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ABSTRACT

STOCHASTIC SURPLUS PROCESSES WITH VaR AND CVaR SIMULATIONS
IN ACTUARIAL APPLICATIONS

Simsek, Meral
M.S., Department of Actuarial Sciences
Supervisor : Assoc. Prof. DOmiir Ugur
Co-Supervisor : Assoc. Prof. Dr. A. Sevtap Selguk-Kestel

June 2014, 70 pages

The theory of ruin is a substantial study for those who areretted in financial sur-
vival probability based on the patterns imposed by the sisrpfocess, which deter-
mines the insurer’s capital balance at a given time. In otands, fluctuations in
aggregate claims as well as premiums in such processes csetbeed by a certain
capital. In this study, we simulate various surplus proessmder different claim size-
distribution assumptions and extend the analyses by agdirgrbation of a Brownian
motion in order to capture the possible uncertainty on agageeclaims as well as pre-
miums. The capital, which is required to prevent an insugarmnpany from possible
losses, is achieved by using the capital-based risk megsuch as the Value-at-Risk
(VaR) and the Conditional Value-at-Risk (CVaR) associdtedhe surplus process.
Findings of the thesis fill a gap in the related literaturgeesally for the claim size
distributions whose closed-form expressions for the ruobgbilities cannot be ob-
tained. This study sheds light on practitioners who allecapital by means of VaR
and CVaR when ruin is considered.

Keywords ruin theory, risk measure, value-at-risk, conditiondireaat-risk
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AKTUERYA UYGULAMALARINDA STOKAST IK REZERV SURECLER ICIN
VaR VE CVaR $SMULASYONU

Simsek, Meral
Yuksek Lisans, Aktuerya Bilimleri Bolumi
Tez Yoneticisi : Dog. DrOmiir Ugur
Ortak Tez Yoneticisi : Dog. Dr. A. Sevtap Selcuk-Kestel

Haziran 2016, 70 sayfa

Iflas teorisi bir sigorta sirketinin finansal varligiursltirmekle ilgilenenler icin buyuik
onem arzeden bir konudur. Sirketin sermaye dengesinedointn temel konusu olarak
incelenen rezerv sureclerinin belirlenen zaman ickn@eintust karar verir. Baska
bir deyisle, bu tip stokastik sureclerde toplam hasatayprimlerdeki dalgalanmalar
sirketin likit olarak elinde bulundurdugu sermaye ilenkml altinda tutulabilir. Bu
calismada, farkli hasar dagilimlari varsayimiyladeredilen rezerv sureci ve olasi be-
lirsizlikleri yansitabilmesiicin bu stokastik siirecedsvn hareketi difiizyonu eklenerek
elde edilen model calisiimistir. Her iki stokastik mimi yola ¢ikarak, olusabilecek
risklerden korunmak icin ayirilan sermaye degeri Riskar i Deger (VaR) ve kosullu
Riske Maruz Deger (CVaR) gibi risk dl¢cumleri kullamég erisilebilir. Bu ¢calismada
bulunan sonuglar, litaratirde bircok hasar dagiligm kapah formult bulunamayan
iflas olasiliklarini hesaplamada literattirdeki bogigoldurulmasina yardimci ve stokastik
rezerv surecleri kullanarak sermaye hesabi yapan sigektor calisanlarina yol gosterici
olacagi dustniulmektedir.

Anahtar Kelimeler iflas teorisi, risk olgimu, riske maruz deger (VaR)skllu riske
maruz deger (CVaR)
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CHAPTER 1

INTRODUCTION

Risk is a fragment of our daily lives. As a dictionary defiaitirisk is an ‘exposure to
the chance of injury or loss; a hazard or dangerous chanaaveMer, only a single
definition is not entirely satisfactory since financial egonists, behavioral scientists,
risk theorists, statisticians, and actuaries adjust teicepts in the definition of risk.
Generally, it is connected withincertainty Therefore, a popular answer to ‘what is
risk?’ can be uncertainty concerning an occurrence of a[Bf8}s Although mostly
risk is seen as downside, rarely upside, potential of gain.

Since risk is inherent in everything that we act, essencieskinanagement shows up.
Kloman (1990) stated the risk management as [38]:

To many analysts, politicians, and academics it is the mamagt of envi-
ronmental and nuclear risks, those technology generatedonnisks that
appear to threaten our existence. To bankers and finandieérsf it is

the sophisticated use of such techniques as currency hedgainterest-
rate swaps. To insurance buyers or sellers it is coordinatfansurable
risks and the reduction of insurance cost. To hospital actnators it may
mean ‘quality assurance’. To safety professionals it isicety accidents
and injuries. In summary, risk managemenaidiscipline for living with

the possibility that future events may cause adverse sffect

As it is understood from the quotation, risk managementgatstour lives to some
extent via different implementations. Risk managementashbusiness of especially
banks and insurance companies. Risk can be undertaken bgwamnce which encap-
sulates from designing, pricing and marketing the insuggmoducts, the underwriting
procedures, the calculation of liabilities, technical\pstoons and asset backing these
provisions, to the overall claims and risk management [3iitieed, insurance pro-
vides an insured pooling losses, payment of fortuitousl®ssansferring the risk, and
indemnification. Those insurance contracts are signed®undhdition that losses are
insurable risk. Ideally, an insurable risk has differenareltteristics which are hav-
ing a large number of exposure units, the loss must be adeidemunintentional and
measurable, the chance of loss must be calculable, and/fpraimium for risk must
be feasible[[28].



In the risk management, no matter the sector operate in,diganstitutions are af-
fected by three types of core riskredit, market andoperational riskd56]. Besides,
liquidity risk can be added, too. An insurance company encounterswvdbrwriting
risk as well. Credit risk is the default risk and, on the comparwestment portfo-
lio, it is the change in the quality of issuers of securityeter-parties (e.g. reinsur-
ance, derivative contracts), intermediaries, etc. Tlismesembles also direct default,
spread, sovereign, and concentration risk. Market riskleged to the level or volatil-
ity of market prices on assets and considers the movemettis lavel of stock prices,
interest rates, exchange rates or commodity rates. It stsnsi interest-rate risk, eg-
uity and property risk, currency risk, etc. Operationak @sises from inadequacy of
business plan or falling system such as fraud and exterealtgvlt is also named as
residual risks. Liquidity risk comes up due to insufficieiquid assets. For instance,
early termination of insurance contracts poses liquidgl of which company should
be aware. Finally, underwriting risk (or insurance riskpssociated with insurance
contracts on that misleading issues cannot be covered. |&&sks of such risk are
pricing, reserving, policyholder behavior, claim and regention risk.

Road to regulation for an insurance company in terms of rigkagement is drawn
by Solvencyframework that is inspired by the Basel Accord for bankingteyn. This
regulation is used for protection of the policyholder byarning a law, enough capi-
talization for the insurance company, hereby providingniaficial stability. Same as
the Basel Accord, Solvency is based on three pillar systehgrevthe first pillar is
interested in quantitative requirements, the secondrpiiielves governance and su-
pervision review of the process, and the third pillar conedrwith market reporting
to compare risk profiles of companies easier. Pillar | rulesh® amount of the cap-
ital in order to ensure an insurance company from probgtofiinsolvency. In fact,
it focuses on sustaining the appropriate technical proms(policy liabilities such as
premiums, not funded claims and claim reserves from undgoremiums), compen-
sating the obligations with appropriate assets, and timeguyi interest required capital.
On the purpose of calculating the capital requirements pamwis free to usaternal
models or standard formula approactillar 1l beholds competing way with risk of an
insurance company i.e. supervisory or designed qualifiety paviews, independent
opinions about the determination of risk assessment feresal purposes. This is es-
pecially required for the determination of internal modal®illar I. Moreover, Pillar
Il not only ensures having sufficient amount required citat also supports insurers
to improve better risk management techniques. Pillar bisis the disclosure of in-
formation to public to strengthen market discipline. Thgtdusiness of an insurance
company can easily be judged by policyholders, analysteshors and supervisors.

Figure[1.1 demonstrates different states of solvency. @épewhen Available Sol-
vency Margin (ASM), which equals to the difference betwessets and liabilities, is
less than zero, insolvency arises. Solvency Capital Remgnts (SCR) is the target
requirement for an insurance company. Regulatory camtplirements account both
Minimum Capital Requirements (MCR) and SCR. The value Iaivan MCR is con-
sidered to be that the company is not in the regularity stateeacy [57]. In an ideal
situation,
MCR < SCR< ASM.

The maintenance of financial stability is satisfied by theneooic capital view. It is a
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Figure 1.1: The state of solvency. MCR: Mininumum Capitabjiieement, SCR:
Solvency Capital Requirement, ASM: Available Solvency §ar (Adopted from:
Sandstrom, 2010, p. 5)

more complex situation than satisfying regularity stateatency. Financial stability
can be guaranteed with the use@ivn Risk and Solvency Assessment (ORIS#)is
proposed in[35, 36].

Business capital has central role in operations of insumer@enment, as illustrated
in Figure[1.2, by holding clear vision on the handling pugsosf each elements such
as risks and design of it, pricing, liabilities, assets dr@irtmanagements, experience
rating, profit and solvency. A report of International AatahAssociation([34] (2004)
remarks that capital requirement purpose is a rainy day wimdh covers bad situa-
tions effects, a way of risk management to decrease leveslofan aid for avoiding
undesirable level of risk from a policyholder perspectar&ynction of actual economic
risk, a tool for supervisors in order to control financialdag of the company, and a
signal of emerging trends on the market.

Risk based capital regulation is the way of measuring themmim amount of capi-
tal in order to maintain overall business operations adgogrtb company'’s size and
its risk profile. Indeed, as indicated, capital allocatisrséen as a buffer to the com-
pany against insolvency [50]. Under risk based capitallegguns, financial regulators
should choose the correct approach of measuring the risdsélimeasures should give
intervention before the insolvency gets large, at least giwuld help minimize the
risk.

Pentikainen (2004) [52] points out that solvency can béuatad by using risk theo-
retical techniques, for example, ruin theory which playpamant role in addressing
the issue of investigating business activities of an insceacompany by means of
its surplus process. Besides pursuing inflows and outflotvgrangredient of this

3
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Figure 1.2: Relation of capital with other business insteats. (Adopted from:I1AA
(2004) [34], p. 25.)

theory is the ruin probabilities which specify the amountr@fuired initial capital
for a certain probability of solvency. As a matter of factn8strom (2010) [57] re-
ported that ruin probability is the risk measure of insuravihg an initial ASM; if

ASM greater or equal to SCR, it means insolvent during thergtume interval. Over
the decades, prominent studies, for instance, by AsmussAtb&cher (2010)([5],
Buhlman (1970) 8], Dickson (2005) [18], Embrechts (20[2%], Mikosch (2006)(]47],
Rolski et al. (2009)[[55], have developed the ruin theory tedain level. In fact, the
first studies in ruin are traced back Lundberg and Craméutatmilective risk models.

In this study, we aim to find capital requirement for an insgecompany via con-
sidering its solvency by attaining the ruin. Therefore, Wwape the current paper in
the light of the ruin theory, in which the modeling of the dugpprocess plays an
important role. It figures out business act of an insuraneepamy in terms of cash
flows, premium inflows and claim outflows, with setting up ialittapital. Premiums

are collected at a constant rate from each contingent insarpolicy within a given

unit of time. Although premium payments are received at tkedfirate, loss claims
are random and unpredictable. Financial survival of thegammg primarily relies upon

both estimating loss exposure, of which real values caneetdll-predicted, and bal-
ancing claims with premiums. We focus on estimating agdeegaims under various
distributions and, we extend the classical model by addemtupbation of a Brown-

ian motion in the surplus process to handle the uncertamprémium payment, and
resolve the problem of uncertainties of aggregate clairmibigion [5,/21].

