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ABSTRACT

PUBLIC R&D PROJECT PORTFOLIO SELECTION PROBLEMS UNDER
EXPENDITURE UNCERTAINTY AND SECTORAL BUDGET BALANCING

ÇAĞLAR, MUSA

Ph.D., Department of Industrial Engineering

Supervisor : Assoc. Prof. Dr. Sinan Gürel

July 2016, 144 pages

In this dissertation, we deal with the two issues that exist in the practice of public
R&D funding program management. First one is the underutilization of the fund-
ing budget owing to several sources of expenditure uncertainty. Project cancellations
and spending uncertainty of successfully completed projects cause to funding budget
underutilization. In the first and second part of the dissertation, we propose new ap-
proaches to enhance the utilization of the total funding budget. Specifically, in the first
part of the dissertation, we focus on incorporation of project cancellations into the de-
cision making process. In the second part of the dissertation, we deal with stochastic
modeling of the expenditures of both canceled and successfully completed projects.
We showed that modeling those uncertainties can significantly improve the utilization
of the funding budget. Increased public R&D budget utilization will help to support
more R&D projects and hence achieve higher socio-economic impact. Second issue
in the practice of R&D funding management is balancing of the total funding bud-
get among sectors. In the third part of the dissertation, we deal with incorporation of
sectoral impact assessment results into the decision making process to ensure sectoral
budget balancing. We compare our proposed approach with some alternative policy
options. We showed that proposed model enhances total impact of funding budget by
keeping relative budget balancing among sectors.
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Keywords: public R&D project portfolio selection, budget underutilization, project
cancellations, sectoral balancing, sectoral impact assessment, mixed integer second-
order cone programming, chance constrained stochastic programming, dynamic pro-
gramming
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ÖZ

HARCAMA BELİRSİZLİĞİ VE SEKTÖREL BÜTÇE DENGELEME ALTINDA
KAMU AR-GE PROJE PORTFÖY SEÇİMİ PROBLEMLERİ

ÇAĞLAR, MUSA

Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Sinan Gürel

Temmuz 2016 , 144 sayfa

Bu tezde, kamu Ar-Ge fonlama programı yönetimi uygulamasında var olan iki so-
run ile ilgileniyoruz. Birinci sorun, fon bütçesinin, Ar-Ge projelerinin bir takım har-
cama belirsizliği sebeplerinden dolayı yetersiz kullanımıdır. Proje iptalleri ve başa-
rıyla tamamlanan projelerin harcama belirsizliği fon bütçesinin yetersiz kullanımına
yol açmaktadır. Tezin birinci ve ikinci kısmında, toplam fon bütçesinin kullanımını
artırmak için yeni yaklaşımlar öneriyoruz. Özel olarak, tezin birinci kısmında, proje
iptallerinin karar verme sürecine dahil edilmesine odaklanıyoruz. Tezin ikinci kıs-
mında, hem iptal olan hem de başarıyla tamamlanan projelerin harcamalarının ras-
sal olarak modellenmesiyle ilgileniyoruz. Bu belirsizlikleri modellemenin fonlama
bütçesinin kullanımını önemli ölçüde iyileştirebileceğini gösterdik. Artırılan kamu
Ar-Ge bütçe kullanımı daha fazla Ar-Ge projesinin desteklenmesine yardımcı olacak
ve böylece daha yüksek sosyo-ekonomik etki meydana getirecektir. Ar-Ge fonlama
yönetimi uygulamasındaki ikinci sorun toplam fonlama bütçesinin sektörler arasında
dengeli dağıtılmasıdır. Tezin üçüncü kısmında, sektörel etki değerlendirmesi sonuç-
larının sektörel bütçe dengelemesini sağlamak için karar verme sürecine dahil edil-
mesiyle ilgileniyoruz. Önerdiğimiz yaklaşımı bazı alternatif politika opsiyonları ile
karşılaştırıyoruz. Önerdiğimiz modelin görece sektörler arasında bütçe dengeleme-
sini koruyarak fonlama bütçesinin toplam etkisini artırdığını gösterdik.
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CHAPTER 1

INTRODUCTION

In today’s competitive and rapidly changing world, public research and development

(R&D) activities play a crucial role for a nation’s long term economic welfare and

competitiveness. Government funding agencies provide considerable amount of pub-

lic funds through funding programs to R&D projects conducted by researchers in

universities, public R&D institutions, and private sector companies. Public R&D ac-

tivities contribute to talent development, increase of knowledge base, development

of new scientific instruments/methods, development of new products/processes, and

generation of spin-off companies (Salter and Martin (2001)). Besides, Kroll and

Stahlecker (2012) also emphasize the significance of public R&D funding as follows:

. . . “the motivation to publicly fund research and development is to yield
added value to society and, in doing so, remain accountable to the tax-
payer. While the link between funding allocated and actual added value
felt by society will inevitably turn out to be time-lagged and indirect it
should nonetheless remain the ultimate rationale for public intervention
in the field of science and technology”.

Therefore, governments, being aware of this fact, invest large amount of public funds

to R&D activities. For example, funding budget of The Scientific and Technological

Research Council of Turkey (TÜBİTAK) reached to 1 billion Turkish Lira in 2012.

Besides, government funding agencies usually receive a large number of project pro-

posals for national R&D programs to be supported out of the same pool of funds.

For instance, national fundamental research funding program of Turkey, known as

TÜBİTAK 1001 program, received 3218 projects for the two calls at different terms

in 2012 (TÜBİTAK (2012), p. 47), which means that on the average 1609 proposals
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received per call. Similar national level funding programs in United States, Russia

and Mexico also receive large sets of proposals as recently indicated in Litvinchev

et al. (2010). This problem environment makes public sector R&D project selec-

tion decisions more complex than private sector setting, in which selection decisions

are made out of much smaller sets of projects. Therefore, the large-scale portfolio

optimization models with novel formulations can contribute to the decision making

process and decision makers (DMs) can gain new managerial insights.

In this dissertation, we consider a one stage public R&D project portfolio selection

(RDPPS) problem. In this problem, we have an R&D funding program. There is

a maximum project duration in this program. Calls are periodically opened under

this program. Once a call is announced, a large set of R&D project proposals apply

to the call. After, submitted project proposals are officially checked for eligibility

requirements of the program. Eligible project proposals are evaluated according to

the evaluation criteria by peer reviewers in panel meetings. Announced call has a

total available budgetB. The budget bi and the score si of each project i is determined

in panel meetings. The budget bi of project i covers all of the planned expenditure

of project i during its duration. The project duration of a project i can be any value

that is smaller than or equal to maximum project duration of the program. In this

problem setting, the objective is to maximize the total score of the selected projects

while satisfying the total available budget (B) constraint.

For example, in Figure 1.1, we present a time line of one stage public R&D Project

portfolio selection problem setting for an R&D Program with project duration of

maximum 3 years. Since maximum project duration of this example program is 3

years, the call budget B puts a bound on sum of the planned expenditures (budgets)

of supported projects during 3 years. The funding decisions are made at the begin-

ning of period t = 0 according to the scores and budgets of the projects, after the

panel meetings are conducted. Consider two projects i and j, that are selected at

the period t = 0. Assume that project i has a duration of 2 years and project j has

a duration of 3 years. Therefore, funding budget of projects i and j cover all the

planned expenditures during their project life. After projects are selected, contracts

are signed between funding agency and the project principal investigator (PI)s. When

the projects are started, only partial funding budgets (i.e. partial year or a full year

2



Figure 1.1: One Stage Public R&D Project Portfolio Selection Problem for an R&D
Program with project duration of maximum 3 years

budgets) are transferred to the projects. There are reporting time points, in which

projects are reviewed for compliance with the terms and conditions of the program.

Decisions regarding to project cancellations and transferring partial funding budgets

are made at those reporting time points by examining progress reports.

We are concerned with the two practical issues that exist in the public RDPPS prob-

lem. The first one is the underutilization of available funding budget due to several

sources of expenditure uncertainty. The second one is the sectoral balancing of avail-

able funding budget. We first discuss practical motivations of those two issues in Sec-

tion 1.1 and Section 1.2, respectively. Then, we give the outline of this dissertation in

Section 1.3.

1.1 Underutilization of the funding budget

Public R&D organizations have limited funding budget appropriations, however, most

of the time the funding budget cannot be spent fully and the budget underutilization

occurs. When we look at the Turkey example, the leading R&D funding organization

3



is TÜBİTAK. Between the years of 2010 and 2012, reported appropriations, expen-

ditures and remainders of TÜBİTAK funding budget are presented in Figure 1.2. For

instance, the funding budget remainder was 172 Million Turkish Lira in 2010 and it

reached to 418 Million Turkish Lira in 2012. A recent study conducted by Ministry of

Science, Technology and Industry (MSTI) also highlights that utilization of funding

appropriation of TÜBİTAK is 58% in 2012 (Eser (2014)).
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Figure 1.2: TÜBİTAK Funding Between 2010 and 2012
Source: Author’s own compilation from activity reports of TÜBİTAK

DMs of public R&D funding agencies should carefully consider the factors that bring

about underutilization of the funding budget. Practical life reveals that there are two

main impediments. First one is the cancellation of a significant number of R&D

projects before spending most of their budgets. R&D activities are inherently subject

to uncertainties that can arise during the execution of an R&D project. Principal

investigator (PI) and other project members may fail to comply with the approved

project plan and there might also be some ethical reasons. Rules and conditions for

cancellation of projects are usually arranged in the R&D program regulations (see

NSF (2005); NIH (2013)). Canceled projects are regarded as unsuccessful and their
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expected scientific and technological benefits are not realized. A funding organization

usually suspends a project that fails to comply with the terms and conditions of the

R&D program. Unless a corrective action is implemented, the funding organization

can cancel the project. As author of the dissertation is employed in an R&D funding

organization, we can roughly estimate that 5-10% of the awarded projects may get

into the cancellation process. The second factor is that a significant number of funded

projects end up successfully while providing their expected benefits without spending

their whole budget. Since planning of R&D activities is a complex process, estimating

the budget of an R&D project is difficult. Although, detailed guidelines are provided

for budgeting of R&D activities, researchers may overestimate the real budget of an

R&D project.

The budget underutilization situation is apparent especially in emerging countries

such as Turkey, which have been experiencing prominent public funding increases

recently. Many new researchers have been applying to funding programs and yet

have become familiar with formulating R&D projects. Budget releases due to the

expenditure uncertainty could make a great opportunity for the relatively high scored

projects, that were not awarded during the selection processes. Every R&D project

successfully conducted and finalized brings its special scientific and socio-economic

value to society. Therefore, DMs of funding organizations can benefit from con-

sidering the underutilization situations when they allocate funding budget to R&D

projects.

In Chapter 3 and Chapter 4, we consider aforementioned sources of budget spend-

ing uncertainty in the public RDPPS problem to improve the utilization of the total

funding budget. More specifically, in Chapter 3, we deal with incorporating project

cancellations into decision making process. In Chapter 4, we deal with modeling of

both cancellations and underspending of successfully completed projects. We show

that considering those uncertainties can significantly improve the utilization of fund-

ing budget. Increased public R&D budget utilization will help to support more R&D

projects and hence achieve higher socio-economic impact.
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1.2 Sectoral balancing of the funding budget

In Chapter 5, we propose a sectoral budget balancing approach by employing the re-

sults of so-called "impact assessment" studies. In science, technology, and innovation

policy context, impact assessment of an R&D funding program refers to measurement

of scientific, economic, and social effects of an existing funding program in terms of

predefined impact criteria and program objectives. Hence, impact assessment stud-

ies provide insights about added value of public R&D funding programs to society.

Supporting R&D projects with public funds is regarded as a long term government

investment to enhance competitiveness of a country. There is a significant interest to

"impact assessment" studies in executive government departments to distribute lim-

ited funds effectively. Therefore, DMs of funding authorities encounter two major

policy concerns in R&D funding management. Firstly, the impact assessment of an

R&D funding program, as an evidence-based policy making tool, has recently re-

ceived high level of attention from policy makers (Cervantes (2007)). Impact assess-

ment studies assist to improve program contents (i.e. scope, funding mechanism, etc.)

as well as to distribute public funds effectively.

Second prevalent policy concern is related to sectoral balancing of R&D funding al-

locations. Sector notion might express different meanings in various contexts. In

our terminology, sector refers to funding program specific categorization of projects

according to thematic areas, scientific disciplines, technological fields, industrial or

economical classifications, etc. In practice, there are many classification systems for

sectoral breakdowns. Funding authorities could adopt variety of them according to

funding program scope and objectives. An R&D funding program could have differ-

ent impacts on different sectors due to sectoral dynamics and different technological

sophistication of sectors. Therefore, DMs of funding agencies want to effectively

distribute limited program budget over different sectors according to sectoral impact

assessment results. However, sectoral balancing does not mean to disproportionate al-

locations because science, technology, and innovation policies suggest that, especially

in curiosity driven bottom up funding programs such as 1001 scientific and techno-

logical research projects funding program of TÜBİTAK, some level of expertise and

critical mass should be maintained and developed in all sectors. In addition, this kind
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of funding programs receive significant number of project proposals from all sectors

and disproportionate allocations could raise serious objections from research commu-

nities. For that reason, imbalanced project portfolios usually aren’t approved by the

DMs who assert that some sectors predominantly receive most of the funds, whereas

other sectors receive very little (Karsu and Morton (2014)). On the other hand, some

sectors that have high impact assessment values could get more allocations; whereas,

sectors that have low impact assessment values could receive less allocations. Notion

of more and less allocations could be nebulous. Therefore, in Chapter 5, we propose a

flexible analytical approach to assist sectoral balancing decisions in the light of given

sectoral impact assessment values.

As a result of those aforementioned policy shifts, government agencies, especially in

emerging countries, have been strategically reorganized and new departments solely

responsible for impact assessment studies have emerged. For example, MSTI of

Turkey has recently founded the "Department of Impact Assessment". This new de-

partment will be responsible for impact assessment of all public R&D and innovation

support programs, that exist in different funding organizations. It will share impact

assessment results with policy makers. It will provide policy insights regarding revi-

sion and improvement of funding mechanisms. The department will also be responsi-

ble for developing analytical and accountable R&D resource allocation models in the

light of impact assessment findings. Therefore, we believe that the proposed model

in Chapter 5 will contribute to strategic allocation of R&D funding resources by gov-

ernment departments and provide policy implications about how impact assessment

results could be incorporated into strategic fund allocation processes.

There is one issue that needs further elaboration. In panel review of R&D projects,

there is usually a criterion called broader "impact". This criterion quantifies fore-

seen impact of a project to its sector by a panel peer review process. On the other

side, sectoral impact assessment of a funding program refers to evaluation of real-

ized outputs and results (by considering time lags of 5-10-15 years) of successfully

completed projects in a funding program. For example, consider two projects from

two different sectors such as earth sciences and information sciences. Assume that

all attributes (all criterion scores, budget, number of researchers in the project etc.)

of those two projects are the same. If we conduct an impact assessment of those two
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projects according to realizations of some output criteria after they finish, we might

observe different results due to sectoral dynamics. Therefore, sectoral impact assess-

ment studies deal with how impacts of different sectors could change according to

their allocated resource allocations.

In Chapter 5, we incorporate sectoral impact assessment results into decision mak-

ing process to ensure sectoral budget balancing in the public RDPPS problem. We

compare our proposed approach with some alternative policy options. We show that

proposed model enhances total impact of funding budget by keeping relative budget

balancing among sectors.

1.3 Organization of the dissertation

The remainder of this dissertation is organized as follows.

The related literature review is presented in Chapter 2. Literature review consists of

four sections. In the first section, we review studies on R&D project portfolio selec-

tion (RDPPS) problem. In the second section, we summarize the relevant research

related to impact assessment based sectoral balancing in RDPPS problem. In the last

two sections, we discuss chance constrained optimization and conic quadratic pro-

gramming, respectively.

In Chapter 3, we address a public P-RDPPS problem with project cancellations. We

consider two cases. In the first case, we assume that cancellation probability of a

project cannot be assessed but the DM can estimate the number of projects that will

be canceled. In the second case, we assume that for each project a cancellation prob-

ability can be assessed. For the first problem, we develop a mixed-integer linear pro-

gramming (MILP) formulation and a dynamic programming (DP) algorithm. For the

second problem, we develop a chance-constrained stochastic programming (CCSP)

formulation that can be solved as a mixed-integer second-order cone program (MIS-

OCP). Our computational results show that practical-size problems can be solved by

the proposed solution approaches. In addition, we conduct additional analyses on

proposed approaches to give managerial insights to the DM.
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In Chapter 4, we formulate the expenditure of an R&D project with a mixture distribu-

tion by incorporating project cancellations and budget underspending of successfully

completed projects. We develop a project portfolio selection model with a probabilis-

tic budget constraint. We propose a solution method based on a normal approximation

and a second-order cone programming. DMs of public funding agencies wonder qual-

ity of normal approximation to minimize risk of exceeding funding budget. Hence,

we quantify convergence quality of normal approximation by applying Berry-Esseen

theorem and propose ways to mitigate risk of budget constraint. Besides, we perform

extensive analyses on the proposed model to give managerial implications to the DM.

The proposed model can solve practical size instances in reasonable CPU times.

In Chapter 5, we consider impact assessment based sectoral budget balancing in the

public RDPPS problem. We develop a two-stage model. In the first stage, the DM

wants to maximize the total impact of the funding budget while assuring relative

budget balancing among sectors. We propose a nonlinear objective function (i.e.

parameterized social welfare function) in the first stage. We prove that nonlinearity

in the objective function can be expressed by conic quadratic inequalities. In the

second stage, the DM wants to maximize the total score of supported projects subject

to alloted sectoral budgets. We propose a flexible decision making approach to show

effect of sectoral allocation on various problem parameters. We solve an example

problem with our proposed decision making approach. We demonstrate the value of

the proposed approach by comparing it with some alternative policy options.

In Chapter 6, we present concluding remarks and future research directions.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we review the studies related to our research. In particular, we review

the literature on R&D project portfolio selection (RDPPS) problem in Section 2.1.

Next, we review the research related to impact assessment based sectoral balancing

in RDPPS problem in Section 2.2. We discuss chance constrained stochastic pro-

gramming in Section 2.3 and second order cone programming in Section 2.4.

2.1 R&D Project Portfolio Selection Literature

In the RDPPS literature, one of the earliest extensive reviews is conducted by Baker

(1974). After highlighting uncertain and unpredictable nature of R&D activities, he

classifies the literature on RDPPS problem into three major categories:

(a) descriptive literature in which R&D project portfolio selection problem is con-

sidered as an organizational process flow model,

(b) estimation problems in which uncertainty, risk, cost, time to completion and

interactions are discussed,

(c) normative models in which mathematical programming models and tools are

described.

In addition, he underlines the importance of the normative models and defines the

RDPPS problem as follows:

11



“ Given set of alternatives (proposed projects) which require common
scarce resources, determine that allocation of the resources to the alterna-
tives which will maximize the benefit contribution (value) of the resulting
program ”.

Second comprehensive overview is performed by Henriksen and Traynor (1999).

They categorize the RDPPS methods as follows:

(a) Unstructured peer review,

(b) Scoring,

(c) Mathematical programming models (Linear Programming (LP), Nonlinear Pro-

gramming (NLP), Integer Programming (IP), Goal Programming (GP), Dy-

namic Programming (DP)),

(d) Economic Models (Internal Rate of Return (IRR), Net Present Value (NPV),

Return on Investment (ROI), Cost-Benefit Analysis, Option Pricing Theory),

(e) Decision analysis (Multi Attribute Utility Theory (MAUT), Decision Tree, Risk

Analysis, Analytic Hierarchy Process (AHP),

(f) Interactive methods (Delphi, Q-sort, Behavioral Decision Aids, Decentralized

Hierarchical Modeling),

(g) Artificial intelligence (Expert Systems, Fuzzy Sets),

(h) Portfolio optimization.

Besides, they emphasize that in the portfolio optimization method to R&D project se-

lection, any combination of classified techniques indicated between (a)-(g) could be

applied to find the best R&D portfolio. For instance, they state that integer program-

ming models could be used to select the projects. Moreover, they also develop an

improved scoring tool for the evaluation of R&D projects. Heidenberger and Stum-

mer (1999) review quantitative approaches to RDPPS problem and classify meth-

ods as strategic management tools, benefits measurement methods and mathematical

programming methods. Apparently, mathematical programming models have been
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specifically categorized by the review papers as a quantitative approach for the selec-

tion of R&D projects. We present the most relevant studies of RDPPS problem as

follows.

Santhanam and Kyparisis (1995) address a general project selection model suitable

for information technology and R&D domains in companies. Their model incor-

porates project failure risks, project benefits, project costs, several project resource

requirements, and interaction among possible selected projects. They set three goals

in terms of total failure risk, total benefit and total cost of selected projects. They de-

fine a risk score between 0 and 5 to quantify the likelihood of failure of a project and

minimize the total risk of selected projects in their model. They develop a preemptive

goal programming approach under various resource constraints and solve a real life

example with 14 projects.

Coffin and Taylor (1996) develop an integrated RDPPS and scheduling problem.

They state that private sector R&D managers may require an overall completion time

threshold for the selected projects, and makespan of selected project portfolio might

exceed that threshold. Therefore, they also incorporate scheduling decisions into their

model. They also assume that probability of technical or commercial success of each

project is known. They propose three objectives such as maximization of the expected

return, maximization of probability of success of the portfolio, and minimization of

the makespan. They develop a beam research heuristic for their proposed model.

They solve an illustrative example with 20 projects under resource constraints. They

set problem size of the illustrative example according to practice.

Beaujon et al. (2001) develop a mixed integer linear program (MILP) with a variety

of resource and other constraints for the RDPPS problem. They assume that project

values are uncertain. Therefore, they propose a method for quantifying the value

of a project. They also discuss partial funding and implementation in their model.

Moreover, they also conduct a sensitivity analysis of project values to make selec-

tion process more reliable. They solve an instance problem of a company with 390

projects by using the linear programming relaxation.

Meade and Presley (2002) underline the criticality of the RDPPS problem in compa-

nies and focus on project selection criteria. They state that R&D project evaluation
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model should be related to corporate strategy, qualitative aspects and risks, and needs

of various stakeholders. Therefore, they introduce 15 evaluation criteria. Besides,

they propose an analytical network process (ANP) for the RDPPS problem. Their

proposed model admits the interactions among the selection criteria. They apply their

proposed approach to select one of the two projects of a small technology company.

Ringuest et al. (2004) develop a two-parameter model for the selection of R&D

projects in pharmaceutical companies. Their model depends on expected return and

an intuitive measure of variation, called Gini coefficient. They assume zero or high

economic return for the R&D projects. They assume that probability of high return

is small (i.e. between 0.05 and 0.65). They generate all possible R&D project port-

folio options with their expected return and Gini statistic. They apply their proposed

method to a practical problem with 30 projects.

Eilat et al. (2006) decompose RDPPS problems into two main categories: static and

dynamic problems. They state that in the dynamic setting, active projects that are

already started are considered with proposed projects, and decision space includes

both of them, namely continuity or cancellation of the active projects, and launching

of the new projects. However, they state that in the static setting, only proposed

projects are considered. They propose an extended data envelopment analysis (DEA)

combined with a balance scorecard (BSC) approach for the static RDPPS problem

with project interactions. Motivated by a governmental department responsible for

selecting computer technology projects, they solve an example problem with two

inputs and three outputs of 15 projects.

Medaglia et al. (2007) develop a multi-objective (i.e. minimize time-to-market and

maximize economic return) mathematical model under resource constraints for the

R&D and information technology project selection problems. They formulate cash

flow and market share uncertainty of R&D projects with triangular, exponential, and

Erlang random variables. They apply Monte Carlo simulation to deal with stochastic-

ity. They also develop a multi-objective evolutionary algorithm (MOEA). They solve

an example problem with 4 projects in a four-year planning horizon.

Koç et al. (2009) propose a multi-dimensional knapsack model for the RDPPS prob-

lem under budget and profit (i.e. net present value) uncertainty. They first propose
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two heuristics that depend on parametric changing of budget for forming priority list

of projects. They also develop a stochastic programming approach with scenarios.

They solve an example problem of a company with 16 projects in a five-year plan-

ning horizon.

Solak et al. (2010) discuss the need for more realistic RDPPS models for R&D inten-

sive companies due to the full range of complexity. They define annual performance

levels (i.e. financial returns) and required investment levels of R&D projects as dis-

crete random variables and assume that associated probabilities are known. They

develop a scenario based multi-stage mathematical model for the RDPPS problem.

They simplify and solve the multi-stage model with a two-stage approach in every

period (realizations with future decisions). They apply the Lagrangian relaxation

method and a feasible dual conversion technique (to make the relaxed problem fea-

sible). Their model considers optimal allocation of budgets to a small set of projects

(i.e. 5 and 10 projects) in each time period by evaluating the realizations of annual fi-

nancial returns. Their model also includes dynamic cancellation decisions of projects

by periodically comparing their financial returns with budget expenditures.

Duzgun and Thiele (2010) develop a robust optimization model with multiple ranges

to a RDPPS problem, in which cash flows are uncertain. They apply their proposed

model to the example problem of Koç et al. (2009). Besides, they state that RDPPS

problems possess high level of uncertainty. They also mention that probabilistic ap-

proaches are commonly adopted although it is too difficult to quantify distributions of

unknown parameters and probabilities of project success. Hence, motivated by this

observation, we develop a model with unknown cancellation probabilities in the first

part of the Chapter 3.

Litvinchev et al. (2010) propose a fuzzy bi-objective optimization model for large-

scale (i.e. more than a thousand projects) public RDPPS problem under resource

constraints. They focus on the trade-off between objectives and generation of non-

dominated solutions. In their model first objective is the maximization of total ex-

pected value of selected projects and second objective is the maximization of number

of selected projects. However, cardinality type objective (i.e. maximization of num-

ber of selected projects) implies that poorly valued but low-budget projects may have
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a chance for getting selected and such a structure can be criticized by DMs. There-

fore, in this dissertation, we do not consider incorporation of similar cardinality type

objective into our proposed models.

Shakhsi-Niaei et al. (2011) propose a two-stage model for the RDPPS problem under

uncertain project values. First stage provides the ranking of projects according to

the uncertain project values, and second stage applies an integer programming model

under variety of constraints to select the projects. They solve an illustrative example

of a research center with 40 information technology projects.

Hassanzadeh et al. (2014) develop a robust optimization model to revise and resched-

ule a pharmaceutical R&D project portfolio. They obtain the net present value of each

project by considering multiple phases of the drug development. They assume an in-

terval uncertainty for the cost estimates of the projects. Their uncertainty modeling is

similar to cash flow modeling of Duzgun and Thiele (2010). They also assume that

duration, start, and possible tardiness of projects are known. They solve an example

problem with 25 pharmaceutical R&D projects.

There are also a few isolated studies which propose models to maximize the success

of R&D projects in the competitive industries. For example, Gerchak and Kilgour

(1999) consider the failure probability of an R&D project and develop models for

funding of parallel teams to increase the achievement probability of the single R&D

project. Gerchak and Parlar (1999) study the strategic allocation of limited resources

to the R&D activities when competitors’ budget allocation to these R&D activities is

unknown. They develop a model to find the optimal allocation between two activities

conditional on the competitor’s allocation to maximize the expected profit.

We notice that most of the studies in the literature focus on private sector RDPPS

problems. Research on public (i.e. government sponsored) RDPPS problems is scant.

RDPPS process in public funding organizations differs from RDPPS in private sec-

tor companies. We refer the interested reader to Bozeman and Rogers (2001) for a

discussion on the differences between public and private sector domains.

A significant difference noted by Bozeman and Rogers (2001) is that RDPPS in pri-

vate sector companies is a dynamic process, whereas RDPPS in public funding au-
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thorities has a static nature. They state that private sector companies can dynami-

cally allocate/reallocate the resources between active projects (i.e. new and existing

projects) and may accelerate or cancel some existing projects. They underline that

public funding organizations support R&D projects via grants and contracts; hence,

it is not possible to intervene them rapidly.

Another difference is related to the number of projects in an R&D project portfo-

lio. Existing studies of RDPPS problem in private sector companies deal with small

numbers of projects (i.e. between 2-40 projects), except Beaujon et al. (2001), whose

example problem consists of 390 projects. On the other hand, the number of propos-

als applying to nationwide government R&D funding programs such as TÜBİTAK

1001 scientific and technological research projects funding program is in the scale

of thousands. For example, a total of 3218 projects applied to two calls (i.e. the

average 1609 projects per call) of this program in 2012 (TÜBİTAK (2012), p. 47).

Litvinchev et al. (2010) state that large sets of project proposals exist in the national

R&D funding programs of Mexico, Russia and United States. As a result of that,

number of active funded (i.e. new funded and existing funded projects that are cur-

rently going on) projects in public funding organizations could reach to more than one

thousand projects. For instance, the number of active funded projects in TÜBİTAK

1001 program was 1506 in 2012 (TÜBİTAK (2012), p. 45). Hence, dynamic allo-

cation/reallocation and acceleration/cancellation decisions are impractical and static

one-stage models are more convenient for public funding organizations. Therefore,

in this dissertation, we develop mathematical programming models by considering

static decision making environment of the public RDPPS problem.

