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ABSTRACT

OFF-LINE NOMINAL PATH GENERATION OF 6-DOF
ROBOTIC MANIPULATOR FOR EDGE FINISHING AND
INSPECTION PROCESSES

Nemer, Mahmoud
Ms., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Ilhan E. KONUKSEVEN

June 2016, 157 pages

This thesis deals with the development of a Computer Aided Robotic Machining
Process Planning package. The main aim of the package is to generate an efficient,
collision-free, nominal tool path needed for edge finishing and inspection processes by

utilizing a 6-DoF robotic arm.

Automation of edge deburring and chamfering consists of two main parts. First
part is generating the overall nominal tool path. While the second part focuses on
controlling the material removal. The overall nominal tool path planning involves
analyzing the geometry of the workpiece, determining and designing an efficient

collision-free tool path



and generating the tool path data for the robot and finally verifying it. The generated tool

path can also be used for different robotic machining processes.

One of the most popular PC-based CAD software, SolidWorks, is chosen as the
user interface platform. A software package programmed in the application programming
interface (API) of SolidWorks generates tool path data for the robot. The ABB IRB2000
robot is chosen for executing the generated tool path. The programming language used
for developing this software is Visual Basic. Ultimately, such path is to be utilized as the
nominal tool path by any control strategy present in the literature for a complete automatic

edge finishing process.

Keywords: Offline programming, CAD-based tools, Edge deburring, Edge

scanning, Path generation.
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Oz

SON ISLEM TASLAMASI VE YUZEY MUAYENESI
AMACIYLA, 6 SERBESTLIK DERECELI ROBOTIK
MANIPULATOR KULLANARAK CEVRIMDISI
YORUNGE CIKARIMI

Nemer, Mahmoud
Ms., Department of Mechanical Engineering

Supervisor: Assoc. Prof. ilhan E. KONUKSEVEN

Haziran 2016, 157 sayfa

Bu tezde Bilgisayar Destekli Robotik Isleme Prosesi Planlama pakteti
irdelenmistir. Bu paketin ana amaci, kenar islemesi ve muayenede kullanilan, verimli, ve
carpisma riski olmayan, takim ucunun izledigi nominal yolu, 6 serbestlik derceli bir robot

ile gelistirmektir.

Malzemenin kenarindaki c¢apaklarin alinmasinda ve pah kirma islemlerinin
otomasyonu iki bélimden olusmaktadir. ilki, biitiin islem igin bir nominal yol

gelistirmektir. Ikinci béliimde ise temel amag malzeme kaldirma miktarini kontrol

Vii



etmektir. Aletin takibi igin gelistirilen nominal yolu planlamak igin birka¢ islemin
gergeklesmesi lazim: parcanin geometrisinin analizi, carpismayr verimli bir sekilde
onlemek, robotun kullanmasi i¢in aletin yol verilerinin olusturulmasi ve son olarak

islemin dogrulanmasi.

Arayiz platform olarak bilgisayar tabanli CAD yazilimlarinin en popiilerlerinden
olan SolidWorks kullanilmistir. Robotun yol verilerini tiretmek i¢in SolidWork’iin API’y1
ile bir yazilim paketi gelistirilmistir. Bu yolu takip etmesi i¢in ise ABB IRB2000 robotu
secilmistir. Programlama dili olarak Visual Basic kullanilmistir. Sonug olarak bu yol
tamamen otomatik bir kenar isleme prosesi i¢in aletin takip etmesi gereken nominal yol

olarak kullanilabilir.

Anahtar kelimeler: Cevrimdisi programlama, CAD tabanli araglar, Capak alma,

Capak tarama, Yorunge Uretimi.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Deburring processes have been identified as the bottleneck in many machine industries.
The burr removal methods can induce dimensioning errors to the workpiece if improperly
executed. Burrs are caused by many machining process including milling, drilling,
turning, and broaching. Edge finishing like chamfering is important for several reasons,
sharp edges may pose personal hazardous, since they can cause injuries to worker or user.
Part mating may be more difficult due to clearance restriction caused by burrs. High stress
concentration at sharp corners can cause product failures, reduce tool life during hard

finishing. Presently, manual finishing accounts for 12% of the total labor cost [1].

Chamfering is performed at the final stage of manufacturing, where parts have their
highest added value, quality control is absolute necessity. Despite this requirement, even
in today’s most fully automated factories it is still a common sight to see dozens of worker
manually chamfer produced parts. Edge finishing is typically performed manually using
hand held power tools with brushes, abrasive tips, or rotary files or by manual files and
knives. The techniques employed with these tools are not well documented and inspection
of these chamfered edges is not quantitatively defined. Typically the worker runs the
finger over the edge to inspect the work. Improving both the efficiency and quality of

chamfering is a major concern. Chamfering is labor intensive and can represents a



significant portion of the expense of manufacturing machined parts. In addition,
chamfering is frequently a dirty, noisy, and undesirable job and high turnover in terms of
personnel. Training personnel in proper chamfering technique coupled with high turnover
rate adds to the overall expense of the chamfering. Variation in skill level of chamfering
personnel causes variation in the quality of the part. Errors encountered in the chamfering
operation which causes the part to be scrapped are costly, as the part is near the end of its
manufacturing cycle. Consequently, quality control and part inspection are key processes
in the lifecycle of a product. These processes are able to verify product quality; and can
provide essential feedback for enhancing other processes. No change is made to product
during inspection, in order to increase its value. Time and resources are spent on these
processes, without a gain in profit, making the reduction of the time spent on these

processes an attractive concept to manufacturer.

An amazing transformation of edge finishing has occurred over the past 50 years trying to
mimic adaptive nature of human intelligence in order to replace manual deburring.
Anthropomorphous robots are the best state of the art compromise between performance
and flexibility for automated deburring tasks [2]. They provide larger work volumes,
safety and efficiency at a lower cost than CNC machines. Also they provide a greater

reachability and working capabilities on the complex paths of the deburring tasks.

1.2 Literature Survey

Two main topics were considered in the literature survey, namely, path generation of the

deburring process and path generation of laser scanners.

Starting with the first paper, Valente and Oliveira [3] define three steps for creating and
controlling a tool path that leads to the desired deburring results. The first step mentioned

was the offline programming, in this stage the user manually generates a nominal path



with the use of the 3D CAD model that the tool center point (TCP) will be following. The
second step called contact evaluation module. In this stage the contact between the tool
and the workpiece during the execution of the nominal path is evaluated using a modified
version of Malkin’s model for grinding, which determines the grinding power needed to
insure efficient deburring. The final step is called the active path control. This stage
monitors and control the robot path during the actual deburring process in order to
maintain the power signal as close as possible to its target level. This control strategy is
based on two signals, Acoustic Emission and Power. This signal is compared with two
limits, a lower one (T1) and a higher limit (T2), and hence the nominal path is modified

by keeping the signal between T1 and T2, see the figure below.

Figure 1-1: Strategy for tool path control.

In their paper, Murphy et al. [4] offer a technique to automate robot programming. The
technique uses CAD geometry data to automatically generate robot deburring path and
then corrects it using a force sensor attach to the tool head. Using a graphics interface, an
operator specifies the edges on a part to be deburred, the deburring tools to be used, the
speeds, feed rates and contact force desired. After that, a robot path planner generates an

initial deburring path for the robot. The initial path generation is done in two steps. First

3



step is edge organization. The deburring data developed by the graphic interface is an
unordered list of edges. Edges with the same deburring tool and roughly the same
deburring parameters are grouped in deburr-paths. The path planner then divides each
deburr-path into one or more loops (a loop is a set of edges that can be deburred without
lifting the tool from the part). The second step is pose generation. Once edges are
organized, the path planner creates a sequence of poses which define the trajectory for
each deburr-path (the poses contain position and orientation information in the part’s
coordinate frame) during deburring the robot moves between these poses in straight-line
motion. There are two types of poses in a deburr-path: Vertex pose, at which the tool
makes contact with the part, and go-to pose, used for approaching and depart trajectories.

After that these position are adjusted using a force sensor to compensate for offset errors.

Leali et al. [2] discusses an off-line programing (OLP) approach to overcome the
disadvantage of the point-to-point teaching method. The main idea is to use a 3D CAD
model of the workpiece and define the teaching points on it. The first step concern the
analyses of the industrial problem and the workpiece geometry and material, aiming at
clarifying the robotic tasks. The main robot operations are clarified, addressing finishing
tools, manufacturing parameters. The next macro-phase is the CAD-based OLP. The
model must contain all the information needed to simulate the robot work-cycle. In a
CAD-based OLP two types of software can be used. The first is based on general purpose
software platforms. They create the work path from the mathematical description of the
CAD features. Such “Paths from the Math” approach is very intuitive and quick but not
manufacturing oriented. The second one represents an extension of the typical CAM
simulation, where the robot is typically regarded as a 5 + 1 axes tool machine. After robot
programming all the designed 3D modular models and subprogram modules are
assembled in a virtual workcell layout. A workcell virtual prototype is then available to
simulate and virtually optimize the process performances and generate the robot code. A
workecell calibration process is finally required to define the exact position of the reference

frames.



A teaching method using teaching support devices was developed by Sugita et al [5] for a
deburring robot. The main idea is to teach the robot using devices other than the robot
itself, so that there will not be a down time and the programming can be done off-line.
Two kinds of teaching support devices were developed to prepare the tool path. One is a
three-wire type teaching support device. The structure of the device is shown in Figure 1-
2 a). This is a device that can measure a position in 3D coordinates, and it is composed of
a position measuring unit and a posture measuring unit. These units are connected with a
wire to measure the distance between them, and the device can measure the position and
direction vector of the dummy tool on the tip of the posture measuring unit in the device’s
coordinates. Figure 1-2 a) shows the structure of the second teaching support device. This
device is composed of two arms and a wrist, and has six axes of freedom. Optical encoders
are adopted as angle detectors for each link in order to reduce the influence of noise and
temperature fluctuation to the accuracy. The detecting resolution of each link is 17 bit.

This method can solve the wire-damping problem in positioning the device.

Positibn measuring unit

First axis

Top view

Wire reel Fifth axis

Back view

Third axis

’ Sixth axis Second arm
Wire (Stainless, ¢ 0.5mm) Side view

Balaneing

Fourth axis spring

Fourth axis (=Rotary angle around wire) First arm

! ¥ Qec i d
: ) Second axis f

Sixth axis =

A%!« 1

Fi . [

. . st axis | H

Posture measuring unit f;,l.:'i:‘:@
a) b)

Figure 1-2: a) Three-wire type teaching support device
b) Structure of arm-type teaching support device.



El-Bestawi et al. [6], presented an approach that focused more on the off-line planning
part. In particular, a “hypothesis and test” method approach was adopted, that is, random
discrete poses of the robotic hand were generated between the start and goal positions
while checking for collisions in these random poses. Afterwards, a smoothening algorithm
is applied to the collision-free poses to yield a continues path. Nonetheless, it was pointed
out that a presence of a user is required, hence not fully automated, and that this procedure

takes about 3 hours on a normally sized workpiece.

Asakawa et al. [7] offers an approach to automate the nominal path needed for deburring
a hole on free-curved surface on the basis of CAD data. The 3D curve of the edge is
equally divided by points P, depending on a chamfering condition. A normal vector Npn
is defined at the point Py, Fn is the vector directing from Py to Py, respectively. An outer
product of Npn and Fn corresponds to the tool axis vector D, see Figure 1-3. Doing this for
all the P points then transforming these information into robot control commands results
in a nominal path to be followed by the end-effector. The paper also adds a touch sensor
in order to control the initially generated path in real-time to make sure the end result of
the chamfering process is as desired.



Figure 1-3: Generation of chamfering points.

Zhang and his team [8] proposed a method for on-line path generation for robot deburring
of cast aluminum wheels. The automated robot path generation system is developed to
automatically generate a 6 DOF robot path based on the vision, force and position sensor
fusion. Before generating a path to deburr a wheel, the tool path is manually marked on
the surface of the wheel. The robot tool is controlled to continuously follow the center of
the marked tool path on the surface while the tool tip is kept continuous contact with the
surface using a force control strategy. Thus the z coordinate of the tool tip in the tool frame
can be directly obtained. From the images captured by the camera, the x and y coordinates
and the roll orientation can be controlled using the visual input. The other two orientations
are determined by finding the local surface normal based on the (X, y, z) coordinates in a
local region which are obtained by moving the tool in a zigzag pattern. The position and
orientation are recorded and a path is generated that follows the feature and is
perpendicular to the local surface. The generated path is then smoothed to obtain a final
tool path. The robot is then automatically programmed to perform a task.



Lee et al. [9] worked on enhancing the teaching and playback method of path generation
for deburring process. By compressing and smoothing the initial path using Douglas-
Peucker (DP) algorithm the path becomes less noisy and vibrations that may arise due to
the physical limitations of the robotic manipulator’s joints are damped. Moreover, due to
the unexpected shape of the burrs, this research presents a method that protects the tool
from damage by reducing the tool velocity based on the measured reaction force, which
was measured and utilized at the tool with a force sensor, and it offered information on
the estimated size of the burrs. That is, when the burr was big, the measured force was
also large. The size of the tangential force at the tool had to be controlled so that the tool
would not be damaged. The larger the burrs were, the more slowly the manipulator had to
move in the tangential direction to maintain a relatively constant tangential force so as to
tear off the plotted burrs; and when it encountered a burr, the slower speed of the endpoint
along the surface implied a constant volume of material that had to be removed for every
unit of time, which made the force constant in the tangential direction. The tangential force
was found to have been linearly related to the tool velocity, so that even though the
material removal rate decreased, the operator had to slow down the tool velocity to

overcome this problem.

Song et al. [10] proposes a hybrid off-line path generation method for minimizing the error
offset that may arise due to imperfections, Furthermore, impedance control is used to
avoid applying excessive contact force in real-time. Tool path generation based on
matching between the tool paths from the CAD model to teaching point is proposed to
minimize the position and orientation errors of the workpiece. The basic tool path for
deburring can be generated by the CAM software with a CAD model by extracting the G-
code and converting its commands into the initial tool path. Using direct teaching based
on impedance control, some contact points between the tool and the actual workpiece are
manually selected as the teaching points, which are the minimum number of points to
feature the shape of the workpieces. Based on matching the tool path extracted from the
CAD model to the teaching points, the transformation matrix reflecting the position and
orientation errors of the workpiece can be achieved. Then, the tool path can be modified



to minimize the position and orientation errors. Therefore, the proposed method can take
the advantages of both the teaching method and the CAD/CAM approach.

A paper written by Ziliani et al. [11] deals with the implementation of a mechatronic
methodology for the robotic deburring of planar workpieces with an unknown shape
performed by an industrial manipulator. The approach is based on the use of a hybrid
force/velocity control law and on a correlated suitable design of the deburring tool by
utilizing a contour tracking method that aims to control the normal force and the tangential
velocity of the robot probe along the normal and tangential directions on the contacting

point, respectively.

Princely and Selvaraj [12] developed a teaching-less robot system for deburring planar
workpieces having burrs on the edges using image processing system. This system does
not require the contour shape data from the CAD profile or by manual entry of the data by
the robot operator. In this work a vision sensory system is used to capture the image of
the workpiece. This image of the workpiece is then processed to acquire the edges to be
deburred by segmentation of the edges into straight lines. The robot language program for
each workpiece is generated automatically from the workpiece shape data and finishing
condition data. The main advantage of this method is that it provides the orientation,
position, and shape of the workpiece on the deburring workstation in a short time,
overcoming the offset errors that may arise from mounting the workpiece on pallets and/or

working tables.

For laser scanning related topic, no paper that utilizes a point laser scanner discussed the
generation of the scanning path itself for piece inspection. [13] and [14] show an example
of such papers where the main concern is the algorithm used for scanning and organizing
the collected data from the scanner itself. On the other hand, line laser scanners are widely
used for freeform surface inspection. Xi et al. [15] proposed path planning method that

utilizes the CAD model of the considered workpiece. By determining the surface profile,
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the method considers how to set the field of view of the scanner in order to achieve a
maximum coverage. Son et al. [16] developed an automated laser scan planning system
for the multi-patched freeform surfaces. The scan plan includes scan directions, scan
regions and the corresponding scan paths. Morozov and his team are developing a custom
MATLAB toolbox in an ongoing project [17]. Their goal is to achieve an automated path
generation system for non-destructive tests. However, none of these research conceder the

objective of scanning the edges of a given workpiece.

