio between

relevant and total data points in “use” during this time interval when g, changes

g, | 1%time (sec) | Ratio of relevant data points in “use” to | 2" time (sec)
total data points in “use”

0.02 50.445 1/8 57.665
0.04 51.610 2/7 55.550
0.01 54.185 4/8 61.170
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Figure 15 Responses with CL-MRAC & Algorithm2 & g, = 1, g5 = 1073,
t=-103

2.6 Robustness of CL-MRAC to Time-Varying ldeal Weights

In this section, time-varying ideal weights are allowed in the matched uncertainty. Thus,
the uncertainty is changed from A(x(t)) to A(t,x(t)). Now, (1) is replaced with the

following system

x(t) = Ax() + Blu(®) + 4(t, x(1))] (46)

Assumption 3 The matched uncertainty in (46) can be linearly parameterized as

A(t,x) = WT()B(x), x € 1), (47)
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where W (t) e R°**™ is the unknown time-varying weight matrix that satisfies
IW(@®)llr < wand ||W(0)]|, < w with positive constants w and w, B(x(t)) : R" - R*
is a vector of known basis functions f(x) = [B1(x), B,(x), ..., Bs(x)]T € R® and £, is

a sufficiently large compact subset of R™.

An example of (47):
A(t,x) = cos(t) sin(x) + (1 —e ) cos(x) + x2, x€R,
where W (t) = [cos(t), 1—e7, 1]7, B(x) = [sin(x), cos(x), x?]T.

For time-varying ideal weights, the weight error is defined as

W(t) = w(t) — W(r), (48)
and thus
W(t) = W(t) — W(t). (49)
(14) can be written as
&0 = (W(t) - W©) Blx). (50)

Using (49) and (50), the weight error dynamics can be obtained from (13):

W(t) = W(t) — TB(x(2))e” (t)PB

v ) (51)
—Fz BB () (W(t) - W(®).
j=1
Using (29) and (48), I/T/(t) can be written as
W(t) = W(t) — TB(x(t))e" ()PB — T (W (t) - W (t))
(52)

= ) BG5BT (o)W ().
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The weight error dynamics for time-varying ideal weights is obviously different from
the one for constant ideal weights; see (52) and (19). On the other hand, there is no

variation in the state tracking error dynamics given in (17).

In this section, we aim to show that the solutions of the system given by (17) and (52)
are uniformly ultimately bounded (UUB) under Assumption 3. Consider the error vector

T
= [eT, vec(W)T] , the Lyapunov function in (21), and
B, = {£ e RMxm||ig|| < v} 2, (53)

where (2, is a sufficiently large compact set. Let ¢ be the minimum value of V(&) on the

boundary of B,.. Using (22) and (24),
¢ = minyg = V(&) = kyr?. (54)
Define
2. ={eB V() =}, (55)

and notice that (54) ensures that 2. c B,.. These sets are presented in Figure 16.

Figure 16 Geometric representation of the sets g, Q. (solid) and B, (dashed)
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Assumption 4 Assume
k
r> |2u=p (56)
,/ kq

_ Iw +w(lnllr + plinllz)
lein(n)

u is defined as

(57)

where0 < 6 < 1.

Theorem 2 Consider the system in (46) subject to Assumption 3, the reference model in
(2), and the tracking control law in (4), with the nominal control component given by (5)
subject to Assumption 2 and the adaptive feedback control component given by (6)
which has the concurrent learning weight update law in (13). It is also assumed that the
recorded data points satisfy Condition 1 at t = t,, and the history-stack is static, i.e. it is
not overwritten. Furthermore, let Assumption 4 hold. Then, 2. is positively invariant
and V £(t,) € 12, there exists T = T (&(t,), u) = 0 such that

k
HOIES /k—2||f<to)||e-w-to>, VigSt<to+T, (58)
1

where 4 = C3/(2k2) = min {%Amin(Q)' (1 - g)lmin(n)}/max{/lmax(P)' F_l}' C3 is

defined in the proof,

k
HOIE /k—zu, Veto+T, (59)
1

If Assumption 3 holds globally, i.e. 2, = R™, then (58) and (59) hold V £(t,), without

limitation on how large p is.
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Proof: To keep the formulas short, drop the argument ¢t in the proof.
Consider the Lyapunov function given in (20). The time derivative of (20) along

trajectories (17) and (52) can be expressed as

. . 1 N o
t e, =—e mP + mle te x)+ 1 "tr

1% W) =3 TIAT P + PA,,] TPBWTR(x) + I 'tr (WTW
1 _ .

= EeT[AZ;lP + PAple +eTPBWTB(x) + T 1er(WTW)

—tr(WTB(x)eTPB) — tr (WTn(W - W))

(60)
p
—er [ T BO)BT ()W () )
j=1
Define the following matrix

p
0= B(x)B" (x)W(y) (61)

j=1

Noting that e PBWTB(x) = tr(WTB(x)eTPB) and using the Lyapunov equation in
(11), we have

: g 1 I g o
V(te W)= —5e’Qe - tr(WTnW) + tr(WTnW) + T~ tr(WTW) (62

—tr(wTe)
Revisit the equalities and inequality used in the proof of Theorem 1: —tr(WTnl/T/) =
—vec(W)Tﬁvec(W) < —Amin(n)vec(W)Tvec(W) = —Amm(n)”W”i. Hence, we
have the following inequality

. — 1 — 2 ~
V(t.e. W) < =5 Amin(@llell* = Anin MW ||, + e (W W) 63)

+Iter(WTW) — tr(W70).
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From Cauchy-Bunyakovskii-Schwarz (CBS) inequality, we know that for any arbitrary
matrices M, Ne R*™,|< M,N >| < ||M||¢||N||z. Using CBS, (63) becomes

) ~ 1 m
V(te, W) < = Amin(@llell? = Amin )| W]

(64)
+UW lelinlly + T W, + 01 W] -
With the upper bounds given in Assumption 3, (64) can be upper bounded as
V(6,6 7) < == Apin(@llell? = Ain |7
2 (65)

+wlinlly + T~ + 1011 | W]

In order to complete the proof, we require an upper bound on ||@||r. It can be

established as follows:

el = ||,3(x1),3T(x1)W(t1) + -+ ﬁ(xp)BT(xp)W(tp)“F

< IBGDBT GOW (eI + -+ + [|BCe, )BT ()W ()], (%)
< 1BCe)BT el IW DNl + -+ (1B () BT Ce) LW (20 -
With the upper bound in Assumption 3, we can further upper bound (66) as
101l < w(llBCe)BT (ellp + -+ + [|B(x,)B" (xp) |, (67)

Claim: [|8(x,)B" (x )|, < lmll,  p=1,...p

Proof: The Frobenius norm of B(x,)B7 (x,) can be written as

N

18Go)B™ o), = | D o[BG )87 (x,)I" (68)

i=1
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Since B(x,)BT (x,) is a symmetric positive-semidefinite matrix, we have

18,87 (x,)] = jai [(6Ce)e7 ()] (69)

where (1. (BGi0)87(5,)) | = {488 Gop ) = A8 )87 G ). Ths, (69)

can be rewritten as

18Ge,)B7 ()1, = Zai [8(x,)B7(x,)]" (70)

Define v, i= B(x,) and H == vyv]. If v; = 0, it is clear that ||H||z = 0. Now, suppose
that v; # 0 and let {vy, v, ..., vs} be an orthogonal basis for RS, that is, v/ v; = a; > 0
and v/v; =0 for i #j. Hy; =0 for i =2,..,s. Thus, null(H) = {v,, ..., 5} and
dim[null(H)] = s — 1. Note that H? = v, v v,v] = ayH. Then, H?> — a;H = 0. Thus,
the minimal polynomial of H is m(1) =22 —aq;A=A(1 —a;) . The minimal
polynomial directly implies that the eigenvalues of H are A(H) ={0,a;}. We
have R® = null(H) @ null(H — a,1) and thus dim[null(H — a,I)] = 1. Finally, we
get the characteristic polynomial of H: d(1) = 5"1(1 — a;).