To the best of our knowledge, in the public RDPPS literature, the project cancella-

tions were not considered before. In Chapter 3, we deal with the uncertainty, that

some awarded public R&D projects will be canceled during implementation. We in-

corporate project cancellations into the project selection process so that the limited

amount of program budget can be effectively utilized. In Chapter 4, we develop a

new approach to model underspending behavior of both canceled and successfully

completed projects. We observed that proposed models in Chapter 3 and Chapter 4

significantly enhance utilization of the funding budget. To the best of our knowledge,

we are the first to introduce the notion of underutilization of funding budget into the
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public RDPPS literature.

In the next section, we present the relevant literature related to the problem studied in

Chapter 5.

2.2 Impact Assessment Based Sectoral Balancing Literature

Relevant work of the proposed model in Chapter 5 depends on three streams of re-

search. The first one is the impact assessment literature, the second one is the sectoral

balancing in RDPPS literature, and the last one is the literature on mathematical mod-

eling with social welfare objective functions.

2.2.1 Impact Assessment

Many quantitative and qualitative impact assessment methods have been developed

in the literature. Capron (1992) suggests mix of quantitative and qualitative methods

for comprehensive impact assessment and reliability of results. Impact assessment

studies also provide sectoral assessment details to assist policy makers. We refer the

interested reader to Hughes and Martin (2012) for an extensive discussion on sectoral

impact assessment findings of existing literature and their practical implications for

government departments. There are diverse studies in the literature; hence, we cite

relevant ones.

There are some intriguing studies which examine impact of general academic research

in terms of defined output criteria on sectoral basis without controlling R&D funding

programs. For instance, Jaffe (1989) finds a significant impact of academic research

on patenting behavior of companies. He also investigates impact of five categorized

technical areas (i.e. drugs and medical technology, chemical technology, electronics,

optics, and nuclear technology, mechanical arts and other sectors) on patenting and

show that patenting pattern of companies can change over different technical areas.

Mansfield (1998) studies impact of academic research on drug and medical product,

information processing, chemical, electrical, instruments, metals, and oil industries.

He finds that percentage of new products and processes varies across different indus-
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trial sectors. Cohen et al. (2002) examine impact of public research activities over

thirty four manufacturing sectors in terms of public research outputs such as research

findings, prototypes, and new instruments/techniques. They find that impact of public

research to industrial R&D varies across different sectors. Besides, they also investi-

gate impact of ten scientific disciplines (i.e. biology, chemistry, physics, mathematics,

computer science, material science, medical and health science, chemical engineer-

ing, electrical engineering, mechanical engineering) over thirty four manufacturing

sectors. They indicate that there are clear differences among scientific disciplines in

terms of their contribution to different manufacturing sectors. Moreover, they analyze

how major industrial R&D projects could benefit from information sources of public

research. They emphasize that publications, scientific reports, personal knowledge

exchange, meetings/conferences, consulting, recently hired graduates, joint and co-

operative ventures, patents, and licenses can contribute to industrial R&D activities.

However, they find that contribution level of each information source is different.

There are studies which consider impact assessment of specific R&D funding pro-

grams to assist DMs on the effective allocation of limited public resources. For exam-

ple, Lee et al. (2009) measure impact of six public R&D funding programs in South

Korea by using following criteria; amount of funding, number of Ph.D. researchers,

number of published papers, number of patents, and number of graduate students.

They apply a data envelopment analysis method and obtain an aggregate measure be-

tween zero and one for each program to compare six R&D funding programs. They

state that calculated aggregate scores can be used while allocating scarce resources to

R&D funding programs. However, they do not provide any analytical method for this

strategic allocation process. Besides, their model does not measure impact of R&D

funding programs on sectoral level. Wang et al. (2013) have recently evaluated im-

pacts of eighteen national funding programs of China by using expert judgments with

paying special attention to sectoral (i.e. scientific disciplines) differences. They select

756 leading experts from seven scientific disciplines (i.e mathematical and physical

sciences (MPS), chemical sciences (CS), life science (LS), earth sciences (ES), en-

gineering and material sciences (EMS), information sciences (IS), and management

sciences (MS)) and obtain valid responses from 460 leading experts. In their eval-

uation, each expert provides contribution on behalf of his/her scientific discipline.
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They apply a vague set methodology and find that each program impact is different

across seven scientific disciplines. They calculate an aggregate score between zero

and one for each program by combining its sectoral impact scores. Moreover, they

cluster eighteen programs according to their aggregate scores. Although they imply

that obtained impact assessment values could be incorporated into budget distribution

process, they do not give any technique for this significant budget allocation process.

A recent European Union FP7 project report point out that many impact assessment

studies have been conducted so far; however, methodological incorporation of impact

assessment results into policy formulation is still missing (EU- (2011), pp. 13-14).

Therefore, in this study, we deal with how sectoral impact assessment values, cal-

culated according to some qualitative or quantitative approach, could be analytically

incorporated in to a public R&D project portfolio selection model.

2.2.2 Sectoral Balancing in RDPPS

In the R&D project portfolio selection literature, sectoral balancing concerns are in-

corporated into mathematical programming models in two ways. First one is defining

sectoral balancing constraints so that resulting solutions provide desired balance of

the DM. For example, Beaujon et al. (2001) define balance target constraints in a pri-

vate sector RDPPS problem. They formulate those constraints by setting minimum

and maximum fraction of funding to different project categories. Mavrotas et al.

(2006) apply policy goal of balanced assignment concept by putting constraints to

minimum and maximum number of selected projects in different sectors. Litvinchev

et al. (2010) point out sectoral balancing of R&D projects in a public RDPPS problem.

They assume that minimum and maximum amount of funding to different project ar-

eas are known and ensure sectoral balancing by introducing mathematical constraints.

Second one is defining an objective (i.e. minimize some deviation type measure from

given balanced share of each sector) and presenting the non-dominated solutions to

the DM to assess trade-off between total score objective and sectoral balancing objec-

tive. For instance, Stewart (1991) defines balance as desired proportion of resources

allocated to different project categories in a private sector RDPPS problem. They

assume that negative deviation from balance is more significant than positive devia-
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tion and formulate a nonlinear objective to minimize deviations accordingly. Karsu

and Morton (2014) study balance concerns of R&D projects according to different

project categories in a public RDPPS problem. They assume that balanced share of

each project category in terms of budget is known. They introduce four imbalance

indicators similar to Stewart (1991) and optionally minimize one of those balance

indicators in the public RDPPS problem.

Existing approaches assume that balancing information (i.e. budget share of each sec-

tor, minimum and maximum amount of funding etc.) is perfectly known a priori by

the DM. However, in our problem setting, the DM wants to decide on sectoral budget

allocations according to sectoral impact assessment values. It is difficult to determine

balanced budget share of each sector a priori without considering any measure about

sectors. For instance, there has been a significant interest among government DMs

about how to distribute funds to sectors in an R&D funding program. The author of

the dissertation was asked to develop heuristic approaches for sectoral budget allo-

cations in the absence of sectoral impact assessment results during his professional

working life in TÜBİTAK. Besides, unlike existing bi-objective studies, sectoral bud-

get allocation objective overrides total score objective because budget allocation de-

cisions need to be made on a strategic level to enhance socio-economic impact of

limited funding budget. Therefore, we model public RDPPS problem as a two-stage

model. In the first stage, we deal with sectoral budget allocations. In the second

stage, we consider maximization of total score of selected projects under given sec-

toral budgets. On the other side, sectoral budget balancing should be integrated with

project selection decisions to give flexibility to the DM for evaluating how sectoral

budget balancing can affect various sectoral decisions. Due to sectoral characteris-

tics, sectors’ reaction to various allocations might be different. For example, sectoral

total score, average score and budget of selected projects in each sector, number of

selected projects in each sector, and success rate in each sector and their relationships

with each other could provide beneficial insights to the DMs.
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2.2.3 Mathematical Modeling with Social Welfare Objectives

In the welfare economics literature, parameterized social welfare functions deal with

fair distribution (i.e. balancing) of limited resources among the players. In this con-

text, the player refers to problem specific entities such as sectors, regions, nations,

clients, companies, commodities, etc. We refer the interested reader to Mas-Colell

et al. (1995), (pp.825-829) for the notion of social welfare functions in the welfare

economics.

Incorporation of social welfare objective functions into mathematical programming

models has been recently studied by several researchers. For instance, Bertsimas et al.

(2012) have used parameterized social welfare functions (i.e. α fairness scheme) in

an air traffic flow management problem to effectively distribute total delay reduction

among airline companies. They discuss that proposed mathematical programming

models for the air traffic flow management problem have not been implemented in

practice. They highlight that practical validity of such models is criticized by DMs,

because traditional objective function of those models does not fairly distribute opti-

mized total delay reduction among airline companies. Traditional objective function

means maximizing sum of each airline’s utility (i.e. delay reduction). They also un-

derline that traditional objective function finds optimum solution at the expense of

some airline companies. Consequently, some airline companies receive no utility (i.e.

zero delay reduction) under the optimum solution. They have introduced the price of

fairness (balancing) concept, which we will discuss later in Chapter 5.

Note that similar balancing concerns could arise in many problem domains. For in-

stance, in our problem setting, the DM wants to maximize the total impact of the

available funding budget. However, the optimum solution favors the sector with the

highest impact, which may lead to a situation where no funding is available for some

sectors or areas. That’s why we adopt parametrized social welfare functions in our

proposed model.

Under the parameterized social welfare function, referred as α fairness scheme, the

DM wants to maximize following social welfare function Fα, parameterized by α ∈
[0,∞).
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Fα(u) =


∑
j∈M u1−α

j

1−α for α ≥ 0, α 6= 1∑
j∈M log(uj) for α = 1

(2.1)

where uj is the utility (i.e. the objective function) of player j, M is set of players, and

α is an inequality aversion parameter. Traditional objective function corresponds to

α = 0, and it is referred as the utilitarian objective function. Besides, those functions

are nonlinear for α > 0. Bertsimas et al. (2012) focus on developing theoretical

bound on what they called price of fairness and do not provide any tractable solution

approach for the nonlinear model. By using the historical data, they record total delay

reductions for α = 0, 0.5, 1, 2,∞, and discuss balancing patterns of different α values

among players (i.e. airline companies). However, in our problem setting, we conduct

preliminary experiments on different instances under various impact values and it

turns out that 0 < α < 1 holds and increasing α only 0.1 amount makes a significant

difference on sectoral budget allocations. Thus, we give a tractable solution method

for any α value between 0 and 1, by employing the recent advances in second order

cone programming.

In Chapter 5, we introduce the impact assessment based sectoral balancing in RDPPS

problem. From a practical point of view, to the best of our knowledge, this is the

first study (i) that incorporates sectoral impact assessment results into a public R&D

project selection model, and (ii) that comprehensively addresses sectoral allocation

and analysis in a public R&D project portfolio. Besides, from a methodological point

of view, to the best of our knowledge, our contributions to literature include the fol-

lowing: (i) we consider sectoral budget balances as decision variables, (ii) we employ

parameterized social welfare functions for relative fairness concerns (i.e. balancing of

funding budget among sectors according to their impact values) in an RDPPS model,

and (iii) we develop a tractable solution approach for our parameterized nonlinear so-

cial welfare objective. In the next section, we discuss chance constrained stochastic

programming.

23



2.3 Chance Constrained Stochastic Programming

In Chapter 3 and Chapter 4, we propose chance constrained stochastic programming

(CCSP) models for our public RDPPS problem. DMs want to mitigate risk of ex-

ceeding available funding budget even in the evident underutilization environment

because total available funding budget depends on public resources. CCSP is a com-

monly used approach to deal with random variables in mathematical programming. It

is introduced by Charnes and Cooper (1959). CCSP provides risk mitigation by quan-

tifying a probability level for violation of the chance constraint. We refer to Luedtke

et al. (2010) for a recent review on CCSP.

From a methodological standpoint, when a chance constraint includes sum of many

non-identical random variables, it becomes usually computationally intractable. The

derivation of the quantile function (i.e. inverse cumulative distribution function) of

sum of many non-identical random variables is challenging for many distributions.

Nemirovski and Shapiro (2006) state that most of the single linear chance constraints

are computationally intractable since checking feasibility of a solution is NP -hard.

Normal approximation is one of the tractable methods in the literature. Therefore, we

apply normal approximation for our CCSP models. We refer to Shapiro et al. (2009),

(pp. 141-144) for discussion of normal approximation of chance constraints.

Gurgur and Morley (2008) propose a CCSP for the yearly selection of infrastructure

projects in a space company. They propose multi attribute utility theory for the valu-

ation of projects. They assume expenditure of a project follows a normal distribution.

They formulate chance constraints for the satisfaction of available resource limits.

They solve a practical example with 267 projects by using commercial Excel Pre-

mium Solver. They do not employ second order cone programming approach while

solving their model.

Our proposed CCSP models are in the form of static stochastic knapsack problem.

Therefore, we cite related chance-constrained stochastic knapsack problem (CCSKP)

literature. Several CCSKPs have been studied in the literature. Goel and Indyk (1999)

develop a polynomial-time approximation schemes (PTAS) for the CCSKP where

the item sizes are Poisson or exponentially distributed. They also propose a quasi-
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polynomial-time approximation schemes (QPTAS) for the same problem where the

item sizes are Bernoulli distributed. Kleinberg et al. (2000) study Bernoulli type

item sizes (i.e. an item takes the value s with some common probability q and the

value 0 with probability (1 − q)) and propose an approximation algorithm which is

the function of some defined threshold probability ρ. Models studied by Goel and

Indyk (1999) and Kleinberg et al. (2000) assume deterministic values in the objec-

tive function and propose approximation schemes to relax the chance constraint with

some factor 1+ε. Goyal and Ravi (2010) provide a PTAS for the CCSKP with deter-

ministic profits and normally distributed item sizes. They formulate a second order

cone programming (SOCP) model with relaxed binary variables and transform it into

a parametric Linear Program (LP) and apply their proposed PTAS to parametric LP.

In the next section, we discuss second order cone programming.

2.4 Second Order Cone Programming

In this dissertation, we benefit from the advances in second order cone programming

(SOCP) in our proposed approaches. In particular, in Chapter 3 and Chapter 4, we

transform the intractable chance constrained stochastic programming (CCSP) mod-

els to their equivalent tractable programs by employing the normal approximation

and second order cone programming. In Chapter 5, we also prove that our proposed

nonlinear social welfare function can be represented by second order conic inequali-

ties. It was shown that continuous relaxations of the second order cone programming

models are amenable to polynomial time interior-point algorithms (Nesterov and Ne-

mirovski (1993)). Therefore, those models could be solved exactly by commercial

solver packages such as CPLEX. As far as we know, SOCP methods have not been

applied in RDPPS literature before. We refer the interested reader to Alizadeh and

Goldfarb (2003) for comprehensive information on second order conic inequalities

and the special functional forms that can be represented by conic quadratic inequali-

ties.

In the next chapter, we study public RDPPS problem with project cancellations.
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CHAPTER 3

PUBLIC RDPPS PROBLEM WITH PROJECT

CANCELLATIONS

In this chapter, we consider a one-stage public RDPPS problem with project cancel-

lations in two parts. In the first part, in Section 3.1, we assume that cancellation prob-

abilities of projects cannot be assessed. In Section 3.1.1, we develop a mathematical

model, which uses an estimated number of projects that will be canceled. The model

maximizes the total score of selected projects within a given budget while taking into

account that a number of them will be canceled leaving some residual budget. We

transform our proposed model to a mixed-integer linear programming (MILP) model

by using the duality theory and the McCormick’s linearization approach. In addition,

in Section 3.1.2, we also develop an efficient DP algorithm for our proposed model.

In the second part, in Section 3.2, we assume that cancellation probability of each

project can be assessed. We formulate a mathematical programming model, which

maximizes the total expected score of selected projects under a chance-constrained

budget limit. We obtain a tractable nonlinear model in the form of mixed-integer

second order cone programming (MISOCP). In Section 3.3, computational exper-

iments on the proposed solution approaches for both problems are given. Firstly,

in Section 3.3.1, separate computational analyses of the two proposed models are

discussed. In particular, both the MILP and the DP approaches solve practical-size

problems to optimum in short CPU times. Besides, the second proposed model can

exactly solve 90% of the instances to optimality within a given time limit, and the

average optimality gap for the instances that were only solved to feasibility is below

0.02%.
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Secondly, in Section 3.3.2, we provide managerial insights to the DM on the proposed

models. We make a connection between the two proposed models by using proba-

bility information of the second model. The DM wonders about risk of exceeding

budget quantitatively even in the absence of cancellation probabilities. Hence, we

obtain the budget risk of the first model by using the probability information of the

second model for different factor settings. The risk of exceeding budget for the first

model is very small (i.e. between 4.5% and 0.1%). In addition, we quantify the bud-

get risk levels of different cancellation scenarios for the same instance by deviating

number of cancellations from its expected value. In that case, if the number of cancel-

lations is estimated 20% higher than its expected value, the generated solutions have

still small budget risks. We also show that the first model gives a good approximation

to the second model when we solve the second model with conservative budget risk

of the first model. Furthermore, we quantify the value of second model for different

factor settings and find that the second model generates better project portfolios than

first model with anticipated risk levels. Moreover, we also show that the value of in-

corporating the cancellations into the decision making process by comparing it with

the standard knapsack model setting. We show that the proposed models significantly

improve both the budget utilization and total expected score of selected projects. The

chapter is concluded with a summary in Section 3.4.

3.1 Model with Unknown Cancellation Probabilities

Every R&D funding program has a set of criteria that measure scientific merit and

potential impact of project proposals. R&D funding organizations use a call-based

system, in which once a call is announced, researchers apply to the public organi-

zation with their solicited R&D project proposals. After that, the research proposals

are examined for eligibility, and the selected proposals are evaluated scientifically

in research panels by peer reviewers. Besides, budgetary issues are also taken into

account in order to make each project’s budget plan more appropriate and realistic.

Subsequently, research panels are conducted, where awarded projects are determined

according to the panel scores and the total available budget. Awarded projects are

announced and project funding contracts are signed between the public organization
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and project PIs. In signed contracts, the public organization commits that funding

amounts will be given to projects according to the budget plans, as long as grantees

comply with the terms and conditions of the R&D funding program. Hence, public

organizations make irreversible funding decisions.

However, some of the awarded projects may be canceled during implementation. The

progress and the expenditure rate of the projects that will be canceled usually slow

down. Hence, if an R&D project is canceled, most of the budget of the project is

unused and some expenditure until the cancellation decision can be paid back by the

grantee. Under special circumstances, some of the expenditures can be exempted

from repayment. Details of those situations are treated in the regulations of the R&D

funding programs.

In this case, we assume that the DM has no information on the cancellation risk of

individual projects. Based on past experience the DM can estimate a range for the

number of projects that will be canceled in future. For possible scenarios on the

number of projects to be canceled, we can formulate a problem that maximizes the

total score of selected projects under a budget constraint, which assumes that canceled

projects will return the remaining budget to the funding body. We make the following

assumptions:

(1) The budget allocated to each project is determined by the funding authority just

after the panel meetings.

(2) Each project’s score is determined by the peer reviewers in panel meetings.

The score aggregates all peer reviewers’ individual scores regarding selection

criteria. It does not include budgetary issues.

(3) Funding decisions are made at the end of each call. Unfunded projects in each

call do not have any chance of funding from the same call budget. Hence, the

single-stage problem environment is valid.

(4) Total available budget is limited and known during the funding period, and

many projects compete for funding.

(5) A funded project has a work program and a multi-year financial schedule.

Thereby, the planned annual expenditure of the project is known. Projects are
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monitored by the progress reports. The reporting period is usually six months

or one year. Compliance with the terms and conditions of the grant is verified

at reporting time points. Cancellation decisions are made at those time points.

If a project is canceled at a time point, its eligible payback spending up to this

time point and its remaning budget after this time point are known. Therefore,

by considering those time points and budget schedules, for a project i, we can

estimate the fraction of spent budget (i.e. αi) if it is canceled.

(6) Allocated whole budgets are not directly transferred to the projects in the begin-

ning of the funding period. At a reporting time point, if the project satisfy the

term and conditions, only partial grant (i.e. partial year budget or full year bud-

get) is transferred to the project according to its financial schedule. Therefore,

possibility of a cash shortage of funding budget due to incorporating cancella-

tions is negligible.

In revenue and yield management literature, especially in the airline and lodging sec-

tors, overbooking is a common strategy to deal with cancellations. In those sectors,

the primary concern is increasing the revenue by finding the optimal overbooking

limit. By trading off between cost of underutilized capacity (spoilage) and cost of ex-

ceeding capacity (offload), optimal overbooking limits are obtained. Although we do

over-selection and this notion is similar to the overbooking concept, we cannot apply

the methods of overbooking literature due to the non-monetary cost and benefits of

public sector setting. For instance, score of the projects includes many non-monetary

benefits which can be difficult to assess in monetary units. It is hard to measure the

cost of the exceeding available budget or the cost of the underutilized budget in terms

of benefits of the projects to society. Therefore, we limit the risk of exceeding budget

in the budget constraint in a risk averse manner. More precisely, for a given number

of cancellations, we assume that the worst case scenario will happen, in which the

projects with the minimum residual budgets are canceled. In the next section, we

develop an MILP model for the problem.
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3.1.1 Mathematical Formulation

In the case of budget releases that stem from cancellations, we have the following

nonlinear model with β(x,Γ) denoting the cancellation function :

(PC) max
∑
i∈N

sixi (Total Score)

s.t.
∑
i∈N

bixi − β(x,Γ) ≤ B (3.1)

xi ∈ {0, 1} ∀i ∈ N (3.2)

where si and bi represent the score and budget of project i, respectively. B is total

available budget. N denotes set of all projects. xi is 1, if project i is selected and

0, otherwise. Objective function is to maximize the total score of selected projects.

Constraint (3.1) is the total budget limitation, where the cancellation function β(x,Γ)

represents the minimum residual budgets of canceled projects and has the following

form:

β(x,Γ) = min
S⊆N,|S|=Γ

∑
i∈S

(1− αi)bixi (3.3)

where x represents the |N |-tuple vector of xi decision variables. S runs over all

subsets of N with Γ elements, αi represents the estimated fraction of spent budget for

project i if it is canceled, and hence β(x,Γ) equals the residual budget of canceled

projects.

Proposition 3.1.1. Model PC is NP-hard.

Proof. When Γ = 0, the problem is a knapsack problem.

Proposition 3.1.2. Given a solution vector x∗, the cancellation function of the con-

straint (3.1), equals the optimum objective function value of the following linear op-

timization problem:

(MC) β(x∗,Γ) = min
∑
i∈N

(1− αi)bix∗i yi

31



s.t.
∑
i∈N

yi = Γ (3.4)

0 ≤ yi ≤ x∗i ∀i ∈ N (3.5)

where yi is the decision variable representing 1, if project i is canceled and 0, other-

wise.

Proof. Among the selected projects we assume that Γ of them will be canceled. Ob-

jective β(x∗,Γ) selects the ones that have minimum budgets. Constraint (3.4) ensures

that Γ of them will be canceled. Constraint set (3.5) guarantees that only selected

ones can be canceled. Note that coefficient matrix of constraint (3.4) is a unit row

matrix and coefficient matrix of constraint set (3.5) is an identity matrix. This means

that coefficient matrix of the model MC is totally unimodular because determinants

of all square submatrices are either -1, 0, or 1. In addition, we have integral right-hand

side values Γ and x∗i s, so the model MC admits an integer-valued optimal solution

y∗. Therefore, the objective value of the model MC equals cancellation function value

in (3.3).

As we later discuss in the second case, Γ can be modeled as a Poisson-Binomially

distributed random variable and computing the cumulative distribution function of

the Poisson binomial distribution is not possible without cancellation probabilities.

Hence, modeling probabilistic Γ with a stochastic programming approach such as

chance-constraint programming is challenging. Therefore, we do not consider prob-

abilistic Γ value in the first case due to unknown cancellation probabilities. To give

more insights on estimation, we present different gamma scenarios to the DM by

considering the past data and also compare these scenarios with no cancellation situ-

ations.

Constraint set (3.5) has a significant implication in this formulation. Embedding in-

ner optimization models into upper problems by using duality theory is used in robust

optimization (Bertsimas and Sim (2004)). However, resulting models are always lin-

ear due to the different problem environment. However, in case of cancellations, we

strictly enforce the cancellations from the selected ones due to the fact that only se-

lected projects can be canceled. Since we have an inner minimization problem, we
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have to formulate constraint set (3.5) and this brings additional computational com-

plexity when we take the dual. We will handle this issue in Proposition 3.1.3.

Proposition 3.1.3. Model PC has an equivalent MILP as follows:

(PCL) max
∑
i∈N

sixi (Total Score)

s.t.
∑
i∈N

bixi − Γz −
∑
i∈N

wi ≤ B (3.6)

z + pi ≤ (1− αi)bixi ∀i ∈ N (3.7)

− wi ≤Mixi ∀i ∈ N (3.8)

− wi ≤ −pi ∀i ∈ N (3.9)

wi ≤ −Mixi +Mi + pi ∀i ∈ N (3.10)

wi ≤ 0 ∀i ∈ N (3.11)

pi ≤ 0 ∀i ∈ N (3.12)

xi ∈ {0, 1} ∀i ∈ N (3.13)

z is urs (3.14)

Proof. If we take dual of the model MC, z and pi are the dual variables of con-

straint (3.4) and constraint set (3.5), respectively and we obtain the following maxi-

mization problem:

(D) max Γz +
∑
i∈N

pix
∗
i

s.t. z + pi ≤ (1− αi)bix∗i ∀i ∈ N (3.15)

pi ≤ 0 ∀i ∈ N (3.16)

z is urs (3.17)

By strong duality, since we know that the model MC is feasible and bounded, the

model D is also feasible and bounded and their objective values are the same at opti-

mality. Hence, we can integrate the model D and PC, and we can obtain the following

mixed integer nonlinear program (MINLP).

(PCNL) max
∑
i∈N

sixi (Total Score)
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s.t.
∑
i∈N

bixi −Γz −
∑
i∈N

pixi ≤ B (3.18)

z + pi ≤ (1− αi)bixi ∀i ∈ N (3.19)

pi ≤ 0 ∀i ∈ N (3.20)

z is urs (3.21)

xi ∈ {0, 1} ∀i ∈ N (3.22)

Constraint set (3.18) has a nonlinear term pixi, where pi is a non-positive continuous,

and xi is a binary variable. In fact this nonlinearity has a special structure known as a

bilinear variable in which there is a product of one continuous and one integer (binary)

variable (Gupte et al. (2013)). Define a bilinear variable wi = pixi and consider the

mixed-integer bilinear set for a specific index i:

Si = ((wi, pi, xi) ∈ R− × R− × N0 : wi = pixi, pi ≥ −Mi, xi ≤ 1) (3.23)

where Mi is a sufficiently large number. We can linearize the bilinear variable wi by

replacing pixi by its convex and concave envelopes, which was developed by Mc-

Cormick (1976) and it is also known as the McCormick envelopes method in the

literature. Performing this operation on Si gives us the following set

SLi = ((wi, pi, xi) ∈ R− × R− × N0 : wi ≤ 0, wi ≥ −Mixi, wi ≥ pi,

wi ≤ −Mixi +Mi + pi) (3.24)

it is straightforward to verify that Si = SLi ∀i ∈ N . For xi = 0 , wi equals to 0,

and for xi = 1, wi equals to pi. Then, we obtain the model PCL, which completes the

proof.

Mi has a critical role in the model PCL. In general, arbitrarily large big-M values

cause numerical challenges due to loose linear programming relaxations. We conduct

extensive preliminary runs with arbitrarily large big-M values, and observe that solu-

tion time tends to increase extremely as Γ increases. A recent discussion on big-M

notion and the importance of tighter formulations in MILPs can be found in Klotz
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and Newman (2013) for interested readers. Hence, if we cannot find a tight value for

Mi, the model will be inefficient due to computational issues. Therefore, we obtain

the smallest big Mi in Proposition 3.1.4. Note that Mi is identical ∀i ∈ N .

Proposition 3.1.4. The smallest possible value for Mi is

Mi = (1− αmin)bmax ∀i ∈ N

where αmin = mink∈N{αk} and bmax = maxk∈N{bk}.

Proof. By using duality and complementary slackness conditions of the models MC

and D,

(x∗i − y∗i )p∗i = 0 ∀i ∈ N (3.25)

((1− αi)bix∗i − z∗ − p∗i )y∗i = 0 ∀i ∈ N (3.26)

are obtained. Let set F b
a = {i ∈ N |x∗i = a, y∗i = b} a, b ∈ {0, 1}. ∀i ∈ F 0

0 , if we

plug x∗i = 0 into constraints (3.7) through (3.12), we obtain z∗ ≤ −p∗i and−p∗i ≤Mi.

Hence z∗ ≤ Mi ∀i ∈ F 0
0 . ∀i ∈ F 0

1 , p∗i = 0 from (3.25) and z∗ ≤ (1 − αi)bi from

(3.7). ∀i ∈ F 1
1 ,−p∗i = z∗− (1−αi)bi from (3.26). We can obtain a tight upper bound

on−p∗i as−p∗i = z∗−(1−αi)bi ≤ (1−αi)(bmax−bi) since z∗ ≤ (1−αi)bi ∀i ∈ F 0
1

and bi can go to bmax. However,Mi = (1−αi)(bmax−bi) can destroy the feasibility of

z∗ ≤Mi ∀i ∈ F 0
0 in the two cases. In the first case, consider an index imax such that

there exists a bmax = bimax and in this caseMi = 0, z∗ ≤ 0 and this leads to infeasible

z∗. Therefore, we drop bi and set Mi = (1 − αi)bmax. However, consider another

case, where all bi equal to each other, namely bi = bmax ∀i ∈ N . Then, there may

exist an index t ∈ F 0
0 such that z∗ ≤ (1 − αt)bt and αmax = maxk∈N = {αk} = αt

can destroy the feasibility of at least one of z∗ ≤ (1− αi)bi ∈ F 0
1 where αi < αt. To

remedy this, we set Mi = (1− αmin)bmax ∀i ∈ N .

