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ABSTRACT 

 

 

EVALUATION OF BLUETOOTH LOW ENERGY TECHNOLOGY  

FOR INDOOR LOCALIZATION IN BUILT ENVIRONMENTS 

 

 

Topak, Fatih 

M.Sc. in Building Science, Department of Architecture 

 

Supervisor: Assoc. Prof. Dr. Ali Murat Tanyer 

Co-Supervisor: Inst. Dr. Mehmet Koray Pekeriçli 

June 2016, 117 pages 

 

Localization in indoor built environments has a considerable importance for 

architecture, engineering and construction industry. It has a wide scope including 

building occupancy detection, automated asset tracking in construction sites, 

supporting facility maintenance and operations, and guiding people in building 

emergency response operations. Among the uses cases of indoor localization, 

occupancy detection is shown to be the most critical one, considering the large share 

of built environments in total energy consumption of the world and the huge potential 

of automated demand driven building operations, which are based on presence of 

people, in increasing energy efficiency of buildings. Although there are some existing 

approaches for detecting the location of occupants in buildings, there is not a widely 

accepted and reliable solution due to the certain drawbacks of the current approaches 

including uncertainties in detection, time latency and privacy issues, inability for 

multiple detection and costly utilization and maintenance requirements. The aim of 

this research is to assess the possibility of establishing a mobile information 

technology device integrated framework for building occupancy detection and to 

investigate the usability of Bluetooth Low Energy (BLE) technology for indoor 

localization. BLE technology is already embedded in most of the mobile devices and 

its properties such as ultra-low power consumption, low cost and low latency in data 
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exchange make it a good alternative to currently available technologies. In order to 

determine the viability of the proposed framework and BLE technology, multiple field 

experiments carried out in MATPUM Building at Middle East Technical University. 

Location fingerprinting method was used as the wireless localization technique and k-

nearest neighbor algorithm was utilized to assess the feasibility of BLE technology for 

indoor localization. The results of the field experiments show that, detecting 

occupancy through a mobile device integrated framework is possible without any 

complex infrastructure requirement, and BLE technology can be used as a reliable 

solution for indoor localization as it gives better accuracy and precision results when 

compared to existing approaches in the industry. 

 

Keywords: Indoor localization, Building occupancy detection, Bluetooth low energy 
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ÖZ 

 

 

DÜŞÜK ENERJİLİ BLUETOOTH TEKNOLOJİSİNİN YAPILI ÇEVRE 

KAPALI ALANLARINDA KONUM BULMA AMAÇLI 

DEĞERLENDİRİLMESİ 

 

 

Topak, Fatih 

Yüksek Lisans, Mimarlık Bölümü, Yapı Bilimleri 

 

Tez Yöneticisi: Doç. Dr. Ali Murat Tanyer 

Ortak Tez Yöneticisi: Öğr. Gör. Dr. Mehmet Koray Pekeriçli 

Haziran 2016, 117 sayfa 

 

Kapalı alanlarda konum bulma, mimarlık, mühendislik ve inşaat endüstrisi için dikkate 

değer bir öneme sahiptir. Konum bulmanın geniş bir kullanım alanı vardır ve bu 

kullanımlara binada kullanıcı varlığı tespiti, inşaat alanlarında otomatik mal takibi, 

tesis bakım ve sürdürülmesinin desteklenmesi ve bina acil durum müdahalelerinde 

insanların yönlendirmesi dâhildir. Kullanım senaryoları arasında, binaların dünyadaki 

toplam enerji tüketimindeki payı, ve insan varlığına bağlı olarak çalışan, otomatize 

edilmiş, talebe dayalı bina operasyonlarının bina enerji verimliliğini artırmadaki 

büyük potansiyeli değerlendirildiğinde, kullanıcı varlığı tespiti en kritik olarak öne 

çıkmaktadır. Kullanıcıların bina içerisindeki yerini tespit etmek için var olan 

yaklaşımlar olsa da, bu yaklaşımların tespit etmede belirsizlik, gecikme zamanı, 

mahremiyet, birden fazla kullanıcıyı tespit edememe ve pahalı kurulum ve bakım 

masrafları gibi dezavantajlarından dolayı, geniş çapta kabul edilmiş ve güvenilir bir 

çözüm bulunmamaktadır. Bu araştırmanın amacı, mobil bilgi teknolojisi cihazlarının 

entegre edildiği bir bina kullanıcı tespiti mekanizmasının uygulanabilirliğini 

değerlendirmek ve Düşük Enerjili Bluetooth(BLE) teknolojisinin kapalı alanlarda 

konum bulma için kullanılabilirliğini sorgulamaktır. BLE teknolojisi halihazırda çoğu 

mobil cihazda bulunmaktadır ve çok düşük enerji tüketimi, düşük maliyeti ve veri 
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alışverişindeki kısa gecikme zamanı gibi özellikleri, bu teknolojiyi mevcut teknolojiler 

için iyi bir alternatif haline getirmektedir. Önerilen sistemin ve BLE teknolojisinin 

uygulanabilirliğini saptamak için, Orta Doğu Teknik Üniversitesi’nde bulunan 

MATPUM binasında birden çok saha deneyleri uygulanmıştır. Kablosuz konum 

bulma tekniği olarak konum parmak izi metodu kullanılmış ve BLE teknolojisinin 

kapalı alanlarda konum bulma için elverişliliğini incelemek üzere k-en yakın komşu 

algoritmasından istifade edilmiştir. Saha deneylerinin sonuçları, mobil bilgi teknolojisi 

cihazlarının entegre edildiği bir sistemle, kompleks bir altyapı gerektirmeksizin 

kullanıcı tespitinin mümkün olduğunu, ve BLE teknolojisinin, var olan yaklaşımlardan 

daha kesin ve hassas sonuçlar vermesi sebebiyle, kapalı alanlarda konum bulma için 

güvenilir bir çözüm olarak kullanılabileceğini göstermiştir. 

  

Anahtar Kelimeler: Kapalı alanlarda konum bulma, Bina kullanıcı tespiti, Düşük 

enerjili bluetooth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

ACKNOWLEDGEMENTS 

 

 

I would like to express my sincere gratitude to Inst. Dr. Mehmet Koray Pekeriçli, for 

his guidance and valuable efforts throughout this study. His never-ending energy and 

encouragement was the primary source of inspiration for me and without his expertise, 

this study could have never been completed. I also would like to express my 

appreciation to Assoc. Prof. Dr. Ali Murat Tanyer, not only for his constructive 

comments and criticisms in this research, but also for his assistance in my graduate 

education and academic experiences. 

 

My colleague Başar Özbilen deserves acknowledgment for all the educatory academic 

discussions and his supportive friendship in the research process. 

 

I am grateful to Sıla Çankaya, who has always been there for me with her endless 

patience and love, both in the process of this research and in the last six years of my 

life. 

 

Finally, I owe my deepest thankfulness to my parents, Hatice and Hüseyin Topak. As 

any other accomplishments in my life, this thesis would have never been realized 

without feeling their invaluable support, care and love. I also would like to thank to 

my lovely sisters, Kübra and Vildan, who always make life more joyful for me in every 

moment of boredom. 

 

 

 

 

 

 

 

 



x 

 

 

TABLE OF CONTENTS 

 

 

ABSTRACT ................................................................................................................. v 

ÖZ ............................................................................................................................... vii 

ACKNOWLEDGEMENTS ........................................................................................ ix 

TABLE OF CONTENTS ............................................................................................. x 

LIST OF TABLES .................................................................................................... xiii 

LIST OF FIGURES ................................................................................................... xiv 

LIST OF ABBREVIATIONS ................................................................................... xvi 

CHAPTERS 

1. INTRODUCTION .................................................................................................... 1 

1.1 Background Information..................................................................................... 1 

1.2 Aim and Objectives ............................................................................................ 3 

1.3 Contribution ........................................................................................................ 3 

1.4 Disposition .......................................................................................................... 4 

2. LITERATURE REVIEW ......................................................................................... 5 

2.1 Indoor Localization Use Cases ........................................................................... 5 

2.1.1 Building Occupancy Detection ................................................................. 6 

2.1.2 Asset Tracking on Construction Sites ....................................................... 9 

2.1.3 Facility Maintenance and Operations ...................................................... 11 

2.1.4 Building Emergency Response Operations ............................................. 14 

2.1.5 Selected Scope for Indoor Localization .................................................. 16 

2.2 Existing Occupancy Detection Approaches ..................................................... 27 

2.2.1 Simulation (prediction algorithm) models .............................................. 28 

2.2.2 Image detection (vision-based) systems .................................................. 29 

2.2.3 Passive infrared (PIR) sensor based systems .......................................... 30 

2.2.4 Carbon-dioxide sensors based systems ................................................... 32 

2.2.5 Radio Frequency (RF) Based (Wireless) Systems .................................. 35 

2.3 Localization Techniques of Wireless Based Detection Systems ...................... 42 

2.3.1 Proximity ................................................................................................. 43 



xi 

 

2.3.2 Triangulation ........................................................................................... 43 

2.3.3 Trilateration ............................................................................................. 44 

2.3.4 Scene Analysis (Fingerprinting) ............................................................. 45 

2.3.5 Performance Metrics of Wireless Based Location Detection Systems ... 47 

2.4 Critical Analysis of Literature Review ............................................................. 49 

3. MATERIAL AND METHOD ............................................................................... 51 

3.1 Bluetooth Low Energy Technology ................................................................. 51 

3.2 Material Selection ............................................................................................. 54 

3.2.1 BLE Tag I ................................................................................................ 55 

3.2.2 BLE Tag II .............................................................................................. 55 

3.2.3 BLE Tag III ............................................................................................. 56 

3.2.4 BLE Tag IV ............................................................................................. 57 

3.2.5 Experimental Setup for the Evaluation of the BLE Tags ........................ 57 

3.3 Research Approach - Location Fingerprinting ................................................. 62 

3.3.1 Offline Phase - Data Collection .............................................................. 65 

3.3.2 Online Phase - Data Analysis Approach based on Cases ....................... 70 

3.4 Parameters of Proposed Framework for Indoor Localization .......................... 76 

3.4.1 Spatial Accuracy - Precision ................................................................... 77 

3.4.2 Number of Real Time RSSI Data Samples ............................................. 78 

3.4.3 Human Body Orientation ........................................................................ 78 

3.4.4 Number of Data Collection Points .......................................................... 80 

3.4.5 Fingerprint Creation Approach ............................................................... 81 

4. RESULTS AND DISCUSSION ............................................................................ 83 

4.1 Field Experiment Results ................................................................................. 83 

4.1.1 Case I ....................................................................................................... 83 

4.1.2 Case II ..................................................................................................... 85 

4.1.3 Case III .................................................................................................... 86 

4.1.4 Case IV .................................................................................................... 88 

4.1.5 Case V ..................................................................................................... 90 

4.2 Analytical Comparison with Existing Wireless-based Approaches ................. 91 

5. CONCLUSION ...................................................................................................... 95 

5.1 Summary of the Research ................................................................................. 95 



xii 

 

5.2 Main Results and Discussion ............................................................................ 96 

5.3 Limitations of the Study ................................................................................... 98 

5.4 Recommendations for Further Research .......................................................... 98 

REFERENCES ......................................................................................................... 101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 

 

 

LIST OF TABLES 

 

 

TABLES 

Table 1: Core maintenance activities with time data (Lee & Akin, 2009). ............... 12 

Table 2: Importance of Indoor Localization .............................................................. 15 

Table 3: Comparison of wireless-based localization techniques. .............................. 47 

Table 4: Cases for Data Analysis – Training Data ..................................................... 76 

Table 5: Cases for Data Analysis – Test Data............................................................ 76 

Table 6: Case I - Localization accuracy results for different precision levels ........... 84 

Table 7: Case II - Localization accuracy results for different precision levels .......... 86 

Table 8: Case III - Localization accuracy results for different precision levels ........ 87 

Table 9: Case IV - Localization accuracy results for different precision levels ........ 89 

Table 10: Case V - Localization accuracy results for different precision levels ....... 91 

Table 11: Comparison of wireless-based indoor localization approaches based on 

performance metrics ................................................................................................... 93 

 

 

 

 

 

 

 

 

 



xiv 

 

 

LIST OF FIGURES 

 

 

FIGURES 

Figure 1: ASHRAE recommended occupancy profiles by day type ............................ 7 

Figure 2: Active and passive occupants’ effects on building performance. ............... 19 

Figure 3: The Intelligent Building Pyramid ............................................................... 21 

Figure 4: Functional Domains of Building Automation Systems .............................. 23 

Figure 5: Breakdown of Building Automation Systems ............................................ 24 

Figure 6: Energy Demand and Supply Model ............................................................ 25 

Figure 7: Resolution Framework of Building Occupancy Detection ......................... 27 

Figure 8: Research setup with PIR sensors by Hauschildt and Kirchhof (2010) ....... 31 

Figure 9: CO2 – Number of Occupant – ACH Relation ............................................. 33 

Figure 10: Main components of RFID based systems ............................................... 36 

Figure 11: Localization concept of SpotON – Experiment setup of LANDMARC .. 37 

Figure 12: Radio spectrum of UWB technology ........................................................ 40 

Figure 13: Process of location finding with wireless-based detection systems ......... 42 

Figure 14: The position of a target node (T) is estimated based on the known 

positions of beacons (Bi) using (a) triangulation or (b) trilateration-ToA ................. 44 

Figure 15: The scene matching method phases .......................................................... 46 

Figure 16: Scope of Classic Bluetooth via Scope of Bluetooth Smart ....................... 52 

Figure 17: Purchased BLE Tags ................................................................................. 54 

Figure 18: BLE Tag I and LBM313 module .............................................................. 55 

Figure 19: BLE Tag II ................................................................................................ 56 

Figure 20: BLE Tag III ............................................................................................... 56 



xv 

 

Figure 21: BLE Tag IV .............................................................................................. 57 

Figure 22: The interface of the research software ...................................................... 58 

Figure 23: Experiment environment for Material Selection ...................................... 58 

Figure 24: UML Sequence Diagram of Material Selection Experiment.................... 59 

Figure 25: RSSI Logs on Material Selection Experiment .......................................... 60 

Figure 26: Number of received signals on Material Selection Experiment ............... 61 

Figure 27: IDEF0 diagram demonstrating the research approach ............................. 63 

Figure 28: Conceptual Framework of Proposed Location Detection System ............ 64 

Figure 29: Tag Locations on Test Bed Environment, scale: 1/200 ............................ 67 

Figure 30: Fingerprints on Test Bed Environment, scale: 1/200 ............................... 68 

Figure 31: Test Bed Environment - Second Floor of MATPUM Building ............... 69 

Figure 32: Placement of BLE Tags on Test Bed Environment .................................. 70 

Figure 33: UML Sequence Diagram of Online Phase ............................................... 71 

Figure 34: Flowchart diagram of k-NN algorithm ..................................................... 72 

Figure 35: Location of Fingerprints in Training Data of Case IV, Scale: 1/200 ....... 75 

Figure 36: An abstract model of the impact of human body orientation ................... 79 

 

 

 

 

 

 

 

 

 



xvi 

 

 

LIST OF ABBREVIATIONS 

 

 

AOA  Angle of Arrival 

BAS  Building Automation System 

BLE  Bluetooth Low Energy (Bluetooth Smart) 

dBm  Decibel-Milliwatt 

GPS  Global Positioning System 

HVAC  Heating, Ventilation and Air Conditioning 

IoT  Internet of Things 

K-NN  K- Nearest Neighbor 

LOS  Line of Sight 

PIR  Passive Infrared 

RF  Radio Frequency 

RFID  Radio Frequency Identification 

RSS  Radio Signal Strength 

RSSI  Radio Signal Strength Indicator 

TOA  Time of Arrival 

TDOA  Time Difference of Arrival 

UWB  Ultra-Wide Band   

Wi-Fi  Wireless Fidelity 

WLAN Wireless Local Area Network 

WPAN  Wireless Personal Area Network 

 



1 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

In this chapter, the background information about the outlined problem is presented. 

Aim and objectives of the research are stated. Contribution of the study is explained 

and the content organization is outlaid. 

 

1.1 Background Information 

 

With the breakthrough of Global Positioning System (GPS), location-based services 

has shown a widespread emergence in the world within a wide scope such as on-road 

navigation, tracking of valuable assets and route monitoring. Although GPS 

technology is a universally accepted solution for finding position in outdoors, since 

satellite signals cannot penetrate through structural obstructions (i.e., walls,  floors, 

roofs), it cannot be adapted for localization in indoor built environments. Indoor 

localization is an important area of research  for the construction industry as it is the 

base for many use cases including detecting occupancy in buildings, tracking assets 

and on-site personnel in construction sites, supporting facility maintenance and 

operations, and providing route assistance in building emergency response operations 

and emerging Internet of Things (IoT) applications (Li, Li, Becerik-Gerber, & Calis, 

2012b). 

 

Among the use cases of indoor localization, building occupancy detection is selected 

as the focus of this research. There are many use cases for building occupancy 

detection, such as security, emergency, hospitality, commerce, and building operation 

optimization. In order to satisfy the comfort needs of occupants and ensure energy 

efficiency in buildings at the same time, it is important to have the knowledge about 

whether the space is occupied or not, and how many occupants exist in the considered 

zone. Accurate occupancy information is defined by Li, Calis, and Becerik-Gerber 
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(2012a) as the number of people in a building space and the resulting activities from 

occupants being present. It could have a crucial effect in enabling energy savings of 

buildings as well as providing a comfortable environment for habitants if it is 

monitored in real-time simultaneously and implicated in building automation systems.  

 

There are some existing technology based approaches for detecting the occupancy and 

finding the position of people in indoors, such as simulation models, image detection 

systems, passive infrared (PIR) sensor based systems, CO2 sensors based systems and 

radio frequency based (wireless) systems. However, a reliable and precise location 

detection framework is still missing due to certain shortcomings of the current 

technologies including uncertainties in detection, time latency and privacy issues, 

inability for multiple detection and high expense of deployment and maintenance.  

 

The enabling technology in this study is determined as Bluetooth Low Energy (BLE) 

which is already equipped in most current mobile devices (Scheerens, 2012). Although 

BLE is not designed specifically for indoor positioning or occupancy detection 

purposes, its properties such as ability to penetrate through walls, ultra-low power 

energy consumption, low cost, low latency in data exchange, uniqueness of each BLE 

tag make it a potentially appropriate technology for utilization in localization 

frameworks (Lodha, Gupta, Jain, & Narula, 2015). The deployment of BLE for indoor 

localization is based on the analysis of the radio signal propagation characteristics, 

such as power, attenuation, and interference. 

 

As mobile devices such as smartphones, tablets or smart watches has became essential 

objects in people’s daily lives and shows a rapid evolvement, there is a potential for 

using them as an enabler for the integration of BLE in indoor localization systems. 

These devices have various embedded technologies (i.e., built-in radios, NFC, network 

connectivity, simple user interfaces, accelerometer, gyroscope, magnetometer, 

barometer, proximity and light sensors) that has been the subject of indoor localization 

research (Nick, 2014). According to the research carried out by Smith and Page (2015), 

90% of people use a cell phone whereas 64% of them are smartphones in United States. 