1.3 Thesis Motivation and Objective

Going through the literature of the automatic edge finishing one can notice that the major
concern is directed towards the real-time path planning of the end-effector of the robot
while performing the action of deburring. Less attention is given for the initial (nominal)
path or motion of the robot, which is done before the actual finishing process.
Furthermore, the motion needed for scanning the edges of a part shares many features with
that of the edge finishing motion, making it possible to develop one algorithm capable of
generating both kind of motions.

Hereby, the main objective of this study is to utilize a 6-DoF industrial manipulator and
generate a nominal collision-free path for a given workpiece from its CAD model. This
path is then used for either scanning or finishing the wanted edges on that workpiece.
However, if the path is generated for edge finishing processes then a real-time control
strategy has to be applied on the generated path in order to achieve the desired end results

on the workpiece.

It is necessary to point out that this study aims to proof the concept of generating an off-
line path for an automatic edge scanning/finishing. On the other hand, this does not mean
that the offered solution is the absolute optimal one. There are other algorithms for both

10



collision-free path generation and solving the Traveler Salesman Problem (TSP) that can
be applied to this problem. Nonetheless, the proposed method in this thesis significantly
reduces the complexity of the problem. Yet it offers an efficient overall solution. With one
disadvantage that it might overlook some edges, if found unreachable by the robot

manipulator.

ABB IRB2000 model is assumed throughout the thesis as the 6-DoF manipulator.
SolidWorks 2014 is used as the CAD software. A software developed in the API
environment of SolidWorks and written in visual basic programming language serves as
the main program to perform the main goal of the study. Finally, the generated path is
converted into motion commands and sent to the ABB IRB2000 by an independent

software that is developed in C++ language.

1.4 Thesis Outline

In this thesis, the main components of the development of an off-line path generation

system are introduced and how they are constituted is described.

Chapter 2 includes basic concepts of robot kinematics of ABB IRB2000. Forward and
inverse positional kinematic analyses are derived. Implementations of these analyses to

the computer program is also discussed.

Chapter 3 explains the path planning procedure of the tip point of the robotic arm.

Collision detection test is also discussed in this chapter.

Chapter 4 describes the developed programs covering all parts of the software except for
those explained in the previous chapters.

11



Chapter 5 discusses the outcome of experimental tests to verify the working procedure of

the study.

Chapter 6 concludes the thesis by summarizing the work done and discussing possible

future work
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CHAPTER 2

KINEMATIC ANALYSES

Kinematics is the science of motion. ABB IRB2000 is considered as a series of links
connected by joints. Joints of robots have one degrees of freedom. The user/programmer
is interested in the position and orientation (pose) of the end-effector. However, the robot
is controlled by the joint actuators and actuators controls the joints in terms of angles.
There are two main parts of these analyses, forward and inverse kinematics. In the
kinematic analyses, the translational and rotational relations between adjacent links must
be described. Hartenberg and Denavit proposed a matrix method for this purpose. First
HD convention parameters will be expressed and position analyses will be done

accordingly.

2.1 Hartenberg-Denavit (HD) Convention

A systematic technique for establishing the displacement matrix for each two adjacent
links of a mechanism was proposed by Hartenberg and Denavit in 1955. The same

convention will be used in this investigation [18].
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The HD convention is mainly implemented in robot manipulators, which consist of an
open kinematic chain in which each joint contains one degree of freedom and the joint is
either revolute or prismatic. The HD convention is implemented through the following
steps:

1. Number the links and joints, starting at the base. The stationary base is denoted as
link 0 and the end effector is link m, as demonstrated in Figure 2-1. Link n moves

in respect to link n-1 around (for revolute) or along (for prismatic) joint i.

2. Establish links’ coordinate system for each of the joints.

3. Define the joint parameters, which are the four geometric quantities [In+1, On+1,

an+1, D n+1.

Figure 2-1 Schematic of the Denavit-Hartenberg convention parameters of a link.
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Using these parameters, the orientation matrix C™~™ and the relative position of link n

with respect to link n-1 is given by (2.1) and (2.2), respectively:

C(n—l,n) — eﬁ3 Sneﬁlan

- _ —>(TL—1)
Tno1n = dpli; +a,

Where,

According to the robot’s links and distance definitions in Figure 2-2, the HD parameters

0
ny

0
cos O
sin @

a

n;
—nll if
0

0 ~
—sing|, e®2® =
cos @

are as shown in table 2-1:

|

cos6 0
0 1
—sing O

o

cos @
sin @
0

(2.1)

(22)

—sing 0
cosd O
0 1

|

Table 2-1: Denavit-Hartenberg parameters of ABB IRB2000 manipulator.
Link a; [mm] a; d; [mm] 0;
1 0 a, = —m/2 d, =750 01
2 a, = 710 0 0 9,
3 az =125 as; =m/2 0 03
4 0 a, =-—m/2 d, =850 0,
5 0 as = /2 0 05
6 0 0 dg = 100 06
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Figure 2-2: Reference frames of ABB IRB2000 Manipulator.

The orientation matrices between each two consecutive links can be found using (2.1) as:

con — eﬁ391e_ﬁ15 (2.3)
C(12) = oliz0; (2.4)
023) = olizbs o015 (2.5)
C(3r4) = eﬁ394e_ﬁlg (26)
E@5) — olafsolag 2.7)
C5.6) — olizb6

C =e (2.8)
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The location of each link’s origin with respect to the previous link’s origin is calculated

as follows:

fo,l(o) = dyuz (2.9)
F1, M = aefu; (2.10)
f,;® = a3eﬁ393eﬁ1§u_1 (2.11)
1:3,4(3) = dsuz (2.12)
Fos™® =0 (2.13)
P56 = delz (2.14)

2.2 Position Analyses

2.2.1 Forward Position Analysis

The position and orientation of the end-effector is determined using joint angles. This is
named as forward position analysis. This analysis is done symbolically. Found position
and orientation elements are used in other kinematic analyses. In robotic applications,
generally inverse kinematic analyses are used, because, generally the pose (position &
orientation) of end-effector is known values but joint angles are unknown values. The

orientation can be found first, because, part of the position is found using orientation.

Orientation of the end-effector is found by multiplying all rotation matrices, because, the
lengths of the links and offsets cannot affect the orientation. The orientation matrix is then:
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C06) — cODEA2C@ICBHTHES(E(GS)

C(0,6) — (eﬁ3 04 e—ﬁ1g ) (eﬁg 92) (eﬁ3 63 eﬁ1%) (eﬁg 04 e—ﬁ1g) (eﬁ1%) (eﬁg 96)
— (eﬁ3 91) (e_ﬁlg eﬁg (92 +63)eﬁ1g) (eﬁg 94) (e_ﬁlgeﬁ:g 95 eﬁl%) (eﬁg 06)

= (eﬁs 91) (eﬁz 023 ) (eﬁ3 94) (eﬁz 95) (eﬁs 96)

Then,

C(O,G) — eﬁ391 eﬁ2923 eﬁ394 eﬁ295 eﬁ396 (215)

IO SRS -
Where, 8,5 = 6, + 65. Also recall that, e™"*ze"fe"12 = li2f

Using (2.2), the equation of the tip point position relative to the base is:

Toe = To1 T 112 T 1237134+ 145+ 156

7= I:0’6(0) — 1’0,1(0) + 6(0,1)171'2(1) + 6(0,2)1:2’3(2) + C(°'3)f3,4(3) + C(°'4)f4,5(4‘)

MGCORINO)

Substituting from (2.3)-(2.14),

7 =d Uz + eB01e202q,u; — eMs01eM2023q, 1y + eUsO1eM20234, 15 +

els010U2023 03041205 ¢ 7 (2.16)
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2.2.2 Inverse Position Analysis

Inverse position analysis is to find joint angles from given pose of the end-effector. First

we must determine rotation & translation matrices with given position and orientation.

After the matrices are formed, using the detailed expressions of the elements, we can find
the joint variables of the robot. The elements in the position matrix are independent, but
in rotation matrix, only 3 of 9 elements are independent. This means, there are 6

independent equation for 6 unknown joint variables.

The first thing to do is to convert tip point position to wrist point position. This can be

done by subtracting 75 ¢ from 7 ¢:

w=7—d,COU; = d,uz + eT:P1el2020, 7] — eTs01eM2023q, 77 4 eMs01¢U2023(, 5

Letw* =w —duz = eﬁ361(eﬁ2‘92 au; — e%2%23q,u; + 2023 d4,u_3) (2.17)

0, can be found by Pre-multiplying (2.17) by u_zte‘ﬁ391, as explained below:
First, pre-multiply (2.17) by e~Us®1:

e—u391W* — eU292 azu_l — eu2923 azu_l + eu2923 d4u_3 (2.18)

Next, post-multiply by (2.18) by ;"

—t 1,0, — —t; g — 5 . _
U, e Byt = w, = 1, (e“zezazul — eU2%2:304,77 + e“2923d4u3) =0
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On the other hand,

~ cosf; sing; O Wy wy cos 01 + w, sin 6,
e W01 = [—sin 6, cosb, 0] [ w; ] = [Wz cos 8; — wj sin 91]
0 0 1 W3 - d3 W3 - d3

Then, w, cos8; —w; sinf; =0

Consequently,
0, = atan2(oyw,, oyw;), where oy = £1 (2.19)

In this thesis a; will always be taken as +1. The reason is that the parts to be processed

will be positioned in the global coordinate system such that 8, e [-90°,90°].
Now 6, can be found from (2.18)

e WOy = eW20%2q,u; — e%2923q,5u; + eM2923d, U3

cos 6, sin 6,3 cos 0,5
= az [ 0 ] - a3 [ 0 + d4 O ]
—sin 6, cos 053 —sin 0,3

So, the first and third components of e~%:01{p* are:

w; cos 81 + w, sin6; = a, cos 8, —a; sin 0,3 + d, cos 0,3 (2.20)

w3 —d; = —a, sin 6, +a; cos 0,3 + d, sin 6,3 (2.21)
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Multiply both (2.20), (2.21) and add them:

(w; cos 6; +w, sin6;)? + (w3 — d,)?
= a3+ a3 + d3 + 2a,d,(cos 6, sin O3 —sin 6, cos 6,3)

— 2a,az(cos 8, cos B,3 + sin B, sin 0,3) (2.22)

Utilizing the trigonometric identities, cosa cosf + sinasinf = cos(a — ) and

sina cos § + cos asin f = sin(a + ), (2.22) can be simplified into:

(w; cos 6, + w, sin6;)? + (w; — d,)?

= a3 + a3 + d3 + 2a,d, sin ; — 2a,a; cos O, (2.23)

Dividing (2.23) by 2a,/a3 + dZ and rearranging,

(wy cos 0, + w, sinf;)? + (wy —dy)?> —a% — a3 —d3

2a,+/a% +di

dy

- 2a,+/a3 + dj

sin 63 — cos 65 (2.24)

as
2a,/a% +d3

a . a
Let cosy = —=—=and siny = - ———
2a, /a§+dﬁ 2a, ,a§+di

Then (2.24) can be rewritten as:

(wq cosB; + w, sin8,)? + (w3 —d)? — a2 — a% — d?

2a,+/a% + d;

Sin(93 + y) =

So,
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w; cos 8, +w, sin6;)% + (W, —d;)% —a? —a% —d?
6, = sin"1 (( 1 1 2 D*+ (wz —dy) 2 —a;3 4)_)/ (2.25)

2a,+/a3 + dj

as dy

Where, y = atan, [ — ,
ZaZ\/a§+dﬁ 2a2\/a§+d§

Note that (2.25) gives two possible solutions for 65; however, since only an upper arm
configuration is needed throughout the motion the solution that gives 65 in the second or
third quadrant is taken. That is, 85 € [90°,270°].

Finding can be done by going back to (2.20) and (2.21). Rewriting them in matrix format,
a, + d, sin0; — a3 cos 05 d4 cos 03 + az sin 63 ] [cos 02]
d4 cos 03 + az sin 05 —a, — d, sin 83 + a3 cos 03] [sin 6,

_ [W1 cos 8, + w, sin 6,
B ws —dy

[cos 92]
sin 0,
_ [az + d4sinB3 — ag cos 03 d4 cos 03 + az sin 63 ]_1 wy €cos 61 + w; sin 01]
B d4 cos 05 + a3 sin 05 —a, — d,sin 83 + a3 cos ;3 wz —dy
_ A [—az —d, sin 03 + az cos 63 —d, cos 83 — a3 sin O3 ] wy cos 81 + w, sin 91]
- _d4, Ccos 03 - a3 Sin 93 az + d4, Sin 03 - a3 Ccos 93 W3 - dl
-1
Where, A =

(ay+dy4 sin 03—a5 cos 03)2+(d4 cos O5+az sin 03)2

Notice that the denominator of A can never be zero.
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Then,

cos 8,
_ (az +d,sin 03 — az cos 03)(wy cos 01 + w; sin6;) + (d, cos 05 + az sin03)(wz — dy)
- (a, + d4 sinf; — a3 cos 03)? + (d, cos 63 + a3 sin 63)?

sin6,
_ (d4cos b3 + azsinb3)(w; cos 0; + w,sin6,) + (a; + dy sinf3 — az cos 03)(wz — dy)
B (a, + d4 sinf; — a3 cos 03)% + (d, cos 65 + a5 sin 65)?

S0, 6, can be found as 8, = atan,(sin6,, cos 6, ) (2.26)

The remaining three joint angles will be found from the orientation of the end-effector. At
this point 6,,0, and 85 are known; hence, the following operation can be performed on the

orientation matrix C(%-):

C0,6) — oliz0; oU30;3 U304 U205 U306

* *
€11 C12 (13

Let C* = e U2023 Ws010(06) = oUsbaplabselals — |3, 5, €33

* *
C31 (32 C33

To find 65 pre-multiply C* by u_3t and post-multiply by u3:

—tA

—_— —t q Bt 5 — —t J—
Us C*U3 = (U3 eu364)eu265(eu3HGU3) = Uj euZeSU3 = COS 95

Then, 65 = atanz(US,M — cos? g, cos 95) where g5 = +1 (2.27)
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Note that a5 points to a wrist flip ambiguity, meaning that the physical configuration of
the end-effector in both cases are the same. Hence, g5 has no effect on the physical
orientation of the end-effector. For the sake of completeness, it is to be taken as +1 in this

work.

Similarly, 6 can be found as follows:

—ta— _ (—t § i Tale—\ _ —t 0 Tafe— :
u; C'u; = (u3 e“394)e“295(e“396u1) =g e85 = —sin O cos O = ¢y

— Ul A — —t 3 4 4 —_ —t g 4 —_ . .
U C'ug = (ug es%)el205 (esben;) = ug eM2%5els%u; = sin 65 sin 6 = ¢,

So, 6 = atan,(os5c3,, —05c31) ,sinfs # 0 (2.28)

Same procedure to find 6,:

—tA

— _ (—t § i o= _ =t Taly Tyl _ s
u;, C'u; = (ul e“3‘94)euz‘95 (e“396u3) =1 e"3%eM2057; = sin @5 cos O, = ¢},

—tA

e —t 4 It g —_ —t 3 g —_ . .
U, C'uz = (g eUs%4)el20 (elsbeuz) =y eUs0+el2%ug = sin O3 sin 6, = ¢35

S0, 65 = atan,(05¢53,05¢73) ,sinfs # 0 (2.29)

In case sin 65 = 0 this means 6; = 0 or + m. However 6 cannot be +m due to physical

constraints. Therefore, one scenario is possible, where C* becomes:

C* = eﬁ394eﬁ20eﬁ396 = eﬁ394—eﬁ396 = eﬁ3(94+96) (2_30)
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(2.30) means that at this singularity it is not possible to find 6, and 6, separately, but only
their sum. Fortunately, this will not affect the collision check test, as will be further

explained in the next chapter. Nonetheless, for sin6; = 0, 6, + 64 are found as shown

below:
R - cos(0, +65) —sin(0,+65) O €11 Ci2 Ci3
C =eB00) = |sin@@, + 0,) cos(B,+65) 0|=|cs1 €32 €33
0 0 1 €31 €3z C33
Then, 6, + 85 = atan,(c;4,¢141) (2.31)
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CHAPTER 3

PATH GENERATION

This chapter is the heart of the thesis. Here, the overall path of the end-effector is going
to be generated in order to be later executed by the robotic manipulator. Starting with the
preparation stage, the edges needed to be scanned or deburred are selected. Next, for each
selected edge the corresponding needed motion of the end-effector in order to process that
specific edge is generated. Such motions will be referred to as processing motions. Then,
all possible combination of motions that connect separated processing motions are
calculated and generated. Such motions will be referred to as non-processing motions.
After that, a search algorithm is utilized to select a subset of the non-processing motions
that yield an efficient connected path along with the processing motions. Lastly, this

overall path will be translated into motion commands and sent to ABB IRB2000
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3.1 Preparation Stage

This section discusses the parameters that the user need to input to the program. These
parameters will serve as the foundation or basis that the software will use to generate the

overall motion of the robot.