The MILP formulation allows us to add new constraints to the model easily. For in-

stance, in the public RDPPS problem, there can be some sort of policy constraints

(i.e. regional balance among projects etc.) for some funding programs, and they can

be easily incorporated into the model. On the other side, we have a knapsack model

oriented approach for modeling the cancellations, and we know that the standard
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knapsack optimization model is NP-hard. However, there is a dynamic program-

ming (DP) algorithm that solves the knapsack problem in pseudo-polynomial time.

Motivated by this fact and from a methodological perspective, it can be interesting

to extend DP to incorporate project cancellations. Therefore, as an alternative to the

MILP formulation, in the next section we propose a DP algorithm.

3.1.2 DP Algorithm

In this section, we present an exact DP algorithm for the model PC. Our DP algorithm

originates from the classical knapsack DP algorithm. We assume that the projects

with minimum residual budget will be canceled. Therefore, projects are sorted in as-

cending order of their residual budgets (i.e.(1−αi)bi) to make our DP work properly.

We define spent budget of project i if it is canceled as bri = bbiαic for the sake

of computational tractability. For a given Γ parameter, let S be a subset of sorted

projects such that S ⊆ N , |S| ≥ Γ, and let iΓ be the Γth project’s index in S. Then,

subset S is a feasible solution if the following condition is satisfied.

∑
i∈S|i≤iΓ

bri +
∑

i∈S|i>iΓ
bi ≤ B (3.27)

Due to the special structure in (3.27), our DP depends on two arrays. Utilization of

multiple arrays in DPs has been recently proposed by Monaci et al. (2013) for robust

optimization. Let v1[d][c][i] denote the highest score that is obtained with a feasible

solution that has exactly budget d that is allocated to the projects selected from the

set {1, 2, . . . , i} ⊆ N and exactly c of them are canceled. Let v2[d][i] denote the

highest score that is obtained with a feasible solution that has exactly total budget d

in which projects of {1, 2, . . . , i} ⊆ N are taken into account and exactly Γ of them

are canceled. First array v1[d][c][i] considers the canceled projects with their used

budgets. We define an upper bound BΓ on the total budget of canceled projects in

order to increase the efficiency of our DP. It can be formulated mathematically as

follows:

BΓ = min

[
max

A⊆N |A|=Γ

∑
j∈A

brj , B

]
(3.28)
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Note that for the first array v1[d][c][i], d=0, 1, 2, . . . , BΓ, c=0, 1, 2, . . . ,Γ, and

i=0,1,2,. . . ,|N |. For the second array v2[d][i], d=0, 1, 2, . . . , B, and i=Γ,Γ+1, . . . , |N |.
After those notations, we can generate all elements of arrays v1[d][c][i] and v2[d][i]

by the following DP recursions:

v1[d][c][i] = max{v1[d][c][i− 1], v1[d− bri ][c− 1][i− 1] + si} (3.29)

for d = 0, 1, 2, . . . , BΓ, c = 1, 2, . . . ,Γ, i = 1, 2, . . . , |N |.

v2[d][i] = max{v2[d][i− 1], v2[d− bi][i− 1] + si} (3.30)

for d = 0, . . . , B, i = Γ + 1,Γ + 2, . . . , |N |.

The initializations are done as follows: v1[d][c][i]=-∞ for d = 0, 1, 2, . . . , BΓ, c =

0, 1, 2, . . . ,Γ, i=0,1,2,. . . ,|N|. v2[d][i] = −∞, d = 0, 1, . . . , B, i = 0, 1, 2, . . . , |N |.
We set v1[0][0][0]=0. The second array v2 is initialized with the value of first array v1

for c = Γ. We link the two arrays by setting v2[d][i]=v1[d][Γ][i] for all d and i ≥ Γ.

The first array v1 keeps track of selected but canceled projects, and the second array

v2 considers remaining non-canceled selected projects. The optimal solution of the

problem is found by the maximum valued array as follows:

v∗2 = max(v2[d][|N |]|d = 1, . . . , B)

with budget value d∗ ≤ B.

We give the steps of the DP algorithm in Algorithm 1.

First of all, projects are sorted in ascending order of their residual budgets. Steps 1

through 10 are the initialization steps. Steps 11 through 27 are the DP recursions. The

DP algorithm begins with possible cancellations by considering the projects that have

minimum residual budgets (steps 11 to 16). All possible cancellation combinations

are determined by the recursion in step 14 by considering inclusion or non-inclusion

of a specific project i. Total available budget is exhausted with canceled projects dur-

ing step 14 and with selected and not canceled projects during step 23. The recursion

in step 16 ensures that for a specific project i, for the solutions in which d < bri holds,

project i is not included in those solutions. The recursion in step 19 links arrays v2

and v1 if array v1 selects exactly Γ projects. The recursion in step 26 ensures that for
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Algorithm 1 DP Algorithm
Require: Given set N , parameters B, Γ and si, bi, αi, bri , BΓ for all i ∈ N .

Sort the projects in ascending order of their residual budgets

Initialization ;

1: for d=0 to BΓ do

2: for c=0 to Γ do

3: for i=1 to |N | do

4: if d = 0 and c = 0 and i = 0; then

5: v1[d][c][i]=0;

6: else

7: v1[d][c][i]=−∞;

8: for d=0 to B do

9: for i=0 to |N | do

10: v2[d][i]=−∞;

DP Recursions ;

Generating First Array ;

11: for i=1 to |N | do

12: for c=1 to Γ do

13: for d=bri to BΓ do

14: v1[d][c][i] = max{v1[d][c][i− 1], v1[d− bri ][c− 1][i− 1] + si};
15: for d=[bri − 1]+ to 0 do

16: v1[d][c][i]=v1[d][c][i− 1];

Linking The Two Arrays ;

17: for i=Γ to |N | do

18: for d=0 to BΓ do

19: v2[d][i]=v1[d][Γ][i];

Generating Second Array ;

20: for i=Γ + 1 to |N | do

21: for d=bi to B do

22: if v2[d][i] < max{v2[d][i− 1], v2[d− bi][i− 1] + si}; then

23: v2[d][i] = max{v2[d][i− 1], v2[d− bi][i− 1] + si};
24: for d=bi-1 to 0 do

25: if v2[d][i] < v2[d][i− 1]; then

26: v2[d][i]=v2[d][i− 1];

27: v∗2=max (v2[d]|N |] | d=1,..,B ) 38



a specific project i, for the solutions in which d < bi holds, project i is not included

in those solutions. The recursion in step 23 provides all solution combinations by

considering inclusion and non-inclusion of specific project i.

Computational complexity of the DP can be determined as follows: Steps 11 through

16 requires |N |Γ(BΓ + 1) operations, steps through 17 to 19 requires (BΓ + 1)(|N |−
Γ + 1) operations, and steps 20 through 27 requires (|N | − Γ)(B + 1) operations.

Therefore, our DP solution time is the function of |N |Γ(BΓ + 1) + (BΓ + 1)(|N | −
Γ + 1) + (|N | − Γ)(B + 1) operations and upper bound on the solution time in the

worst case has a computational complexity of O(|N |ΓB)). In the proof of following

proposition, we graphically describe our DP recursions.

We first introduce the concept of graph G together with an illustrative example before

the providing the proposition on the optimality of the DP approach. We construct a

directed acyclic graph G = (V,A) with vertices V and arcs A. We present how a

feasible solution is generated on G and show that the DP recursion finds the longest

feasible path on G. Each vertex in the graph is indicated by the notation [d][c][i] as

introduced in the DP algorithm. Vertices can be partitioned into Γ subsets of vertices,

referred to as blocks, by using c = 0, 1, ...Γ.

Arcs can be classified into three types. The first type, referred to as "zero-arc", con-

nects vertex [d][c][i− 1] with vertex [d][c][i] within the same block. Usage of a "zero-

arc" means not selecting project i. The second type, referred to as "cancellation-arc",

connects vertex [d − bri ][c − 1][i − 1] in the block (c − 1) with vertex [d][c][i] in the

block c with score si if bri ≤ d. Usage of a "cancellation-arc" means selecting project

i and assuming it will be canceled. Third type, referred to as "selective-arc", con-

nects vertex [d− bi][Γ][i− 1] with vertex [d][Γ][i] within the block Γ with score si if

bi ≤ d. Usage of a "selective-arc" means selecting project i and assuming it will not

be canceled.

An illustrative example is given in Table 3.1 with B = 13 and Γ = 2. Generation

of just three feasible solutions (i.e. feasible paths) of the example are presented in

Figure 3.1 for the sake of demonstration. The source and dummy sink vertices are

indicated by [0][0][0] and z.
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Table 3.1: Illustrative example for a graphical representation

Projects 1 2 3 4

si 25 24 23 22
bi 5 6 8 10
αi 1/5 1/3 3/8 2/5

(1− αi)bi 4 4 5 6
bri = bbiαic 1 2 3 4

13 z

12

11

10

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

c =Γ=2c =1c =0

d 

i i i 

a 

a 

a 

a a 

b 

b 

b 

c 

c 

c 

c c 

v1[0][0][0]=0 v1[1][1][1]=25 
v1[3][2][2]=49 
v2[3][2]=49 
 

v2[11][3]=72 v2[11][4]=72 

v2[3][3]=49 
 

v2[13][4]=71 v1[0][0][1]=0 v1[0][0][2]=0 v1[3][1][3]=23 

v1[7][2][4]=45 
v2[7][4]=45 
 

Figure 3.1: Graphical Representation of the DP Algorithm

Consider the path "a" (i.e. all solid arcs with label a) from the source vertex to the sink

vertex. It reaches the sink vertex after using the two "cancellation-arcs" (due to Γ =

2), one "selective-arc", and one "zero-arc". First cancellation-arc connects vertices

[0][0][0] and [1][1][1] with score 25. Second cancellation-arc connects vertices [1][1][1]

and [3][2][2] with score 24 (i.e. total score becomes 49). Selective-arc connects ver-

tices [3][2][2] and [11][2][3] with score 23 (i.e. total score becomes 72). Note that the

DP-based array valuation notation is used in the graph for the algorithmic tractabil-

ity. For instance, vertex [3][2][2] is exploited by the DP arrays v1[3][2][2] and v2[3][2]

because the two arrays are linked in vertex [3][2][2] (i.e. v2[3][2] = v1[3][2][2] = 49).
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Zero-arc connects vertices [11][2][3] and [11][2][4]. Last arc is the dummy arc for the

connection to sink vertex z. Hence, path "a" selects first three projects (i.e. projects

1, 2 and 3) and assumes the first two ones (i.e. projects 1 and 2) will be canceled.

Note that for this path (i.e. selection of projects 1, 2 and 3), all other cancellation

scenarios under Γ = 2 condition won’t change feasibility of the solution due to the

special structure given in (3.27). In fact this is valid for all feasible paths. Now,

consider the "a-b" path that has the two arcs from path "a" and three arcs with label

"b". The first two arcs with label "a" correspond to the same meaning as in the path

"a". First arc with label "b" is a zero-arc connecting vertices [3][2][2] and [3][2][3] (i.e.

v2[3][3] = v2[3][2] = 49). Second arc with label "b" is a selective-arc connecting ver-

tices [3][2][3] and [13][2][4] (i.e. v2[13][4] = v2[3][3] + 22 = 71). Last arc with label

"b" is the dummy arc for the connection to sink vertex z. Similarly, consider path

"c" (i.e. all arcs with label "c") from source vertex to sink vertex. First two arcs are

zero-arcs connecting vertices [0][0][0], [0][0][1], and [0][0][2], respectively. Third and

fourth arcs are cancellation-arcs connecting vertices [0][0][2], [3][1][3], and [7][2][4].

Last arc is the dummy one.

Proposition 3.1.5. The DP recursions defined in (3.29) and (3.30) find an optimal

solution for the model PC.

Proof. The graphical illustration can be expressed mathematically as follows: for a

given Γ, select any feasible subset S ⊆ N , |S| ≥ Γ, and iΓ is the Γ-th project’s

index in S. A corresponding path is generated on the graph as follows: for each index

i ≤ iΓ, we use a zero-arc if i /∈ S and a cancellation-arc if i ∈ S, until reaching

vertex [
∑

i≤iΓ b
r
i ][Γ][iΓ] in the last block (i.e. block Γ). Then for each index i > iΓ if

|S| > Γ, we use a zero-arc if i /∈ S and a selective-arc if i ∈ S, until reaching vertex

[
∑

i≤iΓ b
r
i +

∑
i>iΓ bi][Γ][n]. Then, we link this vertex to sink vertex z.

Our DP recursion generates all the solutions in this manner and selects the one that

has the longest path (highest score) in the graph.

So far, we have considered the case that the DM has no information on cancellation

probabilities of the projects but can make an estimate of number of projects that will

be canceled. We have provided two solution approaches. The first one is the mathe-
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matical programming approach (The Model PCL) and the second one is the DP ap-

proach (Algorithm 1). In Section 3.3, we will present the computational performance

of both solution approaches.

In the next section, we consider the case in which a cancellation probability could be

assessed in advance for each project.

3.2 Model with Cancellation Probabilities

In this section, we develop a stochastic programming model by assuming that cancel-

lation probability of each project (πi) is known or can be assessed. In the peer review

process of the projects, there is usually a criterion assessed, called the feasibility of

the project. Each project is assigned a feasibility score. Therefore, there can be a

close relationship between cancellation probability and feasibility, and this kind of

information can be obtained by using the past data.

3.2.1 Stochastic Formulation

In this model, we want to maximize the expected total score of selected projects while

total random budget spending is not exceeding total available budget for some given

confidence level. Below, we give the mathematical formulation of the problem:

(SP-P) max
∑
i∈N

E(ŝi)xi (Expected Total Score)

s.t. P

(∑
i∈N

b̂ixi ≤ B

)
≥ θ (3.31)

xi ∈ {0, 1} ∀i ∈ N (3.32)

where E(.) is the expectation operator, ŝi and b̂i indicate the random variables corre-

sponding to score and budget of project i, respectively. xi is 1, if project i is selected

and 0, otherwise. N is the set of all projects. B denotes the total available budget.

The objective function is to maximize the expected total score of selected projects.

42



In stochastic programming, constraint (3.31) is referred to as the chance-constraint,

which states that the constraint is satisfied with a probability of at least θ.

The number of canceled projects can be modeled as a Poisson-Binomially distributed

random variable (Hong (2013)). Each project is viewed as an independent Bernoulli

trial with a certain cancellation probability. Let Ii be a Bernoulli random variable

with cancellation probability πi (i.e. Ii = 1, with probability πi and Ii = 0, w.p.

(1 − πi)). We can obtain expected number of canceled projects and its variance as

follows:

Γ =
∑
i∈N

Ii ⇒ E(Γ) =
∑
i∈N

E(Ii) =
∑
i∈N

πi , Var(Γ) =
∑
i∈N

Var(Ii) =
∑
i∈N

πi(1− πi)

(3.33)

However, for the stochastic formulation, rather than the number of cancellations we

need the distribution of budget (b̂i) and score (ŝi) of each project. We assume that if a

project is canceled then its score becomes zero and its budget becomes αibi where αi

denotes the estimated fraction of the budget spent and not paid back by the canceled

project i. We can express the distribution of random variables (b̂i) and (ŝi) as follows:

b̂i =

bi if Ii = 0 w.p. (1− πi)

αibi if Ii = 1 w.p. πi

ŝi =

si if Ii = 0 w.p. (1− πi)

0 if Ii = 1 w.p. πi

Above random variables are called as Bernoulli type since they have two realizations

and the realizations not necessarily have to be zero and one as in the case of classical

Bernoulli random variable. Note that we need to derive quantile function (i.e. inverse

cumulative distribution function) of sum of many non-identical b̂i random variables

to exactly solve the resulting CCSP. However, such a derivation is computationally

intractable. Hence, we apply normal approximation with mean and variance of b̂i

random variables. For the expectation and variance of the above distributions, we

apply some algebra:
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E(b̂i) = bi(1− πi) + αibiπi = bi[1− πi(1− αi)] (3.34)

Var(b̂i) = E(b̂2
i )− [E(b̂i)]

2 = b2
i (1− πi) + α2

i b
2
iπi − (bi[1− πi(1− αi)])2

= b2
i − b2

iπi + α2
i b

2
iπi − b2

i (1− πi)2 − 2αib
2
iπi(1− πi)− α2

i b
2
iπ

2
i

= b2
i [1− πi − (1− πi)2)] + αib

2
iπi[αi − 2(1− πi)− αiπi]

= b2
i [1− πi − (1− 2πi + π2

i )] + αib
2
iπi[αi − 2(1− πi)− αiπi]

= b2
iπi(1− πi) + αib

2
iπi[αi − 2(1− πi)− αiπi] (3.35)

E(ŝi) = si(1− πi) (3.36)

Var(ŝi) = E(ŝ2
i )− [E(ŝi)]

2 = s2
i (1− πi)− s2

i (1− πi)2

= s2
i [1− πi − (1− 2πi + π2

i )]

= s2
iπi(1− πi) (3.37)

Note that for πi = 0 ∀i ∈ N , our problem reduces to a knapsack problem. This

implies that the special case is NP -hard. Besides, Nemirovski and Shapiro (2006)

state that most of the single linear chance constraints are computationally intractable

for θ > 0.5 since checking feasibility of a solution is NP -hard. They discuss that

a single linear chance constraint is computationally tractable for some special distri-

butions such as multivariate normal distribution. If we adopt normal approximation,

and set θ = 0.5, then we have a standard knapsack constraint with mean b̂i values.

If we assume θ > 0.5, we have also additional quadratic terms due to variance of b̂i.

Therefore, we can conclude that our problem is NP-hard.

3.2.2 Deterministic Equivalent Formulation

In order to derive the deterministic equivalent formulation of the stochastic program

we first prove a normal approximation of the total random budget spending in Propo-

sition 3.2.1.

Proposition 3.2.1. Let b̂1, b̂2, . . . b̂i with ∈ K ⊆ N be independent non-identically

distributed (i.ni.d.) Bernoulli type random variables with finite expectation E(b̂i) and
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positive variance Var(b̂i). Then normalized summand

S|K| =

∑
i∈K

[
b̂i − E(b̂i)

]
√∑

i∈K Var(b̂i)
(3.38)

converges to the standard normal distribution (N(0, 1)) as |K| goes to infinity.

Proof. A sequence of i.ni.d. random variables obeys the Central Limit Theorem

(CLT) if the Lyapunov or Lindeberg condition is satisfied (Baurer (1996) and Shapiro

et al. (2009)). The Lyapunov condition (which is stronger than the Lindeberg condi-

tion) can be stated as follows: If for some δ > 0, the following condition

lim
|K|→∞

∑
i∈K E

[∣∣∣b̂i − E(b̂i)
∣∣∣2+δ

]
∑

i∈K Var(b̂i)
[√∑

i∈K Var(b̂i)
]δ = 0 (3.39)

holds, then normalized summand S|K| in (3.38) converges to the standard normal

distribution (N(0, 1)). Firstly, we show that (2 + δ)th moment exists for δ > 0. We

write E(b̂2+δ
i ) = b2+δ

i (1 − πi) + α2+δ
i b2+δ

i πi = b2+δ
i [1 − πi(1 − α2+δ

i )] for every

i ∈ K by using definition of moment. Then,
∑

i∈K E
[∣∣∣b̂i − E(b̂i)

∣∣∣2+δ
]

exists. Let

bmax = maxi∈K{bi}, where bi is the realization of the random variable b̂i if it is not

canceled. Hence,
∣∣∣b̂i − E(b̂i)

∣∣∣ ≤ bmax is true for every i ∈ K, which shows that

b̂1, b̂2, . . . , b̂|K| are uniformly bounded. Then for each δ > 0, we can determine an

upper bound (UB) for the term in (3.39) as follows:∑
i∈K E

[∣∣∣b̂i − E(b̂i)
∣∣∣2+δ

]
∑

i∈K Var(b̂i)
[√∑

i∈K Var(b̂i)
]δ ≤ bδmax

∑
i∈K E

[∣∣∣b̂i − E(b̂i)
∣∣∣2]

∑
i∈K Var(b̂i)

[√∑
i∈K Var(b̂i)

]δ (3.40)

We also know that E
[∣∣∣b̂i − E(b̂i)

∣∣∣2] = E
[
b̂2
i − 2b̂iE(bi) + (E(bi))

2
]

= E(b̂2
i ) −

[E(b̂i)]
2, which is the definition of Var(b̂i) in fact. Then, we can simplify the UB

in (3.40) as follows:∑
i∈K E

[∣∣∣b̂i − E(b̂i)
∣∣∣2+δ

]
∑

i∈K Var(b̂i)
[√∑

i∈K Var(b̂i)
]δ ≤

 bmax√∑
i∈K Var(b̂i)

δ

(3.41)
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Then, for every δ > 0 right-hand side of (3.41) converges to zero as |K| goes to

infinity. Since UB converges to zero, the term in (3.39) converges to zero. From

CLT theory (Baurer (1996)), we know that if Lyapunov condition is satisfied, then

Lindeberg condition is also satisfied.

Constraint set (3.31) can be expressed as follows:

P

(∑
i∈N

b̂ixi ≤ B

)
⇒ P

∑i∈N [b̂i − E(b̂i)]xi√∑
i∈N Var(b̂i)x2

i

≤
B −

∑
i∈N E(b̂i)xi√∑

i∈N Var(b̂i)x2
i

 (3.42)

By Proposition 3.2.1, Sn converges to the standard normal distribution (N(0, 1)).

Then, the inequality in (3.42) by replacing left-hand side term with the standard nor-

mal random variable Z can be written as:

P

Z ≤ B −
∑

i∈N E(b̂i)xi√∑
i∈N Var(b̂i)x2

i

 ≥ θ ⇒ Φ

B −∑i∈N E(b̂i)xi√∑
i∈N Var(b̂i)x2

i

 ≥ θ

⇒
B −

∑
i∈N E(b̂i)xi√∑

i∈N Var(b̂i)x2
i

≥ Φ−1(θ) (3.43)

where Φ is the cumulative distribution function (c.d.f) for the standard normal variable

Z. We arrange (3.43) as:∑
i∈N

E(b̂i)xi + Φ−1(θ)

√∑
i∈N

Var(b̂i)x2
i ≤ B (3.44)

Constraint (3.44) is the deterministic equivalent form of (3.31). Note that we as-

sume that θ ≥ 0.5, then Φ−1(θ) > 0, which makes the constraint (3.44) a second-

order conic inequality. Finally, we can formulate deterministic equivalent of the SP-P

model as a MISOCP:

max
∑
i∈N

si(1− πi) (Expected Total Score)

s.t y =
B

Φ−1(θ)
−
∑

i∈N bi[1− πi(1− αi)]xi
Φ−1(θ)

(3.45)∑
i∈N

[
b2
iπi(1− πi) + αib

2
iπi[αi − 2(1− πi)− αiπi]

]
x2
i ≤ y2 (3.46)
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y ≥ 0 (3.47)

xi ∈ {0, 1} ∀i ∈ N (3.48)

The objective function is to maximize the expected total score of selected projects as

obtained in equation (3.36). Constraint sets (3.45) and (3.46) are the conic reformu-

lation of constraint (3.44) by using equations (3.34) and (3.35). y in equality (3.45) is

an auxiliary decision variable corresponding to the linear part of the constraint (3.44).

Constraint (3.46) is the cone generated according to the constraint (3.44). In the next

section, we give our computational results.

3.3 Computational Results

In this section, we present the results of computational experiments for the proposed

approaches. For the first case with no cancellation probabilities, we solve the model

PCL using IBM ILOG CPLEX 12.6 via Concert Technology. We implemented the

DP algorithm using C++ language. For the second case, we solve the MISOCP model

using IBM ILOG CPLEX 12.6 via Concert Technology. We conduct all experiments

on a computer with processor Intel Core i5 1.7 GHz, 8.00 GB memory (RAM), 64-bit

operating system, and Windows 7 Professional. In CPLEX, we set the time limit to

10.800 CPU seconds.

3.3.1 Separate Analyses of the Two Models

In our computational experiments, we define a budget fraction (bf ) parameter to de-

termine the total available budget (B). bf indicates the ratio of total budget of all ap-

plying projects to the budget available for funding. We setB by using parameter bf as

B = (
∑

i∈N bi)×bf . We also test our solution methods for different levels of number

of applying projects, indicated by “size”. Another experimental factor is αi, indicat-

ing the ratio of the unused budget of canceled project i. We set αi = α, ∀ i ∈ N for

the sake of simplicity.

Table 3.2 summarizes computational results for the PCL model and the DP algorithm.

For this case, Γ, the number of projects to cancel, is an experimental factor. For each
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experimental setting we solve 10 random instances. We choose the levels of size pa-

rameters in accordance with the number of funding applications to a typical program

call by TÜBİTAK 1001 program. Score of each project is uniformly distributed in

[10-25] as integers, and budget of each project is uniformly distributed in [5-30] (in

10,000 monetary units) as integers. Table 3.2 reports the average number of selected

projects (ns), the average Γ/ns ratio, the average CPU times for the PCL and the DP.

From Table 3.2 we observe that as Γ increases the average CPU time spent by CPLEX

increases significantly. α also affects CPU time of CPLEX. As α increases, CPU time

of CPLEX decreases. Problem parameters do not have a significant effect on CPU

time of the DP for α = 0 as CPU times are too small (i.e. the average CPU time is

0.31 seconds). They have a significant effect on CPU time of the DP for α = 0.3. As

α increases, CPU time of the DP increases. This is due to the fact that if α > 0, then

rounded positive budgets are considered in the DP for the canceled projects and this

increases the computations of recursions. In summary, as α increases, CPU time of

CPLEX decreases, whereas CPU time of the DP increases. For instance, for problem

size 3000, bf = 20% and Γ=40 and 70, CPLEX solves the instances faster than the

DP. However, we observe that the average CPU time of the DP is 1.27 seconds and

the average CPU time of CPLEX is 19.64 in overall.

These results indicate that practical-size instances can be solved by both the model

PCL and the DP algorithm. Within reasonable CPU times these methods can solve

several instances for different number of canceled projects levels.

Furthermore, we observe that increase in the average number of selected projects in

the case of cancellation is far less than Γ. This may be due to the fact that small budget

increases because of the estimated number of canceled projects makes an opportunity

of selecting relatively higher scored and higher budget projects than that of situation

with no cancellation. As we expected, when we increase Γ, ratio of Γ/ns increases

because number of selected projects does not increase considerably. For instance, for

α = 0, problem size=1000, and bf(%) = 20, when we set Γ = 20, the average ns =

360.6, Γ/ns = 5.5 and when we set Γ = 40, the average ns = 367.7, Γ/ns = 10.9

We next give the results for the second case, with cancellations probabilities available.

