
A STAGNATION AWARE COOPERATIVE BREAKOUT LOCAL SEARCH
ALGORITHM FOR THE QUADRATIC ASSIGNMENT PROBLEM ON A

MULTI-CORE ARCHITECTURE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YA�MUR AKSAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2016

Approval of the thesis:

A STAGNATION AWARE COOPERATIVE BREAKOUT LOCAL
SEARCH ALGORITHM FOR THE QUADRATIC ASSIGNMENT

PROBLEM ON A MULTI-CORE ARCHITECTURE

submitted by YA�MUR AKSAN in partial ful�llment of the requirements for
the degree ofMaster of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Gülbin Dural Ünver
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yaz�c�
Head of Department, Computer Engineering

Prof. Dr. Ahmet Co³ar
Supervisor, Computer Engineering, METU

Asst. Prof. Dr. Tansel Dökero§lu
Co-supervisor, Computer Engineering, UTAA

Examining Committee Members:

Assoc. Prof. Dr. Murat Manguo§lu
Computer Engineering Department, METU

Prof. Dr. Ahmet Co³ar
Computer Engineering Department, METU

Asst. Prof. Dr. Tansel Dökero§lu
Computer Engineering Department, UTAA

Asst. Prof. Dr. Selim Temizer
Computer Engineering Department, METU

Asst. Prof. Dr. Murat Karakaya
Computer Engineering Department, At�l�m University

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: YA�MUR AKSAN

Signature :

iv

ABSTRACT

A STAGNATION AWARE COOPERATIVE BREAKOUT LOCAL SEARCH
ALGORITHM FOR THE QUADRATIC ASSIGNMENT PROBLEM ON A

MULTI-CORE ARCHITECTURE

Aksan, Ya§mur

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Ahmet Co³ar

Co-Supervisor : Asst. Prof. Dr. Tansel Dökero§lu

June 2016, 83 pages

The quadratic assignment problem (QAP) is one of the most challenging NP-

Hard combinatorial optimization problems with its several real life applications.

Layout design, scheduling, and assigning gates to planes at an airport are some

of the interesting applications of the QAP. In this thesis, we improve the talents

of a recent local search heuristic Breakout Local Search Algorithm (BLS) by

using adapted Levenshtein Distance metric for similarity checking of the previ-

ously explored permutations of the QAP problem instances. In addition to this,

the proposed algorithm, BLS-OpenMP-QAP (Breakout Local Search Algorithm

with Open Multi-Processing for Quadratic Assignment Problem), makes use

of the parallel computation paradigm of the contemporary multi-core architec-

tures using OpenMP programming paradigm. The stagnation-aware search for

the (near-)optimal solution of the QAP is executed concurrently on several cores

with diversi�ed trajectories while considering the similarity of the already de-

v

tected local optima. The exploration of the search space is improved by selecting

the starting points intelligently and speeding-up the �tness evaluations as many

as the number of the processors/threads. The BLS-OpenMP-QAP algorithm is

executed on 59 problem instances of the QAP library benchmark and the results

shows that it is able to solve 57 of the instances exactly. The overall deviation

for the algorithm is obtained as 0.019% on the average; therefore, it can be

reported to be among the best algorithms in the literature.

Keywords: Quadratic Assignment Problem, BLS-OpenMP-QAP, BLS, OpenMP,

Optimization

vi

ÖZ

ÇOK ÇEK�RDEKL� B�R M�MAR� ÜZER�NDE KARESEL ATAMA
PROBLEM� �Ç�N �� B�RL��� YAPAN DURGUNLUK B�L�NÇL� YEREL

ARAMA KAÇI� ALGOR�TMASI

Aksan, Ya§mur

Yüksek Lisans, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Ahmet Co³ar

Ortak Tez Yöneticisi : Asst. Prof. Dr. Tansel Dökero§lu

Haziran 2016 , 83 sayfa

Karesel Atama Problemi (KAP) çe³itli gerçek hayat uygulamalar�yla birlikte

en zorlu çözümü polinom zamanl� olmayan (NP) kombinatoriyal en iyileme

problemlerinden biridir. Yerle³im tasar�m�, zaman planlamas� ve havaalan�ndaki

uçaklara kap�lar�n atanmas� KAP'�n ilgi çekici uygulamalar�ndan baz�lar�d�r. Bu

tezde, KAP problem örneklerinin daha önce aranan permütasyonlar�n�n ben-

zerlik kontrolü için uyarlanm�³ Levenshtein uzakl�k ölçüsünü kullanarak yeni

bir yerel arama sezgiseli olan yerel arama kaç�³ (BLS) algoritmas�n�n yetekle-

rini geli³tirdik. Buna ek olarak, önerilen algoritma, BLS-OpenMP-QAP(Karesel

Atama Problemi için Aç�k Çoklu-�³leme ile Yerel Arama Kaç�³ Algoritmas�),

OpenMP proglama yakla³�m�n� kullanan güncel çok çekirdekli mimarilerin e³

zamanl� hesaplama yakla³�m�n� kullan�r. KAP'�n en iyi çözümü için durgunluk

bilinçli arama çe³itli yörüngeleriyle birtak�m çekirdekler üzerinde daha önce tes-

vii

pit edilen yerel en iyinin benzerli§i göz önüne al�narak e³ zamanl� olarak çal�³t�-

r�l�r. Arama alan�n�n ke³� ba³lang�ç noktalar�n� ak�ll�ca seçerek ve i³lemcilerin/i³

parçac�klar�n�n say�s� kadar uygunluk de§erlendirmelerini h�zland�rarak geli³ti-

rilir. BLS-OpenMp-QAP algoritmas� KAP kütüphanesi setindeki 59 problem

örne§i üzerinde çal�³t�r�ld� ve sonuçlar örneklerden 57 tanesini tam olarak çöze-

bildi§ini gösterdi. Algoritma için ortalamada toplam sapma 0.019% olarak elde

edildi, böylece literatürdeki en iyi algoritmalar aras�nda oldu§u bildirilebilir.

Anahtar Kelimeler: Karesel Atama Problemi, BLS-OpenMP-QAP, BLS, OpenMP,

En iyileme

viii

To my family and people who are reading this page

ix

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest gratitude to my supervisor Prof.

Dr. Ahmet Co³ar for his continuous support of my Master study and research,

for his patience, motivation, enthusiasm and immense knowledge.

I also would like to express my special thanks to Asst. Prof. Dr. Tansel

Dökero§lu for providing encouragement for this study, his valuable insight, ex-

pertise, creative and comprehensive advise during this research. Their guidance

helped me in all the time of research and writing of this thesis. The door to their

o�ces was always open whenever I ran into a trouble spot or had a question

about my research or writing.

I also would like to express my special thanks to my colleagues at TÜB�TAK

B�LGEM YTE for their help, encouragement and support during my graduate

study.

I am also grateful to my friends for their patience, continuous encouragement

and support throughout my Master study.

Finally, I would like to express my very profound gratitude to all members

of my family, especially my brother Ça§r� Aksan, for their love, understanding,

patience and providing me with unfailing support and continuous encouragement

throughout my life and through the process of researching and writing this thesis.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

1.1 Quadratic Assignment Problem (QAP) 3

1.2 Switching to the Parallel Computing 6

1.3 Open Multi-Processing (OpenMP) 8

1.4 A Simple OpenMP Example 12

2 RELATED WORK . 17

2.1 State-of-art Heuristic Adaptations 17

2.2 Recent Studies to Solve the QAP 19

xi

2.3 Optimization with Parallel Programming for Solving the
QAP . 21

3 PROPOSED ALGORITHM . 25

3.1 Generating Candidate Solutions 28

3.1.1 Intelligent Initialisation by Considering Distance
and Flow Matrices 28

3.1.2 Intelligent Initialisation by looking at Previous
Experimented Candidates 30

3.2 Improving Local Optima 37

3.3 Determining the Jump Magnitude 40

3.4 Diversifying Search Area by Perturbation Strategy . . . 40

3.4.1 Tabu Search Perturbation 44

3.4.2 Recency Based Perturbation 45

3.4.3 Random Perturbation 45

3.5 Update Mechanism for the New Solutions 47

4 EXPERIMENTAL RESULTS 49

4.1 Experimental Environment and Setup 49

4.2 Problem Instances . 50

4.3 Setting the Parameters of BLS-OpenMP-QAP Algorithm 51

4.3.1 Setting the Similarity Ratios of the New Explo-
ration Areas 51

4.3.2 Setting the Number of Threads 53

4.3.3 Setting the Number of Iterations for the BLS . 55

xii

4.3.4 Setting the Number of Multi-Starts 57

4.4 Speed Up Performance of BLS-OpenMP-QAP Algorithm 59

4.4.1 Comparison of OpenMP and CPU Versions of
the Proposed Algorithms with Tai60a Problem
Instance . 59

4.4.2 Comparison of OpenMP and CPU Versions of
the Proposed Algorithms with Tai100a Problem
Instance . 62

4.5 Overhead of Similarity Checking Procedure 65

4.6 Comparison of State-of-the-art Algorithms with BLS-OpenMP-
QAP . 66

4.7 CPU Utilisation . 73

5 CONCLUSION . 75

REFERENCES . 77

xiii

LIST OF TABLES

TABLES

Table 1.1 Flows between factories for QAP example 4

Table 1.2 Distances between locations for QAP example 4

Table 3.1 Distances between locations for initial solution example 29

Table 3.2 Flows between facilities for initial solution example 29

Table 4.1 Similarity Ratio Analysis on Tai60a Problem Instance. APD is

the average percentage deviation from the BKS. The times are given

in minutes. 30% similarity ratio does not provide any deviation. . . 52

Table 4.2 Execution Time Analysis of the Number of Threads on Tai60a

Problem Instance. The times are given in minutes. APD is the

average percentage deviation from the BKS. With more than the 4

threads, time increases accordingly. 54

Table 4.3 APD Analysis with the Number of Iterations on Tai60a Problem

Instance. APD is the average percentage deviation from the best

known solution. The times are given in minutes. Execution with

10000 and 50000 iterations does not provide any deviation. 56

Table 4.4 APD Analysis with the Number of Multi-starts with Tai60a

Problem Instance. APD is the average percentage deviation from the

best known solution. The times are given in minutes. Execution with

100 multi-starts does not provide any deviation. 57

xiv

Table 4.5 Comparison of OpenMP and CPU Versions of the Proposed

Algorithms on Tai60a Problem Instance. APD is the average per-

centage deviation from the best known solution. The times are given

in minutes. Implementation of multi-start similarity check OpenMP

does not provide any deviation. 61

Table 4.6 Comparison between OpenMP and CPU versions on Tai100a

Problem Instance. APD is the average percentage deviation from the

best known solution. The times are given in minutes. Implementa-

tion of multi-start similarity check OpenMP provides the minimum

deviation among them. 64

Table 4.7 Parameter Settings for the BLS-OpenMP-QAP Algorithm . . 67

Table 4.8 Optimal Solutions Found by the BLS-OpenMP-QAP Algorithm

on Nug Problem Instances. APD is the average percentage deviation

from the best known solution. BPD is the best percentage deviation

from the best known solution. The times are given in seconds. All of

the Nug problem instances are solved exactly. 67

Table 4.9 Comparison of the BLS-OpenMP-QAP Algorithm with State-

of-the-art Algorithms on Type-1 Problem Instances. APD is the av-

erage percentage deviation from the best known solution. The times

are given in minutes. 7 of the Type 1 problem instances are solved

exactly by BLS-OpenMP-QAP. 68

Table 4.10 Comparison of the BLS-OpenMP-QAP Algorithm with State-

of-the-art Algorithms on Type-2 Problem Instances. APD is the av-

erage percentage deviation from the best known solution. The times

are given in minutes. All of the Type 2 problem instances are solved

exactly by BLS-OpenMP-QAP. 69

xv

Table 4.11 Comparison of the BLS-OpenMP-QAP Algorithm with State-

of-the-art Algorithms on Type-3 Problem Instances. APD is the av-

erage percentage deviation from the best known solution. The times

are given in minutes. All of the Type 3 problem instances are solved

exactly by BLS-OpenMP-QAP. 70

Table 4.12 Comparison of the BLS-OpenMP-QAP Algorithm with State-

of-the-art Algorithms on Type-4 Problem Instances. APD is the av-

erage percentage deviation from the best known solution. The times

are given in minutes. All of the Type 4 problem instances are solved

exactly by BLS-OpenMP-QAP. 71

xvi

LIST OF FIGURES

FIGURES

Figure 1.1 Representation of Quadratic Assignment Problem 3

Figure 1.2 Shared Memory Model . 10

Figure 1.3 The OpenMP Execution Model 11

Figure 1.4 The Graphical Represantation of the Example : Dot Product 15

Figure 3.1 Representation of Intelligent Initialisation by Considering Dis-

tance and Flow Matrices . 30

Figure 3.2 An Example of Violating the Minimum Di�erence Constraint

(30%) . 34

Figure 3.3 An Example of not Violating the Minimum Di�erence Con-

straint (30%) . 36

Figure 3.4 A Schematic Representation of BLS-OpenMP-QAP Algorithm

in Time-line . 38

Figure 3.5 Flow Chart of the Tabu Search Perturbation Mechanism . . . 46

Figure 4.1 Similarity Ratio Analysis on Tai60a Problem Instance. APD is

the average percentage deviation from the BKS. 30% similarity ratio

does not provide any deviation. 53

xvii

Figure 4.2 Execution Time Analysis of the Number of Threads on Tai60a

Problem Instance. With more than the 4 threads, time increases

accordingly. 54

Figure 4.3 APD Analysis with the Number of Iterations on Tai60a Prob-

lem Instance. APD is the average percentage deviation from the BKS.

Execution with 10000 and 50000 iterations does not provide any de-

viation. 56

Figure 4.4 APD Analysis with the Number of Multi-starts on Tai60a

Problem Instance. APD is the average percentage deviation from

the best known solution. Execution with 100 multi-starts does not

provide any deviation. 58

Figure 4.5 Comparison of OpenMP and CPU Versions of the Proposed

Algorithms on Tai60a Problem Instance. APD is the average per-

centage deviation from the best known solution. Implementation of

multi-start similarity check OpenMP does not provide any deviation. 61

Figure 4.6 Comparison between OpenMP and CPU versions on Tai100a

Problem Instance. APD is the average percentage deviation from the

best known solution. Implementation of multi-start similarity check

OpenMP provides the minimum deviation among them. 64

Figure 4.7 CPU Utilization . 74

xviii

LIST OF ABBREVIATIONS

ACO/GA/LS An Ant Colony Optimization/Genetic Algorithm/Local Search
Hybrid

APD Average Percentage Deviation

API Application Program Interface

BKS Best Known Solution

BLS Breakout Local Search Algorithm

BLS-OpenMP-QAP Breakout Local Search Algorithm with Open Multi-Processing
for Quadratic Assignment Problem

BMA Population-based Memetic Algorithm

CPTS A Cooperative Parallel Tabu Search Algorithm

CPU Central Processing Unit

CUDA Compute Uni�ed Device Architecture

FANT Fast Ant System

GA/C-TS A Genetic Algorithm Hybrid with Concentric Tabu Search
Operator

GA/SD A Genetic Algorithm Hybrid with a Strict Descent Oper-
ator

GDA Great Deluge Algorithm

ITS Iterated Tabu Search

JRG-DivTS A Multi-start Tabu Search

LD Levenshtein Distance

MA Memetic Algorithm

OpenMP Open Multi-Processing

PHA A Parallel Hybrid Algorithm

PMTS Parallel Multistart Tabu Search

QAP Quadratic Assignment Problem

QAPLIB Quadratic Assignment Problem Library

SC-TABU Self Controlling Tabu Search

TS Tabu Search

xix

xx

CHAPTER 1

INTRODUCTION

Recently, one of the most popular academic topics all around the world is to �nd

out the most appropriate solution to combinatorial optimization problem that

can be formulated as a Quadratic Assignment Problem (QAP). QAP is a well

known and well studied challenging NP-Hard combinatorial industrial engineer-

ing problem which is used in order to locate N facilities to M di�erent locations

under the circumstances of N ≤ M . Furthermore, facility allocation problem

is noteworthy for its capability to formulate great deal of real life problems in

various �elds. As a result, many heuristic approaches have been widely used

to deal with this signi�cant problem near-optimally. Namely, among these sev-

eral heuristics, local search algorithms, such as Tabu Search [1], Iterated Local

Search [2] and Simulated Annealing [3] are the most favourite ones in the liter-

ature. In spite of the fact that the problems whose size is less than 30 can be

solved with these state-of-the-art algorithms optimally, problems with greater

size cannot be solved exactly in acceptable computing time as a consequence of

their intractable structure.

In this study, we recommend a BLS-OpenMP-QAP (Breakout Local Search Al-

gorithm with Open Multi-Processing for QAP) algorithm in an attempt to solve

the QAP. In BLS-OpenMP-QAP, we principally make use of the e�ective local

search algorithm which is introduced by Benlic et al as Breakout Local Search

Algorithm (BLS) [2]. BLS basically uses a steepest descent procedure to �nd the

local optima. According to the number of jump magnitude, perturbation moves,

which is determined depending on the present situation of the neighbouring ex-

1

ploration, BLS selects the perturbation method to apply among three separate

types including tabu search, recency-based and random perturbation. In addi-

tion to the BLS, we introduce a smart beginning mechanism for the generating

population section which guarantees to produce diversi�ed candidate solutions

for BLS. With the help of the perturbation and the restart mechanism, it consis-

tently escape from one local optimum to another one in the exploration area so

that the stagnation situation is prevented. In fact, most of the state-of-the-art

algorithms that have been proposed to solve the QAP are executed on a sin-

gle processor and do not make use of the high performance opportunities that

the recent parallel computation technologies provide us. In the light of these

opportunities, we make use of the parallel programming with OpenMP (Open

Multi-Processing) in an attempt to increase the performance of BLS-OpenMP-

QAP algorithm. While applying OpenMP for parallel programming, the most

signi�cant thing is to ensure the most e�cient usage of threads for implementing

the algorithm. That is to say, except for the generating initial solutions part,

other processes (steepest descent procedure, determining the jump magnitude

and perturbation section) of the BLS-OpenMP-QAP algorithm are executed on

threads by organizing a parallel computation using the abstractions of threads

in order to take full advantage of parallel programming. In this way, the most

time consuming sections of the BLS-OpenMP-QAP algorithm are executed on

the parallel threads owing to the OpenMP library. As for the candidate solu-

tions to be generated, they are produced previously on the CPU environment;

therefore, each thread has a di�erent candidate solution from the other threads.