Using the result of the foregoing analysis, (70) is rewritten as
18Cep)BT (o)l = Amax[B ()BT (,)]- (71)
One can quickly realize ||B(x,)8" (x,)]|, = ||ﬁ(xp)ﬁT(xp)||2. Similar to (69), the
following equality can be easily shown in few steps
Inllz = 1ZZ7 1l = AmaxlZZ7]. (72)

Let the eigenvalues be labeled in nondecreasing order, i.e. 1; < A, < - < A,. From

Theorem 10.3.1 in [25], we know that for any symmetric matrices H, Y € RS> %,
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Let Y:=ZZ" —H . Recall that H is positive-semidefinite, Y is either positive-
semidefinite or positive-definite, and H + Y is positive-definite. Then, we can lower
bound (73) as

Let j = 1, we have the following inequalities

0<L(H)+A,(V) < AH+Y), 1<i<s, (75)

The following inequality is obtained from (77)
x| B (30 )BT (x5)] < Amax[227], (78)

Recalling (71) & (72), and noting (78), the target inequality in the claim is met. m

In the light of this discussion, (67) is upper bounded as
I161[r < wplinll,. (79)

Now, we are ready to continue Lyapunov analysis. Using (79), we upper bound (65) as

i ~ 1 v
V(& e, W) < =5 Anin(@llell” = Ain 7]}

(80)
+(r 0+ wlinlly + plinll) |7,
The foregoing inequality can be rewritten as
. ~ 1 V.
V(te,%) < =5 Anin(@llell” = (1 = O)Ain |7 [
(81)

=0 2min (D[ W|7 + (T4 + wllnlz + plinll) [ W]
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where 0 < 6 < 1. Then, we get
) 1 ~
V(e < - min{iamm(o), (1- e)zmm(n)} gz v gl = |wll, = u, (82)

where u = (F‘lv'v +w(nllF + p||n||2))/(9,1mm(n)). From (82), define the following

positive constant
(1
cs 1= min {2 Amin(@), (1 = ) min (D)}, ®)

Define the compact set
B, ={$ e B.|ll¢ll < pu}. (84)

It should be noted that (56) ensures that B, c B,.. Let d be the maximum value of V()
on the boundary of B,. Using (22) and (25),

d= max||§||=“V(§) = kz[iz. (85)
Define
g = B V() < d}. (86)

(85) guarantees that B, < £, and from the condition in (56), we ensure that 2; < (2.

All sets used in the proof are presented in Figure 17.

By (22), (82) with k, in (24), k, in (25), c5 in (83), Assumption 4, and Theorem 4.5 in
[29], 2. is positively invariant and for all initial errors £(t,) belong to 2., there exists
T = T(&(ty), ) = 0 such that (58) and (59) are satisfied. |
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Figure 17 Geometric representation of the sets Qg, Q., Q4 (solid) and B,, B,
(dashed)

Remark 7 Theorem 2 provides not only UUB solutions of the system given by (17) and
(52) but also estimates for the ultimate bound and the exponential convergence rate to
that bound. When (58) is compared with (36), it is noticed that there is no variation in
the convergence rate A except the new term 6. Since 6 is not a design parameter and it is
restricted to 0 < 6 < 1 in the proof, the discussions we had in Remark 2 are still valid.
It should also be kept in mind that A is the convergence rate to the origin in constant
ideal weight case, while it is the convergence rate to the ultimate bound in time-varying

ideal weight case. Moreover, consider the ultimate bound given in (59). It is rewritten as

e \/méllx{/lmax(P)' F_‘l} (r—lw +w(linlle + pIInIIz)>_ (87)
min{A,,;,,(P), "1} 0 Amin (1)

%
From (87), we can deduce that ultimate bound b is dependent on the spectral properties
of P, ', n, the number of recorded data points p, and the upper bounds on the ideal
weight and its derivative, i.e. w, w. Note that P, I', n, and p are controller design

parameters, while w and w are the inherent properties of the system. It should also be

noted that high learning rate I' decreases the effect of w but it can amplify \/k,/k, in b.
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Remark 8 The static history-stack assumption of Theorem 2 can be relaxed if (37) and

the following inequality hold

where 17 is a positive constant. Note that |[n(t)l, < lln(¢t)||z. Then, (82) becomes

: 1 - ~
V(6,€) < = min {2 Amin(@), (L = A EIE, v 1211 = W], = s, (89)

where p = T *w+w(1+p)7)/(62). In time-varying history-stack case, the

remaining part of the proof of Theorem 2 is completely same.

Remark 9 When we use baseline adaptive law in (12) instead of concurrent learning

adaptive law in (13), weight error dynamics can be written as
W(t) = W(t) — TR(x(1))e" (t)PB, (90)

and the following inequality is obtained after Lyapunov analysis
, . 1 .
V(t, e, W) =< _Elmin(Q)”e” +T W”W”F (91)

From (91), we cannot conclude that the solutions of the system given by (17) and (90)
are UUB. Actually, it is well known that baseline adaptive law suffers from the
parameter drift, which is one of the instability phenomena in adaptive systems.

Therefore, the baseline adaptive control is not appropriate for practical applications [11],

[3].

2.7 Data Point Selection Methods

In this section, we intend to share data recording algorithms which can be used for time-
varying ideal weights. All algorithms, which are going to be presented, take account of
the constraints mentioned in Remark 10.
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Remark 10 The following constraints on algorithms are quite simple:
i.  Pre-recorded data which satisfies Condition 1 is required due to Theorem 2.

ii.  From Remark 8, we know that the inequalities in (37) and (88) are also required.

The efficiency of singular value maximizing algorithm for constant ideal weights is
known from Remark 5. However, its performance in time-varying ideal weights has not
been investigated yet. Moreover, is there any reason for maximizing the minimum
singular value of the history-stack? The answer is still “yes” because the convergence
rate to the ultimate bound is directly proportional to the minimum singular value of the
history-stack, see (58). Thus, Algorithm 1 is modified and the modified version is given
in Algorithm 3. Since the first constraint given in Remark 10 implies that p cannot be
initialized to 0, the first if condition in Algorithm 1 is removed. Furthermore, additional
if condition is included to ensure that (88) holds. On the other hand, as it is described in

Remark 6, (37) holds without any modification.

In Algorithm 3, the upper bound of ||n(t)||, i.e. 77 is a new parameter which should be

selected by considering the pre-recorded data, i.e. ||7(to)|ls-

We aimed to increase the convergence rate to the ultimate bound in Algorithm 3. Now,
consider also the ultimate bound given in (87). Note that the ultimate bound is directly

proportional to u. Then, we separate u into two parts:
1=+ iy, (92)

where y; = T™W/(0Amin (1) and p; = w(linllr + plinllz) /(0 Amin (). It is clear that
increasing the minimum singular value of the history-stack decreases u,. On the other

hand, u, is directly proportional to (||nllr + plnll2)/Amin(n). This ratio can be upper

and lower bounded as

s +p)lnll, > Inllz + plinll, > 1+ p)IInIIz_ (93)
Amin(n) Amin(n) Amin(n)

In order to decrease ,, it seems reasonable to minimize ||nl|,/Aqnin (1) for constant p. It

is nothing but the squared condition number of the history-stack as follows:
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lInll> _ Omax (1) _ Ainax (M) _ (Umax(z)>2. (94)
Amin (77) Amin (77) Amin (77) Omin (Z)

In the light of this discussion, we can populate the history-stack such that not only its
minimum singular value is maximized but also its condition number is minimized.
Hence, Algorithm 3 is modified and modified version is called Algorithm 4. Only the
modified part of Algorithm 3 is demonstrated in Algorithm 4.