Preliminary work on extension of classical surplus modehdding a diffusion term
was investigated by Gerber and Dufresne (1991) [21] for Hie ©f expressing an

4



additional uncertainty of aggregate claims and premiuronme. They presented de-
fective renewal equation for extended surplus procesgehlyestandard techniques of
renewal theory for this model has become applicable for figduin probability es-
pecially in combinations of exponential distribution. Thé/eraverbeke (1993) [63]
moved perturbed risk models, concerning to asymptotienedés of ruin probabil-
ity and they proved that asymptotically this is equal to gnéted tail of claim size
distributions. Alter on, Schlegel (1998) [59] obtainedmgyotic ruin behavior of per-
turbed risk model by allowing claim arrival process. Yand @hmang (2001) [67] used
perturbed risk process which included not only compoundd$twi but also Gamma
process. They obtained joint distribution of ruin time ahd first recovery time. Lin
(2009) [44] derived optimal investment strategy that miizes ruin probability of risk
process, perturbed by a diffusion, and discussed theaglagtween ruin and invest-
ment by investigating adjustment coefficient and diffusiaatility parameter, risk
free rate and correlation coefficient.

Studies of risk measures in actuarial context were genecalinected with calcula-
tion of the insurance premium; among those are the worksubfirBann (1970)[8],

Gerber (1970)[29], Goovaerts (1984) [30], and Denuit ef{2006) [15], Kaas et al.
(2008) [37]. Risk measures such as VaR or CVaR are startesktond 990s in actuar-
ial by National Association of Insurance Commissioners (BlRestablishment as an
early warning system for insurance regulators [50].

Due to its ease in calculations and clarity in interpretatidalue-at-Risk (VaR) has

become one of the popular capital-based risk measuressdtides maximum proba-
ble loss in the fixed time horizon at a specific confidence levekpite the fact that it

is a widely used financial risk measure, it has some drawb&wkis as concealing any
idea about the value of the actual loss above confidence lew#ier it does not not

satisfy the subadditivity property of coherent risk measurThese drawbacks moti-
vate us to use Conditional Value-at-Risk (CVaR) 11, 54]. Tike of CVaR leads us to
calculate the risk beyond VaR. In addition, it satisfies &ibens of coherency and, it
provides mathematical superior properties than those Bf @nce CVaR turns out to
be a convex risk measure, it can be invoked in well-estadtistonvex programming

problems of risk management. A number of different variadiof CVaR come out

such as Expected Shortfall, Tail Value at Risk, Tail Cormahéil or Average Value at

Risk provided that underlying distribution is continuous.

In this study, regarding the theoretical framework of rinensure required capital al-
location, we implement capital-based risk measures: VaRG\aR for both classical
and its extended (alternative) surplus processes.

Over the years, there has been highly appreciated studide mublic in the related
literature. Here, we emphasize some of these: Dhaene e2@03) [16] examine
risk measures based on exponential premiums from the Granm&lberg upper bound
and for the fixed initial capital, they find annual premium &ogive ruin probability
level. Cheridito et al. (2004) [12] give example about me@surisk of an insurance
company by employing VaR and Average Value-at-Risk (AvaRjuin probability
function which is limited at a certain confidence level. Thmund these measures
for risk component with Cramér-Lundberg upper bound. & sktudies of Trufin et



al. (2011) [61], on the other hand, directly ruin probapilibr risk measures VaR
and TVaR are used; these are the so-called ruin-consistneét-Risk and ruin-
consistent Tail Value-at-Risk. Assuming the stationapitynsurance business, these
risk measures indicate the smallest amount of capital teigeeathe ruin probability
to be below a specific confidence level. Moreover, Gatto et(2014) [27] define
the value at ruin as well as the tail value at ruin of surpluscpss with diffusion.
They also propose efficient computation of these risk measiy using saddle point
approximation and Fast Fourier Transform methods. Recerit an combination of
risk measure and ruin theory is attributed to Mitric et al0X2) [48]. They suggest
a risk measure which consists of expected deficit at ruin, els ag ruin-consistent
VaR and TVaR. They conclude their work with a closed-formresgpgion of this risk
measure, despite the fact that obtaining closed-from isolutf probability might not
be possible apart from some specific distributions such psreqtial.

Therefore, implementation of these formulations on pcattuse might be difficult

under different distributional assumptions on the claigesi With various scenarios
for the claim distributions, this thesis study focusses btaiming VaR and CVaR for

the risk components to allocate a necessary amount oflio#igital as well as the

corresponding ruin probabilities associated to thosédihcapitals.

The thesis is structured as follows: Chapter 2 and Chapteesepts theoretical di-
mension of this study which mainly focuses on risk measundgain theory. Starting
with definition risk measure, we discuss coherency conecepi;ordantly popular risk
measures, VaR and CVaR are explained in Chapter 2. Furthexetbf the Chaptét 3 is
ruin theory queries step by step constructing surplus goeements and the model.
Chaptei # explains proposed approach for capital allocatith risk measures and
shows the results via tables and graphical tools. Finalhapfef b concludes the study
by harmonizing the theoretical facts and simulation rashdindled on application part.



CHAPTER 2

RISK MEASURE

Risk measurement is one of the predominant issues of agtuand practitioners in
insurance business. Especially, risk measures are usexténmdnation of capital or
reserve, premiums, reinsurance, deductible thresholdrethis chapter, we start with
the definition of risk measure and their usage, then we coatimith premium cal-
culation principles which are introduced as risk measuraciuarial context: that is
why it is called a premium-based risk measure. We argue thereacy axioms which
ideal risk measure should have and we finally give the pragsedf two important
capital-based risk measures: VaR and CVaR.

A risk measure explains the overall risk exposure with alsimymber. However,
economically, a risk measure represents the preferendbe afecision maker in the
economic situatior [43]; mathematically speaking thask measure is a real-valued
mapping on the space of random variables:X — p(X) € R [4]. The risk measure
is an important tool for establishing internal and extemallels, insurance premium
and economic capital allocation [57,/62], and so on.

Internal and external model. In order to monitor solvency of a company, regulatory
committees agree on some standard reporting system likel Basord for banking
and Solvency for insurance companies. Since external tiega@ystem calculations
have some deficiencies of setting companies’ targets oerdiif business level, com-
panies have right to develop their own internal models. &€mesdels should based on
certain risk measures.

Insurance premium. Along with marketing concerns, computation of insuranee pr
mium is compromised of expected loss, cost of insurancetaagind risk loading
which are calculated via appropriate risk measures.

Economic capital allocation. Economic capital is considered as a cushion for unex-
pected losses. The capital, symbolizes the level of créaiitdsng and tolerance level
for the probability of insolvency that the company can plolysiule out.

Common examples of risk measures in actuarial studies aedban the premium
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principles for pricing insurance, ruin probability givemtial capital for controlling
solvency, in order to determine capital requirements taherbusiness.

2.1 Premium-Based Risk Measures

Targeting the limited ruin probability, a risk charactédsor risk measure for calcu-
lating premiums including safety loading should be congdé¢31]. Such a risk mea-
sure is called premium-based risk measure which gives themaim amount premium
that the insurer collects to compensate its obligationsthis section, widely used
premium-based risk measures, such as, expected-valueupnepninciple, variance
premium principle, standard deviation, zero-utility pram principle are introduced.

Here, X is a non-negative random variable @n, 7, P) that represents the risk, and
7(X) is called agpremium principlewhich is a functional on the space of risk&
Below are the most popular examples of the premium-baskdwsisures on actuarial
applications.

(i) Expected-value premium principle:
m(X)=(1+0)E[X], (2.1)

whered > 0 is the safety loading which is utilized to protect the complasses
higher than anticipated. In the special casé ef 0 and,=(X) = E [X], the risk
measure is calledure premium

Generally, expected-value premium principle is used milisurance, however,
it is rarely used in property and casualty insurance. Naedgss, such an aver-
age value calculation is not enough to explain loss expaspecially in extreme

event modeling. Apparently, risks with identical means migave different dis-

persion, and hence, they should be priced with differemnprms [8].

(i) Variance premium principle:
7(X)=E[X]+oVar[X], ¢6>0,
whered is a constant which refers to non-negative loading.
(iif) Standard deviation premium principle:
7(X) =E[X] +dy/Var[X], §>0,

whered is again a constant which refers to non-negative loading.

Under variance and standard deviation premium principks Histribution with
higher dispersion has higher risk, hereby it has a highenpra. But, as noted
in [41], in standard deviation principle negative variatiand positive variation
yields the same effect. This problem can be resolved by usémg-standard
deviation principles given by

(X)) =E[X] 4+ 6/E[max(0, X —E[X])?], 0<6<1.
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(iv) Zero-utility premium principle:
Ul)=E[U(c— X +7n(X))],

wherec is constant wealth of the insurer. Hetéjs a given utility function being
concave and strictly increasiiyy’ > 0 andU"” < 0); that is,risk averse Under
zero-utility premium principle is charged according toures’s wealth. Special
case of zero utility principle is when utility function is ganential:

Ulx) == (1 — e_’Bx)

for some fixed3 > 0. In this case, premium principle becomes

(X) = %m E [e*]].

This premium calculation is attractive since it is basedl@rmoment generat-
ing function of the loss distribution and it is called expotal utility function
premium principle.

2.2 Coherent Risk Measures

Many different kinds of risk measures have been introducetiterature, showing
which one is reasonable or right is passed on stating axioroharacterizations of
these risk measures. For detailed explanations of axiomsidered, we refer to
see [64]. Indeed, deciding whether a risk measure is reliablnot is, in general,
based on the idea a@bherentrisk measures. Artzner (1999) [2] stated that in order to
regulate or manage risk effectively, axioms of coherencoailshbe fulfilled for any risk
measure. Economically, coherence of a risk measure, fongbea has a meaning of
consistency. Artzner et al. also point out that describiegrisk with a single number
may cause a great loss of information. However, choosingdhect risk measure may
help decrease the effect of information loss. Furthernidoewer, in [14], claims that
using incoherent risk measure for reducing risk causegmerrisk taking, opposite
diversification, and, it prompts blindness for investmergtetc.

Thus a coherent risk measyseshould satisfy the following properties; for given two
financial positionsX andY’,

(i) p(X +a)=p(X)—a,foralla R, (translation invariance)
(i) p(X) <pY)forX >V, (monotonicity)
(iii) p(aX) =ap(X) foralla > 0, (positive homogeneity)
(iv) p(X+Y) <p(X)+pY), (subadditivity)



Translation invarianceaxiom implies that adding a constant amountagfthe risk
decreases with that amount @f Also, adding/subtracting(X) instead ofa as a
capital annihilates the risk:

p(X = p(X)) = p(X) — p(X) = 0.

Monotonicityaxiom means that among two financial position, less riskynfired po-
sition requires less moneYyositive homogeneitig related to the linear utility which
signifies that position of a risk linearly depends on its si@eemingly, this property
is not really desirable in insurance context since it caltad risk as a linear function
of the scale. Another criticism of the positive homogengityperty in literature is the
independence of currency, yet Denuit et @l [15] warn that the wrong interpreta-
tion. Subadditivityindicates that the risk of combined financial position islésan
the separate risk of these financial positions, reflectimgdilersification effect. In
other words, as Artzner et al.||2, 3] state that ‘a merger doe¢sreate additional risk’.
Intuitively, it is possible to reduce economic capital regd or the appropriate pre-
mium for a risk by pooling it[[38]. Nevertheless, togethethwpositive homogeneity,
subadditivity guarantees tlenvexity axiom

plaX + (1 —a)Y] <ap(X)+ap(Y) for a>0.

Premium-based risk measures are described previouslypaoeherent risk measures
see [49] for detailed proofs. However, it is worth mentianthat the axioms that a
risk measure satisfies rely on the conditions of economicd@mment. Those axioms
above should be viewed as a typical set of rules or guide[h#}s Having defined
what is meant by coherent risk measure, now move on to dis@apEtal-based risk
measures.

2.3 Capital-Based Risk Measures

Both premium-based and capital-based risk measures asgrga/to judge the risk.
Nevertheless, premium-based risk measures are genetatthed to pricing of the in-
surance. Moreover, Goovaerts et al. compare these two Bsisunes and indicate that
mathematically both concepts are functionals, mappindoanvariables to a single
real number, but the justifications and derivations arestbffit [32].

This section is mainly interested in the use of risk meassr@ @etermination of eco-
nomic capital that is interpreted as a buffer for unexpetdesges. Follmer and Schied
highlight that a risk measure might be seen as a capital rement which helps the
position be acceptable when added to position and thentawz6].

