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ABSTRACT 

 

BIODEGRADATION OF THE FLUORINATED NON-STEROIDAL             
ANTI-INFLAMMATORY PHARMACEUTICAL FLURBIPROFEN  

 

Yanaç, Kadir 

M.Sc., Department of Environmental Engineering 
                             Supervisor: Assist. Prof. Dr. Robert W. Murdoch 

 
June 2016, 147 pages 

 

Flurbiprofen (FLB) is a fluorinated aromatic acid non-steroidal anti-inflammatory 
pharmaceutical which is widely consumed in Turkey.  However, nothing is known 
regarding its environmental fate. The aim of this master thesis study was to 
contribute to the understanding of the biodegradation of flurbiprofen (FLB) by 
environmental bacteria and to gain understanding of the biological activities of 
fluorinated aromatics and their tendencies to result in toxic byproducts.  FLB was 
spiked into aerobic sewage sludge from Ankara Municipal Treatment Plant. 
Metabolism of FLB by environmental bacteria resulted in accumulation of a highly 
persistent metabolite identified by LCMS as 4-(1-carboxyethyl)-2-fluorobenzoic 
acid. The production of this metabolite is consistent with described pathways for 
monochlorobiphenyl.  Additionally, since FLB itself was quite recalcitrant, taking 
one week to 3 months to fully degrade, FLB and its metabolite are likely discharged 
into the environment from typical wastewater treatment plants.  Aerobic sewage 
sludge from Ankara Municipal Treatment Plant was also enriched for FLB 
degraders. FLB degraders could not be isolated despite using different minimal salt 
medium (MSM) systems and including vitamins. On the other hand, enrichment for 
tolylacetic acids (TAA) and phenylacetic acid (PAA) degraders was successful, 
indicating that MSM system worked.  This work suggests that FLB is very poorly 
degraded by aerobic bacteria, likely due to production of a dead-end fluorinated 
metabolite. 

Keywords: Flurbiprofen, Microbial Biodegradation of Pharmaceuticals, Microbial 
Biodegradation of Flurbiprofen, Microbial Biodegradation of Fluorinated Aromatics 
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ÖZ 

 

STEROİD YAPIDA OLMAYAN FLORLU ANTİENFLAMATUVAR 
FARMASÖTİK FLURBİPROFENİN  BİYOBOZUNUMU 

 

Yanaç, Kadir 

Yüksek Lisans, Çevre Mühendisliği Bölümü 
Tez Yöneticisi: Yardımcı Doç. Dr. Robert W. Murdoch 

 
 

Haziran 2016, 147 sayfa 
 
 
 

Flurbiprofen (FLB) Türkiye’de yaygın olarak kullanılan steroid yapıda olmayan 
antiemflamatuvar florlu bir aromatik asittir. Buna rağmen, çevresel akıbetine ilişkin 
hiçbir şey bilinmemektedir. Bu yüksek lisans tezinin amacı flurbiprofenin (FLB) 
çevresel bakteriler tarafından biyobozunumunun anlaşılmasına ve florlu 
aromatiklerin biyolojik aktivitelerinin ve bunların toksik yan ürünler üretme 
eğilimlerinin anlaşılmasına katkı sunmaktır. Flurbiprofen Ankara Atıksu Arıtma 
Tesisinden alınan aerobik arıtma çamuruna eklendi. FLB’nin çevresel bakteriler 
tarafından biyobozunumu, LCMS ile tanımlanan, güçlü bir şekilde kalıcı olan 4-(1-
karboksietil)-2-florobenzoik asitin birikmesiyle sonuçlandı. Bu metabolitin üretimi 
tanımlanmış olan monoklorobifenillerin metabolik yollarıyla tutarlıydı. Ek olarak, 
FLB’nin kendisi bir haftadan üç aya kadar değişen bozunum süreleriyle oldukça 
kararlı olduğu için FLB’nin ve bozunum metabolitinin tipik atıksu arıtma 
tesislerinden çevreye salınması olasıdır. Aynı tesisden alınan aerobik arıtma çamuru 
FLB çürütücüleri için de zenginleştirildi. Vitaminler de içeren farklı minimal tuz 
medium (MTM) sistemleri kullanılmasına ragmen FLB çürütücüleri izole edilemedi. 
Öte yandan, minimal tuz medyumumuzun çalıştığını gösteren fenilasetik asit (FAA) 
ve tolilasetik asit (TAA) çürütücüleri zenginleştirilebildi. Bu çalışma FLB’nin, 
muhtemel bir kör uçlu flüorlu metabolit üretiminden dolayı aerobik bakteriler 
tarafından zayıf bir şekilde bozunduğunu göstermektedir. 

Anahtar kelimeler: Flurbiprofen, Farmasötiklerin Mikrobiyal Biyobozunumu, 
Flurbiprofenin Mikrobiyal Biyobozunumu, Florlu Aromatiklerin Mikrobiyal 
Biyobozunumu 
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CHAPTER 1  

INTRODUCTION 

 

The global community has become very concerned about the environmental fate and 

effects of pharmaceutical compounds (Daughton & Ternes, 1999; Dietrich et al., 

2002; Halling-Sørensen et al., 1998). For the vast majority of human 

pharmaceuticals, the potential metabolic strategies employed for bacterial 

biodegradation are largely unexplored. The possibility of dead-end or metabolic 

intermediates increases the complexity of the challenge in regards to recalcitrance 

and ecotoxicology (Chou, 2006; Flaherty & Dodson, 2005; Laetz et al., 2009). 

Flurbiprofen (FLB) is a phenylacetic acid (PAA) based non-steroidal anti-

inflammatory pharmaceutical. FLB is quite popular in Turkey, where it is sold under 

the brand name Majezik and is the standard analgesic used for menstrual pain. 

Approximately 22% of consumed FLB is released unmodified or as a readily-

cleavable phase 2 metabolic conjugate (Risdall et al., 1978; Szpunar et al., 1987). 

Given the high dose (100-400mg per day) and likely high rate of consumption, FLB 

has the potential to reach sewage treatment systems and surface waters in significant 

concentrations. 

The biodegradation of FLB has not been studied to any degree. FLB is a modified 

PAA. Until the last few years, bacterial metabolism of PAAs was poorly understood. 

Very recently, two new and potentially widespread pathways for aerobic bacterial 

biodegradation of PAAs have been described, the paa and ipf pathways (Murdoch & 

Hay, 2013; Teufel et al., 2010). This research is in its early stages and much remains 

to be learned regarding the substrate specificities and distributions of these newly 

characterized pathways.  

Additionally, FLB is also a substituted biphenyl and contains a fluorine moiety. It is 

known that the bacterial metabolism of halogenated biphenyls mostly results in 
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accumulation of halogenated benzoates. Fluoro-aromatics are quite poorly studied. A 

certain fluorinated aromatic chemical, 3-fluorocatechol, is routinely employed as a 

metabolic poison in microbiology, raising the possibility that FLB biodegradation 

may yield a toxic byproduct that could adversely affect sewage treatment processes 

or have further ecological effects (Carvalho et al., 2006; Duque et al., 2012). 

 Based on current situation, the objectives of this thesis study are; 

 Investigation of the activity of environmental bacteria towards FLB in terms 

of  

o Degradation rates of FLB 

o Toxic effects of FLB 

 Investigation of biodegradation pathway of FLB 

 Investigation of the biological activities of fluorinated aromatics 

Most obviously, the activity of environmental bacteria towards FLB has yet to be 

studied and will offer a clear novel contribution. As a modified PAA and biphenyl, 

the study of FLB biodegradation pathway will make clear contributions to the current 

state of aromatic biodegradation research. Additionally, study of FLB contributes to 

the body of knowledge regarding the biological activities of fluorinated aromatics 

and in particular their tendencies to result in the toxic byproducts. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1. Pharmaceuticals in the Environment 

The pharmaceuticals sector has been growing due to new, simple and relatively 

cheap production techniques, deeper understanding of biological systems, increased 

governmental regulations on public health issues and increases in consumer 

purchasing power. Large amounts of pharmaceuticals are consumed annually around 

the world in order to cope with human and animal diseases (Jones et al., 2007;  Jones 

et al., 2001; Uslu et al., 2013;  Zhang et al., 2008).  Alder et al. (2006) estimated the 

amount of annual consumption of drugs per capita as 15 g/person in world and 50-

150 g/person in developed countries.  

With an increasingly aging population, the consumption of pharmaceuticals will 

increase in the future (Daughton, 2003). According to IMS Institute (2011), medical 

spending will reach $1.1 trillion in 2015 with an annual growth rate of 3-6%. In 

Turkey, each person consumed nearly 26 packets of drugs in 2013 based on statistics 

from the Ministry of Health. The improvement in medical and pharmacy fields is not 

a question of debate but, on the other hand, potential and possible environmental 

impacts of pharmaceuticals from the growing pharmaceutical sector cannot be 

ignored even if they are discharged to environment at very low concentrations. As a 

natural consequence, the scientific community has been attracted by this issue 

(Carlsson et al., 2006a, 2006b; Christensen, 1998; Cleuvers, 2003; Dietrich et al., 

2002; Fent et al., 2006; Heberer, 2002; Hirsch et al., 1999;  Kümmerer, 2009).  

Some precautions and regulations have entered into force in many regions and 

countries around the world. In 2001, European Council Directive 2001/83/EC stated 

that an environmental risk assessment (ERA) might be necessary before the approval 

of new medicinal products due to their potential effects on aquatic life forms and in 

2012 it was decided to monitor concentrations of pharmaceuticals in surface waters 

(EC, 2012). 
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Most pharmaceuticals have cyclic or aromatic structures (Figure 2. 1). They have 

been used for many therapeutic purposes.  

NH

O

N

CH3
CH3

OH

OH

F

OH

O

Atorvastatin

NN

NH

F

O

OH

O

Ciprofloxacin
 

Figure 2. 1. Chemical structures of two common aromatic pharmaceuticals 

Occurrence and Fate of Pharmaceuticals  

Improvements in detection techniques for trace pharmaceutical residues have 

allowed researchers to demonstrate occurrence of pharmaceuticals in aquatic 

environments (Jiang et al., 2013;  Jones et al., 2001; Peng et al., 2014; Uslu et al., 

2013);  Vulliet et al. (2011); Yang et al., 2011).   Pharmaceuticals are considered 

emerging contaminants, also termed micropollutants. Micropollutants are observed 

in waters at ng/L and µg/L levels (Luo et al., 2014). Bolong et al., (2009) reported 

that precautions and monitoring actions in many WWTPs were inadequate despite 

improvements. Luo et al. (2014) also reported that there were no discharge 

guidelines or standards for most micropollutants and that the number of countries 

having adopted regulations for micropollutants is small. Thus, the effects and 

presence of micropollutants cannot be prevented or monitored in most countries. 

NSAIDs, analgesic drugs, beta-blockers, antidiabetics, steroid hormones, blood lipid 

lowering agents, antineoplastic drugs, neuroactive compounds and antibiotics are the 

most observed pharmaceutical classes in wastewater, surface water and groundwater 

and are even observed in drinking water (Valavanidis et al., 2014). Among 

pharmaceutical classes, NSAIDs and antibiotics are the most widely detected 

pharmaceutical classes in waters (Hughes et al., 2013). 
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The physical and chemical properties of pharmaceuticals are responsible for their 

widespread distribution in the environment (Rosal et al., 2010). Hydrophilicity and 

hydrophobicity of the pharmaceuticals determine their fate in the in natural and 

artificial ecosystems (Suárez et al., 2008). One of the most important properties is 

octanol-water partition coefficient. Octanol-water partition coefficient (Kow) 

determines the hydrophobic sorption capacity of chemicals, particularly onto sludge 

or sediment. The sorption abilities of chemicals can be classified as: 

i) If log Kow<2.5, low sorption ability 

ii) If 2.5<log Kow<4.0, medium sorption ability 

iii) If log Kow>4.0, possible high sorption ability (Caliman & Gavrilescu, 2009; 

Jones-Lepp & Stevens, 2007; Rogers, 1996) 

Not only Kow but also acidity constant (pKa) and the solid water distribution 

coefficient (Kd) are important determinants of sorption (Joss et al., 2005; Ternes et 

al., 2004).   

Human pharmaceuticals are mostly excreted unchanged or only slightly transformed. 

Municipal wastewater is believed to be the main route by which pharmaceuticals 

reach aqueous environments (Jones et al., 2002; Kasprzyk-Hordern et al., 2009;  

Zhang et al., 2008). In Turkey, there have been only a few studies related to 

occurrence of pharmaceuticals in water environments and therefore, there is no clear 

information about the current situation (Aydin & Talinli, 2013; Komesli et al., 2015).  

Unused and expired pharmaceuticals disposed as solid waste or discarded into sewer 

systems are another source of pharmaceuticals in the environment (Bound & 

Voulvoulis, 2005; Scheytt et al., 2006). In addition to these contributors, discharges 

from hospitals and pharmaceutical industries are other sources of pharmaceutical 

loads in domestic wastewater. Pharmaceuticals loads arising from hospitals and 

pharmaceutical industries are mostly negligible when mixed with domestic 

wastewater (Bondar et al., 1998; Fent et al., 2006;  Santos et al., 2013; Saussereau et 

al., 2013; Verlicchi et al., 2010).  Leachates and leakage from poorly designed sewer 

and landfills can be a pharmaceutical contamination source of groundwater (Fawell 
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& Ong, 2012).  The main reason behind why conventional wastewater treatment 

plants are the main source of pharmaceutical pollution is that conventional 

wastewater treatment plants (WWTPs) are not capable of removing pharmaceuticals 

efficiently (Carballa et al., 2004; Joss et al., 2006; Lindqvist et al., 2005; Paxeus, 

2004; Petrie et al., 2013; Petrovic et al., 2009; Repice et al., 2013; Sim et al., 2011; 

Vidal-Dorsch et al., 2012). Concentrations of pharmaceuticals in the environment 

depend on many factors, such as pharmaceutical production rate, excretion rate, sales 

and practices, water used per capita per day and treatment capacities of WWTPs 

(Jelić et al., 2012; Petrovic et al., 2009). Seasonal variation is another important 

factor affecting concentrations of pharmaceuticals due to alterations in the flow 

pattern of wastewater, especially in the case of combined sewer systems (Luo et al., 

2014). For example, in dry seasons, the concentrations of pharmaceuticals are greater 

compared to rainy weather conditions (Kasprzyk-Hordern et al., 2009) and 

conversely, Wang et al. (2011) reported that lower concentrations of pharmaceuticals 

can be observed in summer due to promotion of biodegradation rates at higher 

temperatures and dilution during rainy summers. Moreover, concentrations of 

pharmaceuticals can actually increase during treatment. Concentrations of 

pharmaceuticals such as carbamazepine, erythromycin, and diclofenac in WWTPs 

can be greater than the influent concentrations due to transformation of secondary 

biotransformation metabolites into the original parent compounds (Celiz et al., 2009; 

Göbel et al., 2007; Kasprzyk-Hordern et al., 2009) and  release of pharmaceuticals 

from fecal particles during treatment (Luo et al., 2014).  

The main receivers of these pharmaceutical loads from effluents of wastewater 

treatment plants (WWTP) are coastal water, ground water, surface water and tap 

water/drinking water (Benotti et al., 2009; Bull et al., 2011; Fick et al., 2009; Jelic et 

al., 2011; Jelic et al., 2011; Kim et al., 2007; Lindqvist et al., 2005; Schriks et al., 

2010; Uslu et al., 2013; Vidal-Dorsch et al., 2012; Vieno et al., 2007). The discharge 

from WWTPs into natural water environments such as rivers dilutes pollutants to 

some degree (Gros et al., 2007). Groundwater has been shown to be less polluted 

with pharmaceuticals and other micropollutants compared to surface water due to 

loss during transmission of pharmaceuticals into ground waters (Loos et al., 2010;  

Vulliet & Cren-Olive, 2011). However, the situation still poses a potential threat to 
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groundwater. It is known that pharmaceuticals adsorb onto sewage sludge which can 

then be used for agricultural purposes (Carrara et al., 2008). Emerging contaminants, 

including pharmaceuticals, can pollute soil and water through agricultural use of 

sewage sludge and sewage effluent (Kinney et al., 2008; Kinney et al., 2006; 

McClellan & Halden, 2010; Mohapatra et al., 2014; Tijani et al., 2013;  Wu et al., 

2009). The introduction of pharmaceuticals into food chains is made possible by 

irrigation of edible plants with reclaimed wastewater (Shenker et al., 2011; Tanoue et 

al., 2012; C. Wu et al., 2010).  The various routes of release, transport, and fate of 

micropollutants are summarized in Figure 2. 2. 

 

 

Figure 2. 2. Routes and sources of pharmaceutical loads (Petrović et al., 2003) 

Environmental Effects of Pharmaceuticals  

Pharmaceuticals and their metabolites at trace levels in waters carry health risks for 

aquatic life and human beings (Carlsson et al., 2006a; Corcoran et al., 2010; Farré et 

al., 2008; Fent et al., 2006; Liu et al., 2009; Moldovan, 2006; Pomati et al., 2006; 

Tamtam et al., 2008; Zuccato et al., 2006). Some specific compounds may interact 

with non-target living organisms and ecosystems even at environmentally relevant 

concentrations because the goal of pharmaceutical design is to achieve biological 

activity (Aydin & Talinli, 2013; Mohapatra et al., 2014). Neither the fate and 

behavior of pharmaceuticals and their metabolites nor their effects on living creatures 
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are well known in soil and water environments, although there are many studies 

related to these issues (Brausch et al., 2012; Corcoran et al., 2010).  

Based on recent studies, the environmental bioaccumulation potential of 

pharmaceuticals and personal care products (PPCPs) is very high. This situation 

affects hormonal control and antibiotic resistance causing reoccurrence of 

hospitalization and increasing treatment costs (Tijani et al., 2013).  Feminization of 

male fish (Corcoran et al., 2010; Fent et al., 2006), alterations in liver, kidney and 

gills in fish (Fent et al., 2006; Gagne et al., 2006) and pathogen antibiotic resistance 

(Witte, 1998; Zuccato et al., 2006) are some of the clearly proven effects of 

pharmaceuticals in the environment. Synthetic steroids can have long term adverse 

effects on fish at environmentally relevant concentrations or even at very low 

concentrations (Lange et al., 2001). Ethinyl estradiol, one of best known endocrine 

disruptors, has negative effects on zebrafish embryonic development at 

concentrations as low as 5 ng/L (Carlsson et al., 2006b; Kime & Nash, 1999).  Many 

other micropollutants have endocrine disrupting effects (Figure 2. 3). Jones et al. 