As we present in Chapter 4, in an e�ort to measure the performance of the

proposed algorithm, BLS-OpenMP-QAP, and also to evaluate the quality of

resulting optimal solutions, BLS-OpenMP-QAP algorithm is evaluated utilising

a set of benchmark instances obtained from QAPLIB [4]. As a consequence of

these experiments, BLS-OpenMP-QAP algorithm shows a promising speed up.

2

1 2

3

4

Factory 1 Factory 2

Factory 3

Factory 4

Figure 1.1: Representation of Quadratic Assignment Problem

1.1 Quadratic Assignment Problem (QAP)

The quadratic assignment problem (QAP) is a well-known challenging NP-

Hard combinatorial optimization problem which was proposed by Koopmans

and Beckmann in 1957 [5] on the purpose of modelling the position of indivisi-

ble economic activities. In spite of the several academic e�orts from its initial

formulation to date, it is still one of the hardest combinatorial optimization

problems.

The purpose of the QAP is to locate a number of di�erent facilities to the

di�erent locations in such a way which minimizes the total cost of the placement

as possible. That is to say, it seeks to locate N facilities to N �xed locations in

the most cost-e�ective way.

To shed light on the QAP, the factory assignment problem along with four

factories and four locations is considered as an illustration and one possible

assignment among the several permutations of the problem size 4 is represented

in Figure 1.1 [6]. In this representation factory 2 is placed to location 1, factory

1 is placed to location 2, factory 4 is placed to location 3, and �nally factory 3

3

is placed to location 4. In other words, this allocation of the factories can be

presented as the permutation p = {2, 1, 4, 3}. Furthermore, in the �gure, the

connection link between a pair of factories indicates that there is a compulsory

�ow between these two factories, and the bolder the link is, the more �ows there

are between the factories.

Table1.1: Flows between factories for QAP example

factory i factory j �ow (i, j)

1 2 3
1 4 2
2 4 1
3 4 4

Table1.2: Distances between locations for QAP example

location i location j distance (i, j)

1 3 53
2 1 22
2 3 40
3 4 55

In order to compute the allocation cost of the permutation, the information

about the �ows between factories and the distances between locations are re-

quired. In Table 1.1 and 1.2, �ows and distances matrices of the facility location

problem are presented. As a matter of fact, the cost of the placement for a

pair of factories is a product of the �ow between the factories and the distance

between the locations of the factories. In other words, it is the sum of the �ow

between a pair of factories multiplied by the distance between their assigned

locations. Therefore, the placement cost of the permutation in the example can

be calculated as :

f(1, 2)d(2, 1) + f(1, 4)d(2, 3) + f(2, 4)d(1, 3) + f(3, 4)d(3, 4)

= 3 ∗ 22 + 2 ∗ 40 + 1 ∗ 53 + 4 ∗ 55 = 419

For the QAP, the most fundamental thing is to locate facilities to locations in

4

the most economical way. However, the permutation illustrated above is not the

optimal solution.

As for the computational complexity of the QAP, it can be formulated by using

three nxn matrices including A, B, and C [7].

A = (aik)

where aik stands for the �ow value from facility i to facility k.

B = (bjl)

where bjl stands for the distance value from location j to location l.

C = (cij)

where cij stands for the cost value of assigning facility i to the location j.

The Koopmans-Beckmann formulation of the QAP is presented as :

minφ∈Sn(
n∑
i=1

n∑
k=1

aikbφ(i)φ(k) +
n∑
i=1

ciφ(i))

where Sn stands for the permutation of integers 1, 2, ..., n chosen from the set

of all possible placements for n. The range of the indexes i, j, k, l is 1, ..., n and

n is the problem size. Each individual product aikbφ(i)φ(k) indicates the cost of

the transportation from facility i at location φ(i) to facility k at location φ(k).

Moreover, ciφ(i) represents the total cost for locating facility i at location i and

the sum of the transportation costs to all other facilities k assigned at locations

φ(1), φ(2), ..., φ(n). As a consequence, the main purpose is to seek the most

optimal solution S∗ that minimises the cost function.

From a theoretical point of view, the QAP belongs to the NP-Hard class of

problems which means there is no accurate algorithm that is able to solve the

5

problem in polynomial time. That is to say, the problems whose size are greater

than 30 cannot be solved in rational time since it is practical to compute the ac-

curate permutation only for comparatively small instances whose size is up to 30.

However, existing approaches for seeking the optimal solution are costly and can

be di�cult for even problem sets with the size of n = 30. In addition, this hard-

ness encourages the heuristics for the development of new near-optimal solution

techniques for QAP. Indeed, scientists pursue a research on solving this problem

and propose several heuristic algorithms � Simulated Annealing [3][8][9], Tabu

Search [1][10][11][12][13][14][15], Ant Colony Optimisation [16][17][18][19], Ge-

netic Algorithms [20] and Memetic Algorithms [21][22][23], Scatter Search [24],

Iterated Local Search [25], to name a few.

The main reason why QAP is such an outstanding problem in scienti�c world

and so it attracts a great deal of attention of scientists is that it can formulate a

number of practical real life problems in various areas such as Steinberg wiring

problem [26], dartboard design [27], keyboard layout [28], hospital layout [29],

planning university campus [30], data visualisation [31][21], DNA micro array

layout [32] and so on.

1.2 Switching to the Parallel Computing

Traditionally, applications use Central Processing Unit (CPU) for primary calcu-

lations over the course of many years. Nevertheless, with the increased necessity

in improving the performance of computing and the intensive demand in solv-

ing a problem more quickly, a number of software developers, scientists and

researchers conduct a survey on �nding alternative ways to accelerate the speed

of calculations. Thereby, the parallel processing techniques are taken into more

consideration by them in various areas.

At the very beginning of an innovation of the parallel programming, it was

seemed as an exotic pursuit and commonly categorised as a speciality within the

area of computer science. Afterwards, this perception has altered thoroughly and

it is understood that the parallel programming has an increasingly important role

6

in the computer science. That is to say, from being limited to a particular people,

the computing world has turned into the area where almost entire programmers

are eager to be trained and practise in parallel programming so as to become

outstandingly powerful in computer science.

As a matter of fact, much has been made for switching to the simultaneous

computing in the computer industry widespread. Therefore, more and more

developers need to deal with a great diversity of parallel computing platforms

and technologies in order to provide sophisticated users with novel experiences.

Nowadays, instead of command prompts, multi threaded graphical interfaces are

in demand. Moreover, cellular phones that are used only for making calls are un-

favourable and instead people prefer versatile phones like simultaneously brows-

ing the Web, playing music, and providing Global Positioning System (GPS)

services.

In recent years, because of the fact that using multiple processors in parallel

means solving problems more rapidly than with a single processor, parallel pro-

gramming is preferred in several �elds. For this purpose, some parallel machines

are come out. To give an example, a Cluster Computer which contains multi-

ple personal computers combined together with a high speed network; a Shared

Memory Multiprocessor (SMP) by connecting multiple processors to a single

memory system; a Chip Multi-Processor (CMP) containing multiple processors

on a single chip.

For a long time, CPU manufacturers make an e�ort for increasing the clock

speed of the processors as one of the signi�cant methods applied to in an e�ort

to enhance the performance of consumer computing devices. In the early 1980s,

CPUs have clock speeds around 1 MHz whereas current desktop processors ran

with internal clocks operating between 1GHz and 4 GHz, approximately 1000

times quicker than the �rst personal computer.

Recently, however, the attempt of improving the clock speeds of the processors

by taking additional power from existing architectures is not applicable any

more on the occasion of several fundamental limitations in the production of

integrated circuits. As a consequence, scientists and manufacturers have begun

7

to look for alternatives for the improvement of the performance of consumer

computing devices.

In the exploration for alternative methods to obtain massive performance gains

for CPUs, the idea of placing more than one processing core in a personal com-

puter rather than concentrating solely on enhancing the performance of a single

processor is brought about. In 2005, CPU manufacturers introduce the pro-

cessors with dual-core instead of one. In the later years, they keep developing

multi-core processors like 3-, 4-, 6-, 8- and 16-core central processor unit. In

the year 2010, almost all consumer computers are shifted to the architecture

with multi-core central processors. This trend is referred to as multi-core revo-

lution in the computing world. With multi-core revolution, due to its e�ciency

and better quality with higher computing power, the parallel computation gain

notable popularity. For instance, electronic devices such as mobile phones and

portable music players also proceed to make use of simultaneously computing

capabilities so as to o�er preferably better functionality.

1.3 Open Multi-Processing (OpenMP)

Apart from the evolution of central processors in clock speeds, increase of core

number also experienced the huge revolution. In the necessity of more and more

computational power, researchers conduct a research on taking advantages of

the multi-processors. Nowadays, all new computers are parallel multi-core com-

puters and we use multi-core phones, laptops and desktops to meet our personal

needs. More and more scientist use multi-node clusters and supercomputers for

their researches. As a consequence of multi-core revolution in the computing

world, the new increasing interest in parallel programming among threads by

using CPU cores is brought about. Therefore, a new industry standard API

(Application Program Interface) of C/C++ and Fortran, OpenMP, is devel-

oped with the aim to serve as a worthy interface for the development of parallel

programs on shared memory. The OpenMP speci�cation is introduced by the

OpenMP Architecture Review Board, which is a join of the companies actively

participate in the development of the standard shared-memory programming

8

interface. The consequence of a large agreement between hardware vendors and

compiler developers, OpenMP is brought about and considered to be an indus-

try standard. That is to say, it de�nes a group of compiler instructions, library

routines, and environment variables.

OpenMP is used in order to realise parallel programming for multi-core ma-

chines. To be more precisely, OpenMP is API for shared-memory parallel pro-

gramming and works on one multi-core computer. It principally provides a

portable and scalable model for developers of shared memory parallel applica-

tions. In shared memory model, the globally shared memory can be accessed

by all threads. As a matter of fact, we can de�ne the variables to be shared or

private. If we state the data as shared, it can be accessed by all the threads.

Hence, threads read from and write on shared variables. There is no need for

explicit communications via messages. On the other hand, private variables can

be reached only by the threads in which it is de�ned; therefore, threads use

their own private variables to do work that does not need to be globally visible

outside the parallel region. This model is represented in Figure 1.2.

Parallel computing is about data processing. In practice, memory models deter-

mine how we write parallel programs. Data corruption is possible when multi-

ple threads attempt to update the same memory location. The most signi�cant

thing to pay high attention is that synchronisation must be used in order to

protect data against race conditions.

As for the execution model of OpenMP, it follows the Fork and Join Model.

That is to say, OpenMP programs are initialised with a single thread, the master

thread (Thread 0). At the beginning, master thread creates a number of parallel

worker threads. This process is named as FORK. Instructions in parallel blocks

are executed in parallel by every thread. At the end, all threads synchronize and

join master thread and this process is named as JOIN. This execution model is

represented in Figure 1.3.

OpenMP provides outstanding acceleration in computing performance by ben-

e�ting from the power of the computer's cores. What is more, it is well-known

for executing parallel and compute intensive tasks.

9

SHARED
MEMORY

Thread 1

private

Thread 2
private

Thread 0private

Thread 3 private

Thread 4

private

Thread 5

private

Figure 1.2: Shared Memory Model

As a matter of fact, OpenMP must be well studied in order to program threads

for executing parallel computing tasks. By learning OpenMP, high performance

applications can be written. Especially for the large application, most of the

code can be executed on parallel regions by threads. By the time extremely

computationally intense is occurred, the program can simply call the OpenMP

directive. Namely, the main idea of OpenMP is that it should be used for the

most computationally intense portions of the program in order to take full ad-

vantage of parallel programming. OpenMP architecture provides executing the

same instructions in multiple threads simultaneously. While CPU is designed

for very complicated control logic which executes the sequential programs in

optimized way, OpenMP has a simpler control logic that is optimized for the

execution of parallel tasks using the abstractions of threads. Consequently, we

make use of the heterogeneous computing techniques in our algorithm so as to

make use of OpenMP in the most e�ective ways.

10

FORK

Master
Thread

T2

JOIN

T3 T4 T5T1T0

Master
Thread

Serial Region

Parallel Region

Serial Region

Worker
Threads

Figure 1.3: The OpenMP Execution Model

As for the heterogeneous computing architecture, the workload is distributed

properly to the serial region or parallel region according to the intensity of

the computation in this design pattern. Initially, program executes on serial

region and then intense procedures are performed on parallel region by threads.

Finally, the solutions are presented in serial region. The most signi�cant thing

we do is that we run multiple threads simultaneously; therefore we get excessive

speed-up.

As for the threads, they are determined while launching the parallel processing

since the dynamic change in the number of threads is allowed just before a

parallel region is entered. In order to initiate threads, execution parameters for

the size of threads must be given inside the parenthesis in the directive clause

as the following :

#pragma omp parallel num_threads(<< numberOfThreads >>);

By the con�guration of the execution parameters such as the number of threads

11

to be initialised and the data access type to be shared or private, how the

OpenMP is going to launch the threads is determined. As for the performance of

the algorithm and protecting data against the race conditions, these parameters

are very signi�cant. As a consequence, we adjust them in our algorithm so as

to extract the massive performance gains.

1.4 A Simple OpenMP Example

In this section, we would like to give a simple OpenMP example to present the

massive computational power of the multi-core architectures. This example is

named as inner product or dot product. It makes a computation for a simple

dot product across two arrays, A and B. That is to say, it multiplies the cor-

responding elements of these two vectors and �nally calculates the sum of the

products. The following equation shows the mathematical formulation of the

simple dot product :

(x1, x2, x3, x4) x (y1, y2, y3, y4) = x1y1 + x2y2 + x3y3 + x4y4

There are several useful OpenMP directives which we need to ensure to be

declared before the compilation of the code and they are located in omp.h.

Therefore, we include it in the header in order to bene�t from the functions of

OpenMP library. The next step of the dot product is to create some OpenMP

threads and allocate values to the arrays A and B. Afterwards, we separate

the computation of dot product into two for loops. The �rst one deals with

computing the array product A[i] ∗ B[i] for all i values and the second for loop

calculates the sum of all products. The code of the example is presented below

with the demonstration of the OpenMP parallel for and OpenMP reduction

compiler directives.

The arrays A, B, C and the variable sum are de�ned as shared in the directive.

That is to say, it is simultaneously accessible by all threads. On the other hand,

i and tId are speci�ed as private. As a matter of fact, by default, all variables

in the parallel area are de�ned as shared except the loop iteration counter or

12

thread number.

1 #inc lude <s td i o . h>

2 #inc lude <omp . h>

3 #de f i n e N 16

4

5 i n t main () {

6 // Dec lare the v a r i a b l e s

7 long A[N] , B[N] , C[N] ;

8 long sum = 0 ;

9 long i , t Id ;

10 // I n i t i a l i z e the ar rays A and B

11 f o r (i = 0 ; i < N; i++) {

12 A[i] = i ;

13 B[i] = i ;

14 }

15

16 // Pa r a l l e l Computation on OpenMP

17 #pragma omp p a r a l l e l num_threads (N) shared (A, B, C, sum) pr i va t e (

i , t Id)

18 {

19 t Id = omp_get_thread_num () ;

20 p r i n t f ("He l lo from thread %d\n" , t Id) ;

21

22 // Pa r a l l e l vec to r mu l t i p l i c a t i o n

23 #pragma omp f o r

24 f o r (i = 0 ; i < N; i++) {

25 C[i] = A[i] ∗ B[i] ;

26 }

27 // Pa r a l l e l r educt ion f o r the sum

28 #pragma omp f o r reduct i on (+:sum)

29 f o r (i = 0 ; i < N; i++) {

30 sum = sum + C[i] ;

31 }

32 }

33 p r i n t f ("Sum = %d\n" , sum) ;

34 re turn 0 ;

35 }

13

When we run this code, we observe that we have created 16 threads, from thread

0 to thread 15, and these are running simultaneously in no apparent order. In

order to compute C[i] for all N elements, we make use of the compiler directive,

#pragma omp for. This clause is used to distribute loop iterations among the

threads.

Apart from the computation of the products, the sum of them are calculated.

In order to do that, we use a compiler directive, for reduction, in our OpenMP

implementation of dot product example. This directive is very useful if a par-

ticular operation on a data is executed iteratively. That is to say, its value at a

particular iteration is computed according to the previously calculated one. As

for our example, the variable of sum has a local copy for each thread and the

values of the local ones are reduced into the global shared variable, sum.

Output of this example is presented below.

1 Hel lo from thread 0

2 Hel lo from thread 7

3 Hel lo from thread 12

4 Hel lo from thread 10

5 Hel lo from thread 5

6 Hel lo from thread 8

7 Hel lo from thread 13

8 Hel lo from thread 11

9 Hel lo from thread 14

10 Hel lo from thread 9

11 Hel lo from thread 2

12 Hel lo from thread 3

13 Hel lo from thread 6

14 Hel lo from thread 4

15 Hel lo from thread 1

16 Hel lo from thread 15

17 Sum = 1240

Above all, the graphical representation of the example is presented in Figure 1.4

in order to show the execution of threads on OpenMP.

14

E
x
e
c
u
t
i
o
n

thread 0

sum = 0
(shared variable)

thread 0
Hello from thread 0
C[0] = A[0] * B[0]
sum = sum + C[0]

C[0] = 0 sum = 0

thread 1
Hello from thread 1
C[1] = A[1] * B[1]
sum = sum + C[1]

C[1] = 1 sum = 1

thread 15
Hello from thread 15
C[15] = A[15] * B[15]
sum = sum + C[15]

C[15] = 15 sum = 225

Serial Region

Parallel Region

...

sum = sum + 0 + 1 + … + 225

thread 0

sum = 1240
Serial Region

Figure 1.4: The Graphical Represantation of the Example : Dot Product

The pragma omp parallel instructs the program should start a number of

threads equal to what is passed in via the num_threads directive. Then, each

thread executes the function of printing ”Hello” message and calculating the

values of array C. By the help of the pragma omp for reduction directive, all

products are accumulated to sum variable. The threads then rejoin the main

thread at which point they are terminated. Finally, the main thread is itself

terminated. Thanks to the parallel programming, programs can execute faster

than their sequential counterparts by sharing work among the threads. In fact,

the more the number of threads is, the higher parallel e�ciency we can obtain.