Table 3.3 presents computational results for the MISOCP.
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Table 3.2: Computational results for the PCL and the DP

Factors
ns

Γ/ns cpu (sec.)
αi size bf Γ

(%) ratio (%) PCL DP

0

1000

10
0 216.8 0 0.11 0.04
20 226.0 8.8 5.16 0.03
40 235.5 17.0 86.79 0.03

20
0 353.6 0 0.26 0.11
20 360.6 5.5 3.41 0.08
40 367.7 10.9 11.76 0.05

2000

10

0 435.1 0 0.30 0.17
20 444.4 4.5 2.73 0.15
40 453.6 8.8 17.73 0.12
70 467.5 15.0 303.44 0.12

20

0 710.6 0 0.18 0.37
20 717.0 2.8 0.91 0.37
40 724.4 5.5 10.20 0.27
70 735.0 9.5 29.56 0.24

3000

10

0 651.5 0 0.29 0.32
20 661.0 3.0 1.08 0.37
40 670.2 6.0 22.40 0.30
70 684.5 10.2 48.95 0.33

20

0 1063.2 0 0.28 0.74
20 1070.4 1.9 1.75 0.97
40 1077.8 3.7 2.37 1.05
70 1088.3 6.4 30.32 0.52

average 26.36 0.31

0.3

1000
10

20 224.3 8.9 2.62 0.14
40 231.6 17.3 12.80 0.41

20
20 358.9 5.6 1.43 0.25
40 365.1 11.0 9.36 0.41

2000

10
20 442.6 4.5 1.29 0.48
40 450.2 8.9 14.06 1.00
70 461.0 15.2 52.21 4.88

20
20 716.0 2.8 1.44 0.77
40 721.3 5.5 1.59 1.80
70 729.7 9.6 19.76 5.14

3000

10
20 659.3 3.0 2.23 0.99
40 666.7 6.0 6.48 2.63
70 678.2 10.3 30.59 8.47

20
20 1068.9 1.9 2.15 1.60
40 1075.2 3.7 2.30 3.43
70 1082.7 6.5 6.05 9.26

average 10.40 2.60

total average 19.64 1.27
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Table 3.3: Computational results for the MISOCP

Factors CPU (sec.) E(Γ)/ns
αi size bf (%) c-prob opt gap (%) mean std. dev. ns E(Γ) ratio (%)

0

1000
10

U (0.01-0.1) 9 0.01 368.8 390.1 221.4 12.1 5.5

U (0.01-0.2) 3 0.02 1743.6 660.3 228.5 23.7 10.4

20
U (0.01-0.1) 9 0.01 835.3 2293.2 361.6 19.7 5.5
U (0.01-0.2) 7 0.02 2154.1 2405.6 373.2 38.8 10.4

2000
10

U (0.01-0.1) 7 0.01 349.3 493.6 446.6 24.3 5.5
U (0.01-0.2) 6 0.02 1789.0 1543.1 462.5 48.2 10.4

20
U (0.01-0.1) 10 - 8.7 12.6 729.7 40.1 5.5
U (0.01-0.2) 10 - 78.4 168.8 754.6 79.0 10.5

3000
10

U (0.01-0.1) 10 - 63.5 134.6 670.9 36.7 5.5
U (0.01-0.2) 9 0.01 240.3 185.9 695.5 72.6 10.4

20
U (0.01-0.1) 10 - 12.0 11.1 1095.0 59.9 5.5
U (0.01-0.2) 10 - 16.0 6.3 1132.7 117.9 10.4

average 83% 0.02 638.2 692.1

0.3

1000
10

U (0.01-0.1) 10 - 109.7 169.6 219.8 11.9 5.4
U (0.01-0.2) 9 0.01 989.7 2534.8 224.4 22.9 10.2

20
U (0.01-0.1) 10 - 4.4 4.3 358.7 19.4 5.4
U (0.01-0.2) 10 - 41.8 75.2 366.3 37.5 10.2

2000
10

U (0.01-0.1) 10 - 8.7 15.2 442.8 23.9 5.4
U (0.01-0.2) 8 0.01 137.6 215.9 452.8 46.2 10.2

20
U (0.01-0.1) 10 - 1.8 1.5 723.1 39.5 5.5
U (0.01-0.2) 10 - 2.4 2.5 738.8 76.0 10.3

3000
10

U (0.01-0.1) 10 - 3.9 5.2 663.9 36.1 5.4
U (0.01-0.2) 10 - 12.2 13.8 679.6 69.5 10.2

20
U (0.01-0.1) 10 - 2.4 3.5 1084.8 58.9 5.4
U (0.01-0.2) 10 - 10.6 9.3 1109.1 113.6 10.2

average 98% 0.01 110.4 254.2

total average 90% 0.01 374.3 473.2
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For each size and bf factors, we randomly generate and solve 10 instances for each

experimental setting. In difference to the previous case, for each project we generate

a cancellation probability (c-prob) value. In fact, we solve the same instances of the

model PCL by adding probability information. We set αi = α, ∀i ∈ N and θ = 0.95

for the sake of simplicity. The score and budget value of each project is generated

using the same settings as in the first model. Table 3.3 reports the number of instances

solved to optimum (opt), the average optimality gap (gap) of unsolved instances,

the average (mean) and the standard deviation (std. dev.) of CPU time (CPU) for

the instances solved to optimum, the average ns, the average expected number of

cancellations (E (Γ)), and the average E(Γ)/ns ratio. We restrict our analysis to the

set of instances solved within the imposed time limit. For that reason, we exclude

all instances with a CPU time of 10.800 seconds. Note that the means and standard

deviations of the CPU time given in Table 3.3 are conditional values calculated under

the condition that the time limit is not attained.

We observe that as α increases, CPU time decreases considerably. For α = 0, the

average CPU time is 638.2 seconds with the standard deviation of 692.1, whereas it

is 110.4 seconds with the standard deviation of 254.2 for α = 0.3. In addition, for

α = 0, 83% of the instances can be solved to optimum and the average optimality

gap of unsolved instances is 0.02%; for α = 0.3, 98% of the instances can be solved

to optimum and the average optimality gap of unsolved instances is 0.01%. This may

be due to the fact that as α increases, less projects are selected due to the increase

in the mean of budget random variable and the decrease in the variance of budget

random variable. Besides, we assert that cancellation probability has a prominent

effect on the hardness of the instances. Apparently, instances with cancellation prob-

abilities uniformly distributed between 0.01-0.2 require much more CPU time for all

instances. We also observe that some of the instances cannot be solved to optimum in

3 hours. As we may expect, expected number of cancellations increases as the cancel-

lation probabilities increase. We observe that as bf increases, the number of selected

projects increases linearly. Apparently, hardness of instances heavily depends upon

problem data, hence CPU time from one replication to another can change dramat-

ically. In most of the instances, the problem size has no effect at all. The average

E(Γ)/ns ratio is between 5.4% and 10.4%, which is close to the real life cancellation
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rates. Finally, we conclude that 90% of the instances can be solved to optimum and

the average optimality gap of remaining instances is 0.01%.

3.3.2 Managerial Insights

We conduct further analyses on the proposed approaches to provide practical implica-

tions to the DM. Firstly, the DM may want to find out the probability of not exceeding

the budget (or the risk of exceeding budget) for the first model. Recall that in the first

model, the number of cancellations is an input. For the problem size of 3000, we

relate the two models by using the expected number of cancellations of the second

model as an input to the first model as follows. We set Γ tobE(Γ)c of the second

model MISOCP. Then, we solve 10 instances of the model PCL by using E(Γ) val-

ues of second model for each factor setting. We give the results in Table 3.3. After

that, we calculate the expected total score (E(score)) and probability level (θPCL)

of each solution of the model PCL by using probability information of the second

model MISOCP. For a given problem size of 3000, we have factors α, bf , and c-prob;

thereby, we have 23x(10 instances)=80 calculations. We report the average values of

E(score) and θPCL (in % units to show numerical precision) of solutions of the model

PCL in Table 3.4 under the PCL section. In Table 3.4, each row gives the average

of ten instances. When we examine the average probability level of the solutions of

the model PCL for various factor combinations, probability level (θPCL) is between

95.5% and 99.9%. Note that we solve the model PCL without any probability infor-

mation, but probability level of the model PCL is very high since we minimize the

risk of exceeding the budget in the model PCL in a novel way.

Secondly, the DM may want to see the value of the second model over the first model

(i.e. value of assessing cancellation probabilities). Therefore, we solve the MISOCP

with the two different confidence levels; namely θPCL and θ = 0.95 to compare the

two models. We report the average expected total score (E(score)) and the expected

number of cancellations (E(Γ)) of the model MISOCP in Table 3.4 under the MISOCP

section for probability levels θPCL and θ = 0.95. Then, we calculate the value of

second model (VSM) in Table 3.4 under the section VSM by comparing the sections

PCL and MISOCP with the following measures:
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Table 3.4: Comparison of the PCL and the MISOCP

Parameters PCL MISCOP VSM
θPCL θ = 0.95 θPCL θ = 0.95

αi bf (%) c-prob Γ E(score) θPCL E(score) E(Γ) E(score) E(Γ) ∆0 %∆0 ∆1 %∆1

0
10

U (0.01-0.1) 36 12003.2 98.8 12004.1 36.5 12054.8 36.7 0.8 0.01 51.6 0.43
U (0.01-0.2) 72 11641.1 99.9 11644.4 70.9 11810.7 72.6 3.3 0.03 169.7 1.46

20
U (0.01-0.1) 59 19109.5 99.9 19111.3 59.0 19301.7 59.9 1.8 0.01 192.2 1.01
U (0.01-0.2) 117 18431.3 99.9 18435.4 113.8 18880.5 117.9 4.1 0.02 449.2 2.44

0.3
10

U (0.01-0.1) 36 11946.4 95.5 11948.8 36.1 11951.5 36.1 2.4 0.02 5.1 0.04
U (0.01-0.2) 69 11513.1 99.5 11525.2 68.8 11590.8 69.5 12.1 0.11 77.8 0.68

20
U (0.01-0.1) 58 19034.6 99.9 19040.9 58.5 19135.7 58.9 6.3 0.03 101.1 0.53
U (0.01-0.2) 113 18279.7 99.9 18303.6 111.3 18537.0 113.6 23.9 0.13 257.2 1.41

∆0 = (E(score) of the MISOCP with θPCL)− (E(score) of the PCL with θPCL)

%∆0 = 100 x
(
E(score) of the MISOCP with θPCL − E(score) of the PCL with θPCL

E(score) of the PCL with θPCL

)
∆1 = E(score) of the MISOCP with θ = 0.95− E(score) of the PCL with θPCL

%∆1 = 100 x
(
E(score) of the MISOCP with θ = 0.95− E(score) of the PCL with θPCL

E(score) of the PCL with θPCL

)

In terms of ∆0 and %∆0 values, we observe that the model PCL is a good approxi-

mation of the model MISOCP when we use the probability level of the model PCL

(θPCL) to solve MISOCP. We also observe that for the same probability level (i.e.

θPCL), the MISOCP generates solutions with slightly better expected total scores.

While the model PCL conservatively chooses to assume the least budget projects will

be canceled, the MISOCP can generate solutions for anticipated risk levels.

Note that θPCL values are very close to 1 (except the average θPCL is 95.5% for one

factor combination). However, the DM can find those probability levels too conser-

vative and can prefer to use an alternative high level of probability level such as 0.95.

For that alternative case, ∆1 and %∆1 values increase prominently when compared

to ∆0 and %∆0 values. Besides, for the same level of α, the VSM increases as bf and

c-prob increase. Therefore, using the model MISOCP when we can obtain probability

information provides prominent benefits.

Thirdly, the DM may wonder about how the probability level of the first model PCL

changes when we estimate Γ differently than its expected value. Therefore, we relate
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the two models by setting Γ=bE(Γ)c and using the probability information of the sec-

ond model MISOCP. However, we actually do not know the cancellation probabilities

when we solve the model PCL. Therefore, we select the minimum three θPCL values

in Table 3.4 under PCL section to understand how probability level changes especially

for higher Γ values in the worst case. When we examine the average θPCL values for

8 factor combinations, the minimum three of them are 95.5%, 98.8%, 99.5%. Hence,

we pick up one instance from those three factor combinations, solve the model PCL

for integer Γ values in the range [bE(Γ)cx0.8, bE(Γ)cx1.2] and then calculate cor-

responding probability levels. Figures 3.2, 3.3, and 3.4 show probability levels of

corresponding Γ scenarios of an instance for those three factor settings. Note that

Γ=bE(Γ)c of each instance is indicated by red points in the figures.

Figure 3.2: Probability level of an instance for setting α = 0.3, bf = 10%, c-prob ∈
U(0.01-0.1)

The minimum probability levels are calculated for setting α = 0.3, bf = 10%, c-

prob ∈ U(0.01-0.1) in Table 3.4. Thus, we take an instance from this factorial setting,

solve the model PCL by changing Γ values and show calculated probability levels

in Figure 3.2. For this worst case factorial setting, if we estimate Γ parameter 20%

higher than its expected value (i.e. estimate 43 instead of 36), then probability level

drops from 95.5 % to around 82%. Apparently, estimating smaller Γ values than its

expected value generates higher probability levels. For instance, if we estimate Γ pa-

rameter 20% smaller than its expected value (i.e. estimate 29 instead of 36), then we

have probability level very close to 100%. The second minimum probability levels

are generated for α = 0, bf = 10%, c-prob ∈ U(0.01-0.1). Similarly, an instance
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is taken from this factorial setting and results are presented in Figure 3.3. For this

instance, if we estimate Γ parameter 20% higher than its expected value, then we

have probability level of 94%. The third minimum probability levels (albeit average

probability level is 99.5%) are calculated for setting α = 0.3, bf = 10%, c-prob ∈
U(0.01-0.2). An instance is also picked up from this setting, and probability levels

for various Γ scenarios are given in Figure 3.4. For this case, Γ=bE(Γ)c = 69, so if

we estimate Γ parameter as 82 (i.e. 20% higher than its expected value), then proba-

bility level is around 94.2%. Thus, even in the worst cases, we have still acceptable

probability levels when we estimate Γ parameters higher than their expected values.

Obviously, probability levels of remaining 5 factorial settings will be much better

when we estimate higher Γ values.

Figure 3.3: Probability level of an instance for setting α = 0, bf = 10%, c-prob ∈
U(0.01-0.1)

Finally, the DM wonders about the value of incorporating the cancellations into the

decision making process in terms of the budget utilization, the expected total score

of selected projects, and the expected number of successfully completed projects.

Note that the expected number of successfully completed projects (E(nsc)) can be

obtained as follows:

nsc = ns− Γ ⇒ E(nsc)= ns− E(Γ) (3.49)

If the cancellations aren’t considered, a knapsack problem (KP) is solved. Therefore,
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Figure 3.4: Probability level of an instance for setting α = 0.3, bf = 10%, c-prob ∈
U(0.01-0.2)

for the problem size=3000 and for each factor combination, we solve 10 instances

with the KP setting with si, bi, and B of the instances. After that, with using prob-

ability information of the MISOCP, we obtain the expected total score, the expected

budget expenditure (for probability level 95%) and the expected number of success-

fully completed projects of the solutions of the KP. Then, we calculate improvement

values by using formula (3.50) and present improvements (%) in Table 3.5. For a

given problem size=3000, we have 3 factors and 10 instances (i.e. 23 full factorial de-

sign with 10 replications). Hence, we obtain 23x10=80 improvement values for each

measure. We have two levels for each factors, so each row in Table 3.5 indicates the

minimum, the average and the maximum value of 40 improvement values for each

measure.

Improvement (%) = 100 x
Expected Value of MISOCP-Expected Value of KP

Expected Value of KP
(3.50)

bf(%) factor does not have a significant effect on improvement values, because we

calculate improvement values in percent values. Thus, we notice that improvement

values in terms of magnitude increase linearly with bf(%) factor. Factor c-prob has

a significant effect on improvement values. As c-prob increases, improvement values

increase more than two times. For instance, the average expected score improvement

is 2.5% for c-prob ∈ U(0.01-0.1), and it is 5.4% for c-prob ∈ U(0.01-0.2). Similarly,
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Table 3.5: Value of Modeling Cancellations

Improvement (%)
E(score) E(nsc) Budget Utilization

Factor Levels Min Avg Max Min Avg Max Min Avg Max

bf (%) 10 1.9 4.0 6.8 1.7 4.3 7.4 2.7 5.6 9.8
20 1.9 3.9 6.4 1.9 4.2 7.1 3.0 5.9 9.9

c-prob
U(0.01-0.1) 1.9 2.5 3.1 1.7 2.7 3.6 2.7 3.6 4.6
U(0.01-0.2) 4.1 5.4 6.8 4.4 5.8 7.4 6.0 7.9 9.9

αi
0 2.7 4.6 6.8 2.7 5.0 7.4 3.9 6.9 9.9

0.3 1.9 3.2 4.7 1.7 3.5 5.4 2.7 4.7 6.7

the average expected number of successfully completed projects increases from 2.7%

to 5.8% and the average expected budget utilization increases from 3.6% to 7.9% as

c-prob increases. Factor αi has also a significant effect on improvement values. As it

increases, improvement values decrease as we expected. This is due the fact that as

αi increases, the residual budget from the cancellations decreases. It is interesting to

note that the expected budget utilization for probability level 95% is between 2.7%

and 9.9%. Therefore, the budget utilization increases prominently with increase in

the expected score and the expected number of successfully completed projects when

we incorporate the cancellations into the decision making process.

Note that we assess the value of the modeling cancellations by comparing the knap-

sack model with our second proposed model MISOCP. However, the DM may raise

concerns regarding the value of the first proposed model PCL. We can easily claim

that the value of the model PCL will generate very close improvement values for the

same probability level by examining the %∆0 results of Table 3.4 under the section

VSM. To clarify, the second MISOCP model improves the expected score of first

model for the same probability level between 0.01% and 0.13% (i.e. the model PCL

is a tight approximation of the second model MISOCP for the same probability level

as shown before). This implies that the improvement values of the model PCL will

be very close to that of the MISOCP.
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3.4 Conclusions

In this chapter, we have considered a one-stage P-RDPPS problem environment in

the presence of cancellations. We considered the two cases. First, we assumed there

exists no information regarding cancellation probabilities and proposed a model that

handles cancellations. Our model maximizes the total score of the selected projects

assuming that the unused budgets will occur due to the canceled projects. The model

assumes that a given number of the least budget projects will be canceled, so that it

mitigates the budget risk. We also developed an efficient DP algorithm to solve the

problem. Both solution approaches could solve practical-size instances in short CPU

times.

In the second case, we studied the problem with known cancellation probabilities.

The problem is to maximize the expected total score of the selected projects while

the risk of exceeding available budget is controlled via a chance-constraint on budget.

In this case, we first showed that the number of cancellations follows Poisson bino-

mial distribution. We next proved that the standardized sum of i.ni.d Bernoulli type

budget random variables can be approximated by the standard normal distribution

and formulate this problem as a CCSP. Then, we transformed it into its deterministic

equivalent MISOCP and solved using IBM ILOG CPLEX. Our computational study

showed that 90% of the instances could be solved to optimum in given time limit.

The average gap for the remaining instances is below 0.02%.

We also made additional analyses to provide practical implications to the DM. For

instance, we show that the budget risk of the first model is acceptable by using the

probability information of the second model. Besides, we assess the budget risk levels

of various cancellation situations for the same instance and observe that estimating

higher number of cancellations at some degree still generates solutions with small

budget risk. We also compare the two models and show that the first model is a tight

approximation of the second model when we solve the second model with calculated

budget risk of the first model. Moreover, we obtain the value of second model and

observe that the second model generates better project portfolios with anticipated risk

levels. Finally, we assess the value of incorporating the cancellations to the model by

comparing it with the standard setting and show that the proposed approaches improve
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both the budget utilization and the total expected score of the selected projects.

An article written on the results of Chapter 3 is accepted with minor revisions for

publication in OR Spectrum (Çağlar and Gürel (2016)).

In the next chapter, we propose a new model that incorporates not only cancellations

but also budget expenditure pattern of successfully completed projects to improve

funding budget utilization. In addition, we assume continuous expenditure distribu-

tion for cancellations and underspending of successfully completed projects. More-

over, we propose an alternative approach and compare it with our new model.
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CHAPTER 4

PUBLIC RDPPS PROBLEM UNDER EXPENDITURE

UNCERTAINTY

In this chapter, we consider a one-stage public RDPPS problem with several sources

of expenditure uncertainty. As we present in the RDPPS literature, financial data (i.e.

budget, cost, expenditure, profit, cash flow etc.) uncertainty is usually modeled by

defining random variables and determining their associated probability distributions.

For example, Medaglia et al. (2007) formulate cash flow and market share uncertainty

of R&D projects with triangular, exponential, and Erlang random variables. Solak

et al. (2010) model annual financial returns of R&D projects as discrete random vari-

ables and assume that associated probabilities are known. Note that both studies deal

with very small number of projects (i.e. less than 10 projects) and formulate financial

data of each project with a different continuous or discrete distribution.

In our public RDPPS problem, we consider thousands of project proposals with spe-

cific budgets. Since it is not practical and realistic to use a separate expenditure dis-

tribution for each project, for every project we have modeled the ratio of budget spent

by a probability distribution. To be more clear, each project has an approved budget

bi, and we know that its expenditure b̂i will be within the interval (0, bi]. Thus, we

define a ratio Ri = b̂i
bi

to model budget spending behavior of a project i and focus on

how Ri can be modeled in a tractable manner. In the literature, beta family of distri-

butions is commonly used for ratio uncertainty modeling. They are also very flexible

and may take many different forms according to the distribution parameters (Johnson

et al. (1995), Chapter 25). Therefore, we utilize beta distributions in formulation of

Ri.
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In Section 4.1, we first state the problem and our assumptions. In Section 4.2, we for-

mulate the underspending uncertainty of both the canceled projects and successfully

completed projects. In Section 4.3, we propose a chance constrained stochastic pro-

gramming (CCSP) model for our problem. From a methodological standpoint, chance

constraint of budget is computationally intractable; hence, we apply a solution method

based on a normal approximation and a second order cone programming. However,

when the normal approximation is used, there can be some convergence error that can

distort the desired risk level of the chance constraint of funding budget. Therefore,

by using Berry-Esseen theorem, we quantify convergence quality of the normal ap-

proximation and propose ways to mitigate risk of probabilistic budget constraint. In

Section 4.4, we present computational results. Proposed model could exactly solve

86% of the the instances to optimality within the given time limit, and the average

optimality gap for the instances that were only solved to feasibility is below 0.01%.

In Section 4.5, we also perform additional experiments to give practical insights to the

DM. For instance, we investigate the case of unknown distribution of budget under-

utilization of canceled and successfully completed projects. For this case, we develop

an alternative distribution modeling and compare it with the proposed approach on

different problem settings. Finally, we compare the proposed approach with a stan-

dard setting and find that the proposed approach delivers an increase between 8.4%

and 18.6% in utilization of the funding budget. Concluding remarks are presented in

Section 4.6.

4.1 Problem Statement

We address a one-stage (i.e. funding decisions are made after all applying projects

are evaluated and decisions are irreversible) public RDPPS problem. R&D funding

agencies usually adopt a call-based system. A call is announced and researchers apply

with their solicited research proposals for funding. Research proposals are analyzed

for eligibility check and then eligible proposals are evaluated by peer reviewers in

panel meetings. Scientific and technological benefits of projects are scored by peer

reviewers according to the set of selection criteria. Budget of each project is not

regarded as a selection criteria; however it is considered in research panels for a
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descent project budget plan. Funding decision of projects are made according to the

panel scores, project budgets and total available funding budget. PIs of the funded

projects sign a project funding contract with public R&D agency. Project funding

contract commits that approved budget will be transferred to the project if project

comply with the terms and conditions of grant policy statements. This is a typical

process in a one-stage call-based programs such as 1001 program of TÜBİTAK.

After funding decisions, funded projects start to conduct their planned research agenda.

However, during the research activities some of the R&D projects can be canceled by

the R&D funding agency due to the violation of terms and conditions. If a cancel-

lation occurs, most of the budget expenditure is usually paid back. In some cases,

some expenditures can be excluded. Those details are provided in grant policy state-

ments. Besides, expected scientific and technological benefit of canceled projects is

not achieved. Therefore, cancellations not only affect expected benefits of project

portfolio but also underutilization of funding budget. Moreover, some of the funded

projects finish successfully but they do not expend their whole budget. This is an ex-

pected outcome since budgeting process is a complex issue and researchers focus on

R&D content development rather than perfect budgeting of project activities. For that

reason, expected benefits of those project come true with an underutilized budget.

In this section, we consider aforementioned cases and formulate expected budget ex-

penditure and benefit (score) of projects with a probabilistic approach to improve the

expected score of project portfolio as well as utilization of the funding budget. Before

formulating the analytical developments, we herein state following assumptions for

our problem:

(1) Budget of each project is clarified during research panels. Score of each project

is rated by peer reviewers according to the set of selection criteria. Score in-

cludes scores of panel jury. Scoring does not evaluate budget of projects.

(2) The funding decisions are made at the end of each call. Therefore, one-stage

problem environment is considered.

(3) Probability information of the aforementioned factors (i.e. canceled and suc-

cessful projects with project expenditure uncertainty) can be assessed using
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judgment or estimated using past data. For example, there is usually a criterion

that evaluates project management, team and research possibilities. Therefore,

there can be a close relationship between cancellation probability and that kind

of criterion, and this information can be gathered from past canceled projects’

data. Besides, proposals are gathered from different PIs and universities. There

can also be a relation between cancellation risks and PIs, universities. More-

over, peer reviewers can comment on cancellation risk of each project and those

comments can be integrated with past data to estimate cancellation probabili-

ties. Probability information of successful projects with underutilized budget

also can be obtained from past data of successfully finished projects.

(4) Large number of projects compete to be awarded for funding under limited

available funding budget. Thus, project portfolio optimization should be used.

4.2 Proposed Model

In this section, we formulate aforementioned concepts (i.e. canceled and success-

ful projects with underutilized budget case) by considering their effect on score and

budget of projects. Let si denote the score of project i. We already state that ex-

pected scientific and technological benefits of the canceled projects is not fulfilled.

Therefore, the score of project i becomes zero with cancellation probability pi. Let

the random variable ŝi denote the real score of project i. Then, we can express ŝi as

follows:

ŝi =

si w.p. (1− pi)

0 w.p. pi
(4.1)

Expectation and variance of ŝi are calculated as follows:

E(ŝi) = si(1− pi) (4.2)

Var(ŝi) = s2
i pi(1− pi) (4.3)

Let bi denote the approved budget of project i. We examine budget expenditure un-

certainty by using a confidential sample data of a call. According to our observation,
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there could be three different cases of budget spending behavior as follows:

(1) cancellation of the project i and underspending of its budget with probability pi

(2) successful completion of the project i and underutilization of its budget with

probability qi

(3) successful completion of the project i and fully used its budget with probability

1− pi − qi

We also observe that budget expenditure ratio for the first case could be modeled by

the beta distribution in the interval (0, τ1) and similarly the budget expenditure ratio

for the second case could be modeled by another beta distribution in interval (τ2, 1).

Thus, both canceled and successful projects with underutilized budget cause the bud-

get expenditure uncertainty. Let the random variable b̂i denote the real expenditure of

project i. Then, we express b̂i with a ratio random variable Ri defined on an interval

(0,1] as follows:

b̂i = biRi (4.4)

Mixture distributions arise when statistical sample data can be categorized into sepa-

rate subsamples. Therefore, Ri can be formulated as a mixture distribution according

to aforementioned three cases of budget spending. We already state that budget ex-

penditure for the first two cases can fit to truncated (bounded) beta distribution. Third

case can be modeled by a degenerate distribution (i.e. Ri will be 1 with probability

1 − pi − qi). In the literature, similar cases are modeled by a truncated inflated beta

distribution. It is recently proposed by Pereira et al. (2012) to model unemployment

insurance benefit ratio. Truncated inflated beta distribution is a mixture distribution

of truncated standard beta distribution in some bounded open interval (a, b), and it is

inflated in some points. Therefore, we formulate random variable Ri as a variant of a

truncated inflated beta distribution. We can introduce the probability density function
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(p.d.f) of the random variable Ri by taking into account the three cases as follows:

fRi(r) =


pif(r;α1, β1, 0, τ1) if r ∈ (0, τ1)

qif(r;α2, β2, τ2, 1) if r ∈ (τ2, 1)

1− pi − qi if r = 1

(4.5)

where f(r;α1, β1, 0, τ1) is the p.d.f of a truncated beta distribution in interval (0, τ1)

with parameters α1, β1 and f(r;α2, β2, τ2, 1) is the p.d.f of a truncated beta distribu-

tion in interval (τ2, 1) with parameters α2, β2. Note that we assume τ1 ≤ τ2 < 1.

Hence, Ri is the mixture distribution of two truncated beta random distributions and

a degenerate distribution (inflated point at 1). In order to obtain cumulative distribu-

tion function (c.d.f) of the Ri, we need the definition of a mixture random variable

and p.d.f of a truncated beta distribution. In the following definitions, we first give

definition of a mixture random variable and then p.d.f of a truncated beta distribution

for the sake of completeness.

Definition 4.2.1. Given a finite set of (J) distribution functions, let fj(x) and Fj(x)

be the p.d.f. and c.d.f. of distribution j, respectively. Let wj be the probability of

selecting distribution j ∈ J such that wj > 0 and
∑

j wj = 1. Then p.d.f and c.d.f of

the mixture random variable X , f(x) and F (x) can be expressed as follows:

f(x) =
∑
j∈J

wjfj(x) (4.6)

F (x) =
∑
j∈J

wjFj(x) (4.7)

Definition 4.2.2. Let W be a truncated (bounded) beta distribution in open interval

(a, b) with shape parameters α and β. Its p.d.f and c.d.f are given as follows (see

Johnson et al. (1995), Chapter 25):

fW (w; a, b, α, β) =
Γ(α + β)(w − a)α−1(b− w)β−1

Γ(α)Γ(β)(b− a)α+β−1
for a < W < b (4.8)

P (W ≤ w) = FW (w) =

∫ w

a

Γ(α + β)(w − a)α−1(b− w)β−1

Γ(α)Γ(β)(b− a)α+β−1
dw (4.9)
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where the Gamma function is defined as: Γ (u) =
∞∫
0

su−1e−sds.

By using Definitions 4.2.1 and 4.2.2, we can obtain the cumulative distribution func-

tion (c.d.f.) of Ri explicitly as follows:

P (Ri ≤ k) = FRi(k) = pi

∫ min(τ1,k)

0

Γ(α1 + β1)rα1−1(τ1 − r)β1−1

Γ(α1)Γ(β1)τα1+β1−1
1

dr

+ qi

∫ min(1,k)

τ2

Γ(α2 + β2)(r − τ2)α2−1(1− r)β2−1

Γ(α2)Γ(β2)(1− τ2)α2+β2−1
dr + (1− pi − qi)I1(k) (4.10)

where k ∈ (0, 1] and I1(k) is the indicator function and takes the value of 1 if k = 1

and 0 otherwise.