(2002) classified acute toxicities of some types of pharmaceuticals. Antibiotics are 

classified as extremely toxic to microorganisms (EC50 < 0.1 mg/L) and very toxic to 

algae (EC50 = 0.1-1 mg/L), antidepressants and cardiovascular pharmaceuticals are 

classified as very toxic to crustaceans and analgesics are classified as toxic (EC50 = 

1-10 mg/L) or harmful to crustaceans and fish (EC50 = 10-100 mg/L). Additionally, 

bioaccumulation of pharmaceuticals in earthworms has been reported with 

concentrations exceeding 1000 µg/kg (Kinney et al., 2008). 
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Figure 2. 3. Potential endocrine disrupting pharmaceuticals (Caliman & Gavrilescu, 

2009) 

Pharmaceuticals occur in the environment as complex mixtures rather than isolated 

chemicals, which may lead to greater toxic effects on living organisms (Backhaus, 

2014; Cleuvers, 2003; Kolpin et al., 2002). A pharmaceutical mixture consisting of 

atenolol, furosemide, sulfamethoxazole, ciprofloxacin, and others at environmentally 

relevant concentrations was shown to inhibit the growth of human embryonic cells 

(Pomati et al., 2006).  Zebra fish (Danio rerio) exhibited significantly decreased 

embryo production after 6 week exposure to a pharmaceutical mixture including 

acetaminophen, carbamazepine, gemfibrozil and venlafaxine at environmental 

concentrations (Galus et al., 2013). A mixture of diclofenac, ibuprofen and 

carbamazepine was associated with increase in mortality at 60 µg/L concentration for 

each and histopathological changes in the liver, kidney, skin and gill of tench (a fish, 

Tinca tinca) at lower concentrations (Stancova et al., 2014). A mixture of eleven 

pharmaceuticals from different therapeutic classes showed significant toxic effects 

on Hydra at environmentally relevant concentrations (Quinn et al., 2009).  

 



10 
 

The continuous flow of pharmaceuticals to the aquatic environment has created a 

chronic exposure problem in addition to acute (Crane et al., 2006). In a chronic 

toxicity study, carbamazepine caused impairments in evolutionarily conserved 

specific biochemical pathways of the Mediterranean mussel (Mytilus 

galloprovincialis) at environmentally relevant concentrations, 0.1 and 10 µg/L in a 7 

day-exposure (Martin-Diaz et al., 2009).   

Removal of Pharmaceuticals 

Global climate change, rapid population increase, urbanization and technological 

advancement, bad agricultural practices and poor wastewater treatment plants have 

created water scarcity and pollution problems (Johnson et al., 2008; Mara, 2003; 

Montgomery & Elimelech, 2007; Moore et al., 2003). The UN reported that there are 

about 50 countries faced with water scarcity (UN, 2014), making alternative water 

resources increasingly attractive. Use of sustainable water sources, such as use of 

recycled water and reclaimed water for irrigational and environmental purposes, 

industrial applications, urban uses and potable reuse has become more important in 

arid and semi-arid areas in order to meet needs of growing populations (Asano et al., 

2007; Chen et al., 2013; Council, 2012; Dodgen et al., 2013; Hamilton et al., 2007; 

Kinney et al., 2006; Plumlee et al., 2012). Before using reclaimed waters, the health 

of the water sources should be taken into consideration. Direct use of surface waters 

may also create problems; many studies have reported the occurrence of 

pharmaceuticals in surface waters at ng/L to µg/L levels (Castiglioni et al., 2005; 

Clara et al., 2005; Fernandez et al., 2010; Kleywegt et al., 2011; Vanderford et al., 

2003).  

In many countries, conventional wastewater treatment technologies with poor 

removal efficiencies for micropollutants are in use. By looking at the processes 

involved in conventional WWTPs, fate, toxicity and occurrence of pharmaceuticals 

during and after treatment may be understood. Primary treatment processes in which 

the main mechanism is sorption are not effective for removal of pharmaceuticals 

(Carballa et al., 2005; Ternes et al., 2004) and by considering that sorption onto 

solids is the main removal mechanism for most pharmaceuticals (Verlicchi et al., 

2012), the magnitude of the risk caused by occurrence of pharmaceuticals in water 
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environments can be estimated. In secondary treatment, many mechanisms such as 

dispersion, biodegradation, sorption onto sludge, dilution and abiotic transformation 

take place and might provide better removal efficiency for pharmaceuticals (Jelic et 

al., 2011). However, in order to achieve good removal efficiencies, some treatment 

parameters should be taken into consideration. For example, extended sludge 

retention times (SRT) can achieve better removal efficiencies for pharmaceuticals by 

positively influencing microbial communities in terms of size and diversity 

(Fernandez-Fontaina et al., 2012; Suarez et al., 2010). Activated sludge processes are 

generally regarded as better for removal of pharmaceuticals than other low-cost 

treatment options (Camacho-Muñoz et al., 2012). pH and temperature characteristics 

of WWTPs may also affect the removal by influencing biodegradation capacity of 

micropollutants (Cirja et al., 2008).  

Most WWTPs do not employ tertiary treatment processes which are good for 

removal of pharmaceuticals but are rather applied for reducing public and 

environmental health issues. Certain advanced treatment technologies have been 

investigated for more efficient removal of pharmaceuticals from wastewater 

(Klamerth et al., 2010; Martínez et al., 2013; Mestre et al., 2009; Rosal et al., 2010; 

Rossner et al., 2009; Sipma et al., 2010; Trinh et al., 2012). Treatment of PPCPs and 

EDCs by advanced oxidation processes (AOPs) have shown great effectiveness and 

almost complete mineralization of these compounds (Méndez-Arriaga et al., 2008). 

Toxic by-products may be observed during treatment of pharmaceuticals (Tijani et 

al., 2013). 1,4-Benzoquinone as a transformation product of acetaminophen during 

water chlorination or an intermediate product of photolysis of clofibric acid is 

extremely toxic (Bedner & MacCrehan, 2006; Nikolaou et al., 2007). When 

biological and chemical treatment methods are combined, higher treatment 

efficiencies with less by-product generation can be obtained (Zhang et al., 2012). For 

water reuse, advanced treatment technologies such as membrane bioreactor/reverse 

osmosis should be used (De la Torre et al., 2012) 

Knowledge about fate, occurrence and removal of pharmaceuticals in the 

environment is limited. Most conventional wastewater treatment plants are not 

qualified to remove pharmaceuticals. Advanced treatment processes are costly and 
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not applicable in most cases. Even advanced treatment processes can lead to toxic 

by-products. To conclude, there is still much to be learned about the fate, occurrence 

and removal of pharmaceuticals in both natural and constructed environments.   

2.1.1. NSAIDs in the Environment 

NSAIDs are class of aromatic acidic drugs used for analgesic, antipyretic and anti-

inflammatory purposes through their inhibition of cyclooxygenase-1 (COX-1) and 

cycloxygenase-2 (COX-2) isoenzymes, which prevents the formation of 

prostaglandins and thromboxane (Gagné et al., 2005; Gentili, 2007; Gierse et al., 

1995). Many NSAIDs are substituted PAAs, a core structure which may be 

responsible for their activity. NSAIDs are one of the most consumed drug classes. 

When introduced into the environment, there may be impacts on human and 

environmental health (Almeida et al., 2013). The inclusion of the NSAID diclofenac 

in the European monitoring list in 2013 indicates the gravity of the situation (Union, 

2013).  
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Figure 2. 4. Some common NSAIDs 

NSAIDs are frequently detected in different environments, with concentrations 

ranging from ng/L to µg/L (Gavrilescu et al., 2015; Lapworth et al., 2012; Lloret et 

al., 2010; S. Wu et al., 2012). Diclofenac, IBP, ketoprofen, mefenamic acid, 

naproxen, salicylic acid are the most reported pharmaceuticals in WWTPs (Luo et 

al., 2014). In Turkey, Aydin and Talinli (2013) conducted a study related to 
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occurrence of pharmaceuticals in surface water; results indicated that the highest 

concentrations of naproxen, IBP and diclofenac in Büyükcekmece watershed were 

12.3 µg/L, 263 ng/L and 52 ng/L, respectively. NSAIDs exhibit a rate of unmodified 

excretion varying between 0 and 39 % (Luo et al., 2014). Luo et al. (2014) reported 

concentrations of NSAIDs including IBP, naproxen, ketoprofen, diclofenac and 

mefenamic acid at ng/L levels in surface water and groundwater. Focazio et al. 

(2008) reported IBP concentration up to 29 ng/L in untreated drinking water in the 

USA. In Spain, IBP was one of the most detected pharmaceuticals in wastewater 

influents, with concentrations varying between 3.73 µg/L and 603 µg/L (J. L. Santos 

et al., 2009). 

NSAIDs can cause serious problems in the environment. Meloxicam is used instead 

of diclofenac in India due to impacts of diclofenac on vulture populations (Oaks et 

al., 2004; Swarup et al., 2007). Chronic exposure to diclofenac at concentrations 1, 5 

and 25 µg/L can lead to tissue damage and impairments of biochemical functions in 

rainbow trout (Mehinto et al., 2010). In Europe, diclofenac was considered for 

inclusion in the list of priority water contaminants considering its toxicity and 

recalitrance (Richardson & Ternes, 2011). A chronic toxicity test revealed that 0.2 

µg/L exposure of IBP to zebra mussel can cause cyto-genotoxicity on hemocytes and 

in cases of higher exposure concentrations, serious genetic and cellular damage 

(Parolini et al., 2011). Diclofenac and IBP can cause endocrine disruption, transient 

oxidative stress, neurotoxic alterations and tissue damage in Mytilus 

galloprovincialis at environmental concentrations (Gonzalez-Rey & Bebianno, 2011, 

2012; Gonzalez-Rey & Bebianno, 2014; Schmidt et al., 2011). Zebrafish was 

exposed to 320 µg/L diclofenac and fortunately no adverse effects were observed. 

This might offer comfort to researchers when considering lower diclofenac 

concentrations in many rivers (Memmert et al., 2013). However, 1 µg/L diclofenac 

exposure for 28 days caused cytological alterations in gills, kidneys and liver of 

rainbow trout (Triebskorn et al., 2004). Moreover, stability of NSAIDs makes their 

elimination difficult in treatment plants which may lead to unintentional 

consumption by humans (Gentili, 2007). For example, the presence of naproxen in 

groundwater and drinking water may lead to impacts on human health (Gentili, 2007; 

Juvancz et al., 2008). Bioaccumulation is another potential problem. IBP, naproxen 
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and diclofenac show a tendency to bioaccumulate in fish (Brozinski et al., 2011; 

Lahti & Oikari, 2011; Mehinto et al., 2010; Nallani et al., 2011). Pharmaceuticals can 

enter the environment not only in the form of the parent compound but also in the 

form of human phase I and II metabolites (Davies, 1998; Davies & Anderson, 1997; 

Larsson et al., 2014; Skordi et al., 2004; Vree et al., 1993). Additionally, 

transformation of NSAIDs into their corresponding human metabolites has been 

observed during treatment (Ferrando-Climent et al., 2012; Lahti & Oikari, 2011; 

Zwiener et al., 2002). It is known that IBP metabolites have less toxicity towards 

certain freshwater organisms (Lienert et al., 2007) but data related to the toxicity of 

metabolites of NSAIDs is not extensive enough to make larger generalizations. In 

another study, hydroxylated derivatives of IBP exhibited increased inhibition 

percentage of bioluminescence from Vibrio fischeri, indicative of general 

cytotoxicity (Méndez-Arriaga et al., 2008). Diclofenac photolysis by-products and 

naproxen phototransformation byproducts can be more toxic than parent compounds 

(Coelho et al., 2009; Diniz et al., 2015; Isidori et al., 2005). 

Log kow values of NSAIDs are generally between 2.5 and 5 (Aydin & Talinli, 2013; 

Salgado et al., 2012; Trenholm et al., 2006). This shows their tendency to sorption 

onto solid particles and to bioaccumulate. 

NSAIDs are not fully eliminated by activated sludge processes (Rodarte-Morales et 

al., 2011). IBP, naproxen and ketoprofen have moderate and high removal 

efficiencies in conventional WWTPs while diclofenac has poor removal efficiency 

(Luo et al., 2014). IBP and ketoprofen exhibited high biodegradation (>75%), while 

diclofenac biodegraded at a low rate (<25%) (Salgado et al., 2012). Removal 

efficiencies about 50% for naproxen were observed in biological treatment (Carballa 

et al., 2004). Diclofenac has been reported as the most persistent NSAID in terms of 

biodegradability in WWTPs under both aerobic and anaerobic conditions (A. Jelic et 

al., 2011; Lahti & Oikari, 2011; Xue et al., 2010; Zwiener & Frimmel, 2003). In 

primary treatment, diclofenac can be removed by up to 28% by sorption onto 

particles, which might be accepted as the main removal mechanism for diclofenac 

(Behera et al., 2011; Salgado et al., 2012). Membrane bioreactors (MBRs) have good 

NSAID removal efficiencies except for diclofenac (Beier et al., 2011; Bo et al., 2009; 
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Tadkaew et al., 2011; Trinh et al., 2012). The removal of NSAIDs by advanced 

treatment processes is a controversial topic. Diclofenac removal may be achieved to 

a greater extent by physical and chemical processes (Kovalova et al., 2012; Luo et 

al., 2014;  Yang et al., 2011). Diclofenac removal was achieved at high rates with 

ultrasonic irradiation with TiO2, SiO2, SnO2, TiO2/SiO2 and with fenton and photo-

fenton treatment (Hartmann et al., 2008; Pérez-Estrada et al., 2005). UV/H2O2 

treatment also provided high rates of removal of naproxen (Pereira et al., 2007). It 

can be said that membrane processes, ozonation and AOPs can achieve high removal 

of NSAIDs from wastewater (Luo et al., 2014). In some cases, physicochemical 

processes may generate secondary pollutants (Zhang et al., 2013). Another promising 

treatment option is attached growth technology, with removal efficiencies up to 

100% (Falas et al., 2012; Reungoat et al., 2011). Among the treatment parameters, 

pH plays a significant role in the removal of acidic NSAIDs by affecting the affinity 

between the biosolids and NSAIDs in WWTPs (Kimura et al., 2010).   

Conventional wastewater treatment technologies have poor NSAIDs removal 

efficiencies. In many aquatic environments, such as groundwater, surface water and 

drinking water, NSAIDs have been detected at concentrations ranging from µg/L to 

ng/L. Toxicological studies suggest that not only NSAIDs, but also metabolites of 

NSAIDs at these concentrations can cause serious problems in the environment. 

Occurrence, fate, toxicity and biodegradation of NSAIDs will continue to draw 

attention of researchers considering increasing consumption rates of NSAIDs, poor 

removal efficiencies of conventional wastewater treatment technologies and 

inapplicability of advanced wastewater treatment technologies.  

2.1.2. Fluorinated Organics and Pharmaceuticals in the Environment 

Fluorine substituents introduce many useful properties to pharmaceuticals. Fluorine 

is mostly used for increasing biological half-lives of compounds. On the other hand, 

introduction of fluorine into chemicals creates environmental problems due to 

increased lipophilicity and recalcitrance (Khetan & Collins, 2007). In the fluorination 

of organics, a flourine or trifluoro-methyl group is used in place of a hydrogen atom 

or hydroxyl group; often the moiety targeted for replacement is the site of human 

metabolic attack. By this replacement, compounds with identical therapeutic effect 
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but slightly different structure, called bioisosteres, are obtained, ideally with 

improved pharmacological properties (Olesen, 2001). Introduction of fluorine into 

pharmaceuticals improves pharmacodynamic and pharmacokinetic properties (Park 

et al., 2001) and leads to increased bioavailability, intrinsic activity and chemical and 

metabolic stability  (Maienfisch & Hall, 2004). The stability of fluorinated 

pharmaceuticals is due to higher strength of the C-F bond than the C-H bond (Park et 

al., 2001).  Fluorination of pharmaceuticals can also increase binding affinity of a 

drug to a target protein (Bohm et al., 2004). Anticancer drugs, drugs acting on the 

central nervous system, cardiovascular drugs, drugs for infectious diseases, eye care 

drugs, endocrine system drugs, NSAIDs and antidepressants are some common 

pharmaceutical classes that include fluorinated pharmaceuticals; currently, 25% of 

pharmaceuticals are fluorinated and it seems this percentile will increase (Figure 2. 

5) (Park et al., 2001; Wang et al., 2014). 

N

N

N
+O

-

O

OH

F

CH3

Flunitrazepam

ONH
CH3

F

F

F

Fluoxetine

NN

NH

F

O

OH

O

Ciprofloxacin

 

Figure 2. 5. Some common Fluorinated Drugs 

Perfluorinated compounds (PFCs) have drawn significant attention, especially 

perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA).  They are 

widely used in industry. Carbon-fluorine provides stronger physicochemical 

properties and high resistance against both biotic and abiotic degradation (Rayne & 

Forest, 2009). Therefore, their occurrence in the environment is inevitable. 

Concentrations of PFCs are generally at low ng/L levels and in some cases they can 

reach to µg/L (Arvaniti et al., 2012; Kunacheva et al., 2011). There have been some 

studies reporting toxicity of PFOA such as impacts on tumor formation in animals 

(Andersen et al., 2008; Kennedy et al., 2004; Lau et al., 2007).   
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Fluoroquinolones are one of the most detected fluorinated pharmaceutical groups at 

ng/L and µg/L in aqueous environments (Figure 2. 6). Addition of fluorine to 

quinolones provides an increased antibacterial spectrum (Van Doorslaer et al., 2014). 

They are known for their potential to generate antibiotic resistance. 
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Figure 2. 6. General structure of fluoroquinolones, R1: generally piperazine 
 

Many organic halogenated compounds are resistant to degradation mechanisms in 

the environment (Tijani et al., 2013). Antibiotics are generally resistant against 

biodegradation (Jia et al., 2012; Li & Zhang, 2010; Verlicchi et al., 2012). Some of 

them have half-lives over 1000 days in soil which increases their bioaccumulation 

potential (Walters et al., 2010). Moreover, the removal of fluoroquinolones by 

conventional activated sludge processes is very poor (Halling-Sørensen et al., 2000; 

Jia et al., 2012; Li & Zhang, 2010) although with MBRs the removal rates may 

approach 60% (Dorival-García et al., 2013; Senta et al., 2011). The poor removal 

rates increase their occurrence in the environment.   

Each year, tons of fluoroquinolones are introduced into soil, representing high risk of 

development of bacterial resistance (McClellan & Halden, 2010). Many of the 

fluorinated pharmaceuticals such as ciprofloxacin, levofloxacin, atorvastatin, 

citalopram, fluvoxamine have toxic effects on alga, invertebrates, plants and fish 

based on chronic toxicity tests (Brain et al., 2004; Brooks et al., 2003; Ferrari et al., 

2004; Ferrari et al., 2003; Henry et al., 2004; Pascoe et al., 2003). Santos et al. 

(2010) reported concentrations of citalopram, fluoxetine, norfluoxetine, fluvoxamine 

and paroxetine at ng/L levels and their effects on organisms at these concentrations 

based on 134 previous toxicity studies. Ciprofloxacin, norfloxacin and levofloxacin 

are classified as harmful to aquatic organisms in some cases based on UN acute 

toxicity classification (Ortiz de García et al., 2014). Ciprofloxacin and ofloxacin are 
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environmentally recalcitrant and have toxic effects on wastewater bacteria at 

environmentally relevant concentrations (Kümmerer et al., 2000). Fluoxetine is 

recalcitrant to many natural processes (Kwon & Armbrust, 2006). Fluoxetine 

exhibits high acute toxicity on algae based on EC50 (48h, 0.024 mg/L) and LC50 (48h, 

2 mg/L) values (Brooks et al., 2003). Fluoxetine and norfluoxetine have 

bioaccumulation potential in fish tissues and are highly persistent (Meredith-

Williams et al., 2012; Paterson & Metcalfe, 2008). Fluoxetine exhibited endocrine 

disruptor effect on M. gelloprovincialis at 75 ng/L (Gonzalez-Rey & Bebianno, 

2013). Flutamide has impacts on fish (Hutchinson et al., 2003). It is known that 3-

fluorocatechols, which are potential degradation byproducts of fluorinated 

pharmaceuticals, have broad toxic effects. These impacts of fluorinated 

pharmaceuticals and chemicals might be not only due to fluorine but also complexity 

of their structure.  