Below, the most common examples of capital-based risk nmeasn literature and
financial institutions are going to be reviewed. Among thaseValue-at-Risk (VaR)
and its extension Conditional Value-at-Risk (CVaR) will ppeesented. While VaR is
not a coherent measure, CVaR is; and, it is considered togeisuthan VaR in many
applications in finance.
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2.3.1 Value-at-Risk

In actuarial risk theory, actuaries already have been ugiramtile as a risk measure
for years. However, since 1990’s using quantiles as risksomeghas gained popularity
in financial, particularly, in actuarial applications. $tiattempts start with the release
of Risk Metrics in order to set up a standard in the market .[45]

VaR can be regarded a statistical summary of all possibkek@ a portfolio. In
fact, it describes the maximum potential loss of a specifitfplio within a given time
horizon and a confidence lewej for X ~ F', VaR, is defined by the quantile function

VaR,(X) = Fy'(a) =inf{z € [0,00] : Fx(z) > a}.
VaR attracts many regulators by virtue of the following![29, 58]:

e Itis easy to calculate since it is basically statisticalmuea function.

e It gives a single number representing all risk; this helpggutators understand
and interpret the value of VaR easily in order to react adogiyl.

e Itis a probabilistic measure, that presents to risk marsigéormations associ-
ated with the amount of loss. Some of the traditional meassweh as durations,
Greeks do not indicate loss likelihood.

e Itis a stable estimate as it neglects the tail of the undeglyiistributions.

e It measures maximum amount of loss likely to lose; this h&dpdetermine the
capital and the risk targets of the company.

e It ensures a more consistent and integrated approach toahagement of dif-
ferent risks and provides greater risk transparency aruogisre.

These facilities make VaR popular among capital-basedmisésures. However, VaR
has also unfavorable properties:

e ltis inefficient risk measure for skewed distributions.

¢ It may give conflicting results, because calculation of VaRehds on the spec-
ified confidence level.

e It cannot give any other information beyond the quantile.

e Itis not a coherent risk measure since it does not satisfgtbhadditivity prop-
erty. Although this is necessary for diversification of palibs, failing subaddi-
tivity sometimes may not be so important to reject VaR [33].

e It is non-linear, non-convex, and non-smooth; it has midtipcal extrema
which keep VaR off from optimization problenis [42].

In order to avoid the drawbacks of VaR stated above, use ohareat risk measure
CVaR is proposed by Uryasev (2000) [3, 4]. We briefly disciise the following
section.
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2.3.2 Conditional Value-at-Risk

A VaR at a given confidence level does not provide any further information about
the loss beyond the quantile. In practice, this weaknesfitnc@use to give a wrong
decision, as regulators do not only consider frequency faiuliebut also they consider
the severity of default. Similarly, they often want to kndwotv bad is?’, when judging
the risk. Therefore, CVaR is proposed to quantify the riskdoel VaR and further,
it is also a coherent risk measure [3, 4]. Roughly speakingFCis a downside risk
measure which determines the average loss (in the tail ofodsedistribution) with
a certain confidence level. Similar to VaR, for a given confielevela, CVaR is
defined:

CVaR,(X)=E[X|X > VaR,(X)].

CVaR has superior properties, as giveriin [42, 58], tharelod¥aR; here are a couple
of those:

e It leads to find the value beyond the VaR, which ensures thmaton of ex-
treme tail losses, see Figlrel2.1.

e Itis a coherent risk measure satisfying all axioms in Set2@.
e [t fits the loss distribution without distinction of skewises

e Itis convex and smooth; hence, it proves useful in relatdofropation problems
of finance and actuarial sciences.

CVaR has also some criticism statedin![58]:

e CVaR is more sensitive to estimation error than VaR sinceraoy of CVaR is
extensively affected by the accuracy of the modeling of #lle As a result, VaR
may be regarded more robust than CVaR.

e In order to establish a reliable estimate, CVaR generagdaa large number of
(realizations) observations. Even then, it may fail toreate the most extreme
potential losses.

Nonetheless, an important question still persists, indttere, for the choice of the risk
measure [58]: which one should be preferred? Answer depmntise preferences and
the objective in general;

e If high uncontrolled risk is needed, VaR can offer betteuhesssince it is more
unrestricted than CVaR.

e For distributions with light tails, such as, normal or dligal distributions which
might be regarded an extension of multivariate normal itstion, CVaR may
not perform well. Also, one should remember that under nbwhsribution
CVaR converges to VaR.
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Figure 2.1: The graph shows that CVaR considers risk beyaid V

e CVaR needs a large number of observation, otherwise it doegive a consis-
tent result.

e VaR is more stable (in terms of robustness) than CVaR in esitom problems,
since VaR does rarely consider the tail of the distribution.
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CHAPTER 3

BUILDING RISK MODELS and RUIN THEORY

In this chapter, step by step we construct different cdilectisk model in order to
obtain stochastic surplus processes. After, we discudsethelements of ruin theory
framework.

3.1 Risk Models

In actuarial modeling of risk, two major approaches are cotetl for aggregate loss:
individual and collective models. Individual model coreisln independent policies
which may or may not have losses. Consequently, for a cditaeperiod, it has to be
constructed as two sources of variability: either loss c&au not, and if so, the size
of the loss.

Let X; denote the claim size of contracin the insurer’s portfolio, the aggregate loss
S, IS

S, = i: X;. (3.1)
=1

It is important to emphasize that the amount of claim may bje mader individual
policy which implies that individual model has probabilityass at zero. It should also
be noted that the mean and variance&pfre given by

E[S, =nE[X] and Vars,|=nVar[X].

On the other hand, collective risk model examines the comgalistribution of the
aggregate loss which is inferred by counting the numberaifrd from the insurance
portfolio, not from the individual policies. Instead of dywng each policy separately,
as in individual model, each claim is analyzed separaté)ythérefore, consists of a
stochasticV(¢) for the number of claims between the time intervals (to bewtised
in the next section in detail). In the collective risk modebn-negativeX; refers to
independent claims and
N(t)

S(t) =YX (3.2)
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is the aggregate loss. Here, we should impose the basic psusithat

i. the number of claims is independent of the claims;

ii. individual claims is independent and identically distrted (i.i.d.).

These assumptions provide us the derivation of some disiilal inferences for the
total claim size. Herewith, we can reach the m&4§(¢)] an the variance Va5 ()]
of aggregate claims, respectively,

E[S@)] =EIN@E[X], (3.3)

and
Var[S(t)] = E[N(t)] Var[X] + Var[N] [E [ X]]*. (3.4)

Using collective model approach, namely, modeling distign of claim numbers and
claim sizes separately has various advantages [39]:

1. The expected number of claims changes according to nuafl@surance pol-
icy, which helps insurer to control growth in business voéuior forecasting the
number of claims in future using past year data.

2. Economic inflation and additional claims inflation whidifeats the losses in-
curred and these claims are paid back to insureds. Suchonf&ftects generally
conceal when insurance policies have deductibles or liwiitish are indepen-
dent of inflation. Thereby, aggregate results are used.

3. Influence of changes in deductibles and policy limits casilg be applied by
changing the specifications of the distribution claim siZdso, influence of
changes in deductibles can be understood better with regptee claim num-
ber.

4. Non-covered losses, claim cost for insurers and claimafaginsurer can mu-
tually be consistent which results in shifting losses toias@rer easier.

5. Understanding of the relative distribution of total atais important to imple-
ment modified policy details. In collective model, disttilom of total claims is
defined as a combination of the number of claims and claimdigtgbutions.

3.1.1 Models for the Claim Number Process

In this section, one of the benchmark in counting procesk salled Poisson process
is covered. Since it has appealing theoretical propertiss;ommonly used in applied

probability and theory of stochastic processes. Then, wiiorerenewal process. For
a more general version of Poisson process, we will brieflyamphe renewal process
and give its asymptotic properties.
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3.1.1.1 Poisson Process

We start with recalling Poisson distribution with integsk > 0,
e M\F

P{X =k} = —

Also, we know thaif [ X]| = Var[X] = \.

Definition 3.1. (Poisson Process [47]): A stochastic proc¥$s) with intensity\ > 0,
is called as doisson procesi$

(1) N(0) =0,

(2) The process has independent increments With) — N (s) or N (s, t] has a Poisson
distribution with intensity\(¢t — s) for ¢ > s > 0, and\ > 0,

(3) The proces$V(t) is right-continuous and has left limi¢&dlag procesy

For simplicity, we can also write a Poisson process as
Nit)y=#{n>1:T,<t}, t>0,

where inter-arrival times the sequencel®f, which are i.i.d. Exponential random
variables with mean. The arrival timesl;'s are such thaiy, = 0,7,, = W, +--- +
Wy, n>1.

A Poisson process has some additional properties that wedsimeention.

(i) SinceN(0) =0 a.s., it follows that
N(t) — N(0) = N(0,t] ~ PoissonAt) .

(i) The independent increment property facilitates to kvaith finite-dimensional
distribution of V.

(iif) Cadlag process indicates that the value of the jurhihe Poisson process added
to the process already [40].

Figure[3.1 shows sample paths of Poisson processes witndtiffintensitiesA = 1,
A =3, A =5. ForA = 1jumps occur less frequently, while far= 5 they occur more
frequently.

Furthermore, Poisson process is divided into two partsomsogeneous Poisson pro-
cessandinhomogeneous Poisson proceglich are closely related. Homogeneous
Poisson process has a linear intensity function which hasitaitive meaning that
claims arrive uniformly over time since it evolves lineatly other words, this process
adds to condition (2) in Definition_ 3.1 stationarity proyeloreover, homogeneous
Poisson process is a primitive example of Lévy processasstitisfy the conditions:
having stationary and independent increments wkttt) = 0, and being a cadlag
process. On the other hand, inhomogeneous Poisson prarese constructed non-
constant intensity function that time slows down or speeaaegording to magnitude
of A(%).
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Figure 3.1: Poisson process with different intensities.

3.1.1.2 Renewal Process

When there is a large interval between the arrival timess$@wmi process moves away
from a being realistic model to describe arrivals. Thensiach situations, modeling
the inter-arrival times via a distribution is necessarythis respect, renewal process
models occurrences at random times at which inter-arnnagg are i.i.d. distributed
random variables [53].

Definition 3.2. (Renewal Process [47]): A renewal sequence can be given
To=0, T,=Wi+---+W, n>1,
where the variablel®/;’s are i.i.d. sequence of almost surely positive randonmaldes,

which refer to inter-arrival times arifi’s are the arrival times. The (renewal) counting
process then can be written as

Nit)y=#{n>1:T,<t}, t>0.

A Poisson process is a special case of renewal process wtegrairival times are
distributed as i.i.d. Exponential. Although, renewal meses are more preferable than
Poisson processes, in the cases of large gaps betweenita¢tarres and models for
long-time period; homogeneous Poisson and renewal presdxgh have numerous
asymptotic properties in common.
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Theorem 3.1(Strong Law of Large Numbers for the Renewal Process [4T]gx-
pectation of inter-arrival time& [W;] = A%, is finite, then number of claim process
satisfies the strong law of large numbers:

lim M

t—oo

=)\ a.s.

For homogeneous Poisson process, it is readily known teabthct value of expected
claim number process I8[NV ()] = At, whereas for a general renewal process, expec-
tation of the renewal process is asymptotic@ilyV(¢)] = At by Theoreni 3.11.

Theorem 3.2(Elementary Renewal Theorem [47]f the expectation of inter-arrival
timesE [W,] = A\~! exist, then

o EIN@)

t—o00

=\

Proposition 3.3(Asymptotic Behavior of the Variance of Renewal Modell[4 up-
pose that variance of the inter-arrival time exists, tha¥#s [I1/;] < co. Then,

i Var[N(t)] Var[N(t)]
Sx B[P

Theorem 3.4(Central Limit Theorem for the Renewal Process|[48uppose that
variance of the inter-arrival time exis{®/ar[I/;] < oco). Then, by the Central Limit
Theorem

N(t) — M

v/Var[N(#)] [E [W]]2

Y ~N(0,1),

ast — oo.

3.1.2 Modeling Total Claim Size

The total claim size modeling, given in Hq. B.2, there are yrdifierent approaches.
Specifically, if the claim number follows a homogeneous &aisprocess, the model
is called Cramér-Lundberg model; on the other hand, if taemcnumber is a renewal
process, the model Elg. B.2 is called renewal or Sparre-Aondenodel.