So far, we obtain the expected score (E(ŝi)) and p.d.f and c.d.f of real budget expen-

diture (b̂i) of each project. We are now ready to formulate the CCSP model of the

public RDPPS problem as follows:

(SP) max
∑
i∈N

si(1− pi)xi (Expected Total Score)

s.t. P

(∑
i∈N

biRixi ≤ B

)
≥ θ (4.11)

xi ∈ {0, 1} ∀i ∈ N (4.12)

where P (·) denotes the probability measure. xi is a decision variable representing 1,

if project i is selected and 0, otherwise. N indicates the set of all projects. B is the

total available budget. Objective function is to maximize the expected total score of

selected projects. Chance constraint in (4.11) provides that sum of random budget

expenditure of selected projects does not exceed the total available budget with a

probability level of θ. Some policy, geographical, and sectoral constraints can be also

incorporated into our modeling framework; however, in this study, our main emphasis

is modeling of uncertain project expenditures of canceled and successfully completed

projects.

When pi = 0 and qi = 0 ∀ i, the problem is a knapsack problem. So, this special case
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is NP -hard. In addition, Nemirovski and Shapiro (2006) discuss that most of the

individual linear chance constraints are computationally intractable because checking

feasibility of a solution is NP -hard for θ > 0.5. They state that a linear chance con-

straint is computationally tractable for some special distributions such as multivariate

normal distribution. If we adopt normal approximation, and set θ = 0.5, then we have

a knapsack capacity type constraint with mean b̂i values. If we assume θ > 0.5, we

have additional quadratic terms for the variance of b̂i. Therefore, we could state that

our problem is NP-hard.

In order to solve model SP with an exact approach, we need to transform the chance

constraint in (4.11) to its deterministic counterpart. Thus, we have to derive quan-

tile function (i.e. inverse cumulative distribution function) of sum of random budget

expenditure in the probabilistic constraint (4.11). We derive the c.d.f of a single

random variable Ri in (4.10). Note that its c.d.f has no closed-form expression.

Therefore, derivation of its quantile function is a challenging issue. Moreover, to

obtain c.d.f. and quantile function of term
∑

i∈N biRi in (4.11), convolution of many

non-identical distributions should be derived. Therefore, obtaining true c.d.f. of sum-

mation of many random terms in probabilistic constraints is usually computationally

intractable. That is why convex approximations such as normal approximation are

usually employed. In order to apply normal approximation to sum of many inde-

pendent non-identically distributed (i.ni.d.) random variables, their standardized sum

should obey the central limit theorem. There are two version of CLT theorem adopted

for normal approximation, namely Lyapunov and Lindeberg CLTs. Lyapunov CLT

is stronger than Lindeberg. We refer to Shapiro et al. (2009), pp. 141-144 for recent

discussion of different versions of CLT for i.ni.d. random variables. In the following

Theorem, we first give the Lyapunov CLT. After then in Proposition 4.2.1, we show

that general family of truncated distributions obeys Lyapunov CLT.

Theorem 4.2.1. Lyapunov’s Central Limit Theorem (CLT) for i.ni.d. random vari-

ables(Baurer (1996) and Shapiro et al. (2009)): LetX1, X2, ...., Xn be i.ni.d. random

variables with finite expectation E(Xi), positive variance Var(Xi) and finite moments

E(X2+δ
i ) for δ > 0. Then, if for some δ > 0, the following condition
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lim
n→∞

∑i=n
i=1 E

[
|Xi − E(Xi)|2+δ

]
[√∑i=n

i=1 Var(Xi)

]2+δ
= 0 (4.13)

is satisfied, then normalized summand Sn =
∑i=n
i=1 [Xi−E(Xi)]√∑i=n

i=1 Var(Xi)
converges to standard

normal distribution (N(0, 1)) as n goes to infinity.

Proposition 4.2.1. Let {Ti}i=ni=1 be an i.ni.d. truncated random variables defined on

bounded interval [l, u] such that 0 ≤ l < u. Then, Lyapunov’s CLT theorem applies

to sequence {Ti}i=ni=1 as n goes to infinity.

Proof. See Appendix A.1.

In the following corollary, we show that standardized version of term
∑

i∈N biRixi in

constraint (4.11) converge to standard normal distribution.

Corollary 4.2.1.1. Let b1R1, b2R2, ...., biRi ∈ N be i.ni.d. random variables as de-

fined in equations (4.4) and (4.11). Then Hx
n =

∑
i∈N [biRi−E(biRi)]xi√∑

i∈N Var(biRi)x2
i

converges to

N(0, 1) if the solution of model SP includes statistically significant number of sup-

ported projects (i.e. xi = 1).

Proof. See Appendix A.2.

Convergence to standard normal distribution is provided in Corollary 4.2.1.1. There-

fore, we can transform CCSP model of public RDPPS problem to its deterministic

equivalent formulation by using normal approximation. However, as shown in Corol-

lary 4.2.1.1, we need the mean and variance of random variable b̂i = biRi to approx-

imate true distribution of Hx
n . By using the properties of expectation and variance

operator, we obtain:

E(b̂i) = E(Ribi) = biE(Ri) (4.14)

Var(b̂i) = Var(Ribi) = b2
iVar(Ri) (4.15)
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Since approved budget of each project bi is known, we need to have E(Ri) and

Var(Ri) to apply normal approximation. Since Ri is a mixture distribution includ-

ing truncated beta distribution, we first define the derivation of moment of mixture

distributions and then we give the moment information of truncated beta distribution

in order to obtain mean, variance and nth moment of random variable Ri.

Definition 4.2.3. Let X be a mixture random variable as defined in Definition 4.2.1.

The nth moment of X is formulated as follows:

E[Xn] =

∫ +∞

−∞
xnf(x)dx =

∫ +∞

−∞
xn
∑
j∈J

wjfj(x)dx

=
∑
j∈J

wj

∫ +∞

−∞
xnfj(x)dx =

∑
j∈J

wjm
n
j (4.16)

where mn
j is the nth moment of distribution j.

In the following proposition, we derive expectation, variance and nth moment of a

truncated beta distributed random variable.

Proposition 4.2.2. The mean, variance and nth moment of the truncated beta random

variable W defined in open interval (a, b) are given as follows:

E(W ) =
αb+ βa

α + β
(4.17)

V ar(W ) =
(b− a)2αβ

(α + β)2(α + β + 1)
(4.18)

E(W n) =


∑k=n

k=0
n!

k!(n−k)!
ak(b− a)n−k Γ(α+β)Γ(α+n−k)

Γ(α)Γ(α+β+n−k)
if 0 < a < b

bn Γ(α+β)Γ(α+n)
Γ(α)Γ(α+β+n)

if a = 0 and b > 0
(4.19)

Proof. See Appendix A.3.

We give the necessary definitions and derivations to obtain mean, variance and nth

moment of random variable Ri. We are now ready to derive its moment information

in the following proposition.
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Proposition 4.2.3. The mean, variance and nth moment of the truncated inflated beta

distributed random variable Ri are given as follows:

E(Ri) = pi
α1τ1

α1 + β1

+ qi
α2 + β2τ2

α2 + β2

+ (1− pi − qi) (4.20)

V ar(Ri) = pi

[(
α1τ1

α1 + β1

)2

+
τ 2

1α1β1

(α1 + β1)2(α1 + β1 + 1)

]

+ qi

[(
α2 + β2τ2

α2 + β2

)2

+
(1− τ2)2α2β2

(α2 + β2)2(α2 + β2 + 1)

]
+ (1− pi − qi)

−
[
pi

α1τ1

α1 + β1

+ qi
α2 + β2τ2

α2 + β2

+ (1− pi − qi)
]2

(4.21)

E(Rn
i ) = pi

(
τn1

Γ(α1 + β1)Γ(α1 + n)

Γ(α1)Γ(α1 + β1 + n)

)
+ (1− pi − qi)

+ qi

(
k=n∑
k=0

n!

k!(n− k)!
τ k2 (1− τ2)n−k

Γ(α2 + β2)Γ(α2 + n− k)

Γ(α2)Γ(α2 + β2 + n− k)

)
(4.22)

Proof. See Appendix A.4.

4.3 Deterministic Equivalent Formulation

We derive mean and variance of random variable Ri in Proposition 4.2.3. In Corol-

lary 4.2.1.1, we show that total random budget spending obeys the central limit theo-

rem. Thus, in this section, we formulate the deterministic equivalent programming of

model SP by using normal approximation and second order conic inequalities.

Constraint set (4.11) can be expressed as follows:

P

(∑
i∈N

biRixi ≤ B

)
⇒ P

(∑
i∈N [biRi − biE(Ri)]xi√∑

i∈N b
2
iVar(Ri)x2

i

≤
B −

∑
i∈N biE(Ri)xi√∑

i∈N b
2
iVar(Ri)x2

i

)
(4.23)

In Corollary 4.2.1.1, we show that Hx
n converges to standard normal distribution.

Therefore, we can obtain the following probabilistic constraint:

P

(
Z ≤

B −
∑

i∈N biE(Ri)xi√∑
i∈N b

2
iVar(Ri)x2

i

)
≥ θ ⇒ Φ

(
B −

∑
i∈N biE(Ri)xi√∑

i∈N b
2
iVar(Ri)x2

i

)
≥ θ
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⇒
B −

∑
i∈N biE(Ri)xi√∑

i∈N b
2
iVar(Ri)x2

i

≥ Φ−1(θ) (4.24)

where Z is the standard normal random variable and Φ(·) and Φ−1(·) are its cumu-

lative distribution function (c.d.f) and quantile function, respectively. We reorga-

nize (4.24) as follows:∑
i∈N

biE(Ri)xi + Φ−1(θ)

√∑
i∈N

b2
iVar(Ri)x2

i ≤ B (4.25)

Deterministic equivalent formulation of the constraint (4.11) is obtained in Con-

straint (4.25). We assume that θ ≥ 0.5, then Φ−1(θ) > 0, which makes the constraint

set (4.25) convex and it can be reformulated by second-order conic inequalities. Re-

sulting deterministic equivalent reformulation of the SP model is a mixed integer

second-order cone program (MISOCP):

(SP-1) max
∑
i∈N

si(1− pi)xi (Expected Total Score)

s.t η =
B

Φ−1(θ)
−
∑

i∈N biE(Ri)xi

Φ−1(θ)
(4.26)∑

i∈N

b2
iVar(Ri)x

2
i ≤ η2 (4.27)

η ≥ 0 (4.28)

xi ∈ {0, 1} ∀i ∈ N (4.29)

The objective function is to maximize the expected total portfolio score. Conic re-

formulation of constraint (4.25) is derived in constraint sets (4.26) and (4.27). η in

equation (4.26) is an auxiliary variable for linear portion of the constraint (4.25). Con-

straint (4.27) is a second-order cone generated by constraint (4.25). E(Ri) is derived

in equation (4.20), and Var(Ri) is derived in equation (4.21). An efficient frontier of

model SP-1 can be obtained by solving it for different values of θ.

Regarding solutions of the proposed model, DMs may wonder two kinds of informa-

tion. The first one is the expected number of canceled projects since canceled projects

are regarded as unsuccessful. Therefore, DMs need to know the expected number of
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cancellations. By using cancellation probability of each project (pi), we can obtain

expected total number of cancellations. Let Ii be a Bernoulli random variable with

success parameter pi and define Γ =
∑

i∈N Iixi that denotes number of cancellations.

Γ follows Poisson-Binomial distribution (Hong (2013)). We derive expected number

of canceled projects and its variance for a solution vector x as follows:

E(Γ) =
∑
i∈N

E(Ii)xi =
∑
i∈N

pixi (4.30)

Var(Γ) =
∑
i∈N

Var(Ii)xi =
∑
i∈N

pi(1− pi)xi (4.31)

Secondly, convergence quality of true unknown distribution to normal approximation

is a significant concern for DMs. They want to gain managerial insight into the quality

of approximation since project portfolio decisions rely on public financial resources.

In the CCSP model for the public RDPPS problem, θ provides the confidence level

and conversely 1− θ specify the risk level. DMs prefer high level of confidence level

(i.e. very low risk level) in the CCSP models. However, this confidence level is not a

precise value for true unknown distribution and in fact it represents exact confidence

level of standard normal distribution. For that reason, if there is some convergence

error between true distribution and standard normal distribution and that error can

distort risk level of 1 − θ. For example, Hong (2013) demonstrate that convergence

rate of normal approximation can be slower especially at the tails of distribution for

the Poisson-Binomial distribution case. Since high level of confidence refers to the

right tail of distributions (i.e. right boundary points), convergence error concerns can

be critically significant. Therefore, derivation of convergence error with probability

metrics can assist DMs to assess real risk level of probabilistic constraints when ap-

proximation methods are used. In the following, Berry–Esseen theorem, maximum

error of normal approximation is given by Esseen (1956) in terms of probability lev-

els. Berry–Esseen theorem states that for any realization on the probability space,

maximum difference between the true unknown distribution and the standard normal

distribution in terms of probability levels (i.e. confidence levels in CCSP context) has

a bound. Hence, this theorem assist to quantify the real confidence level error when

normal approximation is employed in chance constrained programming.
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Theorem 4.3.1. Berry–Esseen theorem for the quality of normal approximation: Let

Y1, Y2, ....Yn be i.ni.d. random variables with E(Yi) = 0, positive second moment

E(Y 2
i ) and a finite third moment E(Y 3

i ) <∞ . Let Qn =
∑i=n
i=1 Yi√∑i=n
i=1 E(Y 2

i )
, Gn is the c.d.f

of Qn, Φ is the c.d.f of the standard normal distribution. Then, for the Kolmogorov

distance is defined by

DKol = sup
z∈R
|Gn(z)− Φ(z)| . (4.32)

there exists a constant C, such that DKol ≤ Cψ where

ψ =

(
i=n∑
i=1

E(|Y 3
i |)

)(
i=n∑
i=1

E(Y 2
i )

)−3/2

. (4.33)

Remark 4.3.1. Esseen (1956) theoretically showed that the constant C satisfies

7.59 ≥ C ≥
√

10 + 3

6
√

2π
≈ 0.4097

However, the best estimate on the upper bound has substantially been improved by

researchers over past decades. It is 0.56 obtained recently by Shevtsova (2010).

Remark 4.3.2. Berry-Esseen’s theorem depends on only the first three moments to

give the upper bound on the maximum error of normal approximation.

In Theorem 4.3.1, we give the convergence error for a general family of random

variables. For our case, we need to derive some moment information of random

variable Ri to apply Berry–Esseen theorem. In Corollary 4.3.1.1, we derive Berry-

Esseen bound for any solution obtained by model SP-1.

Corollary 4.3.1.1. Let b1R1, b2R2, ...., biRi ∈ N be i.ni.d. random variables as de-

fined in equations 4.4 and 4.11. Let Gx
n be the true c.d.f of Hx

n =
∑
i∈N [biRi−biE(Ri)]xi√∑

i∈N b2i Var(Ri)x2
i

for a specific solution vector x. Then Kolmogorov distance between Gx
n and Φx (Nor-

mal approximation for the solution vector x) satisfies:

Dx
Kol ≤ C

(
i=n∑
i=1

∣∣b3
iE(R3

i )− 3b3
iE(R2

i )E(Ri) + 2b3
i [E(Ri)]

3
∣∣xi)( i=n∑

i=1

b2
iVar(Ri)xi

)−3/2

(4.34)

where E(Ri), and E(R2
i ) are determined in equations (4.20) and (4.21). E(R3

i ) is

derived in proof by using equation in (4.22).
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Proof. See Appendix A.5.

We can calculate an upper bound for the maximum error of normal approximation by

using recent best estimate of C.

In the next section, we present computational study.

4.4 Computational Results

In this section, we report the results of computational experiments for the proposed

model. We solve model SP-1 by using IBM ILOG CPLEX 12.6 via Concert Tech-

nology and C++ coding language. All experiments are conducted on a computer with

processor Intel Core i5 1.7 GHz, 8.00 GB memory (RAM), 64-bit operating system,

and Windows 7 Professional. We set the time limit to 3 hours (i.e. 10800 CPU sec-

onds). We conduct a 2k full factorial design to assess impacts of different problem

parameters. Since there are many parameters in our problem, we only consider most

important factors in our full factorial design. The six important factors and their levels

are presented in Table 4.1.

Table 4.1: Factor Values

Levels
Factor Description Low High

Problem size Number of project applications 1000 2000
pi Cancellation probability U(0.01-0.1) U(0.01-0.2)

qi = q ∀i ∈ N Probability of underutilized budget
0.4 0.5

for successfully completed projects
E(W1) ; E(W2) Mean of random variables W1 and W2 0.3 ; 0.8 0.35 ; 0.85
Var(W1) Variance of random variable W1 0.01 0.05
Var(W2) Variance of random variable W2 0.01 0.05

Problem size represents number of projects applying for funding. We use two prob-

lem size (i.e. 1000 and 2000) factor levels that are set according to the real life

examples. Recall that random variable Ri depends on many parameters. We next

give factorial design of parameters of Ri. Cancellation probability of project i (pi) is

generated according to uniform distribution (U) between 0.01-0.1 (at low level) and
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0.01-0.2 (at high level) to assess probability level affect. We first set qi = q ∀i ∈ N
because it is difficult to assign different underspending probabilities to successfully

completed projects. Common probability (q) of successful completion of projects

with underspending budget is set to 0.4 and 0.5, respectively. Note that W1 is random

budget expenditure ratio of canceled projects and W2 is the random budget expendi-

ture ratio of successfully completed projects. Recall that we model them as truncated

beta distributions. We set mean of truncated beta distributions as pairs such that

E(W1) = 0.3, E(W2) = 0.8 and E(W1) = 0.35, E(W2) = 0.85. We know means

have similar effects so that we take them as pairs and thereby we obtain more tractable

factorial design. We use a minimum and a maximum value for variance of truncated

distributions. We set both V ar(W1), and V ar(W2) to 0.01 and 0.05.

We solve 5 random instances for each factor combination. Project instances, namely

replications, are generated according to Table 4.2.

Table 4.2: Other Problem Parameters

Parameter Description Value

si Score of project i U(10-25)
bi Budget of project i U(5-30)

bf (%)
Ratio for available budget over

10
sum of all project budgets

B Available funding budget (
∑

i∈N bi)× bf
τ1 Range parameter of random variable W1 0.5
τ2 Range parameter of random variable W2 0.5
θ Probability level of chance constraint 0.95

As we mentioned before, an aggregate score approach (i.e. sum of scores of evalua-

tion criteria) is considered since it is currently adopted in many funding bodies such

as TÜBİTAK. Project score (si) is, as compatible with real life instances, uniformly

distributed in interval [10-25] as integers, and project budget (bi) is, as compatible

with real life instances, uniformly distributed in interval [5-30] (in 10,000 monetary

units) as integers. We define a bf(%) parameter representing ratio for available bud-

get over sum of all projects budgets. Hence, total available budget funding (B) is

determined as B = (
∑

i∈N bi)× bf . Range parameters τ1 and τ2 of random variables

W1 and W2 are set to 0.5. We set probability level of chance constraint (θ) to 0.95.
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By using mean and variance of truncated distributions, shape parameters (i.e. α1,

β1 of W1, and α2, β2 of W2) of them are calculated using equations (4.35) through

(4.38). We refer to Johnson et al. (1995), Chapter 25, Section 25.2 for parameter

setting in beta family of distributions. For given values of E(W1), V ar(W1), and τ1,

α1 parameter of random variable W1 is calculated according to (4.35) and then α1 is

plugged in equation (4.36) to find β1. Similar calculations are performed by using

parameters of random variable W2 in equations (4.37) and (4.38) to obtain α2 and β2.

α1 =

(
E(W1)

τ1

)2(
1− E(W1)

τ1

)(
V ar(W1)

τ 2
1

)−1

−
(
E(W1)

τ1

)
(4.35)

β1 =

(
E(W1)
τ1

)(
1− E(W1)

τ1

)
(
V ar(W1)

τ2
1

) − 1− α1 (4.36)

α2 =

(
E(W2)− τ2

1− τ2

)2(
1− E(W2)− τ2

1− τ2

)(
V ar(W2)

(1− τ2)2

)−1

−
(
E(W2)− τ2

1− τ2

)
(4.37)

β2 =

(
E(W2)−τ2

1−τ2

)(
1− E(W2)−τ2

1−τ2

)
(
V ar(W2)
(1−τ2)2

) − 1− α2 (4.38)

Since problem size linearly affects expected total scores, number of selected projects

and total budget variances, we present results for each problem size separately, in Ta-

bles 4.3 and 4.4. Before analyzing the results, we first explain formats (i.e. column

fields) of both tables: E(score) represent expected total score of selected projects in

the portfolio, opt (%) is percentage of instances solved to optimum, gap (%) measures

the optimality gap of not optimally solved instances in a given time frame (if any), cpu

(sec.) measures mean and standard deviation of CPU time for optimally solved in-

stances in a given time limit. We exclude CPU time of not optimally solved instances

in CPU time calculations to prevent dominance effect of 10800 seconds on CPU time

of exactly solved instances. Number of selected projects is represented by ns, E(Γ)

is expected number of canceled projects, E(Γ)/ns indicates fraction of expected num-

ber of cancellations in the portfolio. In fact, we can estimate expected number of

successfully completed projects (E(nscp)) by using ns and E(Γ) as follows:
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E(nscp) = ns− E(Γ) (4.39)

Table 4.3: Comparison of factor effects for problem size of 1000

opt gap cpu (sec.) E(Γ)/ns
Factor Levels E(score) (%) (%) mean std. dev. ns E(Γ) (%) E(nscp) TBV BEB

pi
U(0.01-0.1) 4141.7 93 0.01 663.1 1465.5 231.2 12.6 5.4 218.6 683.4 0.08
U(0.01-0.2) 4017.6 76 0.02 1778.3 2348.4 236.5 24.1 10.2 212.3 942.1 0.07

q
0.4 4052.0 88 0.02 1121.2 1706.1 232.2 18.2 7.8 214.0 789.3 0.08
0.5 4107.4 81 0.01 1320.3 2313.8 235.5 18.5 7.8 217.0 836.2 0.07

E(W1);E(W2)
0.3 ; 0.8 4119.6 80 0.02 1295.7 2069.3 236.3 18.6 7.9 217.7 881.4 0.07

0.35 ; 0.85 4039.7 89 0.01 1145.7 1997.8 231.4 18.1 7.8 213.3 744.1 0.08

Var(W1)
0.01 4081.0 85 0.01 1153.6 1984.6 233.9 18.4 7.8 215.6 786.4 0.07
0.05 4078.4 84 0.02 1287.8 2082.5 233.7 18.3 7.8 215.4 839.1 0.08

Var(W2) 0.01 4087.3 91 0.01 817.4 1480.8 234.2 18.4 7.8 215.9 657.9 0.09
0.05 4072.0 78 0.02 1624.1 2401.3 233.4 18.3 7.9 215.1 967.6 0.06

average 4079.7 84 0.01 1220.7 2035.2 233.8 18.4 7.8 215.5 812.8 0.07

Table 4.4: Comparison of factor effects for problem size of 2000

opt gap cpu (sec.) E(Γ)/ns
Factor Levels E(score) (%) (%) mean std. dev. ns E(Γ) (%) E(nscp) TBV BEB

pi
U(0.01-0.1) 8408.6 91 0.01 414.5 1318.0 468.5 25.6 5.5 442.9 1352.2 0.06
U(0.01-0.2) 8165.5 84 0.01 589.2 1722.7 479.9 49.3 10.3 430.6 1884.1 0.05

q
0.4 8230.5 88 0.01 735.1 1993.7 470.9 37.2 7.9 433.7 1570.8 0.06
0.5 8343.7 88 0.01 268.5 797.7 477.6 37.7 7.9 439.8 1665.5 0.05

E(W1);E(W2)
0.3 ; 0.8 8369.9 86 0.01 532.1 1480.5 479.1 37.9 7.9 441.2 1756.5 0.05

0.35 ; 0.85 8204.2 89 0.01 471.5 1589.4 469.3 37.0 7.9 432.3 1479.7 0.06

Var(W1)
0.01 8288.9 90 0.01 549.7 1641.2 474.4 37.5 7.9 436.9 1565.0 0.05
0.05 8285.2 85 0.01 453.9 1421.9 474.0 37.4 7.9 436.6 1671.2 0.06

Var(W2) 0.01 8298.0 95 0.01 523.6 1646.8 474.7 37.5 7.9 437.2 1311.4 0.06
0.05 8276.2 80 0.01 480.1 1416.8 473.7 37.4 7.9 436.3 1924.8 0.05

average 8287.1 88 0.01 501.8 1536.2 474.2 37.5 7.90 436.7 1618.1 0.05

We also report E(nscp) values in the tables. TBV calculates total budget variance of

selected projects in the portfolio, BEB measures Berry-Esseen bound for quality of

normal approximation. For each problem size factor, we have 25 factor combinations

and for each factor combination we conduct 5 replications. Thus, each row of tables

reports average of 25 x 5 = 160 replications in terms of measures of column fields.

Problem size factor conspicuously affects expected total score of projects and ex-
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pected number of successfully completed projects as expected. Those values increase

approximately 2 times as problem size is increased from 1000 to 2000. Problem size

factor does not have a significant effect on number of instances solved to optimum;

opt(%) value is 84% for problem size 1000 and it is 88% for problem size 2000.

gap (%) values for not optimally solved instances are 0.01% for both problem size

settings. However, mean and standard deviation of CPU time of optimally solved

instances surprisingly decreases as problem size increases.

Cancellation probability (pi) affects expected total score of projects in the portfolio as

expected. For each problem size, as pi increases E(score) value decreases. However,

effect of pi onE(score) becomes more prominent for problem size 2000 due to nearly

two times increase in E(nscp) values. Cancellation probability (pi) has a significant

effect on hardness of instances. Clearly, as pi increases, opt(%) value decreases from

93% to 76% for problem size 1000 and it decreases from 91% to 84% for problem

size 2000. However, gap(%) values of not optimally solved instances are too small

(i.e. maximum 0.02%). As pi increases, mean and standard deviation of CPU time

of optimally solved instances increase more than two times for problem size 1000

and they increase moderately for problem size 2000. Note that standard deviation of

CPU time is very high and this shows that CPU time from one instance to another

can dramatically change. Although ns value increases as pi increases, E(nscp) value

decreases. This is due to fact that E(Γ) and E(Γ)/ns values increase compatibly

as pi increases. Finally, as pi increases TBV value increases as expected and BEB

value decreases 0.01 point. Hence, as pi increases quality of normal approximation

increases by a probability level of 0.01 for both problem sizes.

As q (i.e. probability of successful completion of projects with underutilized budget)

increases from 0.4 to 0.5, expected total score of projects in the portfolio increases

as expected; because in that case ns and E(nscp) values increase due to chance of

more available room in budget constraint. As q increases, opt(%) value decreases

for problem size 1000; whereas it remains the same for problem size 2000. gap(%)

values of not optimally solved instances are very small with a maximum level of 0.02

percent as in pi factor case. As q increases, average and standard deviation of CPU

time of optimally solved instances increase for problem size 1000 and conversely they

decrease for problem size 2000. As q increases TBV value increases and BEB value
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decreases 0.01 point. Thus, convergence to normal approximation improves with a

probability level of 0.01 in both problem size factor settings.

Effect of E(W1) and E(W2) shows significance of modeling budget underutilization.

Recall that E(W1) is mean budget spending ratio of a canceled project and E(W2) is

mean budget spending ratio of a successful project that has an underutilized budget.

When E(W1) and E(W2) are decreased only 0.05 point, E(score) and E(nscp) in-

crease clearly. For instance, E(score) increases from 4039.7 to 4119.6 for problem

size 1000 and it increases from 8204.2 to 8369.9 for problem size 2000. Similarly,

E(nscp) increases from 213.3 to 217.7 for problem size 1000 and it increases from

432.3 to 441.2 for problem size 2000. This implication shows the importance of mod-

eling of real past data accurately for DMs dealing with large scale project portfolios.

Effect of V ar(W1) is limited on E(score) and E(nscp) values. Recall the derivation

of V ar(Ri) in Proposition 4.2.3. Underutilized budgets of canceled projects are char-

acterized by parameters pi, E(W1) and V ar(W1). Since cancellation probability (pi)

of each project is generated according to uniform distribution in some range, variabil-

ity in pi values can smooth out effect of V ar(W1). In the next subsection, we conduct

an analysis to see if there exists a smooth out effect of pi. Number of instances solved

to optimum is slightly affected by V ar(W1). As V ar(W1) increases, opt(%) value

decreases from 85% to 84% for problem size 1000, and it decreases from 90% to

85% for problem size 2000. As V ar(W1) increases, mean and standard deviation of

CPU time of optimally solved instances increase for problem size 1000 and in con-

trast they decrease for problem size 2000. When V ar(W1) is increased from 0.01 to

0.05, TBV value increases and surprisingly BEB value increases 0.01 point for both

problem sizes. Hence quality of normal approximation deteriorates with a probability

level of 0.01 in both problem sizes.

Variance ofW2 has a mild effect onE(score). When V ar(W2) is increased from 0.01

to 0.05, expected score slightly decreases. It also has a prominent effect on number

of instances solved to optimum. As V ar(W2) increases, opt(%) value decreases from

91% to 78% for problem size 1000, and it decreases from 95% to 80% for problem

size 2000. As V ar(W2) increases, average and standard deviation of CPU time of op-

timally solved instances considerably increase for problem size 1000 and oppositely,
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they decrease for problem size 2000. As V ar(W2) increases, TBV value increases

and BEB value decreases as expected. BEB value decreases 0.03 points for problem

size 1000 and it decreases 0.01 point for problem size 2000. Therefore, convergence

to normal approximation improves more prominently for problem size 1000.

When we evaluate effects of factors, we observe effects of pi, q, E(W1) and E(W2)

are significant for E(score). Therefore, those factors must be carefully determined.