Despite the common usage of fluorinated organics in both the chemical and 

pharmaceutical industries, their fate, occurrence and removal are still poorly 

understood. 

2.1.3. FLB in the Environment 

FLB is a fluorinated NSAID sold under the brand names of Majezik, Ansaid, 

Algopet, Fiera, Flubimak, Flupen, Flurflex, Fortine, Frolix, Maxaljin, Maximus, 

Merdex, Netfen, Porjezil, Strefen, Unijezik and Zero-P in Turkey. Dosage per tablet 

or capsule is generally 100 mg. The excretion ratio of FLB as unmodified or slightly 

modified compound is about 22% (Risdall et al., 1978; Szpunar et al., 1987). FLB is 

a substituted phenylacetic acid or a substituted biphenyl (BP). Despite this 

popularity, there has been no study related to its occurrence in Turkish surface 

waters.  New investigations suggest that FLB may be used for cancer treatment, 

especially prostate cancer, inhibition of colon tumors, anti-obesity purposes and for 

some other purposes in the future (Abdel-Aziz et al., 2012; Wechter et al., 2000). 
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There are only few studies reporting the occurrence of FLB in water. 0.21 and 0.34 

µg/L of FLB were detected in the WWTP effluents of France and Italy, respectively 

(Andreozzi et al., 2003). No FLB was detected in Swedish WWTP effluents (Bendz 

et al., 2005). There are no reports related to fate, toxicity and removal of FLB, likely 

because it is not popular in countries where scientific research is dense.  

FLB probably has high sorption ability and bioaccumulation potential in the 

environment. Flurbirpofen is poorly soluble in water and has a Kow of 4.2 (Abdel-

Aziz et al., 2012). This may give an idea about its fate, occurrence and removal.  

By looking at the fate, occurrence, toxicity and removal of other NSAIDs and 

fluorinated pharmaceuticals, a general idea about FLB in the environment can be 

obtained. The toxicity of FLB should be investigated and also the metabolites and 

byproducts during its degradation should be considered.     

2.2. Bacterial Metabolism of Aromatics 

Microorganisms have an extraordinary ability to degrade the vast majority of 

pollutants including recently introduced pollutants into the environment. The 

recalcitrance of aromatics and their impacts on human and environmental health 

make them problematic (Assessment, 2005; ATSDR, 2007). Aromatics are in the 

structures of many natural and anthropogenic chemicals. They have significant roles 

in biological activities. The ubiquitous presence of aromatics in nature leads to the 

conclusion that the bacteria able to degrade them should be common. Aromatics can 

be simply described as circular hydrocarbons and heterocycles with delocalized π-

orbital electrons (Phale et al., 2007; Vaillancourt et al., 2006). The inaccessibility of 

the carbons and the negative resonance of the delocalized electrons make them 

resistant against chemical attacks (Phale et al., 2007; Vaillancourt et al., 2006). Since 

they are naturally found in the environment, energy rich and ubiquitous, there are 
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common bacterial pathways for metabolizing them. However, it is known that this 

metabolism is not easy and requires highly specialized enzymatic machinery.  

The abundance and variety of aromatics has led to diverse degradation mechanisms 

in bacteria. One of these mechanisms is simply the addition of either one or two 

atoms of oxygen to the aromatic ring (Harayama et al., 1992) which leads to 

cleavage of the ring by destabilizing the aromatic structure (Fuchs, 2008; Ju & 

Parales, 2010; Masai et al., 2007; Phale et al., 2007; Zeyaullah et al., 2009). 

Aromatic xenobiotics, especially halogenated aromatics, with complex structures 

may be more resistant to biodegradation due to absence of specific enzymatic 

machinery responsible for their metabolism in bacteria (George & Hay, 2011). 

Understanding molecular mechanisms and bacterial strategies for biodegradation of 

aromatics improves our ability to predict and monitor their biodegradation in situ.  

Generally, biodegradation of an aromatic ring occurs in two steps referred to as the 

upper pathway and lower pathway. meta-, ortho- and and gentisate cleavage are the 

main aerobic mechanisms for ring opening of aromatics (Figure 2. 7). Major 

intermediates in aerobic pathways of aromatic degradation are catechols, 

protocatechuates and gentisates. In the case of anaerobic biodegradation, the upper 

pathways converge to benzoyl-CoA. Dearomatizing processes of this benzoyl-CoA 

intermediate are catalyzed by special multi-component reductases in the presence of 

ATP as energy (Cao et al., 2009).   
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Figure 2. 7. Aerobic biodegradation mechanisms for (1) aromatics funneled to 

catechol, (2) Aromatics funneled to protocathecuate, (3) ortho-, meta- and gentisate 
cleavage (Cao et al., 2009; Harwood & Parales, 1996). 

 

Organization and regulation of biodegradation genes 

Aromatic degradation pathways are encoded by genes arranged in clusters or operons 

(Figure 2. 8). Clusters generally contain catabolic genes, transport genes and one or 

more regulatory genes. Catabolic genes, transport genes and regulatory genes are 

responsible for encoding degradative enzymes, encoding proteins enabling uptake of 

the compound and controlling total gene expression, respectively (Diaz, 2004; 

Khomenkov et al., 2008).  

Regulatory proteins play a significant role in functioning of a pathway. Regulatory 

proteins appear to modulate gene expression when suitable substrate is present. 

There are many families of regulators for catabolic pathways (Tropel & van der 

Meer, 2004). For example, LysR-type regulators, the largest family, are involved in 

biodegradation of numerous aromatic compounds. Some other families are the 

AraC/XylS family, the IclR family and the XylR/NtrC family (Tropel & van der 
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Meer, 2004). Interestingly, different classes of regulators often regulate similar 

catabolic genes in various microorganisms (Cases & de Lorenzo, 2001; Shingler, 

2003). 
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Figure 2. 8. The organization of the catabolic operon, encoding the tod pathway of 
Pseudomonas putida F1. X is transport gene. F, C1, C2, B, A, D, E, G, I  and H are 

catabolic genes. S and T are regulatory genes. PtodX promoter transcribes the 
operon. TodS and TodT (Zylstra & Gibson, 1989; Zylstra et al., 1988). 

2.2.1. Biodegradation of Simple Aromatic Hydrocarbons 

The simplest aromatic hydrocarbons are monocyclic hydrocarbons such as phenol, 

toluene and benzene. They are common in environment and can be toxic at low 

concentrations. They have been studied extensively to understand their degradation 

mechanisms and to construct new bioremediation methods. Most research has been 

focused on biodegradation of the BTEX group (benzene, toluene, ethylbenzene, and 

xylene).  Toluene (Figure 2. 9) is considered the most easily degraded compound of 

the BTEX group (Gülensoy & Alvarez, 1999).  

The enzyme systems present in the microorganisms determine the metabolic 

pathways of degradation for the simple aromatics. For instance, the formation of 

catechol followed by meta- or ortho- aromatic ring cleavage is the main mechanism 

for biodegradation of phenol; the type of cleavage depends on the enzymatic 

machinery present (Ahamad & Kunhi, 1996; Herrmann et al., 1995). Another 

example is biodegradation of o-xylene by Pseudomonas stutzeri OX1. o-xylene is 

exposed to two monooxygenase attacks, which results in the formation of 3,4-
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dimethyl catechol, which is then cleaved via meta cleavage (Baggi et al., 1987).  In 

case of the biodegradation of toluene, different microorganisms exhibit different 

biodegradation pathways (Gülensoy & Alvarez, 1999) (Figure 2. 9).  
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Figure 2. 9. Different biodegradation pathways of toluene 
 

Classical double-dioxygenation metabolism of aromatics 

While aromatics can be degraded biologically by both aerobic and anaerobic 

mechanisms in the environment, the aerobic mechanism is mainly responsible for 

biodegradation (Cao et al., 2009) because aerobic processes are fast, substantive and 

thermodynamically favorable.   

The classical double-dioxygenation metabolism proceeds via two steps, the upper 

and lower pathways (Diaz, 2004). In the upper pathway, the addition of two hydroxyl 
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groups to the mono- or polycyclic aromatics destabilizes the ring (Mason & 

Cammack, 1992). The lower pathway proceeds after formation of catechol or 

gentisate and hydroquinone in some cases (Corvini et al., 2006; Harayama et al., 

1992; Harayama & Rekik, 1989; Vaillancourt et al., 2006). Following the cleavage 

of the ring, the metabolites are directed to the tricarboxylic acid cycle for 

biosynthesis and energy production (Figure 2. 10).  
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Figure 2. 10. Basic features of the double-dioxygenation metabolism of aromatics 
 

There are some other details of upper and lower pathways worth mentioning. In the 

upper pathway, ring oxidation requires a reactive oxygen species because of the 

stability of molecular oxygen. Addition of the oxygen atoms to the aromatic ring is 

catalyzed via ring-hydroxylating oxygenases. Many of the best known oxygenases 

require transfer of electrons from NADPH to a terminal oxygenase via electron 

transport proteins (Butler & Mason, 1997; Gibson & Parales, 2000). The terminal 

oxygenase with its large (α) and small (β) subunits functions as an oxygen activation 

center and is responsible for substrate recognition and binding (Butler & Mason, 

1997; Furusawa et al., 2004; Gibson & Parales, 2000). In the lower pathway, ring 

fissions through ortho- and meta-cleavage take place (Harayama & Rekik, 1989) 

(Figure 2. 11). Intradiol and extradiol oxygenases initiate ortho- and meta-cleavages 

using Fe(III) and Fe(II) at the active site, respectively (Harayama et al., 1992). 

Additionally, the ring fission product of meta-cleavage reaction exhibits a diagnostic 
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yellow color that disappears upon acidification.  In the case of ortho-cleavage, 

coloration is not observed. Broadly speaking, extradiol oxygenases (catechol-2,3-

dioxygenases, C23Os) are frequently observed  in catabolic and biosynthetic 

pathways (Vaillancourt et al., 2006). 
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Figure 2. 11. meta- versus ortho- cleavage. meta- and ortho-cleavage take place at 

2,3- and 1,2 position on the catechol, respectively. The catalyzers of the reactions are 
C23Os and C12Os, respectively. 

 

In many cases, intermediates of aromatic metabolism are responsible for cellular 

toxicity (Chavez et al., 2006; Park et al., 2004; Perez-Pantoja et al., 2003; Pumphrey 

& Madsen, 2007), requiring specific bacterial adaptations for degradation. Catecholic 

intermediates can be problematic in that they cause inactivation of C23Os during 

catalysis (Bartels et al., 1984; Klecka & Gibson, 1981). It is known that some 

chlorocatechols and alkylcatechols are especially problematic in this regard 

(Vaillancourt et al., 2006). This situation is also called suicide inhibition, resulting in 

subsequent accumulation of catechol and limitation of the substrate range.  Beyond 

suicide inhibition, catechols can cause toxicity by different molecular mechanisms 

such as production of reactive oxygen species and direct protein damage (Schweigert 

et al., 2001).  

Metabolism of Aromatic Acids 

Dioxygenations at the 1,2 or 2,3 position are the most-studied aromatic degradation 

processes to date. The TOL pathway of Pseudomonas putida mt-2 is an example of 

1,2 dioxygenation. The genes responsible for biodegradation of xylenes and toluene 

are encoded by TOL operon. Toluene is sequentially oxidized at the methyl group to 

benzoate. Cis-dioxygenation of benzoate in the 1,2 position produces cis-benzoate 

dihydrodiol, which is then decarboxylated and dehydrogenated to form catechol (1,2-
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dihydroxybenzene). Subsequent dioxygenation of catechol at the 2,3 position then 

cleaves the ring (Eaton, 1996, 1997). 

4-isopropylbenzoate (cumate) is an aromatic acid with a branched aliphatic 

substituent in the para-position which is often cited as a model for alkyl-substituted 

aromatic acids. It is dioxygenated at the 2,3 position by Pseudomonas putida F1. In 

this case, the cmt operon encodes the enzymes for dioxygenation. 2,3-dihydroxy-4-

isopropylbenzoate is then produced by dehydrogenation. This product is 

dioxygenated at the 3,4 positon to cleave the ring (Figure 2. 12). Because this is a 

meta-cleavage process, a diagnostic yellow color is observed (DeFrank & Ribbons, 

1977a, 1977b; Eaton, 1996, 1997). 

 

COOH

CH3 CH3

COOH

CH3 CH3

OH

OH

H

H

COOH

CH3 CH3

OH

OH
COOH

COOH

CH3 CH3

OH

O

O2

NADH      NAD+ NAD+     NADH O2

 

Figure 2. 12. General scheme of the 1,2 dioxygenation cmt pathway. 
 

The biodegradation of phenylacetic acid 

Until recently, it was believed that bacterial metabolism of phenylacetic acid is 

similar to those for simple aromatics, such as BTEX and benzoates. This 

misunderstanding was derived from knowledge of the bacterial pathways for 

degradation of hydroxyphenylacetic acids. In these pathways, either 3,4-

hydroxyphenylacetic acid (homoprotocatechuate) or 2,5-hydroxyphenylacetic acid 

(homogentisate) are produced as intermediates via sequential monooxygenation 

(Arias-Barrau et al., 2004; Sparnins & Chapman, 1976; Sparnins et al., 1974; Wegst 

et al., 1981). A representation of the pathways for phenylacetic acids is presented in 

Figure 2. 13 (Luengo et al., 2007). 
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Figure 2. 13. Metabolism of phenylacetic acids by different microorganisms. 1. 
Nocardia  salmonicolor 2. Trichosporon cutaneum and Flavobacterium sp. 3. 

Escherichia coli, Klebsiella pneumoniae. 4. P. putida U. 5. P. putida F6 
 

It is known that phenylacetic acids are degraded under aerobic conditions by some 

bacteria, such as E. coli (Ferrandez et al., 1998), P. putida U (Arias-Barrau et al., 

2004; Arias-Barrau et al., 2005), and Nocardia salmonicolor (Sariaslani et al., 1974).  

Phenylacetyl coenzyme A ligase pathway (the paa pathway) 

Molecular investigations into the pathway for bacterial metabolism of phenylacetic 

acid under aerobic conditions have offered a new perspective on aromatic 

metabolism. Interestingly, CoA derivatives are used as intermediates and no typical 

oxygenases are observed during aerobic metabolism of phenylacetic acid in most 

cases. This suggests an aerobic/anaerobic hybrid catabolism pathway including both 

oxygenation of aromatic ring (aerobic pathway) and CoA ligation and hydrolytic ring 

cleavage (anaerobic pathway) (Ferrandez et al., 1998; Fuchs, 2008). Coenzyme A 

(CoA) is a nucleotide-based cofactor utilized in a wide variety of metabolic systems 

throughout all branches of life (Leonardi et al., 2005; Spry et al., 2008; Villemur, 

1995). 
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In the early 1990’s, some studies showed that pseudomonads utilize phenylacetyl-

coenzyme A under anaerobic conditions (Dangel et al., 1991;  Mohamed et al., 1993;  

Mohamed & Fuchs, 1993; Seyfried et al., 1991). It is reported that phenylacetyl-

coenzyme A ligases are also induced in Alcaligenes, Acinetrobacter, E. coli 

(Vitovski, 1993), Thermus thermphilus (Erb et al., 2008), Silicibaacter (Yan et al., 

2009) and Rhodococcus (Navarro-Llorens et al., 2005).  

Dr. Luengo and his research group described the generation of phenylacetyl-

coenzyme A by Pseudomonas putida U under aerobic conditions (Martinez-Blanco 

et al., 1990). This situation was not expected considering the typical aerobic models 

for aromatic metabolism accepted until that day. The loss of ability to grow on 

phenylacetic acid with the loss of ability to generate phenylacetyl-coenzyme A made 

the situation clear (Schleissner et al., 1994).  

Some other studies related to this issue made the uncertainty more clear. Several 

genes responsible from phenylacetic acid metabolism in P. putida U (Olivera et al., 

1998) and the styrene-metabolizer P. putida Y2 (Alonso et al., 2003; Bartolome-

Martin et al., 2004) were identified and sequenced. These genes were coenzyme A 

ligase (phaE), four genes associated with ring hydroxylation (phaFGHI) and a gene 

encoding a putative ring-opening enzyme (phaL). Very similar genes were also 

discovered in the aerobic phenylacetate-metabolizer E. coli W (Ferrandez et al., 

1998; Olivera et al., 1998), Azoarcus evansii, Escherichia coli, Rhodopseudomonas 

palustris and Bacillus stearothermophilus (Mohamed Mel et al., 2002). Furthermore, 

a monooxygeantion mechanism is strongly suggested for oxygenation of 

phenylacetic acid (Fernandez et al., 2006; Teufel et al., 2010). 
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Figure 2. 14. The paa pathway for the aerobic metabolism of phenylacetic acid 
(Teufel et al., 2010). 

 
The paa-like genes are present in the 16% of sequenced bacterial genomes. CoA-

ligase hydrolytic ring-cleavage mechanism may be a central paradigm for the aerobic 

metabolism of aromatics (Teufel et al., 2010). A similar mechanism has also been 

observed for the metabolism of benzoate derivatives under anaerobic conditions 

(Fuchs, 2008). It is becoming clear that similar hybrid mechanisms are wide-spread 

and may be as common as typical aerobic pathways.  

The metabolism of ibuprofen by the ipf pathway 

Ibuprofen is a NSAID like FLB and a substituted phenylacetic acid. A newly 

described pathway for the degradation of substituted phenylacetic acids is the ipf 

pathway, which carries some similarities and some significant differences with the 

paa pathway (Figure 2. 15). Sphingomonas Ibu-2 has the ability to grow on 

ibuprofen by using it as carbon and energy source. Like FLB, ibuprofen also has 

substitutions on the 4th-position and it is known that bulky 4-substitutions require 

some unique metabolic strategies due to change in the behavior of aromatic 

oxygenase enzymes (Corvini et al., 2006). Unlike the paa pathway, coenzyme A 

ligation is followed by deacylating dioxygenation in the degradation of ibuprofen by 

Sphingomonas Ibu-2 (Murdoch & Hay, 2005). The mechanism behind the 
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degradation of ibuprofen may provide an insight for the degradation of other alpha-

branched phenylacetic acids like FLB, ketoprofen, and naproxen.  
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Figure 2. 15. The metabolism of ibuprofen by Sphingomonas Ibu-2 (Murdoch & 
Hay, 2005, 2013). 

2.2.2. Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) 

PAHs are very common in the environment. High concentrations of PAHs with the 

existence of co-contaminants such as heavy metals and BTEX compounds creates 

problems in terms of biodegradability and recalcitrance (Bamforth & Singleton, 

2005; Meckenstock et al., 2004). The scientific community has mainly focused on 

metabolism of PAHs with two or three aromatic rings. Especially, the pathways for 

degradation of substituted and halogenated PAHs will be important in determining 

metabolism of FLB. 

They are mostly degraded by oxygenase enzymes like the degradation of many 

simple aromatics. For example, naphthalene is oxidized by mono- or dioxygenation 

leading to systematic breakdown of naphthalene (Bamforth & Singleton, 2005). 