Algorithm 3

¢ 18G©) =)
[BE@)]
if p < pthen
p=p+1
Zt(: ) p) = ,B(X(t))
Ntemp = ”ZtZEHF
if Neemp < 77 then
4:C,p) = (B"B)'BT[x(t) — Ax(t) — Bu(t)]
else
Zt(:!p) =0
p=p-1
end if
else
T =127,
SVola = Omin(Zt)
forj=1topdo
Z:(:,)) = B(x(t))
SV(J) = omin(Ze)
Z,=T
end for
find max SV and let k denote the corresponding column index
Z:(:, k) = B(x(D))
Ntemp = ”ZtZEHF
if max SV > SV;,14 and n¢emp < 77 then
A, k) = (BTB) BT [x(t) — Ax(t) — Bu(t)]
else
Z, =T
end if
end if
end if

> ¢ then
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Algorithm 4

T=2
SVoia = Omin(Zt)
CNowg = Omax(Ze)/Omin(Zt)
forj=1topdo
Z:(:,j) = B(x(®)
SVU) = Omin(Zt)
CN() = Omax(Z)/omin(Zt)
Z, =T
end for
find max SV and let k denote the corresponding column index
find min CN and let kk denote the corresponding column index
if k = kk
Z,(:, k) = B(x(D))
Ntemp = IthZgllF
if max SV > SV, ;4 and min CN < CNgy1q and ngemp < 77 then
A.(:, k) = (BTB) 1BT[x(t) — Ax(t) — Bu(t)]
else
Z,=T
end if
end if

Instead of Algorithm 4, one can use another algorithm which maximizes minimum

singular value and minimizes condition number of the history-stack.

Remark 11 The estimate of the ultimate bound given in (87) would lead to conservative
bounds because of norm inequalities. Therefore, Algorithm 4 may not improve the

performance of the controller significantly, although it decreases the ultimate bound.

Due to Remark 11, it makes sense to look for an alternative algorithm which uses recent
data points mostly. Similar to Algorithm 1, one can modify Algorithm 2 to use it for
time-varying ideal weights. Since Algorithm 2 has additional three tuning parameters
and tuning them is not trivial issue, instead of modifying Algorithm 2, we will use cyclic
history-stack approach, simpler than Algorithm 2, to record the most recent data points.
As mentioned in Remark 5, cyclic history-stack approach does not perform as well as

singular value maximizing method for constant ideal weights. However, for time-
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varying ideal weights, it gives us a chance to record data points such that new data point
is replaced with the oldest one after p = p. Thus, we modify Algorithm 3 and call it
Algorithm 5. In contrast to Algorithm 3 and Algorithm 4, (37) does not hold
automatically after p = p. To satisfy (37), it is included in if condition in Algorithm 5.
The lower bound of A,,;,,(n(t)), i.e. 1is a new parameter which should be selected by

considering the pre-recorded data, i.e. A,,,;,,(n(t,)).

Algorithm 5

T =172
Z,¢,l:p—1)=Z,(:,2:p)
Zt(:Jp) = ,B(X(t))
Ntemp = ”ZtZEHF
Atemp = Amin (thg) _
if Neemp <77 @Nd Ay = 4 then
4:G,1:ip—1) = 4,(G,2:p)
4:(C,p) = (B"TB)"'BT[x(t) — Ax(t) — Bu(t)]
else
Zi =T
end if

2.8 Simulation Examples

In this section, we evaluate the performance of Algorithm 3, Algorithm 4, and
Algorithm 5 through simulations. For the evaluation, one regulation and one tracking
problem are considered.

2.8.1 Regulation Problem

Consider the scalar system:
X =u+wyx +d(t), (95)
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where w; is an unknown constant and d(t) is a time-varying disturbance such that it is
uniformly bounded, continuously differentiable, and its derivative is uniformly bounded.
Recall that Theorem 2 allows time-varying ideal weights in the matched uncertainty.

Therefore, (95) can be rewritten by including a bias term in the basis function
X =u+Wr@)px), (96)

where WT(t) = [d(t), w,] and B(x) = [1, x]7. Note that A:=0and B := 1. In the

simulations, d(t) = w;(t) = sin(0.1t) and w, = 1.

System and input constants of the reference model are selected as
(97)

with an eigenvalue which has time constant T, = 2. From the matching condition given

in Assumption 2, nominal controller gains are K; = 0.5 and K, = 0.5.

In the simulations, four adaptive controllers are tested. These are the baseline adaptive
law in (12), concurrent learning adaptive law in (13) with Algorithm 3, Algorithm 4, and
Algorithm 5. For all controllers, learning rate I is set to 1 and Q = 1. In the concurrent
learning cases, maximum number of recorded data points p is 4 and € used in data
recording algorithms is 0.08. Simulations are started with pre-recorded history-stack
satisfying Condition 1. It has 2 linearly independent columns, i.e. p = 2 and ||n(0)||z =
3.9, Amin(1(0)) = 10~*, which are required to determine 77 and A. Considering these
initial values, 7 and A are set to 10 and 10~* respectively. Furthermore, the responses of
the closed-loop system are obtained with the initial conditions: x(0) = 1, x,,(0) = 0,
and WT(0) = [0, 5] and we run the simulations with a 0.005 sec time step using Euler

integration.

In Figure 18, the regulation and the weight estimation performance of the baseline
adaptive law is presented. Norm of the error vector & is also given to discuss the
boundedness of the closed-loop system. If we consider only the regulation performance,

it may be satisfactory. However, it should be noted that w, (t) drifts to infinity. Thus,
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the closed-loop system is unbounded. This example shows the parameter drift instability

characteristics of the baseline adaptive law which is mentioned in Remark 9.

1.5 2

- _xm(t) = = =ideal
estimate

X(t)

x 05 3
-05 -2 . . . .
100 200 300 400 500 0 100 200 300 400 500
7 6
6 5
5
. - - —ideal 4
o estimate E 3
3
2 2
T 1 |
0 . . . . 0 . . error norm
0 100 200 300 400 500 0 100 200 300 400 500
time (sec) time (sec)

Figure 18 Responses and error norm with baseline MRAC

As it is described in [3], this parameter drift instability can also be explained by solving
for the “quasi” steady state response of (96) and (12). Since x,,,(0) = 0 and r(t) = 0 for
all t >0, x,(t) =0 for all t >0 and thus e(t) = x(t) for all t = 0. From (12),

Xss = 0. Moreover, we substitute u into (96)

0= —Kjxgg — Wy — Wyxgs +d + Wyxg, (98)

and (98) can be rewritten as

d - Wl
N — 99
xSS Wz - W2 + K1 ( )
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It is clear from (99) that for given d, w,, and K, xs goes to zero when either w; — d or
w, — oo, Since d is unknown time-varying signal, w; cannot converge to d. Thus,

w, — oo. This conclusion is consistent with the simulation result.