15

16

CHAPTER 2

RELATED WORK

Recently, one of the most important topics around the academic world is to seek

optimal solution to combinatorial optimization problem which can be de�ned

as a quadratic assignment problem (QAP). Therefore, there are a number of

exact and approximate heuristic approaches in literature as many researchers

worldwide conduct a research on this problem.

In this chapter, we examine the contributions to the progress of exact and heuris-

tic solution methods for QAP brought about by the study of various approaches.

As a consequence, we provide a literature review of state-of-art heuristic adap-

tations, some of the most popular recent studies for combinatorial optimization

problems and proposed algorithms that solve the QAP by parallel programming

techniques.

2.1 State-of-art Heuristic Adaptations

In the literature, QAP is speci�ed as the problem of �nding a minimum cost of

assignment facilities to locations, calculating costs as the total of whole distance-

�ow products [33]. This problem �rstly arisen by Koopmans and Beckmann in

1957 as a mathematical model associated with economic activities [5]. In this

research, there is a discussion about problems in the assignment of independent

resources interpreted as plants. Afterwards, it has been used in various practical

applications to solve real-life problems in di�erent �elds.

QAP is one of the most troubling combinatorial optimization problems. That is

17

to say, problem whose size is greater than 30 cannot be worked out in rational

time. On the occasion of its practical and theoretical signi�cance and its com-

plexity, QAP has been an outstanding research area for the researchers all over

the world since its �rst formulation [33]. In 1976, Sahni and Gonzales declared

that QAP is an NP-hard combinatorial optimization problem [34]. Hence, there

is no doubt, the algorithm solving the problem in a polynomial time does not

exist. In fact, there is a huge number of NP-hard combinatorial optimization

problems that can be modeled as the QAP. To name a few, travelling sales-

man, scheduling, transportation systems, typewriter keyboard design, the graph

partitioning problem, backboard wiring, signal processing, bin-packing, maxi-

mum clique, statistical data analysis, data allocation, layout design, minimum-

inbreeding seed orchard layout and so on [7][35][4][26][36][37][38].

In 1961, for the backboard wiring problem, Steinberg focused on QAP in order

to decrease the connections between components [26]. In 1972 and 1980, He�ey

used it to resolve economic problems [39][40]. In 1976, Geo�rion and Graves

applied QAP for scheduling problems [41]. In 1976, Pollatsche applied it to

the layout planning problem in archaeology which attract building planners and

operation researchers' great attention [42]. In 1987, Hubert focused on statistical

analysis [43]. In 1994, Forsberg et al. applied it in the �eld of chemistry [44].

In 2000, Brusco and Stahl focused on numerical analysis [45].

As a matter of fact, numerous applications to the QAP is for the facilities layout

problem. In 1972, Dickey and Hopkins used it to allocation of constructions in

a University campus [30]. In 1977, Elshafei applied it for designing hospital

[29]. In 1993, Bos focused on forest parks [46]. In 2002, Benjaafar declared a

formulation of the facility layout problem to reduce work-in-progress [47]. In

2003, Rabak and Sichman [48], in 2005, Miranda et al. [49] and in 2007 Duman

and �lhan [50] applied it to the allocation of electronic components on a printed

circuit board or on a microchip. In 2005, Ben-David and Malah studied the

index assignment problem on which the e�ect of channel errors on the coding

system performance depends [51].

As for the proved optimal solutions that declared as the local optima, we can

18

exemplify like : Bur26 in 2004 and Tai25a in 2003 by Hahn; Ste36a in 2001

by Brixius and Anstreicher; Bur26a in 2001 and Kra30a by Hahn; Kra30b,

Kra32 and Tho30 in 2000 and Nug30 in 2000 by Anstreicher, Brixius, Goux

and Linderoth; Ste36b, and Ste36c in 1999 by Nystrom. By means of enhanced

tabu search algorithm, Misevicius improved the best known local optima for

Tai50a, Tai80a and Tai100a in 2003 [33]. In the light of these proved solutions,

in 2003, Anstreicher published the article about latest improvements in QAP

solutions and proposed the heuristics [52]. Moreover, in order to test e�ciency

of solutions, the new instances are appeared by Burkard et al. in 1991 [4] and in

1997 [53], Li and Pardalos in 1992 [54] and QAPLIB in 2004 [55]. Consequently,

new problem sets which are speci�ed as hard for meta-heuristics are declared by

Palubeckis in 1999 [56] and 2000 [57], Drezner et al. in 2005 [58] and Stützle

and Fernandes in 2004 [59].

2.2 Recent Studies to Solve the QAP

In the literature, there are several heuristics which make use of the tabu search

algorithm. Drezner proposed an algorithm to improve the concentric tabu search

for the QAP in 2005 [60]. In 2012, Iterated Tabu Search (ITS) algorithm is pro-

posed by Misevicius in order to practically solve the medium- and large-scale

QAP [61]. ITS is a combination of intensi�cation mechanism to seek for good

solutions in the neighbourhood and diversi�cation mechanism in an attempt to

run away from local optima and continue on the di�erent searching area. More-

over, it raises a novel formula for quick computation of the objective function

so that the results can be obtained more quickly. The consequences of the tests

for ITS algorithm show promising e�ciency particularly for the random QAP

instances. Fescioglu-Unver and Kokar proposed a self controlling TS algorithm

for the QAP in 2011 [62]. They come up with novel mechanisms for the TS

algorithm. These mechanisms aim to adjust the algorithm parameters for inten-

si�cation and diversi�cation. Thanks to the self-controlling mechanisms of the

algorithm, well accomplishments on di�erent QAP instances can be obtained.

Acan and Unveren proposed an algorithm called GDA, a combination of great

19

deluge and tabu search algorithms, for QAP in 2015 [63]. GDA bene�ts from the

accumulated experience in memory. When better solution obtained in a speci�c

iteration, GDA apply to the level-based acceptance criterion and update the

�rst stage of external memory. Furthermore, second stage is updated after the

�rst stage is updated for a determined number of times. The elements in second

stage are controlled to be dissimilar according to the similarity degree. There-

fore, it stores promising elements from di�erent regions of exploration area. As

a result of the experiments, it is apparent that GDA can be an alternative way

to solve the QAP since it shows promising results.

In 2006, ANGEL combining the ant colony optimization (ACO), the genetic

algorithm (GA) and a local search method (LS), is proposed as a hybrid meta-

heuristic to solve QAP by Tseng and Liang [64]. It consists of ACO and GA

phases. ANGEL uses the local search method along with the constructing initial

population mechanism. As a result of the experiments, it is shown that ANGEL

is successful for obtaining the optimal solution with a high rate.

Breakout Local Search Algorithm (BLS), proposed by Benlic et al. [2] executes

local search algorithm that �nds local optima with best improvement move

method and escape from this local optima to another local optimum with its

adaptive perturbation mechanism that makes use of tabu search, recency-based

and random perturbation methods.

BLS consists of two main points including local search procedure and diver-

si�cation mechanism that dynamically determines perturbation moves to run

away from one local optimum to another. In LS procedure, it searches for the

best move using the steepest descent procedure. By the time it reaches to local

optima it runs the second part of algorithm which is the perturbation phase.

According to the present situation of exploration, the magnitude of jump is de-

termined. Perturbation mechanism plays a signi�cant role in varying the search

areas. With the bene�t of diversifying jump magnitude, it improves the quality

of investigation. These two main phases turn in rotation until it hits the best

moving cost or it extends the time limit set to 2 hours for instances whose size is

equal and less than 100, and to 10 hours for the two instances which are biggest

20

in the library(tai150b and tho150) [2].

BLS has been even applied to various complex combinatorial problems that are

maximum clique (both weighted and unweighted cases) [65], maximum cut [66],

and minimum sum coloring, to name a few [2]. Pretty well success is achieved,

as a result of these experiments made on the well known problem instances of

the QAPLIB benchmark. What is more, it shows quite well performance on

this problem set by reaching the current best known solutions in acceptable

computation time, except for 2 cases.

In 2015, Benlic and Hao proposed a population-based memetic algorithm (BMA)

which incorporates with BLS, a powerful local optimization algorithm [67]. In

more detail, BMA consists of a uniform crossover, a �tness-based pool updating

methodology and an adjustable mutation strategy. As for the experiments, they

carry out the research on the 135 well-known problem sets from the QAPLIB. As

a result of the ability to attain current best known solutions by 133 of the whole

selected benchmark instances, BMA outperforms favourably when compare to

the present most remarkable QAP algorithms.

2.3 Optimization with Parallel Programming for Solving the QAP

Recently, there is a continuous attention in parallel programming taking advan-

tage of graphics processing unit (GPU) which is developed by NVIDIA Corpo-

ration. A GPU has thousands of cores whereas a central processing unit (CPU)

has a few cores designed for sequential serial working. By the help of having

an almost entirely parallel architecture, GPUs handle multiple tasks simulta-

neously in e�cient way. That is to say, it is capable of billions of calculations

per second. Therefore, more and more people worldwide use GPU along with a

CPU in order to speed up computationally-intensive tasks in several scienti�c,

analytic, engineering, and enterprise applications.

Since it o�ers speed-up opportunity which outperforms current multi-core pro-

cessors, Tsutsui and Fujimoto applied GPU with compute uni�ed device archi-

tecture (CUDA) for solving the QAP in 2011 [68]. By combining tabu search

21

algorithm, they propose ant colony optimisation for the QAP. In this research,

Tabu search moves create two groups according to their computing cost. For

the computation of these groups' moving cost, threads of CUDA are applied.

In order to minimize disabling time, Move-Cost Adjusted Thread Assignment

(MATA) is used. Moreover, Cunning Ant System is used for the ACO algo-

rithm. The result of this study is that GPU computation with MATA presents

outperforming acceleration when compared with the speed of computation in

CPU.

In 2015, Dokeroglu and Cosar proposed a novel Parallel Multi-start Hyper-

heuristic algorithm (MSH-QAP) for the solution of the QAP [7]. With the help of

hyper-heuristics, appropriate heuristic for the given instance is dynamically de-

termined along with the parameters of the heuristic. In this research, MSH-QAP

bene�ts from the state-of-the-art (meta)-heuristics which have been declared as

the best performing algorithms solving the QAP with large instances. These al-

gorithms consist of Simulated Annealing (SA), Robust Tabu Search (RTS), and

Ant Colony Optimisation-based Fast Ant System (FANT). For the experiments,

they use 134 problem instances in QAPLIB which are classi�ed into four types

according to the categorisation by Stützle [25]. Besides, they run MSH-QAP

on 64 processors with various multistarts to acquire high quality solutions. As

a result, 119 of the problem sets are solved successfully in terms of reaching

best known results whereas remaining 15 problems end up with %0.07 average

percentage deviation (APD) from the best known solutions (BKS) in literature.

Harris et al., in 2015, proposed a memetic algorithm (MA) which makes use of

ternary tree structure for its population and TS algorithm which runs simulta-

neously for its local search mechanism [69]. In fact, MA is an improvement of

the algorithm mentioned in the study of Meneses in 2011 [23]. As a result of the

experiments, using instances taken from QAPLIB [4], this algorithm shows ex-

actly great performance in the sense of not only less time but also more quali�ed

solution.

In 2012, Czapinski proposed Parallel Multistart Tabu Search (PMTS) algorithm

which consists of remarkable and outstandingly rapid heuristic for QAP. Fur-

22

thermore, it is implemented on a signi�cantly powerful GPU hardware intended

for high performance computing with CUDA platform [70]. Therefore, PMTS is

shown to perform competitively with a single-core or a parallel CPU implemen-

tation on a high-end six-core CPU. This noteworthy results from experiments are

owing to the neighbourhood evaluation in parallel architecture, e�ective memory

design, sensible access patterns and almost entirely GPU application of Tabu

Search.

In 2015, a parallel hybrid algorithm (PHA) with three phases is proposed by

Tosun [71]. PHA initially bene�ts from a genetic algorithm to get a high qual-

ity initial seed on which a diversi�cation mechanism will be run. Finally, this

modi�ed solution is used for a robust tabu search in order to �nd a near-optimal

result. Moreover, PHA makes use of parallel computing; therefore it obtains

considerable speed-up. As a result of the experiments, it is obviously seen that

in the sense of solution quality and execution time.

To the best of our knowledge, there is no heuristic approach that takes the ad-

vantage of the threads and similarity checking of the previously explored areas

by using OpenMp to solve the QAP. The heuristic search algorithm which uses a

log-based similarity checking approach for the previously searched permutations

of the QAP problem instances has not brought about yet. Recent approaches

also try to get rid of the stagnation and do this by randomly generating new

starting points on a single core. Therefore, we propose Breakout Local Search

Algorithm with Open Multi-Processing for Quadratic Assignment Problem algo-

rithm (BLS-OpenMP-QAP) that is explained in detail in the following Chapters.

BLS-OpenMP-QAP algorithm executes on di�erent candidate solutions instead

of only one permutation thanks to the similarity check mechanism of the pro-

posed algorithm.

23

24

CHAPTER 3

PROPOSED ALGORITHM

This chapter is dedicated to our proposed algorithm named BLS-OpenMP-QAP

(Breakout Local Search Algorithm with Open Multi-Processing for Quadratic

Assignment Problem). In this research, we aimed to make use of parallel pro-

gramming with OpenMP on the purpose of attaining remarkable solutions on

the well-known problem instances from the QAPLIB benchmark.

With the help of parallel programming with OpenMP, our recommended algo-

rithm shows a promising speed-up when compared to its CPU implementations

counterpart. As we will describe in the following Chapter 4, BLS-OpenMP-QAP

can obtain outstandingly competitive results on a wide range of well-known prob-

lem sets from the QAPLIB by reaching the current best known solutions in less

computation time or obtaining even better results in the same computing time.

In this chapter, we respectively mention about the components of BLS-OpenMP-

QAP algorithm presented in Algorithm 1. To be more precisely, it gets start with

generating initial candidate solutions strategy. In order not to start with the

same candidate solution twice, the solutions experimented before in each itera-

tions of algorithm are taken into consideration. Later then, it proceeds with the

descent procedure which improves local optima. On the purpose of reaching best

enhancing neighbouring solution, BLS-OpenMP-QAP explores the whole neigh-

bourhood in the steepest descent process. As soon as the local optima is reached,

the number of perturbation moves, jump magnitude, is determined. Eventually,

it applies to perturbation stage consisting of tabu search(TS), recency-based and

random perturbation methods so that it can escape from the local optima with

25

new starting point.

Algorithm 1 Breakout Local Search Algorithm with Open Multi-Processing

for Quadratic Assignment Problem (BLS-OpenMP-QAP) Algorithm

Require:

Distance and �ow matrices d and f of size n x n.

The number of thread countthread.

The size of loop for breakout local search(BLS) processes sizebls.

The vector keeping the initial and result solutions previousSolutions.

Ensure:

A permutation π over a set of facility locations.

1: π ← random permutation of {1, ..., n}
2: πinitDF ← GenerateSolutionsByDFMatrices() /* πinitDF is the randomly

generated initial solution for the �rst thread by considering distance and

�ow matrices (Subsection 3.1.1) */

3: /* Generate di�erent initial solutions randomly for remaining threads */

4: πinitRs ← GenerateDi�erentSolutionsRandomly()

5: πinits ← πinitDF + πinitRs /* πinits is the list of all initial solutions whose size

is equal to the number of threads countthread */

6: for i := 1 to sizebls do

7: if i > 1 then

8: /* Generate di�erent initial solutions randomly for the all threads by

looking at the previous experimented candidates (Subsection 3.1.2)*/

9: πinitRs ← GenerateDi�erentSolutionsRandomly(previousSolutions)

10: πinits ← πinitRs

11: end if

26

Algorithm 1 Breakout Local Search Algorithm with Open Multi-Processing for

Quadratic Assignment Problem (BLS-OpenMP-QAP) Algorithm(continued)

12: Write initial solutions to previousSolutions

13: Send πinits to the threads

14: c← C(π) /* c is the objective value of the current solution */

15: Compute the initial n x n matrix δ of move gains

16: πbest ← π /* πbest is the best solution found so far */

17: cbest ← c /* cbest is the best objective value reached so far */

18: cp ← c /* cp is the best objective value of the last descent */

19: w ← 0 /* w is the counter of consecutive non-improving local optima */

20: L← L0 /* set the number of perturb. moves L to its default value L0*/

21: while stopping condition not reached by all of the threads do

22: /* Identify the best improving move and apply it to obtain better

solution π in the whole neighbourhood */

23: π ← SteepestDescent(π, πbest, c, cbest, cp, H, Iter, δ, w) /* Section 3.2

*/

24: /* Determine the perturbation strength L to apply to π */

25: L← DetermineJumpMagnitude(c, cp, w) /* Section 3.3 */

26: /* Perturb the current local optimum π with L perturb. moves */

27: cp ← c /* Update the objective value of previous local optimum */

28: π ← Perturbation(π, L,H, Iter, δ, w) /* Section 3.4 */

29: end while

30: Obtain result solutions from threads

31: Write result solutions to previousSolutions

32: end for

27

3.1 Generating Candidate Solutions

First of all, BLS-OpenMP-QAP algorithm creates initial solutions based on some

background processes. In other words, producing candidates forms the backdrop

of BLS-OpenMP-QAP algorithm. Due to the fact that we are not able to study

on the whole permutation π of {1,...,n} solution, the smarter generating initial

solution mechanism of the algorithm is, the more e�ectively we can get the result.

Therefore, we �rst and foremost attach high importance to creating candidate

solutions since the most signi�cant thing is that candidates a�ect the rest of the

algorithm.

As presented in Algorithm 1 at lines 2 and 4, producing candidate solutions is

composed of two sections which are categorised as smart beginning by consider-

ing the distance and �ow matrices and smart start by looking at previous exper-

imented candidates and their results. Furthermore, this procedure is executed

on the CPU in advance of OpenMP implementations so that these candidate

solutions are going to be used by the whole threads via OpenMP. Besides, the

number of candidates must be equal to the number of all threads whose size are

determined at the beginning of the algorithm.

3.1.1 Intelligent Initialisation by Considering Distance and Flow Ma-

trices

The idea of that the more �ows there are between the facilities, the closer they

must be located leads us to generate a candidate solution according to the dis-

tance and �ow matrices. In this subsection, we precisely explained our method

for producing initial candidate solution considering the distance and �ow matri-

ces for the �rst thread. As a matter of fact, this method is employed only for

the �rst iteration of the algorithm. In this iteration, candidates for remaining

threads are produced randomly so that they are di�erent from each other ac-

cording to the minimum percentage of di�erence speci�ed at the beginning of

the algorithm.