Considering this, establishing a mobile device integrated framework is intended. 
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Considering the importance of indoor localization for the built environment and the 

drawbacks of existing approaches in the industry, a new framework, which is accurate, 

punctual, reasonable in expense and easy to be implemented in current building 

systems can be developed for location detection using BLE technology and mobile 

devices. 

 

1.2 Aim and Objectives 

  

The main aim of this study is to develop an indoor localization framework for the use 

case of occupancy detection through utilizing mobile devices and BLE technology. 

Research objectives can be listed as: 

 

 Investigating the indoor localization technologies for the built environment and 

reviewing the different use cases in the sector 

 Understanding the rationality of the need for occupancy information and 

location detection in buildings  

 Developing a reliable indoor localization framework for providing the base for 

accurate occupancy detection in real-time 

 Experimenting the applicability of mobile devices and BLE technology in 

indoor localization 

 Investigating the parameters of BLE-based indoor localization 

 

1.3 Contribution 

 

There are various studies in the literature for evaluating the reliability of different 

technologies for indoor localization and no proposed solution is widely accepted due 

to their constraints. Yet, there is not a comprehensive framework for BLE based 

location detection in indoor built environments and the analysis of BLE technology 

for utilization in such purposes is limited in the literature. The contribution of this 

research is, therefore, to establish a framework for BLE based indoor localization and 

to analyze different parameters of BLE technology in a detailed manner. In the light 

of the analysis of the proposed framework, it is intended to compare BLE technology 
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with the existing approaches through referring the performance metrics of radio signal 

based localization systems. 

 

1.4 Disposition 

 

This thesis is composed of five chapters, first of which is this Introduction part. The 

second chapter provides a literature review on indoor localization use cases, building 

occupancy detection and its emergence in the industry, existing approaches for 

occupancy detection with their advantages and drawbacks, and localization techniques 

and performance metrics of wireless based location detection systems. The results of 

a detailed research on the subjects are given together with discussions and a critical 

analysis at the end of the chapter.  

 

The third chapter covers the material and method of the study. First, a general overview 

of Bluetooth Low Energy technology is given. Then, the process of material selection 

and selected material is presented. Afterwards, location-fingerprinting method, which 

is composed of two phases, namely offline phase and online phase, is introduced. 

Finally, five different cases are presented, and the parameters of the proposed 

framework for indoor localization based on these cases with the guideline of research 

hypothesis are outlined. 

 

In the fourth chapter, results of the experiments that are clarified in the third chapter 

are given. Analysis conducted on the gathered data is presented and the results are 

discussed in terms of usability of the proposed framework for location detection. The 

chapter is concluded with the demonstration of a table including comparisons between 

the proposed framework and the existing approaches considering defined performance 

metrics. 

 

In the final chapter, deductions based on the findings from the conducted experiment 

are given together with a brief summary of the research. Limitations of the study and 

further research recommendations are given and the study is concluded. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

In this chapter, the related issues on the subject area from the literature are presented 

under four main sections. The first section covers the importance of indoor localization 

and its scope in the built environment. In the second section, indoor localization 

approaches are explained. Following, localization techniques for wireless 

communication based systems and their performance metrics are presented in detail. 

This section is concluded with the critical analysis of the literature. 

 

2.1 Indoor Localization Use Cases 

 

Gaining information about the location of a person or an object has become an 

important issue in the field of built environment (Li et al., 2012b) as well as industries 

such as logistics, transportation, manufacturing and healthcare (Li & Becerik-Gerber, 

2011). Location-based services such as on-road navigation, transportation tracking and 

route monitoring are the motives for a need towards outdoor location detection. In 

indoor built environments, the importance of localization arises from its value for 

construction industry in a various range of applications. Detection of building 

occupancy for automation systems (Spataru & Gauthier, 2013), tracking personnel and 

equipment for effective management of facilities, providing assets location in 

construction sites and determining intended routes in building emergency response 

operations (Li et al., 2012b) are all within the scope of indoor localization. In outdoors, 

access to location information is possible via Global Positioning System (GPS) that is 

adapted universally and is available to public usage since early 1980’s (Lathikumari, 

2011). However, since GPS could not be utilized in indoor environments due to the 

fact that satellite signals are not strong enough to penetrate through the walls (Caron 

et al., 2007), a convenient and universally accepted solution for sensing locations in 

indoor built environments still does not exist.  
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Before going through the existing approaches in the industry, it is beneficial to 

understand the need for localization in the indoor environments. In this section of the 

research, a review of literature about the areas of use for indoor localization with their 

advantages and the selected case will be presented. 

 

2.1.1 Building Occupancy Detection  

Reducing CO2 emissions by 20% compared to 1990, and increasing renewable energy 

use by 20% by the year 2020 were put as future objectives for ‘20-20-20 targets’ by 

the European Commission (‘Directive 2010/31/EU’, 2010). Since buildings use 40% 

of total energy in the world, Soucek and Zucker (2012) argue that nearly-zero energy 

buildings should be the only choice for built environments in the future. Benezeth, 

Laurent, Emile, and Rosenberger (2011) listed three solutions for economizing energy 

consumption, which are utilizing renewable energy sources, providing passive 

solutions like insulation and managing the active energy consumption in buildings. It 

is indicated that reliable building occupancy information is a prerequisite in the third 

solution. However, a massive part of the large buildings stock in today’s world usually 

operated by energy inefficient building management systems that function based on 

fixed schedules and do not take crucial factors like presence of people as an input for 

their operations (Oliveira-Lima, Morais, Martins, Florea, & Lima, 2016). Presence and 

behaviors of people effects the demands for facility operations and increase the energy 

consumption in buildings (Page, Robinson, Morel, & Scartezzini, 2008). For example, 

a space’s ventilation and cooling load that represent the amount of fresh air to be 

supplied to that particular space to maintain good air quality and thermal comfort is 

affected by the number of occupants in that space zone (Liao & Barooah, 2010). 

Consequently, developing solutions for operating facility services like heating, 

cooling, air conditioning and lighting in an occupancy-based demand driven manner 

has been the topic for many researches in the recent years (Labeodan, Zeiler, Boxem, 

& Zhao, 2015).  

 

In the current approach of the industry, demand-driven facility services are operated 

through relying on assumption models and pre-defined occupancy profiles (Labeodan 

et al., 2015; Li et al., 2012). There are various occupancy assumption models such as 
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the model proposed by the American Society of Heating, Refrigerating, and Air-

Conditioning Engineers (ASHRAE) which includes the definition of several 

occupancy profiles for office building day types (Duarte, Van Den Wymelenberg, & 

Rieger, 2013).  

 

 

 

Figure 1: ASHRAE recommended occupancy profiles by day type 

(Source: Duarte et al., 2013) 

 

 

Yet, considering the excessive uncertainty in the nature of occupancy and 

unpredictable variations over numerous time-scales, it can be deduced that fixed 

occupancy profiles for buildings are not very reliable and real-time monitoring is 

necessary to gain instant occupancy information (Liao & Barooah, 2010). Erickson et 

al. (2009) emphasize the inefficiency of relying on maximum occupancy assumptions 

in their paper and explain the situation in office buildings as: 

 

In general, the approach used is to assume that all rooms are occupied 

during working hours and not being used during the night. However, it is 

obvious that this does not maximize energy savings. Rooms are often left 

empty during part of the day or perhaps are only used semi regularly, e.g. 

conference rooms. It would be more efficient to only condition rooms 
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during the times that are actually occupied. Using an L-HVAC system, 

various environmental aspects of room can be controlled for energy 

savings. Thus, knowledge of occupancy is crucial in order to maximize 

efficiency of a system (p. 19). 

 

In order to understand the influence of dynamic occupancy information on energy 

usage, Dong and Andrews (2009) simulate energy consumption of an office zone with 

both static occupancy profiles and dynamic occupancy data. Their research shows that, 

sensing occupancy in real-time could remarkably reduce the energy consumption to a 

level of 30%. As using fixed design assumptions are not that efficient in terms of 

energy consumption, obtaining reliable real-time occupancy information with the 

combination of raw sensor data and advanced algorithms has become an area of 

interest for many researchers lately (Ekwevugbe, 2013). 

 

The definition of occupancy information is made by Li et al. (2012a) as  “the number 

and identities of occupants in a thermal zone and the resulting activities from occupant 

being present (i.e., associated plug, lighting and HVAC loads)” (p.89). Considering 

the fact that one of the main requirements for an economical energy consumption 

management in buildings is reliable occupancy information, real-time occupancy 

detection , i.e., instant localization of people in indoor spaces, may be recognized as 

an effective solution for operating demand driven facility services (Diraco, Leone, & 

Siciliano, 2015).  

 

Particularly in dynamic environments, having real-time occupancy information, 

including the number of occupants and their locations in the building, as Li et al. 

(2012a) claim, may be very useful both in building energy management and 

applications areas including security, safety and emergency response. Yang and 

Becerik-Gerber (2014) revealed that if occupancy profiles are personalized through 

real-time location monitoring and used instead of conventional assumption models in 

HVAC control of a multi-story office building, energy consumption can be reduced by 

9%. Likewise, the research of Lo and Novoselac (2010) showed that a reduction of 

30% in cooling energy consumption is possible with the utilization of occupancy 

control in an open plan office, through considering occupied and unoccupied zones 

separately in providing facility services. Furthermore, as Erickson, Carreira-Perpiñán, 
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and Cerpa (2011) affirm, the energy consumed for air conditioning annually in an 

office building can be reduced by 42% through sensing the location of people in the 

buildings while keeping the comfort standards optimum for occupants. 

 

2.1.2 Asset Tracking on Construction Sites 

As construction materials and equipment account for almost two-thirds of the total cost 

in a typical construction project (Kini, 1999), management of assets on the 

construction site is a critical task for a successful project completion within a 

constrained budget and targeted project duration (Torrent & Caldas, 2009). Although 

the cost of construction projects may be reduced with a comprehensive asset 

management strategy on site (Song, Haas, & Caldas, 2006b), Jang and Skibniewski 

(2009) explain that, currently, construction materials, equipment and workers are 

located and tracked manually within the large project sites. Due to the complex nature 

of project management and uncontrollable system size of built environments, locating 

and getting spatial information about a construction material manually is a difficult 

task (Jang & Skibniewski, 2009). As the scale of projects gets larger and become more 

complex, it becomes even harder to track information related with assets locations and 

manage supply chain manually. Therefore, providing a real-time localization solution 

and integrating automation in material management becomes a necessity in 

construction projects (Jang & Skibniewski, 2008). Bisio, Sciarrone, and Zappatore 

(2016) revealed that having location information of construction components enhance 

a considerable efficiency in labor time, on account  of the fact that workers waste 

almost one third of their time on searching the positions of the desired resources 

(Torrent & Caldas, 2009). Besides, Caron et al. (2007) imply that progress state of 

projects on the site can be monitored in real-time through localization of construction 

assets.   

 

Considering the fact that countless number of materials and components are going 

through various stages according to project schedule till the completion of on-site 

installation in a construction project, there exist a direct relationship between asset 

management procedure and project performance (Song et al., 2006b).  The results of 

ineffective asset management on construction sites such as lost materials, late detection 
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of additional material needs, material deliveries in incorrect sequences and 

deficiencies in supply chain (Razavi & Haas, 2011) lead to a reduction of 40% in 

construction productivity (Nasir, 2008). The primary purpose of asset management is 

clarified by Song, Haas, Caldas, Ergen, and Akinci (2006a) as to track the availability 

of construction materials and to provide accurate location information when they are 

needed by the operation crew. Since manual processes of recording data about the 

availability and locations of construction components depends on the observations and 

reporting skills of on-site personnel which is both time-consuming and error prone 

(Jang & Skibniewski, 2009), there is a huge potential in utilizing identification and 

localization solutions in construction asset management. 

 

Finding the location of a material, a component or a tool is classified by Li, Li, Calis, 

and Becerik-Gerber (2013b) as one of the most essential phases of asset management. 

In reference to Haas, O’Connor, Tucker, Eickmann, and Fagerlund (2000) report, Song 

et al. (2006b) state that popularity in the prefabricated components usage in the last 

fifteen years has made tracking and locating the construction components on the field 

even more critical for project management. Ergen, Akinci, and Sacks (2007b) indicate 

that there is a dense circulation process for prefabricated materials within the 

construction sites from material delivery to installation. Moreover, since most of the 

components are uniquely produced according to the precise architectural design 

decisions, each prefabricated asset is required to be identified, located and tracked 

separately. Due to the just-in-time delivery requirement of prefabricated precast 

concrete, for example, Ergen et al. (2007b) developed their research on integrating a 

localization solution with the purpose of gaining the position information of precast 

concrete components quickly and accurately when requested and minimizing human 

input in the recorded asset data. Similarly, Song et al. (2006a) point out that automated 

localization and tracking solutions are of utmost importance since lots of unique 

components of piping activity in construction projects go through a number of phases 

including fabrication, delivery, storage and installation. 

 

In addition to advantages of localization of assets on construction sites, Cordova and 

Brilakis (2008) claim that locating on-site personnel in an accurate and precise manner 

is also critical for various tasks of project management including workers’ productivity 
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estimation, activity sequence analysis, early detection of travel path conflicts and 

providing construction work safety.  

 

2.1.3 Facility Maintenance and Operations 

Activities related with operation and maintenance, which form the fundamental part 

of facility management for ensuring the continuity in efficient building functionality 

(Taneja, Akcamete, Akinci, Garrett, & Soibelman, 2010), constitute almost 85% of the 

total lifecycle cost of buildings (Teicholz, 2004).  The definition of facility 

maintenance is made by Cotts, Roper, and Payant (2009) as: 

 

The work necessary to maintain the original anticipated useful life of a 

fixed asset. It is the upkeep of property and equipment. Maintenance 

includes periodic or occasional inspection, adjustment, lubrication, 

cleaning (non-janitorial), painting, replacement of parts, minor repairs, and 

other actions to prolong service and prevent unscheduled breakdown, but 

it does not prolong the life of the property or equipment or add to its value 

(p. 408). 

 

In their book, Chanter and Swallow (2007) refer to a number of definitions for facility 

maintenance and conclude the term as “the proper management of a built 

asset/facility”. Consequently, it can be deduced that maintenance of a facility indicates 

the works that are to be realized by the facility management services for both keeping 

the living and working built environments comfortable for inhabitants and 

administrating the performance of equipment and assets of the facilities (Lee & Akin, 

2009). Two main category of maintenance activities are sorted by Thomas (2001) as: 

 

 Demand Work: where the client calls in for service, where breakdowns 

in equipment require repairs and emergency events that affect the 

facilities department. 

 Preventive Maintenance Work: where a scheduled program of work 

maintains the investment in the physical assets for a corporation. These 

assets may be equipment assets or facility assets (p. 457). 

 

Considering its huge percentage in the lifecycle cost of buildings, there are many 

researches that have been conducted for optimization of facility maintenance where 

the primary subject of most studies is related with utilizing computational support  for 

asset management in built environments (Taneja et al., 2010).  In order to ensure an 
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efficient asset management and facility maintenance optimality, indoor localization 

systems that provide accurate and precise location information of any intended assets 

or objects in buildings should be integrated into facility management services (Li et 

al., 2013b).  

 

Table 1: Core maintenance activities with time data (Lee & Akin, 2009).  

 

 

 

Lee and Akin (2009) listed the core maintenance activities under two categories and 

demonstrated the time spent for each activity depending on their observations.  

According to the outcomes of their research, the main inefficiency in the facility 

maintenance is caused by localization of equipment, which takes approximately 10% 

of the total maintenance time. It is possible to make an optimization in facility 

maintenance and save a remarkable amount of time through utilizing accurate 

localization solutions.  

 

Throughout the activities for providing maintenance in a facility, finding the location 

of a problematic asset for a demanded work or identification of an equipment for 

preventive maintenance is always a prerequisite. It is not significant whether the 
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intended asset or equipment is in line of sight or hidden behind a wall or an object, 

manual visual search is a highly time consuming action on site for facility management 

service personnel (Taneja et al., 2010). Lee and Akin (2009) indicate that maintenance 

activities take more time than they should, due to the difficulty in localization of 

building equipment. It is even harder to locate a building asset or an equipment in more 

complex and larger buildings and wasting time by searching manually for finding the 

accurate location may result in more damage in emergencies (Li et al., 2013b). 

Through referring the research of Leite (2009), Li et al. (2013b) explain one of the 

primary reasons for failure in preventing damage in case of urgent maintenance 

requirements in buildings as the lack of ability to locate an out of repair component 

instantly. 

 

For instance, Ergen, Akinci, East, and Kirby (2007a) maintain that, fire valves that are 

placed in different points in a building, some of which are in non-line of sight and 

unobservable due to some obstructions, should be checked twice a year by facility 

management services personnel according to the fire regulations. However, it is not 

easy for workers to notice each separate fire valve in a building and locating a fire 

valve takes five to ten minutes for an experienced worker; whereas an inexperienced 

worker spends thirty to sixty minutes for each one. Even an experienced worker may 

have difficulties in finding a target location in a complex facility layout (Moeser, 

1988). What Ergen et al. (2007a) emphasize is that facility management services 

workers might not be willing to perform this time consuming and troublesome 

maintenance task properly and verification of a complete maintenance for desired 

assets is very hard. Consequently, it cannot be assumed as reliable to put a check mark 

on a prescheduled maintenance activity in the current approach. Ergen et al. (2007a) 

clarify that indoor localization has a crucial significance for optimization of facility 

management activities, and sticking a sensor tag which would give a unique 

identification code to each fire valve and make the localization of all desired assets 

possible can be the solution for overcoming this inefficient workflow on site.  

 

There is a significant potential in location sensing solutions for minimizing the time 

spent for asset searching in facilities and ensuring a more effective maintenance (Li et 
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al., 2013b). In his article, Wing (2006) affirms that the position of water and gas pipes 

that are either buried under floors or pass through the walls can be determined with 

localization systems. Motamedi and Hammad (2009) also agree that the information 

about the locations of building assets is needed in different stages  of building 

lifecycles and indoor localization is a time-saving requirement for maintenance of 

facilities. In their research, Lee and Akin (2009) demonstrate that it is possible for 

facility maintenance activities to be performed in a 12% more time-efficient manner 

through supporting on-site personnel with instant assets-related and location 

information.  

 

Apart from tracking the locations of assets such as fire valves, pipes or other building 

assets, indoor localization can also be beneficial for finding the position of hand tools 

and equipment in a facility. Goodrum, McLaren, and Durfee (2006) state that  since 

availability of tools in a facility effects the productivity of maintenance personnel, it 

is important to develop some strategies for equipment management. What Goodrum 

et al. (2006) believe is that, contrary to frequent approach of having excessive number 

of tools in a building for ensuring productivity of workers, which may be described as 

waste of resources in return, having sufficient number of tools and improving their 

management on site through indoor localization systems is the right strategy. 