In Figure 19, the regulation and the weight estimation performances of CL-MRAC with
Algorithm 3, Algorithm 4, and Algorithm 5 are demonstrated. Norms of the error
vectors are also given. In contrast to baseline MRAC, it is obviously seen that closed-
loop systems with CL-MRAC are bounded as Theorem 2 promises. Among three
algorithms, Algorithm 5 has the best performance in terms of regulation. On the other

hand, Algorithm 4 achieves the lowest error norm.

15 2 :
-=-=x0 = = =ideal

Algorithm 3 AlgOr?thm 3

1 Algorithm 4 1 N - Algorithm 4

Algorithm 5 Alg'onthm 5

-0.5 -2
0 100 200 300 400 500 0 100 200 300 400 500
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6 Algorithm 3 5 Algorithm 4
Algorithm 4 Algorithm 5
5 Algorithm 5 4
4 —
N 23
3
2
2
T U 1
0 0
0 100 200 300 400 500 0 100 200 300 400 500

time (sec) time (sec)

Figure 19 Responses and error norm with CL-MRAC

In Figure 20, the evolution of the minimum singular value and the condition number of

the history-stacks is shown. In the left part of Figure 20, p is less than p up to 13.72 sec
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and thus algorithms are exactly the same algorithm. Although algorithms differ from
each other after t = 13.72 sec, difference in the evolution appears in the right part of
the figure. Furthermore, since new data points were not recorded by algorithms from

t = 125.28 sec to t = 500 sec, that part is omitted from the figure.

Even though the only thing we expect from Algorithm 3 is minimum singular value
maximization of the history-stack, it is clearly seen that the condition number of it also
decreases. Algorithm 4 maximizes the minimum singular value and minimizes the
condition number of the history-stack as it is desired and it achieves the maximum
minimum singular value and the minimum condition number of the history-stack among
three algorithms. Since Algorithm 5 records data in a cyclic manner, neither minimum

singular value nor condition number behaves in a monotonic way.
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Figure 20 Minimum singular value and condition number evolution of the history-
stacks with CL-MRAC
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Algorithm 4 minimizes the condition number of the history-stack and thus the ultimate
bound of the solution of the closed-loop system. It also maximizes the minimum
singular value of the history-stack and thus the convergence rate to the ultimate bound.
In the light of this information, the following question arises:

e When we quantify the estimate of the ultimate bound, does it give us practical
information? In other words, is the estimated ultimate bound value of Algorithm

4 around 2, see Figure 19?

Instead of evaluating (87) throughout the simulation, we can answer this question just by
calculating its lower bound. Since P = 1 and I' = 1, b = u for the given example. Using

(93) and (94), u can be conservatively lower bounded as

_wH w(l[nllr + plinll2) S w(1 + p)linll;
Hlmin(n) Amin(”)

> w(l + p). (100)

Note that the upper bound on the ideal weight w is +/2 and the number of recorded data
points p is 4 after t = 13.72 sec for all algorithms used in the simulation. We can
further lower bound (100) as

u>7.07. (101)

(101) implies that the ultimate bound lower than 7.07 cannot be guaranteed by (87).
Therefore, without explicitly evaluating (87) we can conclude that the estimated
ultimate bound overestimates the simulation result given in Figure 19, regardless of

algorithm. It should be noted that this result is consistent with Remark 11.

When we evaluate (87) att = 0 sec, the estimated ultimate bound is very high, i.e.
u =105 As it is expected, Algorithm 4 attains the minimum value, u = 26.1, among
three algorithms, see Figure 21. From the foregoing discussion, we know that the
attained value is still high. However, even if the attained value does not give us practical
information, it is meaningful because Algorithm 4 constantly improves the ultimate

bound which we guarantee in theory.
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Figure 21 Estimated ultimate bound evolution of the solution of the closed-loop
system with CL-MRAC

In order to use most recent data points, Algorithm 5 was proposed in the previous

section. In Table 3, we see when the last data points were recorded by algorithms. That

is, data points of history-stacks at t = 500 sec were recorded at given instants. Among

three algorithms, Algorithm 5 has the most recent data points. However, it does not

update its history-stack after ¢ = 125.28 and variation in history-stack is not as frequent

as it is desired for the given example.

Table 3: The time when the last data points were recorded by algorithms in

regulation problem

Algorithm 3 Algorithm 4 Algorithm 5
0 0 69.755
. 43.465 37.245 94.645
time (sec) 43.470 37.250 107.83
13.720 13.720 125.28

56




2.8.2 Tracking Problem

Consider the system given in (42) with the following ideal weights

WT(t) = [wy(t), wa(t), ws(t)], (102)
where

w; (t) = 0.1sin(0.1t) — 0.05sin(0.5t) — 0.5(1 — e~0-05t), (103)
wa(t) =4 — 17 (104)

2.5, t < 20 sec

—0.0025t% + 0.1t + 1.5, 20 <t < 40 sec

ws(t) = { 0.00125t2 — 0.2t + 7.5, 40 < t < 80 sec’ (105)

—-0.5, t = 80 sec

In the simulations, three adaptive controllers are tested. These are the concurrent
learning adaptive law in (13) with Algorithm 3, Algorithm 4, and Algorithm 5. We use
the same reference model, nominal controller gains, and adaptive controller parameters
as the section: 2.5 Simulation Example. The difference is in the algorithms and its
parameters. The maximum number of recorded data points p is 6. Simulations are
started with pre-recorded history-stack satisfying Condition 1. It has 3 linearly
independent columns, i.e. p = 3 and ||n(0)|lF = 3.1, Apin(1(0)) = 107°, which are
required to determine 77 and A. Considering these initial values, 7 and A are set to 20 and
107° respectively. We run the simulations with a 0.005 sec time step using Euler

integration.

In Figure 22, the tracking performances of the concurrent learning adaptive controllers
are presented and the ideal weight estimation performances of them are demonstrated in
Figure 23. Norms of the error vectors ¢ are also shown in Figure 24. In contrast to the
regulation problem in the previous section, Algorithm 5 achieves the lowest error norm
after t = 11 sec. Moreover, tracking and weight estimation performances of Algorithm
5 are better than Algorithm 3 and Algorithm 4.
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Figure 23 Estimate of the ideal weights with CL-MRAC
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Figure 24 Norm of the error vector with CL-MRAC

The superiority of Algorithm 5 in this example is not very surprising because we know

from Remark 11 and the previous regulation problem that even if the ultimate bound is

minimized by Algorithm 4, this value will be still large. Actually, Algorithm 4 achieves

the lowest condition number of the history-stack as it is desired. On the other hand,

Algorithm 5 updates its history-stack frequently most probably due to the richness of the

reference input. Therefore, it has the most current data points, see Table 4. Since the

ideal weights vary slowly, this frequent update improves the weight estimation and thus

the tracking performance.

Table 4: The time when the last data points were recorded by algorithms in

tracking problem

Algorithm 3 Algorithm 4 Algorithm 5
80.365 50.655 90.200
10.365 90.115 90.450
time (sec) 31.130 31.070 90.810
84.415 21.650 91.105
84.405 60.555 91.425
20.915 40.480 91.940
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2.9 Derivative-Free Model Reference Adaptive Control (DF-MRAC)

Derivative-free weight update law uses both delayed weight estimates and current
system states and errors to cancel the effects of the matched uncertainty which has time-
varying ideal weights [5], [21]. In this section, we consider again the system given in
(46). In contrast to derivative-based adaptive laws, derivative-free approach does not
require continuous ideal weights in Lyapunov analysis. Therefore, Assumption 3 is

relaxed as follows:
Assumption 5 The matched uncertainty in (46) can be linearly parameterized as

A(t,x) = WT () (x), x €0, (106)

where W(t) e R**™ is the unknown time-varying weight matrix that satisfies
|W ()|l < w with positive constant w and ,B(x(t)) : R™ - RS is a vector of known
basis functions B(x) = [B1(x), B,(x), ..., Bs(x)]T € RS and 12, is a sufficiently large

compact subset of R™.