According to the distance matrices, we initially arrange locations in order by

28

putting them on the distance array. That is to say, we enumerate places so that

two locations which are the most closer to each other are in the �rst place of the

array and the remainder is arranged appropriately. Afterwards, we build up �ow

array and bring it into alignment with �ow matrices. In other words, facilities

which have too much �owing between each other are placed side-by-side and at

the �rst place of the �ow array and the rest is adjusted accordingly.

Immediately after we construct the distance and �ow arrays, we create �rst

candidate solution. To do so, we take the elements of distance matrices in a

sequence as location and we pick the corresponding members of �ow matrices

in order as facility. Later then, we make use of these location and the facility

information so that the facility takes place in the location index of the �rst

candidate solution. In a similar manner, until the last index of the arrays is

reached, elements of �rst candidate are located accordingly. As a matter of fact,

this candidate solution is used once by only �rst thread in OpenMp in the �rst

start of the algorithm. Furthermore, this process is exempli�ed in Figure 3.1

along with its �ows and distances matrices presented in Table 3.1 and 3.2.

Table3.1: Distances between locations for initial solution example

location l1 l2 l3 l4

l1 0 20 40 60
l2 20 0 50 10
l3 40 50 0 55
l4 60 10 55 0

Table3.2: Flows between facilities for initial solution example

facility f1 f2 f3 f4

f1 0 15 0 1
f2 15 0 10 25
f3 0 10 0 30
f4 1 25 30 0

29

Distance Array : 4 2 1 3

10 20 40

3 4 2 1

30 25 15

Flow Array :

1 2 3 4

2 4 1 3

Locations :

Facilities :

Figure 3.1: Representation of Intelligent Initialisation by Considering Distance
and Flow Matrices

3.1.2 Intelligent Initialisation by looking at Previous Experimented

Candidates

Apart from producing the �rst candidate solution presented in Section 3.1.1,

BLS-OpenMP-QAP algorithm needs much more candidate solutions for the

other threads in OpenMP which are responsible for the remainder processes

of the algorithm. As presented in Algorithm 2, in order to guarantee that all

candidates are di�erent from each other, there is a constraint that randomly

generated solutions cannot be the same as previously experimented ones by less

than the minimum percentage of di�erence. According to the previously deter-

mined minimum percentage of di�erence between candidate solutions, randomly

generated permutation is assumed as acceptable or not. Unless it is satisfactory,

BLS-OpenMP-QAP regenerates random candidate solution until it meets the

di�erence constraint. By the time the algorithm produces adequate number of

candidate solutions, that is, as many as the size of threads in OpenMP, BLS-

OpenMP-QAP continues with the remaining processes of the algorithm.

30

Algorithm 2 Intelligent Initialisation by looking at the Previous Experimented

Candidates Algorithm

Require:

The size of thread countthread.

The vector keeping the initial and result solutions previousSolutions.

Ensure:

A permutation π over a set of facility locations.

1: for i := 1 to countthread do

2: π ← random permutation of {1, ..., n}
3: /* Similarity check for π (Algorithm 3)*/

4: while isSimilarToPreviousSolutions(π, previousSolutions) do

5: π ← random permutation of {1, ..., n}
6: end while

7: Add π to initialSolutionList

8: end for

As for our similarity check mechanism, it is derived from Minimum Edit Distance

algorithm called Levenshtein Distance (LD) devised by Levenshtein. LD is a

distance of the similarity between two strings. In other words, it is the minimum

edit distance between two strings. This is the minimum amount of editing

operations of deletions, insertions, or substitutions needed to convert one string

into another. Therefore, the less the LD is, the more similar the strings are.

Indeed, LD algorithm is applied to in several real life applications. For instance,

spell correction, speech recognition, computational biology, DNA analysis, ma-

chine translation, information extraction and plagiarism detection are some re-

warding applications of Levenshtein Distance.

In 2002, Ristad and Yianilos propose a stochastic model for string-edit distance

in order to determine the similarity of two strings [72]. They apply this model

on the hard problem of speech recognition for pronunciation of words in con-

versational speech and obtain a remarkable result. Wilbert Heeringa also make

use of LD in his thesis in order to measure dialect pronunciation di�erences [73].

In another study, LD is used for gauging phonetic distances between Norwegian

31

Algorithm 3 Similarity Control Mechanism

Require:

The size of the problem n, minimum percentage of di�erence

minDifference, the vector of previous solutions previousSolutions.

Ensure:

A permutation π over a set of facility locations.

1: for i := 1 to size of previousSolutions do

2: for j := 1 to size of n do

3: if previousSolutions[i][j] 6= π[j] then

4: diffNumber + +;

5: end if

6: if diffNumber > minDifference then return false

7: end if

8: end for

9: return true

10: end for

dialects in order to approve Levenshtein Dialect Distance which is applied be-

fore in Dutch dialects [74]. In 2003, Bilenko et al. use LD in their study for

the comparison and description of methods in textual similarity measures for

name matching [75]. This study is based on the idea that recognizing distinct

records referencing to the same entities in database is signi�cant for information-

integration. Furthermore, string similarity measuring approach is also applied

for identifying plagiarism [76]. In 2004, adapted LD is proposed for comparison

of signatures depending on an event-string modelling of features by utilising the

pen-position and pressure signals of digitizer tablets [77]. In 2012, normalized

Levenshtein distance function is proposed for measuring cross-language ortho-

graphic similarity [78].

32

The LD between two strings a, b is calculated according to the following formu-

lation :

leva,b(i, j) =



max(i, j) if min(i, j) = 0,

min


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise.
[79]

where 1(ai 6=bj) is equal to 0 when ai = bj and equal to 1 otherwise.

In order to explain LD more precisely, we give two di�erent examples and then

we decide whether the second candidate is applicable or not for the remaining

procedures of BLS-OpenMP-QAP algorithm. For each of the examples we gen-

erate two di�erent candidate solutions. Afterwards, we compute the minimum

similarity distance for those solutions based on LD. Finally, according to the

similarity threshold value of 30%, we determine that the second candidate is

acceptable or not.

As can be seen in Figure 3.2, there are two candidate solutions, π1 and π2. We

assume that π1 is used in the �rst multi-start of BLS-OpenMP-QAP algorithm

and we want to generate another candidate in order to execute our algorithm on

this solution which is di�erent from the �rst one by 30% similarity ratio. There-

fore, we make use of LD in an attempt to calculate the minimum di�erence size.

As a consequence of this computation, we obtain the distance value lev(π1, π2)

= 2. This means that two substitutions are su�cient to transform π1 into π2.

Hence, the second candidate, π2, violates the similarity ratio constraint by the

percentage of 20 (2/10). Furthermore, it is not applicable for our algorithm and

it generates another random candidate solution.

In the second example in Figure 3.3, BLS-OpenMP-QAP algorithm randomly

generates another candidate solution, π3. As for the similarity threshold, we

compare π3 with the �rst solution π1 which is used in the �rst multi-start of

BLS-OpenMP-QAP algorithm. By this comparison we want to ensure that it

is di�erent from the �rst solution π1 by 30% similarity ratio in order to execute

33

8 3 7 2 10 1 4 6 9 5

0 1 2 3 4 5 6 7 8 9 10

8 1 0 1 2 3 4 5 6 7 8 9

3 2 1 0 1 2 3 4 5 6 7 8

7 3 2 1 0 1 2 3 4 5 6 7

6 4 3 2 1 1 2 3 4 4 5 6

10 5 4 3 2 2 1 2 3 4 5 6

1 6 5 4 3 3 2 1 2 3 4 5

4 7 6 5 4 4 3 2 1 2 3 4

2 8 7 6 5 4 4 3 2 2 3 4

9 9 8 7 6 5 5 4 3 3 2 3

5 10 9 8 7 6 6 5 4 4 3 2

ᶢ1

ᶢ2

8 3 7 2 10 1 4 6 9 5

8 3 7 6 10 1 4 2 9 5

ᶢ1ᶢ2

Figure 3.2: An Example of Violating the Minimum Di�erence Constraint (30%)

34

our algorithm on this solution. In an e�ort to make this comparison, we take

advantages of LD with the aim of computing the minimum di�erence size. As

a result of this calculation, we obtain the distance value lev(π1, π3) = 6 which

means that six substitutions are adequate to transform π1 into π3. Hence, the

second candidate, π3, does not violate the similarity ratio constraint by the

percentage of 60 (6/10). Consequently, π3 can be used by BLS-OpenMP-QAP

algorithm.

As for our proposed algorithm, we adapt LD with regard to meet our needs

in an e�ective way. In BLS-OpenMP-QAP, candidate solutions have the same

length so that two solutions can be transformed into one another only by the

substitution operation. Therefore, we regard the cost of each substitution value

to 1. Furthermore, searching for a sequence of edits from the �rst permutation

values to the second permutation values requires huge space and navigating

from these sequences of edits is required high a�ord. As for our algorithm,

we make this calculation by comparing all values in the �rst solution with the

corresponding value, at the same index, of the second solution. By this way, we

can calculate the minimum di�erence size in a cost-e�ective way.

To put this similarity check procedure in a nutshell, the candidate solution π

is randomly generated for each threads on OpenMP in order to execute the

remaining procedures of the algorithm. Therefore, the size of generated candi-

dates must be same as the number of threads speci�ed at the beginning of the

algorithm. Afterwards, the algorithm performs the similarity check on these can-

didates. The similarity check mechanism determines whether solution π violates

the minimum di�erence constraint or not. The minimum percentage of di�er-

ence is also determined at the beginning of the algorithm. In order to provide

this control, π is compared respectively with the whole solutions in the vector

previousSolutions which BLS-OpenMP-QAP algorithm puts the permutations

on and keeps track of the previously experimented solutions. Indeed, all values

in the π is compared one by one with the corresponding value, at the same in-

dex, of the solution from the vector previousSolutions. If π meets the minimum

di�erence constraint, it is put in to the list of the candidates. Otherwise, new

candidates are generated randomly and the similarity check mechanism proceeds

35

8 3 7 2 10 1 4 6 9 5

0 1 2 3 4 5 6 7 8 9 10

10 1 1 2 3 4 4 5 6 7 8 9

2 2 2 2 3 3 4 5 6 7 8 9

7 3 3 3 2 3 4 5 6 7 8 9

9 4 4 4 3 3 4 5 6 7 7 8

6 5 5 5 4 4 4 5 6 6 7 8

1 6 6 6 5 5 5 4 5 6 7 8

4 7 7 7 6 6 6 5 4 5 6 7

8 8 7 8 7 7 7 6 5 5 6 7

3 9 8 7 8 8 8 7 6 6 6 7

5 10 9 8 8 9 9 8 7 7 7 6

ᶢ1

ᶢ3

8 3 7 2 10 1 4 6 9 5

10 2 7 9 6 1 4 8 3 5

ᶢ1ᶢ3

Figure 3.3: An Example of not Violating the Minimum Di�erence Constraint
(30%)

36

on them until the di�erence constraint is provided. By the time all candidates

are produced for the whole threads on OpenMP, this section of the algorithm

terminates.

3.2 Improving Local Optima

First of all, in order to take full advantages of parallel programming, this and

the following processes of the BLS-OpenMP-QAP algorithm are executed on

OpenMP by organizing a parallel computation using the abstractions of threads.

In fact, as we will see in the following Chapter 4, in our experiments, generating

random initial solutions section of BLS-OpenMP-QAP is also executed with on

OpenMP in order to measure the quality of recommended algorithm by making

comparisons between them. What is more, a schematic representation of our

proposed algorithm, BLS-OpenMP-QAP, in time-line is presented in Figure 3.4.

Previous to expanding on local search procedure, we bring out two di�erent ma-

trices, one is the delta matrices in which we put the result from the computation

of cost di�erence if two elements are swapped in candidate solution π and the

other one is last swapped matrices which is used for the tabu search mechanism

in perturbation strategy.

On the purpose of improving local optima, BLS-OpenMP-QAP makes use of the

steepest descent procedure, presented in Algorithm 4. That is to say, the values

in candidate permutation π are iteratively transposed to minimize the cost and

to reach the local optima. As a matter of fact, each iteration of this procedure

searches in the whole neighbourhood to discover the best adjacent solution.

Furthermore, it proceeds the iteration as long as an improving solution in the

neighbouring space is obtained. By the time there is no such better adjacent

solution, BLS-OpenMP-QAP continues with the determining Jump Magnitude

section of algorithm in an e�ort to run away from the present local optima.

37

T
IM

E

Generate Candidate
Solutions by Similarity

Check Mechanism

Improve Local
Optimum

Keep Track of Candidate
Solutions

Determine Jump
Magnitude

Perturb the
Solution

Im
p

ro
v

e
m

e
n

t
L

o
o

p

THREAD 0

Improve Local
Optimum

Determine Jump
Magnitude

Perturb the
Solution

Im
p

ro
v

e
m

e
n

t
L

o
o

p

Improve Local
Optimum

Determine Jump
Magnitude

Perturb the
Solution

Im
p

ro
v

e
m

e
n

t
L

o
o

p

OpenMP Initialisation of Threads

MASTER
THREAD

THREAD 1 THREAD NTHREAD 2 THREAD 3

Keep Track of Candidate
Solutions

MASTER
THREAD

M
u

lt
is

ta
rt

 L
o

o
p

Figure 3.4: A Schematic Representation of BLS-OpenMP-QAP Algorithm in
Time-line

38

Algorithm 4 Steepest Descent Algorithm

SteepestDescent(π, πbest, c, cbest, cp, H, Iter, δ, w)

Require:

Local optimum π, the best solution found so far πbest, the objective value

of the current solution c, the best objective value reached cbest, the best

objective value of the last descent cp, matrix H, global iteration counter

Iter, move gain matrix δ, the number of consecutive non-improving local

optima visited w.

Ensure:

A permutation π over a set of facility locations.

1: while ∃ swap(u, v) such that (c+ δ(π, u, v)) <c do

2: π ← π ⊕ swap(u, v) /* Perform the best-improving move */

3: c← c+ δ(π, u, v)

4: Huv ← Iter /* Update Iter. number when move uv was last performed*/

5: Update matrix δ

6: Iter ← Iter + 1

7: end while

8: if c < cbest then

9: πbest ← π; cbest ← c /* Update the recorded best solution */

10: w ← 0 /*Reset counter for consecutive non-improv. local optima*/

11: else if c 6= cp then

12: w ← w + 1

13: end if

39

3.3 Determining the Jump Magnitude

The role of deciding the measure of perturbation moves, jump magnitude, is im-

portant for perturbation stage of BLS-OpenMP-QAP. According to the present

state of neighbouring exploration, the magnitude of jump is determined. With

the bene�t of diversifying jump magnitude, the quality of investigation increases.

As declared in Algorithm 5, unless the best recorded solution is improved during

the predetermined number of descent phases, since it shows that the search is

in stagnating state, strong perturbation mechanism is required in order to get

rid of the local optima. Nevertheless, if the candidate solution is enhanced, the

number of perturbation moves is determined accordingly so that it can escape

from the previous local optimum. However, if the cost of present solution is

as the same as of the previous one, exploration returns to the previous local

optimum.

By the time BLS-OpenMP-QAP reaches to local optima and then determines

the Jump Magnitude, it executes the last part of the algorithm which is the

perturbation phase. As a matter of fact, this phase plays a very signi�cant role

in terms of diversifying the exploration areas and escaping from the current local

optimum.

3.4 Diversifying Search Area by Perturbation Strategy

The last and the most signi�cant section of BLS-OpenMP-QAP algorithm is

the perturbation phase. The pseudo code of this adaptive diversi�cation ex-

ploration mechanism is demonstrated in Algorithm 6 and 7. Immediately after

the jump magnitude is assigned, it gets start to escape from the local optimum

by selecting among three separate types of moves for perturbation according to

the present state of the exploration. In other words, the adaptive perturbation

mechanism makes use of tabu search, recency-based and random perturbation

methods which are declared in following Subsections 3.4.1, 3.4.2 and 3.4.3.

40

Algorithm 5 Determining the Jump Magnitude Algorithm

DetermineJumpMagnitude(c, cp, w)

Require:

The objective value of the current solution c.

The best objective value of the last descent cp.

The number of consecutive non-improving local optima visited w.

Ensure:

A perturbation strength L.

1: if w > T then

2: /* Search seems to be stagnating, set L to a large value */

3: L← Lmax

4: w ← 0

5: else if c = cp then

6: /* Search returned to the previous local optimum, increase jump magni-

tude by one */

7: L← L+ 1

8: else

9: /* Search escaped from the previous local optimum, reinitialize jump

magnitude */

10: L← L0

11: end if

41

Algorithm 6 Adaptive perturbation procedure perturbation(π, L,H, Iter, δ, w)

Require:

Local optimum π, perturbation strength L, matrix H, global iteration

counter Iter, move gain matrix δ, the number of consecutive non-improving

local optima visited w.

Ensure:

A perturbed solution π.

1: Determine the probability P according to the Formula A,Band C /* Sub-

section 3.4.1, 3.4.2, 3.4.3 */

2: With probability P , π ← Perturb(π, L,H, Iter, δ, w,A) /* Tabu search per-

turbation */

3: With probability (1− P).Q, π ← Perturb(π, L,H, Iter, δ, w,B) /* Recency

based perturbation */

4: With probability (1 − P).(1 − Q), π ← Perturb(π, L,H, Iter, δ, w, C) /*

Random perturbation */

5: return π

Above all, perturbation mechanism has an intensive diversi�cation impact on the

BLS-OpenMP-QAP algorithm. Hence, it is signi�cant to determine the most

suitable perturbation type in order not to deteriorate too much the solution.

Indeed, this determination is made probabilistically, and the possibility of de-

termining a speci�c type is identi�ed dynamically according to the present search

state and also to the current number w of iteration which there is not enhancing

solution. When the best permutation is obtained through the enhancing explo-

ration or by the time the number of iteration surpasses the speci�ed threshold

T when the local optima is not enhanced, w takes value of zero. Moreover, it

is declared that as a result of the experimental analysis, it is practical to assure

to apply tabu search perturbation type in minimum degree [2]. Consequently,

there is a constraint that at least the threshold value P0 must be assigned to the

possibility P of the application of Tabu Search Perturbation. P is calculated

according to the following formulation :

42

Algorithm 7 Perturbation operator Perturb(π, L,H, Iter, δ, w,M)

Require:

Identical to perturbation(π, L,H, Iter, δ, w) of Algorithm 6 along with the

set of perturbation moves M

Ensure:

A perturbed solution π.