For instance, as we stated before, peer reviewers can comment on pi value of each

project and these comments can be integrated with past data to estimate pi values.

Variance of W1, and W2 have limited effect on E(score). Besides, we observe that

the proposed model solves practical size instances in reasonable amount of CPU time.

We observe that quality of normal approximation can change according to factor lev-

els. In Figure 4.1, mean BEB value of 5 replications for each factor combination

is presented. First 32 factor combinations correspond to instances with problem size

1000, remaining factor combinations from 33 to 64 correspond to instances with prob-

lem size 2000. We can clearly observe that factor levels have a significant effect on

quality of normal approximation. BEB value is between 0.12 and 0.04 for problem

size 1000 and it is between 0.08 and 0.03 for problem size 2000. Therefore, param-

eters of problem on hand have an impact on quality of convergence, that is probably

wondered by DMs.

Figure 4.1: BEB Values of Factor Combinations

In our problem, we are motivated by TÜBİTAK 1001 program environment. Hence,
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we set problem size and bf values accordingly. However, some funding programs

might not receive that many proposals. Therefore, we also analyze the Berry-Esseen

bound of much smaller problem size setting. In practice, when the problem size gets

smaller, bf values usually increase. For example, Karsu and Morton (2014) study

R&D project selection problem with 150 project proposals and set bf value to %50.

Hence, we conduct a full factorial design with problem size=150 and bf = %50 to

examine how BEB values behave for smaller sets. Average BEB values of each factor

are presented in Table 4.5. Average BEB values lies between 0.11 and 0.14. So, it

turns out that BEB values of much smaller sets can be still acceptable for DMs.

Table 4.5: Berry-Esseen bound for problem size=150

Factor Levels BEB

pi
U(0.01-0.1) 0.14
U(0.01-0.2) 0.11

q
0.4 0.13
0.5 0.12

E(W1);E(W2)
0.3 ; 0.8 0.11

0.35 ; 0.85 0.13

Var(W1)
0.01 0.11
0.05 0.14

Var(W2)
0.01 0.14
0.05 0.11

average 0.12

4.5 Managerial Implications

In this section, we provide additional analyses to give practical implications to the

DM. Firstly, in the next subsection, what Berry-Esseen bound offers to DMs are dis-

cussed.

4.5.1 How a Berry-Esseen bound can assist to decision making?

Berry-Esseen bound can assist DMs in two ways as presented in Table 4.6. Firstly,

for a given θ value and a solution, DM is informed about the BEB value. Then,

DM subtract BEB value from given θ value and obtain a new adjusted value, call it

θI = θ−BEB. If this θI satisfy him/her, s/he admits this solution with its anticipated
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worst case risk level of 1-θI . Otherwise, DM prefer a new solution with a higher

level of θ such that calculated θI satisfy him/her. For example, assume that a problem

instance is solved with θ = 0.95 and resulting calculated BEB value is 0.09, then

θI = 0.86. Thus, probability of not exceeding of funding budget is 0.86 in the worst

case and assume that the DM is not satisfied with this probability level and requires

a probability level of 0.9. Hence, the DM wants to see a new solution of the instance

that will be solved with the probability level of 0.99.

Secondly, DM is first informed about properties of the problem at hand. Then ac-

cording to average BEB value for given parameter settings in Tables 4.3 and 4.4, DM

is informed for average BEB values of past solved instances. DM specify its desired

θ value first and then average BEB value of past instances with same parameter set-

tings added to θ as follows; θII = θ+BEB. Then problem is solved with this θII

value and solutions are presented to DM. Finally, DM is satisfied this solution since

his/her preferred confidence level is updated according to maximum convergence er-

ror. For instance, assume that we inform the DM about properties of the instance that

will be solved and average BEB value of similar instances. Assume that average BEB

value=0.08 and DM determines desired probability level as 0.9 in the worst case, then

θII = 0.98. Thus, the instance will be solved with probability level of 0.98. Thereby,

convergence error of normal approximation is mitigated for the DM.

Table 4.6: How Berry-Esseen bound can assist to DMs

Ways
I II

Given confidence level θ θ

BEB value Solved model Similar past instances

Adjusted confidence level θI = θ−BEB θII = θ+BEB

Action Present θI to DM Solve model with θII

Outcomes
DM satisfies or increase θ

DM satisfiesuntil DM is satisfied with θI

and solve model with new θI

In the next subsection, we investigate if there is any smooth out effect of pi values.
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4.5.2 Do cancellation probabilities smooth out of effect of Var(W1)?

Instead of generating cancellation probabilities from a range, we set pi values to 0.1,

0.2, and 0.3 to see whether they smooth out effect of Var(W1). In this case, for each pi

and Var(W1) value, we conduct a 22 factorial design with factors q and Var(W2). We

take problem size=2000, E(W1) = 0.3, E(W2) = 0.8. For each factor combination,

we conduct 5 replications. In Table 4.7, each row (for each pi and Var(W1) value)

represents mean of 20 replications (22 x 5 replications). We observe as constant pi

value increases, effect of Var(W1) on expected score tends to slightly increase. We can

conclude that some effect of Var(W1) on expected score is smoothed out by different

cancellation probabilities. On the other hand, when we scrutinize effects of Var(W1),

and Var(W2) on expected score, we can observe that their effects are smaller than that

of pi, q, E(W1) and E(W2). This result can be explained by effect of truncation. Since

our random variables are truncated, maximum value that a variance can take strictly

decreases. For instance, in our problem, variance can be maximum 0.05. Hence,

accurate truncation with a good mean estimate mitigates risk of imperfect information

of variances. It is also interesting to note that when pi values are the same, we are

dealing with independent identically distributed (i.i.d) random variables and BEB

values sharply decreases. This is an expected result of CLT since convergence to

normal distribution improves with i.i.d random variables. Note that for the i.i.d case,

the best estimate of C in Theorem 4.3.1 drops to 0.4748 due to Shevtsova (2011) and

BEB values in Table 4.7 are calculated accordingly.

Table 4.7: Effect of constant pi values

E(Γ)/ns
pi Var(W1) E(score) ns E(Γ) (%) E(nscp) TBV BEB

0.1 0.01 8271.9 484.8 48.5 10 436.3 2000.5 0.03
0.05 8267.1 484.8 48.5 10 436.3 2140.1 0.04

0.2
0.01 7778.0 514.2 102.8 20 411.3 3134.3 0.02
0.05 7770.8 513.6 102.7 20 410.8 3448.4 0.03

0.3
0.01 7244.9 548.5 164.6 30 384.0 4122.9 0.01
0.05 7234.8 547.7 164.3 30 383.4 4652.4 0.02

In the next subsection, effect of confidence level (θ) is discussed.
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4.5.3 What if we use different θ values?

DMs may wonder how various probability levels (θ) could affect obtained solutions.

Therefore, an efficient frontier of any measure of interest can be presented to DM by

varying confidence levels numerically. For example, effect of θ on expected score

of one problem instance is presented in Figure 4.2. We can observe as θ increases

expected score decreases as expected. Increasing θ from 0.90 to 0.99 results in con-

siderably mitigating budget risk thereby constructing more conservative portfolios.

Figure 4.2: Effect of θ on expected score

In the next subsection, effect of distribution modeling is discussed.

4.5.4 What if we don’t know distribution of W1, and W2?

In stochastic programming, identifying uncertain parameters accurately is a costly

task. For our problem, even identification of pi and q values are demanding. More-

over, we determine distribution of budget spending for different underutilization cases.

In this subsection, we assume distribution of W1, W2 and their parameters are un-

known and only mean values are known. Expected values of W1, and W2 could be

obtained by analyzing average spending of past canceled and successfully completed

projects. Budget spending can still be modeled by using mean values at expense of

some error in true objective value of model SP-1. In this case, random variable Ri
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can be modified to R̄i as follows;

R̄i =


E(W1) w.p. pi

E(W2) w.p. q

1 w.p. 1− pi − q

(4.40)

Expectation, variance and third moment of R̄i are calculated as follows:

E(R̄i) = piE(W1) + qE(W2) + (1− pi − q) (4.41)

V ar(R̄i) = E(R̄i
2
)− [E(R̄i)]

2 = pi(E(W1))2 + q(E(W2))2 + (1− pi − q)− [E(R̄i)]
2

(4.42)

E(R̄i
3
) = pi(E(W1))3 + q(E(W2))3 + (1− pi − q) (4.43)

In Proposition 4.5.1, we show that modeling only with mean values gives an upper

bound on optimal objective value of model SP-1.

Proposition 4.5.1. Let z∗1 be an optimal objective value of model SP-1, and z∗2 be an

optimal objective value of a modified model when mean and variance of R̄i are used

in SP-1. Then z∗2 ≥ z∗1 holds.

Proof. See Appendix A.6.

Let SP-2 be a modified model in which mean and variance of R̄i are used in model

SP-1. We solve model SP-2 and compare it with model SP-1 to assess effect of beta

distribution modeling. We use problem size=2000, E(W1) = 0.3 and E(W2) = 0.8

in below experiments. We calculate following difference measures for comparison:

∆E(score) = E(score) of the model SP-1− E(score) of the model SP-2 (4.44)

∆E(nscp) = ∆E(nscp) of the model SP-1−∆E(nscp) of the model SP-2

(4.45)

∆TBV = TBV of the model SP-1− TBV of the model SP-2 (4.46)

∆BEB = BEB of the model SP-1−BEB of the model SP-2 (4.47)
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Note that we use moments of R̄i in inequality (4.34) for BEB value calculation of

model SP-2. We first analyze effect of formulating only cancellations with beta dis-

tribution in Table 4.8 (e.g. pi > 0 ∀i and q=0). Each row represent average difference

of 5 instances. As we show in Proposition 4.5.1, expected score of model SP-2 is

greater than that of model SP-1. Besides, ∆E(score) values are small. Hence, ob-

jective value of model SP-2 gives a good upper bound on objective value of SP-1.

∆E(nscp) values are close to zero. TBV value of model SP-2 is smaller than that of

model SP-1 due to using R̄i in model SP-2. BEB value of SP-2 is smaller than BEB

value of model SP-1, meaning that when R̄i is used for modeling, BEB value of true

model SP-1 is calculated erroneously with a probability level of at maximum 0.02.

Table 4.8: Effect of beta distribution for q=0

pi Var(W1) ∆E(score) ∆E(nscp) ∆TBV ∆BEB

U(0.01-0.1) 0.01 -0.5 0.2 17.5 0.01
0.05 -3.9 -0.2 82.5 0.02

U(0.01-0.2) 0.01 -1.1 -0.3 27.9 0.01
0.05 -5.5 -0.1 150.7 0.02

In Table 4.9, we examine effect of beta distribution modeling by assuming there is no

cancellation in model (e.g. pi=0 ∀ i and q > 0). Similarly, expected score of model

SP-2 is greater than that of model SP-1. Besides, difference between objective values

begins to increase. Magnitude of ∆TBV, and ∆BEB values are much higher than

that of Table 4.8. Thus, effect of beta distribution modeling becomes more prominent

when there is no cancellation.

Table 4.9: Effect of beta distribution for pi=0 ∀i

q Var(W2) ∆E(score) ∆ns ∆TBV ∆BEB

0.4 0.01 -9.2 -0.8 128.6 0.03
0.05 -38.4 -2.0 637.4 0.04

0.5 0.01 -12.4 -0.4 164.7 0.03
0.05 -47.0 -2.4 819.5 0.03

We next examine mixed effect of beta distributions in the full model (e.g. pi > 0 ∀i
and q>0). We conduct a 24 factorial design with factors pi, q, V ar(W1) and V ar(W2).

We use 5 replications (i.e.24x5 = 80 runs) and calculate differences between model

SP-1 and SP-2. Effects of parameters pi and V ar(W1) on ∆ values are presented in
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Table 4.10. Each row represents average of 20 replications. As V ar(W1) increases,

magnitude of ∆E(score) and ∆E(nscp) values slightly increase and ∆TBV value in-

creases. Effects of parameters q and V ar(W2) are shown in Table 4.11. As both q and

V ar(W2) increase, magnitude of ∆E(score), ∆E(nscp) and ∆TBV values increase.

It is interesting to observe BEB values of both models SP-1 and SP-2 are very close

to each other in Tables 4.10 and 4.11. When we assess effects of all four factors, ef-

fects of q and V ar(W2) are more prominent. If we scrutinize all results in Tables 4.8,

4.9, 4.10 and 4.11, we make following observation:

Observation 4.5.1. If budget underutilization occurs due to only cancellations, model

SP-2 gives a good approximation to model SP-1. However, if some considerable frac-

tion of projects successfully complete with underutilized budget, quality of approxi-

mation of model SP-2 decreases.

Table 4.10: Mixed effect of beta distributions for pi and V ar(W1)

pi Var(W1) ∆E(score) ∆E(nscp) ∆TBV ∆BEB

U(0.01-0.1) 0.01 -18.5 -0.8 477.5 -0.005
0.05 -21.4 -0.9 550.7 0.001

U(0.01-0.2) 0.01 -16.3 -1.1 516.0 -0.004
0.05 -20.8 -1.5 659.2 0.006

Table 4.11: Mixed effect of beta distributions for q and V ar(W2)

q Var(W2) ∆E(score) ∆E(nscp) ∆TBV ∆BEB

0.4 0.01 -7.6 -0.7 215.8 0.006
0.05 -26.5 -1.4 762.2 -0.007

0.5 0.01 -9.4 -0.6 260.4 0.005
0.05 -33.5 -1.7 965.0 -0.007

4.5.5 What does modeling of uncertainty offer to DMs?

In this section, we quantify value of proposed model (PM) by assuming it captures

uncertainty behavior of practical life. If aforementioned PM is not applied, a well

known knapsack model (KM) will be solved. Hence, for problem size 2000, we solve

our 5 instances as a KM with si and bi parameters. Then, we calculate expected

score, expected spent budget (for θ=0.95) and expected number of successfully com-

pleted projects of solutions of KM by using probability information of PM. After, we
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compare these values with those of PM for different stochastic parameters by using

following formula and report improvements (%) in Table 4.12. Since we have 5 fac-

tors and 5 instances, we have calculate 25x5=160 improvement values. Each row in

Table 4.12 reports information of 80 comparisons.

Improvement (%) = 100 x
Expected Value of PM-Expected Value of KM

Expected Value of KM
(4.48)

Table 4.12: Value of Modeling Uncertainty

Improvement Values (%)
E(score) Budget Utilization E(nscp)

Factor Levels Min Avg Max Min Avg Max Min Avg Max

pi
U(0.01-0.1) 5.8 7.7 10.1 8.4 11.1 14.2 6.5 8.8 11.6
U(0.01-0.2) 8.2 10.4 13.2 11.9 15.0 18.6 9.4 12.2 15.6

q
0.4 5.8 8.3 11.3 8.4 12.0 15.8 6.5 9.7 13.8
0.5 6.9 9.8 13.2 10.1 14.2 18.6 7.7 11.3 15.6

E(W1);E(W2)
0.3 ; 0.8 7.5 10.1 13.2 11.0 14.7 18.6 8.4 11.7 15.6

0.35 ; 0.85 5.8 7.9 10.5 8.4 11.4 14.7 6.5 9.3 12.8

Var(W1)
0.01 5.8 9.0 13.2 8.4 13.1 18.6 6.5 10.5 15.6
0.05 5.8 9.0 13.1 8.4 13.0 18.5 6.5 10.5 15.6

Var(W2) 0.01 6.0 9.2 13.2 8.8 13.3 18.6 6.7 10.6 15.6
0.05 5.8 8.9 12.9 8.4 12.8 18.2 6.5 10.4 15.6

Factors pi and q have significant effect on improvement values. Therefore, value of

PM increases as those probability parameters increase. Factors E(W1), and E(W2)

have also important effect on improvement values. It is interesting to observe that

very small changes in means can result in notable impacts on improvement values.

Small returning budgets of many projects can constitute large amounts that make

additional room for budget constraint. As expected, V ar(W1) has no significant ef-

fect on improvement values since pi values smooth out its effect. Factor V ar(W2)

has small effects on improvement values. As it increases all improvement measures

slightly decreases (except max value of E(nscp) which remains the same). In over-

all, adopting the PM yields notable increases on objective value, budget utilization

and expected number of successfully completed projects. For instance, it provides

minimum 5.8%, average 9%, and maximum 13.2% improvement in expected score.
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Besides, budget utilization improvement is minimum 8.4%, average 13%, and maxi-

mum 18.6%. Moreover, improvement of expected number of successfully completed

projects is minimum 6.5%, average 10.5%, and maximum 15.6%.

4.6 Conclusions

In this chapter, we consider a one-stage public RDPPS problem with project expendi-

ture uncertainty. Analysis of empirical data leads to modeling of budget expenditure

uncertainty with a mixture distribution (i.e. truncated inflated beta distribution). We

develop a CCSP model for public RDPPS. However, it is computationally intractable

since derivation of quantile function for total random budget expenditure is challeng-

ing. Therefore, after showing sum of general truncated random variables converges

to normal distribution (i.e. CLT applies to total random budget spending of our prob-

lem), we use Gaussian (normal) approximation scheme and apply second order cone

programming reformulation to exactly solve approximated model. DMs wonder con-

vergence quality of normal approximation for financial decision making problems.

Therefore, we derive maximum probability error of normal approximation for any

solution by applying Berry-Esseen theorem to our problem. We also propose alterna-

tive ways to incorporate Berry-Esseen bound to decision making process. Note that

Berry-Esseen bound can be calculated for any distribution which has a finite mean,

variance and third moment. Therefore, our proposed approach can be effectively

adopted in CCSP formulation of any problem for which quantile function of a similar

type chance constraint cannot be derived.

We also conduct further analyzes for our problem to give managerial insights to the

DM. For instance, we analyze effect of probability level of CCSP on expected score

and identify that increasing probability level leads to more conservative portfolios.

We also analyze the case of unknown distribution of budget underspending of can-

celed and successfully completed projects. For this case, we give an alternative dis-

tribution modeling and compare it with proposed distribution modeling on different

problem settings. We observe that alternative modeling gives a good approximation

to proposed modeling if there is only cancellations in the problem. However, ap-

proximation quality diminishes in case of some considerable fraction of successfully
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completed projects underspend their budgets. Finally, we quantify the value of pro-

posed model by comparing it with the standard project selection model. Our proposed

model delivers an increase between 8.4% and 18.6% in utilization of funding budget

and an increase between 5.8% and 13.2% in total expected score of selected projects

in the portfolio.

In the next chapter, we study sectoral balancing problem in a public RDPPS model

by incorporating impact assessment results.
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CHAPTER 5

IMPACT ASSESSMENT BASED SECTORAL BALANCING IN

PUBLIC RDPPS PROBLEM

In this chapter, we study the sectoral budget balancing problem in the public RDPPS

model. We consider an R&D funding program to which many project proposals from

various sectors apply. We assume that sectoral impacts of the funding program are

known. The DM wants to distribute limited funding budget among sectors in the light

of sectoral impacts.

In Section 5.1, we state the problem setting. In Section 5.1.1, we develop a two-stage

public RDPPS model. In the first stage, the DM deals with sectoral budget decisions

to maximize the impact of the funding budget while ensuring relative budget balanc-

ing among the sectors. In the second stage, the DM wants to maximize the total score

of supported projects under allocated sectoral budgets. We propose a nonlinear social

welfare objective function in the first stage. In Section 5.1.2, we prove that nonlin-

earity in the objective function can be expressed by second-order conic inequalities.

In Section 5.1.3, we also develop an informed decision making approach to show the

effects of sectoral allocation on various indicators such as the total impact of funding

budget, total score of selected projects, sectoral scores and budgets, sectoral num-

ber of supported projects, and sectoral success rates. To the best of our knowledge,

incorporation of sectoral impacts into a public project selection model and in-depth

sectoral analysis of projects have not been studied before. In Section 5.2, we apply

the proposed approach on an example problem. We generate the example problem

by using sectoral public data of TÜBİTAK 1001 program. For the example prob-

lem, we also obtain proxy sectoral impact assessment values from the literature. In
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Section 5.2.5, we show the value of the proposed approach by comparing it with al-

ternative policy options to give insights to the DM. In Section 5.3, we present the

concluding remarks on the proposed approach.

5.1 Proposed Model and Solution Approach

In this problem setting, we have an R&D funding program. Many projects from var-

ious sectors apply to the funding program. Budget (bij) and score (sij) of project i

in sector j are clarified in panel review meetings. We assume that the impact of the

R&D funding program over different sectors are quantified according to past com-

pleted projects by some quantitative and/or qualitative method. Let ej and Bj be the

impact assessment value and allocated budget (decision variable) of sector j, respec-

tively. Selection of project i in sector j is indicated by a binary decision variable

xij . We develop a two stage model. In the first stage, the DM wants to maximize the

impact of the funding budget according to the impact assessment values of sectors by

considering sectoral balancing decisions (i.e. deciding on Bj values). In the second

stage, the DM wants to maximize the total score of selected projects (i.e. deciding on

xij values) in the portfolio under allocated sectoral budgets. Next, we discuss our two

stage model.

5.1.1 Two Stage Solution Procedure

In the first stage, formulation of the objective function is critical. The DM wants to

maximize the impact of the funding budget, whereas s/he also wants to ensure sectoral

balancing of the funding budget in a fair way. The DM wants to relatively balance

sectoral budget allocations according to the impact assessment values. In previous

studies, parameterized social welfare functions are applied for general balancing con-

cerns, and problem specific players (i.e. sectors, etc.) have not been compared accord-

ing to some measure. In our problem, we assume that we have the impact assessment

values and the DM wants to see a sectoral distribution compatible with those impact

assessment values. In addition, the DMs usually perceive sectoral impact assessment

findings as a result of allocated one unit budget to sectors. Therefore, we formulate
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the objective function of the first stage model as maximization of "
∑

j ejBj". This

objective function maximizes the total impact of the funding budget by considering

sectoral impact values (ej) and sectoral allocated budgets (Bj). However, this ob-

jective function is in the form of utilitarian objective function, which we discuss in

Section 2.2. Therefore, this objective function may fail to properly balance the fund-

ing budget among sectors because the utilitarian objective function may dominantly

favor the best sector at the expense of other sectors. Resulting sectoral budget allo-

cations may not be accepted by the DM due to relative balancing (i.e. impact value

based budget allocations to sectors in a fair way) concerns. Therefore, we adopt the

parameterized social welfare function in the objective function and develop the fol-

lowing model:

Stage I. (O1) max
∑
j

(ejBj)
1−α

(1− α)
(Total α-balanced Impact of the Budget)

(5.1)

s.t.
∑
j

Bj ≤ B (Sectoral Budget Allocation)

(5.2)∑
i

bij ≥ Bj ≥ 0 ∀ j (5.3)

The objective function O1 in (5.1) is formulated according to the parameterized so-

cial welfare function in (2.1). Note that we denote the uj as utility of sector j, and

uj = ejBj . The objective function maximizes the total impact of funding budget

while ensuring balancing of sectoral budgets with the parameter α. Constraint (5.2)

ensures that total allocated budget to sectors is limited by the funding budgetB. Con-

straint set (5.3) ensures that sectoral budgets cannot be negative and the budget of

a sector cannot be greater than sum of the budgets of the applying projects in that

sector. We don’t put any range restriction on the impact assessment values (i.e. ej

values). For example, as reviewed in Section 2.2, Lee et al. (2009), and Wang et al.

(2013) obtain impact assessment values between 0 and 1. Besides, Jaffe (1989) ob-

tains propensity to patent (i.e. patent elasticity), Mansfield (1998) measures percent-

age of new products and processes, and Cohen et al. (2002) consider categorical data

indicating sectoral importance and transform it into percentage units. Therefore, all
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of those measures could be used as ej values in the first stage model.

After deciding on Bj values in the first stage, we incorporate them into the second

stage model as sectoral budget limits. The second stage model is formulated as fol-

lows:

Stage II. (O2) max
∑
i

∑
j

sijxij (Total Score of R&D Project Portfolio)

(5.4)

s.t.
∑
i

bijxij ≤ Bj ∀ j (Sectoral Budget Limit)

(5.5)

xij ∈ {0, 1} ∀ i, j (5.6)

The objective function O2 in (5.4) maximizes total score of selected projects in all

sectors. Constraint set (5.5) ensures that total budget of selected projects in sector j

cannot exceed allocated sectoral budget Bj . Constraint set (5.6) indicates the selec-

tion decision of project i in sector j. In our two stage model, deciding on objective of

the first stage model and its associated sectoral allocations is equivalent to selection

of single α parameter. In the next section, we first discuss how α parameter of our

problem could be set. After that, we solve an example problem and give insights to

the DM about implications of different values of α.

Note that the objective function (O1) of the first stage model is nonlinear for α > 0.

We obtain the tractable reformulation of the first stage model in Section 5.1.2. In

particular, we prove that this nonlinearity can be expressed by conic quadratic in-

equalities for 0 < α < 1, hence the first stage model is easily solvable by commercial

solvers such as CPLEX. We also provide a reformulation example for α = 0.4 in

Example 5.1.1. Therefore, we can obtain a tractable reformulation for any α value

between 0 and 1.
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5.1.2 Second Order Cone Programming (SOCP) Reformulation of the Nonlin-

ear Objective

In the objective function of the first stage model given in (5.1), for a positive α, we

have the following nonlinear term for each sector j :

(ejBj)
1−α (5.7)

We first introduce an auxiliary variable tj and revise the objective function in (5.1) as

follows:

max
1

1− α
∑
j

tj (5.8)

and then we add the following constraint to the model.

tj ≤ (ejBj)
1−α ∀j (5.9)

We have a maximization objective; hence, the resulting reformulation with linear

objectives and non-linear constraint set is equivalent to original model.

Next, in the following Proposition 5.1.1, we show that resulting reformulation can be

expressed by conic quadratic inequalities. We drop index j of tj , ej , and Bj for the

sake of simplicity.

Proposition 5.1.1. Inequality (5.9)

t ≤ (eB)1−α

with e ≥ 0, B ≥ 0, t ≥ 0 is SOCP representable for α = k1

k2
where k1 and k2 are

integers such that 0 < k1 < k2.
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Proof. Inequality (5.9) can be written as t ≤ (eB)
k2−k1
k2 ⇒ tk2 ≤ (eB)k2−k1 . Then,

there exists a natural number k3 ≥ 0 such that

t2
k ≤ (eB)k2−k1 × tk3 where k = log2(k2 + k3), which can be further written as

t2
k ≤ (eB)k2−k1 × tk3 × 1k1 .

As discussed in Alizadeh and Goldfarb (2003), an inequality of the following form

t2
k ≤ s1s2.....s2k (5.10)

for t ≥ 0, s1 ≥ 0, .....,s2k ≥ 0 can be expressed by at most 2k−1 inequalities of the

form

w2
m ≤ umvm, wm, um, vm ≥ 0, 1 ≤ m ≤ 2k−1 (5.11)

Moreover, each inequalityw2
m ≤ umvm can be expressed by following conic quadratic

inequality:

‖2wm, um − vm‖ ≤ um + vm (5.12)

Example 5.1.1. Consider a problem setting with α = 0.4 = 2
5
, so k1 = 2, and k2 = 5.

Then we have t ≤ (eB)
3
5 ⇒ t5 ≤ (eB)3, which is equivalent to:

t8 ≤ (eB)3 × t3, which can be further expressed as:

t2
3 ≤ (eB)3× t3×12. Then we can reformulate this inequality with the form in (5.11)

with following inequalities:

w2
1 ≤ eB × t (5.13)
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w2
2 ≤ w1 × 1 (5.14)

t2 ≤ w1 × w2 (5.15)

where w1, w2 ≥ 0.

Moreover, these inequalities can be expressed by following conic quadratic inequali-

ties:

‖2w1, eB − t‖ ≤ eB + t (5.16)

‖2w2, w1 − 1‖ ≤ w1 + 1 (5.17)

‖2t, w1 − w2‖ ≤ w1 + w2 (5.18)

We reformulate all remaining α levels used in the example problem accordingly.

5.1.3 Informed Decision Making Approach for the Selection of α

Determining the α value depends on problem environment and concerns of the DM.

Therefore, we conduct preliminary experiments with the first stage model. Our pre-

liminary study suggests that allocated sectoral budgets become almost equal for α ≥
0.9. Clearly, this is not desirable for the DM because s/he wants to relatively balance

funding budget according to the sectoral impact values. Therefore appropriate oper-

ational α value for our problem setting is at most 0.9. But, how can the DM decide

on a suitable α value between 0 and 0.9? In real-world resource allocation problems,

the DMs are usually informed with related problem properties to gain managerial im-

plications and select the desired portfolio. To adopt an appropriate α level for our

problem setting, the DM is interested in how following problem properties behave

for various α values:

(1) Degradation of total impact of funding budget (stage I) objective (i.e. price

of sectoral balancing) and associated sectoral budget distribution: Bertsimas

et al. (2011) have recently introduced the price of fairness (balancing) concept,

which measures relative loss in the linear objective (i.e. utilitarian objective)
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value under positive α value, compared to α = 0. For our problem setting,

price of balancing for any α (i.e. POB(α)) can be expressed as;

POB(α) =
O1(α0)−O1(α)

O1(α0)
(5.19)

where O1(α0) is the optimum objective value of O1 when we solve the model

for α = 0 and O1(α) is the corresponding linear objective value (i.e.
∑

j ejBj)

when we solve the model for positive α. As we increase α, corresponding linear

objective value decreases because of sectoral balancing. However, distribution

of total impact objective (O1) and funding budget (B) among sectors changes

and relative balancing is achieved. Hence, as we increase α, the DM will evalu-

ate POB(α) value and resulting distribution of O1 and B. Thereby, the DM will

have an idea about how α affects sectoral budget allocations and total impact

of funding budget.