Broadly, finding analytical distribution of model Eq. B.2hard to derive for an ar-
bitrarily given distribution for the claim numbers or theaich sizes. For this rea-
son, asymptotic properties are suggested to use in ordaerddiéw much premium
should be charged for a given time period to avoid insolvema@void ruin. As shown
in Sectior 211, premium calculation basically depends entiflying expectation and
variance based on strong law of large numbers (Thegrem 8ldmentary renewal
theorem (Theoremn_3.2) and the Central Limit Theorem (The@el).

Note that the expected value 8ft) previously given Ed.-3]3 now changes to

E[S(#)] = ME[X,],
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under Cramér-Lundberg model. On the other hand, for thergérenewal model such
a compact formula does not exist. However, by using The@r@nfthe expectation

E[N(®)]

of inter-arrival times exist and equals xo?, then we havet— — Aa.s.t — oo.
So, the expectation of renewal model can be computed as

E[S(t)] = ME [X] (1 +o(1)), ¢ — oo.

Furthermore, using the variance of total claim size in[E4, the variance of Cramér-
Lundberg model becomés| N (¢)] = Var[N(t)]. Hence,

Var[S(1)] = M[Var[X,] + (E [X1]]
= ME [X:°].

For the renewal model, again by using Theofem 3.2 and Prio&.3, the variance
can be expressed as

Var[S(t)] = [MVar[X,] + Var [W,] A3tE [X,]%)(1 + o(1))
= Mt[Var [X,] + Var [W1] A\2E [ X;]7](1 + o(1)).

Apart from the expectation and variance, asymptotic beiravi the renewal model
can be stated by invoking Theoréml3.1 and Thedrein 3.4 asvi&llo

(1) if the expectation of inter-arrival timé4; and claim sizesX; exist, S(¢) satisfies
thestrong law of large numbers

lim @ =AE[Xq] a.s. (3.5)

t—o00

(2) if the variance of inter-arrival timed/; and the claim sizeX; exist,S(t) satisfies
the Central Limit Theorem

P{sw ~ES()] _ QE} _ o)
Var[S(t)]

sup — 0, (3.6)

zeR

where® is the distribution function of the Standard Normal disatibn.

3.1.3 Claim Size Distributions

Here, in this section, we introduce commonly used classsifidutions in insurance
business practice. These distributions are studied by soplanatory statistical tools
such agjuantile—quantile Q—Q) plot which gives the best fit to the real life data, and
another graphical toolnean excess plothich helps discriminate the tail and decide
whether the distribution is heavy-tailed or light-tailed.
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Quantile—Quantile Plot (Q—Q plot). Q—Q plot is a scatter plot for identifying, at-
a-glance, which distribution can give better fit to the irswe data. Firstly, it takes
a set of observation i.e. empirical distribution, sort thanthe ascending order, then
plot them versus quantiles of reference distribution whscbalculated as quantile of
pi wherep, = (i +1/2)/(n+1).

If one see roughly linear line proceeding by points betweem quantiles, it can be
said that the data is distributed as presumed distributiGostrary to common misun-
derstanding, the claimed distribution should not be Nomnsttibution necessarily.

In Figure[3.2,0—Q plots of Generalized Pareto (top), Exponential (middle) Kior-
mal distribution (bottom) are given for illustration. Santhe aim of Figuré_3]2 is to
show whether the distribution is Exponential or not, sinedadata quantiles are cal-
culated versus simulated Exponential distribution quenkn theQ—Q plot, if the data
points nearly spread around the linear line, it means thaitidistribution is as the
same as the assumed distribution. On the top figure, sinaecdates from the Gener-
alized Pareto distribution the data points move away froenlitiear line on the right,
whereas on the bottom figure, data are generated from Noiistabdtion, it can be
seen that both left and right end of the linear line, theredsrae down shape. Also,
one can reach an interpretation about the outliers of thaklion usingQ—Q plots.
For example, although data points almost fit the linear Imiée middle figure, one or
two points seem to be extreme. Likewise, on the top and bditgumes extreme points
are clearly distinguishable.

Q—(Q plot allows us to understand the following properties of stribution stated by
Chambers [11]: It

(1) ensures comparison of distribution by looking at alniogtar relationship,

(2) finds outliers of the distribution which are the data eslunove away from the
linear line appearance extremely, whereas the other datas/acattered near the
linear line,

(3) determines location and scale of the distribution whitight be estimated by
graphically through intercept and slope,

(4) enables to make inference for the shape of the distabué.g., if the data follows
one of the heavy-tailed and right-skewed, the() plot is seen as nearly curving
down shape at right-up of the linear line,

Mean Excess Plot. There is no precise way to decide whether claim size digtabu
is heavy-tailed or light-tailed. Yet, the intuitive appobais that, a distribution is a
heavy-tailed if 20% of the claims account for more than 80%heftotal claims|[B].

Also, by accepting Exponential distribution as a benchimankl denoting the right tail
of distribution byF(z) = 1 — F(x) for z > 0, if,

F(x)

e—)\z

lim sup < oo forsome X >0,

T—00
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Figure 3.2:Q—Q plot of distributions with different characteristic.
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thenF' is considered a light-tailed distribution. If, on the othand,

F()

Ax

liminf —= >0 forall X >0,
r—o0 €

then,F' is a heavy-tailed one.

These two results help us interpret the tail of the distrdsut While in graphical
interpretation, mean excess plot deduces a comparison #hokness of the tail of
the distribution.

Definition 3.3. (Mean Excess Function [25]. ) Given a non-negative randomnabie
Y with finite mean, cumulative distributiof, andy being the right end point. Mean
excess function (mean residual life function) is

eF(u):E[Y—u‘Y>u}, 0<u<uy.

Mean excess function can also be written as

1

er(u) = ) /:O F(y)dy, u>0.

If er(u) converges to infinity ag8 — oo, thenF' is called heavy-tailed, otherwise if
er(u) converges to a finite constantas— oo, F' is called light-tailed. In insurance
business practice, unlimited growth of mean excess fundgtidicates the danger of
the underlying distributior#” in its right-tail. This means, given claim sizé§ excess
the high threshold.

Mean excess functions for some distributions are illusttah Figure 3.3, (for their
mean excess functions, see [9]). As mentioned before, memse function approach
exponential distribution is a benchmark since it has mefessyproperty. In other
words, the expected value &f — « in Definition[3.3 does not change, whether that
is conditioned or” > w or not. If the distribution has heavier tail than expondntia
distribution,e(u) ultimately increases, if it has lighter tad(u) deceases ultimately.
Figure[3.3b shows shapes of Lognormal, Gamma witkk 1 anda > 1, mixture

of Exponentials, and Exponential. In this panel of the figwantinuous increase in
mean excess function in Lognormal, for example, provesdisatibution has heavier
tail, while mean excess function of Gamma with> 1 decreases which means that
distribution has lighter tail. Figuie 3.Bb demonstrateamexcess function of Weibull
with 7 > 1 and7r < 1, Pareto, Burr and Exponential distributions. In this paofel
the figure, for example, Pareto and Burr distributions has@&vler tails according to
Exponential, while Weibull with- > 1 has lighter tail.

Graphical method is based on empirical mean excess fungtjén) considered in €
(Xq), X)), whereX ;) representsth order statistics. Givefi, empirical distribution
has bounded support and by the strong law of large numbgrg;) — er(u), a.s. as
n — oo. The mean excess plot consists of the set

{(X(k),an(X(k))): k:1,2,...,n—1}.
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Figure 3.3: Shape of different mean excess functions féerint distributions.
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Figure 3.4: Examples of mean excess plot for specified Hidians.

Figure[3.4 is drawn to depict graphical method of mean extesgion. Figurd 3.4a
contains simulations of mean excess function having Expkedevith mean0.8, co-
inciding with Figure_3.B for Exponential distribution, nreaxcess plot shows straight
line around nearly meahg8, whereas in Figure 3.4b, we see a linear line shape which
supports the Figuile 3.8a for Lognormal mean excess function

A note of caution is due here since the data might have spaasitl hence the plot
mean excess function calculates the larger threshpolghich may cause misleading
information about heaviness of the tail. For this reasom, minght consider different
excess functions which are not affected by sparsity of tha,dag., median excess
function and respectively median excess plot [47].

Some Realistic Claim Size Distributions. After some statistical inference property
about claim size distribution, some of the most popularrithigtions in non-life in-
surance modeling are mentioned below by classifying thehghstailed and heavy-
tailed.
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a. Light-tailed distributions: such as Exponential, GamB&rdang, Phase-type distri-
butions are in this category. As well as in many applied pbdtig, Exponential
distribution is a benchmark in risk theory. Especiallysitnidely used in ruin the-
ory framework, since compound Poisson process with Expaalertaim sizes is
employed to find closed-form solution for the ruin probaiiliMost prominent
property of Exponential distribution is itack of memory The distribution which
has favorable property is Gamma, due to being one of the tefyrdivisible distri-
butions which allows computational tractability in theaahtion of the distribution
of the total claim.

b. Heavy-tailed distributions: such as Weibull, Lognornfédreto, Loggamma, dis-
tributions with regularly varying tails and subexponehtiass of distributions are
the examples of such distributions. Lognormal has heaaiktitan Weibull distri-
bution, and also it has the property thag X ~ N (i, o), Pareto or Generalized
Pareto is particularly used for large claims modeling, d&y tsettle a (large claim)
threshold, say > 0, then one can consider the claims above that threshold.

3.1.4 Distribution of Total Claim Size

Thus far, we focus on constructing the total claim size medti different assump-

tions and distributions of claim number and size. As muchassttucting a model,

detection of the distribution is significant for practiters in the field. One might ob-
serve the distribution of the total claim siZ&¢) in Eq.[3.2 by using characteristic
function, by decomposing it as claim size state and time afmapound Poisson into
independent compound Poisson processes. If these arepliobife, some numerical
methods might be used such as Panjer recursion, fast Fataresform (FFT), and

some approximation methods, for instance, Central Limé&drem (CLT), and Monte

Carlo method.

One of the ways of finding distribution of total claim amouiit) is to usecharacter-
istic functionand moment generating function (m.g.f.) $ft) which can be helpful
especially compound Poisson and compound geometric casggming the indepen-
dence ofN(t) and X;, where: = 1,2,..., N(t), the characteristic function &f(t)
can be found as

E [E [ is(X14+Xo4-+XnN) ‘NH
E[E[(e™)"]]
E [(¢x,(s)V] = My (log ¢x, (s)). (3.7)

¢s(s)

Moreover, if the total amount process can be written asxdure distributiorsuch as
G(x>:p1F1(x)+"'+pnFm JIER,

wherep; is probabilities and; is distribution function of real-valued random variables
wheni = 1, ..., n, then, characteristic function of mixture distributiorcbenes

O(s) = p1o1(8) + -+ + pudn(s). (3.8)
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Likewise, with Eq[3.8, one might reach a conclusion that sdfirmdependent com-
pound Poisson variables are again compound Poisson.

In addition to these, compound Poisson process can be desahmnto independent
compound Poisson processes by presenting a disjointipartib the time and claim
size spaces. The detailed explanations and examples aenped in([47].

To find exact distribution of(¢), one may use aumerical methodso-calledPanjer
recursion However, to use this recursion formula is based on a camditiat the claim
size should be expressed on a lattice form. In fact, it is goagmphasize that every
continuous claim size distributions can be approximated laytice distribution and in
real life models, for example, claim sizes can be explained lattice form in terms
of monetary amounts.

Theorem 3.5. (Panjer Recursion Formula [7])

A compound random variabl®, satisfying the condition

P{N =n} B
= — f =1,2,...
P{N=n_1) Oé—i-n or n , 2,
has the recursive equation for the distribution of claimesmth the initial condition
f5(0) =P{N = 0} as follows:

1 ° Bk
f5(e) = Ty o (@ )R = R,

:1—ozfx p T

Although Panjer recursion method is the most extensivedy technique to find dis-

tribution of total claim sizefast Fourier transform (FFT)nmethod attracts many prac-
titioners since it provides an easy and fast alternativé witntrollable error; and it

neglects aliasing error. See [23] B7] 60].

A comparison of Panjer recursion and FFT, other numericahaus in order to find
exact distribution of5(¢), one might refer ta [23, 60].

Finally, as it is not easy to find the exact distribution ofatatlaim S(t), approxima-
tion techniquedased on the Central Limit Theorem approximation and MorateaC
method may be preferred.