 

2.1.4 Building Emergency Response Operations 

Emergencies in buildings such as structural collapse, flooding and especially fire can 

turn into fatal disasters for occupants in the buildings and first responders (Li, Becerik-

Gerber, Krishnamachari, & Soibelman, 2013a). Li, Becerik-Gerber, and Soibelman 

(2015a) state that real-time localization of people can be remarkably beneficial in 

minimizing severe injuries and enhancing success rate in first-time response in 

building emergency operations. A recent study composed of interviews with first 

responder professionals by Li, Yang, Ghahramani, Becerik-Gerber, and Soibelman 

(2014b) showed that the location of people were considered as one of the most 

important information piece that is required in times of fire emergency incidents. 

Throughout the study, a number of information items were given to responders and a 
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pre-determined procedure was followed in order to reach a classification between all 

information items. A simplified part of the result drawn was shown in Table 2. 

 

 

Table 2: Importance of Indoor Localization 

(Adapted from Li et al. (2014b)) 

 

 

 

According to Li, Becerik-Gerber, Soibelman, and Krishnamachari (2015b), at an 

emergency scene, detecting presence and position of occupants is not efficient at all 

with the current process, in which visual inspections are done from a distance to the 

site, depending on the observations and estimations of incident commanders. It is 

pointed out that it would be easier to guide the emergency response team only if real 

time location information was accessible for monitoring. 

 

The inefficiency of current process and need for localization in building emergency 

response operations is explained by Li, Becerik-Gerber, Krishnamachari, and 

Soibelman (2014a) as: 

 

First responders are the first line of defense when building fire 

emergencies happen, and one of their foremost important tasks is to search 

and rescue the people trapped in buildings. First responders usually have 

little knowledge about the location of trapped building occupants, 

preventing informed decision-making with regard to search route planning 
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and task force allocation. Instead, first responders have to perform a 

complete search of indoor spaces where people may be trapped. Such 

search is mostly blind and not efficient, increasing the chances of fatalities 

and injuries of trapped occupants (p. 78). 

 

Considering the current situation, Li et al. (2014a) implied that utilization of a real-

time location detection system could reduce the time spent for rescuing the trapped 

people in an incident and prevent possible fatal outcomes. As they are subjected to lots 

of dangers in emergencies due to the difficulty in being oriented in complicated, 

unfamiliar built environments (Rueppel & Stuebbe, 2010), the real-time location 

information of the operation units is also critical (Li et al., 2015b). Although the 

professionalism and skills of incident commanders are important factors in a good 

emergency situation management based on available collected information (Martin & 

Flin, 1997), a successful coordination and decision-making is only possible with real-

time location monitoring of on-site units for ensuring their safety and guiding them 

with the correct routes within the disaster site (Li et al., 2014a). Li et al. (2015a) 

suggested that, those first responder units which are disoriented in dangerous spaces 

can be noticed and alerted by incident commander through real-time monitoring, and 

they can be directed to trapped people with navigational directives. In addition, it is 

asserted in the paper that potential dangers can be better detected and prevented by 

first response units themselves if they are provided with access to their real-time 

positions accurately on the field. 

 

2.1.5 Selected Scope for Indoor Localization 

Definition of indoor localization is made by Taneja (2013) as ‘the process of 

determining the semantic location (such as a room number) of a person or an object 

with respect to a reference coordinate system in an indoor environment’ (p.1). As 

explained above, location information in indoor built environments have a great value 

for architecture, engineering and construction industry. In the literature, indoor 

localization systems are studied for a wide range of purposes with different 

perspectives. Detection of occupancy for supporting demand-driven building 

operations and reducing energy consumption, increasing efficiency in construction 

labor time and supply chain management with automated asset tracking, optimization 
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of facility maintenance and operations through instant localization and identification 

of building components, and guiding first response units in indoors in time of 

emergencies are the main causes of interest for indoor localization.  

 

As buildings are responsible for over 40% of total energy consumption in the world 

(Soucek & Zucker, 2012), possibilities for creating energy efficient built environments 

are investigated by researchers in many ways. Considering the effects of presence and 

behavior of people on energy consumption in buildings (Page et al., 2008), information 

related with presence and location of occupants in indoor built environments is highly 

valuable. Accordingly, this research focuses on building occupancy detection systems 

that is thought to be the most critical one among the mentioned scopes of indoor 

localization. 

 

 Human Factor in Built Environments 

In definition, what the term ‘human factor’ focuses on is to understand the interactions 

between people and the elements of a system, as Attaianese (2012) explains, providing 

hypothetical standards, information and methods to design for optimizing overall 

system performance and human comfort. In the context of built environment, 

considering that a large percentage of people’s daily time is spent within their homes 

or offices, a proper human-centered approach is essential in the design and operation 

of buildings. A whole set of buildings systems including space, lighting, heating and 

cooling, ventilation, water supply, and security should be designed with the 

optimization of daily user activities and to maximize the level of people’s well-being 

and satisfaction within the built space (Attaianese & Duca, 2010).  

In his book, Pallasma (2005) describes buildings as more action-oriented environments 

and claims that buildings engage with people by uniting, relating and articulating. In 

order to understand the concept of building occupancy detection, it is beneficial to 

investigate its theoretical background and the reasons for emergence of a need for 

sensing people in indoor environments. With this purpose, firstly, the engagement 

between occupants and built environments will be explored. Secondly, intelligent 

building approach will be explained with necessary definitions and examples. 

Following, building automation systems and importance of occupancy information for 
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automated building operations with possible gaining will be discussed. Finally, the 

definition for building occupancy detection with related constituted frameworks in the 

literature will be represented. 

 

 Occupant – Built Environment Interaction 

Buildings may be described as intricate systems where the collaboration of the discrete 

components contribute to the interconnected whole. Since the key role for running of 

the built facilities belongs to its users, as Altomonte, Rutherford, and Wilson (2014) 

indicate, aspirations and demands of the occupants are essential for the design of built 

environments and occupants should be engaged directly in a conscientious circle 

throughout whole design process.  

 

Behaviors of occupants are defined by Klein et al. (2012) as the decisions taken and 

actions of building occupants that influence the energy consumption of buildings. 

Daily interactions between people and their surrounding built environment requires 

remarkable attention in the building design and maintenance processes, since they 

affect both indoor comfort rates and energy usage of buildings (Langevin, Gurian, & 

Wen, 2015).  These interactions are exemplified by Robinson (2006) as: 

  

 Window and door openings: influencing air flow, 

 Shading devices / blinds: influencing radiation transmission and glass 

surface temperature, 

 Lighting controls: influencing electricity consumption and casual heat 

gains, 

 Electrical appliances: influencing electricity consumption and casual 

heat gains, 

 Heating, ventilating and cooling system controls: influencing thermal 

and electrical energy consumption and associated heat injection / 

rejection, 

 Waste is also produced, from which energy may be derived, and for 

which water is consumed (p. 4). 
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Figure 2: Active and passive occupants’ effects on building performance. 

(Martinaitis et al., 2015) 

 

 

Supporting Robinson’s examples of interaction, Ekwevugbe (2013) argues that, 

presence and behavior of people has a big impact on energy use of buildings, and 

through the release of carbon dioxide, water vapor, body heat,  sound and odor as a 

result of their daily activities, they also affect the built environment conditions. 

Moreover, Martinaitis, Zavadskas, Motuzienė, and Vilutienė (2015) clarify that energy 

performance of buildings and indoor comfort level are affected both by presence 

(passive effects) of occupants and their actions (active effects) (Figure 2). 

 

Indoor environments’ performance could be analyzed and improved through the 

overview of two critical parameters, which are occupant comfort and building energy 
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(Klein et al., 2012). Considering the interrelated effects of people and built 

environment on each other, it can be said that a two-way interaction between occupants 

and buildings is critical for achieving success in providing a healthy and energy 

efficient environment. That is to say, a building should perceive and respond its 

occupants in its own way, just as occupants experience and affect the buildings 

(Clements-Croome, 2013).  

 

 Intelligent Building Approach and Building Automation System 

With the drive towards creating energy efficient, productive and environmentally 

healthy built environments for occupants, and optimizing the building services, 

systems and management, the concept of intelligent building was born (Wong, Li, & 

Wang, 2005). One of the very first definitions of intelligent buildings was done by 

Clements-Croome (1997) through referring CIB Working Group W98’s proceedings 

as:  

An intelligent building is a dynamic and responsive architecture that 

provides every occupant with productive, cost effective and 

environmentally approved conditions through a continuous interaction 

among its four basic elements: Places (fabric; structure; facilities): 

Processes (automation, control; systems): People (services; users) and 

Management (maintenance; performance) and the interrelation between 

them (p. 396). 

 

What an intelligent building refers to in general is a high technology built environment  

equipped with computerized and automated building systems whose goal are to meet 

occupant requirements and to provide appropriate synergy between people and 

buildings (Harrison, Loe, & Read, 1998). According to Clements-Croome (2013), 

promoting sustainability (water, energy and waste), creating a healthy environment for 

occupants, using robotics, embedded sensor technology, and communication and 

information technology are all included within the key issues for intelligent buildings. 

On the other hand, Wang (2010) explains, a services-based definition is made by The 

Japanese Intelligent Building Institute as; an intelligent building is an environment 

functionalized with building automation systems that ensures satisfaction of its users 

and rationalize the management of building operations in a cost-effective and healthy 

manner.  
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Figure 3: The Intelligent Building Pyramid (Adapted from: Wang, 2010) 

 

Intelligent buildings have a progressive history that improves parallel with the 

development in intelligent control of building operations after 1980 (Figure 3). 

Moreover, the integration level is accelerated with the  evolution in computer, 

electronic and information technologies (Wang, 2010).  

 

Visual comfort, thermal comfort and indoor air quality comfort are listed as the three 

basic factors that determines occupants’ life qualities in buildings by Dounis and 

Caraiscos (2009). Since the overall control of these three factors is made by HVAC 

system, auxiliary control facilities and lighting system, the management of these 

systems may be very crucial for improved energy efficiency in buildings and comfort 

of occupants (Yang & Wang, 2013). The major service of intelligent buildings that 

deals with the control of building facilities is called Building Automation Systems 

(Wang, 2010). 
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Existence of building automation systems industry is predicated on the patent of first 

temperature control system in 1895 (Clute, 2008).  The very first definition of the 

building automation system is made by Carlson and Giandomenico (1991) as a tool 

for building operations to provide more efficient and effective control over all building 

systems. Since then, as Clute (2008) emphasizes, BAS has evolved in many different 

ways and a new era of machine-to-machine communications, building intelligence and 

expanded functionality is on the horizon.  

 

Soucek and Zucker (2012) claim that, energy efficient operation of the buildings 

should be ensured by technological tools like comprehensive building automation 

systems for achieving the future aim of having zero energy buildings. While energy 

efficiency requires the building architecture and its systems to be designed accordingly 

and it starts from the very early stages of construction; operation and maintenance of 

buildings are the stages where building automation system is responsible for 

minimizing energy consumption (Soucek & Zucker, 2012). 

 

Commonly, in today’s world,  what building automation system refers to is the 

arrangement of computer-based systems to monitor and administrate buildings’ 

physical environments and operations such as heating, ventilation and air conditioning, 

electricity control, and water systems controls (Yang & Wang, 2012). Vasseur and 

Dunkels (2010) explain that, HVAC and electricity systems are automatically 

regulated by BAS for ensuring the comfortable living environments in indoors, while  

ensuring a more energy efficient built environment. Moreover, utilized security and 

fire systems can also be controlled and monitored by BAS, which enhances the security 

and safety of the built environments. Nguyen and Aiello (2013) state in their article 

that, a wide variety of innovations including building controls and energy 

administration frameworks, crosswise over local, institutional, industrial and 

commercial buildings, are incorporated by the course of BAS.  

 

Although the target building size of BAS ranges from 10 K square meter structures 

(i.e., a five-story office buildings) to 100 K square meter skyscrapers, mid-size  

buildings (5 K square meter to 10 K square meter) can also be instrumented with 
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automated lighting, HVAC and security solutions (Vasseur & Dunkels, 2010). 

Improvement in facility management, protection of people and equipment, 

enhancement in staff productivity, reduced operating costs and increase in the 

reliability of plant and services are listed as the major benefits and the scope of BAS 

by Wang (2010). Climate control, visual comfort, personal safety, building security 

and energy management are all the fields of services within the built environment that 

can be operated throughout the interface of BAS (Soucek & Zucker, 2012). 

 

 

 

Figure 4: Functional Domains of Building Automation Systems 

 

 

Apart from building automation system’s fragmented operational framework that is 

pointed out by Prakash (2013), Wang (2010) states that a BAS comprises several 

subsystems that are joined in various ways to shape a complete system which has to 

be designed and engineered uniquely around the intended building itself. Six main 
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logical subsystems that compose BAS is shown in Figure 5. As shown in the figure, 

HVAC, fire, security, lighting, hot water and shutter controls are the major subsystems 

that are connected logically through application software called building applications. 

Each subsystem shown in the figure is optional and users may integrate all these 

subsystems at once or may choose them according to the necessities of the facility 

(Vasseur & Dunkels, 2010).  As it is obvious in the Figure 5, the operation of all major 

subsystems are based on the occupancy factor within the framework of building 

automation systems. 

 

 

 

Figure 5: Breakdown of Building Automation Systems 

(Adapted from: Vasseur & Dunkels, 2010) 

 

 

Mohammed (2011) declares that BAS is responsible for the control of these 

frameworks, monitoring the systems, and recording related data during the life cycle 

of a given facility. However, although the building systems shown above are typical 

for most facilities, the whole list is not composed of only these six. Vasseur and 

Dunkels (2010) argue that the overall objective in the design of building automation 

systems is to harmonize all typical building functions with the overall system while 



25 

 

ensuring  a comprehensive adaptability to alter some of the systems and add others 

according to possible emergent requirements.  

 

 Importance of Occupancy Detection for Building Automation Systems 

Energy demand and supply model for a building as shown below in Figure 6 is the 

basis for functionality of BAS (Siemens, 2012). In the figure, rooms represent the 

source of energy demand that is in return based on occupancy. The goal of providing 

comfortable living conditions in the building spaces with regards to air quality, 

humidity, temperature and light for occupants coupled with the desire for reduced 

energy use can only be achieved through improving this model.  

 

Usual communication model in BAS consist of three layers as field layer, automation 

layer and management layer from bottom to top (Figure 6). Interface to the physical 

process in the field layer is composed of sensors which provides information about 

rooms’ requirements in energy demand and supply model  (Soucek & Zucker, 2012).  

 

 

 

Figure 6: Energy Demand and Supply Model (Siemens, 2012) 
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Providing indoor comfort, personal safety and a productive environment for the 

inhabitants is one of the primary objectives of BAS. Yet, as Soucek and Zucker (2012) 

imply, creating an ideal environment and adapting building services accordingly for 

all is not possible because of the differences between inhabitants such as age, gender 

and cultural background and the use of purposes between different spaces in the 

buildings. Therefore, BAS divides buildings into zones like single office rooms, 

meeting rooms, open public spaces and service spaces, and behaves according to 

necessities of spaces and users.  

 

As BAS is responsible for the comfort of occupants within a space, the information 

about whether the space is occupied or not, or how many occupants do exist in the 

considered zone has a vital importance. Since the most essential input for BAS is 

occupancy in the buildings and occupancy rates of spaces may differ based on user 

calendars, a time-sensitive and logical approach is expected from different sub-

systems of BAS (Makarechi, 2007). Yet, Klein et al. (2012) state that current building 

automation systems rely on code defined occupant comfort ranges and they lack real 

time input of dynamic occupancy that can only be gathered through occupancy 

detection systems. It is indicated that, consequently, current building automation 

systems are inefficient in their energy usage for providing occupancy comfort and they 

cannot adjust themselves according to occupants’ comfort needs. 

 

Building occupancy detection is defined along the dimensions of accuracy and 

resolution by Christensen, Melfi, Nordman, Rosenblum, and Viera (2014). 

Considering the fact that measurement of occupancy should include information about 

space, number of occupants and time span, occupancy resolution should be along three 

dimensions; spatial resolution, occupant resolution and temporal resolution. As shown 

in Figure 7, while spatial resolution of building occupancy is measured in terms of 

building structures like floors or rooms and temporal resolutions is measured by time 

spans, occupant resolution is defined in four levels of detection (Christensen et al., 

2014).  
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Figure 7: Resolution Framework of Building Occupancy Detection 

 (Christensen et al., 2014) 

 

 

In minimizing energy consumption by optimizing the intelligence of building 

automation systems (Breslav, Goldstein, Doherty, Rumery, & Khan, 2013), accurate 

building occupancy information with the highest resolution possible can be very 

beneficial. Many researches have been conducted on occupancy detection systems 

using different methods within the scope of indoor localization, and these works with 

their benefits and possible drawbacks should be discussed before suggesting a new 

framework. 

 

2.2 Existing Occupancy Detection Approaches 

 

In this section, it is intended to overview the current approaches for occupancy 

detection solutions within the framework of indoor localization and explain their 

benefits and possible shortcomings given in the literature. Prediction algorithm 

models, image detection systems, passive infrared-based detection systems, carbon-

dioxide sensors based detection systems and radio frequency based detection systems 

will be explained respectively. In radio frequency based detection systems part, 
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different technologies such as radio frequency identification (RFID), Wi-Fi (WLAN) 

and ultra-wide band (UWB) will be analyzed with their technical frameworks.  

 

2.2.1 Simulation (prediction algorithm) models 

In order to characterize the dynamics of building occupancy, mathematical models 

were utilized in simulation software applications and there are proposed stochastic 

models in the literature which are created with the purpose of predicting presence of 

occupants and their interactions with the space they inhabited (Ekwevugbe, 2013). In 

simulation models, occupancy information is presented using occupant diversity 

profiles and these profiles are explained by Page et al. (2008) as: 

 

The profiles may depend on the type of building (typical categories being 

residential and commercial) and sometimes on the type of occupants (size 

and composition of a family). Weekdays and weekends are usually handled 

differently, especially in the case of commercial buildings. A daily profile 

is composed of 24 hourly values; each of these corresponds to a fraction 

of a given peak load. The weekday and weekend profiles and the peak load 

are related to a particular category of building and type of heat gain; they 

may be based on data collected on a large amount of monitored buildings. 

(p. 84). 

 

For example, in 1999, Degelman (1999) proposed a computer simulation model that 

was based on recorded experiment data about the usage routines of offices for creating 

occupancy profiles and lighting schedules for a typical week day. Similarly, an 

occupancy simulation model was presented by Richardson, Thomson, and Infield 

(2008) for generating occupancy data of residential buildings in United Kingdom. In 

their approach, weekdays and weekends are separately evaluated and temporal 

resolution of occupancy data was specified as 10 minutes.  Another occupancy 

presence simulation method was developed by Page et al. (2008) based on a prediction 

algorithm. In their model that is based on observational data, daily occupancy profiles 

were generated that reveals the state of absence or presence of individuals on their 

single-person office spaces. 
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Although simulated occupancy profiles may match well with ground truth of real-time 

occupancy information in some cases, it cannot be said that they are effective for 

occupancy presence prediction in multi-occupant spaces like meeting rooms or 

libraries, since creating accurate occupant profiles for such spaces are not possible. In 

general, as Ekwevugbe (2013) argues, simulation models that are created for 

generating occupancy presence probability data is considered as applicable to single-

person spaces like personal offices where dynamics of occupancy is comparatively 

straightforward. Moreover, rather than providing real-time occupancy information 

which is also the main purpose of the framework suggested in this research, simulation 

models can only present the probability of occupancy presence that was labelled as 

inefficient by Klein et al. (2012) for the management of building operations. 