Empirical derivation of POB(α) is given in (5.19). On the other side, Bertsimas

et al. (2011) provide theoretical bound on POB(α) for the case α = 1 and

α → ∞. Moreover, Bertsimas et al. (2012) underline that practical setting of

α can be demanding for any value of α > 0. Hence, to facilitate selection of

problem specific α, they generalize the characterization of theoretical bound

on POB(α) for any α > 0 as a function of number of players and ratio of

maximum utility over minimum utility. Derivation of a bound on POB(α) needs

additional technical effort which is presented in Appendix B.1. These bounds

reflect strategic long term insights to DM for the selection of α parameter. For

instance, if the DM is not willing to exceed the price of balancing more than

45% in any problem instance in the worst case, DM can select corresponding

α value accordingly. To decide on the α value, Bertsimas et al. (2011) benefit

from POB(α) and compare it with equal balancing case (i.e. α → ∞) in a

different problem setting. However, in our problem setting, we know α ≤
0.9 and we have additional problem properties such as second stage objective

function distribution among sectors, average score and budget of the supported

projects in each sector, the number of supported projects and success rate in

each sector. The DM may arise different concerns and preferences about those

100



problem properties. Thus, s/he can benefit from analysis of those properties to

decide on the α value. Next, we discuss how to examine them.

(2) Effect of sectoral balancing on total score (stage II) objective: The DM wants

to see how total score objective could change, as α increases. In addition, the

DM wants to know how total score distribution among sectors could change,

as we increase α value. There can be many interesting patterns for different α

values. For example, the DM may wonder whether there is any sector that has

low impact value but dominates total sectoral score objective, as we increase α

value.

(3) The average score and the budget of selected projects in each sector: The DM

may wonder how the average score and the budget of supported projects in

each sector may behave, as we increase the α value. There might be some

undesirable cases under different α values. For instance, the DM may want

to learn whether there is any low impact valued sector whose average score

decreases as well as whose average budget increases notably, as we increase

the α value. Because, this kind of pattern implies that probability of selecting

low scored projects could increase in a low impact valued sector as we increase

the α value, which may not be desirable for the DM.

(4) The success rate and the number of selected projects in each sector: In pub-

lic R&D funding organizations, one of the most used indicators for assessing

sectoral competition among proposals is the success rate of each sector. It is

the ratio of the number of selected (i.e. supported) projects over the number

of submitted proposals in each sector. For example, the DM may want to re-

quire an R&D project portfolio in which low impact valued sectors must have

lower success rates; whereas, high impact valued sectors must have higher suc-

cess rates. Thus, the DM wants to learn the success rate of each sector under

various α setting. Besides, the number of submitted project proposals could

notably change in each sector and the DM may also wonder about the number

of supported projects in each sector. Therefore, evaluating success rate with

the number of supported projects is more beneficial. For instance, the DM may

want to learn whether there is any low impact valued sector whose success rate

and number of projects increase considerably, as we increase α. Because, the
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DM may not want to support too many projects in a low impact valued sector.

We addressed problem properties (i.e. sectoral indicators) that can assist to the DM

while selecting appropriate α value. In the next section, we conduct in-depth anal-

ysis of those steps by solving a practical-size example problem and give managerial

insights for deciding sectoral allocations (i.e. selection of α).

5.2 An Example Problem

We are motivated by TÜBİTAK 1001 scientific and technological research projects

funding program. However, impact assessment of this funding program has not yet

been conducted by the Department of Impact Assessment of MSTI. In their web

site, there isn’t any published report about assessment findings of funding programs.

Therefore, we adopt proxy impact assessment values from the literature. In Table 5.1,

we obtain the average impact of seven scientific disciplines of Wang et al. (2013) by

processing their data across eighteen funding programs and applying their vague set

methodology. We use their preferred aggregation parameter λ = 0.5 for their vague

set approach. However, scientific disciplines of TÜBİTAK 1001 program are slightly

different. Thus, we also try to match them as in Table 5.1.

Table 5.1: Proxy impact assessment values for the example problem

TÜBİTAK 1001 program Wang et al. (2013) impact assessment
Scientific disciplines (j) Scientific Disciplines values (ej)

Environment, Atmosphere, Earth and Marine Sciences Earth sciences (ES) 0.395
Electrical, Electronics and Informatics Information sciences (IS) 0.354

Engineering Engineering and material sciences (EMS) 0.391
Health Sciences Life science (LS) 0.333

Social Sciences and Humanities Management sciences (MS) 0.232
Basic Sciences Mathematical and physical sciences (MPS) 0.331

Agriculture, Forestry and Veterinary Chemical sciences (CS) 0.417

For each sector, we calculate the number of project proposals and the budget range of

project proposals in Table 5.2. We use real descriptive statistics of TÜBİTAK 1001

program given in Appendix B.2. As shown in Table B.1 of Appendix B.2, a total of

3218 project proposals apply to two calls of TÜBİTAK 1001 program in 2012 and

the average number of project proposals per call is greater than 1600 proposals. We

also know that the number of project proposals increases every year. Therefore, we
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set the number of project proposals to 2000. We determine the number of project

proposals in each sector by using sectoral percentage distribution given in Table B.1

of Appendix B.2. For instance, the sectoral percentage of environment, atmosphere,

earth and marine sciences is 7.46 %, then we obtain 149 proposals in this sector in

Table 5.2 (2000x0.0746 and rounding it to nearest integer). We randomly generate

the budget (bij) of project i in sector j according to a uniform distribution between

[Umin, Umax]. Umax cannot be grater than 36 (in 10,000 monetary units) because this

is the current maximum project budget upper bound in TÜBİTAK 1001 program. We

assume that Umin cannot be lower than 7 (in 10,000 monetary units). Note that sec-

toral Umin and Umax values are set according to average budget column of Table B.1

in Appendix B.2. Apparently, the average budget of each sector is different. We

randomly generate the score (sij) of project i in sector j according to uniform dis-

tribution between [10,25]. We determine the total available funding budget (B) by

setting B = (
∑

ij bij) x bf , where the budget fraction (bf ) value is set to 0.17 by

using the success rate given in Appendix B.2 as a proxy. We also assign a code to

each sector in Table 5.2 for the sake of brevity.

Table 5.2: The number of proposals and the budget range in each sector

Sector TÜBİTAK 1001 program Number of Project Budget
code Scientific disciplines (j) Proposals Umin Umax

s1 Environment, Atmosphere, Earth and Marine Sciences 149 21 36
s2 Electrical, Electronics and Informatics 143 9 36
s3 Engineering 349 7 36
s4 Health Sciences 257 23 36
s5 Social Sciences and Humanities 305 7 22
s6 Basic Sciences 470 11 36
s7 Agriculture, Forestry and Veterinary 327 14 36

Total 2000

We generate our problem instance and solve it for α = 0, 0.1, ..., 0.9. We use IBM

ILOG CPLEX 12.6.2 with Concert Technology and C++ programming language for

computational experiments. Then, we apply steps of our informed decision making

approach given in Section 5.1.3 to assist to the DM for selection of α.

103



5.2.1 Degradation of total impact of funding budget and associated sectoral

budget distribution

The distribution of the total impact of the funding budget (O1) and the distribution of

the funding budget (B) among sectors is given in Table 5.3. POB (α) values are also

given at the bottom of table. Note that sector s7 receives the whole funding budget

Table 5.3: Budget impact, sectoral budget allocations, and POB (α)

Budget Impact (O1)
ej α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9

s1 0.395 0.0 711.0 621.7 560.1 522.6 500.1 479.1 465.7 455.8 447.5
s2 0.354 0.0 237.5 359.3 389.1 397.2 399.3 399.3 398.3 397.2 396.1
s3 0.391 0.0 642.4 591.2 541.9 509.1 489.1 471.2 459.0 450.0 442.6
s4 0.333 0.0 128.9 264.7 317.4 341.0 352.0 360.6 365.0 368.0 370.3
s5 0.232 0.0 3.5 43.4 95.1 138.0 172.1 197.4 217.9 234.3 247.8
s6 0.331 0.0 121.5 256.9 310.8 335.6 346.9 356.8 361.8 365.4 367.7
s7 0.417 3258.9 1222.6 815.7 671.4 598.4 551.7 524.2 503.3 487.5 475.4

Total 3258.9 3067.4 2952.9 2885.7 2841.9 2811.2 2788.7 2770.9 2758.2 2747.5

Budget Allocations (Bj)
ej α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9

s1 0.395 0 1800 1574 1418 1323 1266 1213 1179 1154 1133
s2 0.354 0 670 1015 1099 1122 1128 1128 1125 1122 1119
s3 0.391 0 1643 1512 1386 1302 1251 1205 1174 1151 1132
s4 0.333 0 387 795 953 1024 1057 1083 1096 1105 1112
s5 0.232 0 15 187 410 595 742 851 939 1010 1068
s6 0.331 0 367 776 939 1014 1048 1078 1093 1104 1111
s7 0.417 7814 2932 1956 1610 1435 1323 1257 1207 1169 1140

Total 7814.0 7814.0 7815.0 7815.0 7815.0 7815.0 7815.0 7813.0 7815.0 7815.0

POB(α) 0.000 0.059 0.094 0.114 0.128 0.137 0.144 0.150 0.154 0.157

for α = 0, because it has the highest impact value. Thus, α = 0 value is impractical.

As we increase α, the distributions of O1 and B quickly change and relative balanc-

ing is achieved. Note that the price of balancing increases as we increase α. For

instance, the total impact of the funding budget drops from 3258.9 to 2841.9 for 0.4,

and associated the price of balancing value becomes 0.128. However, the distribution

of the funding budget becomes more balanced. We also plot the distributions of O1

and B in Figure 5.1 and 5.2, respectively to give a concrete representation about how

sectoral balancing works.

In Figure 5.1, as we increase α, the contributions of sectors s7, s1, and s3 to objective

O1 decrease, whereas those of sectors s2, s4, s6, and s5 increase. Note that the impact
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Figure 5.1: Sectoral budget impact distribution under different α levels
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Figure 5.2: Sectoral budget distributions under different α levels
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values of sectors s7, s1, and s3 are greater than the median impact value, sector s2 has

median impact value, and the impact values of sectors s4, s6, and s5 are lower than

the median impact value. As we increase α, the distribution of objective O1 among

sectors is adjusted according to sectoral impact values. Hence, distribution under var-

ious α levels constitutes a funnel shape. Note that sectors s4 and s6 follow the same

increasing pattern because their impact values are almost the same. Similarly, sectors

s1 and s3 follow very similar decreasing pattern since their impact values are very

close. Decrease in sector s7 is sharper than any other sector since it has the highest

impact value. Note that shares of sectors in objective O1 are strictly compatible with

sectoral impact values. In other words, share of the highest impact valued sector is

the highest, and share of the lowest impact valued sector is the lowest. This struc-

ture shows how social welfare objective splits total impact of funding budget among

sectors, as we increase α level.

Associated allocated sectoral budgets (i.e. Bj values) are presented in Figure 5.2.

Similar adjustment pattern and funnel shape are also observed in sectoral allocated

budgets. However, adjustment of funding budget is not that strict as in O1. For

instance, sectoral allocated budgets converge to almost the same funding level for α =

0.8, 0.9. Note that sector s5 gets funding amount very close to zero for α = 0.1, which

could be undesirable for the DM. Therefore, for our example problem, those α values

(i.e. 0.1, 0.8, and 0.9) turn out be impractical for the DM. Note that sectors s4 and s6

receive almost the same amount of funding due to impact values. Likewise, sectors s1

and s3 get nearly the same amount of funding. As we increase α, distribution of B is

rapidly adjusted according to impact values. However, after some α value, allocated

amounts to sectors turn out be almost the same, which contradicts with the idea of

relative balancing according to impact values. That’s why determining α value in

social welfare objectives depends on problem environment and concerns of the DM.

We also present price of balancing and its theoretical bound in Figure 5.3. As we

expected, price of balancing (POB(α)) increases as we slightly increase α. However,

sectoral balancing prominently improves. For instance, if the DM selects α = 0.3,

price of balancing will be around 0.11. This means that total impact of funding bud-

get (O1) will be 11% lower than its optimal value (i.e. maximum value of O1 for

α = 0); however, resulting sectoral allocated budgets will be practical for the DM.
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We illustrate our approach on the example problem. Price of balancing is not greater

than 15% for α = 0.7. (Recall that α ≥ 0.8 is impractical for this example prob-

lem). In other words, the loss in the optimum budget impact objective due to sectoral

balancing is smaller than 15%. Note that calculated theoretical bound is around 45%

for α = 0.7. This theoretical bound implies that price of balancing of any problem

instance will not be worse than 45% as long as we keep number of sectors and ratio of

maximum impact value over minimum impact value (see R value in Appendix B.1)

as constant. As discussed in Bertsimas et al. (2012), worst case bound provides long

term implications to the DM for the selection of α. For our problem setting, the DM

could benefit from theoretical bound as follows. Let us assume that impact assess-

ment of an R&D funding program is conducted in every five years. Hence, sectoral

impact assessment values will be valid during five years. Let us also assume that

sectoral classification will not be changed during five years (i.e. number of sectors is

constant). During those five years, total number of project proposals, its distribution

among sectors, budget and score scheme of projects as well as available funding bud-

get could change in different calls of the program. Therefore, this bound indicates

the price of balancing of any call instance in the worst case. For example, if the DM

wants to ensure that price of balancing will be smaller than 45% in any call instance

in the future, s/he perceives from Figure 5.3 that α could be at most 0.7.

We also examine price of balancing of the example problem under alternative ej val-

ues. Bertsimas et al. (2012) discuss that the bound value may not be pathologic and

price of balancing can be close to the bound value. Therefore, we change impact

values of sectors used in the example problem, because, for our problem setting, only

impact values affect price of balancing under the same number of sectors (see Ap-

pendix B.1 for details). We generate two alternative cases by keeping the same level

theoretical bound (i.e. R parameter, see Appendix B.1 for details) and relative rank-

ing of impact values. We also define relative total distance (RTD)=
∑

j(max
j∈M

ej− ej)
where M is set of sectors. Alternative impact values are given in Table 5.4. Then, we

solve our problem instance with those impact values and also plot associated price

of balancing values in Figure 5.3 as alternative cases (i.e. ac1 and ac2). We observe

that price of balancing for alternative cases is below than 30% (i.e. it increases from

15% to 27% for α = 0.7 ). We also observe that as RTD increases, price of balancing
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Figure 5.3: Price of balancing

increases. Because RTD measures total distance from the highest impact value. Note

that RTD value of the example problem is 0.47 (i.e. impact values data of Wang et al.

(2013)).

Table 5.4: Two alternative cases of ej levels

sectors ac1 ac2

s1 0.9 0.8
s2 0.7 0.7
s3 0.8 0.75
s4 0.67 0.65
s5 0.55 0.55
s6 0.65 0.6
s7 1 1

RTD 1.73 1.95

We present distribution of O1 and B to the DM with price of balancing information.

It seems that the DM could prefer α values between 0.2 and 0.7 by evaluating given

information so far. However, in our problem setting, sectoral balancing could affect

many problem properties, which are wondered by the DM. Hence, the DM could

refine possible α values by considering those problem properties. Next, we illustrate

and discuss them respectively.
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Figure 5.4: Relationship between objective O1 and O2

5.2.2 Effect of sectoral balancing on the total score

Relationship between objective O1 and O2 is given in Figure 5.4. As we increase

α, objective O1 decreases due to price of balancing, whereas objective O2 improves.

Because, as sectoral balancing improves, all sectors get more funding and more high

scored projects of each sector are selected in the portfolio. We also measure the total

score increase (i.e. TSI(α)) by using the following formula:

TSI(α) =
TS(α)− TS(α0)

TS(α0)
(5.20)

where TS(α0) is the total score of selected projects when we solve our two stage

model for α = 0 and TS(α) is the total score of selected projects when we solve the

model for positive α. In Figure 5.5, we present the total score increase and associated

price of balancing to give more insights to the DM. For instance, if the DM selects

α = 0.2, price of balancing will be around 9.5% (i.e. O1 decreases from 3258.9 to

2952.9), but total score increase will be around 68% (i.e. O2 increases from 5438
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Figure 5.5: Price of balancing and total score increase

to 9176). Therefore, total score improves notably, as we slightly increase α level.

This observation shows significance of sectoral balancing and supports the idea that

imbalanced portfolios are not practical for the DMs.

Distribution of total score (O2) among sectors is presented in Table 5.5. Recall that

sector s7 gets total funding budget for α = 0; hence, total score is 5438, which equals

to sectoral score of s7. As we increase α, distribution of O2 notably changes and

sectoral balancing occurs. We also plot distribution of O2 under various α values in

Figure 5.6 to give implications about how sectoral budget balancing affects sectoral

scores. As we increase α, sectoral score of s7, s1, and s3 decreases, whereas that of

sectors s2, s4, s6, and s5 increases (Recall that impact value of sectors s7, s1, and s3

is greater than that of s2, s4, s6, and s5). This is the similar pattern observed both in

distribution of stage I objective O1 and total funding budget (B). On the other side,

due to different budget range of each sector (recall that sectoral budgets are different,

see Table 5.2 for sectoral budget details), reaction of sectors to different allocated

budgets could notably change in terms of sectoral scores. Distribution of O1 and (B)

is always compatible with sectoral impact values. Namely, lower impact valued sec-
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Table 5.5: Distribution of total score objective (O2) among sectors

Total Score (O2)
ej α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9

s1 0.395 0 1469 1317 1209 1142 1101 1063 1037 1018 1004
s2 0.354 0 885 1180 1244 1261 1266 1266 1264 1261 1259
s3 0.391 0 2382 2251 2120 2031 1975 1924 1889 1863 1841
s4 0.333 0 344 680 804 860 885 905 916 922 927
s5 0.232 0 48 507 976 1314 1562 1737 1873 1977 2061
s6 0.331 0 631 1200 1406 1495 1536 1571 1588 1601 1609
s7 0.417 5438 2780 2041 1754 1599 1498 1437 1390 1354 1327

Total 5438 8539 9176 9513 9702 9823 9903 9957 9996 10028

POB(α) 0.000 0.059 0.094 0.114 0.128 0.137 0.144 0.150 0.154 0.157
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Figure 5.6: Distribution of total score under various α levels
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tor allocation in distribution of O1 and (B) cannot be greater than allocation of higher

impact valued sector. However, when it comes to distribution of sectoral scores, allo-

cated sectoral scores in each sector are not necessarily compatible with impact values

because of different sectoral budgets (Later, we see that similar behavior will also be

observed for other remaining problem parameters such as average sectoral score, sec-

toral success rate and number of supported projects in each sector). This situation can

be clearly observed in Figure 5.6 since there are many intersections of sectoral lines

under different values of α. In Figure 5.6, as we increase α, we observe that change

in sectoral score of sector s5 is the most prominent. For instance, its sectoral score

is close to zero for α = 0.1, whereas, its sectoral score gets maximum share in O2

for α = 0.9. This kind of behavior implies that as we increase α, the lowest impact

valued sector might dominate other sectors in terms of sectoral score, which may not

be desirable for the DM. Later, we also discuss that there are different implications of

this behavior of sector s5 in terms of other sectoral indicators.

The DM may arise different concerns in terms of sectoral scores. Let us assume

that the DM wants to keep share of the lowest impact valued sector in total score

small. For instance, the DM may require that sectoral score of the lowest impact

valued sector (i.e. sector s5) should be smaller than that of median impact valued

sector. This would suggest α value of at most 0.3 (Recall that sector s2 has median

impact value). Note that price of balancing is 11.4% and total score increase is 75%

for α = 0.3 (see Figure 5.5). Similarly, the DM may prefer that sectoral score of

the lowest impact valued sector must be smaller than that of highest impact valued

sector (i.e. sector s7). This preference would suggest α value of at most 0.4. Note

that price of balancing is 12.8% and total score increase is around 78% for α = 0.4.

Therefore, the DM could give different concerns according to distribution of total

sectoral score and could select corresponding α value. We illustrate and discuss how

sectoral balancing could affect total score objective and its distribution among sectors.

We also give illustrative concerns of the DM to assist for selecting α.

Next, we discuss average score and budget of supported projects in each sector under

various α values.
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5.2.3 Average score and budget of supported projects in each sector

Average score and budget of supported projects in each sector are given in Table 5.6.

As we increase α, overall average score increases. For instance, overall average score

is 17.4 for α = 0, it becomes 20.1 for α = 0.2 and remains almost the same for other α

values. In addition, overall average budget decreases, as we increase α. For example,

overall average budget is 25 for α = 0, it becomes 18.2 for α = 0.1, and it goes on

decreasing for other α values. Therefore, overall average score increases and overall

average budget decreases, as we increase α. However, note that sectoral average score

and sectoral average budget behave differently. In particular, the average budget and

score of some sectors decrease, whereas the average budget and score of some sectors

increase. For that reason, we also plot average score and budget of supported projects

in each sector under various α values in Figures 5.7 and 5.8 respectively to give more

concrete insights about how sectoral balancing affects those indicators.

Table 5.6: Average score and budget of supported projects under various α levels

Average Score
ej α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9

s1 0.395 0 21 21.6 21.6 21.5 21.6 21.7 22.1 22.1 21.8
s2 0.354 0 18.1 18.4 18 18.3 18.1 18.1 18.1 18.3 18.2
s3 0.391 0 19.2 19.1 19.1 19.2 19.4 19.4 19.5 19.4 19.4
s4 0.333 0 22.9 21.9 21.7 21.5 21.6 21.5 21.3 21.4 21.1
s5 0.232 0 24 22 21.2 20.5 20.3 20 19.9 20 19.8
s6 0.331 0 22.5 21.1 20.7 20.5 20.5 20.4 20.4 20.3 20.4
s7 0.417 17.4 19.7 20 20.4 20.5 20.5 20.5 20.7 20.8 20.7

avg 17.4 19.9 20.1 20.1 20.1 20.1 20.0 20.1 20.1 20.0

Average Budget
ej α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9

s1 0.395 25.7 25.8 25.3 25 24.8 24.8 25.1 25.1 24.6
s2 0.354 13.7 15.9 15.9 16.3 16.1 16.1 16.1 16.3 16.2
s3 0.391 13.3 12.8 12.5 12.3 12.3 12.2 12.1 12 11.9
s4 0.333 25.8 25.6 25.8 25.6 25.8 25.8 25.5 25.7 25.3
s5 0.232 7.5 8.1 8.9 9.3 9.6 9.8 10 10.2 10.3
s6 0.331 13.1 13.6 13.8 13.9 14 14 14 14 14.1
s7 0.417 25 20.8 19.2 18.7 18.4 18.1 18 18 18 17.8

avg 25.0 18.2 17.1 16.5 16.2 16.0 15.8 15.8 15.7 15.6

POB(α) 0.000 0.059 0.094 0.114 0.128 0.137 0.144 0.150 0.154 0.157

In Figure 5.7, as we increase α, we observe that average sectoral score of s5, s4, and

s6 notably decreases until α = 0.4. Recall that impact value of those sectors is strictly
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Figure 5.7: Sectoral average score under various α values

smaller than median impact value. The DM may arise some specific concerns regard-

ing average sectoral scores. Let us assume that the DM is inclined to increase project

competition in low impact valued sectors and s/he wants to keep average project score

in low impact valued sectors relatively higher. For instance, the DM may want that

average score in the lowest impact valued sector (i.e. sectors s5) should not be smaller

than that of the highest impact valued sector (i.e. sector s7). This concern would sug-

gest α value of at most 0.4. In Figure 5.8, as we increase α, average sectoral budget

values do not notably change except sector s7 (i.e. the highest impact valued sector)

and s5 (the lowest impact valued sector). As we increase α, average budget in sector

7 decreases. Note that in Figure 5.7, average score of sector s7 increases, as we in-

crease α. Hence, higher scored projects are selected with lower budgets in sector s7,

which could be desirable for the DM. On the other side, as we increase α, average

budget in sector 5 increases. Recall that in Figure 5.7, average score of sector s5 no-

tably decreases, as we increase α. Hence, more low scored projects are selected with

higher budgets in sector s5 (i.e. the lowest impact valued sector), which may not be

desirable for the DM. Therefore, if the DM evaluates Figure 5.7 and 5.8, s/he could
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Figure 5.8: Sectoral average budget under various α values

select α value of at most 0.4.

Next, we discuss success rate and number of selected projects in each sector under

various α values.

5.2.4 Success rate and number of selected projects in each sector

Success rate (i.e. ratio of number of supported projects over number of submitted

project proposals) and number of supported projects in each sector are presented in

Table 5.7. As we slightly increase α, overall success rate and total number of selected

projects notably increase due to sectoral balancing. For instance, overall success rate

is 0.16 and total number of selected projects is 313 for α = 0 (Recall that only sector

s7 is supported for α = 0, which is not practical), overall success rate rises to 0.23

and total number of selected projects reaches to 456 for α = 0.2. This pattern also

demonstrates importance of sectoral balancing and supports the practical validity of

sectoral balancing to some extent. However, after some α value, sectoral balancing

might negatively affect the R&D project portfolio in terms of success rate and number
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of selected projects. For that reason, we also plot sectoral success rates and sectoral

numbers of supported projects in Figure 5.9 and 5.10, respectively to capture possible

negative effects of sectoral balancing on the R&D project portfolio.

Table 5.7: Success rate and number of selected projects under various α levels

Success Rate
ej α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9

s1 0.395 0 0.47 0.41 0.38 0.36 0.34 0.33 0.32 0.31 0.31
s2 0.354 0 0.34 0.45 0.48 0.48 0.49 0.49 0.49 0.48 0.48
s3 0.391 0 0.36 0.34 0.32 0.30 0.29 0.28 0.28 0.28 0.27
s4 0.333 0 0.06 0.12 0.14 0.16 0.16 0.16 0.17 0.17 0.17
s5 0.232 0 0.01 0.08 0.15 0.21 0.25 0.29 0.31 0.32 0.34
s6 0.331 0 0.06 0.12 0.14 0.16 0.16 0.16 0.17 0.17 0.17
s7 0.417 0.96 0.43 0.31 0.26 0.24 0.22 0.21 0.20 0.20 0.20

avg 0.16 0.21 0.23 0.24 0.24 0.24 0.25 0.25 0.25 0.25

Number of Selected Projects
ej α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9

s1 0.395 0 70 61 56 53 51 49 47 46 46
s2 0.354 0 49 64 69 69 70 70 70 69 69
s3 0.391 0 124 118 111 106 102 99 97 96 95
s4 0.333 0 15 31 37 40 41 42 43 43 44
s5 0.232 0 2 23 46 64 77 87 94 99 104
s6 0.331 0 28 57 68 73 75 77 78 79 79
s7 0.417 313 141 102 86 78 73 70 67 65 64

Total 313 429 456 473 483 489 494 496 497 501

POB(α) 0.000 0.059 0.094 0.114 0.128 0.137 0.144 0.150 0.154 0.157

In Figure 5.9, as we increase α, success rate of sector s1, s7, and s3 (i.e. high impact

valued sectors) decreases; whereas success rate of sector s2, s4, s6, and s5 increases.

In addition, decreasing pattern is notable in the highest impact valued sector s7. In-

creasing pattern of the lowest impact valued sector s5 is the most prominent. Success

rate of sector s1 and s2 is higher than other sectors because number of project propos-

als in those sectors are low (see Table 5.2) when compared to other sectors (except

that success rate of sector s5 exceeds that of sector s1 for α > 0.7). Let us assume

that the DM wants to see lower success rate in low impact valued sectors (i.e. sectors

s4, s6, and s5) and higher success rate in high impact valued sectors (i.e. sectors s1,

s7, and s3). This preference would suggest α value of at most 0.4. If the DM selects

α = 0.4, success rate of sectors s4, s6, and s5 will be greater than 0.16, and success

rate of sectors s1, s7, and s3 will be greater than 0.24. Therefore, for α = 0.4, even
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Figure 5.9: Sectoral success rate under various α values
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Figure 5.10: Number of selected projects under various α values
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success rates of low impact valued sectors also exceed some specific threshold value

such as 0.15, which could be desirable for the DM due to sectoral balancing concerns.

Analyzing success rate with number of supported projects could give a more mean-

ingful picture since number of project proposals can vary among sectors. For exam-

ple, sectoral success rates of sectors s4 and s6 are the same in Figure 5.9; however,

number of supported projects in those sectors are not equal due to different number

of project proposals (see Table 5.2). In Figure 5.10, as we increase α, number of sup-

ported projects of sector s7, s3, and s1 (i.e. high impact valued sectors) decreases, but

number of supported projects of sector s2, s6, s4, and s5 increases. Like in success

rate, change in number of supported projects is more notable in sector s7 (i.e. the

highest impact valued sector) and s5 (i.e. the lowest impact valued sector). We also

observe that number of supported projects of sector s5 becomes greater than that of

sector s7 for α > 0.4, which could be undesirable for the DM. Let us assume that the

DM wants to keep success rate and number of supported projects of the lowest impact

valued sector relatively small. Therefore, when we examine sectoral success rates and

sectoral number of supported projects, it turns out that practical α value could be at

most α = 0.4. Because, for α ≥ 0.5, too many projects are supported in the lowest

impact valued sector s5 as well as its success rate exceeds that of the highest impact

valued sector, which could be refused by the DM.