1: for i := 1 to L do

2: Take swap(u, v) ∈M
3: π ← π ⊕ swap(u, v)

4: c← c+ δ(π, u, v)

5: Huv ← Iter

6: Update the move gain matrix δ and M

7: Iter ← Iter + 1

8: if c < cbest then

9: πbest ← π; cbest ← c /* Update the recorded best solution */

10: w ← 0 /* Reset counter for consecutive non-improv. local optima */

11: end if

12: end for

13: return π

43

P =

e
−w/T , if e−w/T > P0

P0, otherwise
[2]

In this formulation, T is regarded as the maximum number of iteration which

there is not enhancing solution any more. In this case, BLS-OpenMP-QAP turns

into more stronger perturbation mechanism. If the value of w increases, the

possibility of applying tabu search perturbation reduces increasingly whereas

the possibility of the application of other two methods grows up in order to

obtain more powerful diversi�cation.

Apart from the possibility of applying tabu search perturbation, for recency

based perturbation, the probability is calculated as (1-P).Q and for the random

perturbation, it is identi�ed by (1-P).(1-Q) where Q is stands for the number

between 0 and 1.

3.4.1 Tabu Search Perturbation

Tabu Search (TS) has been regarded as an outstandingly e�cient approach for

solving hard combinatorial problems, for instance, travelling salesman, schedul-

ing, product delivery and routing, transportation systems and manufacturing

cell design.

As it is understood by the name, this type of perturbation is based on Tabu

Search(TS) fundamentals. A �ow chart describing the structure of the tabu

search perturbation mechanism is shown in Figure 3.5. As a matter of fact,

TS fundamentally looks for whether the move is applied or not throughout the

speci�c number of iterations (γ). A greater value of γ indicates the strength of

diversi�cation. Furthermore, it pays attention to the history information about

the last time when the move is performed and also it attaches importance not

to perturb the solution too much. To put in a nutshell, appropriate moves are

chosen according to the constraint as the following formulation presents by the

set A :

44

A = { swap(u, v)|min{δ(π, u, v)}, (Huv + γ) < Iter or (δ(π, u, v) + c) <

cbest, u 6= v and 1 ≤ u, v ≤ n } [2]

In this formulation, H is regarded as the matrix on which the iteration numbers

when the move was last executed are placed, Iter is the present iteration number,

c is the cost of present permutation and cbest is the cost of the best found

permutation up to that moment.

3.4.2 Recency Based Perturbation

Apart from the Tabu Search Perturbation type, there is also recency based

perturbation mechanism which bene�ts from a part of the history tracks kept

on the H matrix. Although the move causes the decrease in the cost, this

perturbation type only takes the least recently executed moves in consideration.

Indeed, the eligible moves are determined according to the constraint as the

following formulation presents by the set B :

B = { swap(u, v)|min{Huv}, u 6= v and 1 ≤ u, v ≤ n } [2]

3.4.3 Random Perturbation

Finally, the random perturbation method completely randomly determines the

moves to be performed. To explain it more precisely, the most suitable relo-

cations are picked out according to the constraint as the following formulation

presents by the set C :

C = { swap(u, v)|u 6= v and 1 ≤ u, v ≤ n } [2]

To put this adaptive perturbation strategy in a nutshell, by the time the pertur-

bation genre is found out, corresponding relocations determined by the sets A,

B and C are appropriately applied. Therefore, at the next iteration of the steep-

est descent algorithm, this resulting solution is accepted as the new candidate

permutation.

45

Start with Current Solution

Swap Move

Evaluate the Solution

Apply Move
Set this solution as Current Solution

Is this solution better
than Best Solution

Is this solution in
the Tabu Move

No

No

Yes No

Update Tabu List

Terminate Search

Are all moves
swapped

Yes

Yes

Figure 3.5: Flow Chart of the Tabu Search Perturbation Mechanism

46

3.5 Update Mechanism for the New Solutions

When the improving solution in the neighbouring space is obtained in the steep-

est descent or the perturbation procedures of the algorithm, BLS-OpenMP-QAP

starts its update mechanism for this improving solution. That is to say, swap-

ping two indexes of a current permutation and creating a di�erent candidate is

lead to be the better solution, we update the cost according to the new solu-

tion. By means of computing only the di�erence with the former solution, we

can calculate the cost of the improved solution in a very quick way. [15]. In

our proposed algorithm, BLS-OpenMP-QAP, this approach is used as a perfor-

mance improving computation method. Starting from a candidate solution β, a

neighbour solution π is taken by changing units r and s:

π(k) = φ(k) ∀k 6= r, s

π(r) = φ(s)

π(s) = φ(r)

If the matrices are symmetrical, the value of a move, ∆(φ, r, s) is calculated as :

∆(φ, r, s) =
n∑
i=1

n∑
j=1

(aijbφ(i)φ(j) − aijbπ(i)π(j))

= 2 ·
n∑

k 6=r,s

(ask − ark)(bφ(s)φ(k) − bφ(r)φ(k))

To put in a nutshell, the number of computations in the algorithm is an signif-

icant criterion while evaluating the performance of heuristics. BLS-OpenMP-

QAP algorithm use this fast update mechanism that solely computes the delta

part of the novel permutation. Thanks to this technique, we do not need to

calculate each novel permutation from scratch which would be a costly process

and do its performance would be worse.

47

48

CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we initially explain the environment on which our experiments

are performed, then give information about the problem instances used in these

experiments. Furthermore, we present the procedure of determining the most

e�cient parameters for our proposed algorithm BLS-OpenMP-QAP (Breakout

Local Search Algorithm with Open Multi-Processing for Quadratic Assignment

Problem) in order to obtain an outstanding performance. Consequently, ac-

cording to these predetermined parameters we carry out our experiments and

present the computational results of these experiments. The objective of these

experiments is to evaluate the performance of BLS-OpenMP-QAP in the sense

of both time e�ciency and solution quality. Therefore, we conclude with the

general evaluations of the proposed algorithm by these gathered results from the

experiments.

4.1 Experimental Environment and Setup

In terms of the experimental environment, we arrange our experiments into two

categories as CPU and OpenMP implementations since they utilise di�erent

hardware capabilities of the personal computer which we use in our experiments.

49

Main properties of our personal computer are

• Intel Core i7-6700 CPU 3.40 GHz with 4 cores

• 16 GB Memory (RAM)

• Windows 8.1 64-bit Operating System

For the CPU implementations, we solely make use of these main speci�cations.

As for the OpenMP implementations, we additionally take advantages of

• 8 Logical Processors

• OpenMP Library

4.2 Problem Instances

By the nature of heuristic algorithms, it is very signi�cant to analyse the per-

formance of recently proposed algorithm by experimenting on well established

benchmark instances of the problem and evaluating the results with its corre-

sponding state-of-the-art QAP algorithms in the literature. Therefore, four sets

of the problem instances given in the QAP benchmark, QAPLIB, are solved

during our experiments [4] in an attempt to measure the performance of our pro-

posed algorithm BLS-OpenMP-QAP. QAPLIB provides a wide range of problem

instances that are classi�ed into four classes by Stützle, covering real applications

and random problems [25]. These categorized instances indicated by Stützle can

be shown as :

• Type 1. Unstructured, randomly generated instances have the distance

and the �ow matrices that are randomly generated based on a uniform

distribution.

• Type 2. Instances with Grid-based distances contain instances in which the

distances are the Manhattan distance between points on a grid, whereas

�ows are randomly generated.

50

• Type 3. Real-life instances are produced from real-life practical QAP

applications.

• Type 4. Real-life-like instances are generated instances that are resembled

to the real-life QAP problems.

In our experiments, we make use of the problem instances belonging to these four

problem types. Namely, for Type1, tai20a, tai25a, tai30a, tai35a, tai40a, tai50a,

tai60a, tai80a and tai100a; for Type2, sko42, sko49, sko56, sko64, sko72, sko81,

sko90, sko100a, sko100b, sko100c, sko100d, sko100e and sko100f; for Type3,

kra30a, kra30b, kra32, ste36a, ste36b, ste36c, esc32b, esc32c, esc32d, esc32e,

esc32g, esc32h, esc64a and esc128; for Type4, tai20b, tai25b, tai30b, tai35b,

tai40b, tai50b, tai60b, tai80b and tai100b are used. (the numbers indicate the

problem size)

4.3 Setting the Parameters of BLS-OpenMP-QAP Algorithm

In this section, we present the procedure of de�ning the most e�cient parameters

for our proposed algorithm BLS-OpenMP-QAP so as to obtain an outstanding

performance. Speci�cally, the parameters that mostly a�ect our proposed al-

gorithm are listed as the similarity ratio, the number of threads, the number

of iterations and the number of multi-starts. Immediately after we de�ne these

parameters, we realise other experiments that veri�es the quality and the per-

formance of BLS-OpenMP-QAP algorithm by comparing with state-of-the-art

algorithms in the literature.

4.3.1 Setting the Similarity Ratios of the New Exploration Areas

In order to provide good quality results, we make experiments for �nding the

most e�ective similarity ratio on the problem set, Tai60a. While realising these

experiments we keep the other parameters like the number of threads, the num-

ber of multi-starts and the number of iterations at the same degree against the

alteration on the value of the similarity ratio. That is to say, while we increase

51

the similarity ratio from the percentage of 10 to 90, the other parameters remain

the same. These experiments are initialised with 16 threads and the number of

iterations is set to 10000. In addition, we arrange the algorithm to restart 100

times for each experiment.

The computational results of these tests are presented in Table 4.1 and in Figure

4.1. In the plot, x-axis represents the similarity ratio value as percentage,

whereas y-axis represents the average percentage deviation (APD) from the

best known solution (BKS) and it is calculated according to the minimum cost

reached when the experiment is terminated.

As a consequence of these experiments, we determine that the most appropriate

and optimum similarity ratio which makes BLS-OpenMP-QAP algorithm e�ec-

tive is the percentage of thirty. Furthermore, the similarity ratio experiment

on the percentage of 30 with tai60a problem instance has reached to the best

minimum solution founded so far in the literature.

Table4.1: Similarity Ratio Analysis on Tai60a Problem Instance. APD is the
average percentage deviation from the BKS. The times are given in minutes.
30% similarity ratio does not provide any deviation.

Ratio
(%)

of
Threads

of
Iterations

of
Multi-starts

Time
(min)

APD

10 16 10000 100 108.429 0.236
20 16 10000 100 107.785 0.260
30 16 10000 100 107.891 0.000
40 16 10000 100 108.165 0.352
50 16 10000 100 107.502 0.491
60 16 10000 100 108.017 0.369
70 16 10000 100 106.855 0.328
80 16 10000 100 106.614 0.379
90 16 10000 100 106.700 0.417

52

0.236
0.260

0.000

0.352

0.491

0.369
0.328

0.379
0.417

0.000

0.100

0.200

0.300

0.400

0.500

0.600

10 20 30 40 50 60 70 80 90

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 D
e

v
ia

ti
o

n

(A
P

D
)

Similarity Ratio (%)

Figure 4.1: Similarity Ratio Analysis on Tai60a Problem Instance. APD is
the average percentage deviation from the BKS. 30% similarity ratio does not
provide any deviation.

4.3.2 Setting the Number of Threads

After we determine the similarity ratio value, we make experiments on the prob-

lem set Tai60a in order to ensure the most e�cient performance of the threads.

While realising these experiments we keep the other parameters like similarity

ratio, the number of multi-starts and the number of iterations at the same de-

gree against the alteration on the number of threads. That is to say, while we

increase the number of threads from 1 to 32, the other parameters remain the

same. These experiments are initialised with thirty percent of the similarity

ratio and the number of iterations is set to 10000. In addition, we arrange the

algorithm to restart 100 times for each experiment.

53

3
0

.8
5

3
3

.1
3

3
7

.4
2

5
4

.8
4

1
0

7
.8

9

2
4

6
.2

9

1
4

4
0

.0
0

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

E
x

e
c
u

ti
o

n

T

im
e

 (
m

in
)

Number of Threads

Figure 4.2: Execution Time Analysis of the Number of Threads on Tai60a Prob-
lem Instance. With more than the 4 threads, time increases accordingly.

The computational results of these experiments are presented in Table 4.2 and in

Figure 4.2. In the plot, x-axis represents the number of threads, whereas y-axis

represents the execution time in minutes for realising each of the experiments.

Table4.2: Execution Time Analysis of the Number of Threads on Tai60a Prob-
lem Instance. The times are given in minutes. APD is the average percentage
deviation from the BKS. With more than the 4 threads, time increases accord-
ingly.

Ratio
(%)

of
Threads

of
Iterations

of
Multi-starts

Time
(min)

APD

30 1 10000 100 30.85 0.686
30 2 10000 100 33.13 0.279
30 4 10000 100 37.42 0.298
30 8 10000 100 54.84 0.331
30 16 10000 100 107.89 0.000
30 24 10000 100 246.29 0.257
30 32 10000 100 > 1440.00 -

54

As a result of these experiments, we determine that the most appropriate and

optimum number of threads which makes BLS-OpenMP-QAP algorithm e�cient

is provided with 16 threads. Furthermore, we have observed that the initialisa-

tion of the algorithm with 16 threads can be realised almost at the same time

with 8 threads and two times more multi-starts. In this way, the same number

of the solutions can be produced and executed by the BLS-OpenMP-QAP algo-

rithm. Therefore, we can also obtain better results from the initialisation of the

algorithm with 8 threads like with 16 threads.

Meanwhile, these experiments validate the fact that executing the algorithm on

more threads than the computer has would not increase the performance since

the logical cores operating on the same physical core share resources with other

logical cores. To put in a nutshell, as our personal computer has 4 physical and

8 logical cores, the most e�cient way for BLS-OpenMP-QAP algorithm is to

work on 8 threads as observed in the experiments. On the other hand, we have

preferred to execute our algorithm on 16 threads since it takes a little bit less

time when compared to the initialisation with 8 threads and double multi-starts.

4.3.3 Setting the Number of Iterations for the BLS

In an e�ort to obtain best results from BLS-OpenMP-QAP algorithm, we realise

experiments for �nding the most e�ective number of iterations on the problem

set, Tai60a. While making these experiments we keep the other parameters

like similarity ratio, the number of threads and the number of multi-starts at

the same degree against the alteration on the value of the number of iterations.

Namely, as we increase the number of iterations from 100 to 50000, the other

parameters remain the same. These experiments are initialised with thirty per-

cent of the similarity ratio and 16 threads. Moreover, we arrange the algorithm

to restart 100 times for each experiment.

55

0.910

0.476
0.415

0.323

0.000 0.000
0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

100 500 1000 5000 10000 50000

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 D
e

v
ia

ti
o

n

(A
P

D
)

Number of Iterations

Figure 4.3: APD Analysis with the Number of Iterations on Tai60a Problem
Instance. APD is the average percentage deviation from the BKS. Execution
with 10000 and 50000 iterations does not provide any deviation.

The computational results of these experiments are presented in Table 4.3 and

in Figure 4.3. In the plot, x-axis represents the number of iterations, while

y-axis represents the average percentage deviation (APD) from the BKS and

it is calculated according to the minimum cost reached when the experiment is

terminated.

Table4.3: APD Analysis with the Number of Iterations on Tai60a Problem
Instance. APD is the average percentage deviation from the best known solution.
The times are given in minutes. Execution with 10000 and 50000 iterations does
not provide any deviation.

Ratio
(%)

of
Threads

of
Iterations

of
Multi-starts

Time
(min)

APD

30 16 100 100 1.097 0.910
30 16 500 100 5.116 0.476
30 16 1000 100 10.873 0.415
30 16 5000 100 53.919 0.323
30 16 10000 100 107.891 0.000
30 16 50000 100 529.432 0.000

56

As a result of these experiments, we de�ne that the most appropriate and opti-

mum number of iterations which makes BLS-OpenMP-QAP algorithm e�ective

is provided with the value of 10000. In spite of the fact that the greater the

number of iterations is, the better the results are, we have preferred to initialise

the algorithm with the value of 10000 iterations by the reason of ensuring the

time e�ciency. That is to say, the most signi�cant thing is to reach the solution

in the least time as possible and it is observed that better solutions can be ob-

tained with the number of 10000 iterations. Therefore, we determine to set the

value of the number of iterations to 10000.

4.3.4 Setting the Number of Multi-Starts

With the aim of increasing the performance and obtaining best results, we make

experiments to �nd the most e�ective number of multi-starts on the problem set,

Tai60a. As we run these tests we keep the other parameters like the similarity

ratio, the number of threads and the number of iterations at the same degree

against the alteration on the number of restarts of the algorithm. Therefore,

as we increase the number of multi-starts from 10 to 500, the other parameters

remain the same. These tests are initialised with 16 threads and the similarity

ratio value of thirty percent and the number of iterations is set to 10000.

Table4.4: APD Analysis with the Number of Multi-starts with Tai60a Problem
Instance. APD is the average percentage deviation from the best known solution.
The times are given in minutes. Execution with 100 multi-starts does not provide
any deviation.

Ratio
(%)

of
Threads

of
Iterations

of
Multi-starts

Time
(min)

APD

30 16 10000 10 10.682 0.573
30 16 10000 20 21.519 0.452
30 16 10000 40 42.942 0.369
30 16 10000 60 64.413 0.036
30 16 10000 80 86.077 0.036
30 16 10000 100 107.891 0.000

57

0.573

0.452

0.369

0.036 0.036
0.000

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

10 20 40 60 80 100

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 D
e

v
ia

ti
o

n

(A
P

D
)

Number of Multistarts

Figure 4.4: APD Analysis with the Number of Multi-starts on Tai60a Problem
Instance. APD is the average percentage deviation from the best known solution.
Execution with 100 multi-starts does not provide any deviation.

The computational results of these experiments are presented in Table 4.4 and

in Figure 4.4. In the plot, x-axis represents the number of multi-starts, whereas

y-axis represents the average percentage deviation (APD) from the BKS and

it is calculated according to the minimum cost reached when the experiment is

�nished.

As a consequence of these experiments, we observe that as the number of multi-

starts increases, better results are obtained. Nevertheless, each restart multiply

the execution time respectively. Therefore, we determine to assign the number of

multi-starts according to the size of the problem. That is to say, we execute BLS-

OpenMP-QAP algorithm in less multi-starts for the smaller problems, whereas

we increase the number of restarts for the greater ones as the algorithm can

reach the optimal solution on the smaller problems sooner than the problems

with greater size.