 

2.2.2 Image detection (vision-based) systems 

Although vision based devices such as video cameras are usually used for security 

purposes in buildings, lately their use has also been improved in occupancy detection 

system (Labeodan et al., 2015). Vision based localization is categorized by Mautz 

(2012) into two systems with different principles. In the first category, localization 

target is a mobile vision-based device (i.e., a wireless camera), whereas in the second 

category, a fixed camera detects moving occupants in the processed images. It is 

indicated that, all vision-based localization systems rely on detection of people through 

comparing the perceived image with the buildings’ predefined visual database (3D 

building models, images, recorded coded targets or projected targets) (Mautz, 2012).   

A vision based solution in which the static video cameras are used for localizing 

occupants and identifying objects in indoor environments was developed by İçoğlu 

and Mahdavi (2007). In their model, every object is coded with a small reference tag 

image and the visuals derived from cameras are processed with an algorithm for 

comparing and matching the perceived tag image with the tag images in the deployed 

database. Information exchange tool in the proposed system is determined as internet, 

with the intention of ensuring flexible scalability and easy integration for system 

components in the buildings. Another vision-based position detection system was 

proposed by Kim and Jun (2008). Contrary to approach of İçoğlu and Mahdavi (2007), 

they propose a system with wireless cameras for detection of occupant’s position. The 
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wireless cameras are attached to head of the researcher within the experiment, and the 

locations of occupants are recognized through image data search in the pre-constructed 

image labelled location model. The researchers report that success rate of this 

occupancy detection and localization proposal that is tested in an indoor environment 

is noted as 89% (Kim & Jun, 2008). In the vision-based system proposal of Benezeth 

et al. (2011), presence detection and behavior analysis procedures are reported to be 

based on processing of videos that are recorded by using static cameras. The video 

processing system is configured to proceed in three steps, which are detection of 

change in the environment, tracking of moving objects based on reference points and 

classification of detected objects (whether it is an occupant or not) respectively. The 

accuracy of the model is asserted as 93% for personal offices and 83% for public 

corridors by Benezeth et al. (2011). Similarly, Erickson, Achleitner, and Cerpa (2013) 

deployed static cameras in an office floor whose perspectives cover all entrance points 

to the separated zones. The purpose of the proposed solution is claimed as detection of 

occupancy presence in the predefined zones in order to optimize energy management 

system of the intended building, and presented success rate is noted as above 93% for 

directional accuracy and above 87% for overall accuracy.   

 

Even though the accuracy rates in the reviewed research papers are quite high, the 

utilization and deployment of vision-based detection systems cannot get very popular 

because of number of reasons. Costly requirements for an advanced image processing 

system and extensive hardware can be listed as the main shortcoming of vision-based 

systems (Thanayankizil, Ghai, Chakraborty, & Seetharam, 2012). Extreme difficulty 

of the utilization, testing and system performance verification (Erickson et al., 2013) 

and privacy concerns of occupants which may arise from being continuously 

videotaped in living and working spaces (Ekwevugbe, 2013) are the other limitations 

for implementation of vision based localization systems. 

 

2.2.3 Passive infrared (PIR) sensor based systems 

Passive infrared sensors are specifically designed heat energy sensitive tools for 

detecting infrared radiation waves emitted by human body, which cannot be perceived 

with the naked eye (Labeodan et al., 2015). Liu, Zhang, and Dasu (2012) state that as 
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a PIR sensor is placed to a zone, it perceives the thermal background of the space and 

establishes a baseline for itself if it has not already been defined. It is stated that, after 

the establishment of the baseline, PIR sensors recognize any pattern changes in the 

infrared energy within the sensor range and presume the room as occupied.  

  

 

Figure 8: Research setup with PIR sensors by Hauschildt and Kirchhof (2010) 

 

 

The usage of PIR sensor based systems is largely popular in non-individualized 

detection of occupancy (Li et al., 2012a) and widely used in lighting control in large 

office buildings (Delaney, O’Hare, & Ruzzelli, 2009). Yet, there are some researches 

and proposed systems about detecting occupancy with PIR sensors in the literature. 

For example, Dodier, Henze, Tiller, and Guo (2006) developed a model composed of 

three PIR sensors and a phone sensor per zone in a two-room personal office. In the 

model, each sensor provides an independent detection information to the system and 

the combination of all measurements reveals whether the room is occupied or not. The 

reported success rate of occupancy detection is about 98%. A PIR sensor based 

location detection system was proposed by Hauschildt and Kirchhof (2010) in which 

utilizes thermopiles, a type of thermal infrared sensors. The research was tested in a 

room where thermopiles are placed on the four corners and localization of people is 
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done through applying triangulation method (triangulation method is explain in section 

2.3 in detail) and angle of arrival principle (Figure 8). The authors concluded that 

although they achieve high accuracy for position estimation in the test-bed room, the 

method is applicable only if a prior study is done about the dynamic thermal 

background of the intended real cases. 

 

Although some PIR sensor based detection systems presented in the literature are 

claimed to provide real-time information about human presence, due to the number of 

reasons, they do not have a wide application scope in the real life and their popular use 

is limited to automated lighting systems (Labeodan et al., 2015). The main  downside 

of this technology is that PIR sensors require unceasing motion and they cannot detect 

if the state of an occupant is stationary while working or relaxing (Balaji, Xu, 

Nwokafor, Gupta, & Agarwal, 2013). The other limitations are listed by Kemper and 

Linde (2008) as sensitiveness to sunshine radiations and airflow movement, 

ineffectiveness in separating people and pets and inability to penetrate through 

obstructions like walls. Furthermore, as Liu et al. (2012) explain, since the sensor 

range of PIR is limited, they are not good enough for monitoring large-scale indoor 

spaces and PIR sensors are useless for multi-occupant detection. 

 

2.2.4 Carbon-dioxide sensors based systems 

Carbon dioxide (CO2) is naturally exhaled by humans on a regular basis and amount 

of CO2 varies in spaces throughout time (Fisk, 2008). As occupants are the only source 

of carbon dioxide (CO2) in indoor built environments and the amount of CO2 in a space 

is proportional to number of people in that space, CO2 rate can be taken as an indicator 

of human presence (Kar & Varshney, 2009; Naghiyev, Gillott, & Wilson, 2014). In 

the light of this assumption, as Labeodan et al. (2015) explain through referring the 

previous literature, occupancy information with a full resolution of presence, count, 

identity and activity can be provided through the measurement of CO2 concentration 

(Labeodan et al., 2015).  

 

CO2 sensors are widely utilized in demand driven control of ventilation as Emmerich 

and Persily (2001) presented in their report in detail, and there are also many 
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researches in the literature that employed these sensors for occupancy detection 

purposes. Wang, Burnett, and Chong (1999) experimented a system in which data from 

the sensors about the CO2 rates in an open plan office and a lecture theatre  are 

processed with certain algorithms and used for occupancy estimation. The accuracy of 

proposed system was tested through comparing the estimated occupancy with the true 

occupancy information that had been recorded manually. Although it is claimed that 

the approach is successfully fast, responsive and accurate for occupancy detection, it 

does not have any potential for localization (Wang et al., 1999). Gruber, Trüschel, and 

Dalenbäck (2014) investigated the applicability of CO2 sensors for gaining occupancy 

information through an on-site experiment in a thirty five meter-square seminar room. 

Different scenarios were tested through alternating the air exchange per hour (ACH) 

and number of occupants in the space. CO2 sensors were placed in the exhaust air ducts 

to measure the CO2 concentration in the exhausted air and to relate it with occupancy. 

 

 

 

Figure 9: CO2 – Number of Occupant – ACH Relation (Gruber et al., 2014) 
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According to their experiment results, as shown in Figure 9, Gruber et al. (2014) 

concluded that, since CO2 concentration in the experiment field is dependent on both 

the number of people and ventilation rate, it may have potential for use in automated 

building systems. It is also reported that there is a time-latency in occupancy detection. 

These findings are parallel with that of Emmerich and Persily (2001), who indicated 

that the amount of CO2 in a space is directly affected by the ventilation rate and the 

volume of the space. It can be deduced from the research results of Gruber et al. (2014) 

that, even though there is a correlation between the level of CO2 and presence of 

people, the effects of uncontrolled ventilation (opening windows or doors) on CO2 rate 

may cause inaccuracy in detecting people.  

 

In the literature, there are also some works that investigate the possibility of improving 

the effectiveness of CO2 based occupancy detection, through collocating them with 

some other sensors. For example, Meyn et al. (2009) proposed an occupancy sensing 

system that is composed of CO2 sensors, PIR detectors and static video cameras. The 

success rate about detecting the number of occupants is claimed as 89% for the entire 

building, yet spatial resolution of the system could not reach to room level. Another 

model in which CO2, PIR and acoustic sensors are employed to detect the occupancy 

in an office space with an open-plan layout is demonstrated by Dong et al. (2010). 

Three different algorithms were applied to gathered data and the best occupancy 

detection accuracy is stated as 73% in the proposed system.  

 

Despite the efforts in the literature for optimizing the accuracy, the utilization of CO2 

sensors in building occupancy detection is still not widely accepted due to some certain 

limitations. Fisk (2008) argues that, since the natural time latency of sensors in 

detecting CO2 level is not fast enough, occupants can already be disturbed by the air 

concentration and the indoor space can get very uncomfortable for people by the time 

system get the occupancy information and adjust ventilation level accordingly. 

Naghiyev et al. (2014) also emphasize the problems in the operation of building 

control systems with fast switching requirements that are caused by the delay in 

detecting occupancy. Moreover, the level of CO2 in indoor built environments can be 

affected by a number of factors including passive ventilation (i.e., air infiltration, open 
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windows) (Ekwevugbe, 2013), wind speed and pressure variations, and sensor 

orientation (Labeodan et al., 2015).  The effects of these factors may mislead 

occupancy detection, and make it difficult to derive reliable occupancy information 

using CO2 sensors based location detection systems. 

 

2.2.5 Radio Frequency (RF) Based (Wireless) Systems 

Despite the popularity of GPS for locating people and positioning objects in outdoor 

environments, it does not work for indoors properly due to the obstructed line of sight 

between the satellite and receiver tools, which results in attenuation of electromagnetic 

waves by the walls and obstacles (Farid, Nordin, & Ismail, 2013). Since radio waves 

has the capability of penetrating walls, obstacles and human bodies, as Vorst et al. 

(2008) demonstrated in their paper, radio frequency based technologies are suitable 

for indoor localization with their wide coverage area and less hardware necessity. RF 

based localization systems are generally composed of transmitters and receivers, 

which interact with each other through radio signals (Boukerche, Oliveira, Nakamura, 

& Loureiro, 2007). The measurement of radio signal is defined as radio signal strength 

indication (RSSI) in the literature and explained by Çalış, Becerik-Gerber, Göktepe, 

Li, and Li (2013) as: 

 

RSSI is a standard feature in most localization solutions and is defined as 

the voltage in the received signal strength indicator pin on the radio signal. 

It is usually expressed in dBm, which is ten times the logarithm of the ratio 

of power and the reference power. The relationship between power and 

distance is such that power is inversely proportional to the square of the 

distance travelled (RSSI α log (1/distance2)). RSSI is considered as a key 

parameter to estimate the coordinates of the targets and, thus, is crucial for 

accurate localization (p. 187).  

 

The very first RF based occupant localization system was named RADAR that is 

developed by Bahl and Padmanabhan (2000). The goal of authors was to locate and 

track occupants in indoor built environments through gathering RSSI data at multiple 

receiver locations and using collected information for position estimation. In the light 

of the research of Bahl and Padmanabhan (2000),  many studies have been made for 

establishing a reliable and accurate real-time indoor localization solution based on RF 

technologies including radio frequency identification (RFID), WLAN, Ultrawideband 
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(UWB) and Bluetooth. In this part of the research, a review of the literature about the 

location detection solutions with RFID, WLAN, UWB and Bluetooth technologies 

will be presented. 

 

 RFID 

One of the most popular methods studied for indoor localization is RFID sensor based 

models. A RFID system composed of a number of readers and generally a large 

number of tags adjusted according to intended building size (Figure 10) (Li & Becerik-

Gerber, 2011; Zhen, Jia, Song, & Guan, 2008). What separate RFID from the other 

sensor technologies are its benefits such as RFID tags’ features of having unique 

identity numbers and light, portable designs (Zou, Xie, Jia, & Wang, 2014), its 

effectiveness in non-line of sight and longer detection range compared to infrared, 

ultrasound, and Wi-Fi technologies (Pradhan, Ergen, & Akinci, 2009). A detailed 

technological review of RFID technology for indoor localization purposes can be 

found in the research paper of Pradhan et al. (2009). 

 

 

Figure 10: Main components of RFID based systems 

(Li & Becerik-Gerber, 2011) 

 

The one of the very first localization system based on RFID sensors was studied by 

Hightower, Borriello, and Want (2000) with the name SpotON. In the proposed 

system, randomly placed base stations measure the signal strength transmitted by the 

target unit and raw data is collected in the main server. The position of target unit then 
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triangulated and detected in three-dimensional indoor environment through analyzing 

the raw data with an algorithm. Likewise, an RFID sensor based location detection 

system, LANDMARC, was demonstrated by Ni, Yunhao, Yiu Cho, and Patil (2003) 

in which, instead of utilizing expensive base stations, a large number of cheap RFID 

tags were used as reference nodes and four RFID readers were placed in the experiment 

field. It is indicated that, RFID readers continuously reported the perceived tags within 

their ranges to the central system. Then, localization of the target object (tracking tag) 

was done through applying K-nearest neighbor algorithm (k-NN) in which the 

Euclidian distances in signal strength between reference tags and the target objects are 

compared. The coordinate of the closest reference tag is determined as the target 

object’s position. The authors concluded that, although there are several important 

factors which may affect the accuracy of the system including number of readers, 

placement of reference nodes and applied algorithm, depending on research analysis, 

RFID can be demonstrated as a potentially reliable and cost-effective solution for 

indoor localization (Ni et al., 2003). Yet, authors also noted several limitations for 

their system including time latency, low accuracy in RSSI reporting and change in 

tags’ behavior in time.  

 

 

Figure 11: Localization concept of SpotON – Experiment setup of LANDMARC 

(Hightower et al., 2000; Ni et al., 2003) 
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Another system with multiple RFID readers and a target unit carrying an RFID tag was 

presented by Zhen et al. (2008) in order to estimate the zone where the occupant is 

located in a four-room indoor space of 382 meter square. The success rate of zone 

detection with the application of a logic-based algorithm is claimed as 93%. Li et al. 

(2012a) proposed an occupancy sensing model based on RFID tags for supporting 

demand-driven operations of building HVAC systems. The scope of the research is 

stated as dynamic environments where the number of occupancy is very unpredictable 

and it should be monitored in real time. The proposed system, in which k-NN 

algorithm was utilized just like the system proposal of Ni et al. (2003), is reported to 

track stationary occupants with an accuracy of 88% , and moving occupants with an 

accuracy of 62%, and the location errors was indicated as 1.45 meters and 3.24 meters 

respectively. 

 

Although the capability of RFID sensors based detection systems to provide 

comprehensive fine-grained information for demand driven applications in buildings 

(Li et al., 2012a), there are some obstructions. The multipath effect for signal 

propagation, chancing environments’ negative effects on RSSI (Zhen et al., 2008), and 

unwillingness of occupants to wear RFID tags (Ekwevugbe, 2013) can be listed as the 

main limitations for the deployment of this technology for indoor localization. 

 

 WLAN 

As the infrastructure of wireless local area networks (WLAN) is already deployed in 

many indoor environments including office buildings, educational facilities and public 

areas, the interest towards using WLAN for indoor localization has become a popular 

issue for researchers lately (Ismail, Fathi, Boud, Nurdiana, & Ibrahim, 2008). In 

WLAN based location detection models, position of every Wi-Fi compatible mobile 

device can be located through using existing Wi-Fi infrastructure through adding a 

positioning server and line of sight is not required between access points and the target 

units (Farid et al., 2013). Moreover, the coverage area of a WLAN based localization 

system is expendable since it can bear additional access points, and any mobile target 

can be tracked unless it goes out of the covered range (Khoury & Kamat, 2009).  
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In WLAN based localization systems, as Mautz (2012) explains, empirical 

fingerprinting and path loss-based positioning (triangulation, trilateration) methods 

can be utilized, and the former one is claimed to be more effective method in the 

literature. The very first location detection system was developed by Bahl and 

Padmanabhan (2000) with the name RADAR, as indicated before, and it is based on 

wireless LAN technology. Fingerprinting method and kNN algorithm was utilized in 

the developed model and in the experiment, three base stations as receivers were 

placed in certain locations on the test bed, which is a 43.5 meters by 22.0 meters office 

floor. In so-called offline phase, a mobile unit, which transmits RF signals, is placed 

to a node and at least twenty RSS measurements were recorded at each base station. 

This procedure was applied for 70 distinct points and in 4 directions, and a radio map 

of the test bed area is created. Then, in the online phase, signal strength information 

received in the real time by the base stations is searched in the radio map and the 

closest match is labelled as the position of the mobile unit. Bahl and Padmanabhan 

(2000) reported accuracy of the system around 2.5 meters in 50 percentile, and about 

6 meters in 90 percentile.  

 

Taneja et al. (2012) analyzed three different technologies including RFID, inertial 

measurement units and WLAN for indoor positioning. In the WLAN-based 

positioning experiment of the study, the researchers followed a different procedure 

than that of Bahl and Padmanabhan (2000). Eight Wi-Fi access points are deployed in 

certain locations and they are used as transmitters instead of being receivers, and RSS 

data were collected in 55 points by a mobile device. The minimum number for RSS 

samples was determined as 30 from each access point. With the included high variance 

in RSS data, the success of localization accuracy was concluded as 70% for 1.52 

meters precision and 90% for 4.57 meters precision (Taneja et al., 2012).  

 

Despite its potential for indoor localization, WLAN based systems have their 

shortcomings and limitations, such as the negative effects of possible changes (i.e. 

moving furniture) in the environments on RSS (Mautz, 2012), high initial deployment 

cost, variations in Wi-Fi signal strength by time and possible interferences with other 

appliances (Chen et al., 2015). However, WLAN based location detection solutions 
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are still preferred over PIR based or ultrasound based systems since they need fewer 

transmitters and provide higher confidence in real-time positioning accuracy (Pradhan 

et al., 2009).  