Next, we present value of our proposed approach.

5.2.5 Value of the Proposed Sectoral Allocation Model

We compare our proposed sectoral allocation model with some policy options that

can be adopted for sectoral allocation if impact assessment values are not available.

We define three policy options that could be practically applied as heuristics for this

purpose. First one is maximization of only total score objective with no sectoral

constraints (Max-Score). Second option is dividing funding budget among sectors

equally (Eq-Sec-Alloc). Third option is dividing funding budgets among sectors ac-

cording to direct proportion of normalized number of project proposal × average

budget in each sector (Weighted-Demand). We compare our proposed approach under

α = 0.4 with those policy options. We select α = 0.4 for comparison (Sec-Balancing)
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Figure 5.11: Sectoral allocations under different policy options

since our informed decision making approach suggests this α value several times ac-

cording to illustrative preferences of the DM.

In Figure 5.11, we present allocated sectoral budgets (in 10,000 monetary units) un-

der each policy option and sectoral balancing with α = 0.4. Note that we sort the

sectors according to their impact values to give a more concrete representation. We

observe that allocated sectoral budgets might notably change according to adopted

policy option. For example, if the DM selects only maximization of score objec-

tive without any sectoral restrictions (i.e. Max-Score), sector s5 will receive serious

amount of funding (i.e. nearly one over third of funding budget). However, note

that it will get the minimum amount of funding if the DM applies impact assessment

based sectoral balancing approach (i.e. Sec-Balancing). We also observe that sector

s4 receives no funding under Max-Score policy option since its sectoral budget range

is the maximum (see Table 5.2). We also observe that sector s1, one of high impact

valued sectors, receives very little under Max-Score policy option. Sectoral budget

allocation under Max-Score policy option demonstrates that sectoral budget decisions

should be incorporated into decision making process.
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Under Eq-Sec-Alloc policy option each sector receives the same amount. Note that

allocated budget of sector s5 nearly doubles under Eq-Sec-Alloc policy option when

we compare it with its allocation under Sec-Balancing policy. Recall that number of

projects of sector s5 increases considerably if it exceeds allocated budget under Sec-

Balancing policy with α = 0.4. Therefore, negative portfolio effect of sector s5 still

remains under Eq-Sec-Alloc policy option. This observation also shows significance

of proposed informed decision making approach. Because, deciding on sectoral bud-

gets with several portfolio indicators in an interactive manner unveils many interesting

patterns of sectors and gives more insights to the DM.

Under Weighted-Demand policy option each sector receives funding proportion cal-

culated by normalizing number of project proposal × average budget. We observe

that sector s1 and s5 get similar amount of funding under Weighted-Demand policy

option. However, they receive very different amounts under Sec-Balancing option

due to their impact values. In addition, we observe that allocated budgets of sector s1

and s2 under Weighted-Demand policy option are notably smaller than their allocated

budgets under Sec-Balancing option. We also observe that allocated budget of sector

s6 under Weighted-Demand policy option considerably exceeds its allocated budget

under Sec-Balancing option. Clearly, alternative policy options in the absence of im-

pact assessment values could result in different allocations when we compare them

with proposed Sec-Balancing approach.

In addition, in Table 5.8, we calculate total impact of funding budget (O1) and asso-

ciated price of balancing for each policy option. For instance, total impact of funding

budget (O1) under Max-Score policy option is 2570.4 with price of balancing %21.1.

Total impact of funding budget (O1) are 2737.5 (with price of balancing %16.0) and

2768.3 (with price of balancing %15.1) under Eq-Sec-Alloc and Weighted-Demand

policy options, respectively. However, total impact of funding budget (O1) under pro-

posed approach (α = 0.4) is 2841.9 with price of balancing %12.8. Overall, our

proposed approach enhances the total impact of funding budget by appropriately bal-

ancing sectoral budgets.
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Table 5.8: Total impact under various policy options

Max-Score Eq-Sec-Alloc Weighted-Demand Sec-Balancing (α = 0.4)

Total Impact (O1) 2570.4 2737.5 2768.3 2841.9
Price of balancing 21.1% 16.0% 15.1% 12.8%

5.3 Conclusions

In this chapter, we consider a public RDPPS problem in which the DM wants to al-

locate sectoral budgets according to sectoral impact assessment results. We develop

a two stage model. In the first stage, the DM deals with sectoral budget decisions in

the light of sectoral impact assessment values to maximize impact of available fund-

ing budget while ensuring sectoral budget balancing concerns. We propose a social

welfare objective parameterized by single parameter to incorporate sectoral impact

assessment values into decision making process. In the second stage, the DM wants

to maximize total score of selected projects under allocated sectoral budgets. Besides,

the DM concerns with effects of allocated sectoral budgets on several sectoral indica-

tors such as sectoral total score, mean score and budget of supported projects in each

sector, success rate and number of supported projects in each sector. Therefore, we

develop a flexible informed decision making approach to assist the DM on sectoral

budget decisions. We solve the example problem, illustrate some preferences of the

DM, present associated sectoral budgets and their effects on aforementioned sectoral

indicators. To the best of our knowledge, incorporation of sectoral impact assessment

results into a public RDPPS model and comprehensive sectoral analysis of projects

have not been considered in previous studies. Finally, we compare proposed approach

with some policy options which could be applied in the absence of impact assessment

values. We show that sectoral allocations under alternative policy options could be

notably different than sectoral allocation of proposed approach. Consequently, pro-

posed approach enhances the total impact of funding budget by considering sectoral

budget allocations. R&D funding agencies can apply our proposed approach easily

while making sectoral budget allocation decisions.
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CHAPTER 6

CONCLUSION

We summarize the conducted research in this dissertation in Section 6.1 and give

potential future research directions in Section 6.2.

6.1 Concluding Remarks

In this dissertation, we are motivated by the two practical issues that exist in public

R&D funding management. Our first motivation is the underutilization of the funding

budget. We find that project cancellations and underspending of successfully finished

projects could cause to the budget underutilization.

We first consider cancellation situations in Chapter 3 in two cases. In the first case,

we assume that cancellation probabilities of projects are not known. A significant

contribution of this chapter is the development of models with unknown cancellation

probabilities. We develop a mathematical programming model, which uses an esti-

mated number of canceled projects as an input parameter. Objective to maximize is

the total score of selected projects under given funding budget while incorporating

that a number of them will be canceled leaving some remaining budget. By con-

sidering the worst case scenario, we formulate a nonlinear cancellation function and

integrate it to the budget constraint by using the duality theory and the McCormick’s

linearization technique. However, resulting linearized model has a big M value (i.e.

large enough positive value to accurately solve the model). We observe arbitrarily

large big M values can make the model computationally challenging. Therefore, we

also obtain the smallest big M value by using complementary slackness and feasi-
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bility conditions. Resulting model has a mixed-integer linear programming (MILP)

form, which could be solved easily by commercial solvers such as CPLEX.

On the other side, in Chapter 3, we have a knapsack problem oriented model for

modeling the cancellations, and we know that there is a DP algorithm that solves the

knapsack problem in pseudo-polynomial time. From a methodological standpoint, it

is interesting to develop a DP algorithm that considers estimated number of canceled

projects as an input parameter. Therefore, we also develop an efficient DP algorithm

that solves the proposed model in seconds for practical size problem instances.

In the second case of Chapter 3, we assume that cancellation probabilities are known.

We propose a mathematical programming model, which maximizes the total expected

score of selected projects under probabilistic budget constraint. The second proposed

model could exactly solve 90% of the instances to optimality within given time limit,

but the average optimality gap for the instances that were only solved to feasibility

is below 0.02%. Moreover, we provide practical insights to the DM on the proposed

models. For instance, we obtain the budget risk of the first model by using the prob-

ability information of the second model. The risk of exceeding budget for the first

model is between 4.5% and 0.1%. Besides, we obtain the budget risk levels of various

cancellation scenarios for the same instance by changing the number of cancellations

by ±%20. We also show that the first model gives a tight approximation to the sec-

ond model when we solve the second model with conservative budget risk of the first

model. Moreover, we find the value of second model under different factorial settings

and observe that the second model generates better project portfolios than first model

with anticipated risk levels. We also show that the proposed models significantly en-

hances the budget utilization. Results in Chapter 3 of this dissertation is accepted for

publication in OR Spectrum (Çağlar and Gürel (2016)).

In Chapter 4, we consider the budget underutilization situation with several sources

of expenditure uncertainty. More specifically, we focus on stochastic modeling of

the expenditure of project cancellations and successfully finished projects. Since we

consider thousands of project proposals with different budgets, it is impractical to use

a different expenditure distribution for each project. For that reason, we have modeled

the ratio of budget spent by a probability distribution. In particular, each project has
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an approved budget bi, and its stochastic expenditure b̂i will be within the interval

(0, bi]. Therefore, we introduce a ratio Ri = b̂i
bi

for the budget spending of a project

i and focus on tractable modeling of Ri. We first consider cancellation situation. By

using a confidential call data set from TÜBİTAK, we observe that budget spending

ratio of canceled projects can be modeled by the same beta distribution. Besides,

we assume cancellation probability of each project is different since projects from

different PIs and research institutions may have different cancellation risks. Secondly,

we consider budget spending behavior of successfully completed projects that spend

less budget than planned. We also observe that budget spending ratio of those projects

could be formulated with the same beta distribution. In addition, we assume that

probability of successful completion with an underutilized budget is the same for

all projects. Lastly, we observe that some successfully finished projects spend their

whole budgets. Hence, spending ratio of 100% should be included while modeling

Ri. Motivated by this environment, we formulate budget spending Ri with a mixture

distribution. Therefore, an important contribution of this chapter is tractable modeling

of several practical underutilization cases with a probabilistic approach under large

set of projects.

In Chapter 4, after formulation of Ri, we develop a chance-constrained stochastic

programming (CCSP) model. From a methodological perspective, chance constraint

of budget is computationally intractable; thus, we propose a solution method based

on a normal approximation and a conic quadratic programming. On the other hand,

when the normal approximation is employed, there could be some convergence error

that can distort desired risk level of chance constraint of funding budget. For that

reason, by applying Berry-Esseen theorem, we obtain the convergence quality of the

normal approximation and propose ways to mitigate risk level of probabilistic budget

constraint. We think that proposed ways could be effectively applied in CCSP formu-

lation of any problem in which probabilistic total resource capacity type constraint

is computationally intractable. Proposed model could exactly solve 86% of the the

instances to optimality within given time limit, but the average optimality gap for the

instances that were only solved to feasibility is below 0.01%.

In Chapter 4, we also conduct additional analyses to give practical implications to the

DM. Firstly, we observe that there is some smooth out effect of cancellation probabil-
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ities on the variance of budget spending of canceled projects. Secondly, we observe

that increasing probability level of budget constraint leads to decreasing expected to-

tal score of selected projects. Thirdly, we examine the case of unknown distribution

of budget underspending of canceled and successfully completed projects. For this

case, we propose an alternative distribution modeling and compare it with proposed

approach on different problem settings. We observe that alternative modeling pro-

vides a good approximation to proposed approach if there is only cancellations in

the problem. On the other hand, approximation quality deteriorates if some consid-

erable fraction of successfully completed projects spend less budget than planned.

Finally, we compare proposed approach with standard setting and find that proposed

approach delivers a notable increase in utilization of funding budget. Chapter 4 of

this dissertation is currently under review.

Our second practical motivation is sectoral balancing of funding budget according to

sectoral impact findings. In Chapter 5, we introduce sectoral budget balancing prob-

lem in the public RDPPS model. We consider an R&D funding program that receives

many project proposals from various sectors. We assume that sectoral impact assess-

ment values of the funding program are available. The DM wants to balance available

funding budget among sectors according to the sectoral impact assessment values. We

propose a two-stage model. In the first stage, the DM is concerned with sectoral bud-

get allocations to maximize the impact of funding budget while keeping the relative

budget balancing among sectors. In the second stage, the DM deals with the maxi-

mization of the total score of selected projects under determined sectoral budgets. We

propose a social welfare objective function in the first stage. This social welfare func-

tion is governed by a single parameter α and it is nonlinear for α > 0. We prove that

nonlinearity in the objective function can be handled by conic quadratic inequalities.

We also propose an informed decision making approach to show effect of sectoral

budget decisions on various indicators such as total impact of funding budget, total

score of selected projects, sectoral scores and budgets, sectoral number of supported

projects, and sectoral success rates. From a practical standpoint, a significant con-

tribution of this chapter is incorporation of sectoral impact assessment values into a

public project selection model and in-depth sectoral analysis of projects. We illustrate

our proposed approach on an example problem. We generate our example problem
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by using sectoral public data of TÜBİTAK 1001 program. For our example problem,

we also derive proxy sectoral impact assessment values from the literature. Finally,

we show the value of the proposed approach by comparing it with some alternative

policy options to give managerial insights to the DM. Chapter 5 of this dissertation is

currently under review.

6.2 Future Research Directions

We assume a deterministic call budget B in our proposed models throughout the

dissertation. As a future research, extension to uncertain call budget case could be

studied. We know call budget cover several fiscal years. However, in Turkish budget-

ing system, only current year’s budget is known and there are upper bounds on budget

of upcoming years. Hence, some portion of call budget is subject to uncertainty. Un-

certain call budget extension will make all proposed models more challenging. In

addition, in all our proposed models, we assume an aggregated score measure (i.e.

sum of scores of evaluation criteria) for the panel evaluation of projects, which is

currently applied in funding organizations like TÜBİTAK. It can be interesting to

study multiple criteria case explicitly as a future research to give alternative insights

to DMs.

Regarding the proposed models in Chapter 3 and Chapter 4, possible bi-objective

models of public RDPPS problem can be investigated. For instance, there can be

a trade-off between expected number of cancellations and expected scores. There-

fore, a bi-objective model that maximize total expected scores and minimize expected

number of cancellations while satisfying probabilistic budget constraint can be for-

mulated. Moreover, applicability of refined normal approximation in CCSP could be

examined to minimize Berry-Esseen bound.

In Chapter 5, we consider sectoral budget balancing within a funding program. As a

future research, proposed first stage model could be applied to distribute total budget

of a funding agency among different R&D funding programs. However, scale (i.e.

upper budget limit of a project) and the objective of each R&D funding program

can be totally different. For example, in TÜBİTAK, one funding program supports
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small scale projects up to 30.000 Turkish Lira, another funding program supports big

scale projects up to 2.5 million Turkish Liras. Apparently, scope and objectives of

the programs are different. If impact assessment results of those programs close to

each other, then social welfare objective would allocate close amounts. However, this

would result in supporting several projects in the big scale program and supporting

too many projects in the small scale program. Obviously, this kind of allocation is

not practical. Therefore, incorporation of scale and scope concerns into our first stage

model with novel analytical approaches could be studied as a future work.

The proposed two stage model in Chapter 5 has a limitation. For instance, in stage II,

allocated budget to any sector may not be fully utilized. It may be better to calculate

the total impact of funding budget by using sum of budgets of selected projects in

each sector. Therefore, integration of stage I and stage II model could be studied as a

future research.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

A.1 Proof of Proposition 4.2.1

Proof. Since the sequence is truncated, we can write E(T ki ) < uk <∞ for i = 1, ..n.

k = 1, 2, 3.... We can also write, |Ti − E(Ti)| ≤ u − l is true for every i = 1, ..n..

Then for each δ > 0, we can determine an upper bound for the term in (4.13) as

follows:

∑i=n
i=1 E

[
|Ti − E(Ti)|2+δ

]
[√∑i=n

i=1 Var(Ti)
]2+δ

≤
(u− l)δ

∑i=n
i=1 E

[
|Ti − E(Ti)|2

]
∑i=n

i=1 Var(Ti)
[√∑i=n

i=1 Var(Ti)
]δ (A.1)

We also know that E
[
|Ti − E(Ti)|2

]
= E [T 2

i − 2TiE(Ti) + (E(Ti))
2] = E(T 2

i ) −
[E(Ti)]

2, which is the definition of Var(Ti). Then we can simplify the upper bound

in (A.1) as follows:

∑i=n
i=1 E

[
|Ti − E(Ti)|2+δ

]
[√∑i=n

i=1 Var(Ti)
]2+δ

≤

 u− l√∑i=n
i=1 Var(Ti)

δ

(A.2)

Then, for every δ > 0 right hand side of (A.2) converges to zero as n goes to infinity.

Since the upper bound converges to zero, then term in the left hand side of (A.2)

converges to zero. Therefore, Lyapunov CLT theorem is satisfied and
∑i=n
i=1 [Ti−E(Ti)]√∑i=n

i=1 Var(Ti)

converges to N(0, 1) as n goes to infinity, which completes proof.
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A.2 Proof of Corollary 4.2.1.1

Proof. As defined in equation (4.4), b̂i = biRi. We know that Ri is bounded in the

interval (0,1] and we also know that usually R&D programs have a specified budget

upper bound (let call it bmax) for the applying projects. We can conclude that b̂i is a

truncated random variable in the interval (0, bmax] for every i. Hence, any subset of

sequence b1R1, b2R2, ...., biRi ∈ N that has substantial number of elements satisfies

Lyapunov CLT theorem.

A.3 Proof of Proposition 4.2.2

Before beginning the proof, we first give the following property to facilitate deriva-

tions.

Property A.3.1. LetW be a truncated beta distribution as defined in Definition 4.2.2.

Then define a transformed random variable T such that

T =
W − a
b− a

(A.3)

where T is the standard beta distribution in open interval (0, 1). This property fa-

cilitate the derivation of the mean, variance and nth moment of the random variable

W , since the moments of standard beta distribution are readily available (see Johnson

et al. (1995),Chapter 25). Note that nth moment is derived for using in the Berry-

Esseen theorem.

Proof. By using Property A.3.1, we can write that W = a+ (b− a)T . We know the

mean, variance and nth moment of standard random variable T (see Johnson et al.

(1995),Chapter 25). Therefore, we can obtain the mean, variance and nth moment

of truncated beta random variable W by using expectation or variance operator as

follows:

E(W ) = E(a+ (b− a)T ) = a+ (b− a)E(T ) = a+
(b− a)α

α + β
=
aα + aβ + bα− aα

α + β

=
αb+ βa

α + β
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V ar(W ) = V ar(a+ (b− a)T ) = V ar((b− a)T ) = (b− a)2V ar(T )

=
(b− a)2αβ

(α + β)2(α + β + 1)

for 0 < a < b

E(W n) = E((a+ (b− a)T )n) = E

(
k=n∑
k=0

(
n

k

)
ak(b− a)n−kT n−k

)

=
k=n∑
k=0

n!

k!(n− k)!
ak(b− a)n−kE(T n−k)

=
k=n∑
k=0

n!

k!(n− k)!
ak(b− a)n−k

Γ(α + β)Γ(α + n− k)

Γ(α)Γ(α + β + n− k)

for a = 0 and b > 0

E(W n) = E((a+ (b− a)T )n) = E((bT )n) = bnE(T n) = bn
Γ(α + β)Γ(α + n)

Γ(α)Γ(α + β + n)

A.4 Proof of Proposition 4.2.3

Proof. By using equation (4.16), we can write E(Ri) =
∑j=3

j=1wjm
1
j where m1

1 is

the mean (first moment) of the truncated distribution in open interval (0, τ1), m1
2 is

the mean of the truncated distribution in open interval (τ2, 1), m1
3 is the mean of

the degenerate distribution at point 1, by using equation in (4.17), we can obtain

first moments (means) so that m1
1 = α1τ1

α1+β1
and m1

2 = α2+β2τ2
α2+β2

, since mean of the

constant value is itself, then m1
3 = 1. Apparently, w1 = pi, w2 = qi, and w3 =

(1 − pi − qi). Therefore, we obtain: E(Ri) = pi
α1τ1
α1+β1

+ qi
α2+β2τ2
α2+β2

+ (1 − pi − qi).

We know V ar(Ri) = E(R2
i ) − [E(Ri)]

2. By using equation (4.16), we can write

E(R2
i ) =

∑j=3
j=1 wjm

2
j where m2

1 is the second moment of the truncated distribution

in open interval (0, τ1), m2
2 is the second moment of the truncated distribution in

open interval (τ2, 1), m2
3 is the second moment of the degenerate distribution at point

1. Let W1 is the truncated beta random variable in interval (0, τ1) and W2 is the

truncated beta random variable in interval (τ2, 1). We know that m2
k = E(W 2

k ) =
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[E(Wk)]
2 + V ar(Wk) for k = 1, 2 and m2

3 = 1. Then we can write:

V ar(Ri) = E(R2
i )− [E(Ri)]

2 = piE(W 2
1 ) + qiE(W 2

2 ) + (1− pi − qi)− [E(Ri)]
2

= pi
(
[E(W1)]2 + V ar(W1)

)
+ qi

(
[E(W2)]2 + V ar(W2)

)
+ (1− pi − qi)− [E(Ri)]

2

(A.4)

Hence, by using equations in (4.17), (4.18) and (4.20), we derive:

V ar(Ri) = pi

[(
α1τ1

α1 + β1

)2

+
τ 2

1α1β1

(α1 + β1)2(α1 + β1 + 1)

]

+ qi

[(
α2 + β2τ2

α2 + β2

)2

+
(1− τ2)2α2β2

(α2 + β2)2(α2 + β2 + 1)

]
+ (1− pi − qi)

−
[
pi

α1τ1

α1 + β1

+ qi
α2 + β2τ2

α2 + β2

+ (1− pi − qi)
]2

By directly applying equations in (4.16) and (4.19) together, we derive:

E(Rn
i ) = pi

(
τn1

Γ(α1 + β1)Γ(α1 + n)

Γ(α1)Γ(α1 + β1 + n)

)
+ (1− pi − qi)

+ qi

(
k=n∑
k=0

n!

k!(n− k)!
τ k2 (1− τ2)n−k

Γ(α2 + β2)Γ(α2 + n− k)

Γ(α2)Γ(α2 + β2 + n− k)

)

A.5 Proof of Corollary 4.3.1.1

Proof. Define Yi = b̂i − E(b̂i). Then,

E(Yi) = 0 (A.5)

E(Y 2
i ) = E

(
[b̂i − E(b̂i)]

2
)

= E
[
b̂2
i − 2b̂iE(b̂i) + (E(b̂i))

2
]

= E(b̂2
i )− [E(b̂i)]

2

= Var(b̂i) = b2
iVar(Ri) (A.6)

E(|Y 3
i |) = E

(∣∣∣[b̂i − E(b̂i)]
3
∣∣∣) = E

[∣∣∣b̂3
i − 3b̂2

iE(b̂i) + 3b̂i[E(b̂i)]
2 − [E(b̂i)]

3
∣∣∣]

=
∣∣∣E(b̂3

i )− 3E(b̂2
i )E(b̂i) + 2[E(b̂i)]

3
∣∣∣ =

∣∣b3
iE(R3

i )− 3b3
iE(R2

i )E(Ri) + 2b3
i [E(Ri)]

3
∣∣

(A.7)
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By using equation (4.22) and property of gamma function such that Γ(t+ 1) = tΓ(t),

we derive:

E(R3
i ) = pi

(
τ 3

1

Γ(α1 + β1)Γ(α1 + 3)

Γ(α1)Γ(α1 + β1 + 3)

)
+ (1− pi − qi)

+ qi

(
k=3∑
k=0

3!

k!(3− k)!
τ k2 (1− τ2)3−kΓ(α2 + β2)Γ(α2 + 3− k)

Γ(α2)Γ(α2 + β2 + 3− k)

)
(A.8)

= pi

(
τ 3

1

(α1 + 2)(α1 + 1)α1

(α1 + β1 + 2)(α1 + β1 + 1)(α1 + β1)

)
+ (1− pi − qi)

+ qi(1− τ2)3 (α2 + 2)(α2 + 1)α2

(α2 + β2 + 2)(α2 + β2 + 1)(α2 + β2)

+ 3qiτ2(1− τ2)2 (α2 + 1)α2

(α2 + β2 + 1)(α2 + β2)

+ 3qiτ
2
2 (1− τ2)

α2

(α2 + β2)
+ qiτ

3
2 (A.9)

By using equations (4.32), (4.33) and Remark 4.3.1, we can obtain inequality (4.34).

This completes the proof.

A.6 Proof of Proposition 4.5.1

Proof. Let P1 be the feasible polyhedron of true model SP-1, and P2 be the feasible

polyhedron of modified model in which mean and variance of R̄i are used. To show

z∗2 ≥ z∗1 always holds, we have to prove P1 ⊆ P2. For a sufficiently small ε1 and a

given θ value, pick any feasible solution vector x in P1 such that x satisfies following

equation:

∑
i∈N

biE(Ri)xi + Φ−1(θ)

√∑
i∈N

b2
iVar(Ri)x2

i = B − ε1 (A.10)

which means that picked solution vector x is on the edge of polyhedron P1. This

solution vector x always satisfies following inequality

∑
i∈N

biE(R̄i)xi + Φ−1(θ)

√∑
i∈N

b2
iVar(R̄i)x2

i ≤ B (A.11)
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Since E(Ri) = E(R̄i) ∀ i due to equations (4.20) and (4.41)

and V ar(Ri) − V ar(R̄i) = piV ar(W1) + qV ar(W2) ∀ i due to equations (A.4)

and (4.42). Hence, solution vector x always will be in P2. Similarly, for a sufficiently

small ε2 and a given θ value pick any solution vector y in P2 such that y satisfies

following equation:∑
i∈N

biE(R̄i)yi + Φ−1(θ)

√∑
i∈N

b2
iVar(R̄i)y2

i = B − ε2 (A.12)

which means that picked solution vector y is on the edge of polyhedron P2. This

solution vector y always will not be in P1 because

∑
i∈N

biE(Ri)yi + Φ−1(θ)

√∑
i∈N

b2
iVar(Ri)y2

i > B (A.13)

holds due to V ar(Ri) > V ar(R̄i) for pi > 0 and q > 0. Therefore, P1 ⊆ P2 is valid

and z∗2 ≥ z∗1 holds.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 5

B.1 Derivation of POB(α) bound

We need to introduce some notation for applying bound formula of Bertsimas et al.

(2012) to our problem setting. Let M is set of sectors and let X ⊂ R|M | is a set of

all feasible allocations of funding budget to |M | sectors. Let x ∈ X represents any

feasible allocation. Specific contribution of sector j to objective O1 can be associated

with a utility function fj : X → R+. Then utility set U can be expressed as:

U = {u ∈ R|M |+ | ∃x ∈ X : fj(x) = uj,∀j ∈M} and let u∗j = sup{uj | u ∈ U}

For a compact and convex set U , Bertsimas et al. (2012) show:

POB(α) ≤ 1− min
y∈[1,|M |]

R1/αy(α+1/α) + |M | − y
R1/αy(α+1/α)(|M | − y)Ry

(B.1)

where R =
max
j∈M

u∗j

min
j∈M

u∗j
and max

j∈M
u∗j ≥ min

j∈M
u∗j > 0.

They also show that bounds are strong and near-tight as R→ 1. POB(α) increases as

R and |M| increase. Thus, we can obtain bounds on price of balancing of any problem

instance, by using impact assessment values and number of sectors.

In the following corollary, we show that R value depends only impact assessment

parameters of given problem instance.

Corollary B.1.0.2. For our problem setting, R =
max
j∈M

ej

min
j∈M

ej
.
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Proof. Specific contribution of sector j to objective O1 can be written as fj(x) =

uj = ejBj . Consider a feasible allocation vector xj where sector j receives B

amount of budget, and all other remaining sectors receives zero. That implies u∗j =

sup{ejBj | u ∈ U} = ejB. Then,

R =
max
j∈M

u∗j

min
j∈M

u∗j
=
Bmax

j∈M
ej

Bmin
j∈M

ej
=

max
j∈M

ej

min
j∈M

ej
.

B.2 Data from 2012 Activity Report of TÜBİTAK

In Table B.1, number of proposal represents number of project applications that apply

to two calls of TÜBİTAK 1001 program during 2012. Number of supported repre-

sents total number of supported projects in those two calls. Amount of funding indi-

cates total approved committed funding budget to supported projects in 1,000 Turkish

Liras. By using those figures, in Table B.1, we calculate approximated average bud-

get (in 10,000 Turkish Liras) by dividing amount of funding to number of supported

projects and use this as a proxy for generation of sectoral budgets. In Table B.1, we

also calculate number of proposals in percent units in each sector, because we use it

as a proxy for generation of number of project proposals in each sector for a given

total number of applying projects in our example problem. We also find success rate

as 0.17 by dividing total number of supported to total number of proposals and use

this as a proxy for budget fraction in our example problem.

Table B.1: Data derived from TÜBİTAK (2012)

TÜBİTAK 1001 program Number of Number of Amount of Approximated Number of
Scientific disciplines Proposals Supported Funding Average Budget Proposals (%)

Environment, Atmosphere, Earth and Marine Sciences 240 61 17.486 28.5 7.46%
Electrical, Electronics and Informatics 230 54 12.197 22.5 7.15%

Engineering 562 86 18.795 21.5 17.46%
Health Sciences 413 55 16.315 29.5 12.83%

Social Sciences and Humanities 491 68 9.686 14.5 15.26%
Basic Sciences 756 133 31.137 23.5 23.49%

Agriculture, Forestry and Veterinary 526 78 19.304 25 16.35%

Total 3218 535 124.92 100%
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