3.1.1 Setting the Global Coordinate System

The user is expected to define a datum reference frame. The frame is to be an orthogonal,
right-handed and isoscaled “equally scaled in the coordinate axes” coordinate system. All
the paths, edges and points will be expressed in this coordinate system throughout the
study. Such reference coordinate system can be easily defined using the reference
geometry tool provided by the software, which can be reached from “Features/Reference

Geometry/Reference Coordinate System” as shown in Figure 3-1. Note that these defined

coordinates corresponds to a given position on the working space.

~

2| imetc

Figure 3-1: Defining the location and orientation of the part with respect to the global coordinate system.
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The necessary transformations can be performed using the reference frame (RF) to

correctly position the workpiece with respect to the global coordinates of the robot.

Viewing RF from the global coordinates as a surface represented by its xy-plane with a
normal parallel to z-axis, the following reasoning can be followed to easily create the

needed rotation matrix.

First, replace the x-axis components of RF in the first column, which result in rotating the
axis to the global x-axis. Then, to make the x’y’-plane lie on the global xy-plane, the unit
vector perpendicular to the x’y’-plane is to be oriented towards the global z-axis. This
means that the components of z’-axis should be placed in the third column of the matrix.
Finally, in order to assure that all axes are perpendicular to each other the third axis is the
result of the cross product of z’-axis and x’-axis “in the mentioned order”, resulting in the
y’-axis to be placed in the second column of the rotation matrix. This procedure is
illustrated in the following formulae:

x' = x] i+ x5f + x5k (3.1)

Y =yit+ysf +yik (32)

z' =z 1+ z)] + z}k (3.3)
X1 17

R=|x ¥ 2 (3.4
X3 Y3 Z3

Where x’, y’ and z’ are the axes of RF viewed from the global coordinates and R is the

rotation matrix.
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Such rotation matrix R can be converted or represented in three basic rotations. Here these
rotations are taken about the three global axes in the sequence z-y-x. Note that such
sequence is arbitrarily chosen and other sequences can be used to end up with the same
overall rotation. Therefore, the multiplication of the rotation matrices will be equal to R

as shown in equation (3.5).

X1 Y1 7
R=|x; y; 2z = R,RyRy
X3 Y3 Z3
[ cos® sin@ O][cosf® 0 —sind][1 0 0
=|—sin® cos® 0” 0 1 0 ”0 cosy  siny
0 0 1ilsin@ 0 cos@ 110 —siny cosy

= |—sin¢ cosf cos¢pcosyp —singsinfOsiny cos¢siny + sin¢ sin b cosyY
sin 6 —siny cos 6 cos cos O

[ cos¢p cosO sin¢ cosyp + cos ¢ sinf siny sin¢>sin1/1—cosq,')sin9c051/)]

Where Rz, Ry and Ry are the rotation matrices about z, y and x axes, respectively.

From the above equation, the three rotation angles can be found as follows,

x5 = sinf

6 = arcsin xj (3.5)

Note that equation (3.5) will yield two possible solutions for 6. Both are valid however,
once an angle is chosen to be the correct angle it will affect the other two angles. Here the

angle between [-90°, 90°] is chosen. Next,

ingp = —2 6 %0
sin¢g = , COS
cos @
p = 6 %0
cos ¢ = , COS
cos @
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¢ = atan,(sin ¢, cos ¢)

Similarly, for y,
. —V3
=— , 60+0
siny o5 0 cos
_ % 6 %0
cosy = s , COS

Y = atan,(siny, cos )

In case cos =0 the solution discussed above is not valid and hence this case must be treated
specially. However, in such case @is directly found and is equal to either -90° or 90°, and
from (3.5) this ambiguity is eliminated. That is, if x’3 is 1 then @is 90° and -90° if x’3 is -
1. Physically, this case means that the x’-axis is parallel to z-axis and by rotating around
y-axis by either 90° or -90° x’-axis will be brought to x-axis. From the last sentence, it can
be deduced that after rotating about y-axis, rotating about x-axis in a specific angle will

align RF to the global coordinates without the need to rotate around z-axis. That is = 0°.

Note that this case is actually a singularity point.
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X1 Y1 Z3
R=|x; ¥ 2z = R,RyR,

X3 Y3 Z3
[ cos0 sin0 0][cos® O - sm ] 0
=|—sin0 cosO Of]| 0 cos l/J siny
0 0 11lsin @ 0 cos 9 —siny cosy
[1 0 O][cos&@ 0 -—sinf
=0 1 0 0 1 0 0 cos 1/) sin 1/)
0 0 1llsin6@ 0 cos@ Il0 —siny cosy
[cosf@ sinfsiny —sinfcosy
=| 0 cosy siny ]
[sinf —sinycosf cosycosb

R=| 0 cosy siny
sinf@ —sinipcosf cosycosh

cosf sinfsiny —sinfcosy
] (3.6)

So, y can be determined from (3.6),

siny = 2z,
cosy =y,

Y = atan,(siny, cos )

Lastly, after rotating the part by these angles, It will be translated linearly in each axis to
bring the origin of RF to the (0, 0, 0) point of the global coordinates by the simple

following equations,
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0 = (0y,0,,0,)

Ax = -0,
Ay = -0,
Az = -0,

Where O is the RF origin expressed from the global frame point of view and Ax, Ay and
Az are the linear translation along the X, y and z axes, respectively. The relative distance
of the RF with respect to the global coordinate system, O, is entered by the user through
the graphical user interface (GUI) of the software. A complete explanation about the GUI
is presented in chapter 4.

3.1.2 Selecting the Edges to be Processed

Before starting with path generation, first the edges on the part that are to be processed
(scanned or finished) is to be selected. The user need to first define the planar faces that
will be in direct contact with the working table or fixture, such faces will be referred to by

Ground Faces. Figure 3-2 below shows an example of a selected ground face.
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Figure 3-2: Selecting a ground face by the user

In edge finishing and scanning it is the convex edges that needs to be processed. Using
Power Select Utility in SolidWorks, a filter can be set in order to select only convex edges
out of all the edges in a part, this is done automatically by the software. After selecting
the convex edges, the ones laying on the ground faces are recognized and eliminated. The
reason for it is that the tool will not be able to reach such edges due to the physical

constraints imposed by the working table.
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Figure 3-3: Result of the automated convex edge selection
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3.2 Processing Motion Generation

As discussed before, the overall motion of the robot consists of two parts, namely,
processing and non-processing motions. Each processing motion corresponds to one edge
on the part; therefore, these motions are fixed, as will be seen in this subsection. For that

reason, each of these motions needs to be checked to be collision-free.

An edge is said to be reachable by a robotic manipulator, if the robot and the tool holder
do not collide with the part throughout the needed motion to process that edge. Checking
the reachability of an edge can be done in two steps. First, calculate the processing motion
for the selected edge. Secondly, simulate the calculated motion in SolidWorks and check
if there are any collisions. In case no collisions occurs then that edge will be marked as
reachable, otherwise it will be discarded from the process.

The robot manipulator’s links are modeled as cuboids as shown in Figure 3-4. Such model
is conservative, which can accommodate for some deviations. Also, it is faster to
maneuver cuboids in SolidWorks which will require fewer memory and time compared to

using an actual geometric model.
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Axis 2

Figure 3-4: the geometric model of the robotic arm used in the study for performing the collision detection test.

The following sub-sections describes the detailed procedure for generating the processing

motions that corresponds to each of the previously selected edges.

3.2.1 Calculating Processing Motions

Two types of edges are considered in this study, namely, Straight line and Circular edges.

In case of a straight line, the motion can be sufficiently defined by the start and end
positions of the end-effector. These positions can be found by taking the desired offset
value and direction (approach angle) from both ending vertices of that edge. The offset
value is the relative distance between the edge and end-effector during the processing
motion, such parameter is numerically entered by the user. While the offset direction can
be chosen as either the average of the adjacent faces’ normals, check Figure 3-5 a), or
normal to the direction of the formed burr, Figure 3-5 b). Generally, the burr forms in the
direction normal to both the normal vector of the later machined face between the two

adjacent faces and the direction of the edge itself [19], as shown in Figure 3-6.
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Figure 3-5: a) lllustration of an offset direction, d, that is equal to the average of the two normals of the adjacent faces
of the edge, 71, and 71, b) lllustration of an offset direction, 5, in the normal direction to the formed burr.
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Figure 3-6: Illustration of formed burrs direction [19].
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Mathematically, d can be found for the two case as follows:

e For the average direction case,

. n,+n
d=d—2 (3.7)
||n1 + nz”

Where, d is the offset value.

e Normal to the burr formation direction,

d=d, (3.8)

Where, d is the offset value and 72, is the normal of the face machined last.

Note that in the second case a small offset ¢ is introduced in order to position the tool tip
on the burr itself instead of the edge attached to it, the value and direction is calculated as

shown below,

fe 7E1X€1 , ( 7:1:195?)1 >_ﬁ2 >0

5 ||"1Xt1|| ”nixti” (3.9)
Xty (L) s <0
Tl ] ™

Where, e is equal to half of the tool head’s width, £, is the direction of the edge in space
and 7, is the normal of the face machined last. Note that £, can have two opposite
directions; therefore, the correct direction is the one that yield € which have an angle
between [-90°, 90°] with 7.
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Now, the position of end-effector is defined by its location in space, #, and orientation,
C(©9), The location can be calculated for both starting and ending positions by simply

adding the position vector of the corresponding vertex and the previously calculated offset

vector, d. See Figure 3-7.

a) b)

Figure 3-7: a) The location of the end-effector's starting position b) The location of the end-effector's ending position.

As for the tip point orientation, it is found as follows. The opposite direction of the offset
vector, d, is taken to be the z-axis of the end-effector. The y-axis is oriented such that it is
parallel to the edge. The sign of the direction of y-axis is decided such that the x-axis will
be pointing downwards with respect to the global coordinates, using the right-hand rule.

Figure 3-8 gives a good example of such calculation.
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Figure 3-8: a) Taking the offset desired from a straight edge for generating the corresponding processing motion. d is
the offset vector, n1 and n2 are the adjacent faces normals, the shown coordinates is the orientation of the end-effector
of the ABB IRB2000 b) The CAD simulation of the corresponding motion in a).

In the case of a circular edges, the edge will either be a full circle or an arc. Since, ABB
IRB2000 can create arc motions that are less than 180° at a time, full circles are going to
be divided into four equal arc segments. Partial arcs will be divided into two equal
segments. Each arc segment motion needs to be represented by three positions of the end-
effector, the start and end positions along with an intermediate position. This position is
used by the robot to decide on the direction of circulation.

Similar to the straight edge scenario, the offset vector is added to the edge location to give
the location of the tip-point of the robotic hand. As for the orientation, the z-axis will be
in the opposite direction of the offset vector. The y-axis points towards the tangent at the
given point. Note that y-axis can have two opposite direction, the one that gives an x-axis

pointing downwards, according to the right-hand rule, is selected.
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Figure 3-9: Taking the offset desired from a circular edge for generating the corresponding processing motion

Note that the angle between adjacent edges needs to be considered while calculating the
processing motions. A small modification on the starting and/or ending positions of a
processing motion is to be performed, in case the corresponding edge has an adjacent edge
that forms an angle less that 180° with it. For instance, the edge given in Figure 3-10 has
two adjacent edges that both creates an angle of 90°. Therefore, due to the physical
thickness of the tool, both the starting and ending positions of the corresponding
processing motion will be shifted by an amount equal to half the width of the tool in the

direction of the edge, see Figure 3-10.
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Figure 3-10: An example of a straight line edge that has adjacent edges that form angles less than 180° with it and how
it affects the corresponding processing motion.

Similar approach is also considered for circular arc edges. The main difference from a
straight edge is that the performed shift is an angle instead of a pure translation, see Figure

3-11. The angle « is found by a¢ = arctan % Where w is half the width of the tool and R

is the radius of the arc motion.

Figure 3-11: An example of a circular arc edge that has an adjacent edge that form an angle less than 180° with it and
how it affects the corresponding processing motion.
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This concludes the calculation procedure for each selected edge to find its corresponding

processing motion. Resulting in one processing motion for each selected edge.

3.2.2 Collision Detection Test

In the previous subsection, a processing motion for each of the selected edges was
calculated. Now, these motions need to be verified to be collision-free. Note that such
motions are necessary to perform the task, either scanning or deburring. Hence, if any of
these motions turns to have a collision it means that the corresponding edge cannot be

processed. Therefore, such edges are going to be marked as unreachable.

Each of these motions are divided into discrete poses of the robotic manipulator. In other
words, a discrete motion approach is adapted for the test of collisions. At any given posture
the position of each link of the manipulator is going to be calculated, using inverse
kinematics, and then check if any link collide with the part at the given posture. Such
approach although not continuous in nature, it actually covers the whole range of motion

as far as collision is concerned.

The procedure for discretizing the straight and circular motions are somewhat different.
For the straight line motion, note that the orientation of the end-effector is actually
constant. Hence all of the intermediate poses will also have the same orientation. The
number of poses can be directly found using equation (3.11). Basically, the equation

divides the straight line into equally spaced parts.
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Figure 3-12: An illustration of discretizing the processing motion corresponding to a straight edge

L
The number of poses needed = 2 + [ﬁ - 1] (3.10)

Where L is the length of the straight motion and w is half the width of the tool holder.

In case of an arc edge, the swept angle of the edge is divided again into equal increment
angles using equation (3.11). The orientation of each pose is found by rotating the
orientation matrix of the previous pose along the axis of the arc edge by an angle a as
givenin (3.12).
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Figure 3-13: An illustration of discretizing the processing motion corresponding to an arc edge

Figure 3-14: The trigonometry used to derive the formulas below.

0
The number of poses needed = 2 + [E] (3.11)
Where @ = 2 tan™ = (3.12)
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Where 6 and R are the swept angle and radius of the arc motion, respectively, and w is
half the width of the tool holder.

Figure 3-15: Example for a straight edge collosion detection test

Figure 3-16: Different snap shots for an arc edge collosion detection test
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Figure 3-17: An example of a detected collision.

While checking for collisions, the program will also be monitoring the joints’ angles. If
an angle exceeds its physical limitation then such motion cannot be performed by the

robot.

3.3 Introducing Critical Positions Concept

This part is important for the understanding of the following subsection. A critical position
(CP) refers to the starting or ending position of the end-effector in a processing motion.

Figure 3-18 gives a good example of some critical positions.
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Figure 3-18: Each processing motion has two critical positions. a) shows the critical positions of a straight edge b)
gives the critical positions of an arc edge

Notice that each processing motion will have two critical positions. Any non-processing
motion has to connect two critical positions from two different processing motions. In this
way, non-processing motions will complete the gap and create, together with processing
motions, an overall continuous path to be executed by the robot.

Finally, in order to keep the consistency, the home position (initial pose of the robotic

hand before start executing the motion) is also considered as a critical position.