 

 UWB 

Ultra wideband technology is based on data transmission technique through sending 

and receiving ultra-short radio pulses (Xiao, Liu, Yang, Liu, & Han, 2011). For an 

UWB based detection system, multiple unique tags for target units, stationary receivers 

covering signal map of the area, and a location management platform are required 

(Torrent & Caldas, 2009). UWB system has the capability of high accuracy indoor 

positioning with low power consumption even in non-line-of-sight conditions (Li, 

Dehaene, & Gielen, 2007). Since signals transmitted from UWB tags use a wider radio 

spectrum than the other RF-based tools, it does not effected by the interference of other 

signals in the environment and it has resistance to multipath effects (Liu, Darabi, 

Banerjee, & Liu, 2007). In addition, large bandwidth of UWB provides high resolution 

in both time and location for positioning and tracking, and it is suitable for utilizing 

positioning techniques including time of arrival and time difference of arrival (Mautz, 

2012). 

 

 

 

Figure 12: Radio spectrum of UWB technology (Mautz, 2012) 
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There are several studies in the literature for developing an applicable UWB based 

localization and tracking system, including the researches of Li et al. (2007), Ye, 

Redfield, and Liu (2010) and (Meissner, Arnitz, Gigl, & Witrisal, 2011), yet there is 

not a widely accepted solution. Although UWB based location detection models have 

the highest accuracy and precision (with a location error of 15 cm) among all other 

indoor localization solutions, a comprehensive receiver-transmitter infrastructure is 

required (Mautz, 2012) and the necessary initial deployment is so expensive that it is 

not in wide-scale use (Spataru & Gauthier, 2013).  

 

 Bluetooth 

Bluetooth is described by Mautz (2012) as “a wireless standard for wireless personal 

area networks (WPANs)”, which has zero dBm maximum power output. Classic 

Bluetooth was released as a unification tool for computers and other devices, and the 

main purposes of usage were connecting headsets and cell phones, and enabling file 

transfer between devices and printers (Heydon, 2013). However, the latest version of 

Bluetooth, namely Bluetooth Low Energy, was created by Bluetooth Special Interest 

Group Incorporation in the year of 2010 with the purpose of providing an extensible 

opportunity for data exchange with ultra-low energy consumption (SIG, 2016). BLE 

was widely accepted in the mobile device industry and many companies including 

Google, Apple and Samsung embedded this technology in all their devices (Townsend, 

Cufí, Akiba, & Davidson, 2014).  

 

With the breakthrough of these improvements, BLE has become a potential tool for 

indoor localization and occupancy detection (Ionescu, Osa, & Deriaz, 2014). Low cost, 

high security, low power, small size and unique ID identification for each Bluetooth 

tag can be listed as the main advantages that makes Bluetooth technology usable for 

location detection (Farid et al., 2013). In addition, since an embedded Bluetooth 

module do exist in almost every mobile device in today’s world, as Iglesias, Barral, 

and Escudero (2012) maintain, this technology can be used as a location detection tool 

without any extra infrastructure. A detailed review of literature on appropriateness of 

BLE for indoor localization is given in Chapter 3. 
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Even though some researchers investigate the applicability of BLE technology for 

indoor localization like Pei et al. (2010) and Subhan, Hasbullah, Rozyyev, and Bakhsh 

(2011), a comprehensive analysis and technological assessment of this technology do 

not exist in the literature. 

 

2.3 Localization Techniques of Wireless Based Detection Systems 

 

Localization with wireless based detection systems is defined as the process of gaining 

location data of a mobile unit using pre-located reference nodes within a defined space 

(Farid et al., 2013). Location sensing, geolocation, position location or radiolocation 

are the different terms that are used describe this process in the literature, and a signal 

transmitter and a measuring unit can be listed as the minimum hardware requirement 

for any wireless based localization systems (Liu et al., 2007).  

 

 

 

Figure 13: Process of location finding with wireless-based detection systems 

(Source: Ballazhi & Farkas, 2012) 

 

 

Localization techniques for wireless systems are explained under four main categories; 

proximity, triangulation, trilateration and scene analysis (Farid et al., 2013). In this 

section, in addition to detailed information about these four main techniques deducted 

from the literature, comparisons of wireless localization techniques properties will be 

presented in Table 3. 
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2.3.1 Proximity 

Proximity method, which may also be called as connectivity based localization, 

basically provides relative position information (Farid et al., 2013). This method relies 

on a dense grid of antennas whose positions are recognized by the system (Ballazhi & 

Farkas, 2012). If a mobile unit is detected by one simple antenna in the test-bed, its 

position is assumed to be collocated with that antenna. When more than one antennas 

detect the mobile unit, the one that receives the strongest signal is considered as 

collocated with the mobile unit (Liu et al., 2007) .  

 

There are many proposed schemes for proximity method that includes centroid 

algorithm and DV-hop scheme and area based approximate point-in-triangulation 

algorithm (Pu, Pu, & Lee, 2011). In centroid algorithm (Bulusu, Heidemann, & Estrin, 

2000), which is the most basic one, the location information of 
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   surrounding reference nodes  , i  ix  y  is used to 

estimate the location coordinate of the target unit as ; where N is the 

total number of surrounding reference nodes that is considered in location estimation.  

 

However, proximity method is not robust to noise in radio signal propagation. Pu et 

al. (2011) claim that, since the locations of surrounding sensor nodes can be obtained 

instead of exact location coordinate of mobile units, this method is not suitable for 

location tracking applications. Yet, it can be beneficial for location detection in large-

scale sensor networks (He, Huang, Blum, Stankovic, & Abdelzaher, 2005). 

 

2.3.2 Triangulation 

In triangulation technique, the position of a mobile unit is estimated through 

computing angles relative to multiple reference nodes (Ballazhi & Farkas, 2012) and 

angle of arrival (AoA) of wireless signals are taken as the base. Assumed that line of 

bearings of reference nodes or angular separation between the mobile unit and 

reference nodes can be obtained, the position of a mobile unit can be determined by 

using triangulation method (Amundson & Koutsoukos, 2009).  Although two 

 ,target targetx y
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reference nodes are enough for location estimation with this method, in most studies, 

three or more reference nodes are used in order to improve accuracy (Farid et al., 

2013). 

 

In the situations where there is a direct line of sight between the mobile unit and 

reference nodes, AoA method works properly. However, since multipath effect and 

reflection of signals from interior objects may significantly change the direction of 

signals arrival and decrease the accuracy, this method becomes barely usable as an 

indoor positioning system (CiscoSystem, 2008). Moreover, the cost of the system 

implementation increases with the use of additional antennas with the capacity to 

measure the angle of arrivals of signals (Farid et al., 2013) 

 

 

 

Figure 14: The position of a target node (T) is estimated based on the known 

positions of beacons (Bi) using (a) triangulation or (b) trilateration-ToA 

(Source: Amundson and Koutsoukos,2009) 

 

 

2.3.3 Trilateration 

Trilateration is a distance-based method that differs from triangulation in the 

information provided into the process of location detection. The coordinates of the 

target unit is estimated by measuring its distances from multiple reference nodes (Pu 
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et al., 2011). In this method, at least three reference nodes are necessary. The distances 

among the target unit and each reference node, which is computed by multiplying the 

travel time and radio signal velocity (Ballazhi & Farkas, 2012), may be represented as 

the radius of circles and the target unit is estimated to be located at the intersection of 

those three circles (Amundson & Koutsoukos, 2009).  Trilateration technique may be 

reviewed under two sub-headings; time of arrival and time difference of arrival. 

 

In ToA technique, the mobile unit transmits a signal that has a time stamp on it towards 

reference node beacons. When each beacon receive the signal, the distances between 

the mobile unit and reference nodes are calculated from velocity of the signal and the 

transmission time delay (Farid et al., 2013). Since ToA technique needs precise 

information about the transmission start and signal-receiving times, an accurate 

synchronization between all devices is an essential requirement and this can be counted 

as the main drawback of this system. Considering propagation speeds of signals are 

quite high, very small differences in time synchronization may result in very 

significant errors in location detection. A time difference as small as 100 nanoseconds, 

for example, may result in a localization error of 30 meters (CiscoSystem, 2008). 

 

In order to determine the relative position of the mobile unit (transmitter), TDoA 

technique examines the difference in time at which transmitted signal arrives at 

multiple reference node beacons (Liu et al., 2007). In TDoA technique, using 

mathematical concept of hyperbolic lateration, a hyperbole on which the mobile unit 

is estimated to lie is produced by each difference of arrival time measurement 

(CiscoSystem, 2008). Both ToA and TDoA techniques are proven to be suitable for 

localization in large-scale outdoor spaces rather than indoor spaces where high levels 

of overall obstruction exists. 

 

2.3.4 Scene Analysis (Fingerprinting) 

Scene analysis, which is also called fingerprinting in literature, is claimed to be the 

most accurate and popular method for indoor positioning and object tracking (Subhan 

et al., 2011). Lin and Lin (2005) explain that since there are lots of obstacles in indoor 
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spaces that may affect the line of sight of receivers and signal propagation, scene 

matching is the most suitable technique for an indoor environment. 

 

The scene matching technique consist of two phases as off-line phase and online phase. 

In off-line phase, first reference node beacons are placed providing a complete signal 

coverage of the intended area. Then the area is divided into grids of suitable ranges 

and in each grid cell, RSSI fingerprints are collected and labelled on that (x, y) 

coordinate in order to create a radio map of the area (Bekkelien, 2012). 

 

 

 

Figure 15: The scene matching method phases 

 

 

 In online phase, where the position of the target estimated, current time RSSI 

measurement of the mobile unit is matched with the closest pre-defined location 

fingerprints and the estimation position is detected (Taneja et al., 2012). Although it 

has serious drawbacks of being highly time-consuming and not tolerable to any 

possible changes in the indoor environment, as Subhan et al. (2011) argue, the 

accuracy obtained by this method is more than any other RF based positioning 

techniques. 
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Table 3: Comparison of wireless-based localization techniques. 

 (Adapted from: Farid et al., 2013) 

 

Method 
Measurement  

Type 

Indoor  

Accuracy 
Coverage 

Line of Sight 

/ Non-line of 

sight 

Affected 

by 

Multipath 

Cost 

Proximity Signal Type 
Low to 

high 
Good Both No Low 

Triangulation 

Angle of 

arrival  

(AoA) 

Medium 

Good  

(Multipath 

issues) 

LOS Yes High 

Trilateration 

Time of 

arrival (ToA, 

TDoA) 

High 

Good  

(Multipath 

issues) 

LOS Yes High 

Scene 

Matching 
RSSI High Good Both No Medium 

 

 

2.3.5 Performance Metrics of Wireless Based Location Detection Systems 

In order to provide a suitable location detection system for any particular case, 

performance parameters should be identified and reviewed whether they matched with 

the requirements of the intended case or not (Mautz, 2012). In this part, four main 

performance metrics of wireless based location detection systems that are accuracy 

and precision, coverage and scalability, complexity and cost are explained. 

 

 Accuracy and Precision 

Accuracy and precision are the most important features for a location detection system. 

Usually, the average Euclidean distance between the actual location and the estimated 

location that is called as location error is defined as the precision, and the statistical 

probability of detecting a position within a defined location error gives the accuracy 

(Mao & Fidan, 2009). Although it is claimed that the higher the accuracy is, the better 

the location detection system is, since there is always a tradeoff between the location 

error and other characteristics, Liu et al. (2007) state, a convincing accuracy and 
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precision with other performance metrics covered is aimed in location detection 

systems. 

 

 Complexity 

Software, hardware and operational requirements are considered as the factors for 

describing the complexity of a localization system (Calderoni, Ferrara, Franco, & 

Maio, 2015). Usually, it is attributed to the location computation time in the literature. 

If the localization algorithm is processed in a central server rather than in mobile units, 

the system is defined as less complex (Liu et al., 2007). In order to make the 

implementation and evolvement of positioning systems more viable, they should be 

designed with less requirements and a reduced complexity. 

 

 Coverage and Scalability 

The term coverage is described by Mautz (2012)  as the spatial extension where the 

performance of the positioning system should be guaranteed. The aimed range of 

coverage is an essential performance metric for the effectiveness of location detection 

systems. It is closely related to accuracy and can be categorized as local and scalable 

coverage. A well-defined, limited area, which is not expendable like a single room or 

building can be counted as a local coverage, while scalable coverage implies systems 

with the capacity to increase the range by adding necessary equipment (Farid et al., 

2013). The effectiveness of a location detection system in terms of coverage range 

should be evaluated according to the system’s scope and aimed environment. 

 

The scalability character of a location detection system ensures that the system could 

function normally even the scope of the system gets larger. Liu et al. (2007) explain 

that geography -the area or space covered- and density -number of occupants per space 

per time- are two axis that location detection systems might scale on. In wireless or 

radio frequency based location detection systems, since detecting multiple units when 

it is crowded or covering a wider area may require improvements in the infrastructure, 

the scalability character of the systems should be considered properly. 

 



49 

 

 Cost 

Money, time, space, weight and energy can be counted as the factors for the cost of a 

location detection system. In order not to let the cost gained from a location detection 

system exceed the arisen cost from the extra infrastructure, lifetime, weight, or 

consumed energy of the system, some features like using an existing hardware, 

equipment or low cost passive sensors can be considered in location detection system 

approaches (Farid et al., 2013). 

 

2.4 Critical Analysis of Literature Review 

 

Location information in indoor built environments was shown to have a great value 

for AEC industry in the reviewed literature. There are various use cases for indoor 

localization including building occupancy detection, automated asset tracking and 

supply chain management, optimization of facility maintenance and operations, and 

building emergency response operations. In this research, a detailed investigation on 

occupancy detection was done among the mentioned scopes. 

Throughout the literature, the theoretical background for the emergence of a need for 

detecting occupants in indoor built environments was studied including the concepts 

of occupant-built environment interaction, intelligent buildings approach and building 

automation systems. It was deduced that occupancy constitutes an important part of 

building automation systems, the aim of which is to satisfy the comfort needs of people 

in indoors and to administrate main building operations including HVAC, electricity 

and lighting on a demand-driven manner. Yet, the current operation of BAS was 

claimed to be inefficient since they lack instant information of occupancy presence 

input. Considering this gap in the industry, there are quite a large number of researches 

in the literature for developing a real-time occupancy detection solution. 

 

Existing approaches were organized and presented under five main topics, which are 

simulation models, image detection systems, PIR sensor based systems, CO2 detector 

based systems and RF based systems in the review. It is observed from the literature 

that, despite the various studies on generating solutions for occupancy detection, a 

reliable and widely accepted framework is still missing due to the shortcomings of 
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current systems including uncertainties in detection, privacy and time latency issues, 

inability for multiple detection and high expense of utilization and maintenance. 

Therefore, the main objective of this study is defined as to investigate a reliable 

framework for real-time occupancy detection that is punctual, accurate and precise. 

 

In this study, creation of a mobile-device integrated framework is intended considering 

their extensive usage in today’s world, and Bluetooth Low Energy is defined as the 

enabling technology, which is embedded in almost all current mobile devices including 

smartphones, tablets, or smart watches. Since BLE is a radio frequency based wireless 

technology, related literature about the localization techniques of wireless based 

detection systems and their performance metrics were also presented, and 

methodology of this research is developed with the derived knowledge.  
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CHAPTER 3 

 

MATERIAL AND METHOD 

 

 

In this chapter, the material and methodology that lead this research are explained. In 

the first section, the selected technology, which is Bluetooth Low Energy (BLE), with 

its properties and improved advantages are covered. In the second section, the material 

selection process and the simple experiment for evaluation of different BLE tags with 

its results are explained. Then, the related information about the methodology 

including test bed environment and data collection are presented. The location 

fingerprinting method and k-nearest neighbor algorithm are also explained. After that, 

the guidelines for analysis of the proposed framework and BLE technology are 

defined. In order to evaluate the given guidelines and hypothesis, different cases are 

introduced. This section is concluded with an overview on the relation of given cases 

and the research hypothesis. 

 

3.1 Bluetooth Low Energy Technology 

 

Bluetooth technology was invented in the year of 1994 with the purpose of replacing 

data cables with a wireless communication for exchanging data using radio 

transmissions (SIG, 2016). Bluetooth can be described as a wireless standard for 

wireless personal area networks (WPANs), which has zero dBm maximum power 

output (Mautz, 2012). Although the main aim of the creation of Classic Bluetooth was 

to unite distinct worlds of computing and communications tools, i.e., laptops and cell 

phones, as Heydon (2013) explains in his book, the technology was used widely and 

primarily as an audio link between cell phones and headsets. Enabling communication 

between cars and cell phones, file transfer between devices and wireless printing are 

some of the uses that were generated as the technology was improved in years.  
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In 2010, the latest version of the technology, Bluetooth Low Energy (BLE), which is 

also called as Bluetooth Smart, or Bluetooth 4.0, was created by Bluetooth Special 

Interest Group Incorporation (SIG, 2016). The core objective of BLE is claimed by 

Collotta and Pau (2015) as to run with an ultra-low power consumption. While former 

versions of Bluetooth are mostly used for transmitting huge amount of data such as 

audio or files, BLE is designed to exchange small data pieces such as humidity 

readings, which makes this technology convenient for devices requiring long battery 

life rather than high data rates (Andersson, 2014b). Latencies in connection and data 

transfer is also much smaller in BLE when it is compared with former technologies. 

Another feature of BLE is that it enables internet connection for different devices in 

an efficient way with its server architecture (Collotta & Pau, 2015).  In order to connect 

to the Internet, BLE devices can use other BLE embedded devices such as tablets, 

smartphones or PCs that have a direct internet connection as a gateway. The primary 

benefit of this approach, according to Torvmark (2014), is achieving simpler, lower 

cost and lower power wireless devices.  

 

 

 

Figure 16: Scope of Classic Bluetooth via Scope of Bluetooth Smart 

(Adopted from: SIG, 2016) 
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BLE has adapted itself into the mobile device industry very rapidly and most of the 

smart device producer companies, as Townsend et al. (2014) observe, including Apple, 

Samsung and Google are putting significant efforts into embedding this technology 

into their products and publishing design guidelines around it. The reason behind this 

uncommonly rapid adoption rate is that it is an extensible framework for exchanging 

data and it allows little task-specific and innovative devices to talk to smartphones or 

tablets, which potentially open the gates for new ideas and improvements in the market 

(Townsend et al., 2014). Another driver for the rapid adoption rate is the concept of 

Internet of Things (IoT). The visionaries of the IT sector propose a future where every 

tool, device, component will have the ability to connect to internet and form a network 

of devices. Easy-to-deploy, cost efficient and low power wireless solutions are the key 

requirements for the IoT concept, and BLE was shown to be a well-suited technology 

with its ultra-low power sensors and low-cost deployment needs (Andersson, 2014a). 