Derivative-free adaptive law has the following form

W) =QW(t—1)+0,0), (107)
where T > 0,
0<02<K <1, (108)
and
Q,(t) = kK, B(x(t))eT (t)PB, (109)

with k, > 0. Using (107), define Q,

Q,(t) =W(t) — QW(t—r1). (110)
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With the upper bound given in Assumption 5 and (108), ||Q,(t)|| can be upper

bounded as
12:®llF < IW®lF + 12IWE = Dllp < w(l + /i) (111)
Using (107), (110) and the definition in (48), the weight error can be rewritten as
W)=, W(t—1)— 0,0 + Q,(t). (112)

On the other hand, there is no variation in the state tracking error dynamics given in
(17). To keep the formulas short, we will drop the argument ¢t in the following analysis

as long as explicit explanation is not required.

The following theorem and its proof can be found in [5], [21]. For the sake of
completeness, the theorem with minor variations in its statement and correction in the

corollary about convergence rate to the ultimate bound is proved here.
Define the error vector & := [eT, #(t,7)]T, where #2(t, 1) := tr (ftt_T VT/T(s)VT/(s)ds)

and consider the following continuously differentiable Lyapunov-Krasovskii function

t
V(e, VT/t) =eTPe + ptr( VT/T(S)VT/(s)ds>, (113)

t—7T

where p > 0 and W, represents W (t) over the time interval t — 7 to t. (113) can be

rewritten as
V($) =¢"Pg, (114)
where P = diag[P, p]. Then, (114) can be lower and upper bounded as
Min{Apin (P), p} I€1I> < V(§) < max{Apax(P), p} €11 (115)

Note that V(0) = 0and V(¢) >0, V& # 0.
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From (115), define the following positive constants,

ky = min{Ay;» (P), p}, (116)
ky = max{Apmq.(P), p}. (117)

Consider the sets represented in Figure 16 with a variation in the dimension due to the
new definition of the error vector. This variation is obviously seen in the following

definition of B,

B, ={§eR" H[§ll <7} c 0. (118)
Assumption 6 Assume

ka

ky
p is defined as
(1+ &) : (20
=W K
: 0 Amin (@12 (1 = qz161)

where0 <@ <land1<gq, <kl

Theorem 3 Consider the system in (46) subject to Assumption 5, the reference model in
(2), and the tracking control law in (4), with the nominal control component given by (5)
subject to Assumption 2 and the adaptive feedback control component given by (6)
which has the derivative-free weight update law in (107). Moreover, let Assumption 6
hold. Then, 02, is positively invariant and V &(t,) € £2., there exists T = T (§(t,),u) = 0
such that

k
HOIE /k—2||e<to>||e-ﬂ<t-to>, VigSt<to+T, (121)
1
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where A = k3/(2k,) = (1 — 0) nin(Q)/ (2max{A, 4 (P), p}), k3 is defined in the
proof,

,k
eIl < k—zu, Vi>ty+T, (122)
1

If Assumption 5 holds globally, i.e. 2, = R™, then (121) and (122) hold V &(t,),

without limitation on how large p is.

Proof: Consider the Lyapunov-Krasovkii function given in (113). The time derivative of
(113) along trajectories (17) and (112) can be expressed as
V(t,e,W,) = eT[ALP + PAp]e + 2e"TPBWT B (x)
+ptr (VT/TI/T/ —-WTt—-—1)W(t— T))
=eT[AT P + PA,]e + 2Q,e"PBWT (t — 1) B (x) (123)
—2eTPBOYB(x) + 2eTPBAL B (x)

+ptr (—gWTW + g W™W — WT(t — )W (t — 1)),

where g, —q; = 1and g; > 0. Thus, g, > 1.
Using the Lyapunov equation in (11) and expanding tr (q,WT W), we have
V(t,e,W,) = —eTQe + 20,e"PBWT (¢t — 7)B(x)
—2eTPBOYB(x) + 2eTPBAL B (x)
+ptr (—q1WTM7 —WT(t—1)W(t - T))
_ _ SR (124)
+ptr (qZKﬁWT(t —DW(t - ‘L')) + ptr(q,030,)
+ptr(q20;0,) — ptr (ZQZQ1Q§W(t - T))

+ptr(2q, 4 WT (t — 1)Q,) — ptr(2¢,05Q,).
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For conformable matrices A and B, tr(ATB) < ytr(ATA) + tr(BTB)/(4y), where

y > 0. This inequality is obtained from Young’s inequality in [5]. The following term in
(124) can be upper bounded as

ptr(2q, W7 (t — 1)Q,) < pytr (QfI/T/T(t - W (t— r))

(125)
+pqztr(Q302) /v
Using (109) with k, == 1/(pq,) > 0, we have the following three equalities.
The first one is
20,eTPBWT(t — 1)B(x) = ptr (2q291ﬁ£W(t — T)) (126)
because
20,eTPBWT (t — 1)B(x) = 20, tr (,B(x)eTPBVT/T(t -1)
127)
2 o (
_“ T(¢_
= tr (W7 (¢ - )
and
e 2 P
ptr (24,0, 5 W (¢ - r)) = =, tr (DIW (e - r))
K2
(128)
_ Lo (W7t - )
Ky 1 2 '
The second one is
~ P 1
—2e"PBOYB(x) + ptr(q,050,) = —K—tr(Qgﬂz) (129)
2
because
—2eTPBOLB(x) = —2tr(B(x)e"PBAOY)
(130)

2 2
= ——tr(Q,00) = ——r(Q20,)
Ko Ky
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and

P 1 P
ptr(q,050,) = K—tr(ﬂgﬂz). (131)
2
The third one is
2eTPBALB(x) = ptr(2q,050,) (132)
because
2 ~ 2 ~
2eTPBOY B (x) = 2tr(B(x)e"PBQY) = K—tr(nzﬂg) = K—tr(ngnz) (133)
2 2
and
~ 2
ptr(2q,050,) = K—tr(ngnz). (134)
2

Using the inequality (125) and the equalities (126), (129), and (132), we upper bound
(124) as

: _ 1 o
V(t,e,W,) < —eTQe — K—tr(ﬂgﬂz) — pq tr(WTW)
2

—ptr (1= (2 + NODWT (¢ ~ DWW (¢ — 1)) (135)

qZ
+ptr ((qz + 72> QEQZ)

Letting k; = 1/(q, +v) and using the inequality (108), we can easily show that
(1 - (g, +¥)Q3) > 0. Using positive-definiteness of Q, (111), and Frobenius norm

properties, we can further upper bound (135) as

V(te,W,) < —mylle||> — m2||l/~l/||; —ms||W (¢t - T)||12D + 6, (136)

where
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my = Amin(@) >0, (137)

m; = pqy >0, (138)
mz = p(1—x;'Q) >0, (139)

_ a3 2 2
5§=p q2+7w(1+\/lc—1) >0 (140)

In [5], it is claimed that the following inequality, i.e. (141), can be obtained by selecting
q, such that m, = m,t. Although we could not establish that inequality, we continue

with the ongoing analysis by assuming that their claim is correct:
V(t,§) < —myll€ll* + 6. (141)
The foregoing inequality can be rewritten as
V(t,§) < —(1—0)myll¢ll* — omyliEll* + 6, (142)
where 0 < 6 < 1. Then, we get

Ve,9) < -1 - 0myligli® vIgl = &, (143)

where p =./6/(0m;). Since 0 <k, <1,y >0,q, =k —y, and g, > 1, it is
obvious that g, € (1,x1). Using k, = 1/(pg,) andy = k7t — q,, u can be rewritten

as

1
n=w(is J"—l)J O in (@12 (L~ G30) (4

One can find an alternative representation for (144) if m, = myt is used. From (143),

define the following positive constant
k3 = (1 - H)Amin(Q)- (145)

The following steps are very similar to the steps in the proof of Theorem 2. Define the

compact set
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B, = {& € B[lIS]l < ul. (146)

It should be noted that (119) ensures that B, < B,.. Let d be the maximum value of V()
on the boundary of B,,. Using (115) and (117),

d= max”g”:”V(E) = kzﬂz. (147)

Define
2y ={§€eB V(&) <d} (148)

(147) guarantees that B, < £, and from the condition in (119), we ensure that 2, < (2.