3.4 Non-Processing Motion Generation

Recall that the overall motion of the robotic manipulator can be divided into two main
motions. The processing motion “the motion needed to scan or deburr an edge” and the
non-processing motion “a motion of which is needed to change the end-effector position
after processing an edge to go to another one”. The latter motion does not have any actual
processing and therefore it is not bounded to a specific trajectory as far as the trajectory is

collision-free.
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34.1 Calculating Non-Processing Motions

Such paths can be found using many different known algorithms in the literature [20] to
yield an efficient collision-free path. Some of the famous approaches for the case of
robotic manipulators in static environments are the probabilistic roadmaps planner [21],
which is probabilistically complete algorithm. Khatib [22] offered a very interesting
algorithm known as artificial potential field approach. However, the main drawback of
this method is the possibility of sticking in local minima, that is, the algorithm is not
necessarily complete. Another algorithm inspired from khatib’s is the artificial force field
approach. Many papers discuss slightly different models of such algorithm, [23] is an
example; nonetheless, the main idea is that obstacles applies forces on the robot links in
such a way that they repel the robot dynamically. Unfortunately, this method have the
possibility of sticking in a local minima, similar to the artificial potential field method. On
the other hand, due to the nature of the problem in hand a simple yet effective approach is
going to be discussed in this section. This does not mean that any of the algorithms found
in the literature related to this topic cannot be applied to this problem and implemented in

the main program.

One may take an advantage from the nature of the working space in hand. Notice that if
the manipulator assumes an upper configuration throughout its motion, there will not be
any collision with the part at any position above a certain elevation. To find such elevation,
imagine a bounding box that the piece can fit in. Figure 3-19 illustrates an example of the
bounding box of an arbitrary part. There are eight vertices of such box, the ones adjacent
to the top face share an elevation of value z = z,. Adding half the width of the last link,
it can be guaranteed that the manipulator will not collide with the part as long as the end-
effector’s elevation point (z-axis component of the location of the end-effector) is

above z = zy + 0.5wg, Where wg is the maximum width of the Tool holder.
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Figure 3-19: The bounding box of an arbitrary part.

Hence, if both the starting and ending positions of the non-processing motion are above
the aforementioned elevation, a straight line motion (which is also the shortest) is
available. However, most start and end positions are not above the safety elevation level.
Therefore, a retraction motion is to be executed to transfer the end-effector from starting
position to a position above the safety level. Similarly an approach motion is needed to

bring the end-effector from free-space to the ending position.

Free Motion

Approach Motion

e

Safety level
Z =2y + 0.5wg ! :

Z =2

Retract Motion

Figure 3-20: Outline representation of the non-processing motion generation algorithm.
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There are two scenarios when the end-effector’s location is under the safety level. First,
only the last link is below z = z, + 0.5w,. The second scenario, is to have the last link to

be fully immersed and a portion of the fifth link be below z = z, + 0.5w.

For the first case, since the manipulator has six degrees of freedom, it is possible to retract
the end-effector with a constant orientation along ﬁ§6) from the start position to the safety
level with a guarantee that this motion is collision-free. Mathematically, the orientation of
the end-effector remains constant through the motion, C; = C, = €. While the
location of the end position is 772(0) = r‘l(o) —sC©93,, s is found using simple

trigonometry as follows:

Zy + 05W6 —T13
_ , 1
S cosf (3.13)

Where cos f = % (3.14)
6

113 1S the third component of 7; and wy 3 is the third component of w;.

W13,

z =7y + 0.5wg

T

Global z-axis

T3

Figure 3-21: Trigonometry used to find the value of s.
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For the second case, this motion can be divided into two segments. First one moves the
end-effector from the start position to the wrist point with an orientation similar to the
initial orientation of the fifth link. A collision test is to be performed at this case to make
sure it is a safe motion. As for the second segment, the end-effector moves with a constant

orientation along the new a§6> until it reaches safety level.

Mathematically, the end position of the first segment motion can be defined by the initial
orientation of the fifth link, C, = C(®%. While the location is equal to the initial wrist

point, 5” = 7” —d

+C 91, Consequently for the second segment, the start position
is basically the end position of the first segment. The end position, on the other hand,
consists of the same orientation as with the start position, C; = C,, and the location

point 7 = 7% — s¢(©97;,. s is found from (3.13) and (3.14).

‘- ‘-

a) b)

ha T I,

c) d)

Figure 3-22: Different snap shots of the first segment of the retraction motion from a critical position where both last
two links are under the safety level.
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a) b)

Figure 3-23: The first and last positions of the second segment of the retraction motion from a critical position where
both last two links are under the safety level.

It can be realized that the approach motion to the same critical position can be generated

by simply reversing its retraction motion.

Therefore, given a starting and an ending positions to generate a non-processing motion
between them, all is needed is to first generate the retraction and approach motion for the
corresponding positions. Then, connect these two motions with a straight line motion in
free-space. Such algorithm will be referred to as the Retraction-Free-Approach Motion
(RFA Motion). This approach significantly reduces the complexity that most collision-
free path generation methods suffer from.

The RFA motion may not be the shortest possible collision-free path between two given
positions, nonetheless, it offers a very efficient solution regarding CPU time and path

length.

In some special cases the shortest collision-free path is very easy to find. First special case
is when both start and end positions share the same vertex, check Figure 3-24. The motion
is a direct one (straight line in the configuration space). Such motion is collision-free since

the shared vertex is reachable.
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Figure 3-24: lllustration of the non-processing motion when both start and end positions point at the same vertex.

The second case is when both positions share a reachable edge. A direct motion can be
made by utilizing the previously generated processing motion of the shared edge, see
Figure 3-25. This motion is also collision-free since it is constructed of smaller collision-

free motions.

—_—y

a) b)

0 P

c) d)

Figure 3-25: Illustration of the non-processing motion when both the start and end positions share a reachable edge.
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For generating the non-processing motion between two given positions, the algorithm will
first check if these two positions share a vertex or an edge. If so, the method explained
above is used to generate the path of the end-effector. Otherwise, an RFA motion is

generated.

This approach reduces the complexity of finding all possible non-processing motions from
0O(n?) to O(n). Instead of generating a motion between each pair of critical positions, the

problem is reduced to calculate one retraction motion for each critical position.

Define two Critical Positions (CP)
for each Processing Motion

Generate a Retraction Motion for
each CP

Do the following for each pair of
CPs

Does the
pair share
a reachable

Does the
pair share
a vertex on

the part? edge?

Generate RFA

i Generate motion .
Generate motion Motion

Store generated motion

Figure 3-26: Flowchart of generating all possible non-processing motions.

Lastly a 2D array of non-processing motions is constructed. This array includes all
possible non-processing motions between each pair of critical positions. Any of these

motions is represented by two indices. The first index represent the number of the critical
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position that the end-effector will start from. The second index is for the ending position

of the end-effector.

3.4.2 Collision Detection Test

As in the case of processing motions, the non-processing motions generated between each
two positions need to be collision-free. Only the retraction and approach parts of the RFA
motion need to be checked. Since the portion of the RFA motion made in free space is by
definition free of collisions.

It is critical to realize that both the approach and retract motions for a given critical
position is in fact the same motion but reversed in the order of execution. Therefore, the
collision detection test boils down to checking the retraction motion of each critical

position separately.

The test nature is similar with the one performed on processing motions. That is, the
motion is discretized into a number of poses that in turn covers the whole range of motion.

Figure 3-22 and 3-23 show an example of such discretization of a retraction motion.

If the retraction motion from a critical position is collision-free, then its corresponding
edge is reachable from any other position in free space. Otherwise, the given edge is

considered unreachable.

While checking for collisions, the program will also be monitoring the joints’ angles. If
an angle exceeds its physical limitation then such motion cannot be performed by the

robot.
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3.5 Planning the Overall Path

After generating all possible non-processing motions next step is to select a subset of them
that creates a connected path together with the processing motions. In fact, such problem

is a TSP (Traveler Salesman Problem).

The Traveling Salesman Problem, or TSP, is an ongoing study in computer science. The
TSP has a long history ranging back to the 1920°s [24]. This problem became popular
after it was publicized by a mathematician named Merrill Flood at the RAND corporations
in 1948 [25].

The TSP problem is defined as the following. Given a complete graph G with Vertices V

and edges E, where each edge eij € E has an associated cost cij incurred when traversing

from vertex i € V to j € V, find the optimal, or cheapest, Hamiltonian cycle of G. The
vertices can be considered buildings, landmarks or other geographical locations. Thus, a
Hamiltonian cycle of G is also considered a Tour. In this study, these vertices represent
the critical positions of end-effector. The edges represent motions of the robot. Therefore,

a Hamiltonian cycle represents the overall path of the robot.

To further understand this representation refer to Figure 3-27. Notice that each node in the
graph represents a critical position of the end-effector, labeled as Pose(j). The connected

edges represents processing motions PMg;) and the dashed ones is for non-processing
motions. So the problem statement would be similar to that of the TSP problem (each
position is to be passed once) with the addition that the connected edges are also to be
passed one time each. Unfortunately, general TSP is known to be an NP-complete
problem. Hence, there is not a systematic approach to reach the optimum solution in a

polynomial time algorithm.
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Home Position

Figure 3-27: An example of a three processing motions (PM) and the representing graph for finding route solution of
the TSP “The non-processing motions between the home position and other poses are not shown for simplicity”

There are different variations of the TSP. In the general case, there are no restrictions on
the edge costs. Therefore, each edge may have two associated costs, cij € R and cji€ R,
which may not necessarily be equal. Thus, G can be a directed graph and the edge costs

can be negative.

Another variation is the metric TSP, the main feature of this type is that the triangle
inequality holds on all the vertices, which means that for any three vertices A, B and C, if
you wish to go from vertex A to vertex C, it is always cheaper to go from A directly to C
rather than passing through B. This added restriction gives a possibility to find
approximated solutions, which is not possible for the general case. These solutions can be
found in a polynomial time scale, one of these algorithms is known as 2-approximation
algorithm. As the name implies, it gives a solution that is at most twice the length of an
optimal tour. 3/2-approximation algorithm [26] is another approach that guarantees the

founded tour to be at most 1.5 times longer than an optimal solution.

A third variation is the Euclidean TSP. Along with the validity of the triangle inequality,

all of the vertices are points in space. The plane can be 2-dimensional, or d-dimensional
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in general. The edge costs are the Euclidean distances between the points. Since the
problem here takes place in Euclidian space, there are restrictions on the edge costs, and
some assumptions can be made, which simplify the problem. Making it possible to apply
even better approximated solution in polynomial time. Arora [27] presented a polynomial
time approximation solution (PTAS) algorithm for the two dimensional case and shortly
after two years generalized the algorithm to d-dimensions [28]. The accuracy and CPU

time depends on the approximation parameter c. Where the accuracy is (1+1/c)-
d-1
approximation and the processing time is O (n(logn)(o(ﬁc)) ) In the same time

period Mitchell [29] independently proposed a PTAS algorithm where he was able to

N

achieve (1 + 2171—2)-approximation that runs in 0 (n2°™*>) time.

Unfortunately, the TSP representing the problem of this section is neither Euclidian nor
metric in its nature. As mentioned before, general TSP does not have any polynomial time
approximation algorithms. The practical approach is to apply heuristic algorithms to find
a solution. There are many heuristic algorithms that can be found in the literature. The
nearest neighbor (NN) algorithm is one example. NN always choose to visit the nearest
vertex to the current reached vertex until all vertices has been visited. This approach will
often keep its tour within 25% of the Held-Karp lower bound. Another heuristic known as
Greedy algorithm gradually constructs a tour by repeatedly selecting the shortest edge and
adding it to the tour as long as it doesn’t create a cycle with less than N edges, or increases
the degree of any node to more than 2. This algorithm normally keeps the solution within
15-20% of the Held-Karp lower bound. Kahng and Reda [30] proposed a heuristic they
called Match Twice and Stitch (MTS). Their approach offers four different variations
where a trade-off between accuracy and run time is present. As they reported, the
algorithm on average yield a solution that is 6-8% of the Held-Karp lower bound.

In this study, the nearest neighbor algorithm is adopted and implemented in the software.
Starting from the home position, the red node shown in Figure 3-27, the shortest non-

processing motion will be selected, where the distance is the length of the trajectory of
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each motion. Next, the processing motion connected to the reached node is taken. After
that, the shortest non-processing motion is selected and so on so forth until all the nodes
are reached. Lastly, the end-effector is brought back to the home position using the last

available non-processing motion.

Posel
. Pose3
PM2 Posed
I
r PM1 - - ‘ Q
' . 1
L Pose2 7/
I . //
| /
4
| e Pose6 Y
- ”
‘. - Pose5
Home Position PM3

Figure 3-28: The solution of the TSP graph given in Figure 3-27 using nearest neighbor algorithm.
In conclusion, the solution of the TSP given in this subsection will correspond to a

collision-free motion trajectory which represents the overall path to be executed by the

robotic manipulator.
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CHAPTER 4

COMPUTER PROGRAMS

4.1 SolidWorks Add-Ons Package

Here, all the previously discussed points are developed and applied in this software. First
part is a user guide to give the reader the appropriate way of using the software. Second
part explains the general working procedure of the software. Refer to appendix A for more

details on the structure and main methods used in the program.
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4.1.1 User Guide of Software

Preparation Stage

In this stage, the parameters that the user is expected to specify before generating the path

are entered to the program. Figure 4-1 shows the main window of the software.

| Off-line Path Generation Add-On X

Please select a refrence frame to be set as the glebal coerdinate system and the
faces of the part that will be directly contacting the mounting table.

Specify the part's offset from the origin of the global
coordinate system

x-component [meters]: | g g5
y-component [meters]: |
z-component [meters]: | p.g

Update Working Table Dimentions |

Update Spindle's/Scanner's Dimensions |

Update Tool's Dimensions |

Process Type

(% Edge Finishing

" Edge Scanning

Offset Value

Offset distance from edges [millimeters]: 1

Approach angle:

(@ Average vector of the normals of the two adjacent faces.

" Mormal to the normal of the adjacent face milled lastly.

Specify the order of which the faces were machined... | Run

Figure 4-1: Main window of the SolidWorks Add-Ons Package.
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As mentioned in earlier chapters, the user has first to define a reference frame (RF) and
attach it to the workpiece or to the fixture if present, refer to section 3.1 for a detailed
explanation of RF. Staring from the top, the user can specify the origin of RF by simply
entering the x, y and z components of its location in respect of the global coordinate system
of the ABB.

Entering the dimensions of the working table can be achieved by first clicking on the
Update Working Table Dimension button. Clicking on this button, another window,
shown in Figure 4-2, appears and the user then can enter all three dimensions of the table.

Clicking Update will store these values and bring the user back to the main window.

:Working Table Dimensions x

Enter the dimensions of the working table below in
meters:

Length (in the direction of y-axis):
Width (in the direction of x-axis):
Thickness (in the drection of z-axis):

Cancel | Update |

Figure 4-2: Setting the working table dimensions.

In the Process Type frame the user choose between finishing and scanning. The main
reason for this is for the software to decide whether to include a finishing tool or not. In
case the user selects the finishing process he/she needs to enter the dimensions of the
deburring/chamfering tool by clicking on the Update Tool’s Dimensions button. Once
clicked a window opens as shown in Figure 4-3. Then, after entering the dimensions the

user clicks on Update.
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X

Tool's Bounding Box Dimensions

Enter the length and width of the tool in
millimeters below:

width (in the dirction of the minor axis):

Length (in the direction of the major axis):

Cancel | Update |

Figure 4-3: Setting the tool's dimensions.

The “Update Spindle’s/Scanner’s Bounding Box™ button allows the user to specify the
cuboid that represents the bounding box of the spindle/scanner. Figure 4-4 shows the

window appearing after clicking on the aforementioned button.

X

Spindle's/Scanner's Bounding Box Dimensions

Enter the dimensions of the bounding box of
the spindel/scanner in meters below:

Length (in the direction of the major axis):
Width (in the dirction of the minor axis):

Cancel | Update |

Figure 4-4: Setting the tool's body box dimensions.

Offset value frame is simply for entering the magnitude distance of the end-effector while

processing the edges.

Approach angle frame is for selecting between approaching the edge with a direction equal
to the average of its adjacent faces’ normals or normal to the first machined face between

the adjacent faces. Refer to section 3.1 for more details.
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Lastly, if the second option in the approach angle is selected, the user need to give the
order in which the faces of the part where machined. This can be done by first clicking on
the button next to Run button. After the user clicks on the button he/she starts selecting
the faces of the part in the order they were machined. Figure 4-5 shows the mentioned

window.