58

4.4 Speed Up Performance of BLS-OpenMP-QAP Algorithm

After we determine all parameters of BLS-OpenMP-QAP algorithm including,

similarity ratio, the number of threads, the number of iterations and the number

of multi-starts, we measure the speed up performance of BLS-OpenMP-QAP

algorithm. To do so, we make experiments on Tai60a and Tai100a problem

instances. Therefore, we compare BLS-OpenMP-QAP algorithm with CPU im-

plementations counterpart respectively. In these experiments, we pay attention

to keep the execution time until the algorithm is terminated same for each of

the implementations.

4.4.1 Comparison of OpenMP and CPU Versions of the Proposed

Algorithms with Tai60a Problem Instance

In this section, we separate our experiments into four groups according to

the algorithm type including the implementations of CPU, Multi-start CPU,

Multi-start with Similarity Check CPU and Multi-start with Similarity Check

OpenMP. In order to observe the performance di�erence between these imple-

mentations, we make experiments on the same problem set, Tai60a. The ob-

jective of these experiments is to observe the quality of the solutions obtained

from the implementations terminated at the same time.

Initially, we make the experiments for the CPU implementation. In this test, we

start algorithm once and we limit the time to approximately 107 minutes as the

other following tests. In this CPU implementation, we get the worst result as

for the cost of the produced solution. This is because of the fact that we start

the algorithm once and it runs in the excessive iteration number, 3255266, that

is almost 325 times much more than the following tests; however the algorithm

turns into the stagnated situation and cannot escape from this condition in spite

of the perturbation mechanism of the algorithm.

Secondly, we realise the experiments for the multi-start CPU implementation.

In this experiment, we set the number of iterations parameter to 10000 as same

as the following tests and we again limit the time to approximately 107 minutes.

59

In this multi-start CPU implementation, we get the better result as for the

cost of the produced solution than the CPU implementation. That is the result

of escaping from the stagnation status thanks to the restart mechanism of the

algorithm. In this time limit, algorithm is restarted 331 times; hence, it searches

on 331 permutations. We observe that the signi�cant thing is that instead of

increasing the number of iterations, searching on di�erent solutions by multi-

start mechanism is more e�ective as better solutions can be obtained from several

solutions.

As for the multi-start similarity check CPU implementation, we use a log-based

approach for the previously searched permutations of the QAP problem instances

in order not to be explored again. Therefore, we set the similarity ratio to the

value of 30 percent which is determined before according to the previous ex-

periments. Furthermore, we set the number of iterations parameter to 10000 as

same as the other multi-start tests and we again limit the time to approximately

107 minutes. As a consequence, we obtain better result as for the cost of the

produced solution than the multi-start CPU without similarity check implemen-

tation. That is the result of that we do not search the same solution again if it

is explored before thanks to the similarity check mechanism. At the determined

time, the algorithm restarts 347 times; therefore, it explores on 347 candidate

solutions.

Finally, we make experiments for the multi-start similarity check OpenMP im-

plementation of our proposed algorithm, BLS-OpenMP-QAP. This experiment

is initialised with 16 threads, thirty percent of the similarity ratio and the num-

ber of iterations is set to 10000. In addition, we arrange the algorithm to restart

100 times for each experiment. This experiment with these predetermined pa-

rameters lasts 107 minutes. In an attempt to compare the results at the equal

conditions we use this time limit value in previous experiments. Moreover, we

also use other parameter values in this experiment like similarity ratio and the

number of iterations in previous multi-start experiments. The best result is ob-

tained from this experiment. That is because of the fact that we search on 1600

di�erent solutions (16 threads X 100 multi-starts) that is approximately 5 times

more than the others thanks to the initialisations of threads by OpenMP.

60

0.465

0.397

0.165

0.000
0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

CPU Multi-start CPU Multi-start with
Similarity Check

CPU

Multi-start with
Similarity Check

OpenMP

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 D
e

v
ia

ti
o

n

(A
P

D
)

Algorithm Name

Figure 4.5: Comparison of OpenMP and CPU Versions of the Proposed Algo-
rithms on Tai60a Problem Instance. APD is the average percentage deviation
from the best known solution. Implementation of multi-start similarity check
OpenMP does not provide any deviation.

Table4.5: Comparison of OpenMP and CPU Versions of the Proposed Algo-
rithms on Tai60a Problem Instance. APD is the average percentage deviation
from the best known solution. The times are given in minutes. Implementation
of multi-start similarity check OpenMP does not provide any deviation.

Algorithm
Name

Ratio
(%)

of
Threads

of
Iterations

of
Multi-starts

Time
(min)

APD

CPU - 1 3255266 1 107.883 0.465
Multi-start CPU - 1 10000 331 107.884 0.397
Multi-start with
Similarity Check

CPU

30 1 10000 347 108.347 0.165

Multi-start with
Similarity Check

OpenMP

30 16 10000 100 107.891 0.000

61

The computational results of these experiments are presented in Table 4.5 and

in Figure 4.5. In the plot, x-axis represents the type of the algorithm, whereas

y-axis represents the average percentage deviation (APD) from the BKS and

it is calculated according to the minimum cost reached when the experiment is

�nished.

To put in a nutshell, by taking advantages of threads via OpenMP and applying

multi-start mechanism along with using log-based approach for the previously

searched permutations of the QAP problem instances in order not to be explored

again, we obtain outstandingly best results.

4.4.2 Comparison of OpenMP and CPU Versions of the Proposed

Algorithms with Tai100a Problem Instance

As the previous section, we again separate our experiments into four groups ac-

cording to the algorithm type including the implementations of CPU, Multi-start

CPU, Multi-start with Similarity Check CPU and Multi-start with Similarity

Check OpenMP. In order to observe the quality of these implementations, we

make experiments on the same problem set, Tai100a and these executions are

terminated at the same time.

First of all, we make the experiments for the CPU implementation. In this test,

we start algorithm once and we limit the time to approximately 448 minutes

as the following tests. In this CPU implementation, we get the worst result as

for the cost of the produced solution. This is because of the fact that we start

the algorithm once and it runs in the excessive iteration number, 2736285, that

is almost 273 times much more than the following tests; however the algorithm

turns into the stagnated situation and cannot escape from this condition in spite

of the perturbation mechanism of the algorithm.

As for the multi-start CPU implementation, we set the number of iterations

parameter to 10000 as same as the following tests and we again limit the time to

approximately 448 minutes. In this multi-start CPU implementation, we get the

better result as for the cost of the produced solution than the CPU implemen-

62

tation. That is the result of escaping from the stagnation status thanks to the

restart mechanism of the algorithm. In this time limit, algorithm is restarted

287 times; hence, it searches on 287 permutations. We observe that the signif-

icant thing is that instead of increasing the number of iterations, searching on

di�erent solutions by multi-start mechanism is more e�ective as better solutions

can be obtained from several solutions.

As for the multi-start similarity check CPU implementation, we use a log-based

approach for the previously searched permutations of the QAP problem instances

in order not to be explored again. Therefore, we set the similarity ratio to the

value of 30 percent which is determined before according to the previous ex-

periments. Furthermore, we set the number of iterations parameter to 10000 as

same as the other multi-start tests and we again limit the time to approximately

448 minutes. As a consequence, we obtain better result as for the cost of the

produced solution than the multi-start CPU without similarity check implemen-

tation. That is the result of that we do not search the same solution again if it

is explored before thanks to the similarity check mechanism. At the determined

time, the algorithm restarts 278 times; therefore, it explores on 347 candidate

solutions.

In conclusion, we make experiments for the multi-start similarity check OpenMP

implementation of our proposed algorithm, BLS-OpenMP-QAP. This experi-

ment is initialised with 16 threads, thirty percent of the similarity ratio and

the number of iterations is set to 10000. In addition, we arrange the algorithm

to restart 100 times for each experiment. This experiment with these prede-

termined parameters lasts 448 minutes. In order to compare the results at the

equal conditions we use this time limit value in previous experiments. Moreover,

we use other parameter values like similarity ratio and the number of iterations

of this experiment in previous multi-start experiments. The best result is ob-

tained from this experiment. That is because of the fact that we search on 1600

di�erent solutions (16 threads X 100 multi-start) that is approximately 5 times

more than the others thanks to the initialisations of threads by OpenMP.

63

0.732 0.727

0.686

0.617

0.560

0.580

0.600

0.620

0.640

0.660

0.680

0.700

0.720

0.740

0.760

CPU Multi-start CPU Multi-start with
Similarity Check

CPU

Multi-start with
Similarity Check

OpenMP

A
v

e
ra

g
e

 P
e

rc
e

n
ta

g
e

 D
e

v
ia

ti
o

n

(A
P

D
)

Algorithm Name

Figure 4.6: Comparison between OpenMP and CPU versions on Tai100a Prob-
lem Instance. APD is the average percentage deviation from the best known
solution. Implementation of multi-start similarity check OpenMP provides the
minimum deviation among them.

Table4.6: Comparison between OpenMP and CPU versions on Tai100a Problem
Instance. APD is the average percentage deviation from the best known solution.
The times are given in minutes. Implementation of multi-start similarity check
OpenMP provides the minimum deviation among them.

Algorithm
Name

Ratio
(%)

of
Threads

of
Iterations

of
Multi-starts

Time
(min)

APD

CPU - 1 2736285 1 448.517 0.732
Multi-start CPU - 1 10000 287 448.520 0.727
Multi-start with
Similarity Check

CPU

30 1 10000 278 451.170 0.686

Multi-start with
Similarity Check

OpenMP

30 16 10000 100 448.529 0.617

64

The computational results of these experiments are presented in Table 4.6 and

in Figure 4.6. In the plot, x-axis represents the type of the algorithm, whereas

y-axis represents the average percentage deviation (APD) from the BKS and

it is calculated according to the minimum cost reached when the experiment is

�nished.

As a consequence of taking advantages of threads via OpenMP and applying

multi-start mechanism along with using log-based approach for the previously

searched permutations of the QAP problem instances in order not to be explored

again, we obtain outstandingly best results.

4.5 Overhead of Similarity Checking Procedure

Whereas similarity checking mechanism makes a great contribution to �nd the

best solution by using a log-based approach for the previously searched permu-

tations of the QAP problem instances in order not to be explored again, it has a

trade-of as for the execution time for controlling the similarity check constraint.

In order to observe this overhead, we make experiments on the problem set,

Tai60a. As we run these tests we keep all the parameters like the similarity

ratio, the number of threads, the number of iterations and the number of multi-

starts at the same degree. Therefore, these tests are initialised with 16 threads,

the similarity ratio value of thirty percent and 100 times multi-starts and the

number of iterations is set to 10000.

In these experiments, we observe that the time while controlling the similarity

check constraint is approximately 1 minute. Indeed, it corresponds to the % 0.8

of all execution time. However, this time overhead extends as the problem size

gets larger and the number of multi-start increases.

65

4.6 Comparison of State-of-the-art Algorithms with BLS-OpenMP-

QAP

In this section, we compare proposed BLS-OpenMP-QAP algorithm with the

recent state-of-the-art algorithms counterpart in terms of the solution quality

and the computational e�ciency. As a matter of fact they provide good results

by using classical meta-heuristics that is why we choose them to compare with

our BLS-OpenMP-QAP algorithm.

In these experiments for comparison with the state-of-the-art algorithms, 59

problem instances given in the QAP benchmark, QAPLIB, are solved during

the experiments [53]. Most of the state-of-the-art QAP algorithms make use of

QAPLIB in order to evaluate the quality of their algorithms and execute them

on these problem instances. Hence, QAPLIB provides a fair ground in order to

make comparisons with the other algorithms in the literature.

The state-of-the-art algorithms in the literature we compare with our BLS-

OpenMP-QAP algorithm are Multi-Start TS Algorithm JRG-DivTS by James

et al. [12], Iterated Tabu Search (ITS) by Misevicius [61], Self Controlling Tabu

Search (SC-Tabu) by Fescioglu-Unver and Kokar [62], Ant Colony Optimization

GA/Local Search Hybrid ACO/GA/LS by Tseng and Liang [64], GA Hybrid

with Concentric TS Operator GA/C-TS and GA Hybrid with a Strict Descent

Operator GA/SD by Drezner [60], Parallel Hybrid Algorithm (PHA) by Tosun

[71], Memetic search for the QAP (BMA) by Benlic and Hao [67], Great Deluge

and Tabu Search (GDA) by Acan and Unveren [63] are selected to be compared

with BLS-OpenMP-QAP algorithm during our experiments.

The most signi�cant impact on the performance of a heuristic algorithm is to set

the right parameters in order to obtain results e�ciently with the best quality.

Therefore, we make experiments for the parameter settings and we use these

settings while realising our experiments. Table 4.7 presents the parameters used

during the tests.

66

Table4.7: Parameter Settings for the BLS-OpenMP-QAP Algorithm

Problem Instances Parameter Setting

All Similarity Ratio 30%
Type 1 Number of Threads 16

Type 2-4 and Nug Number of Threads 8
All Number of Iterations 10000
All Number of Multi-starts 100

Table4.8: Optimal Solutions Found by the BLS-OpenMP-QAP Algorithm on
Nug Problem Instances. APD is the average percentage deviation from the best
known solution. BPD is the best percentage deviation from the best known
solution. The times are given in seconds. All of the Nug problem instances are
solved exactly.

Instance BKS APD BPD Time(sec.)
nug14 1014 0 0 0.016
nug15 1150 0 0 0.016
nug16a 1610 0 0 0.610
nug16b 1240 0 0 0.015
nug17 1732 0 0 1.093
nug18 1930 0 0 0.687
nug20 2570 0 0 0.046
nug21 2438 0 0 0.484
nug22 3596 0 0 0.015
nug24 3488 0 0 0.046
nug25 3744 0 0 1.640
nug27 5234 0 0 0.016
nug28 5166 0 0 1.031
nug30 6124 0 0 1.156

Tables from 4.8 to 4.12 present the results of our experiments with respect to

the four categories speci�ed by Stützle respectively [25]. Moreover, the best

performing �rst three results are given in bold face.

BLS-OpenMP-QAP algorithm is executed on 59 problem instances of the QAPLIB

benchmark and optimal results are obtained for 57 of the instances. The overall

deviation for the problem instances is obtained as 0.019% on the average. The

results are given with respect to the Best Known Solution (BKS) of the problem

instances in the QAPLIB.

67

T
ab
le
4.
9:

C
om

pa
ri
so
n
of

th
e
B
L
S-
O
pe
nM

P
-Q
A
P
A
lg
or
it
hm

w
it
h
St
at
e-
of
-t
he
-a
rt
A
lg
or
it
hm

s
on

T
yp
e-
1
P
ro
bl
em

In
st
an
ce
s.
A
P
D

is
th
e
av
er
ag
e
pe
rc
en
ta
ge

de
vi
at
io
n
fr
om

th
e
be
st

kn
ow

n
so
lu
ti
on
.
T
he

ti
m
es

ar
e
gi
ve
n
in

m
in
ut
es
.
7
of

th
e
T
yp
e
1
pr
ob
le
m

in
st
an
ce
s
ar
e
so
lv
ed

ex
ac
tl
y
by

B
L
S-
O
pe
nM

P
-Q
A
P
.

B
L
S-
O
pe
nM

P
-Q
A
P

JR
G
-D
iv
T
S

IT
S

SC
-T
ab
u

A
C
O
/G

A
/L

S
G
D
A

B
M
A

P
H
A

C
P
T
S

In
st
an
ce

B
K
S

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

ta
i2
0a

70
34
82

0
0.
09

0
0.
2

0
0.
0

0.
24
6

0.
01

-
-

0
2.
10

0
0.
0

0
0.
37

0
0.
1

ta
i2
5a

11
67
25
6

0
0.
13

0
0.
6

0
0.
1

0.
23
9

0.
03

-
-

0
15
.8
2

0
0.
0

0
0.
55

0
0.
3

ta
i3
0a

18
18
14
6

0
0.
20

0
1.
3

0
0.
2

0.
15
4

0.
07

0.
34
1

1.
4

0.
09
1

20
.2
9

0
0.
0

0
0.
97

0
1.
6

ta
i3
5a

24
22
00
2

0
0.
32

0
4.
4

0
0.
5

0.
28
0

0.
18

0.
48
7

3.
5

0.
15
3

24
.9
9

0
0.
0

0
1.
28

0
2.
3

ta
i4
0a

31
39
37
0

0
32
.1
6

0.
22
2

5.
2

0.
22

1.
3

0.
56
1

0.
20

0.
59
3

13
.1

0.
26
1

27
.7
8

0.
05
9

8.
1

0
10
.6
0

0.
14
8

3.
5

ta
i5
0a

49
38
79
6

0
68
.1
6

0.
72
5

10
.2

0.
41

5.
5

0.
88
9

0.
23

0.
90
1

29
.7

0.
27
6

41
.1
4

0.
13
1

42
.0

0
12
.7
4

0.
44
0

10
.3

ta
i6
0a

72
05
96
2

0
10
7.
89

0.
71
8

25
.7

0.
45

12
.5

0.
94
0

0.
41

1.
06
8

58
.5

0.
44
8

78
.8
6

0.
14
4

67
.5

0
19
.5
8

0.
47
6

26
.4

ta
i8
0a

13
49
91
84

0.
50
4

23
5.
95

0.
75
3

52
.7

0.
36

60
.0

0.
64
8

1.
01

1.
17
8

15
2.
2

0.
83
2

11
1.
34

0.
42
6

65
.8

0.
64
4

39
.9
7

0.
57
0

94
.8

ta
i1
00
a

21
05
24
66

0.
61
7

44
8.
53

0.
82
5

14
2.
1

0.
30

20
0.
0

0.
97
7

1.
99

1.
11
5

33
5.
6

0.
87
4

13
8.
32

0.
40
5

44
.1

0.
53
7

71
.8
9

0.
55
8

26
1.
2

A
ve
ra
ge

0.
12
5

99
.2
7

0.
36
0

26
.9

0.
19

31
.1

0.
54
8

0.
46

0.
81
2

84
.9

0.
32
6

51
.1
8

0.
12
9

25
.3

0.
13
1

17
.5
5

0.
24
4

44
.5

68

T
ab
le
4.
10
:
C
om

pa
ri
so
n
of
th
e
B
L
S-
O
pe
nM

P
-Q
A
P
A
lg
or
it
hm

w
it
h
St
at
e-
of
-t
he
-a
rt
A
lg
or
it
hm

s
on

T
yp
e-
2
P
ro
bl
em

In
st
an
ce
s.
A
P
D

is
th
e
av
er
ag
e
pe
rc
en
ta
ge

de
vi
at
io
n
fr
om

th
e
be
st

kn
ow

n
so
lu
ti
on
.
T
he

ti
m
es

ar
e
gi
ve
n
in

m
in
ut
es
.
A
ll
of

th
e
T
yp
e
2
pr
ob
le
m

in
st
an
ce
s
ar
e
so
lv
ed

ex
ac
tl
y
by

B
L
S-
O
pe
nM

P
-Q
A
P
.