All sets used in the proof are presented in Figure 17.

By (115), (143) with k4 in (116), k, in (117), k3 in (145), Assumption 6, and Theorem
4.5 in [29], Q2. is positively invariant and for all initial errors &(t,) belong to 2., there
exists T = T (&(t,), ) = 0 such that (121) and (122) are satisfied. |

Remark 12 In Theorem 3, it is proved that the error vector & = [eT, ¥(t,7)]7 is
uniformly bounded. Does bounded & imply bounded weight error W? The answer is
“yes”. Since e and x,, are bounded, x is bounded. Since e and x are bounded, Q, is
bounded. (107) is a difference equation and it can be regarded as s x m first order
discrete-time linear time-invariant systems. Q, is the system matrix and the elements of
Q, are the inputs. Since |Q;]| < 1 and O, is bounded, W is bounded. Then, noting that

ideal weights are bounded, we can conclude that W is bounded.

Remark 13 Due to the typing or calculation mistake made in Corollary 2 in [5], the
authors ended up with an incorrect expression for the exponential convergence rate to
the ultimate bound. The corrected version is given in (121) and it is independent of z.
One can still find out an expression dependent on t using m, = mytandq, — q; = 1.
Then, convergence rate becomes independent of 4,,,;,,(Q) and it increases with decrease

in 7. This inference is the exact opposite of the one in [5]. However, it should be noted
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that the estimated ultimate bound and convergence rate to that bound depend on the

inequality in (141) that we have doubt in the correctness of it.

Remark 14 If T is regarded as step size, k, is set to z[', and Q, is set to 1, Euler
discretization of (12) results in (107). However, Q; = 1 is not allowed and 7 does not
have to be equal to step size in DF-MRAC. (108) introduces forgetting property into the
weight update law that is effective when ideal weights encounter sudden changes. On
the other hand, selecting T greater than step size provides short-term memory.
Moreover, k, acts as a learning rate I' in MRAC. To sum up, DF-MRAC has more

tuning flexibility than MRAC because of the additional design parameters, (), and z.

2.10 Conclusion

This chapter extends the field of application of CL-MRAC by relaxing the constant ideal
parameters assumption. In order to apply this extended theorem to problems, existing
data recording algorithms are modified. We test CL-MRAC with modified algorithms in
simulation by using sample regulation and tracking problem. The simulation results
show that the performance of CL-MRAC is highly dependent on problems and data
recording algorithms. In addition to this extension, we repeat the proofs of the existing
CL-MRAC and DF-MRAC theorems to fill or emphasize the observed missing parts.
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CHAPTER 3

CONTROL OF WING ROCK MOTION

3.1 Introduction

Wing rock is a complicated aerodynamic phenomenon for slender delta wing aircraft. Its
onset is observed in high angles of attacks below the occurrence of stall. If it is
uncontrolled, then it causes limit cycle, even instability in body roll axis. Theoretical
results which have performed to understand the dynamics of wing rock, predict the
frequency & amplitude of limit-cycle, and roll divergence can be found in [30], [31].
Since it degrades the performance of aircraft at high angles of attack, the control of wing
rock motion has been extensively studied in the literature. Approaches used in wing rock
control can be divided into two groups. One approach is that controller is developed at
fixed angle of attack and it is sometimes tested other angles to claim robustness. In [32],
[33], this approach was used. Another approach is that angle of attack is allowed to vary
with time and thus controller design can take account of time variation in angle of
attack. The latter was applied to wing rock control in [34], [35]. In this study, we apply
the second one because it is more general and it corresponds to parameter variation that
fits our comparison purposes. The uncertainty in [35] and the random disturbance in
[36] are also added to test the performance of controllers under high level of uncertainty
and problematic disturbance.
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3.2 Wing Rock Dynamics

Analytical nonlinear models that describe subsonic wing rock phenomenon for slender
delta wings have been developed in [30], [31]. In [37], [34], the wing rock equation of
motion presented in [31] has been used. In [34], an interpolation function has also been
proposed to interpolate the aerodynamic coefficients smoothly with corresponding
angles of attack. Thus, time-varying model of the wing rock has been built. In this

chapter, we use the model presented in [34] and it is given by
¢ =—w*P+ i+ b1 + 0% + bopd® + gu +8(t, ¢, §) (149)

where ¢ is the roll angle, u is the aileron deflection, g = 1.5 is the input gain, and &

includes unmodeled function and disturbance input as follows:
5(t.. ) =d'(¢.¢)+d® (150)

The aerodynamic coefficients in (149) are functions of the angle of attack a:

w? = —c1a;,(a)

p = craz(a) — ¢
b, = c;a3(a) (151)
ty = cras(a)

b, = cyas (a),

where ¢; = 0.354 and ¢, = 0.001. Using Table 1 in [34], interpolated aerodynamic
coefficients are reproduced here in Figure 25. In [31], uncontrolled wing rock model
with § = 0 was analyzed and the authors showed that the origin of (149) is a stable
focus for a < 19.5 deg approximately. For higher angles, the origin is an unstable
focus and it is enclosed by a limit cycle. This qualitative behavior is represented for
a = 15deg and a = 25 deg in Figure 26. In this study, we consider that the angle of
attack varies between 15 deg and 25 deg. Thus, the qualitative behavior presented in

Figure 26 changes with angle of attack.
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Define the state vector x = [x;, x,]7 = [¢, gb]T then (149) can be written in the state

space form given in (46) as

x1] 0 111%1 0]
[J'cz] ~lo o] [x2]+[g [u+ At 2], (152)
where
—w? + + b 3 + 2 + b 2 + 6 t,
At x) = W"Xq T U1 X2 1X1 UpX1" X5 2X1X> ( x). (153)

g
0 1 0 . .
Furthermore, A := [O 0] and B := [g] Using (150) and (151), we can rewrite (153) as

Alt,x) =W)X +d'(x)/g, (154)
where the basis function
B)=[1 x x, x} xPx, xx2] (155)

and the ideal weights

d(t)/9g] o d(®)
w (a) c1a4(a)
_|w (a) - c1az(a) — ¢,
WO =) |79 @ (156)
w,(a) c1a4(a)
[ we () | L cias(a)

Similar to the assumption in [34], we assume that the angle of attack varies according to

the following exogenous function
T 21
a(t) = 20 + 4.25sin (g t) + sin (; t) + 0.1 sin(7t). (157)

As it is seen in Figure 27, the angle of attack varies between 15 deg and 25 deg
periodically. The variation in angle of attack could be due to the pilot inputs in
longitudinal axis.
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3.3 Nominal Controller

System and input matrix of the reference model are selected as (44) with a pair of
complex conjugate eigenvalues which have natural frequency w,, = 1 and damping ratio
¢ = 0.5. From the matching condition given in Assumption 2, nominal controller gains
are K; =[2/3, 2/3]and K, = 2/3. Performance of nominal controller is going to be

presented prior to the adaptive augmentation.