 

 

Although BLE is not specifically designed for indoor positioning and occupancy 

detection, it has a significant potential (Ionescu et al., 2014). BLE uses tiny chips, 

widely known as Bluetooth tags, in which radio frequency and microchip technologies 

are combined for creating a robust system and this system can be used for both 

identification, monitoring and maintenance of building assets, and indoor positioning 

of people through communicating with a tag reader (Lodha et al., 2015). As this low 

energy and low latency data exchange technology is increasingly popular in the device 

industry (Bronzi, Frank, Castignani, & Engel, 2016), almost all mobile devices such 

as smartphones, smart watches, tablets or laptops equipped with BLE are able to 

communicate with Bluetooth tags and can be used as readers. These Bluetooth tags 

can send small data pieces to the readers, which can be any mobile device, and the 

distance can reach up to 50 meters (Ionescu et al., 2014).  Besides its pervasive 

availability in mobile devices, relatively low cost of and ultra-low power consumption 

of BLE tags when compared to other technologies can be claimed as the main 

advantages for utilizing it for locating people in indoor environments. 
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Although there are some studies in the literature in which Bluetooth is used for indoor 

positioning like the researches of Pei et al. (2010) and Subhan et al. (2011), there is 

not a comprehensive analysis and framework for BLE based indoor positioning and 

occupancy detection. In this research therefore, BLE and its potential will be 

investigated. BLE tags as reference nodes and a mobile device as tag reader will be the 

materials of this study. 

 

3.2 Material Selection 

 

Before going through the experimental setups to analyze BLE for localization, the 

available products in the market that are supporting this low energy technology were 

examined and four different Bluetooth tags were purchased by the researcher. These 

four different tags, referred as BLE Tag I, II, III and IV, were tested, and the one with 

the optimal results was selected. 

 

 

 

Figure 17: Purchased BLE Tags 
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3.2.1 BLE Tag I 

The product of Vendor I is a 2.4 GHz Bluetooth low energy enabled hardware, 

designed as suitable for communication and interaction with any static or mobile 

devices supporting Bluetooth technology. This product is equipped with LBM313 

module, which ensures long term usage with 3.3 volts coin-cell batteries and it is 

ideally suited in low-power wireless applications (PunchThrough, 2016). BLE Tag I 

has an accelerometer, a temperature sensor and RGB Led on its main board, works 

with a coin-cell battery and in the dimension of 45mm x 20 mm.  

 

 

       

Figure 18: BLE Tag I and LBM313 module 

 

3.2.2 BLE Tag II 

BLE Tag II is an ultra-low power tag. It has an N51822 named chip that is optimized 

for Bluetooth low energy and implementation for 2.4 GHz low-power wireless 

applications (Nordic, 2016). It is one of the smallest tags available in the market, with 

24mm radius and 4mm thickness. SDK (software development kit) is included in the 

purchase of this tag, which can be downloaded and customized by the clients. This 

feature of the product is thought to be beneficial for researches and was supplied with 

the purpose of enabling any researcher to incorporate it into self-developed indoor 

navigation applications (StickNFind, 2016). Besides supplying SDK demo for clients, 

it is also compatible with most of the leading platforms including ‘iBeacon’ software 

of iOS.  
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Figure 19: BLE Tag II 

 

3.2.3 BLE Tag III 

BLE Tag III is a smart tag with Bluetooth low energy connectivity. It was designed to 

enable its users connect with their mobile devices for their desired applications 

(RowdyRobot, 2016). BlueGiga BLE-112A is the Bluetooth Smart module that this 

hardware equipped with and it is the integration of Bluetooth radio, micro controller 

and software stack (BlueGiga, 2016). BLE Tag III has a size of 42mm x 19 mm, has a 

waterproof case and unlike other three tags that are reviewed, development and support 

from the manufacturer does not continue for this product. 

 

 

    

Figure 20: BLE Tag III  
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3.2.4 BLE Tag IV 

BLE Tag IV is a small wireless tag that is attachable to any location, and it is able to 

communicate with any mobile devices through tiny radio signals. This small object 

has a Bluetooth Smart module, a powerful processor, temperature sensor and motion 

sensor on its board and it is powered by 3 volts coin-cell batteries (Estimote, 2015). 

The chip of BLE Tag IV is the same with that of BLE Tag II, namely N51822, and it 

is well suited for Bluetooth low energy communication protocol and its supported 

applications (Nordic, 2016). This product has a size an approximate size of 45mm x 

20 mm. While testing this beacon with other three beacons, the silicone case was 

(destructively) removed in order to ensure the equality of sensors physical conditions. 

 

 

Figure 21: BLE Tag IV  

 

3.2.5 Experimental Setup for the Evaluation of the BLE Tags 

After the purchase of the reviewed four tags, a simple experiment was carried out in 

order to compare the capabilities and convenience of these products for indoor 

localization. First, a software was developed both for the evaluation of the reviewed 

BLE tags and for using it in the main experiments of this research. The development 

of the software was done on a mobile device that runs Android Operating System. 

Since SDK of BLE Tag II was compatible with all reviewed Bluetooth tags in 

collecting RSSI values, the demo software SDK of BLE Tag II was customized and 

modified for the development of the research software.  
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Figure 22: The interface of the research software 

      

Figure 23: Experiment environment for Material Selection  
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The interface of the developed software has 4 buttons; one for starting the record, one 

for adjusting the recording time, one is for saving the recorded RSS values to a file 

and one for exiting the program (Figure 22). In the software, after pressing the start 

record button, the recording of RSS values starts 10 seconds later and this feature was 

intentionally added for ensuring more control over the program during the 

experiments. 

 

Mobile Device Software Application BLE TagResearcher

loop

[for each BLE tag]

loop

[till the distance become 15 meters]

1.Place BLE Tag

2.Start Application

3.Press the start record button
4.RSSI Data

5.Save RSSI Data File

6.Move BLE tag one meter away

7.RSSI Data

8.Save RSSI Data File

 

Figure 24: UML Sequence Diagram of Material Selection Experiment 

 

 

The evaluation of these four BLE tags were performed in a corridor of Annex Building 

of Faculty of Architecture, at Middle East Technical University. In the corridor, 

Samsung Galaxy 10.1 Tablet, which is used as the reader throughout all the 

experiments in this research, was placed on to a box that has a height of 10 centimeters. 

Then, an identical box was placed one meter away from the reader and BLE tag I was 

placed on top of it. After this preparation, the localization software was opened on the 

reader and researcher pushed the start record button for five minutes, and walk away 

from the setup in order not to effect the radio signals. Five minutes later, the 

experimenter came near the reader, pushed the ‘save to file’ button and the record is 
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completed. After this, the distance between the reader and the beacon was adjusted 

from one meter to two meters and the recording was carried out again. This process 

was repeated by moving BLE tag away one meter more at each time, until the distance 

between the reader and the beacon is fifteen meters. The whole process was executed 

for each BLE tag separately and all the recordings were saved on the reader (Figure24). 

 

The evaluation criteria were identified as the RSSI value and its consistency. RSSI 

indicates the signal strength received by the reader. RSSI values, which are integer 

values, that are received from BLE tags changes between -127 to -20 dBM and higher 

values indicates stronger signals (Dahlgren & Mahmood, 2014). 

 

 

 

Figure 25: RSSI Logs on Material Selection Experiment 

 

Figure 25 depicts the results of material selection experiment in terms of recorded 

RSSI data while moving away the BLE tags from the reader. As shown in the table, 

while RSSI values are fluctuating as the distances between the reader and BLE tags 

increase for three tags, the reader receives signals consistently from only two tags, 
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which are BLE tag I and BLE tag II. Moreover, the highest RSSI values were recorded 

for BLE Tag I, demonstrating the strongest signal properties and, only for BLE Tag I, 

there is an observable change in RSS values that is regarded as a significant feature in 

creating fingerprints for indoor localization (Bekkelien, 2012). For BLE Tag III, 

although RSSI values were recorded between one-meter to eight meters distance, no 

RSS data was received between 8 meters to 12 meters. Unexpectedly, no RSSI data 

was found for BLE Tag IV in the whole experiment, which is an indication of the fact 

that it is not an appropriate product for indoor localization purposes. The reason of not 

getting RSSI data from BLE Tag IV was later identified as its property of sending 

signals only when it is movement. 

 

In Figure 26, number of received signals for each Bluetooth tag are demonstrated. Just 

like in RSSI values, the consistency is observed for BLE Tag I and BLE Tag II. When 

these two BLE tags are compared, BLE Tag I is better than BLE Tag II in terms of 

both RSS values and number of received signals for five minutes.  

 

  

Figure 26: Number of received signals on Material Selection Experiment 
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The most consistent RSSI values as the distance between the tags and the reader 

increases were observed for BLE Tag I. Moreover, BLE Tag I was shown to have the 

highest signals strength values. The number of received signals is also more consistent 

throughout the experiment for BLE Tag I than the other examined tags. Accordingly, 

BLE Tag I was selected as the product that will be used as the research material in this 

study.  

 

3.3 Research Approach - Location Fingerprinting  

 

Rather than testing the occupancy detection system itself, what is intended in this study 

is to assess the possibility of using mobile devices for locating occupants in indoors 

and investigating technological applicability of Bluetooth low energy for indoor 

localization. The scope of the proposed framework in terms of building type is 

identified as office buildings. The research approach is shown in IDEF0 diagram 

(Figure 27). Basically, Bluetooth based indoor localization systems are composed of a 

target unit with Bluetooth support and reference tags providing a complete signal 

coverage of the intended area (Bekkelien, 2012; Scheerens, 2012). About positioning 

methods, Cheung, Intille, and Larson (2006) state that standards and protocol 

characteristics of Bluetooth do not favor conventional signal time-of-flight based 

positioning methods, and based on the consensus in previous papers, fingerprinting 

method become prominent in most of the studies in the literature (Bargh & Groote, 

2008; Iglesias et al., 2012; Subhan et al., 2011).  

 

Fingerprinting is claimed as the most accurate localization technique for wireless 

detection systems in an indoor environment (Lin & Lin, 2005). Moreover, signal 

parameters of Bluetooth are not very convenient for other techniques like triangulation 

(Hossain & Soh, 2007) in the literature. Considering these facts, location fingerprinting 

is selected as the indoor positioning technique of this research. 

 

As mentioned earlier in literature review chapter, fingerprinting technique is based on 

creating a radio map of the experiment field through collecting fingerprints in the 

offline phase and estimating the position by matching measured RSSI information with 
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pre-defined fingerprints through applying adequate positioning algorithms in the 

online phase (Bekkelien, 2012). In this research, the defined borderlines of the 

fingerprinting method in the literature is accepted and a framework, in which mobile 

devices and Bluetooth Low Energy technology is integrated, is established as shown 

in Figure 28. Mainly, materials of the proposed system is composed of BLE tags as 

signal transmitters and a mobile device as reader. In the framework, first, twelve BLE 

tags are deployed in the test bed environment in a way that all fingerprint data 

collection points are in the coverage zone. Then, intended area is divided into non-

physical grid cells in two dimensions and RSSI data was collected at all defined 

fingerprint locations. The first phase of the proposed framework is finalized with the 

creation of a radio map of the area.  

 

 

 

Figure 27: IDEF0 diagram demonstrating the research approach 

 

 

Afterwards, in real operating conditions of the buildings, when an occupant gets inside 

the test bed area with his mobile device, it starts to collect RSSI values from the 

deployed tags. After the mobile device records RSSI values for one minute (as defined 

in the experiments), it sends the recorded data to the building automation server. Here, 

it is assumed that the mobile device is equipped with the created application and it 

starts to record data after occupant gets stationary. When recorded data comes from 

the occupant to building automation server, the RSSI data is searched in the pre-

Indoor Localization

Input:

Controls:

Output:

Reasoning Mechanism:

Current position (x, y)

Deployed BLE Tags Radio Map of the Floor

RSSI Data

K-NN algorithm (for comparing current RSSI data 
with predefined radio map and determining the 
coordinates of an occupant)
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established radio map with the employment of k-NN algorithm and the positon of the 

occupant is determined in the predefined coordinates. 

  

 

Database
(Radio Map of Building)

Central Server
(Building Automation 

System)

Search for recorded RSSI data 
match with k-NN algorithm

Location detection (x, y)

Recorded 
RSSI data

Collecting RSSI
Fingerprints

Placing BLE tags on test 
bed area

Offline Phase (Training Phase) Online Phase (Localization Phase)

BLE Tags

Mobile 
Device

Radio Signals

 

Figure 28: Conceptual Framework of Proposed Location Detection System 

 

 



65 

 

In principle, the radio map is supposed to be deployed in the building automation 

server and RSSI data search process and location detection in the online phase is 

thought to be automatically done. Yet, due to the lack of infrastructure possibilities in 

the facility and financial matters, these processes were tested manually in the 

experiments. Since the only difference between automatic and manual processes is the 

amount of time spent in the online phase, the reliability of the experiments does not 

change and the proposed framework is assumed to be tested as it is. 

 

3.3.1 Offline Phase - Data Collection 

In order to assess the proposed framework for indoor positioning, field experiments 

were carried out in MATPUM Building at Middle East Technical University’s campus. 

The second floor of MATPUM building was selected as the test bed, since the floor 

has a gallery space, metallic structure, many walls and obstructions that may affect the 

proposed system’s performance. The selected area consist of six personal offices, two 

restrooms and a corridor, and approximate size of the area is 240 m2 (Figure 29, Figure 

31). Twelve BLE tags are placed in certain locations on the floor, considering the 

actual signal range of the tags and possible signal attenuations. Location of BLE tags 

are shown in Figure 29 and their placements are shown in Figure 32.  

 

A Samsung Galaxy Note 10.1 2014 tablet was used as the reader and signal data was 

collected at 46 different points for creating fingerprints and radio map of the floor. 

Iglesias et al. (2012) emphasize that, since variability of signal strength values causes 

instability in the measurements of particular positions, there should be significant 

distances between fingerprint points in order to minimize the inaccuracies. 

Considering this, the distance between two consecutive points is determined as 1.8 

meters, and data was collected in all four directions (north, west, south and east) for 

46 distinct points (Figure 30). A total number of 184 training data sets are created. 

Then these data sets are correlated with coordinates on the defined two-dimensional 

space and radio map is constructed. The signal strength data were collected using the 

same software application in material selection process and the duration for each 

record is determined as one minute. Although there are twelve tags deployed in the 

test bed environment, by the reason of signal attenuation and coverage range of BLE 
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tags, the number of detected BLE tags vary in different data collection points. It is 

recorded that, at least two BLE tags are detected for every predefined location, whereas 

the maximum number of detected tags within all data sets is found to be ten. In this 

research, unless otherwise stated, minimum 30 signal strength data should be received 

from a tag for assuming that tag as detected at any given points. The number ‘30’ is 

mentioned by Navidi (2006) as the minimum required number for statistical analysis. 

 

Data collection process was repeated three times with one-month time interval. The 

first data collection was done right after the Maxell CR2032 Lithium coin cells were 

placed into BLE tags and the second data collection process was carried out one month 

later without any change in the cells. The voltages of the coin cells were recorded 

between 3.10V – 3.20V at the very first placement, which means that they were at full 

capacity. Around two months later, after the second data collection, the voltages of the 

coin cells were measured again and some of them were found to be near 0V. This 

undesired condition was thought to be related with the firmware of some of the BLE 

tags, since the BLE technology was claimed to have ultra-low power consumption 

properties (Heydon, 2013). The BLE tags came with a microprocessor to increase the 

capabilities of the modules, which lead to the fast drain of the batteries. 

 

Considering the possible effects of tags with flat batteries on the reliability of the 

experiment, the second data collection was not used at all in the analysis. Lessons 

learned from the previous process, and the third data collection was realized after 

renewing all the coin cells of BLE tags. After recording RSSI values for 184 discrete 

positions, the batteries were measured again to confirm their state and they were 

reported between 3.10V – 3.16 V. 
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Figure 29: Tag Locations on Test Bed Environment, scale: 1/200 

(Second Floor of MATPUM Building) 
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Figure 30: Fingerprints on Test Bed Environment, scale: 1/200  

(Second Floor of MATPUM Building) 
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Figure 31: Test Bed Environment - Second Floor of MATPUM Building 
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Figure 32: Placement of BLE Tags on Test Bed Environment  

 

 

3.3.2 Online Phase - Data Analysis Approach based on Cases 

In this research, online phase was carried out manually due to the lack of infrastructure 

possibilities. There were 184 test data samples and each of them are processed 

separately. First, a test data sample is selected and inquired in the pre-established radio 

map. In the radio map, the closest RSSI data match is derived through using k-NN 

algorithm. The position of the test data sample is identified as the coordinates of the 

closest training data sample (Figure 33). 

 

RSSI is taken as the parameter for assessing the technological appropriateness of the 

BLE for indoor localization. Although signal strength is claimed to be inversely 

proportional to distance between the transmitter and the reader (Çalış et al., 2013), 

there is not a regular decrease in RSSI values as the distance increase, due to the 

attenuation and reflections of the signals in the environment (Ergen et al., 2007a). In 

order to overcome this nonlinearity, an algorithm to manage this noisy data is needed. 
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The most commonly used and widely accepted solution is claimed as k-nearest 

neighbor algorithm by the researchers (Bahl & Padmanabhan, 2000; Pradhan et al., 

2009; Taneja et al., 2010). In this study, k-NN algorithm is used as it was asserted to 

be the most effective classifier for handling large sets of radio signal strength data 

(Han, Kamber, & Pei, 2012). 

 

k-NN algorithmTest Data

1. Select a test data sample

2. Inquire RSSI data in radio map

3. Look for the closest match

5.The closest RSSI data match

6. Location coordinates (x,y)

Radio MapMain Server

4. Euclidian 

Distance Calculation

loop

[for each test  data sample]

  

Figure 33: UML Sequence Diagram of Online Phase 

 

 

K-nearest neighbor (k-NN) is described as a deterministic classifier in which the given 

input is compared against the entire training data set at a runtime (Bekkelien, 2012), 

and based on learning by analogy (Han et al., 2012). In an n-dimensional pattern space 

where each training case represents a point, when given an unknown test case, what k-

NN classifier searches is the pattern space for k training cases that are closest to the 

unknown test case. The found training cases by k-NN algorithm are defined as the k-

nearest neighbors of the given unknown test case (Han et al., 2012). In the literature, 

the closeness of samples is generally measured in terms of Euclidean distance (Bahl 

& Padmanabhan, 2000; Li et al., 2012a; Pradhan et al., 2009; Taneja et al., 2012).  