Central Limit Theorem approximatidandamentally relys on the asymptotic behavior
of renewal process. As in many statistical applicationggeotic confidence interval
for larget is found by using the Central Limit Theorem f6(¢),

N EE-IC0)
P{S(t) < 2} = (D< Var[S(t)]>

where® is the distribution function ofV (0, 1) distribution. Then, for exampl@5%
confidence interval for average claim size can be found

P {S(t) c [E [S(t)] T 1.96\/\m} } ~ 0.95.
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An insurance portfolio with high claim numbers, conditiboa N (t) = n(t), Central
Limit Theorem provides good approximations. Given the éimitean and variance of
total claim sizeS(t), the probability becomes [47]

S(t) ~n(E[X)] _ 2~ n()E[X)] }

n(t)Var[X] Vv n(t)Var[X;]

for large z. However, it is suggested that normal approximation shbelgvoided.
Since the number of claims is random, if extreme event pridibab are of the interest,
instead saddle point approximation can be more favorabemmal approximation.

P{S(t) > 2|N(t) = n(t)} = P {

One of the easiest way of computing the approximate digtdbwf S(¢) is Monte
Carlo technique If we know the distribution of claim numbe¥ (¢), and claim sizes
X;, wherei = 1,2, ..., N(t), one can generate the i.i.d. samples for total claim size.
Let

xmo x

m

xM o x Y

IR

WhereXZ.(j) is the j'* generated variate from the selected distribution‘®fclaim.

Therefore,
N N
Si=> XM 8= x™
=1 =1

Then the probability oP {S(t) € A} for some Borel sefl by the strong law of large
numbers it follows that

RS
pm:E;ﬂA(Si)—%P{S(t)GA}:pzl—q as m — oo.

Note thatmp,, ~ B (m, p). The relative frequencies @f,, of the eventA is p, which

is calledcrude Monte-Carlo simulatianif one use larger samples or replications in
Monte Carlo method, it is sure that better convergence imasibn is obtained. Also,
using the Central Limit Theorem, asymptofi€’ confidence interval is

[ = 1.96+/pg/m].

Here, generic algorithm for simulating of a collective mbidegiven in Algorithm[1.
This algorithm lists the steps on generating total clainesizonditional to random
number of claims in an insurance portfolio.

The main pitfall of the crude Monte Carlo method is slow cogeace. That can be
settled up variance reduction techniques due to standardtiba error only decreases
as a square root in terms of the required number of simulafidd]. Therefore, de-
creased variance speeds the computations with desiredaagcand less simulation
runs. One of the variance reduction techniqudamigortance samplingvhich finds a
distribution for the underlying random variables assigranhigh probability to those
values are important. Detailed explanations or examplededound in[[6] 40].

Another way to approximatg(t) is bootstrap techniquevhich is applicable with small
sample size. Contrary to other approximation techniquesyes not require any in-
formation about distribution aX;’s, instead it uses information reached from the data.
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Algorithm 1 Monte Carlo Simulation for Collective Models

for m=1,2,...,k do
SimulateN ™ from a claim size distributions, e.g., Poisson, Geomelitegative

Binomial etc.
SimulateXl(m),Xém), .. ,X](\}”) from a claim size distribution among the light-
tailed or the heavy tailed distributions.
N(m)
Calculates™ = ° xm (using Eq[3.R).
=1
end for

The bootstrap technique develops the idea that replaciegjtiantity based on un-
known distributionF” with the known empirical distributiof;,, then it simulates i.i.d.
random variables from pseudo-samples of empirical digtion function of 7;,. For
detailed explanations, one can look/at/[22]. In insuranceed, bootstrap approach
ensures to approximate distribution of the aggregatedctsies. Mikosch [47] urges
that naive bootstrap does not work properly when one uses/haged distributions
and also bootstrap does not help to solve the probabilitaref events.

This section has reviewed the constructing collective neddel with describing the
key instruments of that model. Moreover, exact distributod total claim size and
approximations are discussed. In the next section, we wglagn the ruin theory
framework which uses collective risk model.

3.2 Ruin Theory

The amount of aggregate claims has vital impact on compdinigscial stability. A
catastrophic claim size may result in insolvency of the iasae company. For this
reason, it is vital to estimate the robustness of the firm usttessed conditions. Ruin
probability is one of the important indicator to detect ssithations.

Ruin theory considers stochastic behavior of capital ofitiserance company. Pio-
neering work on ruin theory roots back to study of Lundbe@D@) on collective risk

model. He modeled surplus process of an insurance compahycaipound Pois-

son process intuitively [46]. However, precise and critwwarks are carried out by
Crameér[[65] in order to implant foundations into mathemratcontext.

One of the main ingredient of the ruin theory is the surpluscpss: it explains the
excess of initial capital raised by the constant rate pramigollected over claims.
Aspects of insurance business in ruin theory leans on whdilseprocess falls below
zero or not.

We first launch continuous time surplus process where amanse company collects
premiums at constant rate, while losses may occur at anydiraey size. The formu-
lation of the ruin probability, its bound and asymptoticuks are given. We drag ruin
considerations to discrete time set-up as well, since inesapplications yearly grid
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might be preferable.

3.2.1 Continuous Time Surplus Model

If an insurance company collects the premiums continuoorgty losses occurring at
any time, the surplus process can be defined as:

U(t) = u+p(t) — S(t), t=0, (3.9)
where, in the framework of Cramér-Lundberg model,

N(t)
p(t)=ct and S(t)=> X, for t>0.
=1

Here,u = U(0) is the initial capital, the equity of an insurance company at 0.
Deterministic functiorp(t) is the premium income that is gathered from each con-
tingent portfolio per unit of time and is the premium rate such that> 0. S(¢)
given in Eq[3.2 is an aggregate claims up to given unit im€laim amounts are
independent of claim arrivals sequence which is descrised a

TO:O7 Tn:W1++Wn7 7121,

whereW;’s are called inter-arrival times and assumed to be i.i.cherl the claim
number process is defined as

Ny=#{n>1:T,<t}, t>0.

We assume that th&;is an i.i.d. sequence of positive claim sizes with the urydeg|
distribution functionF'. Thereby, it is assumed thaf(¢) is a Poisson process with
intensity \ so thatS(¢) is a compound Poisson process. Under these assumptions, the
surplus process

N (1)
Uty =u+ect—» Xi, t>0, (3.10)
=1

is rather well understood.

An illustration of surplus process is performed by assurangexponentially dis-
tributed claim sizes with mean 2, yielding a compound Paigsocess having = 5.
Given the initial amounty = 150 with premium rate- = 11 and a time fram&” = 7
days with daily basis, the surplus process is simulated @@01runs and presented
in Figure[3.b. It can be seen that by tirbg¢) decreases dramatically. Some of the
runs fall below zero and the others do not keep the financdiilgy. Histogram in
the Figurd_3.b demonstrates the frequency of the final valfiree surplus processes.
As seen, small part of tail of the histogram implies the susgrocesses which are
below zero.
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surplus

Figure 3.5: Paths of simulated surplus processes for contbBoisson claim and the
histogram of final values of these surplus processes.

Therefore, having specified the surplus prodéss), ruin event will occur when sur-
plus process falls below zero, let us a give definitions egl&b ruin and ruin probabil-

ity,
Definition 3.4. (Ruin, ruin time, infinite and finite ruin probability [47]) &# is an

event defined as
Ruin={U(t) <0, forsomet > 0}.

The first time at which the ruin occurs is called the ruin tinvdjch might implicitly
depend on the initial capital:

T(u) =inf{t > 0: U(t) < 0}.
Hence, the probability of ruin for the initial capital> 0 turns out to be
Y(u) = P{RuUinU(0) = u} = P{7(u) < oo} (3.11)

for the infinite time horizon. Likewise, for the finite time twon 7', as in the work([5]
by Asmussen and Albrecher, the probability of ruin with thedimition of Ruin =
{U(t) < 0:0 <t < T}, and given the positive initial capitalis, therefore,

Y(u, T) =P{RuinU(0) = u} =P{r(u) < T}; (3.12)

it consequently may depend on the time horiZon

As mentioned in[[10], contrary to infinite time ruin probatyil for exact ruin probabil-
ities in finite time there is no such a method like Pollaczdr€hin formula, on the
literature, it is possible to obtain partial integro-dréatial equation for probability of
non-ruin and Asmussen|[5] suggest that explicit formulargfditime ruin probability
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solely is known when the claims are Exponentially distrdaljteven for that numerical
integration should be necessarily done.

Alternatively,

Ruin= | J{U() <0} = {inf U(t) < 0} = {T < oo}

t>0

Ruin can occur only at the times= 7, for somen > 1, sinceU(t) linearly increases
in the interval|7,,, T,,+1).

We can also represent ruin in terms of the inter-arrival §Mg,, the claim sizesX,,
and the premium rate

Ruin = {ggU(t) <0} = {}gfl U(T,) < 0}

= { influ+p(T,) = S(T)]}

:{gfl[uﬂTn—ZXi]}.

=1
Recalling the fact that
NT,)=#{i>1:T,<T,} =n as.
_Sincer > 0 a.s. is assumed for all> 1, then, a random walkg,,, can be character-
et Zy=Xo— Wy, So=Zi+-+Zn, n>1 So=0.
Here, the sequence 8f; and X; are mutually independent. As a result of this set-up,

the following alternative expression fanin probability, «)(u), with the initial capital
u can be presented

b(u) =P {inf(—Sn) < —u} =P {sup S, > u}.

n>1

Supposing thakE [W;] andE [ X, ] exist, certain asymptotic results with strong law of
large numbers,

% 5 E[Z)] as n— oo.
allows
E [Zl] =K [Xl] —cE [Wl] .

If E[Z;] > 0 is independent of the initial capital, ruin probability isex In other
words, ruin is inevitable which is stated also in Proposifog.

Proposition 3.6. (Ruin probability with one[[477]) IfE [I/;] andE [ X;] exist, and the
condition
E[Z)] = E[X:] — ¢E[W4] > 0,

then, the ruin occur with probability one for eveuy> 0.
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Proof of the Proposition 3.6 is available n [66]. PropasifB.6 expresses that if an
insurance company avoids the ruin, it should choose theiprem(¢) = ¢t conditional
to E [Z,] < 0. ThereforeNet Profit Condition (NPChas to be stated.

Definition 3.5. (Net Profit Condition (NPC)) The surplus process satisfiesitt profit
condition if
c>E[X]E[N]. (3.13)

Given the unit of time, NPC clarifies the business act of tlsiiance company with
guaranteeing ‘No Ruin’ if the expected claim size is smatheam premium income.
In other words, if the NPC is not satisfied, even for large galaf initial capital, ruin
occurs with probability one [13]. However, Mikosch [47] &ta that the ruin event
is not going to be avoided completely, since the expectatigght diverse due to the
uncertain nature of the stochastic process. Therefordharcalculation of constant
premium rate¢, besides NPC, one should consider expected-value prangipmium
given in Eq[Z.1L:

p(t) = (1 +0)E[S(?)]
= (L+0)E[X]E[N()]
]

=1 +5)II§[[;(V1]15,

whered > 0 is the safety loading. Consequently, the premium rate

E [Xi]
E [W1]

c=(1+9)

is obtained.

3.2.2 Bounds for Ruin Probability

In this section, upper bound for the ruin probability is gmeted. Assume that the
renewal model with the NPC in Elg._3]13, and a small claim doowliif m.g.f. of the
claim size distributions exist. By the Markov’s Inequalitye have

P{X; >z} <e ™My, (r) forall z>0.

As aresult, one can infer th&t{ X; > =} decays to zero exponentially. Note that this
inequality contradicts real life claim size examples whetpose generally heavier
tails, and non-existing m.g.f..

Definition 3.6. (Adjustment or Lundberg coefficient) Let m.g.f. 8f exist in a neigh-
borhood of the origin. The unique positive solution of theaiipn

My (r)=E [eT(Xl_CWI)] =1

exists, and the solution = R then R is calledadjustment coefficient or Lundberg
coefficient.
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Theorem 3.7(Lundberg Inequality) Given the basic assumption is the renewal model
with NPC, and the adjustment coefficighexists, then

Y(u) < e

holds for allu > 0.