B
L
S-
O
pe
nM

P
-Q
A
P

JR
G
-D
iv
T
S

SC
-T
ab
u

A
C
O
/G

A
/L

S
G
A
/S
D

G
A
/C

-T
S

G
D
A

B
M
A

P
H
A

C
P
T
S

In
st
an
ce

B
K
S

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

sk
o4
2

15
81
2

0
0.
37

0
4.
0

0.
01
6

0.
14

0
0.
7

0.
01
4

0.
16

0
1.
2

0
2.
24

0
0.
00
2

0
1.
60

0
5.
3

sk
o4
9

23
38
6

0
0.
56

0.
00
8

9.
6

0.
08
5

0.
22

0.
05
6

7.
6

0.
10
7

0.
28

0.
00
9

2.
1

0.
00
5

3.
85

0
0.
01

0
4.
03

0
11
.4

sk
o5
6

34
45
8

0
0.
81

0.
00
2

13
.2

0.
06
9

0.
34

0.
01
2

9.
1

0.
05
4

0.
42

0.
00
1

3.
2

0.
00
1

14
.7
2

0
0.
02

0
16
.2
4

0
21
.0

sk
o6
4

48
49
8

0
1.
20

0
22
.0

0.
07
4

0.
51

0.
00
4

17
.4

0.
05
1

0.
73

0
5.
9

0
29
.3
9

0
0.
03

0
23
.1
0

0
42
.9

sk
o7
2

66
25
6

0
1.
82

0.
00
6

38
.0

0.
15
9

0.
73

0.
01
8

70
.8

0.
11
2

0.
93

0.
01
4

8.
4

0.
00
7

37
.9
9

0
3.
50

0
33
.6
3

0
69
.6

sk
o8
1

90
99
8

0
2.
40

0.
01
6

56
.4

0.
07
6

1.
05

0.
02
5

11
2.
3

0.
08
7

1.
44

0.
01
4

13
.3

0.
01
9

57
.1
4

0
4.
30

0
39
.8
7

0
12
1.
4

sk
o9
0

11
55
34

0
3.
25

0.
02
6

89
.6

0.
13
4

1.
44

0.
04
2

92
.1

0.
13
9

2.
31

0.
01
1

22
.4

0.
03
1

93
.8
3

0
15
.3
0

0
40
.5
3

0
19
3.
7

sk
o1
00
a

15
20
02

0
29
.8
0

0.
02
7

12
9.
2

0.
09
4

1.
99

0.
02
1

17
1.
0

0.
11
4

3.
42

0.
01
8

33
.6

0.
02
9

15
3.
17

0
22
.3
0

0
41
.7
2

0
30
4.
8

sk
o1
00
b

15
38
90

0
8.
51

0.
00
8

10
6.
6

0.
05
9

1.
99

0.
01
2

19
2.
4

0.
09
6

3.
47

0.
01
1

34
.1

0.
01
5

16
4.
27

0
6.
50

0
42
.3
2

0
30
9.
6

sk
o1
00
c

14
78
62

0
4.
28

0.
00
6

12
6.
7

0.
03
9

1.
99

0.
00
5

22
0.
6

0.
07
5

3.
22

0.
00
3

33
.8

0.
01
3

15
4.
51

0
12
.0
0

0
42
.1
9

0
31
6.
1

sk
o1
00
d

14
95
76

0
12
.8
7

0.
02
7

12
3.
5

0.
09
1

1.
99

0.
02
9

20
9.
2

0.
13
7

3.
45

0.
04
9

33
.9

0.
01
7

14
8.
86

0.
00
6

20
.9
0

0
41
.9
1

0
30
9.
8

sk
o1
00
e

14
91
50

0
4.
33

0.
00
9

10
8.
8

0.
03
7

1.
99

0.
00
2

20
8.
1

0.
07
1

3.
31

0.
00
2

30
.7

0.
01
6

14
6.
15

0
11
.9
0

0
42
.4
8

0
30
9.
1

sk
o1
00
f

14
90
36

0
17
.1
1

0.
02
3

11
0.
3

0.
12
2

1.
99

0.
03
4

21
0.
9

0.
14
8

3.
55

0.
03
2

35
.7

0.
01
3

15
3.
38

0
23
.0
0

0
41
.9
8

0.
00
3

31
0.
3

A
ve
ra
ge

0
6.
72

0.
01
2

72
.1

0.
08
1

1.
26

0.
02
0

11
7.
1

0.
09
3

2.
05

0.
01
3

19
.9

0.
01
3

89
.1
9

0
9.
21

0
31
.6
6

0
17
8.
8

69

T
ab
le
4.
11
:
C
om

pa
ri
so
n
of
th
e
B
L
S-
O
pe
nM

P
-Q
A
P
A
lg
or
it
hm

w
it
h
St
at
e-
of
-t
he
-a
rt
A
lg
or
it
hm

s
on

T
yp
e-
3
P
ro
bl
em

In
st
an
ce
s.
A
P
D

is
th
e
av
er
ag
e
pe
rc
en
ta
ge

de
vi
at
io
n
fr
om

th
e
be
st

kn
ow

n
so
lu
ti
on
.
T
he

ti
m
es

ar
e
gi
ve
n
in

m
in
ut
es
.
A
ll
of

th
e
T
yp
e
3
pr
ob
le
m

in
st
an
ce
s
ar
e
so
lv
ed

ex
ac
tl
y
by

B
L
S-
O
pe
nM

P
-Q
A
P
.

B
L
S-
O
pe
nM

P
-Q
A
P

A
C
O
/G

A
/L

S
IT
S

SC
-T
A
B
U

G
D
A

B
M
A

P
H
A

C
P
T
S

In
st
an
ce

B
K
S

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

kr
a3
0a

88
90
0

0
0.
00
37

0
0.
12
08

0.
01

0.
02
5

0.
71
4

0.
04
8

0
0.
94
7

0
0.
04
0

-
-

-
-

kr
a3
0b

91
42
0

0
0.
03
30

0
0.
67
03

0
0.
02
5

0.
17
8

0.
04
8

0
1.
39
2

0
0.
02
0

-
-

-
-

kr
a3
2

88
70
0

0
0.
01
22

-
-

-
-

-
-

0
0.
62
6

0
0.
01
8

-
-

-
-

st
e3
6a

95
26

0
0.
19
90

0
0.
62
47

0.
04

0.
09
3

0.
76
1

0.
08
5

0
2.
17
3

0
0.
08
2

0
1.
37

-
-

st
e3
6b

15
85
2

0
0.
11
70

0
0.
10
62

0
0.
09
2

0.
76
1

0.
08
5

0
0.
40
6

0
0.
02
2

-
-

-
-

st
e3
6c

82
39
11
0

0
0.
18
21

0
0.
45
47

0
0.
09
2

0.
76
1

0.
08
5

0
1.
39
5

0
0.
04
3

0
1.
37

0
2.
5

es
c3
2b

16
8

0
0.
00
04

0
0.
00
70

0
0.
03
2

-
-

0
0.
59
8

0
0.
00
2

-
-

-
-

es
c3
2c

64
2

0
0.
00
03

0
0.
00
05

0
0.
03
5

-
-

0
0.
00
5

0
0.
00
2

-
-

-
-

es
c3
2d

20
0

0
0.
00
03

0
0.
00
28

0
0.
03
3

-
-

0
0.
02
6

0
0.
00
2

-
-

-
-

es
c3
2e

2
0

0.
00
03

0
0.
00
03

0
0.
03
2

-
-

0
0.
00
4

0
0.
00
2

-
-

-
-

es
c3
2g

6
0

0.
00
02

0
0.
00
03

0
0.
03
2

-
-

0
0.
00
5

0
0.
00
0

-
-

-
-

es
c3
2h

43
8

0
0.
00
24

0
0.
00
48

0
0.
03
5

-
-

0
0.
00
5

0
0.
00
2

-
-

-
-

es
c6
4a

11
6

0
0.
00
12

0
0.
00
43

0
0.
18
3

1.
20
7

0.
00
1

0
0.
03
8

0
0.
00
3

-
-

-
-

es
c1
28

64
0

0.
00
52

0
0.
03
78

0.
01

1.
00
0

14
.2
71

0.
12
4

0
2.
13
5

0
0.
02
2

-
-

-
-

A
ve
ra
ge

0
0.
03
98

0
0.
15
65

0
0.
13
1

2.
66
5

0.
06
8

0
0.
69
7

0
0.
01
8

0
1.
37

0
2.
5

70

T
ab
le
4.
12
:
C
om

pa
ri
so
n
of
th
e
B
L
S-
O
pe
nM

P
-Q
A
P
A
lg
or
it
hm

w
it
h
St
at
e-
of
-t
he
-a
rt
A
lg
or
it
hm

s
on

T
yp
e-
4
P
ro
bl
em

In
st
an
ce
s.
A
P
D

is
th
e
av
er
ag
e
pe
rc
en
ta
ge

de
vi
at
io
n
fr
om

th
e
be
st

kn
ow

n
so
lu
ti
on
.
T
he

ti
m
es

ar
e
gi
ve
n
in

m
in
ut
es
.
A
ll
of

th
e
T
yp
e
4
pr
ob
le
m

in
st
an
ce
s
ar
e
so
lv
ed

ex
ac
tl
y
by

B
L
S-
O
pe
nM

P
-Q
A
P
.

B
L
S-
O
pe
nM

P
-Q
A
P

JR
G
-D
iv
T
S

IT
S

A
C
O
/G

A
/L

S
SC

-T
A
B
U

G
D
A

B
M
A

P
H
A

C
P
T
S

In
st
an
ce

B
K
S

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

A
P
D

ti
m
e

ta
i2
0b

12
24
55
31
9

0
0.
07
2

0
0.
2

0
0.
01

-
-

0.
33
5

0.
00
3

0
0.
07
4

0
0.
00
0

0
0.
37

0
0.
1

ta
i2
5b

34
43
55
64
6

0
0.
02
3

0
0.
5

0
0.
02

-
-

0.
70
2

0.
01
0

0
0.
32
7

0
0.
00
0

0
0.
57

0
0.
4

ta
i3
0b

63
71
17
11
3

0
0.
22
1

0
1.
3

0.
01
0

0.
04

0
0.
3

0.
31
3

0.
03
5

0
1.
14
8

0
0.
00
0

0
0.
81

0
1.
2

ta
i3
5b

28
33
15
44
5

0
0.
29
5

0
2.
4

0.
02
0

0.
08

0
0.
3

-
-

0
6.
38
7

0
0.
00
0

0
1.
11

0
2.
4

ta
i4
0b

63
72
50
94
8

0
0.
30
3

0
3.
2

0.
01
0

0.
21

0
0.
6

0.
21
9

0.
09
2

0
4.
87
7

0
0.
00
3

0
1.
57

0
4.
5

ta
i5
0b

45
88
21
51
7

0
0.
70
7

0
8.
8

0.
02
0

0.
55

0
2.
9

0.
28
1

0.
23
5

0.
00
5

10
.2
49

0
1.
20
0

0
5.
82

0
13
.8

ta
i6
0b

60
82
15
05
4

0
18
.6
22

0
17
.1

0.
04
0

1.
07

0
2.
8

0.
88
6

0.
41
5

0
33
.6
39

0
5.
20
0

0
9.
49

0
30
.4

ta
i8
0b

81
84
15
04
3

0
21
8.
05
3

0.
00
6

58
.2

0.
23
0

3.
00

0
60
.3

0.
79
8

1.
00
4

0.
02
5

0.
00
5

0
31
.3
00

0
27
.7
0

0
11
0.
9

ta
i1
00
b

11
85
99
61
37

0
16
0.
79
7

0.
05
6

11
8.
9

0.
14
0

6.
67

0.
01
0

69
8.
9

0.
55
3

1.
98
8

0.
02
8

72
.6
01

0
13
.6
00

0
42
.5
0

0.
00
1

24
1.
0

A
ve
ra
ge

0
44
.3
44

0.
00
7

23
.4

0.
05
2

1.
29

0.
00
1

10
9.
4

0.
51
1

0.
47
3

0.
00
6

14
.3
67

0
5.
70
0

0
9.
99

0
45
.0

71

The overall deviation percentage of the BLS-OpenMP-QAP algorithm for the

problems classi�ed as Type 1, 2, 3 and 4 by Stützle is 0.025%. With this

result, BLS-OpenMP-QAP algorithm is among the best three algorithms that

are presented in this study. That is to say, we obtain an outstandingly high

performance result and this also proves the robustness of the BLS-OpenMP-

QAP algorithm when compared with the other state-of-the-art algorithms in

the literature. As a result, we observe that the BLS-OpenMP-QAP algorithm

is capable of handling larger number of heuristics and can improve its solution

quality by this way.

As for Type 1, BLS-OpenMP-QAP is the best algorithm with respect to the

performance of the other algorithms. It has only 0.125% deviation from the

BKS; whereas, other two algorithms (BMA and PHA) have 0.129% and 0.131%

respectively. The deviations of BLS-OpenMP-QAP for the well-known problem

instances tai60a and tai80a are among the best three performing algorithms by

the 0.0% and 0.504% deviations respectively. As for the remaining problems,

Type 2, 3 and 4, BLS-OpenMP-QAP is among the best performing algorithms

in the literature having 0.0% deviation with respect to the BKS results reported

in the QAPLIB. In these problems, the algorithms BMA, PHA and CPTS also

perform 0.0% deviation.

As a consequence of these experiments, we also verify the fact that multi-starting

a heuristic from a di�erent exploration point is an e�cient technique. Indeed,

it has been used for most of the state-of-the-art algorithms [11] [12]. In our

implementation, it helps BLS-OpenMP-QAP algorithm escape from stucking

into local optima by restarting the exploration with a new candidate solution

by smart beginning mechanism. As a matter of fact, we can observe its positive

e�ect on the solution quality when the number of multi-starts is increased for

tai60a problem instance in Figure 4.4.

Another signi�cant aspect about the heuristics is the speed-up and scalability

obtained by the proposed algorithm. BLS-OpenMP-QAP algorithm takes ad-

vantages of multi-core architectures. That is to say, it makes use of the threads

by the help of OpenMP library. Therefore, the workload is shared among these

72

threads so that high performance is obtained. Moreover, the total execution

time of the algorithm is reduced proportionally with the predetermined number

of threads. The more number of threads is initialised, the more the execution

time decreases with regards to the number of threads. The performance of the

algorithm can be further improved by initialising larger number of threads. This

will reduce the execution time and give a higher chance to improve the number

of multi-starts and search the landscape of the QAP more e�ectively.

Consequently, the greatest contribution of BLS-OpenMP-QAP algorithm is pro-

vided by multi-starts with similarity check mechanism. In this way, we improve

the candidate solutions by using a log-based similarity checking approach for the

previously searched permutations of the QAP problem instances. In addition to

this, BLS-OpenMP-QAP makes use of the parallel computation paradigm of the

contemporary multi-core architectures using OpenMP programming paradigm.

Thanks to the parallel computation of the BLS-OpenMP-QAP, we obtain the

results in less time and cost e�ective way.

4.7 CPU Utilisation

While we execute our experiments, we also follow the changes in CPU utiliza-

tion in the meantime. The result from this observation demonstrates that the

CPU utilization raises by increasing the number of threads working simultane-

ously. As a matter of fact, CPU utilization values reach its maximum value -

100% when the threads are all in execution process and work in parallel. In

other words, all processes of BLS-OpenMP-QAP algorithm apart from generat-

ing candidate solutions, improving local optima, determining jump magnitude

and perturbation, are executed concurrently on the threads via OpenMP.

The graph in Figure 4.7 follows a particular trend in the whole experiments.

That is to say, CPU utilisation raises when the parallel computation is initialised

and the number of threads working simultaneously is increased.

73

Figure 4.7: CPU Utilization

74

CHAPTER 5

CONCLUSION

QAP is one of the most challenging NP-Hard combinatorial optimization prob-

lems with its several real life applications. The paradigm of parallel computing

is used to speed up the scienti�c, engineering, consumer, and similar computa-

tion intensive applications. Our proposed algorithm named BLS-OpenMP-QAP

(Breakout Local Search Algorithm with Open Multi-Processing for Quadratic

Assignment Problem) takes advantage of parallel programming by OpenMP.

This provides a more e�cient use of the available computing power for the

search. Furthermore, the BLS-OpenMP-QAP algorithm has a similarity check

mechanism as a diversi�cation technique by making use of the adapted Leven-

shtein Distance (LD). Therefore, we ensure not to search again on the previously

explored permutations of the QAP problem instances.

Although there are several sophisticated techniques, the time for obtaining good

quality results diversi�es from several minutes for small or medium size problem

sets, to a few hours for the larger ones. When the results are compared with the

existing state-of-the-art heuristics, the proposed BLS-OpenMP-QAP algorithm

can be considered as one of the best algorithms in the literature in terms of

the computation time and the solution quality. The results showed that parallel

computation with OpenMP has an outstanding performance due to speeding-

up the �tness evaluations as many as the number of the processors/threads. In

terms of the quality of the solutions, BLS-OpenMP-QAP is capable of delivering

good quality solutions by reaching often optimal or the best known solutions.

The BLS-OpenMP-QAP algorithm is experimented on 59 problem instances of

75

the QAP library benchmark and shown to be able to solve 57 of the instances

exactly and the overall deviation for the algorithm is obtained as 0.019% on the

average. As a matter of fact, this rewarding performance is derived from the si-

multaneous exploration of the di�erent search area which is selected intelligently

based on the similarity checking mechanism provided by the adapted LD.

The similarity checking mechanism makes a great contribution to �nd the best

solution by using a log-based approach for the previously searched permutations

of the QAP problem instances in order not to be explored again. However,

it has a trade-of as for the execution time for controlling the similarity check

threshold. As a future work, we intend to build the hash map from the previously

explored permutations. Therefore, the explored solutions will be stored in this

hash map data structure which is very e�cient in storing and retrieving the data.

Furthermore, we plan to execute BLS-OpenMP-QAP algorithm on hundreds of

processors with several multi-starts in order to obtain higher quality solutions

in shorter time.