Selecting Faces >

Please select all the faces of the part in the same order that
they were machined.

Go Back Abort

Figure 4-5: Confirming the selection of faces.

Edge Selection

After entering all the necessary information the user clicks the Run button in the main
window. The software then selects the convex edges of the part. At this point, all the
default selected edges are highlighted on the workpiece and the software is paused. The
user is asked to check if the selection is satisfactory and if he/she would like to edit the
selection by either selecting more edges or deselecting some of the already selected ones.

After that the user click on Proceed button.
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Confirm Edge Selection pd

Check the auto selection of the edges to be processed. You
can modify the selection by selecting and/or deselecting any
edges you wish. Once done click Proceed.

Abort |

Figure 4-6: Window for confirming the selected edges.

Getting Results

Now, the display of the part is temporarily turned off to make the program run faster.
Calculating all the necessary motions and checking for collisions, the program at the end
will creates a text file in the same directory with the opened SolidWorks part. This text
file will include the overall nominal path to be executed by the robot. The syntax is similar
to that used by ABB IRB2000 when generating paths by the teaching method. The only
difference between these formats is that in S3 controller the information of each position
is implicitly given. While here the position is explicitly given after the POS keyword, e.g.
POS=(x, Y, z, q1, 02, 03, g4) Where X, y and z are the Cartesian coordinates of the tip-point
location and gi’s are the four quaternion components that describe the end-effector
orientation [31]. Figure 4-7 gives an example of a program path opened from such text
file. Refer to the programming manual of ABB IRB2000 for detailed explanation of the
syntax [32]. Lastly, a message box pops up to inform the user that the path has successfully

been generated.
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POS=(795.0,0.0,879.0,0.000000,-0.382683,0.000000,0.923880) V=100% PATH
POS=(764.1,0.0,848.1,0.000000,-0.382683,0.000000,0.923880) V=100% PATH
POs=(764.1,52.7,848.1,0.000000,-0.382683,0.000000,0.923880) V=50% CIRCLE
POS=(750.0,66.8,848.1,0.653281,-0.270598,0.270598,-0.653281) V=100% PATH
P0OS=(633.9,66.8,848.1,0.653281,-8.270598,0.2708598,-0.653281) V=50% PATH
POS=(619.8,52.7,848.1,0.923880,0.000000,0.382683,0.000000) V=100% CIRCLE
P05=(619.8,0.0,848.1,0.923880,0.000000,0.382683,0.000000) V=50% PATH
POS=(619.8,-14.1,834.0,0.653281,-0.653281,-0.270598,0.270598) V=108% PATH

Figure 4-7: A portion of a path program generated by the software and stored in a text file.

4.1.2 Code’s Working Procedure

The main function of the overall code “main()” utilizes two class types, namely,
MainWindow and PathGeneratorEngine classes. MainWindow class coordinates the flow
of the software as a whole. Responding to user inputs, it organizes the variables needed to
be set before starting the actual path generation. It also schedule the calling of main
methods in the PathGeneratorEngine. Lastly, it creates the final output of the software as
a text file that is stored independently from the program on the working computer. On the
other hand, PathGeneratorEngine class is responsible for all the background calculations
of the different motions. It also checks each motion segment for collisions. And lastly

generates the overall path and pass it to the MainWindow class.

For the preparation stage, the procedure was indirectly explained in the user guide section.
This step is simple as it is, only assigning the inputs of the user into their corresponding

variables that will be used by other parts of the program.

First main method that gets called is the EdgeSelection(SelectionScheme) function. Here
by utilizing the PowerSelect utility, provided by SolidWorks, all the convex edges of the
workpiece get selected. Then, by checking each selected edge the ones that are adjacent

to a ground face are deselected.
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After the user click Proceed. A PathGeneratorEngine instant is created which then takes
all the selected edges and calculate a processing motion for each one of them. Next, each
of the calculated process motions is checked for collision. In case a process motion found
to cause a collision then the corresponding edge is discarded along with the process
motion. Then, both starting and ending end-effector positions of all the collision-free
process motions are stored properly, such poses are referred to as critical positons. After
that, the retraction motion from each critical position is calculated and checked for
collision. Any critical position that possesses a retraction motion that includes a collision
is marked and their corresponding edges are taken as unreachable. Now,
PathGeneratorEngine creates a non-processing motion between every two critical poses
and store these motions in a 2D array. The indices indicate the starting and ending
positions of each motion, respectively. What is left is a search algorithm to connect all the
processing motions by finding a suitable non-processing motions from the 2D array
previously created resulting in an overall connected path. Finally, this path is then

translated into motion commands and stored in a text file to be later uploaded to the robot.

4.2 ABB User Interface Software

This software was developed for the general purpose of communicating with the ABB
IRB2000 robot. A more specific function of this program is uploading the previously
generated path from the SolidWorks Add-Ons package. The first sub-section serves as a
user guide. Second sub-section describes briefly the procedure adopted by the software to
function properly. Refer to appendix A for more detailed explanation of the structure and

main methods of the software.
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4.2.1 User Guide of Software

Serial Port Connection

The very first thing need to be done when launching the software is to open the serial port
between the computer and ABB robot. This step has been simplified from the user point
of view. That is, all of the serial communication’s configuration is set automatically by
the software according to ADLP10 communication protocol. The user only has to select
the COM number that the ABB is connected to. The software will also search for the

available COM ports and show them to the user.
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Such step can be easily done as shown in the figures below:

e First, select Open Serial Port from File.

|8 ABB User Interface — O
File = Help
Open Serial Port
MNumarical Base in Use * patic Communication Off-Line Path Uploading
Exit
T ABB Response
Number of Bytes Number of Bytes

Destination Address Destination Address

Source Address Source Address

[ ]
[ ]
Function Code l:l Function Code
[ ]
[ ]

Function Suffix Function Suffix

I

Send to ABB

Massege Box

Figure 4-8: Selecting open serial port from File tab.

69



Second, select the port connected to ABB robot.

er Interface

Manual Communication

Command
Number of Bytes
Destination Address
Source Address

Function Code

Function Suffix

Send to ABB

Massege Box

Automatic Communication

L

7 Select The ...

COM Name | coms

l 0K

Off-Line Path Uploading

ABB Response
Number of Bytes
Destination Address
Source Address

Function Code

Function Suffix

» IEH
3

Cancel

I

Figure 4-9: Selecting the corresponding COM port connecting the ABB robot.
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e Finally, in case the user desire to close the serial port. He/she can click on Close
Serial Port in File tab.

[m ABB User Interface O ps
File | Help
Close Serial Port
Numarical Base in Use * patic Communication Off-Line Path Uploading
Exit
OTTITTATT ABB Response
Number of Bytes Number of Bytes
Destination Address l:l Destination Address l:l
Source Address l:l Source Address |:|
Function Code l:l Function Code l:l
L] (I
Function Suffix l:l Function Suffix l:l

Send to ABB

Massege Box

Figure 4-10: Closing the serial port from File tab.

Numerical Bases Available

In the manual communication mode, the user can choose between hexadecimal and
decimal bases for writing and receiving telegrams. He/she can also switch between the
two bases while writing the telegram in case some bytes were calculated in different base.
The selection of the numerical base can be found in File/ Numerical Base in Use, as shown

in Figure 4-11.
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[m7 ABB User Interface — ] b

File | Help
Open Serial Port I

Numarical Base in Use * Hexadecimal Off-Line Path Uploading
Exit ~  Decimal
B L =L L ABB Response

Number of Bytes Number of Bytes
Destination Address Destination Address

Source Address Source Address

[ ]
[ ]
Function Code l:l Function Code
[ ]
[ ]

Function Suffix Function Suffix

UL

Send to ABB

Massege Box

Figure 4-11: Choosing Numerical Base for Manual Communication.

Manual Communication

As the first mode of communication offered by the software, such mode requires the user
to be familiar with ARAP Protocol [33]. The manual communication tab is divided into
three regions, namely, Command, ABB Respond and Massage Box. As for the user, the

command to be send is filled in the command region according to ARAP Protocol.

As an example consider a user desire to know the status of the ABB robot. Hence, the
corresponding function for such task is function 19 in ARAP Protocol. Assuming the
computer address is 0 and ABB’s is 99.
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[m7 ABB User Interface — 0O 1%

File Help
Manual Communication Automatic Communication Off-Line Path Uploading
Command ABB Response
Number of Bytes Number of Bytes

Destination Address Destination Address

Source Address Source Address

Function Code Function Code

Function Suffix Function Suffix

A0
L

Send to ABB

Massege Box

Figure 4-12: Function 19 in ARAP Protocol filled in the command region.
After filling the command the user click Send to ABB button. ABB will respond by a

telegram that will be shown in ABB Response region. Note that the Massage Box gives

feedback to inform the user about the status of the communication continuously.
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[m ABB User Interface — ] be
File Help

Manual Communication Automatic Communication Off-Line Path Uploading

Command ABB Response
Number of Bytes Number of Bytes
Destination Address Destination Address D
Source Address l:l Source Address
Function Code Function Code
Function Suffix D Function Suffix D
0 ~
2
255
0
0
0
32
0
15
0
0
0
0
145
123
0
0
Send to ABB 0
end to 60 v

Massege Box

Establishing contact acknowledged! Computer is the Master
Telegram acknowledged !!

ABB Requisting Mastery !!

ABB is the Master Now !!

Contact is terminated by ABB !!

Figure 4-13: Response of function 19 in ARAP Protocol filled in the command region.

Automatic Communication

The second mode of communication is called Automatic Communication. The reason is
called this way is because instead of manually typing the telegram of the function to be
executed by the ABB, the user only fill some parameters to be sent to ABB. While the
software itself generates the telegram according to ARAP protocol. However, only the
most common functions are considered in this mode, namely, status request (function 19),
requesting the six joint angles (part of function 44), maneuvering of ABB (function 24)

and lastly running a program inside the ABB registers to let it go to the home position
(using function 2).
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[m ABB User Interface — O .

File Help
Manual Communication Automatic Communication Off-Line Path Uploading
ABB Current Status ABB Joints' Angles

First Joint:

Orientation Type:
Second Joint:

Currently Active Program:

Third Joint:
Currently Active Instruction:
Fourth Joint:
Currently Active TCP: Eifth Joint:
Currently Active Frame:
Sixth Joint:

Mode:

Get Current Joints' Angles
Operation Mode:

Manoeuver ABB

P-Unit: i
Coordinates: |Robot <
Interrupt:
p Velocity [mm/s]: l:l
Local/Remote:
/ Percenatge Velocity %: l:l

End-effactor Coordinates

End-effactor Coordinates
X Component [mm]:

X Component [mm]: I:I

¥ Component [mm]:
P Y Component [mm]: I:I
Z Component [mm]:
Z Component [mm]:
End-effactor Quaternion P [ ! I:I
First Component: End-effactor Quaternion
First Component:
Second Component: P l:l
Second Component:
Third Component: P l:l
Fourth Component: Third Component: l:l
Fourth Component: l:l
Update Status Move

Massege Box

Go to Home Position

Figure 4-14: The GUI of the Automatic Communication Mode.

In order for the user to get the status of ABB all he/she has to do is click on the Update
Status button, the software will automatically fill the parameters in the ABB Current
Status box. Same goes for the joint angles. On the other hand, for maneuvering of ABB,
the user has to first specify if Robot or Rectangular coordinates is to be used and also fill
the velocity of the end-effector and its desired position and orientation with respect to the
base coordinates of ABB. Lastly, Go To Home Position button lets the user command the
robot to change its configuration to the home position posture. It is also worth mentioning
that the massage box will be informing the user useful information especially in case some

errors arise while communicating with ABB.
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Off-Line Path Uploading

The third, and most important part for this thesis, is the uploading of the path program
from the computer to ABB IRB2000. There are two types of “syntax” a user can use in
defining the path program. First one is used only in cases where the user is very
experienced with S3 controller assembly language. The user has to set each byte separately
to be sent by the software to the robot. The main goal of this option is to make the software

more flexible for potential programs that other software may generate.

After selecting the Off-Line Path Uploading tab in the main window of the software, select
the open file button in the upper part of the window, which is dedicated for this type of
syntax. A window will show up as shown below, select the text file that includes the path
program in it. By doing so, the software will display the contents of the text file in the text
box so that the user can check the program and perform modifications if desired.

[=7 Open Text file X
T « Codes > build-ABBUserInterface-Desktop_Qt 54 0_.. > ~ 0 Search build-ABBUserInterfac.. R
Organize > New folder - o @

Thesis ~  Name Date modified Type Size

% OneDrive debug 01-Apr-164:24 PM File folder

release 01-Mar-16 1035 A..  File folder
= This PC

m Desktop

= Documents

+ Downloads

J Music

= Pictures

B Videos
E.0S (@

. Data (D3

v < >

File name: “ V‘ Text Files (*.bxt) e

Figure 4-15: Window for selecting the text file that includes the path program.

Then, the user specifies the number of the program to be assigned in the robot memory.
The software will display the progress of the upload procedure to the user, at the end of

the window a small notification and a progress bar will pop up directly after the user hit
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the upload button. In case an error occurs the software will give feedback to the user so

he/she could either recheck the program syntax or resend the program.

)
|87 ABB User Interface - O x
File Help
Manual Communication Automatic Communication Off-Line Path Uploading

Path Program in Assembly Language Form

This part is used when the program is expressed byte by byte

Program Number: |10 Open File
0 ~

10

10

96

i}

0

0

éS Upload Path
: W

Path Program in Mormal Language Form

This part is used when the program is expressed in the normal format given
in the ABB IRB2000 Manuals

Program Number: ‘ Open File

TeR[o |

FRAME 0

V= mmfs MAX= mmys

RECT. ~ COORD.

Uploading program to ABB IRB2000... - 30% Upload Fath

Figure 4-16: Displaying the path program of the previously selected text file.

The second syntax to express the path program is more user friendly and understandable.
This format is similar to that of the S3 controller way of expressing the taught paths. Figure
4-17 gives an example of a program path opened from a text file in a similar manner as in

the previous case. Again the software will give the user continues feedback of the upload

process.
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| [m7 ABB User Interface - O X

File Help

Figure 4-17: Displaying the path program of the previously selected text file.

Manual Communication Automatic Communication Off-Line Path Uploading

Path Program in Assembly Language Form

This part is used when the program is expressed byte by byte

Program Mumber:

Open File
Upload Path

Path Program in Normal Language Form

This part is used when the program is expressed in the normal format given

in the ABB IRB2000 Manuals
Program Mumber: ‘10 Open File
Tee o |
FRAME O

V= mmy's MAX: mm/s

RECT. | COORD.

POS=(795.0,0.0,879.0,0.000000,-0.382683,0.000000,0.923880) V=100% PATH ~
POS=(764.1,0.0,848.1,0.000000,-0.382683,0.000000,0.923880) V=100% PATH
POS=(764.1,52.7,848.1,0.000000,-0.382683,0.000000,0.923880) V=50% PATH
P0OS=(750.0,66.8,848.1,0.653281,-0.270598,0.270598,-0.653281) V=100% CIRCLE
POS=(633.9,66.8,848.1,0.653281,-0.270598,0.270598,-0.653281) V=50% PATH
PO5=(619.8,52.7,848.1,0.923880,0.000000,0.382683,0.000000) V=100% PATH
POS=(619.8,0.0,848.1,0.923880,0.000000,0.382683,0.000000) ¥=50% CIRCLE
POS=(619.8.-14.1.834.0.0,653281,-0,653281,-0,270598.0,270598) V=100% PATH

Uploading program to ABB IRB2000... 309 | Upload Path

W

Unlike the case of using the assembly syntax, here the path information taken from any
text file should consists of lines in the form of POS=( 795, 0, 879, 0, -0.383, 0, 0.924)
V=100% PATH. While the initialization of the program can be done by filling the text

lines shown in Figure 4-17.

Code’s Working Procedure

The main function of the overall code “main()” utilizes two class types, namely, ADLP10
and ARAP class. The former class mimics ABB data link protocol, which is the protocol

created by ABB Company to look over the connection and communication between the
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computer and ABB robots connected to it. Such protocol take charge of establishing the
connection and maintain it as long as needed. On the other hand, the latter protocol is only
responsible for generating telegrams for each specific task or massage that is to be
exchanged. These two protocols are fully explained by ABB user manual in the Computer

Link part.