 

K-NN algorithm is used to locate a test sample, in 184 (46 points x 4 directions) 

training data sets of signal strength values that were created in the offline phase of 

location fingerprinting. Accordingly, the Euclidian distance in signal space between 
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the given test sample (ss1, ss2, ss3…ss12) and the each training data sample (ss’1, ss’2, 

ss’3…ss’12), where ssi  represents the signal strength value of tracked BLE tag i (i ∈ 

1,12), is calculated. The formula for calculating Euclidian distance is: 

 

   

n 12
2

1 2 i i
i 1

Euclidian Distance(p ,p ):   (ss ss' )




                         (1) 

 

 

Compute the Euclidian distance between test data 
sample (input) and all the training data samples

Sort the distances

K=1

Start

True

Select the nearest neighbor
 (the one with the sortest distance)

Result

Location Coordinates (x, y)

False K 2

Select K closest 
matches

Calculate the average of 
K-nearest neighbors  coordinates

Result

Location Coordinates (x, y)

End

End

  

Figure 34: Flowchart diagram of k-NN algorithm 

 

 

After the calculation of the Euclidian distance between the test sample and each 

training data sample, calculation results are sorted from the smallest to the largest, and 

the coordinates of the closest match is identified as the position of the test sample, in 

the case that k1. If k is set as 2 or 3, or even higher, the location of the test sample is 

calculated through determining closest k-number of training data sets, and calculating 
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the average of their coordinates. Han et al. (2012) state that, the most effective value 

for k, in which give the minimum error rate is achieved, can only be determined 

through experimental trials. Similar to what Bahl and Padmanabhan (2000) propose in 

their study and the preference of Taneja et al. (2012), the error distance for the 

estimated location in this research is defined as the Euclidian distance between the 

location coordinates identified by k-NN algorithm and the true location coordinates of 

the test sample (Figure 34). 

 

As it is explained earlier, a training data set was prepared in the offline phase and a 

test data set is required both for analyzing the proposed system and the utilization of 

k-NN algorithm. Since the second data collection was decided to be ignored, and not 

used for its unreliability due to the flat batteries of some coin-cells, the very first set 

of data collection is taken as the training data set and the third data collection set is 

taken as the test data set. Test and training data sets are collected with a time interval 

of two months in real operating conditions of the test bed building, which familiarize 

the experiment to the real-case usage of the proposed framework. 

 

For data analysis, the approaches of Bahl and Padmanabhan (2000), Pradhan et al. 

(2009) and Taneja et al. (2012) are taken as the main guidelines in this study, and the 

cases defined by Pradhan et al. (2009) are modified and developed for assessing 

different properties of Bluetooth Low Energy technology for indoor localization. 

Accordingly, the researcher of this study created the following cases for experiments 

and the aim of establishing each case is explained in the next section (Table 4, Table 

5): 

 

 Case I – Training data is composed of data collection at 46 points and four 

directions (N, W, S and E). Minimum required number of data samples for 

each tag is set as 30, and fingerprinting is done through averaging RSSI Values. 

Test data is also consist of data collection at 46 points and four directions (N, 

W, S and E), and the minimum required number of data samples for each tag 

and fingerprinting approach is similar to training data. 
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 Case II – Training data is kept same as in Case I, with a total number of 184 

fingerprints are created through data collection at 46 points and four directions 

(N, W, S and E). In the test data, in order to analyze the effect of number of 

data samples, the duration of RSSI recording for each position is reduced to 30 

seconds, and the minimum required number of data samples is set as 15 for 

each tag, while keeping the number of fingerprints same as in training data. 

 

 Case III – With the purpose of understanding user orientation factor and 

directional invariance, training data is composed of 46 points and limited to 

only one random direction (it is taken as West in analysis). The number of 

fingerprints, therefore is determined as 46. The test data is taken same as in test 

data of Case I, and a total number of 184 test data sets are searched in 46 

training data sets through applying k-NN algorithm. 

 

 Case IV – Training data is reduced to 88 fingerprints; data is collected at 22 

points in four directions (N, W, S and E), as shown in Figure 35. The distance 

between two consecutive data collection points is set as 3.6 meters. The 

minimum required number of data samples is kept as 30, and fingerprinting is 

done through averaging RSSI Values. Test data is kept same as in Case I and 

Case III, and the change in the accuracy with this reduction in the number of 

data collection points is investigated through experimenting this case. 

 

 Case V – While keeping the number of fingerprints same as in Case I in both 

training and test data, the fingerprinting approach is changed from averaging 

the RSSI values to taking the highest value within the received signal strengths 

for each tag. 

 



75 

 

 

Figure 35: Location of Fingerprints in Training Data of Case IV, Scale: 1/200 



76 

 

Table 4: Cases for Data Analysis – Training Data 

Training Data 

Case 
# of Fingerprints 

Approach 
# of Data 

Samples # of Points Direction Total # 

CASE I 46  
4 directions 

(N,W,S,E) 
184 

Average of RSSI 

Values 

Min. 30 for each 

tag 

CASE II 46  
4 directions 

(N,W,S,E) 
184 

Average of RSSI 

Values 

Min. 30 for each 

tag 

CASE III 46  
Random Direction 

(West) 
46 

Average of RSSI 

Values 

Min. 30 for each 

tag 

CASE IV 22  
4 directions 

(N,W,S,E) 
88 

Average of RSSI 

Values 

Min. 30 for each 

tag 

CASE V 46  
4 directions 

(N,W,S,E) 
184 

Highest of RSSI 

Values 

Min. 30 for each 

tag 

 

 

Table 5: Cases for Data Analysis – Test Data 

Test Data 

Case 
# of Fingerprints 

Approach 
# of Data 

Samples # of Points Direction Total # 

CASE I 46  
4 directions 

(N,W,S,E) 
184 

Average of RSSI 

Values 

Min. 30 for each 

tag 

CASE II 46  
4 directions 

(N,W,S,E) 
184 

Average of RSSI 

Values 

Min. 15 for each 

tag 

CASE III 46  
Random Direction 

(Any) 
184 

Average of RSSI 

Values 

Min. 30 for each 

tag 

CASE IV 46  
4 directions 

(N,W,S,E) 
184 

Average of RSSI 

Values 

Min. 30 for each 

tag 

CASE V 46  
4 directions 

(N,W,S,E) 
184 

Highest of RSSI 

Values 

Min. 30 for each 

tag 

 

 

3.4 Parameters of Proposed Framework for Indoor Localization 

 

In order to analyze the appropriateness of the proposed framework for locating an 

occupant within an indoor built environment, multiple field experiments were 

conducted and the cases given above are organized. In determination of the case 

contents, certain localization metrics are taken as the basis, which are derived from the 

previous researches of Bahl and Padmanabhan (2000), Elnahrawy (2006) and Pradhan 
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et al. (2009), for evaluating the different parameters of BLE-based localization. 

Localization metrics are defined under five sub-headings namely spatial accuracy-

precision, number of real time data samples, human body orientation, number of data 

collection points, and fingerprint creation approach. 

 

3.4.1 Spatial Accuracy - Precision 

The main parameters for location detection systems are clearly described in the 

literature as spatial accuracy and precision (Bahl & Padmanabhan, 2000; Elnahrawy, 

Li, & Martin, 2004). Spatial accuracy and precision are interdependent localization 

metrics and they are used to define the effectiveness of any location detection solution. 

In their book, Mao and Fidan (2009) explain the relation between accuracy and 

precision as: 

 

The accuracy is a generalization of localization error to areas. Location error is 

the distance between the true position of the unit and the returned area. 

Precision describes the size of the area. A point is hence infinitely precise, but 

may not be very accurate. On the other hand, the area containing the entire 

scope of the localization system (e.g. a whole building) would have a high 

accuracy but poor precision. Accuracy and precision are useful utilities to 

quantitatively describe the performance of different localization approaches by 

observing the impact of increased precision (i.e., less area) on accuracy (p. 

309). 

 

The accuracy metric in this research is given in percentage, which reveals the 

probability of locating the intended unit within a defined range. Division of the number 

of successful location detection attempts for a determined precision to the all 

localization trials, when multiplied with 100, gives the percentage of the accuracy. The 

interpretation of localization precision is defined in meters and it is calculated as the 

location error. If it is assumed that Pt (xt, yt) be the true location of a unit and Pe (xe, 

ye) be the estimated location, the precision is defined as the Euclidian distance between 

these two points. It can be shown as: 

 

 
2 2

t e t ePrecision=   (x x ) (y y )                                                            (2) 
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Referring to the fingerprinting grid size in the field experiments, four values, namely 

1.8 meters, 3.6 meters, 5.4 meters and 7.2 meters are taken as the precision levels to 

analyze the accuracy of the proposed location detection framework.  

 

3.4.2 Number of Real Time RSSI Data Samples 

In the field experiments of this research, duration of RSSI data measurements were 

defined as one minute and the number of RSSI data samples is determined to be at 

least 30 for each BLE tag. As Bahl and Padmanabhan (2000) claim in their paper, 

although it is understandable to specify a minimum number for RSSI samples from 

each tag for constructing training data set as it is only done once, it may be problematic 

to collect certain number of RSSI samples in the real case for locating the occupant. 

Considering this, the researcher of this study investigated whether the number of real 

time data samples has an impact on localization accuracy, or not. With this purpose, 

in Case II that is explained previously, data collection duration is decreased to 30 

seconds and minimum number of RSSI samples is limited to 15 in the test data set, 

while keeping the same offline data set same as in the beginning. It should be noted 

that, if there is not a considerable change in localization accuracy in Case II when 

compared with Case I, BLE-based localization can be instant without requiring the 

occupant to be stationary. 

 

Hypothesis I:  

Null Hypothesis: There is no relationship between number of real time RSSI data 

samples and the spatial accuracy and precision of BLE based indoor localization. 

Alternative Hypothesis: Number of real time RSSI data samples affects the spatial 

accuracy and precision of BLE based indoor localization. 

 

3.4.3 Human Body Orientation  

As 70% of human body is composed of water and it acts like an absorber for radio 

signals, the orientation of human body can have effects on RSSI data communication 

between signal transmitters (BLE tags) and the readers (Samsung Galaxy Note 10.1 

2014 Tablet). User orientation is an important parameter that should be considered in 
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the proposed framework since people hold and keep their mobile devices in different 

orientations throughout the daily life. Cinefra (2013) asserts that, different orientations 

of human body may change the state of line-of-sight between the wireless transmitters 

and the reader. His experimental results showed that this affects RSSI values up to 5dB 

according to the change in user direction. Zhang et al. (2011) clarified the impacts of 

human body orientation on wireless radio signals and described human body as an 

obstruction for blocking the signals. In Figure 36 which is illustrated by Zhang et al. 

(2011), it is indicated that, when an occupant’s direction is in between d1 and d2, line 

of sight between the mobile device and the transmitter is obstructed this creates 

fluctuations in RSSI data. 

 

 

 

Figure 36: An abstract model of the impact of human body orientation 

(Zhang et al., 2011) 

 

 

Bahl and Padmanabhan (2000) also tested the effects of user direction on signal 

strength and observed an important decrease in the localization accuracy. Accordingly, 

the impact of the directions that occupants are facing on the accuracy of BLE-based 

localization is investigated in this research. In Case III, as explained in Section 3.3.2, 

training data set contains RSSI data of 46 points in only one random direction (it is 

taken as west in analysis), while test data set has RSSI data corresponding to all 

directions.  
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Hypothesis II:  

Null Hypothesis: There is no impact of human body orientation on RSSI data 

communication, and spatial accuracy and precision of BLE based indoor localization. 

Alternative Hypothesis: Human body orientation has an impact on RSSI data 

communication, spatial accuracy and precision of BLE based indoor localization. 

 

3.4.4 Number of Data Collection Points 

Due to the nature of location fingerprinting method, real time RSSI samples collected 

by the mobile unit are searched within the offline radio map of the defined indoor area, 

and location is determined by deducing the closest matching training sample. It may 

be possible to obtain higher precision as the minimum distance between two 

consecutive data collection points decreases and therefore more fingerprints are 

deployed in the offline phase. The accuracy may also be affected by the variation in 

number of data collection points. In their research, Bahl and Padmanabhan (2000) 

studied the impact of variations in data collection points quantity, and it is revealed 

that, the more data collection points deployed in the offline phase, the more precise 

the localization system is achieved.  

 

In order to understand the effects of number of data collection points in this research, 

Case IV is created. In the training data set of Case IV, the data collection points’ 

quantity is reduced to 22 points in such a way that the distance between two data 

collection points is minimum 3.6 meters. There are 88 fingerprints deployed in the 

radio map, and the position of 184 test data samples are inquired within this narrowed 

offline data set.  

 

Hypothesis III:  

Null Hypothesis: There is no relationship between number of data collection points 

and the spatial accuracy and precision of BLE based indoor localization. 

Alternative Hypothesis: Number of data collection points affects the spatial accuracy 

and precision of BLE based indoor localization. 
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3.4.5 Fingerprint Creation Approach 

In all four cases mentioned above are all processed through averaging RSSI values 

collected from the deployed BLE tags. Instead of using the average value, utilizing the 

maximum RSSI values for each tag is suggested as an alternative in the literature (Bahl 

& Padmanabhan, 2000; Pradhan et al., 2009; Taneja et al., 2012). Keeping the base of 

requiring at least 30 RSSI values for assuming a tag as detected, the highest RSSI value 

for each tag is identified and both training and data sets are created with this approach 

in Case V. Since the number detected tags for a predefined fingerprint point would not 

change with this approach due to the assigned limitation of minimum required RSSI 

values, it is expected that, there will only be minor changes in localization accuracy 

and precision between Case I and Case V. 

 

Hypothesis IV:  

Null Hypothesis: There is no difference between creating fingerprints through 

averaging RSSI values and creating fingerprints through taking maximum RSSI values 

for the accuracy levels of BLE based location estimation. 

Alternative Hypothesis: Creating fingerprints through taking maximum RSSI values 

gives considerably different accuracy and precision results than creating fingerprints 

through averaging RSSI values for the accuracy levels of BLE based location 

estimation. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

In this chapter, results of the field experiments are presented according to the given 

cases and specified deterministic algorithm. K-NN algorithm was applied manually in 

Microsoft Excel software by the researcher. The achieved accuracy levels at each case 

for different precision levels, and for different values of k (k=1, k=2, k=3 or k=4) are 

shown respectively. Results of different cases are compared, and on the basis of these 

comparisons, the parameters of the proposed framework are discussed. The inferences 

derived from the comparative analysis of the cases are demonstrated. Various metrics 

of BLE-based localization is compared with those of existing approaches in the 

literature and a general evaluation of BLE-based indoor localization is deduced. 

 

4.1 Field Experiment Results 

 

In this section, the results of field experiments are analyzed based on the defined cases. 

Variations on spatial accuracy levels according to the changes in parameters of BLE 

based localization are presented together with the interpretations of the researcher. 

 

As explained earlier, referring to the fingerprinting grid size in the field experiments, 

four values, namely 1.8 meters, 3.6 meters, 5.4 meters and 7.2 meters are taken as the 

precision levels to analyze the accuracy of the proposed location detection framework.  

 

4.1.1 Case I 

Table 6 shows the accuracy and precision results of Case I. According to the results, 

at the highest specified precision, which is 1.8 meters, an accuracy of 70.7% is 

achieved at k=1. There is not a regular variation in the accuracy level as the k value 

gets higher, yet the worst accuracy level for 1.8 meters precision is achieved in the 

case where k=4, with a percentage of 53.3. For a precision of 3.6 meters, the spatial 
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accuracy levels for different k values are almost the same, ranging between 84.2% and 

86.4%. Since room level precision, which is claimed as meaningful for many indoor 

localization based applications in the literature, is defined as about 5 meters (Bargh & 

Groote, 2008; Dahlgren & Mahmood, 2014; Li et al., 2015b), the indoor localization 

solution proposed in this research can be claimed as successful considering the results 

for a precision of 5.4 meters. Accordingly, at k=4, an accuracy of 97.8% is achieved 

for room level location detection. In this research, the lowest precision level is 

determined as 7.2 meters, for which full accuracy (100.0%) is gained. It can also be 

inferred from the results that, as the precision level gets low, the change in the k value 

does not affect the accuracy results in a considerable manner. The results obtained in 

Case I is used as a base for comparison of various parameters of BLE-based indoor 

localization. In the following cases, some metrics are changed while keeping the other 

attributes same as in Case I, as explained in Sections 3.3 and 3.4. 

 

Table 6: Case I - Localization accuracy results for different precision levels 

 

 

1,8 m 3,6 m 5,4 m 7,2 m

k=1 70,7% 84,2% 95,7% 98,9%

k=2 59,8% 84,2% 94,6% 98,9%

k=3 62,0% 86,4% 96,2% 98,9%

k=4 53,3% 84,8% 97,8% 100,0%
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4.1.2 Case II 

The localization accuracy and the precision results of Case II are presented in Table 7. 

The achieved accuracy levels for 1.8 meters precision are very close to those of Case 

I, and the maximum accuracy rate for the highest precision was founded to be 68.5% 

at k=1. The accuracy decreases when k is set as 2, 3 or 4 and it is gained as 56.5%, 

59.8% and 54.9% respectively. This condition is also identical with Case I, which 

demonstrates the fact that, averaging the coordinates of multiple nearest neighbors 

does not give as accurate results as deducing the location of an occupant as the 

coordinates of the nearest neighbor for the highest precision. Yet, it is not the case 

when the precision is 3.6 meters. When k=1 for a precision of 3.6 meters, the accuracy 

is the worst when compared to other values of k. The best accuracy is gained by 87.5% 

for 3.6 meters precision, in the case where k=3. The diagram outlines that there is a 

slight difference between the achieved accuracy levels with 5.4 meters and 7.2 meters 

precisions, for different k values. Room level accuracy levels range between 95.1% 

and 97.3%, whereas the full accuracy (100.0%) is gained for 7.2 meters precision as 

in Case I. 

 

Overall, when the accuracy and precision results in Table 7 is compared with those of 

Table 6, very slight differences are observed. This similarity reveals that, the number 

of real time RSSI data samples does not have a crucial impact on location estimation 

accuracy in BLE based indoor localization. Therefore, it is possible to locate an 

occupant within an indoor environment with small number of RSSI samples in real 

time, and this enables instant localization. The result is very much in line with the 

findings of Bahl and Padmanabhan (2000), who indicated that constraints in obtained 

number of RSSI samples in the online phase does not considerably effect the 

performance of the radio frequency based localization systems. 

 

Although there is not a dramatic change in percentages, there is a difference between 

spatial accuracy results of Case I and Case II. Therefore, it can be said that number of 

real time RSSI data samples has an impact on the spatial accuracy and precision in 

BLE based indoor localization, and null hypothesis in Hypothesis I is not accepted. 
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Table 7: Case II - Localization accuracy results for different precision levels 

 

 

 

4.1.3 Case III 

In Case III, training data set is composed of RSSI data that is collected at 46 points 

and from only one random direction (it is taken as west in the analysis). In order to 

understand the impact of human body orientation, training data is constructed with 

measurements from all four directions for each point. For example, the location of an 

occupant facing north direction at point A is tried to be estimated in the radio map in 

which the only fingerprint data of point A is corresponding to west orientation. In 

Table 8, the accuracy results of Case III with different precision levels are depicted. 