PAHs can be oxidized by Mycobacterium sp. via a special monooxygenase enzyme 

(Kelley et al., 1990). Sphingomonas sp. LB126 can initially oxidize fluoranthene by 

monooxygenase. This strain is also capable of co-oxidizing some other PAHs (van 

Herwijnen et al., 2003). Nocardia, Mycobacterium, Pseudomonas, Rhodococcus, and 

Sphingobium species can metabolize anthracene via a pathway proceeding through 3-

hydroxy-2-napthoic acid and 2,3-dihydroxynaphtalene (Cerniglia, 1992; Dean-Ross 

et al., 2001; Moody et al., 2001). Not only bacteria, but also fungi and algae can 

degrade PAHs. The lignolytic fungal degradation mechanism for PAHs proceeds 

through oxidation of ring by lignin and Mn-peroxidase enzymes, formation of PAH-

quinones and ring fission (Haritash & Kaushik, 2009). 
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Figure 2. 16. Proposed pathways for degradation of anthracene by Mycobacterium 
sp. PYR-1 (Moody et al., 2001; René van Herwijnen et al., 2003) 



32 
 

OH

OH OH O
COOH

OH

CHO

OH

COOH

OH

OH

OH

COOHOH

ring cleavage

ring cleavage

cathecol

gentisic acid

napthalene

 

Figure 2. 17. Proposed pathway for napthalene degradation by some pseudomonas 
species (Mrozik et al., 2003) 

 
While the aerobic degradation of PAHs has been studied very well, there is 

significant lack of knowledge on the anaerobic degradation of PAHs (Coates et al., 

1996; Coates et al., 1996). It is known that some PAHs with two or three aromatic 

rings can be degraded anaerobically, although the mechanisms behind the 

degradation processes are not known (Bregnard et al., 1996; Coates et al., 1996; 

Langenhoff et al., 1996).  

Metabolism of Biphenyl  

FLB as a substituted BP may be a substrate for the bph pathway when aerobically 

degraded by microorganisms. Especially, the pathways for degradation of 

halogenated BPs may enlighten the mechanism behind the degradation of FLB. It has 

been reported that BP can be degraded by many bacteria such as Sphingobium sp. 

Strain PNB (Roy et al., 2013) and Pseudomonas pseudalcigenes KF707 (Furukawa 

et al., 1993) (Figure 2. 18). In the first step of metabolism of BP, BphA1A2A3A4 is 

responsible for converting BP to a dihydrodiol via biphenyl dioxygenase. BphB 

dehydrogenates the dihydrodiol to 2,3-dihydroxybiphenyl. Then 2,3-

dihydroxybiphenyl is ring-opened. This last product is converted into benzoic acid 
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and 2-hydroxy-pent-2,4-dienoic acid by 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic 

acid hydrolase (Furukawa et al., 1993). 
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Figure 2. 18. BP degradation pathway. 1. (Ohtsubo et al., 2004) 2. (Roy et al., 2013) 
 

2.2.3. Biodegradation of Halogenated Aromatics 

Halogenated aromatics, especially chlorinated aromatics, have been used widely as 

pesticides, insecticides, pharmaceuticals, plasticizers and many other industrial 

purposes. In many different regions of world, many chlorinated aromatics are 

considered priority pollutants. Chlorinated aromatics have been more widely studied 

compared to other halogenated aromatics. Thus, their metabolisms are well known, 

especially the metabolism of polychlorinated biphenyls (PCBs).  

Before considering the degradation of PCBs, understanding the degradation of 

chlorinated single aromatics may be useful for understanding the degradation, 

toxicity and inhibitory effects of PCBs and their degradation metabolites. 4-

chlorophenol is degraded via either chlorocatechol or hydroquinone pathways (Bae 

et al., 1996). 2-chlorophenol is degraded via the formation of 3-chlorocatechol, while 
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3-chlorophenol is degraded either via the formation of 3-chlorocatechol or via the 

formation of 4-chlorocatechol (Farrell & Quilty, 1999; Solyanikova & Golovleva, 

2004). In the next steps, 5-chloroformyl-2-hydroxypenta-2,4-dienoic acid as a 

product of meta-cleavage of 3-chlorocatechol, is a dead end product which 

inactivates catechol-2,3-dioxygenase. This results in accumulation of 3-

chlorocatechol in the media (Figure 2. 19) (Bartels et al., 1984; Farrell & Quilty, 

1999).  
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Figure 2. 19. Inactivation of chlorophenol metabolism and accumulation of 3-
fluorocatachols 

 
Both aerobic and anaerobic degradation of chlorophenols have been well studied. 

Various chlorophenols are degraded based on initial reductive dehalogenation as the 

initial step (Field & Sierra-Alvarez, 2008). Becker et al. (1999) described two 

pathways for anaerobic degradation of 2-chlorophenol in a sediment slurry reactor. 

The first pathway begins with an initial dehalogenation of 2-chlorophenol, then 

carboxylation to 4-hydroxybenzoate and lastly dehyroxylation to benzoate while the 

second pathway gives a dead-end compound, 3-chlorobenzoate. Mineralization of 

chlorophenols coupled with sulfate reduction was studied by (Häggblom & Young, 

1990). In several other studies, the mineralization of 2-, 3- and 4-chlorophenols 

coupled with sulfate reduction was reported (Haggblom et al., 1993; Häggblom & 

Young, 1995). These anareboic chlorophenol degradation studies were based on 

microbial consortia.  
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Figure 2. 20. Degradation of 4-chlorophenol via ortho-cleavage (1), via meta-
cleavage (2), via 4-chlorocatechol-benzetriol pathway (3.1) and hydroquinone 

pathway (3.2) (Arora & Bae, 2014)    
 

Adriaens and Focht (1990) pointed out the ability of BP-degrading bacteria to also 

metabolize PCBs. The enzymes having roles in the bph pathway are able to 

transform PCBs. BP degradation by bacteria is initiated by biphenyl 2,3-

dioxygenase. However, toxic effects of certain dead-end metabolites of PCBs can 

inhibit the degradation of PCBs. It has been reported that PCBs can be transformed 

into chlorobenzoates and 2-hydroxypenta-2,4-dienoate which is a usable growth 

source for most bacteria (Pieper, 2005). The dehalogenation of PCBs generally 

occurs via biphenyl 2-3-dioxygenase. For example, in the degradation of 3-3’-

dichlorobiphenyl via an initial step catalyzed by biphenyl 2,3-dioxygenase, Cl was 

removed from the aromatic ring, although in this case alterations in regioselectivity 

properties of biphenyl 2,3-dioxygenase was necessary (Suenaga et al., 2002) (Figure 

2. 21).Without the alterations, dehalogenation was not observed at the biphenyl 2,3-

dioxygenation stage (Haddock & Gibson, 1995; Seeger et al., 1995; Seeger et al., 

1999).  
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Figure 2. 21. Degradation of 3,3’-Dichlorobiphenyl by (1) Burkholderia sp. LB400, 

(2) Pseudomonas pseudoalcaligenes KF707 and (3) Phe227Val and Phe377Ala 
mutants of KF707 dioxygenase 

 
Additionally, the degradation pathways for monochlorobiphenyls, in which the non-

chlorinated ring is exposed to dioxygenation attack (Figure 2. 22), can suggest a 

model for the degradation pathway of FLB. 
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Figure 2. 22. The degradation pathway of monochlorobiphenyl in aerobic bacteria 
(Harkness et al., 1993) 

 
Besides the toxic effects of chlorinated biphenyls, the formation of 

dihydroxybiphenyls as metabolites is potentially dangerous for bacteria, affecting 

bacterial performance (Camara et al., 2004). 

Several studies demonstrated that the enzymes degrading fluorinated aromatics such 

as fluorophenols and fluorobenzoates are the same as those degrading the non-

fluorinated versions of these chemicals (Boersma et al., 2004; Brooks et al., 2004; 

Ferreira et al., 2008). The degradation of 4-fluorobenzene by Rhizobiales strain F11 

occurs predominantly via 4-fluorocatechol followed by ortho cleavage. It is also 

possible that an initial defluorination followed by catechol formation takes place in 

the degradation of 4-fluorobenzene (Figure 2. 23) (Carvalho et al., 2006). Another 
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study by Franco et al. (2014) demonstrated that 4-fluorobenzene  had inhibitory 

effects towards the ectomycorrhizal fungi Pisolithus tinctorius, while 2- and 3-

fluorobenzenes did not. Successful degradation of 2- and 4-fluorobenzoates have 

been reported many times, while 3-fluorobenzoates cannot be degraded efficiently 

due to accumulated toxic intermediates. 2-, 3- and 4- fluorobenzoates were 

successfully degraded by a FLB 300 strain (Agrobacterium-Rhizobium branch) 

without formation of toxic 3-fluorocatechol (Figure 2. 24). However, another study 

reported that the formation of 4-fluorocatechol in the degradation of 3-

fluorobenzoate was because of regioselectivity of the initial dioxygenation process 

(Engesser et al., 1990).  3-fluorocatechol is strongly resistant against ortho-cleavage 

enzymes and has tendency to accumulate and has toxic effects on cells (Dorn & 

Knackmuss, 1978; Engesser et al., 1988; Schreiber et al., 1980). By one possible 

pathway for FLB degradation, toxic 3-fluorocatechol can be generated as 

intermediate that can inhibit the degradation.  

There are few studies related to degradation of fluorinated phenylacetic acids. p-

fluorophenylactic acid was reported to be metabolized by Pseudomonas sp.. A clear 

pathway for the metabolism was not reported although some fluorinated metabolites 

and free fluoride ions were observed (Harper & Blakley, 1971a, 1971b). 
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Figure 2. 23. The degradation pathway of 4-fluorobenzene. (1) 4-fluorocatechol 
pathway which  predominantly occurs. (2) Catechol pathway 
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Figure 2. 24. The pathways for degradation of benzoate and fluorobenzoates by 
bacteria (Schreiber et al., 1980). Benzoate, 2-, 3- and 4-fluorobenzoate are located at 

the top respectively 
 

The formation of 4-fluorocatechol instead of 3-fluorocatechol allows successful 

degradation for 3-fluorobenzoate. In a described pathway for 4-fluorobenzoate 

degradation, Aureobacterium sp.  removes fluoride ion enzymatically in the initial 

step of degradation (Oltmanns et al., 1989). In the case of degradation of 2-

fluorobenzoate, fluoride ion can be removed in the initial step by dioxygenation or 

toxic 3-fluorocatechol can be formed by dioxygenation (Engesser & Schulte, 1989; 

Vora et al., 1988). 
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Figure 2. 25. The pathway after formation of 4-fluorocatechol 
 

The trifluoromethyl group is involved in many compounds. Both the degradation of 

3- and 4-trifluoromethyl benzoates and 2-trifluoromethylphenol by bacteria exhibit 

the formation of 2-hydroxy-6-oxo-7,7,7-trifluoro-hepta-2,4-dienoate which is a meta-

cleavage product of the related catechols (Engesser et al., 1988; Engesser et al., 

1988; Reinscheid et al., 1998) (Figure 2. 26). Pesticides and herbicides having  a 

trifluoromethyl moiety can be degraded by bacteria (Bellinaso Mde et al., 2003) and 

fungi (Guha et al., 1995) without fluoride loss.  
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Figure 2. 26. The degradation pathway of 3-trifluoromethyl benzoate 

 
The classical aromatic degradative pathways take part in the degradation of 

fluorobiphenyls by fungi and bacteria. The degradation 4-fluorobiphenyl by fungi 

results in conjugated and hydroxylated products, such as 4-fluoro-4'-

hydroxybiphenyl, 4-fluorobiphenyl glucuronide and 4-fluorobiphenyl sulphate 

(Amadio & Murphy, 2010; Green et al., 1999). Pseudomonas pseudoalcaigenes 

KF707 degrades 2- and 4-fluorobiphenyl via biphenyl degradation pathway (Murphy 

et al., 2008) (Figure 2. 27). The end-products are 2- and 4-fluorobenzoate. The non-

fluorinated ring is the initial site of dioxygenation, which is valid also for 

degradation of 2,3,4,5,6-pentafluorobiphenyl by KF707 and Burkholderia sp. LB400 

resulted in a dead-end metabolite, pentafluorobenzoate (Hughes et al., 2011). In the 

case of fluorine substitution not confined to the one ring, both KF707 and 

Burkholderia sp. LB400 degraded 4,4’-difluorobiphenyl (Hughes et al., 2011) 

(Figure 2. 28). It was also demonstrated that 2,2’-difluorobiphenyl was transformed 
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to 2’-fluoro-2,3-dihydroxybiphenyl via bphA by Burkholderia sp. LB400 (Seeger et 

al., 2001). While it seems the enzymes responsible for the degradation non-

fluorinated compounds are also responsible for degradation of fluorinated 

compounds, there are some studies reporting specialized enzymes employed for 

degradation of fluorinated compounds (Murphy et al., 2008). However, there is still 

much work to be done in order to enlighten the actual mechanisms of degradation in 

all its aspects.   
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Figure 2. 27. The degradation pathway of 4-fluorobiphenyl (KF707 cannot 
mineralize fluorobenzoate) 
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Figure 2. 28. The degradation pathway of 4,4’-difluorophenyl 
 

The aerobic degradation of 4-fluorocinnamic acid by Arthrobacter sp. strain G1 and 

Ralstonia sp. strain H1 occurs via a pathway similar to the paa pathway. 4-

fluorocinnamic acid was converted into 4-fluorobenzote by strain G1. A dead-end 

side product, 4-fluoroacetophenone yielded during the degradation by strain G1. 

Strain H1 degraded 4-fluorobenzoate via 4-fluorocatechol followed by ortho-

cleavage (Hasan et al., 2011) (Figure 2. 29). 
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Figure 2. 29. The degradation pathway of 4-fluorocinnamic acid by Arthrobacter sp. 
Strain G1 (4-fluorobenzoate was degraded by strain H1) 

 
Information about the anaerobic degradation of fluorinated aromatics is limited. 2- 

and 4-fluorobenzoate can be mineralized by denitrifying bacteria (Vargas et al., 

2000). Sulfate reducing bacteria can use 2- and 4-fluorobenzoate as electron donors 

(Drzyzga et al., 1994). In another study, it was found that a sulfate-reducing 

enrichment culture, degrading BP, co-metabolized 4-fluorobiphenyl (Selesi & 

Meckenstock, 2009).  

To sum up, it is expected that the bacterial aerobic degradation of FLB proceeds 

through either bph pathway or paa pathway. The degradation of FLB through 

chlorinated or fluorinated bph pathways is more likely to occur. 

2.2.4. Biodegradation of NSAIDs 

Both monocyclic and polycyclic NSAIDs have been detected in the environment. 

The degradation pathways for most of them have not been described. Taking a closer 

look at the degradation of NSAIDs can give a point of view for FLB degradation. In 

the environment, the degradation of NSAIDs is carried out most probably by fungi 
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and bacteria. Among the NSAIDs, naproxen, ibuprofen, diclofenac, ketoprofen, FLB, 

aspirin, acetaminophen and FLB are the most popular ones with polycyclic or 

monocyclic aromatic structures. The ibuprofen degradation pathway (ipf) is 

described in summary in the previous sections. 

In case of biodegradation of polycyclic NSAIDs, studies related to their metabolism 

by fungi or bacteria is limited. Domaradzka et al. (2015) reported that there is no 

completely described degradation pathway for any polycyclic NSAID except 

olsalazine (Figure 2. 30).  
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Figure 2. 30. Anaerobic degrdation of olsalazine by methagonenic consortium (Razo-
Flores et al., 1997) 

 
Another polycylic, ketoprofen, was degraded based on the bph pathway in an 

activated sludge. 2-(3-oxalophenyl)propanoic acid was yielded as a dead-end 

metabolite (Figure 2. 31).  
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Figure 2. 31. The aerobic degradation pathway of ketoprofen 
 

 On the other hand, the degradation pathways of some monocyclic NSAIDs have 

been well studied. The monocyclic NSAIDs are mainly degraded via formation of 

catechol, gentisate, hydroquinone and protocatechuate followed by ortho- or meta- 

ring cleavage. For example, salicylates are degraded via formation of catechol and 

gentisate followed by ortho- or meta- ring cleavage (Marchlewicz et al., 2015). 
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CHAPTER 3  

MATERIALS AND METHODS 

 

The experimental design consisted of enrichment and isolation of microbial strains 

and analysis of both sludge and culture supernatants. Enrichment and isolation of 

cultures aimed to determine the strains degrading FLB and analysis of both sludge 

and culture supernatants aimed to determine biodegradation pathway of FLB and 

metabolites arising from the biodegradation.  

Detailed information about the experimental design is provided in this section.  

3.1. Chemicals 

2-Fluoro-alpha-methyl-4-biphenylacetic acid (FLB), m-tolylacetic acid (mTAA), p-

tolylacetic acid (pTAA), phenylacetic acid (PAA), biphenyl (BP), Ibuprofen (IBP) 

and 3-fluorophenylacetic acid (3FPAA) were purchased Alfa Aesar (Lancashire, 

U.K.). 

3.2. Enrichment and Degradation Studies 

pTAA, mTAA, PAA and FLB were separately spiked into sludge in flasks in order to 

enrich for bacteria able to use these chemicals as carbon and energy sources. mTAA, 

pTAA and PAA were control experiments which showed that the experimental 

system worked properly. Aerobic sewage sludge from the discharge of secondary 

sedimentation tank of Ankara Tatlar Municipal Wastewater Treatment Plant 

(ATMWTP) was enriched with the chemicals according to experimental setups in the 

next sections. Alternative mineral salt medium MSM recipes were used in order to 

stimulate growth because FLB strains did not grow well. All the prepared flasks and 

tubes during experiments were put into an incubated shaker at 120 rpm shaking 

speed at 30 oC. 

Additionally, FLB was spiked into aerobic sludge from Yozgat and Eskişehir 

Municipal Wastewater Treatment Plants (YMWTP and EMWTP, respectively) as 

part of further attempts to obtain FLB-degrading isolates. 
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3.2.1. Enrichments of Aerobic Sewage Sludge for FLB Metabolism and 

Characterization of Metabolite Production 

Aerobic sludge was taken from Ankara municipal sewage treatment plant. Fresh 

sludge was used directly and added volumetrically for all the experiments without 

any extra processes. Four enrichment treatments were prepared; 

1. 500 parts per million (ppm) FLB in 250 mL of sludge 

2. 500 ppm mTAA, a.k.a. 3-methylphenylacetic acid in 250 mL of sludge 

3. 500 ppm pTAA, a.k.a. 4-methylphenylacetic acid in 250 mL of sludge 

4. No addition into 250 mL of sludge 

Treatments 2 and 3 were prepared as controls for the FLB enrichment.  As they are 

both similar modified PAAs with much simpler structures, they provide good 

reference for reactions and changes that may occur with a simpler system. 

Treatments 2 and 3 are also positive controls for enrichment system and might be 

useful to show that enrichment system works.  

The color change in the flasks was monitored for detection of metabolism and 

metabolic by-products of the degradation of the three chemicals.  

Enrichment in MSM  

The method of McCullar et al. (1994) MSM preparation was used for enrichments. 

The pH of MSM was checked to confirm the proper level of 7.4. The trace elements, 

MnSO4, NaMo.2H2O, CuSO4, CoSO4.7H2O and H3BO3, were not added to MSM 

initially. 100 µL of enriched sludge of each chemical was transferred to MSM + 500 

ppm of test chemical. 

3.2.2. FLB Disappearance Assay and Enrichment of Degraders 

FLB Disappearance Assay 

Initial observations suggested that toxicity might be a major factor within our 

working concentration range, 50 - 500ppm.  An assay was started to address this 

possibility and  at the same time, to obtain a sense of the rate of metabolism of FLB 

in sewage sludge.  100mL samples of sewage sludge were spiked with 50, 250, or 
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500ppm FLB in triplicate (nine flasks total). Additionally, color change was 

observed to characterize possible FLB metabolism.   