In the case of the manual communication, there is no need for the use of ARAP class.
Since the user gives the telegram already. Once the user hit send, an instant of ADLP10
class is created, and the method EstablishContactAndSendTelegram(SerialPort,
Telegram) is called where the first argument is the serial port to be used for the connection
and the second one is the telegram to be sent. Next, this method will arrange the telegram
and prepare it to be sent according to ADLP10 protocol standards. Each byte is sent
separately and after sending all the bytes in the telegram a checksum is created and sent
to the corresponding ABB robot. Then, the class awaits for ABB feedback. In case the
telegram was successfully sent, the class either prepare for receiving a telegram from the
robot or terminates the communication, according to the nature of the initial command or
message sent from the computer. On the other hand if the telegram was corrupted while
sending it, the class will act according to the protocol and either send the telegram again

or terminates the connection.

For the case of automatic communication, an instance of ARAP class is created and for
each button in the automatic communication tab there is a corresponding method to
convert that specific order to a telegram. After that the same procedure with the manual

communication takes place to send the desired command.

Moving on to off-line path uploading, when the user open a text file expressed in the
assembly level syntax and click on the upload button, the following series of actions
happen in the background. First, the program is stored as an array where each element

represents a byte. Then the ConstructTelegramsOfPathProgram( AssemblyProgram,
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ProgNumber) method in ARAP class takes both the number of the program and the
program itself and divides the overall program into a number of telegrams to be sent in
ordered manner. The number of telegrams depends solely on the size of the program (since
the program can exceeds 128 bytes, which is the maximum length of one telegram). Then,
ADLP10 class take charge in sending these telegram one at a time according to the rules
put by ABB. If in the process of uploading the program something goes wrong in the
communication, ADLP10 class will inform the user and terminates the process.

Consequently, if the user prefers to use the second syntax type describes earlier, the
software will first convert the program into its assembly language format using
ConvertToAssembly(Program) method. Then, the same procedure described in the

paragraph above takes place.
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CHAPTER 5

SAMPLE RUNS AND EXPERIMENTAL RESULTS

5.1 Introduction

In this chapter three sample workpieces are presented to test the practical functionality of
the study. First part will show the result of generating a path for edge scanning. The second
one is presented to show the capability of the software to generate a path for a relatively
crowded part, in terms of edge numbers and shapes, on one plane. Lastly, the third part
will provide an example of an overall collision-free path that can process different edges

in different planes and elevations.

The test setup consists of the ABB IRB2000, working table and the workpiece to be
processed. In addition, for the two last parts, a spindle holder and a flex attachment spindle
(Dremel 225) are used, see Figure 5-1. As for the computer connected to ABB IRB200 it
has an Intel® Core™ i7-4700HQ CPU processor working at 2.4 GHz.
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A ABB |IRB2000

<%

Working Table

Figure 5-1: Test Setup Illustration.

The spindle holder consists of two pieces that are attached to each other by four M6 screw

rods. Check Appendix D for the technical drawing of the spindle holder.

5.2 Sample Part 1

This part is an arbitrary part that was manufactured for the sole purpose of testing and
confirming the overall algorithm of the study, see Figure 5-2. The bounding box of the

part is 125mmx95mmx70mm. For the full technical drawing refer to appendix D.
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Figure 5-2: Trimetric view of part 1.

The objective is to generate a path for the end-effector in order to scan the edges of the
given part. The part is not directly mounted on the working table. Instead, a smaller piece
acts like a base, is mounted on the working table and then the part is placed on top of it as
shown in Appendix F. This is done just to give the robot extra freedom to reach more
edges.

First step is defining the position of the part with respect to the global coordinates system.
This is done by defining a reference frame and attach it to the part. Figure 5-3 shows such

reference frame.
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@ FirstAlimunim (Default<

89 History
() Sensors

+ (&) Annotations.
12 Material <not specified
%, Front Plane
3 Top Plane
% Right Plane
1. Origin

/@ Boss-Extrudel

+ @ Cut-Extrude2 I

J. Coordinate System1

= *Left

1L

SolidWorks Premium 2014 x64 Edition Editing Part MMGS - 4

*Trimetic.

Figure 5-3: The defined reference frame is shown as Coordinate System1.

Next, the ground face is selected, as seen in Figure 5-4.

aasn@-9-v-eR-=-

§ FirstAlimunim (Default<

443 History
@) Sensors

(A Annotations
4= Material <not specifieq
3 Front Plane
%3 Top Plane
% Right Plane
1. Origin

AlEx

+@
@ Cut-Extrude2
. Coordinate System1

¢ :
I ol [ VioionSiuayi]

‘irstAlimunim Editing Part MMGS - 9

Figure 5-4: Selecting the ground face.

Then, following the steps explained in chapter four, the user input were selected as
follows, see Figure 5-5:

* Process Type: Scanning
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* offset value: 5mm
* offset direction: equal to the average of the normals of the two adjacent faces of
each edge

| Off-line Path Generation Add-On x|

Please select a refrence frame to be set as the global coordinate system and the
faces of the part that will be directly contacting the mounting table.

Specify the part's offset from the origin of the global
coordinate system

x-component [meters]: | ;g5
y-component [meters]: 0
z-component [meters]: | 7o

Update Working Table Dimentions |

Update Tool's Dimensions |

Update Spindle's/Scanner's Dimensior |

Process Type

" Edge Finishing

Offset Value

Offset distance from edges [millimeters]: 5

Approach angle:

(& Average vector of the normals of the two adjacent faces.

(" Normal to the normal of the adjacent face milled lastly.

Specify the order of which the faces were machined... | Run

Figure 5-5: User input for scanning Part one.

The part has a total of 21 edges, all convex. Excluding the six ground edges, the software
tries to generate a path to scan the remaining 15 edges. However, two of the edges turns
out to be unreachable in the given orientation, shown in red in Figure 5-6. Therefore, the
overall generated path goes over 13 edges of the part. The order at which these edges are
processed is given in Figure 5-6. The software took 19 seconds to generate the output

motion.
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Figure 5-6: The order of which the edges of part one are scanned.

The complete generated path for scanning the mentioned 13 edges can be found in
Appendix E.

5.3 Sample Part 2

This part represents the general characteristics of a casing part, i.e, pump casing, engine
casing etc., see Figure 5-7. The bounding box of the part is 250mmx200mmx23mm. For
the full technical drawing refer to appendix D.
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Figure 5-7: Trimetric view of part 2.

The objective is to generate a path for the end-effector in order to deburr the edges of the
given part. Since no actual deburring is taking place the part is directly mounted in the

working table without fixing it to a fixture.

First step is defining the position of the part with respect to the global coordinates system.
This is done by defining a reference frame and attach it to the part. Figure 5-8 shows such

reference frame.
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Figure 5-8: The defined reference frame is shown as Coordinate System1.

Next, the ground face is selected, as seen in Figure 5-9.

% Right Casing new filet 10 (Deta.
188 History
+ | @ sensors

Figure 5-9: Selecting the ground face.

Then, following the steps explained in chapter four, the user input were selected as

follows, see Figure 5-10:

* Process Type: Finishing
* offset value: Imm

* offset direction: Normal to the formation of burrs
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.Off—line Path Generation Add-On x

Please select a refrence frame to be set as the global coordinate system and the
faces of the part that will be directly contacting the mounting table.

Specify the part's offset from the origin of the global
coordinate system

x-component [meters]: [ g5
y-component [meters]: | g
z-component [meters]: | 5a

Update Waorking Table Dimentions |

Update Tool's Dimensions |

Update Spindle's/Scanner's Dimensior |

Process Type
(® Edge Finishing

(" Edge Scanning

Offset Value

Offset distance from edges [millimeters]: 1

Approach angle:

(" Average vector of the normals of the two adjacent faces.

(® Normal to the normal of the adjacent face milled lastly.

Specify the order of which the faces were machined... | Run

Figure 5-10: User input for scanning Part two.

The part has a total of 71 convex edges. Excluding the eight ground edges, the software
tries to generate a path to process the remaining 63 edges. All these edges are actually
reachable. Therefore, the overall generated path goes over all of the 63 edges. The order
at which these edges are processed is given in Figure 5-11.Moreover, the software took

45 seconds to generate the overall path.
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Figure 5-11: The order of which the edges of part two are deburred.

The complete generated path for deburring the mentioned 63 edges can be found in
Appendix E.

54 Sample Part 3

This part represents the general characteristics of a V6 engine block, see Figure 5-12. The
bounding box of the part is 200mmx150mmx100mm. For the full technical drawing refer
to appendix D.
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Figure 5-12: Trimetric view of part 3.

The objective is to generate a path for the end-effector in order to deburr the convex edges
of the given part. Since no actual deburring is taking place the part is directly mounted in

the working table without fixing it to a fixture.

First step is defining the position of the part with respect to the global coordinates system.
As discussed earlier, this is done by defining a reference frame and attach it to the part.

Figure 5-13 shows such reference frame.
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Figure 5-13: The defined reference frame is shown as Coordinate System1.

Next, the ground face is selected, as seen in Figure 5-14.

LANNS-F-~-QR-8-

B EngineBIockV (Defauit<-<(]
59 History
3 Sensors
(4] Annotations
4= Material <not specified>
% Front Plane
4 Top Plane.
% Right Plane
1. Origin
&l Yooss-Exvuce|
@ Cut-Extrucel
# @ Cut-Bxtrude2
3 Body-Move/Copyl
3 Body-Move/Copy2

3 Body-Move/Copy3
& () Sketent
2 Coordinate System1

Figure 5-14: Selecting the ground face.

Then, following the steps explained in chapter four, the user input were selected as

follows, see Figure 5-15:

* Process Type: Finishing
* offset value: Imm

* offset direction: Normal to the formation of burrs
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lOff-Iine Path Generation Add-On K

Please select a refrence frame to be set as the global coordinate system and the
faces of the part that will be directly contacting the mounting table.

Specify the part's offset from the origin of the global
coordinate system

x-component [meters]: | .gzs
y-component [meters]: | g
z-compenent [meters]: | g.g

Update Working Table Dimentions |

Update Tool's Dimensions |

Update Spindle's/Scanner's Dimensior |

Process Type
(@ Edge Finishing

(" Edge Scanning

Offset Value

Offset distance from edges [millimeters]: 1

Approach angle:

(" Average vector of the normals of the two adjacent faces.

® Normal to the normal of the adjacent face milled lastly.

Specify the order of which the faces were machined... | Run

Figure 5-15: User input for scanning Part three.

The part has a total of 24 convex edges. Excluding the four ground edges, the software
tries to generate a path to process the remaining 20 edges. Four of these edges turn to be
unreachable in the given orientation by the end-effector, shown in red in Figure 5-16.
Therefore, the overall generated path goes over 16 edges. The order at which these edges
are processed is given in Figure 5-16. Where the time needed by the software to complete

the path generation was 26 seconds.
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Figure 5-16: The order of which the edges of part three are deburred.

The complete generated path for deburring the mentioned 16 edges can be found in
Appendix E.
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CHAPTER 6

CONCLUSION

6.1 Discussion and Summary

The main goal of this study is to automatically generate a nominal collision-free path for
6-DoF robotic arm for performing edge finishing and scanning processes. This objective
was achieved by developing a software in the SolidWorks API using Visual Basic
programming language. ABB IRB2000 model was considered as the robotic manipulator
throughout the study. The performance of the software was verified by running tests on

several workpieces.

The system has five main logical steps for reaching the main objective, as described in
Chapters 2, 3, and 4. In the first step, all the processing motion segments are generated

and the ones that are collision-free are stored.

In the second step, all the starting and ending positions of each processing motions are
recognized and stored, referred to as critical positions, mainly for the generation of non-
processing motions, since each non-processing motion connects two of these critical

positions.
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In the third step, all possible non-processing motion segments are generated and again the
ones with no collision are stored in memory. This step is considered as one of the main
contributions of the study. The RFA motion approach reduces the complexity of both
calculating a motion between two positions and the number of calculations needed for

constructing all possible non-processing motions.

In the fourth step, a greedy search algorithm is utilized to find a suitable subset of non-
processing motions from the list of all possible non-processing motions. Such subset when
put together with the collision-free processing motions results in a connected overall path

that the robot is meant to execute.

In the fifth step, the overall path is transformed into motion commands and sent to the
ABB IRB2000 as a motion program that get stored in the memory of the robot and can be

executed at any time.

The study was verified by performing three sample runs on different workpieces. In all
three runs the algorithm was able to generate a path in less than a minute for each
workpiece, making it a fast off-line path generator algorithm for edge finishing and
scanning. Compared with the classical point-to-point teaching method, which takes
several hours to a day to perform, depending on the skill of the worker and the complexity
of the piece. While other off-line path generation approaches using the CAD model of the

considered workpiece, such as [2], need a processing time around three hours on average.
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6.2 Future Work

This study can be further extended to include any arbitrarily shaped edges. Different
approaches may be applied to achieve this objective. Discretizing the 3D curve of the edge
into small straight lines can be a solution. The sampling period may be of constant value

or a variable one that depends on the curvature of the curve at the sampled point.

More algorithms can be applied to generate the non-processing motions between critical
poses. RFA motion was developed and used in this study; however, many other different
algorithms can be implemented and a comparison may be made. Examples of such
algorithms can be artificial potential field approach [22], probabilistic road maps [21] and
artificial force field method [23]. Moreover, RFA motion algorithm can be modified by
utilizing one of the previously discussed algorithms to generate the retract/approach

motions, making RFA more efficient.

Different search algorithms can be utilized for solving the TSP problem. Although the
nearest neighbor algorithm gives a solution that on average is in the 25% of best solutions.
Some other heuristic algorithms, like Match Twice and Stitch method (MTS) [30],

discussed earlier, can be implemented.
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APPENDIX A

METHODS DEVELOPED AND USED IN THE SOFTWARE

A.1 SolidWorks Add-Ons Package

This software was developed in SolidWorks API using Visual Basic programming
language. Therefore, an object oriented approach is adopted. All the methods belong to
one of the main classes of the code, namely, MainWindow and PathGeneratorEngine. The

general purpose of each class is as follows:

e MainWindow: Responsible for the graphical interface with user, both for inputs
and outputs.

e PathGeneratorEngine: Calculates both the processing and non-processing motions
of the end-effector and checks if any of these motions have collisions. It also
generates the overall path by selecting a subset from the non-processing motions

in order to yield a connected motion.

A.1.1 MainWindow Methods

SelectEdges(): Performs the default edge selection.
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OrderFaces(ByRef swSelectMgr As SldWorks.SelectionMgr): This methods assigns the
order of which the faces were machined. This is used when the approach angle is chosen

to be normal to the first machined face between the two adjacent faces of the given edge.

CreateTxtFile(Collection OverallPath): Creates a text file of the overall path in the syntax

given by ABB mentioned earlier.

A.1.2 PathGeneratorEngine Methods

CalculateProcessMotions(NumberOfLines As Integer, I() As Line): Calculates the

processing motion of each selected edge.

InverseKinematics(Rot As Variant, r As Variant): this method performs the positional
inverse kinematics of ABB IRB2000 for a given position.

BuildLink(ByVal Link As LinkPose, ByVal LinkNumber As Integer): This method is
called six times, each time for creating the cuboid representing one of the six links of the

robot arm.

CalculateLinksPose(theta As Variant): This is the positional forward kinematics analysis.
Where the methods decides on the position of each link for a given joint angles.

GetProcessMotionsOfReachableEdges(NumberOfLines As Integer, I() As Line): Check

each processing motion for collisions and takes the ones that are collision-free.
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GetCriticalPoses(Collection ProcessMotions): Creates a critical pose instant for each

starting or ending position of a processing motion.

GetRetractionMotionFromPoseAndCheckCollision(Pose As CriticalPose): Calculates the
retraction motion of the given critical pose and check it for collisions.

GenerateNonProcessMotionBetween(StartPose ~ As  CriticalPose, EndPose  As
CriticalPose): This method generates the non-processing motion between the given start

and end positions.

GetOverallPath(ProcessMotion As Collection, AlINonProcessMotions As Motion()):
This is for the search algorithm applied for selecting a suitable subset from the list of all

non-processing motions to yield a final overall connected path.