76

REFERENCES

[1] R. Battiti and G. Tecchiolli, �The Reactive Tabu Search,� INFORMS Jour-

nal on Computing, vol. 6, no. 2, pp. 126�140, 1994.

[2] U. Benlic and J.-k. Hao, �Breakout local search for the quadratic assignment
problem,� Applied Mathematics and Computation, vol. 219, no. 9, pp. 4800�
4815, 2013.

[3] M. R. Wilhelm and T. L. Ward, �Solving Quadratic Assignment Problems
by `Simulated Annealing',� IIE Transactions, vol. 19, no. 1, pp. 107�119,
1987.

[4] R. Burkard, S. Karisch, and F. Rendl, �QAPLIB - a Quadratic Assignment
Problem Library,� European Journal of Operational Research, vol. 55, no. 1,
pp. 115�119, 1991.

[5] T. Koopmans and M. Beckmann, �Assignment problems and the location
of economic activities,� Econometrica: Journal of the Econometric . . . ,
vol. 25, no. 1, pp. 53�76, 1957.

[6] T. U. of Wisconsin, �Neos.� Website, 2016. http://www.neos-guide.org/
content/quadratic-assignment-problem.

[7] T. Dokeroglu and A. Cosar, �A novel multistart hyper-heuristic algorithm
on the grid for the quadratic assignment problem,� Engineering Applications
of Arti�cial Intelligence, vol. 52, pp. 10�25, 2016.

[8] D. T. Connolly, �An improved annealing scheme for the QAP,� European
Journal of Operational Research, vol. 46, no. 1, pp. 93�100, 1990.

[9] J.-C. Wang, �A multistart simulated annealing algorithm for the quadratic
assignment problem,� in Innovations in Bio-Inspired Computing and Ap-

plications (IBICA), 2012 Third International Conference on, pp. 19�23,
IEEE, 2012.

[10] C. Rego, T. James, and F. Glover, �An ejection chain algorithm for the
quadratic assignment problem,� Netw., vol. 56, pp. 188�206, Oct. 2010.

[11] T. James, C. Rego, and F. Glover, �A cooperative parallel tabu search
algorithm for the quadratic assignment problem,� European Journal of Op-

erational Research, vol. 195, no. 3, pp. 810�826, 2009.

77

http://www.neos-guide.org/content/quadratic-assignment-problem
http://www.neos-guide.org/content/quadratic-assignment-problem

[12] T. James, C. Rego, and F. Glover, �Multistart tabu search and diversi�ca-
tion strategies for the quadratic assignment problem,� IEEE Transactions

on Systems, Man, and Cybernetics Part A:Systems and Humans, vol. 39,
no. 3, pp. 579�596, 2009.

[13] A. Misevicius, �A tabu search algorithm for the quadratic assignment prob-
lem,� Computational Optimization and Applications, vol. 30, no. 1, pp. 95�
111, 2005.

[14] J. Skorin-Kapov, �Tabu Search Applied to the Quadratic Assignment Prob-
lem,� ORSA Journal on Computing, vol. 2, no. 1, pp. 33�45, 1990.

[15] E. Taillard, �Robust tabu search for the quadratic assignment problem,�
Parallel computing, vol. 17, pp. 443�455, 1991.

[16] N. Ç. Demirel and M. D. Toksar�, �Optimization of the quadratic assign-
ment problem using an ant colony algorithm,� Applied Mathematics and

Computation, vol. 183, no. 1, pp. 427�435, 2006.

[17] L. M. Gambardella, É. Taillard, and M. Dorigo, �Ant Colonies for the
Quadratic Assignment Problem,� The Journal of the Operational Research
Society, vol. 50, no. 2, p. 167, 1999.

[18] T. Stützle and M. Dorigo, �New ideas in optimization,� ch. ACO Algorithms
for the Quadratic Assignment Problem, pp. 33�50, Maidenhead, UK, Eng-
land: McGraw-Hill Ltd., UK, 1999.

[19] E.-G. Talbi, O. Roux, C. Fonlupt, and D. Robillard, �Parallel Ant Colonies
for the quadratic assignment problem,� Future Generation Computer Sys-

tems, vol. 17, no. 4, pp. 441�449, 2001.

[20] Z. Drezner, �A New Genetic Algorithm for the Quadratic Assignment Prob-
lem,� INFORMS Journal on Computing, vol. 15, no. 3, pp. 320�330, 2003.

[21] M. Inostroza-Ponta, R. Berretta, and P. Moscato, �Qapgrid: A two level
qap-based approach for large-scale data analysis and visualization,� PloS

one, vol. 6, no. 1, p. e14468, 2011.

[22] J. Carrizo, O. Tinetti, P. Moscato, and L. Plata, �A computational ecology
for the quadratic assignment problem,� in in Proceedings of the 21st Meeting

on Informatics and Operations Research, (Buenos Aires), SADIO, 1992.

[23] H. Meneses and M. Inostroza-Ponta, �Evaluating memory schemas in a
memetic algorithm for the quadratic assignment problem,� in Chilean Com-

puter Science Society (SCCC), 2011 30th International Conference of the,
pp. 14�18, Nov 2011.

78

[24] V.-D. C. V.-D. Cung, T. Mautor, P. Michelon, and a. Tavares, �A scatter
search based approach for the quadratic assignment\nproblem,� Proceed-

ings of 1997 IEEE International Conference on Evolutionary Computation

(ICEC '97), pp. 165�169, 1997.

[25] T. Stützle, �Iterated local search for the quadratic assignment problem,�
European Journal of Operational Research, no. C, pp. 2005�2008, 2006.

[26] L. Steinberg, �The Backboard Wiring Problem: A Placement Algorithm,�
1SIAM Review, vol. 22, no. 4, pp. 37�50, 1961.

[27] H. A. Eiselt and G. Laporte, �A combinatorial optimization problem arising
in dartboard design,� Journal of the Operational Research Society, pp. 113�
118, 1991.

[28] M. Dell'Amico, J. C. D. Díaz, M. Iori, and R. Montanari, �The single-�nger
keyboard layout problem,� Computers and Operations Research, vol. 36,
no. 11, pp. 3002�3012, 2009.

[29] M. S. Bazaraa and A. N. Elshafei, �An exact branch-and-bound procedure
for the quadratic-assignment problem,� Naval Research Logistics Quarterly,
vol. 26, pp. 109�121, 1979.

[30] J. W. Dickey and J. W. Hopkins, �Campus building arrangement using
topaz,� Transportation Research, vol. 6, pp. 59�68, 1972.

[31] M. Inostroza-Ponta, R. Berretta, A. Mendes, and P. Moscato, Arti�cial
Intelligence in Theory and Practice: IFIP 19th World Computer Congress,

TC 12: IFIP AI 2006 Stream, August 21�24, 2006, Santiago, Chile, ch. An
automatic graph layout procedure to visualize correlated data, pp. 179�188.
Boston, MA: Springer US, 2006.

[32] S. A. De Carvalho and S. Rahmann, �Microarray layout as quadratic as-
signment problem.,� in German Conference on Bioinformatics, pp. 11�20,
2006.

[33] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. Hahn, and
T. Querido, �A survey for the quadratic assignment problem,� European

Journal of Operational Research, vol. 176, no. 2, pp. 657�690, 2007.

[34] S. Sahni and T. Gonzalez, �P-Complete Approximation Problems,� Journal
of the ACM, vol. 23, no. 3, pp. 555�565, 1976.

[35] M. Lstib·rek, J. Stejskal, A. Misevicius, J. Korecky, and Y. A. El-Kassaby,
�Expansion of the minimum-inbreeding seed orchard design to operational
scale,� Tree genetics & genomes, vol. 11, no. 1, pp. 1�8, 2015.

79

[36] D. F. Rossin, M. C. Springer, and B. D. Klein, �New complexity mea-
sures for the facility layout problem: an empirical study using traditional
and neural network analysis,� Computers & Industrial Engineering, vol. 36,
no. 3, pp. 585�602, 1999.

[37] G. F. P�ster, In Search of Clusters (2Nd Ed.). Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1998.

[38] T. Dokeroglu, �Hybrid teaching-learning-based optimization algorithms for
the Quadratic Assignment Problem,� Computers and Industrial Engineer-

ing, vol. 85, pp. 86�101, 2015.

[39] D. R. He�ey, �THE QUADRATIC ASSIGNMENT PROBLEM: A NOTE,�
Econometrica, vol. 40, no. 6, pp. 1155�1163, 1972.

[40] D. R. He�ey, �Decomposition of the Koopmans-Beckmann Problem,� Re-
gional Science and Urban Economics, vol. 10, no. 4, pp. 571�580, 1980.

[41] A. M. Geo�rion and G. W. Graves, �Scheduling Parallel Production Lines
with Changeover Costs: Practical Application of a Quadratic Assignment/
LP Approach,� Operations Research, vol. 24, no. 4, pp. 595�610, 1976.

[42] J. Krarup and P. M. Pruzan, �Computer-aided layout design,� in Mathe-

matical programming in use, pp. 75�94, Springer, 1978.

[43] L. Hubert, Assignment methods in combinational data analysis, vol. 73.
CRC Press, 1986.

[44] J. H. Forsberg, R. M. Delaney, Q. Zhao, G. Harakas, and R. Chandran,
�Analyzing lanthanide-induced shifts in the nmr spectra of lanthanide (iii)
complexes derived from 1, 4, 7, 10-tetrakis (n, n-diethylacetamido)-1, 4, 7,
10-tetraazacyclododecane,� Inorganic Chemistry, vol. 34, no. 14, pp. 3705�
3715, 1995.

[45] M. J. Brusco and S. Stahl, �Using quadratic assignment methods to generate
initial permutations for least-squares unidimensional scaling of symmetric
proximity matrices,� Journal of Classi�cation, vol. 17, no. 2, pp. 197�223,
2000.

[46] J. Bos, �Zoning in forest management: a quadratic assignment problem
solved by simulated annealing,� Journal of Environmental Management,
vol. 37, pp. 127�145, 1993.

[47] S. Benjaafar, �Modeling and Analysis of Congestion in the Design of Facility
Layouts,� Management Science, vol. 48, no. 5, pp. 679�704, 2002.

[48] C. S. Rabak and J. S. Sichman, �Using A-Teams to optimize automatic
insertion of electronic components,� Advanced Engineering Informatics,
vol. 17, no. 2, pp. 95�106, 2003.

80

[49] G. Miranda, H. P. L. Luna, G. R. Mateus, and R. P. M. Ferreira, �A perfor-
mance guarantee heuristic for electronic components placement problems
including thermal e�ects,� Computers and Operations Research, vol. 32,
no. 11, pp. 2937�2957, 2005.

[50] E. Duman and I. Or, �The quadratic assignment problem in the context
of the printed circuit board assembly process,� Computers and Operations

Research, vol. 34, no. 1, pp. 163�179, 2007.

[51] G. Ben-David and D. Malah, �Bounds on the performance of vector-
quantizers under channel errors,� IEEE Transactions on Information The-

ory, vol. 51, no. 6, pp. 2227�2235, 2005.

[52] K. Anstreicher, �Recent advances in the solution of quadratic assignment
problems,� Math. Program, Ser. B, vol. vol, pp. 97pp27�42, 2003.

[53] R. E. Burkard, S. E. Karisch, and F. Rendl, �Qaplib�a quadratic assignment
problem library,� Journal of Global optimization, vol. 10, no. 4, pp. 391�403,
1997.

[54] Y. Li and P. M. Pardalos, �Generating quadratic assignment test problems
with known optimal permutations,� Computational Optimization and Ap-

plications, vol. 1, no. 2, pp. 163�184, 1992.

[55] S. K. R.E. BURKARD, E. ÇELA and F. RENDL, �Qaplib.� Website, 2016.
http://anjos.mgi.polymtl.ca/qaplib/.

[56] G. Palubeckis, �Generating hard test instances with known optimal solution
for the rectilinear quadratic assignment problem,� J. of Global Optimiza-

tion, vol. 15, pp. 127�156, Sept. 1999.

[57] G. Palubeckis, �An algorithm for construction of test cases for the quadratic
assignment problem,� Informatica, pp. 281�296, 2000.

[58] Z. Drezner, P. M. Hahn, and É. D. Taillard, �Recent Advances for the
Quadratica Assignment Problem with Sepcial Emphasis on Instances that
are Di�cult for Meta-Heuristic Methods,� Annals of Operation Research,
vol. 139, no. 1, pp. 65�94, 2005.

[59] T. Stützle, S. Fernandas, T. Stutzle, and S. Fernandes, �New bench-
mark instances for the QAP and the experimental analysis of algorithms,�
in Evolutionary Computation in Combinatorial Optimization, Proceedings,
vol. 3004, pp. 199�209, 2004.

[60] Z. Drezner, �The extended concentric tabu for the quadratic assignment
problem,� European Journal of Operational Research, vol. 160, no. 2, pp. 416
� 422, 2005. Decision Support Systems in the Internet Age.

81

http://anjos.mgi.polymtl.ca/qaplib/

[61] A. Misevicius, �An implementation of the iterated tabu search algorithm for
the quadratic assignment problem,� OR Spectrum, vol. 34, no. 3, pp. 665�
690, 2012.

[62] N. Fescioglu-Unver and M. M. Kokar, �Self controlling tabu search algorithm
for the quadratic assignment problem,� Computers & Industrial Engineer-

ing, vol. 60, no. 2, pp. 310 � 319, 2011.

[63] A. Acan and A. Ünveren, �A great deluge and tabu search hybrid with
two-stage memory support for quadratic assignment problem,� Applied Soft
Computing, vol. 36, pp. 185 � 203, 2015.

[64] L.-Y. Tseng and S.-C. Liang, �A hybrid metaheuristic for the quadratic as-
signment problem,� Computational Optimization and Applications, vol. 34,
no. 1, pp. 85�113, 2006.

[65] U. Benlic and J. K. Hao, �Breakout Local Search for maximum clique prob-
lems,� Computers and Operations Research, vol. 40, no. 1, pp. 192�206,
2013.

[66] U. Benlic and J. K. Hao, �Breakout local search for the max-cutproblem,�
Engineering Applications of Arti�cial Intelligence, vol. 26, no. 3, pp. 1162�
1173, 2013.

[67] U. Benlic and J. K. Hao, �Memetic search for the quadratic assignment
problem,� Expert Systems with Applications, vol. 42, no. 1, pp. 584�595,
2015.

[68] S. Tsutsui and N. Fujimoto, �ACO with tabu search on a GPU for solving
QAPs using move-cost adjusted thread assignment,� pp. 1547�1554, 2011.

[69] M. Harris, R. Berretta, M. Inostroza-Ponta, and P. Moscato, �A memetic
algorithm for the quadratic assignment problem with parallel local search,�
in Evolutionary Computation (CEC), 2015 IEEE Congress on, pp. 838�845,
May 2015.

[70] M. Czapi«ski, �An e�ective Parallel Multistart Tabu Search for Quadratic
Assignment Problem on CUDA platform,� Journal of Parallel and Dis-

tributed Computing, vol. 73, no. 11, pp. 1461�1468, 2013.

[71] U. Tosun, �On the performance of parallel hybrid algorithms for the solution
of the quadratic assignment problem,� Engineering Applications of Arti�cial
Intelligence, vol. 39, pp. 267 � 278, 2015.

[72] E. S. Ristad and P. N. Yianilos, �Learning string-edit distance,� IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 20,
pp. 522�532, May 1998.

82

[73] W. J. Heeringa, Measuring dialect pronunciation di�erences using Leven-

shtein distance. PhD thesis, Citeseer, 2004.

[74] C. Gooskens and W. Heeringa, �Perceptive evaluation of levenshtein dialect
distance measurements using norwegian dialect data,� Language Variation

and Change, vol. 16, pp. 189�207, 10 2004.

[75] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg, �Adap-
tive name matching in information integration,� IEEE Intelligent Systems,
vol. 18, pp. 16�23, Sept. 2003.

[76] Z. Su, B. R. Ahn, K. Y. Eom, M. K. Kang, J. P. Kim, and M. K. Kim,
�Plagiarism detection using the levenshtein distance and smith-waterman
algorithm,� in Innovative Computing Information and Control, 2008. ICI-

CIC '08. 3rd International Conference on, pp. 569�569, June 2008.

[77] S. Schimke, C. Vielhauer, and J. Dittmann, �Using adapted levenshtein
distance for on-line signature authentication,� in Pattern Recognition, 2004.

ICPR 2004. Proceedings of the 17th International Conference on, vol. 2,
pp. 931�934 Vol.2, Aug 2004.

[78] J. SCHEPENS, T. DIJKSTRA, and F. GROOTJEN, �Distributions of cog-
nates in europe as based on levenshtein distance,� Bilingualism: Language
and Cognition, vol. 15, pp. 157�166, 1 2012.

[79] Wikipedia, �Levenshtein distance � wikipedia, the free encyclopedia,�
2016. [Online; accessed 22-June-2016].

83

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Quadratic Assignment Problem (QAP)
	Switching to the Parallel Computing
	Open Multi-Processing (OpenMP)
	A Simple OpenMP Example

	RELATED WORK
	State-of-art Heuristic Adaptations
	Recent Studies to Solve the QAP
	Optimization with Parallel Programming for Solving the QAP

	PROPOSED ALGORITHM
	Generating Candidate Solutions
	Intelligent Initialisation by Considering Distance and Flow Matrices
	Intelligent Initialisation by looking at Previous Experimented Candidates

	Improving Local Optima
	Determining the Jump Magnitude
	Diversifying Search Area by Perturbation Strategy
	Tabu Search Perturbation
	Recency Based Perturbation
	Random Perturbation

	Update Mechanism for the New Solutions

	EXPERIMENTAL RESULTS
	Experimental Environment and Setup
	Problem Instances
	Setting the Parameters of BLS-OpenMP-QAP Algorithm
	Setting the Similarity Ratios of the New Exploration Areas
	Setting the Number of Threads
	Setting the Number of Iterations for the BLS
	Setting the Number of Multi-Starts

	Speed Up Performance of BLS-OpenMP-QAP Algorithm
	Comparison of OpenMP and CPU Versions of the Proposed Algorithms with Tai60a Problem Instance
	Comparison of OpenMP and CPU Versions of the Proposed Algorithms with Tai100a Problem Instance

	Overhead of Similarity Checking Procedure
	Comparison of State-of-the-art Algorithms with BLS-OpenMP-QAP
	CPU Utilisation

	CONCLUSION
	REFERENCES