For 1.8 meters precision, there is a substantial decrease in the spatial accuracy for all 

values of k when compared with Case I. An accuracy 50.5% is achieved where k=1 

for the highest precision. The results for other values of k with 1.8 meters precision do 

not display very high levels of accuracy for an indoor localization solution with a range 

between 33.7% and 36.4%. The spatial accuracy also fall off for 3.6 meters of precision 

1,8 m 3,6 m 5,4 m 7,2 m

k=1 68,5% 83,7% 95,1% 98,9%

k=2 56,5% 84,8% 96,7% 98,9%

k=3 59,8% 87,5% 96,2% 99,5%

k=4 54,9% 85,9% 97,3% 100,0%
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and it fluctuates between 72.8% and 77.2% for different k values. Although a vast 

change in accuracy is monitored for 1.8 meter and 3.6 meters precision, the accuracy 

of location detection remain very close to that of Case I for room level precision. The 

best accuracy observed for room level precision is 95.1% where k=4. The results of 

Case III analysis for 7.2 meters precision represent that, almost full spatial accuracy 

can be gained regardless of impact of human body orientation with the proposed 

framework. The achieved accuracy for 7.2 meters precision is about 97%. 

 

Table 8: Case III - Localization accuracy results for different precision levels 

 

 

 

It can be inferred from the comparison of spatial accuracy - precision results of Case I 

and Case III that, human body orientation has a huge impact on accuracy of BLE based 

indoor localization for higher precision levels, whereas if the intended precision is at 

room level or lower, it does not have considerable effects. By the reason of the fact 

that the position of mobile devices may be in various orientations throughout the daily 

1,8 m 3,6 m 5,4 m 7,2 m

k=1 50,5% 75,5% 88,0% 97,8%

k=2 36,4% 72,8% 94,0% 97,3%

k=3 35,3% 73,4% 91,3% 97,8%

k=4 33,7% 77,2% 95,1% 97,8%
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life, in order to achieve good accuracy levels with higher precisions, it is important to 

regard directional variance as significant and to collect RSSI data in different 

directions for a given location in location fingerprinting. Considering the inconsistency 

of the impact of body orientation in spatial accuracy with different precisions, it can 

also be deduced that BLE-based localization may not be very reliable in instant route 

monitoring with the proposed framework and further improvements are needed for 

such purposes. 

 

Similar to the observations of Bahl and Padmanabhan (2000), in which the impact of 

user orientation on the accuracy of wireless based localization systems was indicated 

to be fairly significant, human body orientation can be interpreted as an essential input 

for BLE-based location detection. Accordingly, since human body orientation is 

demonstrated to affect spatial accuracy - precision of BLE based indoor localization 

and thereby on RSSI data communication, null hypothesis in Hypothesis II is not 

accepted. 

 

4.1.4 Case IV 

Table 9 represents the spatial accuracy - precision results of location detection in Case 

IV. The purpose in analyzing Case IV is to evaluate the variations in accuracy and 

precision levels in the condition where training data set is composed of fewer 

fingerprints. Therefore, the number of fingerprints is decreased from 46 points to 22 

points, while keeping the same test data set as in Case I. The results in Table 9 reveals 

that, at k=1, success rate of location estimation in Case IV is lower than Case I, for 1.8 

meters of precision, with a percentage of 53.8. The accuracy rates vary between 43.5% 

and 50.5% for other values of k, with the highest precision. For 3.6 meters of precision, 

a moderate reduction in the localization accuracy is observe. The success in location 

detection for 3.6 meters precision is worst at k=1, by 72.3%, and best results is 

achieved at k=3, by 80.4%. The bar chart outlines that, number of data collection points 

do not have considerable effects on spatial accuracy of BLE-based localization 

framework with room level precision. A success rate of 95.1% is achieved in location 

estimation for 5.4 meters precision, at k=4. The quantity of fingerprints is also 

presented to have slight effects for 7.2 meters of precision, yet an high accuracy is 
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gained by 99.5% for k=4. It can be concluded that, the number of data collection points 

has substantial effects on localization accuracy for higher precisions, whereas the 

changes in the success rate of location estimation for lower precision levels are not 

necessarily significant. 

 

Table 9: Case IV - Localization accuracy results for different precision levels 

 

 

 

As the distance between two consecutive data collection points is set as 3.6 meters 

instead of 1.8 meters in Case IV, it is understandable that the change in number of 

fingerprints on localization accuracy have higher impacts on precision levels of 1.8 

meters and 3.6 meters than lower precision levels. Since further increase in the distance 

between data collection points would not give reliable results due to the coverage zone 

dimensions of the test bed environment in this research, the quantity of fingerprints 

was not reduced any more. Yet, it is estimated that, if the distance between two points 

of data collection was further increased (i.e. if it was set as 5.4 meters or more) in a 

1,8 m 3,6 m 5,4 m 7,2 m

k=1 53,8% 72,3% 90,8% 96,2%

k=2 50,5% 78,3% 94,0% 95,7%

k=3 44,6% 80,4% 93,5% 97,8%

k=4 43,5% 77,7% 95,1% 99,5%
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bigger test bed area, the same impact as in the highest precision level would be 

observed for precision levels of 5.4 meters and 7.2 meters. 

 

Considering the change in the accuracy rates of location estimation with the change in 

the number of fingerprints, the null hypothesis in Hypothesis III is not accepted. 

 

4.1.5 Case V 

The spatial accuracy – precision results of Case V is presented in Table 10. Both 

training and test data sets are composed of fingerprints that are created by taking the 

highest signal strength values received from each tag for a given position. The primary 

intention in this approach is to investigate whether using maximum RSSI values can 

be a good alternative to averaging the collected RSSI data for location fingerprinting. 

For the highest precision, 1.8 meters, the accuracy in location estimation is almost the 

same as in Case I for all k values. The best accuracy result with 1.8 meters precision 

was found to be 69.6% at k=1, as it was observed as 70.7% in Case I. For 3.6 meters 

of precision, the achieved accuracies are slightly better than those of Case I and it 

varies between 85.9% and 88.6%. The most accurate location estimation with room 

level precision among all cases is observed in Case V, by 98.4% at k=3. The analysis 

give the highest accuracy results with 7.2 meters of precision, as in all cases, and full 

accuracy is achieved at k=3 and k=4. 

 

Similar to the findings of  Pradhan et al. (2009) about using maximum RSSI values 

for location fingerprinting, difference in the accuracy percentage between Case I and 

Case V is only about 4% for all values of k and with all precision levels. These results 

prove that, using maximum RSSI values may be considered as an alternative to taking 

the mean of collected RSSI data.  

 

Since creating fingerprints through taking maximum RSSI values gives almost the 

same accuracy and precision results (4% different at most) than creating fingerprints 

through averaging RSSI values, the null hypothesis in Hypothesis IV is not rejected. 
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Table 10: Case V - Localization accuracy results for different precision levels 

 

 

 

4.2 Analytical Comparison with Existing Wireless-based Approaches 

 

In order to compare the proposed framework in this research with the existing 

approaches in the literature, performance parameters for wireless based localization 

systems are determined through referring to Tekinay, Chao, and Richton (1998) and 

Liu et al. (2007), as explained in Section 2.3.5. The intention in establishing these 

guidelines is to check whether the developed solutions are covering the requirements 

of a reliable and sustainable location detection framework or not. Accuracy-precision, 

complexity, scalability and cost are identified as the main evaluation metrics. The most 

important feature of a localization system can be claimed as spatial accuracy-precision. 

In almost all the existing wireless-based reviewed approaches in the literature, a 

tradeoff between localization accuracy and other defined parameters is observed. For 

example, if the achieved spatial accuracy and precision is very high, like the UWB 

1,8 m 3,6 m 5,4 m 7,2 m

k=1 69,6% 87,0% 96,7% 99,5%

k=2 60,3% 86,4% 97,3% 98,9%

k=3 60,9% 88,6% 98,4% 100,0%

k=4 54,3% 85,9% 97,3% 100,0%
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based framework of Steggles and Gschwind (2005), the deployment cost can be very 

high or the system may be too complex.  

 

In order to establish a viable indoor localization solution, considering the optimization 

of defined parameters is crucial. Although the main aim of the location detection 

systems is to detect the position of the intended unit with the highest precision and 

accuracy, it will be unserviceable unless the system is simple enough for easy 

deployment, scalable in case of a need for widening the coverage area or cost effective 

for initial deployment and maintenance.  

 

In the BLE-based framework of this research, a competitive accuracy and precision is 

achieved when compared to the existing approaches. As explained in the previous 

section, an accuracy of 70% is observed for the highest precision, 1.8 meters. For room 

level precision, which has been the objective of many approaches in the literature, 98% 

accuracy is achieved. These results show that, Bluetooth low energy could be assessed 

as a strong alternative to RFID or WLAN, which are extensively studied in the 

literature, for location detection in indoor built environments.  

 

Complexity of the proposed localization system is defined as low, considering and 

comparing the different requirements of the current frameworks in the literature. In the 

most simplified approaches, the system is usually composed of readers as the signal 

receivers and sensors or tags as the transmitters (Bahl & Padmanabhan, 2000; Ni et 

al., 2003; Pradhan et al., 2009). However, as the system in this research is based on a 

mobile-device integrated framework, the only requirement for the implementation is 

the deployed BLE tags. Moreover, since the localization algorithm is to be processed 

in the main building automation system, and not in mobile devices, the position 

computation duration will be very short. 
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Table 11: Comparison of wireless-based indoor localization approaches based on 

performance metrics  

Researchers 

Wireless 

Technology 

(System) 

Localization 

Algorithm 

Accuracy - 

Precision 
Complexity Scalability Cost 

Bahl & 
Padmanabhan 

(2000) 

WLAN RSS 

(RADAR) 
k-NN 

50% w/ 2.5 m 

90% w/ 5.9 m 
Medium Good  Medium 

Bekkelien 

(2012) 
Bluetooth RSS k-NN 

50% w/ 1.7 m 

95% w/ 5.1 m 
Low Good  Low 

Calderoni et al. 

(2015) 
RFID RSS 

Random 
Forest 

Classifiers 

83% w/ room 

level 
High Moderate Moderate 

Dodier et al. 

(2006) 
PIR 

Probabilistic 

Method 

76% w/ presence 

detection 
Medium Poor Moderate 

Hightower et al. 

(2000) 

RFID RSS 

(SpotON) 

Ad-Hoc 

lateration 
Not Specified Medium Good Low 

Ismail et al. 

(2008) 
WLAN RSS Not Specified 80% w/ 2.5 m Medium Good Medium 

Li et al. (2012) RFID RSS k-NN 
88% w/ room 

level 
Medium Good Moderate 

Lim et al. 

(2007) 
WLAN AOA  Not Specified 75% w/ 0.85 m Medium Poor High 

Ni et al. (2003) 
RFID RSS 

(Landmarc) 
k-NN 50% w/ 1-2 m Medium 

Dense node 
placement 

required 

Medium 

Pradhan et al. 

(2009) 
RFID RSS k-NN 

40% w/ 1.52 m 

93% w/ 10.7 m 
Medium Good  Medium 

Steggles & 
Gschwind 

(2005) 

UWB AOA 

(Ubisense) 
Least Square 99% w/ 0.3 m High 

4 sensor per 
cell (1m) 

required 

High 

Taneja et al. 

(2012) 
WLAN RSS k-NN 

70% w/ 1.52 m 

94% w/ 6.1 m 
Medium Good Medium 

Topak (2016) BLE RSS k-NN 
70% w/ 1.8 m 

98% w/ 5.4 m 
Low Good  Low 

Zhen et al. 

(2008) 
RFID RSS 

Support 

Vector 
Machine 

93% w/ room 

level 
Medium Good Medium 
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As described in Chapter 2, the test bed environment, i.e. the coverage zone of the 

proposed framework, is 240 m2 and full signal coverage is provided with the placement 

of twelve BLE tags with certain intervals. If an expansion in the coverage area is 

needed or desired, the only required action to be taken is to deploy more tags for full 

signal coverage and widen the radio map. Therefore, the scalability of BLE based 

localization is outlined as good in the table. Although there are some exceptions, 

wireless sensor based location detection systems are generally scalable for changing 

needs.  

 

Cost is an important metric for indoor localization systems. If the profit gained through 

the utilization of the system is exceeded by the cost of the required infrastructure or 

maintenance operations, the total effort becomes redundant (Farid et al., 2013). In this 

research, the cost of the utilized BLE tags is 30$ per tag, and the only maintenance 

requirement is to replace coin pills as they run out of batteries. As BLE technology has 

ultra-low power consumption, the maintenance circle can be claimed as about two 

years, depending on the coin pill type. Considering this, BLE-based localization is 

labelled as low-cost in Table 11. 
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CHAPTER 5 

 

CONCLUSION 

 

 

Summary of the research is initially presented in this chapter. Then, the main results 

and discussions are outlined and limitations of the study are stated. The chapter is 

concluded with the recommendations about how further researches can be handled 

based on the proposed indoor localization framework. 

 

5.1 Summary of the Research 

 

With its various use cases, indoor localization is shown to have a great value for the 

construction industry. The wide scope of researches about finding the location of an 

object or a person includes building occupancy detection, asset tracking in construction 

sites, assistance to facility maintenance and operations and supporting building 

emergency response operations. Among the described use cases, the emergence of the 

need for building occupancy detection was reviewed, through establishing a 

breakdown including interaction between people and buildings, intelligent buildings 

approach and building automation systems. 

 

There are many studies in the literature with the intention of creating a reliable 

framework for indoor localization. The proposed systems are composed of prediction 

algorithms, vision-based scenarios, PIR or CO2 sensors based solutions and radio 

frequency based frameworks, in which different sensor technologies such as RFID, 

WLAN, UWB and Bluetooth are utilized. Nevertheless, there are some drawbacks for 

all the existing approaches, including uncertainty in detection, privacy concerns, time 

delays in detection, inability for multiple detection and high deployment and 

maintenance costs. 
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Considering the need for a reliable indoor localization approach, the aim in this 

research was to propose an efficient framework for location detection in indoor 

environments and to analyze its applicability. As the mobile devices became an 

inseparable part of people in the last decade, a mobile device integrated framework 

was designed. Bluetooth Low Energy, which is a novel release in the wireless industry, 

was determined as the enabling technology. BLE is a low cost and ultra-low power 

consumer technology, signals of which can penetrate through any obstructions like 

walls or objects. Although it is not developed for localization purposes, such properties 

make it a potentially appropriate technology for indoor localization. 

 

In order to investigate the applicability of the proposed framework and BLE 

technology for location finding, several field test were conducted within MATPUM 

Building at Middle East Technical University. Before the main field experiments, a 

material selection experiment was carried out and the most appropriate BLE tag was 

selected according to the result. The main experiments were examined through 

employing location-fingerprinting method that is composed of offline and online 

phases. A radio map of the defined zone was created in the offline phase through 

collecting fingerprints, and location is estimated in the online phase by matching the 

real time data with the closest fingerprint. RSSI was taken as the measurement type 

and k-nearest neighbor algorithm was used as the classifier. 

 

Five different cases were presented for assessing different parameters of BLE 

technology, based on the guidelines outlined by Bahl and Padmanabhan (2000) and 

Pradhan et al. (2009). Results of defined cases are compared for the evaluation of BLE 

based indoor localization and a table demonstrating the performance metrics of the 

proposed framework with the existing approaches was given together with the 

comparative discussions. 

 

5.2 Main Results and Discussion 

 

The main objective of this research was to determine the applicability of utilizing 

Bluetooth Low Energy in indoor localization and experimenting the different 
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parameters of this radio frequency based technology. The results of the experiments 

outlined an accuracy of 70% with 1.8 meters precision and 98% with room level 

precision that is 5.4 meters. The achieved accuracy and precision levels show that BLE 

technology can be taken as an alternative to current approaches with its low 

complexity, good scalability and low cost properties. Considering the extensiveness of 

BLE adoption in mobile devices, it can be deduced that a mobile device integrated 

indoor localization framework is technologically feasible. The main results and 

relative discussions can be listed as: 

 

 The achieved accuracy through a BLE based localization system is 

comparatively better than the existing approaches (Table 13), by 70% for 1.8 

meters precision, 88% for 3.6 meters precision, 98% for 5.4 meters precision 

and full accuracy for 7.2 meters precision. 

 

 Number of real time RSSI data samples does not have considerable effects on 

location detection accuracy and precision results, which reveals that instant 

localization with smaller numbers of RSSI data samples in the online phase is 

possible with BLE based localization approach. 

 

 Since human body acts as a signal blocker and absorber, human body 

orientation has huge impacts on the accuracy percentages of the proposed 

framework. Accordingly, directional variance between BLE tags and mobile 

devices should be considered as a significant input while establishing a BLE 

based location detection solution. 

 

 Number of data collection points in the creation of radio map effects the 

localization accuracy. As the distance between two consecutive fingerprint 

positions is increased from 1.8 meters to 3.6 meters, the achieved accuracy with 

1.8 meters precision decreased considerably. The same impact is estimated to 

be observed in other precision levels, if the distance between data collection 

points is further increased. 
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 Creating fingerprints through taking maximum RSSI values can be considered 

as an alternative fingerprint creation approach to creating fingerprints through 

averaging RSSI values. Almost the same location detection accuracy results 

are achieved in both approaches. 

 

5.3 Limitations of the Study 

 

This research has a number of limitations on the field experiments and system analysis. 

Firstly, the method in this study was determined as location fingerprinting and the 

main limitation of the selected method is the significant effort for constructing the 

radio map of each intended floor. In addition, it may be required to refresh radio map 

in certain intervals according to the changes in the environment (i.e. furniture layout 

change). Yet, there are some current studies in the literature like the research of Gu et 

al. (2016) for overcoming this limitation and shortening the data collection processes. 

Secondly, the evaluation of the proposed framework was done through experiments in 

two dimensions on a single floor, and a three dimensional assessment was not pursued 

for multi-story buildings cases. Lastly, BLE based indoor localization was tested for 

the use case of occupancy detection, and other mentioned use cases were not 

considered due to the defined borderlines of the research. 

 

5.4 Recommendations for Further Research 

 

The main outcome of this study is that BLE technology can be used for detecting the 

position of occupants in indoor built environments. Based on what this study provides, 

the proposed occupancy detection system can be established in real operating 

conditions of the test bed building. In order to test the reliability of the proposed 

occupancy detection framework, the achieved occupancy detection results can be 

compared with the ground truth about real-time occupancy information. The question, 

‘how the energy consumption would decrease if the building operations were driven 

based on the achieved occupancy detection data?’ could be answered through 

comparing the current energy consumption of the test bed and the energy simulation 

results that are based on the established occupancy detection system.  
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This study provides a base for assessing the utilization of BLE for detecting the 

location of occupants in indoor environments. However, the location information 

alone may not be enough for creating an energy efficient and comfortable built 

environment, and further information related with the type of occupants (young or old, 

man or woman, etc.), their behavior patterns and daily activities may be needed. For 

that purpose, a further research can be carried out for investigating the semantic data 

collection from both built environments and people using BLE technology to enhance 

intelligence and efficiency in the management and maintenance of facilities. 

 

Considering the research limitations, the reliability of this low energy technology may 

be further assessed with experiments in three-dimensional space. BLE based indoor 

localization can be tested for other use cases such as asset tracking in construction 

sites, route guiding in building emergency response operations, and supporting facility 

maintenance activities. 
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