A.2 ABB User Interface Software

As mentioned earlier this software was developed in C++ language. Therefore, an object
oriented approach is adopted. All the methods belong to one of the main classes of the
code, namely, MainWindow, ADLP10Protocol and ARAPProtocol. The general purpose
of each class is as follows:

¢ MainWindow: Responsible for the graphical interface with user, both for inputs
and outputs.

e ADLP10Protocol: Establishes the connection and maintains it as long as needed.
Makes sure each telegram received by any party is fully understood and if not act
accordingly. Finally it ends the connection once all the data is exchanged.

e ARAPProtocol: Transform the command given by the user into telegrams, which

is later sent by ADLP10Protocol to the robot.
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A.2.1 MainWindow Methods

OpenCloseSerialPort(QString COMname): Toggles the state of the serial port specified
by COMname.

UpdateMsgBoxes(): This method checks which tab is activated an update all the widgets
in that tab according to the data received by ABB.

A.2.2 ADLP10Protocol Methods

EstablishContactAndSendTelegram(QSerialPort *serial, QList<QByteArray>
Telegram): Establish the connection between the computer and ABB robot and then send

the list of telegrams in ordered manner.

ConcludeTelegram(QSerialPort *serial): Concludes the telegram by calculating the Bit
Check Sum (BCS) and sending it to the robot followed by ETX.

DataRecieved(QSerialPort *serial): This method takes the received data and interprets it
according to the state of the communication and decides if the received data is actual

information or communication data and acts accordingly.

SendAcknowledgment(QSerialPort *serial): Sending ACK byte to ABB to acknowledge
a previously sent telegram or order from the ABB.
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TerminateContact(QSerialPort *serial): This method is used at the very end of the

communication stage, it basically terminates the connection.

A.2.3 ARAPProtocol Methods

UpdateStatusCommand(): Constructs a telegram for function 19 of ARAP, which requires
the robot to give its status.

GetAnglesCommand (): Constructs a telegram for function 44 of ARAP, which requires

the robot to give an extended status message that includes the angles of its joints.

MovementCommand(): Constructs a telegram for function 24 of ARAP, which commands
the robot to move to the given position. All the parameters of the motion is retrieved from
the text boxes filled by the user.

GoHomeCommand(): Constructs a telegram for function 2 of ARAP, which commands

the robot to execute a program in its memory. In this case it is 2202 program.

ConstructTelegramsOfPathProgram(QByteArray  AssemblyProgram,  QByteArray

ProgNumber): Translate the normal syntax of the path program to assembly format.
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APPENDIX B

USED ARAP PROTOCOL’S FUNCTIONS

This appendix shows the syntax or structure of the functions, which is used in this study,
to communicate and command the ABB IRB2000 robot. Each line is one byte of

information. These telegrams are sent through a USB port.

Function 1: Transfer of program/ block of programs from the computer to robot. Used to

transfer the path program.

NOB

DESTINATION ADDRESS

SOURCE ADDRESS

FUNCTION CODE = 1

Not used 0/1] 0 | 1
FUNCTION SUFFIX

PROGRAM NUMBER

BLOCK NUMBER

""ROBOT PROGRAN

-
WNHOVONOUTS WN O

NOB-1

Figure B-1: Command telegram of function 1.
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7 6 5 4 3 2 1 0

\ NOB = 12 (10 if ERROR CODE)

DESTINATION ADDRESS
SOURCE ADDRESS
| FUNCTION CODE = 1
Not used ] 0 JoA] 2
| FUNCTION SUFFIX = 0/1

’ PROGRAM NUMBER (or ERROR CODE)

_oOoOwvo~NOUMS~LWNEO

‘ BLOCK NUMBER

[y

Figure B-2: Response telegram of function 1.

Function 2: Start of robot Program. Used to start the generated path and to command the

robot to go to home position.

7.8 3 &% Bl 2¢{1°0

NOB

DESTINATION ADDRESS
SOURCE ADDRESS

FUNCTION CODE = 2

Not used 0] 0] 1
FUNCTION SUFFIX

PROGRAM NUMBER

VCOoONONPWNEREO

Figure B-3: Command telegram of function 2.

7- 68 5 & 3 -2 1 ©

NOB = 10

DESTINATION ADDRESS

SOURCE ADDRESS

FUNCTION CODE = 2

Not used | 0 |0/1] 2
FUNCTION SUFFIX

PROGRAM NUMBER (or ERROR CODE)

VCONOTNMPWLWNEO

Figure B-4: Response telegram of function 2.
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Function 19: Requests the status of the robot. Used to fill the information in the

automatic communication tab in the ABB user interface software.

IR IO SR Bl aale Sl S

NOB = 8 0
1
DESTINATION ADDRESS 2
SOURCE ADDRESS 3
FUNCTION CODE = 19 4
Not used 0] 0| 1 5
FUNCTION SUFFIX 6
: 7
Figure B-5: Command telegram of function 19.

7 6 5. 32 1 O
NOB = 62 0
1
DESTINATION ADDRESS 2
SOURCE ADDRESS 3
FUNCTION CODE = 19 4
Not used |ORT| 0 | O | 2 5
FUNCTION SUFFIX g
DUMMY 8
) 9
DUMMY 10
11
PROGRAM NUMBER 12
13
INSTRUCTION NUMBER 14
15
Actual TCP 16
Actual FRAME 17
IR | IR [PU |[KEY| M O D E 18
DUMMY 19
COORDINATES for actual ROBOT 20
POSITION, 42 bytes . 21
22
61

Figure B-6: Response telegram of function 19.
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Function 24: Maneuvering of robot from the user computer. Used in the automatic
communication tab in the ABB user interface software to command to the robot to go

the desired position from its current position.

7 6 5 4 3 2 =1 0

NOB = 60 0
1

DESTINATION ADDRESS 2
SOURCE_ADDRESS 3
FUNCTION CODE = 24 4
Not used |ORT| 0 | O | 1 5
FUNCTION SUFFIX = 0-3 6
' 7

PROGRAM NUMBER 8
9

INSTRUCTION NUMBER 10
11

HANDPOS 12
MOVE DATA 13
VELOCITY (mm/s) 14
15

VPROG (%) 16
8 o 17
COORDINATES, 42 bytes 18
19

20

59

Figure B-7: Command telegram of function 24.

7 6 5 4 3 2 1 o0

NOB = 12 (10 if ERROR CODE)

o= O

DESTINATION ADDRESS
SOURCE ADDRESS

FUNCTION CODE =
Not used |
FUNCTION SUFFIX

7%
0 [0/1] 2
- 0-3

PROGRAM NUMBER (or ERROR CODE)

INSTRUCTION NUMBER

HOWwWoO~NO U & W

-

Figure B-8: Response telegram of function 24.
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Function 44: Requests an extended status of the robot. Used to get the current joint

angles values in the automatic communication tab in the ABB user interface software.

. 6 > 4- 3. 2 10

NOB = 8 0
e _ 1
DESTINATION ADDRESS 2
SOURCE ADDRESS 3
FUNCTION CODE = 44 4
Not used ] 0] 0| 1 5
FUNCTION SUFFIX 6
7
Figure B-9: Command telegram of function 44.
7 6 5 4 3 2 1 0
NOB = 50 0
: 1
DESTINATION ADDRESS 2
SOURCE ADDRESS 3
FUNCTION CODE = 44 4
Notused [ O[] O0OJO] -2 5
FUNCTION SUFFIX ;:
AXTS POSITION IN RADIANS 8
(FI1-FI6) 24 bytes
31
ORDERED ROBOT POSITION 32
x,Y,2) 6 bytes
37
COORD | REFP | |S/T| 38
ACT. SOFT SERVO NO 39
NOMINAL SPEED 40
(Vg) 2 byte 41
MAXTMUM SPEED 42
(Vm) 2 byte 43
POS. INSTR. SPEED (or TIME) 44
(Vp in Z or T in sec) 2 byte | 45
SPEED CORRECTION, OVERRIDE 46
(Vo) 2 byte 47
TCP VELOCITY 48
(Vtep) 2 byte 49

Figure B-10: Response telegram of function 44.
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APPENDIX C

FLOWCHART OF PATH GENERATION ALGORITHM

Take the desired edges to be
scanned /finished

Do the following for each pair of
CPs

1
Calculate a Processing Motion for
each selected edge
1

Do the following for each
calculated motion

Is the

meotion
collision

Mark edge as unreachable

free?

Store motion in memory

I
Define two Critical Positions (CP)
for each Processing Motion
I
Generate a Retraction Motion for
each CP
1

Do the following for each
Retraction Motion

Is the

motion
collision

Mark corresponding edge
as unreachable

free?

Store motion in memory

|

Does the
pair share

Does the
pair share
avertex on

a
the part? reachable

Does any
angle
exceeds it
physical

Generate motion

Does any
angle
exceeds it
physical

Generate RFA
Motion

Store generated motion

| Construct TSP graph |

Solve TSP and get the
overall path

T
| End |
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APPENDIX D

TECHNICAL DRAWING

117



i |

1 1

| i =
i |
SO [ B M B Wi 1S
I |

2 28 25 D
2588 28.25 2588_

—

88

) H i
@14 i Ty Lt
_ @ @ F(,D/L_”@} I
1 'no s 1 o]
[ Ay 1 o0
D i - -l
+ (2= SE N &
. {} S )
o 40
80
o —
il e oonc e
SURF ACE AMISH- EDGES
TOLERAMNCES:
UMEAR:
AMTLLAR:
FANE AGHMATLRE CWTE MLE:
CRAWM| M ahmaud Mamar 1400 .
oo [ e Spindle Holder, Part 2
AFFYD| O Kordsassn Ai45 D& f
MG
a MATERIAL: (s} =1 =R
I-PCABRS ]
WEIGHT: SCALENT SHEET 10F 1

118



&0

L%
=0
L
Cr
3l
] --.______-__I
T
'}
=
= .
=
=0 g =
!
P4 &5
B 125 N o
e oo s | s e DT SE ALETR ARG -~
SURFACERAMNGH EDGES
TOLERAMCES:
rEAR:
ANGLLAR:
HANE ACHATRE DATE e
Crawh Mahmoud Memar VS
CHOD) | Or Korisenen a0 P 'I' O
AFPVD| Or Korwksmven T Or n e
MFG
QA MATERLAL: —
Ad
Alurririvim ]
WEIGHT: SCALE12 | seericen

119




10 70 70 10 &0 10
1
= s
1 Ve ' N i
g
D/
of ®15 R10 7 2 T !
/
| f’f ~ o o o=
| T = D|<
N ”f| 4 A B
qﬁ//’ do
g L
(8]
\ ) @
g
l AN i SN\ /| 1
4 ~ —
50 ‘ 130 | 50
250
T T TT H T T T T T L] O '
) ool | Pt R N T | A =
R e L
I
DRAWT i oo Marmer REE Uenk ) :
o [ e v Part Two
APFVT| D Kordsewen P
[=7% MATERIAL: N WG MO .| AA
Alvmirum
WEIGHT: SCALEET | HETICE




Lo

200

i
7071

Q7

104

7071

Ad

FEVEDM

Part Three

Do MOT 30 ALE DRAWIRNG

1E:
OGS MO
SCALETD

121

BREAK, SHARF

DEBUR AT
EDCES

Alurrinivem

MATERLAL
WEICHT:

DATE

VDS

44ya0E
4af0s

AREH:
SIGRATURE

PAME

UHLETS OHERWASE SFEQIRED:
DIMEREIDRE ARE I ML LM ETERS
FURFACE AMEH
TOLER AMCES:

LREAR:

AMNGIULAR:
DRAWN| Mahrm o Namear
CHED | Dr.Karuksewen

APV | Dr. Kok seearn

MFS

Qs



122



APPENDIX E

GENERATED PATHS IN CHAPTER 5

E.1 Partl

POS=(872.
POS=(868.
POS=(868.
POS=(867.
POS=(816.
POS=(814.
POS=(785.
POS=(784.
POS=(784.
POS=(787.
POS=(867.
POS=(868.
POS=(913.
POS=(916.
POS=(916.
POS=(915.
POS=(886.
POS=(884.
POS=(868.
POS=(884.
POS=(885.
POS=(885.
POS=(924.
POS=(824.
POS=(721.
POS=(775.
POS=(814.
POS=(814.
POS=(775.
POS=(660.
POS=(640.
POS=(69@.
POS=(782.
POS=(782.
POS=(690.
POS=(585.
POS=(664.
POS=(713.
POS=(784.
POS=(784.
POS=(713.
POS=(614.
POS=(95@.

4,47.5,1020.0,0.000000,-0.667414,0.000000,0.744687) V=100% PATH
0,47.5,980.0,0.000000,-0.667414,0.000000,0.744687) V=100% PATH
9,-47.5,980.0,0.000000,-0.667414,0.000000,0.744687) V=20% PATH
5,-51.0,978.5,0.653281,-0.270598,0.270598,0.653281) V=100% PATH
5,-51.0,978.5,0.653281,-9.270598,0.270598,0.653281) V=20% PATH
9,-50.0,978.5,0.856519,-0.143445,0.354782,0.346303) V=100% PATH
9,-20.0,978.5,0.856519,-0.143445,0.354782,0.346308) V=20% PATH

5

@,-17.5,978.5,0.923880,0.000000,0.382683,0.000000) V=100% PATH
®,47.5,978.5,0.923880,0.000000,0.382683,0.000000) V=20% PATH

5,51.0,978.5,0.653281,0.270598,0.270598,-0.653281) V=100% PATH
5,51.0,978.5,0.653281,0.270598,0.270598,-0.653281) V=20% PATH

3,51.0,978.5,0.619854,0.197698,0.340266,-0.678907) V=100% PATH
3,51.0,968.5,0.619854,0.197698,0.340266,-0.678907) V=20% PATH

4,47.5,968.1,0.000000,-0.331631,0.000000,0.943409) V=100% PATH
4,-17.5,968.1,0.000000,-0.331631,0.000000,0.943409) V=20% PATH
6,-19.8,968.2,0.326056,-0.293124,0.195974,0.877132) V=100% PATH
6,-49.8,974.7,0.326056,-0.293124,0.195974,0.877132) V=20% PATH
3,-51.0,974.9,0.619854,-0.197698,0.340266,0.673907) V=100% PATH
3,-51.0,978.5,0.619854,-0.197698,0.340266,0.678907) V=20% PATH
3,-51.0,974.9,0.619854,-0.197698,0.340266,0.673907) V=100% PATH
5,-52.1,971.4,0.390353,0.390353,0.589597,0.589597) V=100% PATH

1,0

5,-52.1,908. .390353,0.390353,0.589597,0.589597) V=20% PATH
5,-144.2,908.1,0.911461,0.030491,0.404459,-0.068713) V=100% PATH
4,-129.0,1020.0,0.911461,0.030491,0.404459,-0.068713) V=100% PATH
7,-137.8,1020.0,0.938985,0.019872,0.338942,-0.055051) V=100% PATH
5,-144,2,975.0,0.938985,0.019872,0.338942,-0.055051) V=100% PATH
5,-52.1,975.0,0.589597,-0.589597,-0.390353,0.390353) V=100% PATH
5,-52.1,908.1,0.589597,-0.589597,-0.390353,0.390353) V=20% PATH
5,-144.2,908.1,0.925632,0.021919,0.373871,-0.054268) V=100% PATH
4,-130.6,1020.0,0.925632,0.021919,0.373871,-0.054263) V=100% PATH
5,-47.2,1020.0,0.930413,0.033988,0.353821,-0.089377) V=100% PATH
2,-56.9,975.0,0.930413,0.033988,0.353821,-0.089377) V=100% PATH
9,-19.4,975.0,0.694098, -0.694098, -0.135010,0.135010) V=100% PATH
9,-19.4,908.1,0.694098,-0.694098,-0.135010,0.135010) V=20% PATH
2,-56.9,908.1,0.915073,0.037636,0.391787,-0.087903) V=100% PATH
4,-36.5,1020.0,0.915073,0.037636,0.391787,-0.087903) V=100% PATH
6,126.0,1020.0,0.930584,0.015755,0.363508,-0.040333) V=100% PATH
3,121.7,975.0,0.930584,0.015755,0.363508,-0.040333) V=100% PATH
©,51.0,975.0,0.653281,-0.653281,0.270598,-0.270598) V=100% PATH
9,51.0,908.1,0.653281,-0.653281,0.270598,-0.270598) V=20% PATH
3,121.7,908.1,0.911567,0.017721,0.408864,-0.039509) V=100% PATH
0,130.4,1020.0,0.911567,0.017721,0.408864,-0.039509) V=100% PATH
©,0.0,1585.0,1.000000,0.000000,0.000000,0.000000) V=100% PATH