As itis understood from Theorem 8.7, if the initial capitaide enough, the probability
of ruin becomes very small. As well as the initial capitalprprobability depends upon
the magnitude of the adjustment coefficient. Indeed smallareans getting a more
riskier portfolio.

Exact Asymptotics for the Ruin Probability: the Small and Large Claim Sizes

The bounds for ruin probability are derived for small andéaclaim sizes. The asymp-
totics alter with respect to the magnitude of the claim size.

a. Small Claim Size Case

Theorem 3.8(Cramér’s ruin bound_[47])For the Cranér-Lundberg model satis-
fying the NPC in Eq._3.13, assume that claim size distribufimction F'x, has

a density and m.g.f. ok, exists in an interval neighborhood of origin, at which
adjustment coefficiemR exist. Then, there exists > 0 such that

lim eéuw(u) =C,

UuU—00

where

R [% g
5E[X1]/0 xe FXl(x)dx]

Here,d denotes the safety loading, and tail of distribution fumctis

-1

Fyx, =1—Fx,.

Renaming probability of no-ruin as ‘non-ruin’ probability(«), is denoted by

o(u) =1 —1(u),
as the expression in case of small claims which is presentedmmd 3.9.

Lemma 3.9(Fundamental integration for non-ruin probability [47fpr the Cranér-
Lundberg model satisfying the NPC in Eq.-3.13 &, | exists, assume that claim
size distribution functiorf’x, has a density. Then, the non-ruin probability is writ-
ten as:

1 u_
p(u) = ¢(0) + m/o Fx,(y)p(u —y)dy. (3.14)
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Remark3.1 ¢(0) can be evaluated gg0) = %5 wheng(u) — 1 asu — oo.

The proof is available in [47].

Analogously, we assume Cramér-Lundberg model with NPditiom. The Cramér
bound for ruin probability for small claim size is defined hbytwe of Theoren) 3]8:

o(u) = C'e_R"(l +o0(1)) where u— co.
Following theorem states the ruin probability for the lacigm sizes.

b. Large Claim Size Case

Theorem 3.10(Ruin probability when the integrated claim size distribatis subex-
ponential claims[[47]) Suppose that the CraamLundberg model with NPC and
E [X,] exist, also the claim size¥s; have a density with integrated claim size dis-
tribution Fl, 1 is subexponential. Then the asymptotic relationship of rsiprob-

ability
lim g(u) =6 L

U—00 FXZ-JL

This theorem emphasizes that fundamentally the probghilii.) is of the same
order asF'x, 1 which should not be neglected even if the initial capitas large
enough.

3.2.3 Discrete Time Surplus Model

Up to now, different ruin probabilities and their propestigre found in the continu-
ous time setting. As stated in [65], insurance companiegegulators cannot follow
the surplus process continuously, since balance shestatses for an insurance com-
pany can be on regular basis e.g. quarterly, monthly, weekty If the companies
use the discrete time surplus process, they have the opjtgrad a slightly delay in
claim payments. Moreover, computation of discrete tim@lsisrprocess resulting ap-
proximation can be handled easier [5]. However, a drawbatki® approach is that,
generally, influence of model parameters on the final regalt$ot be traced and re-
spectively, the qualitative behavior of ruin probabiktieannot be well recognized [5].

Again the same representation of initial capitahnd imposing the NPC wifh [ X;] > 1,
the surplus proceds,(u) for the discrete time setting is given hy [5]

Us(u) =u+n—>Y X, neN, (3.15)
=1

where claim size in a time unitis X;.
The ruin time for the discrete surplus model in Eq. 8.15is

ra(u) = min{n > 1: Uy(u) < 0},
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and the ruin probability is defined as [5]

Ya(u) = P{r4(u) < oo} =P {1512151 Ug(n) < 0} :

Moreover, on the discrete time set-up, adjustment coefficie- R, is positive unique
root of the equation
E[er®D] =1

Y

if it exists.

Proposition 3.11. Suppose that the adjustment coefficient exists, then pildabin
in discrete time is given by

o—Fau

E [exp{—RdUd(u)}\Td(u) < oo] '

Ya(u) =
Rdu.

Notably, the Lundberg inequality for the discrete ruin pabbity is 4(u) < e~

Proof of Proposition 3.11 can be found in [5].
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CHAPTER 4

IMPLEMENTATION

Development of financial engineering in insurance appbeatbased on securitization
of insurance products growing use of risk measures in regutzapital, and solvency

requirement conduce increasing trend in popularity of me&asures [20]. Indeed, risk
measures are highly crucial for capital allocation andtabn of the performance of
a company.

Ruin theory prospects the probability that a company beara §pecific time horizon
with initial capital and collected premiums. Main ingredti®f the underlying theory
is based on the surplus process which resembles a busirems sif the cash inflows
and outflows of the company.

This chapter aims to find required capital for an insurancepany in order to main-

tain its business activities and be aware of the early wgrsignal due to breakdowns.
Works on risk measures derived from ruin theory frameworhsas [12| 16, 27, 48,

61], suggest the theoretical applicability of that the aptcalthough closed-form so-
lution of ruin probability except for a few specific distrifions like exponential, mix-

ture exponential etc. cannot be derived. Therefore, reguthese works are difficult
to put into real life applications for practitioners in imance sector. In the following
section, we mention procedures that we use with all aspects.

An amount of initial capital which is a buffer against theursnce risk when premium
income cannot compensate the future claim payments. Wedsnribe risk measures
stated accordingly for the surplus process in the framewbrkin theory.

We consider the surplus process as in[Eq.13.10,
N(t)
Ult)=u+ct—» X;, t>0, (4.1)
=1

in which premiums are collected at the fixed ratnd realization of aggregate claims
S(t) are drawn from a given distribution. In principle, such agiesurplus process
gives rise to skepticism on the modeling and applicabititygal life problems. Rolski
et al. [55], for instance, express that even though premainot random for a given
time, their calculation should include stochastic elermewthin the portfolio, based
on the economic environment. Simple justification of thewimight be attributed to
either increase or decrease in the number of customergsavigiger unexpected large
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claims, or even, investment of the surplus on (domestic @ido) financial (risky or
volatile) markets.

In construction of the mathematical model for the surpluxpss, the effects of inter-
est, or possibly inflation, should also be taken into accoOnhsequently, extension of
the Cramér-Lundberg model by adding a perturbation of aBran motion to Ed. 4]1
is inevitable. Such an additional term may help model thedéulying) stochastic
nature of the process; it may also explain other criticisnthef classical model in
literature.

Hence, we consider the extended surplus process at @me
N(t)
Up(t) =u+ct+opB(t)— Y X, t>0, (4.2)
=1

where B(t) is a standard Brownian motion and independent¢f). Inclusion of
the Brownian motion may also be regarded as a perturbatidineoflassical (unper-
turbed) Cramér-Lundberg modeél [55]. Indeed, such a modsl fivst introduced by
Gerber (1970) to capture additional uncertainties of thgregpte claims as well as
the stochastic fluctuations in the premium income [21]. Sithen, perturbed surplus
models has been used by other researchers whose main cohegmbeen either the
investment of the surplus [21] or the asymptotic behaviothef ruin or, simply, ap-
proximation of the Cramér-Lundberg model [59] 63].

As a matter of fact, the probability of ruin is one of the maestled quantities of
interest in such processes. Here, within the frameworkeptbposed surplus process,
a ruin event may occur either by random oscillation of thecpss itself or, purely, by
the jumps realized due to the aggregate claims.

We depict in Figuré 4.1a simulatéddays realizations of different surplus processes
U(t) given in Eq[4.1 for Exponential claim sizes with mean 2 andis$dn process
with A = 5 with a predefined initial capital5. Alternatively, in Figuré 4. Ib perturbed
model of EqL4.P is depicted with diffusion coefficient = 10 using EqL4.R. It is
clear that Figure 4.1b reveals marked oscillations in sittioh paths which proves the
occurrence of ruin incurred by both jumps due to aggregatens! and oscillation of
the process.

Since the cardinal goal is to seek capital requirement in mataoy unit, configuration
of the surplus model and its extension should be made. Thegalen the surplus
process as in EQ. 4.1, risk componesit;) — p(¢) is redefined as

N(t)

Ct)=> X;—ct t>0, (4.3)

where the fixed premium rate> 0. Recall that aggregate claif\(t) is a compound
Poisson process fulfilling the assumptions thdt) is homogeneous Poisson process
with intensityA > 0, the X; are i.i.d. with mear® [ X;] = u > co andN(¢) and.X; are
mutually independent.
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surplus
surplus

(a) Surplus processes (b) Extended surplus processes

Figure 4.1: Different simulation paths of two models.

Respectively, we use extended surplus process ih Elg. 4¢hwhptures uncertainties
in premium, and aggregate claim. The risk component for dteneled model under
the same assumptions is as follows:
N(t)
Cp(t) =Y X;—ct—opB(t), t>0. (4.4)

i=1

Considering the aggregate claim under different distrdmuassumptions, we simulate
pathsC(t) or Cz(t) using Algorithn{2.

Algorithm 2 Simulating Risk Components
form=1,2,....k do
SimulateN ™ (t) from Poisson distibution with the intensity wheret € [0, T]

Simulatex ™, x{™, ... ,X](Vm) from any given claim size distribution
N(m)

Calculates™ = 3~ x{™,
i=1

CalculateC'™)

(or CY = ¢ — g\ /tZm)

whereZ(™ is a standart normally distributed random variablesfdah run)
end for

Having defined the risk component for both classical surphgextended model, for
a defined time interval we determine the value which addtessequired capital by
using capital-based risk measures: VaR and CVaR. Socahfidence level, given the
distribution F', VaR and CVaR for any risk componefitare defined, respectively,

VaR,(C) = F ' (a),

and
CVaR,(C)=E[C|C > VaR,(C)].
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For the estimation of VaR and CVaR of risk components, thezecauple of methods
proposed in literature. Basically, VaR can be obtained bwpatric, non-parametric
or Monte Carlo simulation methods. Among these Monte Canwkation technique
is more powerful and flexible than others, since randomlyegated loss distribution
takes into account nearly all degree of complexity [20].dtres on large number of
trials which promises a good approximation to unknown dhistron we want to know.
Moreover, this method is considered as an appropriate wagge with complicating
factors such as valuation problems, badly behaved disioiopinonlinearity, parameter
and model risk, long horizons, etc. Indeed, based on thegiitribution for the claim
sizes, having an idea about the distribution of the risk comepitsC' (¢) andCz(t) may
be quite difficult to obtain analytically. Thus, simulatias in the Algorithni 3 might
be necessary.

Algorithm 3 Simulating VaR and CVaR Estimates of Risk Components

form=1,2,....,k do
SimulateN ™ (¢) from Poisson distibution with the intensity wheret < [0, T].

SimulateXl(m), XQm), . ,X](\}”) from any suitable claim size distributions.
N(m)

Calculates™ = Y~ x/™,
=1

CalculateC'™, (or Og”) = Cm — g/t Zm),
whereZ (™) is a standart normally distributed random variablesfan run.)

end for
Calculate VaRC'), CVaR(C) (or VaR(Cg), CVaR(Cp))

Having constructed the risk components, for simulationg, more step remains: the
choice of distribution and parameter. As mentioned in Scifiwa[3.1.3 claim size dis-
tribution, in modeling non-life insurance commonly anaslz/ia light-tailed distribu-
tions. Hence we use Exponential and Gamma. To represenyttaitad distributions
we take Weibull, Lognormal and Pareto, which are used g#pénecatastrophic rare
events. For comparison, all claim size distributions $atlse same mean, say an arbi-
trary chosen valug That is Exponential distribution with meanGamma distribution
with shape3 and scalel, Weibull distribution with shap®.5, scalel.5, Lognormal
distribution with log meari, and log standard deviatidnd441. Instead of Pareto dis-
tribution, for easiness we useAVILAB random generator. For Generalized Pareto with
shapea).5, scale0.5, threshold is used which is equivalent to Pareto distribution with
shapel, scale2.

We recall that one of the stated model assumptions is thiat clambers are generated
by a Poisson distribution with a given intensity. For sirjyi, we choose arbitrarily a
Poisson process with intensity= 10. Also, a vital requisite is that the premium rate
should be greater than 30 due to NPC in[Eq.13.13 so that wet Sieéegremium rate to
bec = 31.