Enrichment for FLB Degraders 

Enrichment cultures took much longer to become established than anticipated.  An 

initial enrichment was made by transferring a mature spiked sewage sludge system 

that had dropped to approximately 50% initial FLB concentration into MSM media 

with 500 ppm FLB.  This initial enrichment failed to show notable growth or 

reduction of FLB concentration following transfer, lending weight to the 

aforementioned hypothesis that high concentrations of FLB have toxic effects. 

A second round of enrichments was made.  Firstly, 250 ppm of FLB, (pTAA) or 

mTAA were added 500 mL sludge. To increase the chance of obtaining an enriched 

culture and/or isolates, three different media were used; 100 ppm FLB, 100 ppm FLB 

+2 ppm yeast extract, and 500 ppm FLB.  FLB concentration was lowered, in the 100 

ppm treatments, in order to address toxicity issues.  The yeast extract media was 

prepared so that isolates would ave access to micronutrients and vitamins, a standard 

procedure for minimal media systems.   

Then after 3 transfers, the third generations were transferred onto 100 ppm FLB + 2 

ppm yeast extract and 100 ppm FLB solid media composed of MSM and 17 g/L agar 

solidifying the media. Then, they were transferred onto Luria Bertoni Broth 

(Sambrook et al., 1989) with 17 g/L agar to make the colonies more obvious by 

promoting growth. The degraders were transferred many times on both solid MSM 

and LB to isolate the strains based on their colony shape and color. 

Enrichment on Phenylacetic and Tolylacetic Acids 

500 ppm mTAA, pTAA and PAA flasks with sludge were prepared. Then, they were 

transferred in series three times to MSM with 250 ppm of related chemical. They 

were streaked on 250 ppm mTAA, pTAA and PAA plates. After isolating the strains 

based on their colony appearance, they were again inoculated in MSM with 250 ppm 

of related chemical in order to confirm their growth and degradation abilities. 
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Finally, the strains that grew successfully were stored at -80 oC in 20 % glycerol 

solution.  

Three different media were used for each chemical; 100 ppm mTAA, 100 ppm 

mTAA +2 ppm yeast extract, and 500 ppm mTAA and 100 ppm pTAA, 100 ppm 

pTAA +2 ppm yeast extract and 500 ppm pTAA and three transfers were made. 

The mTAA and pTAA degraders from the third generation were streaked on solid 

MSM plates with 500 ppm mTAA and pTAA. Since a weak growth was observed on 

those plates, the concentration was lowered to 250 ppm in case of toxicity. After 

several streakings from one generation to another generation, the degraders were 

transferred onto Luria Bertoni Broth (LB) (Sambrook et al., 1989) with 17 g/L agar 

in order to obtain pure cultures and identify cultures based on colony shape and 

color. 

Identification of Strains 

Identification of strains were carried out by RFLP in order to find unique strains. 

3.2.3. Confirmation of Putative FLB, mTAA, pTAA and PAA 

Degrading Strains 

In order to confirm whether isolated strains really degraded the chemicals or not, the 

isolated strains were enriched again. 

Confirmation of FLB degrading strains 

Isolated FLB strains were inoculated in 100 ppm FLB flasks with standard MSM as 

described in the previous sections. Because FLB strains did not grow on 100 ppm 

FLB in liquid McCullar’s MSM without trace elements, they were inoculated into 

media containing, in addition to 100 ppm FLB, 2% sodium acetate with MSM and 

2mg yeast, 90% MSM+10% LB, or 0.2% glucose and 0.2% acetate in 100 mL of 

pure water in order to promote growth.  

10 mL of 100 ppm FLB with 0.2% acetate + 2 mg yeast, 0.2% glucose + 2 mg yeast, 

10% LB, or 0.2% glucose were prepared in triplicate and whole culture extraction 

was applied to these tubes in order to see whether FLB was really degraded or not. 
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Then, the strains were transferred onto LB plates and agar plates in order to 

determine strains have ability to grow on agar or not.  

Additionally, a trial of using sterilized tap water instead of pure water was attempted 

in order to promote growth. 

Finally, strains were stored at -80 oC in 20 % glycerol solution. 

Confirmation of Phenylacetic and Tolylactic acids Degrading Strains 

The strains were inoculated in 100 ppm pTAA and mTAA flasks. The strains that 

failed to grow on mTAA and pTAA only were inoculated in 10% LB and 90% MSM 

with the appropriate 100 ppm TAA.  The growing strains were stored at -80 oC in 20 

% glycerol solution.  

To confirm that growth was concurrent with disappearance of the substrate, the 

mTAA and pTAA degrading strains were inoculated into liquid MSM media with 

250 ppm of the respective substrate in triplicate in order to determine their 

degradation and growth rates. Growth was measured with spectrophotometer at 600 

nm wavelength and substrate concentration was measured by HPLC. 

3.2.4. Confirmation of Second Peak Representing Putative FLB 

Metabolite 

Monitoring of FLB degradation in spiked sludge by HPLC revealed the appearance 

of a second, faster-eluting peak that appeared to be consistent with a FLB metabolite; 

faster elution implies oxygenation or lower molecular weight.  In order to investigate 

the appearance and magnitude of the second peak with the presence and 

biodegradation of FLB, two flasks of 50 ppm FLB in sludge, one flask of 500 ppm 

FLB in sludge and one flask without FLB were prepared. One of the 50 ppm FLB 

flasks was autoclaved for use as a non-biological control. The flask without FLB and 

the autoclaved flask with 50 ppm FLB was prepared in order to determine whether 

the appearance of second peak was due to FLB degradation or biological activity. 
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3.2.5. Repeating the Experiment of Enrichment of Degraders and 

Confirmation of Second Peak 

In order to confirm the results of previous experiment and to confirm that the second 

peak did not appear without FLB addition, the experiment was repeated with some 

changes. 50 ppm FLB flasks, 50 ppm autoclaved FLB flasks and 0 ppm FLB flasks 

were prepared in triplicate.  The transfers were made from 50 ppm FLB flasks to the 

50 ppm FLB flasks with the McCullar’s MSM. 

3.2.6. Co-metabolic Stimulation of FLB Degradation 

Flasks with 250 ppm mTAA+50 ppm FLB, 250 ppm pTAA+50 ppm FLB, 250 ppm 

PAA+50 ppm FLB and 50 ppm FLB and alternatively 250 ppm BP + 50 ppm FLB, 

3FPAA + 50 ppm FLB and 250 ppm IBP + 50 ppm FLB were prepared in fresh 

sludge. 3FPAA has the fluorine moiety at 3rd position on aromatic ring like FLB. 

FLB is a substituted BP. This experiment was conducted under the hypothesis that 

organisms capable of degrading these similar chemicals may also fortuitously 

degrade FLB. 

3.2.7. Enrichments in Sludge from Other Cities 

In a further attempt to obtain FLB degrading isolates, 500 ppm FLB was added to 

fresh sludge taken from Eskişehir and Yozgat. After the degradation started, sample 

from the sludge was transferred to MSM (McCullars’ recipe without trace elements) 

with 500 ppm FLB. Since no clear FLB degradation was observed, 250 ppm IBP was 

added to MSM with 250 ppm FLB in order to stimulate FLB degradation.  

3.2.8. Enrichments with Alternative MSMs 

FLB degraders were enriched in aerobic sludge spiked with 100 ppm FLB. Then, 

transfers were made from sludge to MSM after degradation started in aerobic sludge. 

This time, three recipes were prepared with 100 ppm FLB because there was no clear 

growth of FLB degraders in McCullar’s recipes with and without trace elements. The 

aim was to see whether different recipes and different water resources stimulate the 

growth of FLB degraders or not. The first recipe is the McCullar’s recipe without 

trace elements (McCullar et al., 1994) in which FLB degraders did not exhibit a clear 

growth. The recipe was prepared all over again and 100 mL of McCullar’s MSM 

spiked with 100 ppm FLB were prepared in triplicates. The second recipe was M9 
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mineral medium (Sambrook et al., 1989). 100 mL of M9 mineral medium spiked 

with 100 ppm FLB were prepared in triplicate. The last one was again McCullar’s 

recipe but spring water (Saka, Sakarya, Turkey) was used instead of ultra-pure water. 

3.2.9. Identification of Bacterial Strains 

The 16S rRNA gene sequences were amplified and subjected to restriction fragment 

analysis using a 4-hitter restriction enzyme so as to identify unique strains degrading 

FLB, PAA, mTAA and pTAA. Duplicate strains were disposed of. The unique 

strains were stored at -80 oC in 20.0 % sterilized glycerol solution.  

3.2.9.1. Amplification of the 16S rRNA Gene Sequences by PCR 

3.2.9.1.1. Preparation of Bacterial Strains for PCR 

25.0 µL of reaction volume consisting of 12.5 µL of 2X PCR taq master mix 

(Promega Corp, Madison, USA), 1.0 µL of 27F primer and 1.0 µL of 1492R primer 

with a final concentration 400 nM (Alpha DNA, Canada), 10.5 µL of nuclease-free 

water and template was prepared for each strain.  Template DNA was added by 

touching a sterile pipette tip to a bacterial colony and placing into the reaction 

mixture. 

3.2.9.1.2. Polymerase Chain Reaction (PCR) 

A thermal cycler (Thermo Fisher Scientific Inc., USA) was used for the 

amplification. The DNA samples were stored at – 20 oC. The PCR program for this 

study was as shown in the Figure 3. 1. 

   94 oC       94 oC
   5 min       1 min 

       55 oC
       1 min

  72 oC          72 oC
  2 min          10 min

       4 oC
        hold

initial denaturation

     final extension

           30 cycles

 

Figure 3. 1. PCR programming for amplification 
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3.2.9.1.3. Agarose Gel Electrophoresis 

1.0 % agarose (Biotium Corp., USA) gel in TAE buffer (Thermo Fisher Scientific 

Inc., USA) was prepared and microwaved one minute to dissolve the agarose. Then 

5.0 µL of GelRed (Biotium Corp., USA) was added to the 100 mL of 1X TAE buffer 

(Thermo Fisher Scientific Inc., USA). 1.0 µL of 6X DNA Loading Dye plus 4.0 µL 

of PCR product and 1.0 µL 6X DNA Loading Dye plus 1.5 µL of GeneRuler 100 bp 

DNA Ladder (Thermo Fisher Scientific Inc., USA) were loaded to agarose gel. An 

electric current, 80 V, was applied for about 1 hr by a power supply (Thermo Fisher 

Scientific Inc., EC 1000XL, USA).  

3.2.9.1.4. Gel Visualization  

Quantum ST-4 3000 Gel Image Acquisition Sytem (Montreal Bıotech Inc., Canada) 

was used in order to visualize the gels.   

3.2.9.2. Identification of Unique Strains by Restriction Fragment 

Length Polymorphism (RFLP) 

The PCR products were subjected to RFLP analysis to identify unique strains by 

using a 4-hitter restriction enzyme.  

3.2.9.2.1. Preparation of PCR Products for RFLP analysis 

20 µL of reaction volume consisting of 10.0 µL of PCR product, 1.0 µL of restriction 

enzyme HaeIII, 2 µL of Buffer C (Promega Corp., Madison, USA) and 7 µL of 

distilled water was prepared. Then the samples were put into a water bath at 37 oC 

for 4 hr.   

3.2.9.2.2. Gel Electrophoresis and Visualization 

For RLFP analysis, 2.0 % agarose gel was prepared. 1.5 µL of 6X DNA Loading 

Dye plus 4.0 µL of sample was prepared and loaded into agarose gel. All the 

remaining procedure for gel electrophoresis and gel visualization was the same as 

described above. Unique strains were identified after visualization.    

3.3. Analytical Methods 

In this section, methods, instruments, procedures for measurement and determination 

of degradation and degradation products of the chemicals are described. 
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3.3.1. Monitoring the Concentrations of the Chemicals by HPLC 

The concentrations of FLB, mTAA, pTAA, PAA, 3FPAA, BP and IBP were 

monitored by HPLC. This HPLC device consisted of a system controller 

(SHIMADZU, SCL-10A VP, Kyoto, Japan) connected to a PC, a pump 

(SHIMADZU, LC-10AT VP, Kyoto, Japan), a low pressure gradient unit 

(SHIMADZU, FCV-10AL VP, Kyoto, Japan),  a degasser (SHIMADZU, DGU-14A, 

Kyoto, Japan), a UV-VIS detector (SHIMADZU, SPD-10A VP, Kyoto, Japan), a 

column oven (SHIMADZU, CTO-10A VP, Kyoto, Japan) and a column (Macherey-

Nagel, CC 250/4 NUCLEOSIL 50-5C 18ec., Düren, Germany). 

3.3.1.1. Preparation of Samples for HPLC Analysis 

Samples were centrifuged and the supernatants were filtered with syringe filters 

(ETO sterile, 28 mm diameter, hydrophilic, 0.2 µm pore size, surfactant-free 

cellulose acetate for membrane material, Meta acrylate butadiene styrene 

polymerisate for housing material, Minisart, 16534 and non-sterile, 15 mm diameter, 

hydrophilic, 0.2 µm pore size, regenerated cellulose for membrane filter, 

polypropylene for housing material, Minisart, 17761, Goettingen, Germany). 

An extraction method was applied to extract FLB from sludge. During monitoring of 

FLB by HPLC, some of the added FLB was missing shortly after being added to the 

sludge.  Adsorption of FLB onto sludge particles and improper syringe filters for 

FLB filtration were potential causes for the missing FLB. Thus, an extraction method 

was developed (APPENDIX B). After applying extraction, it was observed that 

syringe filters could also be a potential cause for missing FLB, thus, Minisart 17761 

syringe filters were used instead of Minisart 16534 syringe filters.  

3.3.1.2. Measuring Concentrations of the Chemicals and 

Fractionation of Aromatic Metabolic Byproducts 

An appropriate HPLC method was developed for separation and quantification of 

each chemical and for detection and fractionation of a second peak which appeared 

during FLB degradation in aerobic sludge in flasks.  A second peak representing a 

putative FLB metabolite was firstly observed with a detection wavelength 247 nm.  
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Table 3. 1. HPLC methods for FLB, mTAA, pTAA, PAA, 3FPAA, IBP, BP and 2nd 
Peak 

Chemical Solution Detection 
Wavelength 

(nm) 

Oven 
Temperature 

(oC) 

 
40 mM 

Acetic acid 
in water 

(%) 

Methanol 
(%) 

Elution 
Time 
(min) 

FLB 40 60 247 60 6.0 
mTAA 60 40 212 60 5.2 
pTAA 60 40 212 60 5.2 
PAA 60 40 206 60 4.5 

3FPAA 60 40 210 60 4.2 
IBP 35 65 214 60 5.0 
BP 25 75 254 60 5.3 

2nd Peak 70 30 210 60 4.8 
 

Standard curves were formulated in order to convert HPLC peak areas of FLB, 

mTAA and pTAA into concentration as ppm (APPENDIX A).  

3.3.2. Characterization of FLB Degradation by LCMS 

LCMS analyses of a blank sample, a 500 ppm FLB standard sample and an aerobic 

sludge sample spiked with 500 ppm FLB and taken after FLB degradation started 

were carried out using a Waters (Milford, MA, USA) Acquity UPLC connected to 

Waters Synapt G1 MS (Milford, MA, USA) mass spectrometer in negative mode. 

The LCMS studies were carried out in Central Laboratory, METU. HPLC and MS 

methods are given in Table 3. 2, Table 3. 3 and Table 3. 4. 

Table 3. 2. HPLC method. A: Methanol. B: 40 mM Acetic acid in water. 

Time (min) Flow rate (mL/min) % A % B 
0 0.030 70 30 
15 0.030 40 60 
18 0.030 40 60 
19 0.030 0 100 
20 0.030 70 30 
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Table 3. 3. HPLC properties 

Column (Reverse phase) ACQUITY UPLC BEH C18 (Milford, MA, 
USA) 1.7 µm 1.0*100 mm Column 

Mobile phase A Methanol 
Mobile phase B 40 mM Acetic acid in water 

Column Temperature 35 oC 
Sample temperature 4 oC 

Flow profile Gradient 
 

Table 3. 4. MS method 

MS System                      
Mode 

Waters SYNAPT G1 MS (Milford, MA, USA) 
ESI - 

Capillary Voltage 3 Kv 
Source Temperature 

Desolvation Temperature  
Parent Survey High Collision Energy 
Parent Survey Low Collision Energy 

Mass Interval 

80 oC 
350 oC 
15 V 
6 V 

50 – 600 Da 
 

3.3.3. Characterization of FLB Degradation by Color Appearance 

Yellow color appearance during degradation is consistent with meta-cleavage of 

catecholic metabolites. The yellow color of a meta-cleavage product is acid labile; it 

disappears when acidified and reappears when returned to neutral pH. Spectral scan 

analysis of the supernatant was expected to reveal an absorbance maximum in the 

360-380nm range as is usually found with meta-cleavage products. For the spectral 

scan analysis and measurement of color intensities of FLB supernatants, a 

spectrophotometer (HACH LANGE, DR 3900, Colorado, USA) was used. In this 

study, absorbance wavelength of yellow FLB supernatant was chosen as 370 nm 

(Figure 3. 2). 
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Figure 3. 2. UV-Vis absorbance spectrum from 300-500nm of yellow FLB 
enrichment supernatant. 

 
 

Figure 3. 3. UV-Vis absorbance spectrum from 300-500nm of yellow FLB 
enrichment supernatant with UV lamp turned off 

Brown coloration can indicate many things.  Within the field of aromatic 

biochemistry, it is regarded as a sign of catechol polymerization. The accumulation 

of catecholic metabolites was analyzed by mixture of culture samples with ferric 

chloride, which encourages the polymerization and visualization of catechols. 

Catechols turn black and brown when exposed to ferric iron (Murdoch & Hay, 2013).   

3.3.4. Free Fluoride Detection 

During degradation, fluorine ions can be released as a result of dehalogenation or 

complete mineralization. In this study, microdiffusion cell method described by 

WHO (ORGANIZATION, 2003) was modified in order to determine whether or not 

isolated byproducts contain fluorine.  
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In the modified method, 0.25 mL of cerous nitrate, 0.25 mL alizarine complexone 

and 0.5 mL of sample are directly mixed and allowed to stand for 1 hr at room 

temperature. In order to confirm the method, some standards were prepared and 

tested. In case of existence of fluoride, the mix gives a blue or light lilac color 

(Figure 3. 5).   

Absorbance wavelength of fluoride was detected as 625 nm by spectrophotometer. A 

standard curve showing the relationship between fluoride concentration and 

absorbance of the solution was obtained.  

 

Figure 3. 4. Standard Curve: Fluoride Conc. vs. absorbance 

 

Figure 3. 5. The color appearance of 1, 2 and 10 mg/L of NaF added fluoride 
standards tested by the modified microdiffusion cell method. A purple/lilac color was 

observed in three of the samples 
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3.3.5. Dissappearance Assay and Growth Analysis 

The mTAA and pTAA degrading strains were inoculated into liquid MSM media 

with 250 ppm mTAA and 250 ppm pTAA in triplicates, respectively, in order to 

determine their degradation and growth rates. Growth was measured with 

spectrophotometer at 600 nm wavelength.  
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CHAPTER 4  

RESULTS AND DISCUSSION 

 

4.1. Enrichments of Aerobic Sewage Sludge for FLB Metabolism and 

Characterization of Metabolite Production. 