3.3.1 Simulation Results withd' =0&d =0

Figure 28 shows the reference model tracking performance of the nominal controller and
Figure 29 shows the aileron deflection. It is obvious that the nominal controller performs
well and adaptive augmentation is not required. This satisfactory performance can be

explained by the low uncertainty level presented in Figure 29.
73



¢ (deg)

é (deg/sec)

20

40

50 60
time (sec)

80 90

100

Figure 28 Responses with nominal controller withd' =0&d =0

aileron input (deg)

uncertainty estimation (deg)

Figure 29 Aileron deflection with nominal controller withd' = 0&d =0

20

10

o

0.2

0.1

| u(t)
20 40 60 80 100
vl _
A(Y)
1 1 1 uad (t)
20 40 60 80 100
time (sec)

74



3.3.2 Simulation Results withd' # 0 & d =0

In this section, we are going to check the performance of the nominal controller in the

presence of unmodeled function d’. We consider the following function given in [35]

d’ = 0.6141¢ + 1.2099¢ + 0.0135¢> — 0.0513¢?¢ + 0.035¢ 2. (158)

Note that this unmodeled function d’ is going to be used throughout the simulations.

(158) can be rewritten as

d'(x)=[0 06141 1.2099 0.0135 —0.0513 0.035]8(x). (159)

Now, (154) becomes

A(t,x) = W(E)TL (), (160)
where
d(t)/9g] [ d(t)
w; () c;a.(a) + 0.6141
iwa(a) | _jjciaz(@) —cy; +1.2099

wt) = wi(a) | g c,az(a) +0.0135 (161)

wy(a) c;a,(a) —0.0513

[ ws(a) | | cas(a) +0.035

In Figure 30 and Figure 31, the first three seconds of the simulation is demonstrated
because bounded reference input yields unbounded states. It is clear that nominal
controller cannot survive the uncertainty shown in Figure 31. Therefore, adaptive

augmentation is considered a solution to suppress or cancel the current uncertainty.

3.4 Adaptive Augmentation

In the simulations, three different adaptive controllers are used to augment the nominal
controller. The first adaptive controller which are going to be tested is the baseline

adaptive law (12) with e modification [12]:
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W (t) = I(B(x(t))eT ()PB — alle(®) |W), (162)

where o is a positive modification gain. Instead of (12), we select (162) to test in the
simulations because of its robustness to bounded perturbations. The second adaptive
controller which is going to be tested is the concurrent learning adaptive law in (13).
Derivative-free adaptive law in (107) is the third one. Since A,,in(Q)/Amax(P) 1S
maximized with the choice Q = diag[1, 1] (Example 9.1 in [9]) and convergence rate
to the ultimate bound in (58) & (121) is proportional to this ratio, we choose Q =

diag[1, 1] for all adaptive controllers and this parameter is not going to be tuned.

Other constant parameters are as follows. Modification gain o in (162) is tried to be kept
small because it increases high frequency oscillations in control inputs. It is set to 0.1. In
concurrent learning, maximum number of recorded data points p is 12 and € used in
data recording algorithms is 0.01. It should be noted that as we increase p, minimum
singular value of the history stack may increase, see Remark 6, but it causes irrelevant
memory which lags the system response to variation in dynamics. Therefore, we kept it
small compared to constant ideal parameter problems.¢ is also kept small to make
algorithms less selective about data recording. Simulations are started with pre-recorded
history-stack satisfying Condition 1. These data points are obtained from the simulation
when d' = 0 & d = 0. It has 6 linearly independent columns, i.e. p = 6 and ||[n(0)||F =
6.1, Amin(1(0)) = 1078, which are required to determine 77 and A. Considering these
initial values, 77 and 1 are set to 30 and 10~® respectively. In order to allow new data
inclusion or old data removal, we usually choose 7 three-six times higher than |[(0)]|x.
Otherwise, n saturates for a long time and variation in history-stack is hindered. In
derivative-free, T is set to 0.01 seconds and (2 is set to 0.95. To make adaptive law
responsive to variation in dynamics, t is kept small and thus it acts as a short-term
memory. To get benefit from this memory, Q, is set to a value which is close to the

upper bound given in (108).
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3.4.1 Simulation Results withd' # 0 & d =0

Figure 32 shows the tracking performance and aileron deflection of MRAC with e
modification forI' = 2 & I' = 20. In Figure 33, the weight estimation performances of
them are demonstrated. As learning rate is increased, transient response of roll angle and
roll rate is improved. However, high learning rate causes high frequency oscillations in
weight estimation & aileron input and thus in states. Moreover, weight estimation

performance is not improved by increasing learning rate.

In Figure 34, the tracking performances and aileron deflection of the concurrent learning
adaptive controllers are presented for I' = 2. Figure 35 shows the weight estimation
performances of them. There is no considerable difference in the performance and the
weight estimation of the algorithms. Both roll angle and roll rate encounter overshoot in

the first ten seconds. Their tracking performances are satisfactory except that overshoot.
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Figure 32 Responses and aileron deflection with MRAC with e modification
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Figure 33 Estimate of the ideal weights with MRAC with e modification

It is also clearly seen from the weight evolution that the estimated weights are close to
the ideal weights, especially d, w,, and w,. Recall from nominal controller part that the
uncertainty level due to the angle of attack variation is low compared to unmodeled
function d' and d’ has constant weights. It may explain why the weight estimation

performance is good though the ideal weights are time-varying and vary fast.

All algorithms properly work as it is desired. Algorithm 4 achieves the lowest condition
number of the history-stack. Although Algorithm 5 uses the most recent data points,
these data points can be considered irrelevant due to the fast variation in ideal weights.

This may explain why the estimation of w5, w,, and ws is poor.

In order to see whether high learning rate improves transient response of roll angle and
roll rate, causes high frequency oscillations in weight estimation & aileron input, we
increase it fromI' = 2 to ' = 20. In Figure 36, the tracking performances and aileron
deflection of the concurrent learning adaptive controllers are presented for I' = 20.

Figure 37 shows the weight estimation performances of them. There is no considerable
79



difference in the performance and the weight estimation of the algorithms again.
Transient response of roll angle and roll rate is improved. In contrast to MRAC with e
modification, CL-MRAC does not encounter any high frequency oscillation in weight
estimation & aileron input due to the increase in learning rate. Discussions we have had
about the weight estimation performance and algorithms for I' = 2 are still valid for
[' = 20. The only difference is that Algorithm 3 achieves the lowest condition number
of the history-stack for I' = 20.

Figure 38 shows the tracking performance and aileron deflection of DF-MRAC for
K, = 0.25 & x, = 2.5. Tracking performance of DF-MRAC with x, = 2.5 is the best
one we obtain among the tested controllers. Furthermore, aileron deflection time history
is acceptable. In Figure 39, the weight estimation performances of DF-MRAC are
demonstrated. Estimated weights are not close to the ideal weights. However, it is highly
responsive to the uncertainty and suppresses it very effectively. According to the
simulation results, we can conclude that while CL-MRAC cares about long-term

learning, DF-MRAC does not care about learning.
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3.4.2 Simulation Results withd' # 0 & d # 0

In addition to d’, we consider random disturbance d presented in [36]. It is introduced to
represent the effects of the gust and wind on the rolling dynamics. In contrast to the
uncertainty due to angle of attack variation and unmodeled function d’, random
disturbance d is nonvanishing perturbation. Therefore, it should be uniformly cancelled
by control to stabilize the origin. Since uniform cancellation is not possible for unknown
time-varying signal, we can only achieve practical stabilization in that case. This feature
of the disturbance increases the difficulty of the problem. The disturbance we are going

to use in the simulations is presented in Figure 40.
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Figure 41 shows the tracking performance and aileron deflection of MRAC with e
modification forI' = 2 & I' = 20. In Figure 42, the weight estimation performances of
them are demonstrated. Similar tod’ + 0 & d = 0 case, increase in learning rate
improves tracking performance with unacceptable high frequency oscillations in aileron.