With all parameters and distributions, simulations fok rcdmponents are attained
for £ = 10000 times, and estimations of VaR and CVaRa{; confidence level for
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different time horizons (1-year, 2-year, 5-year, 10-yeardlaily basis are obtained.
One should note that this time basis infers to checking tle domponents for both
model in that range: if the company want to check their riskiponents weekly for a
year, it would be appropriate to choose take one year as ®3thdays, thereby time
basis is taken as 7.

Furthermore, we simulate ruin probabilities for each risnponents under these dis-
tributions and parameters in specified time horizons byguslaonte Carlo techniques.
Indeed, we take VaR and CVaR estimations that are obtairgediwviulations and we
use them as initial capital, then in selected time horizoitk defined basis, we esti-
mate the ruin probabilities for the given claim size disitibns.

For the comparison of light-tailed and heavy tailed disttiiins for the claim size, we
make use of the Exponential and Pareto distributions, feother simulation results
when claim size distribution is Gamma, Weibull and Logndravhose results are
given in Appendix A and AppendixIB.

Figure[4.2 and Figuifie 4.3 summarize the risk component i@haten claim sizes are
distributed as Exponential with mean 3, with and withoutyndration of a Brownian
motion, respectively, withg = 0 andog = 1. The paths generated on the 1-year,
2-year, 5-year, 10-year in daily basis time horizons. Asleaeasily be inferred from
the histograms CVaR considers tail better than VaR. Whea tigrizon increases,
gradually fit better to a normal distribution.

To go deep inside the figures, we tabulate the results in Bafiland Tablé 412. VaR
and CVaR estimates and their corresponding ruin probesilére presented. First, as
expected, when the time horizon increased from 1-year tpeHd-increase in VaR and
CVaR estimates are obvious. Accordingly, these tables wieallocate the initial
capital by using CVaR estimates instead of using VaR estisyate can clearly catch
up the difference in ruin probabilities. It is apparent taldee that even in slight
increase between VaR and CVaR values, ruin probabilitieiraenearly half in all
cases. These decreasing ruin probabilities suggest tisktaserse insurance company
should fancy CVaR in allocation of required capital; thisisimerably minimizes its
insurance risk.

In order to detect the effects of this perturbed model, theesin Tablé 4.2 are com-
pared to those in Table 4.1. Along with the specified time zanj there is a small
difference among the estimates of both VaR and CVaR. Comesglguunsteady in-
crease or decrease in ruin probabilities of these estinagiasar. However, this should
not be considered bad, for the fact that perturbed modeksed to reflect uncertainties
in premiums, aggregate claims and market conditions.

Panjer [51] stated that lower percentage may reflect the-umti diversification that
exists. In this study, all simulations are investigate@ifi confidence level; however,
it is known that solvency regulation uses a confidence lel8D& % for entire enter-
prise. For that reason, we simulate surplus processes @r todind capital require-
ment for99.5% confidence level, and find their ruin probabilities ass@tab those
capitals. When we compare Taljle]4.3 and Tablé 4.4 with Talleadd Tablé 4]2,
as it is expected, all VaR and CVaR estimates rise, conségueorresponding ruin
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Figure 4.2: Simulated risk components with claim distribatExponential(3), and
op = 0.

Table 4.1: VaR 5 and CVaR o5 estimates and the ruin probabilities with claim size
process Exponential(3) ang; = 0.

\ Time | VaR | CVaR | ¥(VaR) | ¢(CVaR) |

dt=1; T=365 15774.5542 15893.5989 0.0430 0.0170
dt=1; T=2x365 31281.7036 31435.7473 0.0537 0.0212
dt=1; T=5x365 77530.3213 77798.0859 0.0517 0.0192
dt=1; T=10x365 || 154475.6833 154850.5623 0.0131 0.0049

Table 4.2: VaR ;s and CVaR o5 estimates and the ruin probabilities with claim size
process Exponential(3) ang; = 1.

\ Time | VaR | CVaR | ¥(VaR) | ¢(CVaR) |

dt=1; T=365 15776.5397, 15895.2196 0.0422 0.0173
dt=1; T=2x365 31278.6609 31437.8074 0.0563 0.0218
dt=1; T=5x365 77536.6294 77804.3774 0.0503 0.0192
dt=1; T=10x365 || 154487.2658 154857.3203 0.0124 0.0047
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(c) 5-year with daily basis. (d) 10-year with daily basis.

Figure 4.3: Simulated risk components with claim distribatExponential(3), and
op — 1.
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Table 4.3: VaR 95 and CVaR 495 estimates and the ruin probabilities with claim size
process Exponential(3) ang; = 0.

\ Time [ VaR | CVaR | ¥(VaR) | ¢(CVaR) |

dt=1; T=365 16040.6107, 16124.9383 0.0048 0.0020
dt=1; T=2x365 31625.3920 31768.0860 0.0053 0.0018
dt=1; T=5x365 78133.2822 78335.3219 0.0059 0.0028
dt=1; T=10x365 || 155288.3805 155581.6487 0.0013 0.0003

Table 4.4: VaR 95 and CVaR 95 estimates and the ruin probabilities with claim size
process Exponential(3) ang; = 1.

\ Time [ VaR | CVaR | ¥(VaR) | ¢(CVaR) |

dt=1; T=365 16044.9878 16129.8398 0.0044| 0.0021
dt=1; T=2x365 31635.5772 31769.2284 0.0056 0.0017
dt=1; T=5x365 78131.5395 78341.2831 0.0058 0.0027
dt=1; T=10x365 || 155302.7512 155578.5398 0.0010 0.0004

probabilities when those values used as initial capitasrarkedly decrease.

As Figure[4.4 presents changes in ruin probabilities, whea increases from 1-year
to 10-year using daily basis. It is striking that in 10-yeaslysis, with the help of

fitted line through the points, ruin probabilities for both®and CVaR drop. This is
clearly explained with rising VaR and CVaR estimates givemabld 4.1.

On the other hand, we consider the influence of time basis @muiim probabilities,

since an insurance company checks its surplus procesdenetif time basis referring
to a specific time discretization. Here, we simulate moddismwsurplus of an insur-
ance company is controlled daily, monthly, quarterly andisannually within 1-year.

In Figure[4.5 depicts the effect of such time discretizationthe ruin probabilities;
clearly, as time discretization increases, ruin probaédiincrease.

Furthermore, in order to see the effects of the diffusiorffaent in the model with
perturbation of Brownian motion in ruin probabilities, wieeck over ruin probabilities
of VaR and CVaR by increasing the diffusion coefficiefyt, 0 < o5 < 100. We infer
from Figure 4.6 that adding diffusion coefficient does naivine a stable ruin prob-
ability according to situations which cause uncertaintiepremiums and aggregate
claims.

Similarly, Figurel4.¥ and Figutie 4.8 show demonstration b&avy-tailed claim size
distributed risk component behavior for both unperturbed perturbed models. As
stated all claim size mean 3s that is, Pareto(1, 2) is generated. At a first glance, Fig-
ure[4.T and Figure_4.8 seems to be different from Figure 4d2Fagurel4.8. That is,
due to the fact that Pareto distribution is a model for lovgérency and high severity
situations, namely, for extreme events. In such situatibissatural to expect higher
estimates of VaR and CVaR.

Table[4.5 and Table 4.6 are constructed with the estimat®aRfand CVaR when
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Figure 4.7: Simulated risk components with claim distribntPareto(1, 2)g5 = 0.
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Table 4.5: VaRy; and CVaR ¢5 estimates and the ruin probabilities when claim size
process follows Pareto(1, 2) ang = 0.

\ Time [ VaR | CVaR | ¥(VaR) | ¢(CVaR) |
dt=1; T=365 15832.8755 16243.2002 0.0514 0.0127
dt=1; T=2x365 31391.3823 31973.7217 0.0477 0.0113
dt=1; T=5x365 77744.3984 78683.1634 0.0553 0.0129
dt=1; T=10x365 || 154868.4314 156097.6582 0.0279 0.0082

Table 4.6: VaRy; and CVaR o5 estimates and the ruin probabilities with claim size
process Pareto(1, 2) ang = 1.

\ Time |  VaR | CVaR | ¥(VaR) | (CVaR) |
dt=1;T =365 15830.0355 16244.3285 0.0517| 0.0129
dt=1,T=2x365 || 31389.4173 31973.8131] 0.0481| 0.0112
dt=1,T=5x365 || 77762.0244 78685.2456 0.0541| 0.0129
dt=1; T =10x365 | 154870.2301 156103.481Q0 0.0284| 0.0080

claim size are distributed as Pareto(1, 2): not surprigingtreasing estimate results
are faced again. Furthermore, when diffusion coefficienis choosen to be 1, rise
and decline of the estimates of VaR and CVaR induces unsieramgase and decrease
in ruin probabilities, as seen in Talle ¥.6.

Finally, in order to indicate differences between choo$isig and99.5% for a heavy-
tailed distribution such as Pareto, VaR and CVaR estimatdstlaeir corresponding
ruin probabilities are displayed in Talble .7 and Tablé heerestingly, in these tables
significant increase of VaR and CVaR estimates are obserledt can be reasoned
by these estimates of heavy-tailed distribution$9ai% confidence level move further
beyond the tail. Inversely, depending on these increadedass, corresponding ruin
probabilities decrease.

For the other distributions that considered in this studyshime analyses are done and
summarized in AppendixIB fd19.5% degree of certainty.

Table 4.7: VaR 495 and CVaR 495 estimates and the ruin probabilities with claim size
process Pareto(1, 2) ang = 0.

\ Time |  VaR | CVaR | ¥(VaR) | (CVaR) |
dt=1;T =365 16689.4173 17935.5261 0.0057| 0.0014
dt=1,T=2x365 || 32727.8489 34227.703§ 0.0037| 0.0016
dt=1, T=5x365 || 79782.1542 82267.8557 0.0045| 0.0014
dt=1; T =10x365 | 158066.2547 160527.943§ 0.0028| 0.0016
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Table 4.8: VaR 95 and CVaR 495 estimates and the ruin probabilities with claim size
process Pareto(1, 2) angh = 1.

\ Time [ VaR | CVaR | ¥(VaR) | ¢(CVaR) |

dt=1; T=365 16690.9627, 17934.7743 0.0056 0.0014
dt=1; T=2x365 32725.0879 34223.5661 0.0037 0.0016
dt=1; T=5x365 79774.8693 82268.4054 0.0046 0.0014
dt=1; T=10x365| 158061.7920 160528.5048 0.0028 0.0016
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CHAPTER 5

CONCLUSION

In this study, we bring into focus of determining initial ¢&gbthat any insurance com-
pany should allocate to recompense all possible contingaimhs. Indeed, required
capital ensures the insurance company from insolvency. &ge lipon ruin theory
framework and risk measures in calculation of the requisgaltal. First, we take ba-
sic surplus model, and and then, we extend it by model withradd perturbation
of Brownian motion to explain uncertainties in aggregatersk better. This help us
understand the uncertainties in premiums that might be ad@ednomic conditions,
for instance, insurance market volatility and underwgtfactors such as factors that
cause large claims, and increase or decrease in policyhdiden, we constitute risk
components via removing initial capital, and taking a nieggbosition in the surplus
processes. After simulating these risk components undfereit claim size distribu-
tions, namely, Exponential, Gamma, Weibull, LognormalelRa we track down VaR
and CVaR estimates for various time units. Accordinglyirigk/aR and CVaR as the
proposed initial capital, we calculate the associated pudbabilities.

Findings of this study suggest that in all models, not seipgly if the claim size
follows heavy-tailed distributions like Weibull and Pargt/aR and CVaR estimates
are high, when compared to those distributions with ligité ta heir ruin probabilities
by writing VaR and CVaR estimates as an initial capital atedént timesl’ = 1,

T =2,T =5, andT = 10 with daily basis are generally higher than light-tailed
distributions.

Furthermore, in this study, we observe that ruin probaégdibbtained by using CVaR
estimate are always halfed in all simulations. That yiegEl®.comment that depending
on risk appetite of the company, it should decide which riskasure they choose:
VaR or CVaR. For instance, risk averse companies shouldsehG¥aR in their risk
management regulations since it indicates conservatipeca®n in this study.