250 mL aerobic sludge was gathered from Ankara municipal sewage treatment plant.  

Four enrichment treatments were prepared; 500 ppm FLB, 500 ppm mTAA, 500 

ppm pTAA and no addition. 

Treatments 2 and 3 were prepared as controls for the FLB enrichment.  As they are 

both similar modified PAAs with much simpler structures, they provide good 

reference for reactions and changes that may occur with a simpler system.  In these 

treatments, mTAA and pTAA were degraded successfully.  

 

Figure 4. 1. Four enrichments immediately following amendment with, respectively, 
FLB, pTAA, mTAA, and no amendment. 

 

Immediately following the start of the enrichments, no remarkable differences are 

visible. Some slight cloudiness in the FLB enrichment is consistent with the slow 

dissolution of the FLB (cloudiness disappeared quickly afterwards) (Figure 4. 1). 

After two weeks, the FLB enrichment became a bright yellow color (Figure 4. 2).  

None of the other enrichments showed any color changes or unusual activity: 
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Figure 4. 2. Yellow color in FLB enrichment compared to control enrichment. 

The yellow supernatant, removed from the cell mass and solid materials 

(centrifuged), is shown in Figure 4. 3.   

 

Figure 4. 3. Supernatant of yellow FLB enrichment 

The yellow color was acid labile (disappeared when acidified and reappeared when 

returned to neutral pH), which is consistent with a ring meta-cleavage product. 

Spectral scan analysis of the supernatant was expected to reveal an absorbance 

maximum in the 360-380nm range as is usually found with meta-cleavage products.  

However, upon attempting to analyze with two different pieces of equipment, very 

unusual results were revealed.  A broad absorbance maximum focused on 360-

380nm was observed, but within the range, “noise” was also observed, possibly 

representing both absorbance and transmission/emission (Figure 4. 4).  
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Figure 4. 4. UV-Vis absorbance spectrum from 300-500nm of yellow FLB 
enrichment supernatant. 

This is consistent with a fluorescent chemical to some degree.  No similar reports of 

fluorescent meta-cleavage products or any similar phenomena can be identified in the 

literature.  Somewhat consistent with the fluorescence hypothesis, when the UV lamp 

of the spectrophotometer was turned off (leaving only the visible spectrum lamp 

activated), the noise began to disappear, although the peak remained somewhat noisy 

(Figure 4. 5): 

 
 

Figure 4. 5. UV-Vis absorbance spectrum from 300-500nm of yellow FLB 
enrichment supernatant with UV lamp turned off. 

This exploratory research offers three pieces of evidence for the accumulation of a 

meta-cleavage product in the supernatant of FLB-amended aerobic sewage sludge 

1. pH dependence of the color 

2. Appearance only with addition of a particular aromatic chemical (FLB) 
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3. Absorbance maximum around 370nm 

The accumulation of a meta-cleavage product does occur in rapidly-metabolizing 

aromatic degradation systems. After another week of incubation, the yellow 

disappeared and some other chemical or chemicals accumulated creating a brown 

color (Figure 4. 6): 

 

Figure 4. 6. Brown color appearance in FLB enrichment compared to control 
enrichment 

This brown coloration can indicate many things.  Within the field of aromatic 

chemistry, it is regarded as a sign of catechol polymerization, again consistent with 

bacterial aromatic metabolism.  While extracellular accumulation of meta-cleavage 

intermediates is typical, accumulation of catecholic metabolites in natural systems is 

very unusual.  Catechols are very reactive and organisms typically dispose of them 

quickly due to their toxic effects, i.e. their ability to react non-specifically with 

biomolecules.   

The supernatant from the enrichment at a later date, when there was not a strong 

yellow or brown color apparent, was harvested with the goal of adding ferric iron 

(final concentration ~1mM), which is a standard reagent for visualizing catechols.  

Catechols turn black and brown when exposed to ferric iron.  The supernatant of the 

FLB was still colored with yellowish brown when recovered.   
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Figure 4. 7. Supernatants of six week old enrichments, sample order is negative 
control, pTAA, FLB, mTAA. 

Addition of ferric chloride caused a flocculation in the supernatants of all 

enrichments.  When centrifuged, the FLB pellet was brownish red while the others 

were neutral colored (Figure 4. 8): 

 

 

Figure 4. 8. Supernatants pictured in Figure 4. 7, with 1mM ferric iron and 
centrifuged.  Sample order is negative control, pTAA, FLB, mTAA.  No camera 

flash above, flash used below. 

This enhancement of dark color is consistent with free catecholic metabolites, but is 

not definitive proof. The slight possible color generation in the pTAA sample was 

observed.  This is consistent with coloration found in later transfer cultures.  

However, it does definitely indicate the presence of some unique metabolite 

accumulating in the enrichment. The presence of an extracellular accumulating 

catechol would be highly unusual and interesting.   
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Enrichments underwent transfers to minimal medium systems (mineral salts + FLB 

only) in order to work towards isolating pure cultures.  Initial data appeared 

promising; the first FLB transfer showed signs of growth, although with significant 

cell lysis.  As the other transfers (mTAA and pTAA controls) were also showing 

signs of lysis, this likely represented a mistake with the medium, possibly the wrong 

osmolarity.  This was addressed by creation of new media and new transfers.  

Nevertheless, some growth did occur.  Initial HPLC analysis of FLB concentration in 

the FLB transfer indicated approximately 50% loss of FLB, from 500ppm to 

250ppm, despite the likely media problems. This loss might cause by filter material 

which was changed later with another filter material that is suitable for FLB 

filtration.  Of additional interest, dark brown/black coloration concentrated in the 

lysed cell materials in the FLB culture and the pTAA culture, but not the mTAA 

culture (Figure 4. 9). 

 

Figure 4. 9. Centrifuged lysed cell material in enrichment transfers with indicated 
parent chemical.  Note the black coloration in the pTAA and FLB cultures. 

While non-definitive, this again suggests the presence of catecholic metabolite 

accumulation. It is occurrence in the pTAA culture also is a bit puzzling, although 

factors such as iron concentration and other food sources could affect the rate of 

polymerization and/or rate of catechol accumulation.  As tolylacetic acids can be 

metabolized via catechols also, their accumulation extra-cellularly is possible, though 

not expected due to their simple chemical nature (they would be expected to be 

rapidly metabolized).  This data is regarded as subjective and qualitative but may 

provide future guidance.   
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As mentioned, the mineral salts media enrichment transfers were repeated with a 

focus on proper media preparation.  They were monitored for color generation and 

more importantly, were expected to yield pure cultures. Enrichment cultures took 

much longer to become established than anticipated.  An initial enrichment was 

begun by transferring a mature spiked sewage sludge system that had dropped to 

approximately 50% initial FLB concentration.  This initial enrichment failed to show 

notable growth or reduction of FLB concentration following transfer, lending weight 

to the aforementioned hypothesis that high concentrations of FLB have toxic effects. 

4.2. FLB Disappearance Rate from Sludge, the Effect of Initial 

Concentration and Enrichment and Identification of Degraders 

Initial observations suggested that toxicity might be a factor within the working 

concentration range, 50 - 500ppm.  An assay was started to address this possibility 

and to at the same time obtain a sense of the rate of metabolism of FLB in sewage 

sludge.  100mL samples of sewage sludge were spiked with 50, 250, or 500ppm FLB 

in triplicate (nine flasks total).  Samples were taken on a bi-weekly basis. During 

periodic analysis of the samples by HPLC, it was observed that FLB disappearance 

was much slower than expected and sorption to the solid phase was a major factor in 

the system; HPLC analyses of t=0 samples revealed that roughly 50% of the added 

FLB was unaccounted for (Figure 4. 10). Later, it was observed that this sudden 

decrease in the concentration of FLB measured by HPLC might not be just due to 

sorption to the solid phase but also due to syringe filters used before HPLC analysis. 

Thus, an extraction method was developed and syringe filters were replaced with 

new syringe filters more suitable for FLB filtration. There was still 30-40 % FLB 

misseing despite these all attempts. 
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Figure 4. 10. Concentration of FLB remaining in supernatant determined by HPLC 
shortly following spiking of the concentration of FLB indicated on the x-axis. 

 
One important observation during monitoring of the FLB sludge disappearance assay 

was the appearance of a secondary peak in the samples that eluted from the HPLC 

column faster than FLB, indicating a lower molecular weight and/or polar residues 

consistent with oxidation (Figure 4. 22). The concentration of this secondary peak 

was roughly equivalent to the starting concentration of FLB, suggesting that it is a 

metabolite.   

4.2.1. HPLC Analysis of Disappearance Essay and Colored Metabolite 

Appearance 

The disappearance kinetics and production of metabolites were explored by spiking 

high concentrations of FLB into aerobic sewage sludge.  Casual observations during 

the enrichments and previous observations with other aromatic acids suggested that 

higher concentrations of FLB might have toxic effects.  Therefore, this experiment 

was conducted using a range of FLB concentrations.  500 ppm, 250 ppm and 50 ppm 

FLB flasks were prepared by adding FLB to flasks containing 100 mL aerobic 

sewage sludge. For each concentration, three flasks were prepared. 500 ppm FLB 

flasks were encoded as T1-500, T2-500, T3-500, 250 ppm FLB flasks were encoded 

as T1-250, T2-250, T3-250 and 50 ppm FLB flasks were encoded as T1-50, T2-50, 

T3-50. 

Yellow color is indicative of appearance of meta-cleavage products. Observation of 

yellow color in T1-500 and T2-500 on day 6 indicated that FLB was degraded 
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(Figure 4. 12). The samples taken on those days lost their color when they were 

acidified. This strongly suggested that there were meta-cleavage products present. 

Later, a brownish color appeared. Yellowish color in T1-50 and T3-50 was observed 

on later days (Figure 4. 11 & Figure 4. 13).  Yellowish color in T2-50 was not strong. 

Color change was observed in 250 ppm FLB flasks lastly.  

 
 

Figure 4. 11. Observation of yellowish color in T1-50. 
 

 
 

Figure 4. 12. Observation of yellowish color in T1-500 and T2-500. 
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Figure 4. 13. Observation of a dark brownish color in T3-50. 
 

The samples were analyzed by HPLC in order to determine FLB disappearance. 

Additionally, spectrophotometric analyses of the samples were carried out in order to 

see relationship between FLB disappearance and color appearance.  UV-Vis spectral 

scan of yellow supernatant revealed a slight peak at 370nm, consistent with typical 

meta-cleavage products.  Absorbance at 370nm was monitored in the samples in 

order to explore its correlation with FLB concentration. 

During analysis of the samples, a second peak was observed using 247nm detection 

wavelength (Figure 4. 14 & Figure 4. 15).  The magnitude of this new peak appeared 

to be proportional to the amount of FLB disappearance, indicating that it might be a 

FLB metabolite. FLB concentration is given in ppm and the second peak 

concentration is given in area in the tables and graphs. In order to clearly separate the 

second peak and to insure the absence of any additional peaks, a solvent composed of 

30% methanol and 70% 40 mM acetic acid was used in HPLC analysis under a more 

general detection wavelength, 210 nm and with 60OC oven temperature. Under these 

conditions, the second peak eluted at 4.8 minutes.  This peak was collected from the 

waste-line (fractionated), i.e. when the peak was observed, the waste was diverted 

into a collection tube.   
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Figure 4. 14. HPLC chromatogram result of supernatant of T1-500 at day 1.
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Figure 4. 15. HPLC chromatogram result of supernatant of T1-500 at day 8 showing 

the appearance of a novel peak at 2.1 minutes. 
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As seen in Figure 4. 14 and Figure 4. 15, there was observation of a new peak with 

2.1 minute retention time at day 8. The area of FLB peak at 6th minute decreased, 

while a second peak appeared at 2.1 minute. 

Table 4. 1. FLB disappearance as ppm in 500 ppm FLB flasks 
Days T1-500 T2-500 T3-500 Average Standard 

deviation 
1 351 322 327 333 15 
8 82 242 464 263 192 
16 69 272 421 254 177 
34 66 203 346 205 140 
46 30 292 307 210 156 
59 68 287 356 237 150 
76 32 318 368 239 182 

 

Table 4. 2. Second peak appearance as area in 500 ppm FLB flasks. 
Days T1-500  

(2nd  Peak) 
T2-500  

(2nd Peak) 
T3-500  

(2nd  Peak) 
Average Standard 

deviation 
1 0 0 0 0 0 
8 9,021,041 2,513,446 1,035,840 4,190,109 4,248,442 
16 10,757,106 2,064,520 768,425 4,530,017 5,431,615 
34 6,577,527 2,570,394 983,242 3,377,054 2,883,059 
46 4,941,159 4,224,714 1,097,996 3,421290 2,043,672 
59 9,066,642 3,147,449 776,709 4,330,267 4,269,665 
76 9,669,752 3,339,718 1,359,836 4,789,769 4,340,583 
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Figure 4. 16. Average FLB concentration versus average second peak area in sludge 
with 500 ppm FLB flasks. 

 

As indicated in the Table 4. 1, Table 4. 2 and Figure 4. 16, as FLB concentration 

decreased, the second peak concentration increased. Linear regression indicated a 

negative correlation between FLB concentration and second peak area (R=0.87). The 

lowest FLB concentration and the highest second peak concentration were observed 

in T1-500 flask. In T1-500 flask, FLB concentration dropped to 82 ppm by day 8. 

Despite observation of yellowish color in T2-500, FLB concentration did not 

decrease after a point and second peak concentration did not increase. This might be 

due to acidification or inhibition of FLB degraders by other chemicals in the flask. 

T3-500 might exhibit the same manner with T2-500. 

There was no strong correlation between FLB disappearance and absorbance 

(R=0.26). All flasks yielded almost the same color intensities over time, ultimately in 

a manner not correlated to FLB concentration (Figure 4. 17 &Table 4. 3) 
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Table 4. 3. Absorbance @ 370nm of 500 ppm FLB samples 
Days T1-500 (OD) T2-500 (OD) T3-500 (OD) Average Standard 

deviation 

1 0.088 0.064 0.056 0.069 0.017 
8 0.296 0.320 0.136 0.251 0.100 
16 0.306 0.268 0.216 0.263 0.045 
34 0.266 0.336 0.21 0.271 0.063 
46 0.424 0.406 0.322 0.384 0.054 
59 0.408 0.44 0.436 0.428 0.017 
76 0.088 0.064 0.056 0.069 0.017 
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Figure 4. 17. Average FLB concentration versus average absorbance at 370 nm of 
500 ppm FLB flasks. 
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Table 4. 4. FLB disappearance as ppm in 250 ppm FLB flasks. 
Days T1-250 T2-250 T3-250 Average Standard 

Deviation 
1 192 343 182 239 90 
8 248 103 155 169 73 
16 203 186 153 180 26 
34 163 162 172 166 5 
46 217 195 181 198 18 
59 252 205 176 211 38 
76 238 238 203 226 20 

 

Table 4. 5. Second peak appearance as area in 250 ppm FLB flasks. 
Days T1-250  

(2nd 
PEAK) 

T2-250  
(2nd PEAK) 

T3-250  
(2nd PEAK) 

Average Standard 
Deviation 

1 0 0 0 0 0 
8 0 206,700 548,290 251,663 276,897 
16 251,001 289,484 751,410 430,632 278,468 
34 290,686 297,140 245,069 277,632 28,384 
46 309,369 362,496 550,327 407,397 126,599 
59 446,578 384,145 640,581 490,435 133,725 
76 730,053 498,415 840,808 689,759 174,717 
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Figure 4. 18. Average FLB concentration versus average second peak area in 250 
ppm FLB flasks. 

 
There was no clear indication of FLB disappearance in 250 ppm flasks (Table 4. 4, 

Table 4. 5 & Figure 4. 18). The reason for the high concentration of FLB in T2-250 

flask at first day might be that FLB was not uniformly distributed in T2-250 flask. 

The low concentrations of second peak area might also indicate that there was no 

degradation in 250 ppm FLB flasks; while the second peak area reached over 

9,000,000 in the 500 ppm treatments, it reached only 700,000 in the 250 ppm flasks. 

Inhibition of FLB degraders, competition between bacterial cultures, non-uniformly 

distributed FLB and physical and chemical conditions of the sludge might be the 

reasons for lack of FLB disappearance.  

Average absorbance of 250 ppm FLB flasks was higher than that of 500 ppm FLB 

flasks. Increase in absorbance with time was observed although there was no clear 

indication of FLB degradation in the flasks (Figure 4. 19 & Table 4. 6). Absorbance 

change might be due to some other chemical and physical changes in the flasks and 

might not depend on FLB disappearance. 
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Table 4. 6. Absorbance of 250 ppm FLB samples 
Days T1-250 (OD) T2-250 (OD) T3-250 (OD) Average Standard 

Deviation 
1 0.048 0.04 0.052 0.047 0.006 
8 0.032 0.04 0.03 0.034 0.005 
16 0.144 0.126 0.132 0.134 0.009 
34 0.210 0.204 0.176 0.197 0.018 
46 0.236 0.324 0.36 0.307 0.064 
59 0.572 0.52 0.4 0.497 0.088 
76 1.06 0.652 0.572 0.761 0.262 
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Figure 4. 19. Average FLB concentration versus average absorbance of 250 ppm 
FLB flasks. 

 
Table 4. 7. FLB disappearance as ppm in 50 ppm FLB flasks. 

Days T1-50 T2-50 T3-50 Average Standard 
Deviation 

1 49 45 64 52 10 
8 18 43 32 31 13 
16 11 40 6 19 18 
34 3 24 3 10 12 
46 10 23 2 11 11 
59 11 24 3 13 11 
76 10 34 6 17 15 
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Table 4. 8. Second peak appearance as area in 50 ppm FLB flasks. 

Days T1-50  
(2nd PEAK) 

T2-50  
(2nd PEAK) 

T3-50  
(2nd PEAK) 

Average Standard 
Deviation 

1 0 0 0 0 0 
8 1,237,630 417,339 1,971,833 1,208,934 777,644 
16 1,745,080 342,871 2,802,919 1,630,290 1,234,035 
34 1,378,752 802,580 2,456,639 1,545,990 839,616 
46 820,789 414,868 1,436,641 890,766 514,468 
59 1,356,361 481,781 2,104,338 1,314,160 812,101 
76 1,456,412 512,929 2,605,053 1,524,798 1,047,737 
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Figure 4. 20. Average FLB concentration versus average second peak area in 50 ppm 

FLB flasks. 
 

The highest concentration of second peak and lowest concentration of FLB were 

observed in T3-50 flask (Figure 4. 20, Table 4. 7 & Table 4. 8). A strong negative 

correlation (R=0.78) between FLB concentration and the second peak was detected 

by linear regression analysis.  An average of 68% of the FLB was degraded after 76 

days. It is clear that FLB degradation on a percentage basis was better for lower 

concentrations of FLB. This suggests there might be toxic effects of high-dose FLB. 
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50 ppm FLB flasks had the lowest absorbance values (Table 4. 9). Decreases in FLB 

concentrations of 50 ppm FLB flasks were observed around day 34 day 46. These 

deccreases might indicate improper filtration due to syringe filters. At the same time, 

decreases in absorbance and second peak concentrations were observed. This is 

interesting because when FLB concentration decreased, second peak concentration 

decreased and when second peak concentration decreased, absorbance also 

decreased. This situation shows a direct correlation between them. There exists no 

clear explanation for this sudden decrease in FLB concentration and decrease in 

second peak concentration and absorbance. This might be due to dissolution of 

particulate FLB or improper filtration. 