Moreover, weight estimation performance is not improved by increasing learning rate.

Figure 43 and Figure 45 show the tracking performance and aileron deflection of the
concurrent learning adaptive controllers for I' = 2 and I' = 20 respectively. Moreover,
Figure 44 and Figure 46 present the weight estimation performance of the algorithms for
['=2and ' = 20 respectively. As it is seen in Figure 43 and Figure 45, none of the
algorithms achieve satisfactory tracking performance regardless of learning rate. In
contrast to d' # 0 & d = 0 case, the estimated weights are not close to the ideal
weights, see Figure 44 and Figure 46 . It may be explained by the increase in the time-

varying uncertainty level due to the random disturbance d and fast variation in it.
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Figure 47 demonstrates the tracking performance and aileron deflection of DF-MRAC
for x, = 0.25 & x, = 2.5. In Figure 48, the weight estimation performances of DF-
MRAC are shown. Similar to d'#0 & d =0 case, DF-MRAC with k, = 2.5
outperforms other tested controllers in terms of tracking performance and it has
reasonable aileron deflection history. The inference about the weight estimation we
drew from d’ # 0 & d = 0 case is still valid when we have random disturbance d. It is
again observed that CL-MRAC tries to learn the uncertainty. On the other hand, DF-

MRAC tries to suppress it. Actually, it is very powerful in uncertainty suppression.

Until now, we assume that uncertainty basis is exactly known since all theorems in
Chapter 2 were proved by using this information. However, uncertainty basis is not
exactly known in real applications. Since DF-MRAC tries to suppress the uncertainty
without learning it, we are motivated to test the performance of DF-MRAC by
approximating the uncertainty in (160) with functions different than (155). Three
different functions are selected for this comparison. The first one is symmetric sigmoid

functions used in [5]:
B =11 p1(x) B, (163)

1-e™%i
1+e i’

where B;(x) = i = 1,2. The second one is Fourier series with a long enough

period and sufficient series length used in [36]:

B)=[1 Bi(®) B(t) ... Bro@® ], (164)

27 (i-5)
T

where f;(t) = cos (% t), i=1,2,..,5 and B;(t) = sin( t), i=6,7,..,10.

In [36], the author proposes that period should be selected at least three times longer
than the simulation or operation time. Therefore, T is set to 500 seconds. The third and

the last one we are going to test is just bias. Thatis, § = 1.
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As it is seen in Figure 49, the responses of DF-MRAC with symmetric sigmoid
functions, Fourier series, and bias are almost indistinguishable from the response with
the known basis in (155). In this problem, DF-MRAC performs excellent even if the

uncertainty is approximated by using only bias as a basis function.
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Figure 49 Responses and aileron deflection with DF-MRAC, K, = 2.5

3.5 Conclusion

In this chapter, wing rock problem with time-varying angle of attack is studied for
numerical illustration. Under high level uncertainty and problematic disturbance,
controllers are tested and it is shown that DF-MRAC performs better than CL-MRAC.
Due to the excellent performance of DF-MRAC and its efficient adaptation strategy, its
performances with different basis functions are also tested. The simulation results still

present the excellent performance of DF-MRAC.
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CHAPTER 4

CONCLUDING REMARKS

4.1 Conclusions

The intent of this thesis has been to make a fair comparison of CL-MRAC and DF-
MRAC against parameter variation. For this purpose, we extend the field of application
of CL-MRAC by relaxing the constant ideal parameters assumption and prove that the
solution of the closed-loop system is UUB. In order to apply this extended theorem to
problems, we also modify the existing data recording algorithms. We then test CL-
MRAC with modified algorithms in simulation by using sample regulation and tracking
problem. The simulation results show that the performance of CL-MRAC is highly
dependent on problems and data recording algorithms. It should be noted that CL-
MRAC is not as promising as it is expected in [4]. We believe that CL-MRAC cannot
pave the way for flight certification of adaptive controllers. In addition to this extension,
we repeat the proofs of the existing CL-MRAC and DF-MRAC theorems because we
have observed one misuse, one unnecessary use of stability theorems and one claim
without reasoning in the standard exponential stability theorem of CL-MRAC developed
in [4], [7] and one missing part and one incorrect expression in the uniform ultimate
boundedness theorem of DF-MRAC developed in [5], [21].

Using wing rock problem with time-varying angle of attack, we have compared the
performances of two controllers. Under high level uncertainty and random disturbance,
controllers are tested and DF-MRAC performs better than CL-MRAC. Perfect

performance of DF-MRAC and its efficient adaptation strategy motivate us to test its
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performances when different basis functions are used. The simulation results still
present the excellent performance of DF-MRAC. Although we have similar theoretical
results for CL-MRAC and DF-MRAC, their adaptation strategies are completely
different and the effect of this difference in the performance is obviously seen in the

simulations.

Even though CL-MRAC is more complicated than DF-MRAC in terms of
implementation, DF-MRAC outperforms CL-MRAC in the simulations. It sounds
interesting but this is what we have observed. CL-MRAC requires an efficient data
recording algorithm, a memory and first derivative of the state for a recorded data point.
These requirements make it an expensive controller. On the other hand, DF-MRAC
requires neither data recording algorithm nor derivative of the state. Thus, it is obviously
cheaper than CL-MRAC and its implementation is quite easy. Besides, the lack of
performance in CL-MRAC may be due to the data usage. In other words, data usage
lags the system response to fast variation in dynamics. However, it should be kept in

mind that it guarantees the boundedness of the closed-loop system solution.

4.2 Recommended Future Research

In this work, we present the simulation results which reveal that CL-MRAC is not
promising in terms of performance under fast time-varying ideal parameters or
disturbance. However, it is still effective in time-invariant systems or time-varying
systems with slow variation in dynamics because of its parameter convergence
capability. This capability can be useful in closed-loop system identification of
nonlinear time-invariant systems. Moreover, identified model can be used to improve
the nominal controller synthesis. For example, we can decide whether identified
nonlinear term is stabilizing or destabilizing and if it is stabilizing, we should not try to

cancel it in stabilization problem. Thus, it may reduce the control effort.

To improve the performance of CL-MRAC under time-varying ideal parameters, one

can still look for alternative data recording algorithms. Besides, different learning rates
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for instantaneous update and update on recorded data can be considered. This will add a

new dimension to the controller design.

In the simulation results presented in this thesis, the performance of DF-MRAC is
outstanding. This superiority of derivative-free weight update law should be transferred
to general class of nonlinear plants. Furthermore, DF-MRAC performs excellent even if
the uncertainty is approximated by using only bias as a basis function in wing rock
problem. However, selecting bias as a basis is an intuitive approach. Thus, it requires
rigorous analysis. Another research direction of interest is to compare derivative-free
weight update law with disturbance estimators. For example, derivative-free disturbance
estimator may require less strict assumptions than extended high-gain observer as
disturbance estimator in [38]. It may also be combined with high-gain observers in

output feedback control.
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