Another result we can infer from these simulations is thdirgiperturbation of Brow-
nian motion generally demonstrates their effect by indrepand decreasing the VaR
and CVaR estimates. However, unstable behavior in ruingbitiies of the estimates
VaR and CVaR does not make a precise inference betweenipeatand unperturbed
models, however perturbed model might be thought of a mailéste model since it
fulfills the stochastic nature of the process. Neverthebedgecrease in the estimates of
VaR or CVaR supports the idea that if the insurance companeekeling their surplus
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process with Brownian motion, need less initial capitaluo the business, and vice
versa.

Another crucial aspects of this study shows that time disagon is important in
calculation of the ruin probability. In order to avoid ruihjs better to use small time
basis to investigate the surplus.

In addition to simulations built on &5% confidence level, relevant with degree of
certainty for risk measures on Solvency Il regulation, samneulations is repeated
for 99.5% confidence level. Comparison of those reveals that, ndtisgly, VaR
and CVaR estimates are always higher while ruin probadiliissociated with those
estimates are lower. As expected, VaR and CVaR estimatamafagions made for
heavy-tailed claim sizes are even more higher since therdifce on the tails of such
distributions at95% to 99.5% goes beyond more. Ye19.5% confidence level might
be generally skeptical for CVaR estimates which is alreahservative risk measure.

To sum up, for a better risk management of an insurance coynpagulators or actu-
aries can use proposed approach in order to pursue compsimyloa with classical
and extended surplus models, and by employing VaR and CVa&iaged to those
surplus processes, the required capital should be attaiitedut neglecting their ruin
probabilities.

Further in this topic, the optimization of the proposed ms&asures for precise cap-
ital allocation can be carried out. With this motivationrther study of constrained
optimization problems involving the surplus process, VaR &VaR would be worth-
while since quantifying economic capital, and allocatinfygam an insurance portfolio
optimally has a pivotal role in Asset/Liability Managemé&AtM). Leading study in
optimizing portfolio under VaR and CVaR constrained base&ockafeller and Urya-
sev [54], and the collected studies are summarized in [58]indplied also in these
studies, CVaR gains more importance since constrainedn@atiion with that risk
measure presents promising results. To such studies, mar@me additional con-
straint, the ruin probability,would certainly be helpfuhse our proposed approach
focuses on ruin theory.

Undoubtedly, the reinsurance is mutual agreement withramge companies and oth-
ers specialized reinsurance products such as Swiss, MRd&chloyd’s, in order to
reduce the risk in a portfolio. For that reason, observintinogl capital allocation un-
der ruin consideration both provides healthier reinsueaagreements and ensures the
success in fair investments of the company.
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APPENDIX A

Further Simulation Figures
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(c) 5-year with daily basis. (d) 10-year with daily basis.

Figure A.1: Simulated risk components with claim distribntGamma(3, 1)g5 = 0.
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(c) 5-year with daily basis. (d) 10-year with daily basis.

Figure A.2: Simulated risk components with claim distribatWeibull(1.5, 0.5)g 5 =
0.
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(b) 2-year with daily basis.
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Figure A.3: Simulated risk components with claim distribantLognormal(1, 0.441),
op = 0.
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Figure A.4: Simulated risk components with claim distribatGamma(3, 1)g5 = 1.
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Figure A.5: Simulated risk components with claim distribatWeibull(1.5, 0.5)g 5 =

1.
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Figure A.6: Simulated risk components with claim distribatLognormal(1, 0.4441),

O'le.
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APPENDIX B

Further Simulation Tables

In this part of this thesis, we present the comparison ottdtghed distributions with

Exponential, and further heavy-tailed distribution withr&o distribution.

B.1 Tables when claim sizes are distributed as Gamma(3, 1)

Gamma distribution with shape parameter 3 and scale pagarhas a distribution
which has lighter tail than Exponential distribution. (deigure[3.3R). Therefore,
when Tabl€ B.Il, Table Bl.2, Talile B.3, and Tdble B.3 are coetpi@rwith those results
from the use of Exponential distribution, it is clear that thse of Gamma(3, 1) yields
lower VaR and CVaR estimates. However, the ruin probabditvith initial capital

slightly changes.

Table B.1: VaR ;s and CVaR o5 estimates and the ruin probabilities with claim size

process Gamma(3, 1) aagt = 0.

| Time I VaR | CVaR | ¥(VaR) | ¥(CVaR) |
dt=1; T=365 15473.3609] 15546.4560, 0.0421 0.0155
dt=1; T=2x365 30776.2071 30872.4523 0.2689 0.1455
dt=1; T=5x365 76875.3575| 77026.5844 0.0501 0.0194
dt=1; T=10x365 || 153409.5737 153616.6194 0.2037 0.1102
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Table B.2: VaR 5 and CVaR o5 estimates and the ruin probabilities with claim size
process Gamma(3, 1) aag, = 1.

| Time VaR | CVaR | ¥(VaR) | ¥(CVaR) |
dt=1;T =365 15475.4770 15549.5473 0.0409 0.0162
dt=1; T=2x365 30780.7116] 30877.1559| 0.2628 0.1438
dt=1; T =5x365 76878.1751 77029.1300, 0.0504 0.0212
dt=1; T=10x365 || 153420.3815 153623.4969 0.1980 0.1101

Table B.3: VaR 95 and CVaR q95 estimates and the ruin probabilities with claim size
process Gamma(3, 1) aagi = 0.

| Time VaR | CVaR | ¥(VaR) | ¥(CVaR) |
dt=1; T=365 15638.0865] 15692.9458 0.0049 0.0017
dt=1; T=2x365 30990.5156| 31062.8770, 0.0582 0.0301
dt=1; T=5x365 77223.7490, 77341.9016| 0.0044 0.0016
dt=1; T=10x365 || 153854.6805 154007.4651] 0.0465 0.0242

Table B.4: VaR 95 and CVaR o495 estimates and the ruin probabilities with claim size
process Gamma(3, 1) aagt = 1.

| Time VaR | CVaR | ¥(VaR) | ¥(CVaR) |
dt=1;T=365 15641.1363] 15698.2739 0.0048 0.0014
dt=1; T=2x365 30986.9138] 31070.1879] 0.0622 0.0298
dt=1; T=5x365 77235.5288] 77338.8302] 0.0039 0.0018
dt=1;T=10x365|| 153863.8518 154014.6297 0.0449 0.0247
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Table B.5: VaR 5 and CVaR ¢5; estimates and the ruin probabilities with claim size

process Weibull(1.5, 0.5) and; = 0.

| Time | VeaR | CVaR | ¥(VaR) | ¥(CVaR) |
dt=1;T=365 16352.1492| 16624.4890, 0.0483 0.0185
dt=1; T =2x365 32091.3380] 32468.4802| 0.0495 0.0196
dt=1; T =5x365 78834.5941 79465.3718 0.0479 0.0175
dt=1;T=10x365| 156248.9798 157101.3741 0.0324 0.0120

Table B.6: VaR 5 and CVaR g5 estimates and the ruin probabilities with claim size

process Weibull(1.5, 0.5) ang; = 1.

| Time | VaR | CVaR | ¥(VaR) | ¥(CVaR) |
dt=1;T=365 16355.8537| 16625.1636) 0.0473 0.0188
dt=1; T =2x365 32090.8261 32469.8726) 0.0497 0.0200
dt=1; T =5x365 78841.7191 79469.4481 0.0477 0.0170
dt=1; T=10x365 | 156267.0462 157105.4636 0.0311 0.0121

B.2 Tables when claim sizes are distributed as Weibull(1.%.5)

Weibull distribution with shap®.5, scalel.5 has a heavy tail. Table’B.5, Talile B.6
Table[B.7, and Table B.8 with the results when claim sizessrihuted as Pareto(1, 2),
it proves that VaR and CVaR estimates are obtained by usingul@.5, 0.5). More-
over, if the results for heavy-tailed distributions areiegied, surprisingly VaR and
CVaR estimates when claim size is considered as Weibulllaseya higher. That may
be reasoned by parameter choice of Weibull. Although the a8 CVaR estimates
higher when claim size distributed as Weibull, correspogduin probabilities is gen-
erally higher than the other heavy-tailed distributionsr Fstance, when Table B.7
and Tabld B.B compared to Talile B.9 and Table B.10, ruin fiibes for 99.5%
confidence level cannot reach to the ruin probabilitie91 level of confidence.

Table B.7: VaR 95 and CVaR o95 estimates and the ruin probabilities with claim size
process Weibull(1.5, 0.5) and; = 0.

| Time I VaR | CVaR | ¥(VaR) | ¥(CVaR) |
dt=1; T=365 16955.7903] 17148.8771 0.0054 0.0021
dt=1; T=2x365 32918.3447| 33250.2423 0.0059 0.0022
dt=1; T=5x365 80254.1607| 80744.4581] 0.0041 0.0018
dt=1; T=10x365 || 158140.0671 158835.0510 0.0026 0.0012
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Table B.8: VaR 95 and CVaR o95 estimates and the ruin probabilities with claim size
process Weibull(1.5, 0.5) ant; = 1.

| Time I VaR | CVaR | ¥(VaR) | ¥(CVaR) |

dt=1, T =365 16965.1108] 17146.8439 0.0056] 0.0021
dt=1, T=2<365 || 32915.1052 33250.0659 0.0058| 0.0021
dt=1, T =5<365 || 80264.1818 80745.1410 0.0042| 0.0018
dt=1;T=10x365|| 158176.3777| 158831.0642 0.0026 0.0012
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Table B.9: VaR 5 and CVaR g5 estimates and the ruin probabilities with claim size
process Lognormal(1, 0.4441) ang = 0.

| Time | VeR | CVaR | ¥(VaR) | ¥(CVaR) |
dt=1;T=365 15630.2244| 15684.8001] 0.0378 0.0154
dt=1; T =2x365 31107.4199 31189.2957| 0.0003 0.0000
dt=1; T =5x365 77063.7144) 77184.1861) 0.0008 0.0001
dt=1; T=10x365 | 153388.6887 153573.0642 0.0037 0.0011

Table B.10: VaR 5 and CVaR 5 estimates and the ruin probabilities with claim size
process Lognormal(1, 0.4441) and = 1.

| Time I VaR | CVaR | ¥(VaR) | ¥(CVaR) |
dt=1; T=365 15630.6779] 15688.1694| 0.0381 0.0145
dt=1; T=2x365 31114.2279] 31194.7622| 0.0003 0.0000
dt=1; T=5x365 77065.4204| 77192.9527| 0.0010 0.0002
dt=1; T=10x365 || 153398.9478 153584.4237| 0.0030 0.0007

B.3 Tables when claim sizes are distributed as Lognormal(1).4441)

Lognormal distribution with log mean df and log standard deviation 064441 is one
of the examples of heavy-tailed distributions. Here, tiseiits are compared to Pareto
distributed claim size estimates and their ruin probaéditin Tablé B.D, Table B.10,
Tableg[B.11 and Table B.12, VaR and CVaR estimates are génaralfound to be low.
Despite the lower estimates in VaR and CVaR, ruin probadslire mostly lower than
the results constructed for Pareto claim size. This sitmaten be due to the fact that
Pareto distribution is predominantly used the modelingeawe events for that reason
the estimates of VaR and CVaR may not be enough to reduceithprababilities like
those obtained using Lognormal distribution situation.

Table B.11: VaR 495 and CVaR 495 estimates and the ruin probabilities with claim size
process Lognormal(1, 0.4441) ang = 0.

| Time I VaR | CVaR | ¥(VaR) | ¥(CVaR) |
dt=1; T=365 15755.0479] 15791.8451] 0.0040 0.0016
dt=1; T=2x365 31285.2752| 31342.2580 0.0000 0.0000
dt=1; T=5x365 77353.2821| 77432.2375 0.0000 0.0000
dt=1; T=10x365 || 153796.1481] 153942.3861 0.0002 0.0000
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Table B.12: VaR 495 and CVaR 495 estimates and the ruin probabilities with claim size
process Lognormal(1, 0.4441) and = 1.

| Time | VeR | CVaR | ¥(VaR) | ¥(CVaR) |

dt=1;T =365 16965.1108| 17146.8439 0.0056 0.0021
dt=1; T=2x365 32915.1052| 33250.0659| 0.0058 0.0021
dt=1; T =5x365 80264.1818] 80745.1410f 0.0042 0.0018
dt=1; T=10x365 | 158176.3777 158831.0642 0.0026 0.0012
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