Table 4. 9. Absorbance at 370 nm of 50 ppm FLB samples. 
Days T1-50 (OD) T2-50 (OD) T3-50 (OD) Average Standard 

Deviation 
1 0.032 0.048 0.064 0.048 0.016 
8 0.027 0.042 0.032 0.034 0.008 
16 0.204 0.216 0.228 0.216 0.012 
34 0.148 0.092 0.16 0.133 0.036 
46 0.147 0.145 0.115 0.136 0.018 
59 0.18 0.092 0.124 0.132 0.045 
76 0.224 0.164 0.184 0.191 0.031 
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Figure 4. 21. Average FLB concentration versus average absorbance at 370 nm of 50 

ppm FLB flasks. 
 

For 250 ppm FLB flasks, no clear FLB disappearance was observed but they had 

highest absorbance. In T1-500, T2-500, T1-50 and T3-50 flasks, there was a clear 

disappearance of FLB and most of the FLB was degraded in 16 days in these flasks. 

The degradation might be stochastic or not depend on FLB concentration.  

There was a strong negative correlation between FLB concentration and second peak 

(metabolite) abundance based on test for the significance of the Pearson product-

moment (R=0.847, p<0.0000001) (Figure 4. 22).On the other hand, the correlation 

between absorbance and FLB disappearance was weak.  
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Figure 4. 22. FLB loss versus second peak area. This plot was derived from the data 
of FLB dissapperance rate   

 

4.2.2. Enrichment for FLB Degraders 

The previous enrichment for FLB degraders was not successful. Firstly, enrichment 

for FLB degraders was carried out by preparing 250 ppm FLB flasks in fresh aerobic 

sludge from Ankara municipal wastewater treatment plant. FLB was degraded in 

about two weeks. To increase the chance of obtaining an enriched culture and/or 

isolates, three different media were used for the subsequent enrichment phases; 100 

ppm FLB, 100 ppm FLB +2 ppm yeast extract, and 500 ppm FLB.  FLB 

concentration was lowered, in the 100 ppm treatments, in order to address toxicity 

issues.  The yeast extract media was prepared so that isolates would have access to 

micronutrients and vitamins, a standard procedure for minimal media systems.  After 

approximately one month, the initial enrichment showed signs of growth and were 

promptly transferred to identical media types.  As predicted, the 500 ppm FLB 

enrichment took much longer to begin to grow.  The second enrichment cultures 

developed granule-like structures after approximately 3 weeks (Figure 4. 23). 
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Figure 4. 23. Depiction of granule-like structures present in second 100 ppm FLB + 
yeast extract enrichment. 

 
The third generation of 100 ppm FLB and 100 ppm FLB + yeast enrichments grew 

turbid within three days, although clear signs of FLB degradation for all three 

generations were not observed based on HPLC analysis. Then they were streaked 

onto both LB and 100 ppm FLB + yeast extract solid media.  The yeast – 

supplemented media enrichment culture appeared to be dominated by a pink-colored 

bacterium, a proportional representation of the enrichment culture that appeared to 

have increased with each subsequent enrichment cycle (Figure 4. 24).  This pink-

colored bacterium is absent from LB streaks of the other two enrichments. 

 

Figure 4. 24. Three generations, pictured left to right, of 100 ppm FLB + 2 ppm yeast 
extract enrichment cultures plated onto LB media.  Note the proportional increase of 

the reddish bacterium with subsequent generations. 
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The third generations of all three enrichments showed signs of growth on 100 ppm 

FLB + 2 ppm yeast extract solid media; colonies were visible after 1 week of growth.  

It appeared that isolation was successful. After larger colonies were obtained, they 

were re-isolated on FLB media and then subjected to 16S sequencing and RFLP.  
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Figure 4. 25. Photographs of putative FLB degraders on LB solid media after one 
week.  Note they were firstly isolated and identified based on colony appearance. 

4.2.3. Enrichment for Tolylacetic Acids Degraders 

Enrichments for pTAA and mTAA were successful and isolates capable of growth 

on the appropriate minimal media were obtained and stored at -80ºC. 
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Figure 4. 26. Photographs of putative mTAA degraders 
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Figure 4. 27. Photographs of putative pTAA degraders. 

 

4.2.4. On the Catechol Metabolism Indicators Present During 

Enrichment Studies 

None of the enrichments cultures produced any of the notable yellow coloration that 

had been observed in the initial FLB-spiked sewage sludges as reported previously.  

However, third-generation 100 ppm FLB + yeast extract cultures produced a dark 

black precipitate, which may indicate polymerized catechols, though there are other 

explanations. Later, analysis of isolates provided more definitive answers. 

4.2.5. Identification of Unique Degrader Strains 

16S rRNA gene sequences of isolated cultures were amplified via polymerase chain 

reaction (PCR) and amplicons were subjected to restriction fragment analysis 

(RFLP) by using a 4-hitter restriction enzyme (HaeIII) in order to identify unique 

strains.   

4.2.5.1. Identification of Putative FLB Degraders 

16S rRNA gene sequences of 12 FLB degraders isolated based on colony appearance 

were amplified by PCR and their amplicons were analyzed by the standard method 

(gel electrophoresis + UV visualization). 
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Figure 4. 28. Confirmation of PCR products of FLB isolates. Note three of the 
isolates were not confirmed and a second run were carried out for them. 

 

 
 

Figure 4. 29. Confirmation of PCR products of remained FLB isolates. 
 

Finally, all FLB degraders were amplified successfully. Then, they were identified 

by RFLP analysis and 5 unique FLB degrading isolates were obtained (Figure 4. 30). 
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Figure 4. 30. The RFLP analysis of FLB degraders. The second strain have the same 
colony shape and color with 12th strain and they were treated as the same strain Each 

unique strain was signed with a specific letter. 
 

4.2.5.2. Identification of Putative Tolylacetic Acid Degraders 

5 mTAA and 7 pTAA degraders were amplified and their PCR products were 

confirmed. Then they were subjected to RFLP analysis. As a result, 2 unique mTAA 

degrading strains and 5 unique pTAA degrading strains were obtained. 
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Figure 4. 31. The RFLP analysis of mTAA and pTAA degraders. Each unique strain 
was signed with a specific letter. 

 

4.3. Confirmation of Putative FLB, mTAA, pTAA and PAA Degrading 

Strains 

In order to confirm whether FLB degrading strains had ability to degrade FLB or not, 

the experiments described in section 3.2.3 were carried out. It was observed that FLB 

degrading strains did not actually degrade FLB as a result of experiments run for at 

least 20 days. Surprisingly, it was observed that some of the strains had ability to 

grow on agar, forming microcolonies after long incubation periods. The strains did 

not degrade FLB, but they grew on the other easily metabolized chemicals, such as 

glucose and sodium acetate. However, they were stored at -80oC in glycerol solution. 

One mTAA degrading strain and one pTAA degrading strain had the ability to grow 

on mTAA and pTAA, respectively. Other strains had growth in the presence of 10 % 

of LB. The strains were stored at -80 oC in glycerol solution.  Additionally, PAA 

degraders were also stored at -80 oC in glycerol solution after confirmation. 
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The mTAA and pTAA degrading strains were inoculated into MSM with 250 ppm 

mTAA + 50 ppm FLB and MSM with 250 ppm pTAA + 50 ppm FLB, respectively, 

in order to investigate whether these strains have the ability to degrade FLB. There 

was no FLB degradation at the end of three weeks.  

4.4. mTAA and pTAA Disappearance Essay and Growth Analysis 

The disappearance and growth for mTAA and pTAA were investigated for the strain 

degrading mTAA and the strain degrading pTAA. mTAA was completely degraded 

in about 120 hours in all flasks while pTAA was degraded in about 72 hours in all 

flasks. By measuring the turbidity via optical density at 600nm, the growth rates of 

bacteria were determined. As the degradation percentages increased, the turbidity in 

the flasks was also increased. This is consistent with the correlation between 

degradation rate and growth rate (Figure 4. 32 & Figure 4. 33). These results also 

indicated that the enrichment system worked properly.  
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Figure 4. 32. mTAA disappearance versus growth as turbidity. 
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Figure 4. 33. pTAA disappearance versus growth as turbidity (OD). 
 

4.5. Confirmation of Second Peak Represanting Putative FLB Metabolite 

For the examination of second peak production, two flasks of 50 ppm FLB in sludge, 

one flask of 500 ppm FLB in sludge and one flask without FLB (negative FLB 

control) were prepared and one of the 50 ppm FLB flasks was autoclaved (biological 

control). The rationale of this experiment was that if the second peak truly represents 

a FLB metabolite, it would not appear in the absence of biological activity 

(autoclaved control) or in the absence of FLB. 50 ppm FLB and 500 ppm FLB were 

degraded in 8 days and 13 days, respectively and a slight yellow coloration was 

observed. Second peak and third peaks were observed in the 50 ppm FLB and 500 

ppm FLB flasks as disappearance of FLB progressed. The autoclaved samples and 

those without FLB did not yield a second peak, but they did yield a third peak at 

week 4. It was clear that second peak was due to degradation of FLB while the third 

peak was actually unrelated. 
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Table 4. 10. Disappearance of FLB in 500 ppm FLB (F-500), 50 ppm FLB (F-50) 
and 50 ppm autoclaved FLB (AF-50) flasks. 

time (day) F-500 (ppm) F-50 (ppm) AF-50 (ppm) 
0 238 21 27 
2 218 18 24 
4 246 24 29 
6 202 25 23 
8 234 2 25 
10 198 0 21 
13 13 0 27 

 

4.6. Repeating the Experiment of Enrichment of FLB Degraders and 

Confirmation of Second Peak  

50 ppm FLB flasks, 50 ppm autoclaved FLB flasks and 0 ppm FLB flasks were 

prepared in triplicate. 50 ppm FLB was degraded in 2 weeks with slight yellow 

coloration and second peak was observed with disappearance of FLB and 

fractionated for further analyses. No FLB and autoclaved FLB flasks did not yield 

second peak but they yielded third peak at the week 4.  

Table 4. 11. Disappearance of FLB in 50 ppm FLB  (F-50) and 50 ppm autoclaved 
FLB (AF-50) flasks. 

time (day) F-50 
average 

Standard 
Deviation 

AF-50 
average 

Standard 
Deviation 

0 21 2 26 4 
2 22 5 22 2 
5 21 2 23 4 
7 22 4 22 3 
9 22 3 24 3 
11 20 6 25 5 
14 1 1 23 3 

 

The MSM media composition was changed in order to see the effects of MSM 

composition. Transfers were made from 50 ppm FLB flasks to the new flasks with 50 

ppm FLB and MSM prepared according to McCullar’s formula. At the end of 4 

weeks, there was no FLB degradation.  
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4.7. Co-metabolic Stimulation of FLB Degradation 

Treatments with 250 ppm mTAA+50 ppm FLB (25M5F), 250 ppm pTAA+50 ppm 

FLB (25P5F), 250 ppm PAA+50 ppm FLB (25PA5F), 50 ppm FLB (F50), 250 ppm 

BP + 50 ppm FLB (25B5F), 3FPAA + 50 ppm FLB (25FP5F) and 250 ppm IBP + 50 

ppm FLB (25I5F) were prepared separately in fresh aerobic sludge in order to 

stimulate co-metabolic activity and see the effect of co-metabolism on FLB 

degradation. They were prepared in triplicates.  

FLB has both BP and PAA moieties. 3FPAA has a fluorine moiety at the same 

position with the FLB. Altogether, it was expected that at least one of these similar 

chemicals would have stimulatory effects on FLB degradation. 

Table 4. 12. Concentrations of pTAA and FLB in 250 ppm pTAA + 50 ppm FLB 
flasks. 

Time 
(day) 

25P5F-average 
(pTAA area) 

Standard 
Deviation 

25P5F-average 
(FLB conc.) 

Standard 
Deviation 

0 136 2 37 3 
1 137 3 37 4 
4 165 4 37 3 
5 170 10 36 1 
8 166 9 33 2 

11 164 12 32 3 
12 151 20 34 4 
13 69 60 34 1 
14 2 2 34 3 
17 0 0 27 11 
18 0 0 23 17 
19 0 0 23 20 
20 0 0 23 20 
21 0 0 21 18 
22 0 0 21 19 
29 0 0 12 20 
30 0 0 12 21 
38 0 0 10 17 
48 0 0 11 19 
52 0 0 11 20 
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Figure 4. 34. pTAA concentration change versus FLB concentration change in 250 
ppm pTAA + 50 ppm FLB flasks. 

 
FLB degradation started after degradation of pTAA. There was no clear indication of 

the stimulation of FLB degradation by pTAA degradation (Figure 4. 33 & Table 4. 

12). 

Table 4. 13. Concentrations of mTAA and FLB in 250 ppm mTAA + 50 ppm FLB 
flasks 

time 
(day)  

25M5F-average 
(mTAA conc.) 

Standard 
Deviation 

25M5F-average 
(FLB conc.) 

Standard 
Deviation 

0 135 8 35 3 
5 156 5 36 2 
6 153 3 34 1 
10 153 3 35 3 
14 108 55 33 3 
20 38 46 32 5 
21 4 7 33 3 
38 0 0 33 5 
48 0 0 32 3 
52 0 0 32 5 
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mTAA was degraded in three weeks in all flasks while there was no FLB 

degradation at the end of 52 days. Additionally, there might have been be inhibitory 

effects of mTAA on FLB degradation (Table 4. 13).  

Table 4. 14. Concentrations of PAA and FLB in 250 ppm PAA + 50 ppm FLB 
flasks. 

time 
(day) 

25PA5F-average 
(PAA area) 

Standard 
Deviation 

25PA5F-average 
(FLB conc.) 

Standard 
Deviation 

0 12,441,368 265,755 34 4 
1 0 0 33 2 
2 0 0 34 1 
3 0 0 35 1 
4 0 0 34 2 
5 0 0 35 2 
6 0 0 32 1 
7 0 0 32 2 
8 0 0 34 2 
9 0 0 31 2 
10 0 0 33 1 
11 0 0 32 3 
12 0 0 28 9 
13 0 0 23 16 
14 0 0 23 16 
19 0 0 22 16 
20 0 0 19 16 
22 0 0 18 16 
23 0 0 20 17 
24 0 0 19 17 
25 0 0 19 16 
26 0 0 17 15 
27 0 0 12 12 
28 0 0 5 9 
29 0 0 0 0 
30 0 0 0 0 
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Figure 4. 35. FLB concentration change in 250 ppm PAA + 50 ppm FLB flasks. 
 

PAA was degraded in all flasks in one day while FLB was degraded in four weeks. It 

did not clearly indicate co-metabolic activity (Figure 4. 35 & Table 4. 14). 

Table 4. 15. Concentration of FLB in 50 ppm FLB flasks. 
time 
(day)  

5F-average 
(FLB conc.) 

Standard 
Deviation 

0 32 3 
1 34 2 
3 34 2 
5 34 3 
6 34 1 
7 33 1 
8 31 2 
14 35 2 
20 31 2 
21 33 2 
22 32 5 
23 16 5 
24 1 2 
25 0 0 
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Figure 4. 36. FLB concentration change 50 ppm FLB flasks with respect to time. 

 
FLB was degraded in all 5F flasks in 24 days with a small standard deviation (Table 

4. 15 & Figure 4. 36). 

Table 4. 16. FLB concentration in 250 ppm BP + 50 ppm FLB flasks. BP 
concentration could not be measured with HPLC because BP is very hydrophobic. 

Time 
(day)  

25B5F-average 
(FLB conc.) 

Standard 
Deviation 

0 31 3 
1 29 1 
3 30 1 
5 31 1 
7 30 1 
8 29 1 
14 30 1 
20 28 3 
22 31 1 
23 23 7 
24 6 7 
25 0 0 
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Figure 4. 37. FLB concentration change in 250 ppm BP + 50 ppm FLB flasks. 
 

FLB was degraded in all flasks in 24 days and actually the degradation trend was 

very similar to trend of FLB degradation in 50 ppm FLB flasks. Thus, it is not clear 

that whether  the presence of BP had effects on FLB degradation or not (Figure 4. 37 

& Table 4. 16). 

Table 4. 17. Concentrations of 3FPAA (as area) and FLB in 250 ppm 3FPAA + 50 
ppm FLB flasks. 

time 
(day)  

25FP5F-average 
(FP conc.) 

Standard 
Deviation 

25FP5F-average  
(FLB conc.) 

Standard  
Deviation 

0 8,778,868 246,518 30 2 
1 8,541,173 352,718 31 4 
3 9,015,623 44,035 33 2 
5 8,975,783 78,451 31 2 
8 9,070,253 249,418 30 3 
14 9,036,509 459,364 31 3 
20 8,962,599 556,755 32 1 
28 9,094,870 946,436 28 1 
38 8,821,134 414,709 31 3 
48 9,000,983 660,525 32 4 
52 9,011,461 498,925 34 1 
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3FPAA was not degraded to any degree and there might be inhibitory effects of 

3FPAA on FLB degradation. Neither 3FPAA nor FLB was degraded at the end of 52 

days (Table 4. 17). 

Table 4. 18. Concentrations of IBP (as area) and FLB in 250 ppm IBP + 50 ppm FLB 
flasks. 

Time 
(day)  

25I5F-average  
(IBP area) 

25I5F-2  
(IBP area) 

25I5F-average  
(FLB conc.) 

Standard 
Deviation 

0 9,675,116 381,726 31 2 
1 9,624,709 225,887 34 1 
3 10,591,425 383,516 33 2 
5 10,208,652 423,340 33 2 
8 10,358,314 594,242 29 1 
14 8,269,921 1,445,916 32 4 
16 6,736,561 1,167,247 30 3 
17 6,575,460 2,732,400 27 7 
18 3,978,666 3,552,058 16 16 
19 2,489,555 2,156,178 10 18 
20 0 0 8 13 
21 0 0 0 0 
22 0 0 0 0 
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Figure 4. 38. IBP concentration change versus FLB concentration change in 250 ppm 

IBP + 50 ppm FLB flasks. 
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The rate of FLB disappearance in 25I5F flasks was slightly faster than under the 

other co-metabolic stimulants or without any stimulation, although the variation of 

the system made the result statistically insignificant (Figure 4. 39).  Additionally, 

FLB degradation was clearly inhibited by 3FPAA judging by the fact that FLB was 

never removed below 10 ppm under this condition (Table 4. 17 & Figure 4. 39). 

mTAA might have   had an inhibitory effect on FLB degradation, because FLB was 

ultimately not removed under this condition. 
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Figure 4. 39. Average FLB concentration in the treatments in which FLB was 
degraded in one of the flasks at least. 
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4.8. Enrichments in Sludge Samples from Other Cities 

FLB was degraded in 11 days in the sludge taken from Yozgat and after degradation 

started and yellow color appeared it was transferred to liquid MSM. In about 6 

weeks, there was no FLB degradation and second peak appearance in liquid MSM. 

At the end of 8 weeks there was no FLB degradation in the sludge taken from 

Eskişehir. Thus, FLB degrading isolates were not obtained from either of these 

sludges either. 

4.9. Enrichments with Alternative MSMs 

FLB degradation started in aerobic sludge in 18 days. Transfers were made from 

aerobic sludge to different MSM recipes. There was no clear sign of FLB 

degradation in McCullar’s MSM with 100 ppm FLB (O-1, O-2, O-3) after three 

weeks in all of the flasks (Figure 4. 40). 
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Figure 4. 40. FLB disappearance in McCullar’s MSM vs time. FLB concentrations 

was lower than 100 ppm which might be caused by low solubility of FLB or 
filtration material. 
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Figure 4. 41. FLB disappearance in M9 recipe vs. time. FLB concentrations were 
lower than 100 ppm which might be caused by low solubility of FLB or filtration 

material. 
 

There was also no clear sign of growth and FLB disappearance in McCullar’s MSM 

with spring water (S) (Figure 4. 42) and M9 MSM (M-1, M-2, M-3) (Figure 4. 41). It 

seems different water source and alternative mineral medium did not also stimulate 

the growth. 
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Figure 4. 42. FLB disappearance in McCullar’s recipe with spring water vs. time. 
FLB concentrations were lower than 100 ppm which might be caused by low 

solubility of FLB or filtration material. 
 

4.10. Detection of Fluoride 

The available method, which is targeted towards analysis of blood samples, was 

modified for this system. The new method was comprised of direct mixing of 0.25 

mL of alizarin reagent, 0.25 mL cerous nitrate and 0.5 ml of sample. In case of 

existence of fluoride the mix gives a blue or light lilac color as shown in the section 

3.3.4.. This approach will only detect fluoride that is in free ion form, not organic 

fluoride, thus it serves as an indicator for defluorination. The system was confirmed 

by testing standard solutions of sodium fluoride and a standard curve was drawn 

based on color generation generated by the standard solutions. 

Samples from previous FLB enrichments in which degradation was observed were 

tested with this method and no blue or light lilac coloration was observed while there 

was FLB degradation, suggesting that the fluoride is not liberated from the parent 

compound and thus likely accumulation of a fluorinated metabolite.  
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4.11. Characterization of FLB Degradation by LCMS 

UPLC was applied to separate analytes from 500 ppm FLB in aerobic sludge. 

Relative abundances were calculated based on 500 ppm FLB standard sample for the 

analytes. The peak with the retention time of 2.72 observed both in blank sample and 

sludge sample spiked with FLB (Figure 4. 43-a & Figure 4. 43-b). Therefore, this 

peak was confirmed as caused by chemicals already available in the sludge, not by 

FLB degradation. Both the peak of the retention time of 12.92 observed during the 

UPLC analysis of 500 ppm FLB standard and the peak of the retention time of 4.63 

observed during the UPLC analysis of sludge sample spiked with FLB were later 

subjected to ESI-TOF-MS in negative mode.  

Two ions are generally dominating the mass spectra of FLB: m/z: 199 and m/z 243 

and the relative abundances of product ions depend on the level of collision energy 

and the configuration of MS or MS-MS (Abdel-Aziz et al., 2012; Déglon et al., 

2011; Lee et al., 2010; Vinci et al., 2006). During mass spectra analyses of NSAIDs, 

parent compounds generally loses CO2 group having m/z: 44 (Lacey et al., 2008; 

Vinci et al., 2006) which is consistent with the results. The configuration of Waters 

Synapt G1 for FLB mass spectrum produced m/z: 199 as the precursor ion (Figure 4. 

44).Similar cases were reported by Lee et al. (2010); Vinci et al. (2006).  The results 

were compared to those of Competitive Fragmentation Modeling for Metabolite 

Identification CFM-ID, an online program predicting the spectra, assigning peaks 

and identifying compounds generated by ESI-MS/MS for confirmation (Table 4. 19) 

(Allen et al., 2015; Allen et al., 2014). CFM-ID calculates the relative abundances of 

product ions based on collision energy. The higher collision energy produces parent 

compounds with the lower relative abundance. 
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Table 4. 19. Comparison of results of FLB spectrum generated by Waters Synapt G1 
and CFM-ID. 

Ions (m/z) TOF-MS ES- 
Relative 

Abundance 

 CFM-ID 
prediction 

Relative 
Abundance 

 

 Low Collision 
Energy 

10V of 
Collision 
Energy 

20V of Collision 
Energy 

40V of Collision 
Energy 

171 
199 

- 
100 

1 
36 

11 
100 

100 
35 

200 19 - - - 
243 2 100 72 6 
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Figure 4. 43. LC/MS Chromatograms of 500 ppm FLB in methanol (a), sludge blank 

sample (b) and sludge sample spiked with FLB (c). 
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Figure 4. 44. TOF MS ES- spectrum of 500 ppm FLB in methanol (12.92 minute 

peak). 
 

Two different levels of collision energy were applied for MS analysis of FLB 

degradation metabolites and blank sample metabolites: 6V (low collision energy) and 

15V (high collision energy). Mass spectra of FLB degradation metabolites did not 

give strong proofs for parent compound. m/z: 167 ion was observed as the precursor 

ion in MS analysis at low collision energy (Figure 4. 46). At high collision energy, 

more fragmentation was observed and m/z: 119 ion became precursor ion (Figure 4. 

47). By using a guide, some predictions were produced and it was decided that parent 

compound lost a carboxylic group, which was resulted in product ion m/z: 167. Two 

hypothesizes support the loss of carboxylic group from parent compound: predicted 

degradation pathway of FLB based on degradation pathway of monochlorinated 

biphenyls (Figure 4. 45) and tendency of carboxylic acids to lose carboxyl group first 

during MS (Sparkman; Vinci et al., 2006). CFM-ID fragmentation predictions also 

support this situation (Table 4. 20). It was clear that m/z: 211 ion was the parent 

compound which is end-product of FLB degradation. By using the guide for mass 
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spectral prediction (Sparkman) and CFM-ID program, predictions for fragmentation 

of m/z: 211 were made (Figure 4. 48 & Figure 4. 49). The fragmentation patterns 

strongly supported that the m/z: 211 ion is parent compound and end-product of FLB 

degradation.   
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Figure 4. 45. Predicted degradation pathway for FLB based on degradation pathway 
for monochlorinated biphenyl. The top pathway is the monochlorinated biphenyl 

pathway. The bottom pathway is a predicted pathway for FLB degradation based on 
monochlorinated biphenyl pathway 
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Figure 4. 46. TOF MS ES- spectrum of 4.6 minute peak (sludge sample spiked with 

FLB) (low collision energy: 6V). 



107 
 

m/z

0 100 200 300 400 500 600

R
e

la
tiv

e
 A

b
un

d
a

nc
e

 (
%

)

0

20

40

60

80

100

120

119

167

147

123

211

 
Figure 4. 47. TOF MS ES- spectrum of 4.6 minute peak (sludge sample spiked with 

FLB) (high collision energy: 15 V). 
 

CFM-ID makes fragmentation predictions based on ESI-MS/MS system while 

Waters Synapt G1 is a ESI-TOF-MS system. Different systems and operation 

parameters can explain fragmentation patterns produced by these two systems. It is 

clear that relative abundances of product ions depend on systems and system 

configurations.    

Table 4. 20. Comparison of results of FLB metabolites spectra generated by Waters 
Synapt G1 and   CFM-ID. 

Ions (m/z) TOF-MS 
ES- 

Relative 
Abundance 

(%) 

  CFM-ID 
Relative 

Abundance (%) 

 

 Low 
Collision 

Energy (6V) 

High 
Collision 

Energy (15V) 

 10V of 
Collision 
Energy 

20V of Collision 
Energy 

 40V of 
Collision 
Energy 

119 60 100 1 6 6 
123 58 20 6 35 44 
139 - - 0 9 100 
147 37 22 6 7 48 
167 100 29 57 100 52 
211 5 6 100 67 10 
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Figure 4. 48. Interpretation of the fragments observed for 4-(1-carboxyethyl)-2-
fluorobenzoic acid (m/z: 211) based on guide for mass spectral interpretation. 
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Figure 4. 49. Fragmentation pattern of m/z: 211 based on guide for mass spectral 
interpretation and CFM-ID program which makes computational predictions. 

 

4.12. Prediction of FLB Degradation Pathway 

Initially, three degradation pathways were suggested for FLB degradation. The first 

one is paa pathway because FLB is a substituted PAA. This similarity may lead to 

degradation of FLB with a similar pathway to paa pathway.  Secondly, ipf pathway 

was suggested because FLB has structural similarities with IBP and the mechanism 

behind the degradation of IBP might provide an insight for the degradation of other 

alpha-branched PAAs like FLB, ketoprofen, naproxen. The third one is bph pathway. 

The bph pathway takes active role in degradation of most of the halogenated 
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biphenyls (Adriaens & Focht, 1990; Harkness et al., 1993; Hughes et al., 2011; 

Murphy et al., 2008).  

Observation of yellow coloration during FLB degradation and MS results of FLB 

degradation metabolites provided strong evidences for a bph pathway being active 

during FLB degradation. MS results suggested that the parent ion is m/z: 211 which 

is consistent with the molecular weight of the end-product of FLB degradation via a 

pathway similar to that of monochlorinated biphenyl pathway (Figure 4. 45). 

Therefore, the degradation pathways for monohalogenated biphenyls, in which the 

non-halogenated ring is exposed to dioxygenation attack can suggest a model for the 

degradation pathway of FLB. Several studies demonstrated that the enzymes 

degrading fluorinated aromatics, such as fluorophenols, fluorobiphenyls and 

fluorobenzoates are the same as those degrading the non-fluorinated versions of these 

chemicals. The enzymes having roles in the bph pathway are able to transform 

monohalogenated biphenyls. BP degradation by bacteria is initiated by biphenyl 2,3-

dioxygenase and in case of monohalogenated biphenyls, the degradation ends up 

with halogenated benzoates (Boersma et al., 2004;  Brooks et al., 2004; Ferreira et 

al., 2008; Murphy et al., 2008). Similarly, the end-product of FLB is also a 

substituted benzoate. Additionally, there are some studies reporting specialized 

enzymes employed for degradation of fluorinated compounds. However, there is still 

much work to be done in order to enlighten the actual mechanisms of degradation in 

all its aspects (Murphy et al., 2008).   

During experiments, FLB was degraded in aerobic sludge and samples taken from 

sludge were subjected to MS.  The end-product was likely a substituted benzoate 

with a fluorine moiety, which is consistent with predicted pathway for FLB 

degradation based on monochlorinated biphenyl degradation pathway, MS results 

and fluoride detection test, and there was no clear indication of further degradation. 

Therefore, understanding the degradation of halogenated single aromatics may be 

useful for understanding the degradation, toxicity and inhibitory effects of 

halogenated biphenyls and their degradation metabolites and may elucidate why 

there was no further degradation during FLB metabolism.  
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Degradation of monohalogenated biphenyls and the biphenyls which have halogens 

on one ring usually result in substituted halobenzoates (Harkness et al., 1993;  

Hughes et al., 2011). Therefore, understanding the degradation of halogenated 

benzoates, phenols and benzenes may provide clues for why FLB degradation stops 

after formation of 4-(1-carboxyethyl)-2-fluorobenzoic acid.    

O

OH

CH3

O OH

F

4-(1-carboxyethyl)-2-fluorobenzoic acid
 

The end product can be described as a substituted 2-fluorobenzoate. K. Engesser et 

al. (1988) reported that degradation of 2-fluorobenzoate can result in accumulation of 

toxic 3-fluorocatechol. Additionally, several other studies also reported that in the 

case of degradation of 2-fluorobenzoate, fluoride ion can be removed in the initial 

step by dioxygenation or toxic 3-fluorocatechol can be formed by dioxygenation 

(Engesser & Schulte, 1989; Vora et al., 1988). Successful degradation of 2- and 4-

fluorobenzoates has been reported many times, while 3-fluorobenzoates cannot be 

degraded efficiently due to accumulated toxic intermediates. 2-, 3- and 4- 

fluorobenzoates were successfully degraded by a FLB 300 strain (Agrobacterium-

Rhizobium branch) without formation of toxic 3-fluorocatechol. 3-fluorocatechol is 

strongly resistant against ortho-cleavage enzymes and has tendency to accumulate 

and has toxic effects on cells (Dorn & Knackmuss, 1978;  Engesser et al., 1988; 

Schreiber et al., 1980). Observation of dark-brownish color can also be an evidence 

for the accumulation of catecholic intermediates (Vora et al., 1988) which was 

observed during FLB degradation in both sludge amd MSM. For example, in 

Pseudomonas (spp), 2-FB is metabolized via catechol, which is then further 

catabolized to β-ketoadipate, following the ortho fission pathway. An intermediate in 

the conversion of 2-FB to 3-fluorocatechol is 6-fluoro DHB; however, since the 

organism did not have the machinery to tackle halocatechols, they accumulated in the 
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medium, giving it a brown color (Vora et al., 1988). It is clear that fluorobenzoates 

exhibit strong resistance against degradation.  

To sum up, degradation of FLB resulted in the formation of 4-(1-carboxyethyl)-2-

fluorobenzoic acid as a dead-end product. The formation of halogenated benzoates as 

end-products of monohalogenated biphenyls was reported by many studies. It is 

possible that degradation of 4-(1-carboxyethyl)-2-fluorobenzoic acid resulted in 

formation of toxic intermediates such as 3-fluorocatechols and inhibited the 

degradation process. 
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CHAPTER 5   

CONCLUSIONS 

 

The aim of the study was to contribute to the understanding of the biodegradation of 

FLB by environmental bacteria. Additionally, there is the possibility to gain 

understanding of the biological activities of fluorinated aromatics, their fate in the 

environment and wastewater treatment plants and their tendencies to result in toxic 

byproducts. It can be concluded from the results: 

 FLB disappearance rates were very slow and highly variable between sampling 

sessions and even within replicates of the same samples. 

 FLB degraders could not be isolated. Firstly, McCullar’s recipe without trace 

elements was used as MSM and weak growths were observed on FLB/MSM 

plates but not in FLB/MSM liquid medium; later it was revealed that the isolates 

were able to grow using only agar as carbon and energy source, not FLB. In 

further attempts to obtain FLB-degrading isolates, different minimal medium 

systems were used and McCullar’s recipe was supported by nutrients. These 

alternative mineral medium systems did not stimulate the growth of FLB 

degraders. Finally, a co-metabolic stimulation approach was developed with 

similar chemicals but there was no clear indication of stimulation of FLB 

degradation. On the other hand, enrichment of TAA and PAA degraders was 

successful, indicating that McCullar’s recipe works.   

 Some chemical changes that supported FLB degradation were observed 

following FLB spike. Firstly, yellow color indicating meta-cleavage of the ring 

was observed in the sludge spiked with FLB. After appearance of yellow color in 

sludge, a brownish color indicating accumulation of catecholic compounds was 

observed.  

A fluoride detection test was applied in order to understand release of fluoride 

ion during degradation. Test results did not indicate an accumulation of fluoride 

ion. This might indicate that defluorination did not occur but rather that a 

fluorinated metabolite accumulated.  
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During HPLC analysis of FLB degradation, a metabolite was observed with the 

appearance of a second peak. This metabolite appeared as FLB disappeared, only 

was present when FLB was added, and was not produced in abiotic systems. The 

size of metabolite peak depended on FLB concentrations and did not decrease 

over time periods up to 76 days. This strongly suggested accumulation of a 

metabolite. Separation and analysis of the peak by LC/MS yielded a mass 

spectrum consistent with a substituted fluorobenzoate, 4-(1-carboxyethyl)-2-

fluorobenzoic acid.  

 Altogether, fluoride test and appearance of yellow color and the metabolite 

allows for a prediction for the pathway. It seems the ring on which there is no 

fluoride underwent metacleavage. Metacleavage of the ring was supported with 

appearance of acid-labile yellow color during FLB disappearance and this yellow 

color got weaker with time. Although there was no strong correlation between 

FLB dose and optical density of yellow color, metacleavage of the ring was 

suggested. The accumulation of 4-(1-carboxyethyl)-2-fluorobenzoic acid was 

consistent with a predicted pathway based on monochlorobiphenyl degradation 

and with lack of fluoride ion. 4-(1-carboxyethyl)-2-fluorobenzoic acid may lead 

to formation of 3-fluorocatechols which are known as metabolic poisons. This 

could also explain why 4-(1-carboxyethyl)-2-fluorobenzoic acid accumulated. 

Based on the results, it can be concluded that metabolism of FLB by environmental 

bacteria resulted in accumulation of 4-(1-carboxyethyl)-2-fluorobenzoic acid dead-

end metabolite by a pathway similar to that of monochlorobiphenyl. 4-(1-

carboxyethyl)-2-fluorobenzoic acid seems to be persistent and inhibits the 

degradation process. Additionally, since the FLB degradation rates vary 

dramatically, FLB and the dead-end metabolite can be discharged into environment 

from wastewater treatment plants with short sludge retention times.   

Future Work 

 FLB degradation was studied at very high concentrations. The fate of FLB at 

environmentally relevant concentrations should be studied. 

 FLB degradation should be investigated under anaerobic conditions. 
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 Although the formation of 4-(1-carboxyethyl)-2-fluorobenzoic acid is consistent 

with bph-like pathway and is supported by the data, an NMR analysis of the 

metabolite should be carried out to definitively characterize the structure. 

 4-(1-carboxyethyl)-2-fluorobenzoic acid was highly persistent in the aerobic 

sludge systems tested. Concentrations and fate of this metabolite in sewage 

treatment systems and the environment should be investigated. 

 Toxicological studies of FLB and 4-(1-carboxyethyl)-2-fluorobenzoic acid 

should be carried out. 
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APPENDIX A 

Standard Curves 

 

Standard curves were constructed in order to find concentrations of FLB, mTAA and 

pTAA in ppm with respect to their area.  
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Figure A. 1. HPLC Standard Curve: FLB concentration vs. area (y=124280x, 
R2=0.999). 
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mTAA Concentration as ppm
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Figure A. 2. HPLC Standard Curve: mTAA concentration vs. area (y=76436x, 
R2=0.999). 



145 
 

pTAA Concentration as ppm
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Figure A. 3. HPLC Standard Curve: pTAA concentration vs. area (y=72357x, 
R2=0.999). 
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APPENDIX B 

Extraction of FLB from Sludge 

 

An extraction method was developed after many trials with different configurations 

and solvents such as acetone, methanol and ethyl acetate. After centrifugation and 

separation of sludge supernatant, the following extraction method was applied to the 

solid: 

 Lyophilize the solid phase at -55 oC of ice condenser temperature, +20 oC of 

shelf temperature (CHRIST ALPHA 1-4 LOC-1, Germany) 

 Add acetone as much as the original volume of the sample 

 Vortex for 10 minutes 

 Sonicate for 40 minutes at room temperature in cold water (Voltage line: 230 

V, Frequency Line: 50-60 Hz, Power Line US: 80-180 W, Power Line 

Heating: 100W, Frequency US : 28-34 kHz) (Ultrasonic FALC, Treviglio, 

Italy) 

 Centrifuge and take the supernatant 

 Analyze by HPLC 

An extraction efficiency of 67 % was determined by addition of set concentrations of 

FLB to sludge samples followed by immediate extraction. Adding together the 

concentrations obtained by HPLC from the two phases (supernatant and solid) yields 

the total concentration when total measured concentration is divided by 0.67. The 

supernatant of sludge was responsible of 65 ± 2 % of total FLB while the solid phase 

was responsible of 2 ± 2 % of total FLB. On the other hand, recovery of FLB from 

solid phase was never greater than 12 % of missing FLB. Low recovery of FLB from 

solid phase indicated that syringe filters could be responsible for most of the missing 

FLB. 