Figure E-1: The generated path to scan the mentioned 13 edges of part one.
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E.2 Part 2

P0OS=(963.0,-22.7,868.0,0.000000,0,707107,0.000000,-0.707107) V=100% PATH
P0OS=(963.0,-22.7,826.0,0.000000,0,707107,0.000000,-0.707107) V=100% PATH
P0S=(963.0,22.7,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
P0S=(963.0,22.7,826. .000000,0,707107,0.000000,-0.707107) V=100% PATH
P0S=(963.0,22.7,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
P0OS=(962.7,24.8,826. .0000002,0,707107,0.000000,-0.707107) V=20% CIRCLE
P0OS=(961.9,26.7,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
POS=(960.7,28.3,826. .000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
P0S=(959.0,29.6,826. .000000,0.707107,0.000000,-0.707107) V=20% PATH
P0S=(959.0,29.6,826. .000000,0.707107,0.000000,-0.707107) V=100% PATH
P0S=(959.0,29.6,826. .000000,0.707107,0.000000,-0.707107) V=20% PATH
P0OS=(954.7,33.9,826. .000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
P0S=(953.0,39.7,826. .000000,0.707107,0.000000,-0.707107) V=20% PATH
P0OS=(954.4,45.6,826. .000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
P0S=(958.5,50.1,826. .000000,0.707107,0.000000,-0.707107) V=20% PATH
P0S=(958.5,50.1,826. .000000,0.707107,0.000000,-0.707107) V=100% PATH
P0S=(958.5,50.1,826. .000000,0.707107,0.000000,-0.707107) V=20% PATH
POS=(960.4,51.7,826. .000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
P0S=(961.6,53.8,826. .000000,0.707107,0.000000,-0.707107) V=20% PATH
P0OS=(962.2,56.2,826. .000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
P0OS=(962.0,58.7,826. .000000,0.707107,0.000000,-0.707107) V=20% PATH
P0OS=(962.0,58.7,826. .000000,0.707107,0.000000,-0.707107) V=100% PATH
P0OS=(962.0,58.7,826. .000000,0.707107,0.000000,-0.707107) V=20% PATH
P0OS=(958.2,68.5,826. .000000,0.707107,0.000000,-0.707107) V=20% CIRCLE

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

b

b

b

b

b

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

P0OS=(951.9,76.9,826. .000000,0,707107,0.000000,-0.707107) V=20 PATH
P0OS=(943.5,83.2,826. .0000002,0,707107,0.000000,-0.707107) V=20% CIRCLE
P0S=(933.7,87.8,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
P0S=(933.7,87.8,826. .000000,0,707107,0.000000,-0.707107) V=100% PATH
P0S=(933.7,87.8,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
P0OS=(931.2,87.2,826. .0000002,0,707107,0.000000,-0.707107) V=20% CIRCLE
P0OS=(928.8,86.6,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
P0S=(926.7,85.4,826. .0000002,0,707107,0.000000,-0.707107) V=20% CIRCLE
P0OS=(925.1,83.5,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
P0OS=(925.1,83.5,826. .000000,0,707107,0.000000,-0.707107) V=100% PATH
P0OS=(925.1,83.5,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
P0S=(920.6,79.4,826. .0000002,0,707107,0.000000,-0.707107) V=20% CIRCLE
P0OS=(914.7,78.8,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
POS=(988.9,79.7,826. .0000002,0,707107,0.000000,-0.707107) V=20% CIRCLE
POS=(984.6,84.8,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
POS=(984.6,84.8,826. .000000,0,707107,0.000000,-0.707107) V=100% PATH
POS=(984.6,84.8,826. .0000002,0,707107,0.000000,-0.707107) V=20% PATH
POS=(983.3,85.7,826. .0000002,0,707107,0.000000,-0.707107) V=20% CIRCLE
P0OS=(901.7,86.9,826. .000000,0.707107,0.000000,-0.707107) V=20% PATH

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

-

-

o0 0 0 00 60 0 0 0 0 000 09 0 0 0.0 0 @ @@ 0 e @O0 @ @ 0 O &
-
o0 0 0 00 0 0 0 0 0 00 0 9 00 0.0 0 0@ @@ 0@ e @O @ 0 O @

Figure E-2: First part of the generated path to deburr the mentioned 63 edges of part two.
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POS=(899.
POS=(897.
POS=(897.
POS=(802.
POS=(802.
POS=(802.
POS=(800.
POS=(798.
POS=(796.

POS=(795
POS=(795
POS=(795

POS=(791.
POS=(785.

POS=(779

POS=(774.
POS=(774.
POS=(774.
POS=(773.
POS=(771.
POS=(768.
POS=(766.
POS=(766.
POS=(766.
POS=(756.
POS=(748.
POS=(741.
POS=(738.
POS=(738.
POS=(738.
POS=(737.

POS=(738

POS=(739.
POS=(741.
POS=(741.
POS=(741.
POS=(745.
POS=(747.
POS=(745.
POS=(741.
POS=(741.
POS=(741.
POS=(739.

3,88.
3,88.
2,87.
3,86.
7,85.
.4,84,
.4,84,
.4,84,
1,79.
3,78.
4,79
9,83.
9,83.
9,83.

3,85

2,86.
8,87.
3,87.
3,87.
3,87.
5,83.
1,76.
8,68.
@,58.
@,58.
@,58.
8,56.
.4,53.
6,51.
5,50.
5,50.
5,50.
6,45.
@,39.
3,33.
@,29.
@,29.
@,29.
3,28.

.7,826.
.0,826.
.0,826.
.0,826.
@,826.
@,826.
7,826.
9,826.
7,826.
@,826.
@,826.
@,826.
7,826.
@,826.
.4,826.
5,826.
5,826.
5,826.
.4,826.
6,826.
2,826.
@,826.
@,826.
@,826.
2,826.
9,826.
5,826.
7,826.
7,826.
7,826.
2,826.
8,826.
7,826.
1,826.
1,826.
1,826.
6,826.
7,826.
9,826.
6,826.
6,826.
6,826.
3,826.

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

[os T v I o T v Y o I o Y v T v TR 0w T o T o Y o T o T v T v L 0w T o T o B TR o T v Y e TR 0w T o T o T o T o T v T ow T o T o T o T o T o T v T e L 0w T o N T o Y o T v T oo

b

s T v I v T v Y o Y o S v T v TRRL 0w L o T o T o T o T v T e L 0w T o R o T TR s T v Y e T 0w T o L T o T T v T v Y o R o T T o T T v T e L 0w T o T Y v Y o TR v T oo

.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.
.0geeea,a.

7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.
7071e7,8.

geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.
geecea, -9.

V=20% CIRCLE
V=20% PATH
V=100% PATH
V=20% PATH
V=100% PATH
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=100% PATH
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=100% PATH
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=100% PATH
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=100% PATH
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=100% PATH
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=20% CIRCLE
V=20% PATH
V=100% PATH
V=20% PATH
V=20% CIRCLE

Figure E-3: Second part of the generated path to deburr the mentioned 63 edges of part two.
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POS=(737.0,-22.7,826.0,0.000000,0.707107,0.000000,-0,707107) V=28% PATH
POS=(737.0,-22.7,826.0,0.0800000,0.707107,0.000000,-0.707107) V=10% PATH
POS=(737.0,-22.7,826.0,0.000000,0.707107,0.000000,-0,707107) V=28% PATH
POS=(737.3,-24.8,826.0,0.000000,0.707107,0.000000,-0,707107) V=20% CIRCLE
P0O5=(738.1,-26.7,826.0,0.000000,0.707107,0.000000, -0.707107) V=20% PATH
P0OS=(739.3,-28.3,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
POS=(741.0,-29.6,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
POS=(741.0,-29.6,826.0,0.000000,0.707107,0.000000,-0.707107) V=1088% PATH
POS=(741.0,-29.6,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
POS=(745.3,-33.9,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
POS=(747.0,-39.7,826.0,0.000000,0.707107,0.000000,-0.707107) V=208% PATH
POS=(745.6,-45.6,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
POS=(741.5,-50.1,826.0,0.000000,0.707107,0.000000, -0.707107) V=20% PATH
POS=(741.5,-50.1,826.0,0.200000,0.707107,0.000000,-0.707107) V=10% PATH
POS=(741.5,-50.1,826.0,0.000000,0.707107,0.000000,-0,707107) V=28% PATH
P0OS=(739.6,-51.7,826.0,0.0200000,0.707107,0.000000,-0,707107) V=20% CIRCLE
POS=(738.4,-53.8,826.0,0.000000,0.707107,0.000000,-0,707107) V=28% PATH
POS=(737.8,-56.2,826.0,0.000000,0.707107,0.000000,-0,707107) V=20% CIRCLE
POS=(738.0,-58.7,826.0,0.000000,0.707107,0.000000, -0,707107) V=28% PATH
POS=(738.0,-58.7,826.0,0.0200000,0.707107,0.000000,-0.707107) V=10% PATH
POS=(738.0,-58.7,826.0,0.000000,0.707107,0.000000, -0,707107) V=28% PATH
PO5=(741.8,-68.5,826.0,0.200000,0.707107,0.000000,-0.707107) V=20% CIRCLE
POS=(748.1,-76.9,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
POS=(756.5,-83.2,826.0,0.000000,0.707107,0.000000,-0.707107) V=28% CIRCLE
POS=(766.3,-87.0,826.0,0.000000,0.707107,0.000000,-0.707107) V=208% PATH
POS=(766.3,-87.0,826.0,0.000000,0.707107,0.000000,-0.707107) V=18@% PATH
POS=(766.3,-87.0,826.0,0.000000,0.707107,0.000000,-0.707107) V=208% PATH
POS=(768.8,-87.2,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
POS=(771.2,-86.6,826.0,0.000000,0.707107,0.000000,-0.707107) V=208% PATH
POS=(773.3,-85.4,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
POS=(774.9,-83.5,826.0,0.000000,0.707107,0.000000, -0,707107) V=28% PATH
POS=(774.9,-83.5,826.0,0.0800000,0.707107,0.000000,-0.707107) V=10% PATH
POS=(774.9,-83.5,826.0,0.000000,0.707107,0.000000, -0,707107) V=28% PATH
POS=(779.4,-79.4,826.0,0.0200000,0.707107,0.000000,-0,707107) V=20% CIRCLE
POS=(785.3,-78.0,826.0,0.000000,0.707107,0.000000, -0,707107) V=28% PATH
POS=(791.1,-79.7,826.0,0.0200000,0.707107,0.000000,-0,707107) V=20% CIRCLE
POS=(795.4,-84.0,826.0,0.000000,0.707107,0.000000, -0,707107) V=28% PATH
POS=(795.4,-84.0,826.0,0.0200000,0.707107,0.000000,-0.707107) V=10% PATH
POS=(795.4,-84.0,826.0,0.000000,0.707107,0.000000,-0,707107) V=28% PATH
POS=(796.7,-85.7,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
POS=(798.3,-86.9,826.0,0.000000,0.707107,0.000000,-0.707107) V=208% PATH
POS=(8e®.2,-87.7,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% CIRCLE
POS=(86©2.3,-88.0,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
Figure E-4: Third part of the generated path to deburr the mentioned 63 edges of part two.
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POS=(897.7,-88.0,826.0,0.000000,0.707107,0.000000,-0.707187) V=100% PATH
POS=(897.7,-88.0,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% PATH
POS=(899.8,-87.7,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% CIRCLE
POS=(901.7,-86.9,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% PATH
POS=(903.3,-85.7,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% CIRCLE
POS=(904.6,-84.0,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% PATH
POS=(904.6,-84.0,826.0,0.000000,0.707107,0.000000,-0.707187) V=100% PATH
POS=(904.6,-84.0,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% PATH
POS=(908.9,-79.7,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% CIRCLE
P0S=(914.7,-78.0,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% PATH
P05=(920.6,-79.4,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% CIRCLE
P0S=(925.1,-83.5,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% PATH
P0S=(925.1,-83.5,826.0,0.000000,0.707107,0.000000,-0.707187) V=100% PATH
P0S=(925.1,-83.5,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% PATH
P0S=(926.7,-85.4,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% CIRCLE
P0S=(928.8,-86.6,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% PATH
P05=(931.2,-87.2,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% CIRCLE
P0S=(933.7,-87.0,826.0,0.000000,0.707107,0.000000,-0.7071087) V=20% PATH
P05=(933.7,-87.0,826.0,0.000000,0.707107,0.000000,-0.707187) V=100% PATH
P0S=(933.7,-87.0,826.0,0.000000,0.707107,0.000000,-0.7071087) V=20% PATH
P0S=(943.5,-83.2,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% CIRCLE
P0S=(951.9,-76.9,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% PATH
P0S=(958.2,-68.5,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% CIRCLE
P0S=(962.90,-58.7,826.0,0.000000,0.707107,0.000000,-0.707187) V=20% PATH
P0S=(962.0,-58.7,826.0,0.000000,0.707107,0.000000,-0.707187) V=100% PATH
P0S=(962.90,-58.7,826.0,0.000000,0.707107,0.000000,-0.787187) V=20% PATH
P0OS=(962.2,-56.2,826.0,0.000000,0.707107,0.000000,-0.787107) V=20% CIRCLE
P0OS=(961.6,-53.8,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
POS=(960.4,-51.7,826.0,0.000000,0.707107,0.000000,-0.7871087) V=20% CIRCLE
P0S=(958.5,-50.1,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
P0S=(958.5,-50.1,826.0,0.000000,0.707107,0.000000,-0.707107) V=100% PATH
P0S=(958.5,-50.1,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
POS=(954.4,-45.6,826.0,0.000000,0.707107,0.000000,-0.787107) V=20% CIRCLE
P0S=(953.0,-39.7,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
POS=(954.7,-33.9,826.0,0.000000,0.707107,0.000000,-0.787107) V=20% CIRCLE
P0S=(959.0,-29.6,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
P0S=(959.0,-29.6,826.0,0.000000,0.707107,0.000000,-0.707107) V=100% PATH
P0S=(959.0,-29.6,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
POS=(960.7,-28.3,826.0,0.000000,0.707107,0.000000,-0.7871087) V=20% CIRCLE
P0OS=(961.9,-26.7,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
POS=(962.7,-24.8,826.0,0.000000,0.707107,0.000000,-0.787107) V=20% CIRCLE
P0S=(963.0,-22.7,826.0,0.000000,0.707107,0.000000,-0.707107) V=20% PATH
P0OS=(963.0,-22.7,868.0,0.000000,0.707107,0.000000,-0.707107) V=100% PATH
Figure E-5: Fourth part of the generated path to deburr the mentioned 63 edges of part two.
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@,-34.5,826.0,0.500000,0.500000,0.500000, -0,500000) V=20% PATH
9,-36.1,826.0,0.500000,0.500000,0.500020,-0,500000) V=20% CIRCLE
5,-40.0,826.0,0.500000,0.500000,0.500000, -0.500000) V=207% PATH
9,-43.9,826.0,0.500000,0.500000,0.500020,-0,500000) V=20% CIRCLE
@,-45.5,326.0,0.500000,0.500000,0.500000, -0.500000) V=20% PATH
1,-43.9,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% CIRCLE
5,-40.9,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% PATH
1,-36.1,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% CIRCLE
®,-34.5,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% PATH
®,-34.5,868.0,0.500000,0.500000,0.500000, -0.500000) V=100% PATH
®,-50.0,868.0,0.500000,0.500000,0.500000, -0.500000) V=100% PATH
®,-50.0,826.0,0.500000,0.500000,0.500000, -0.500000) V=100% PATH
®,-50.9,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% PATH
©,-69.9,826.0,0.500000,0.500000,0.500020,-0,500000) V=20% CIRCLE
8,-86.8,826.0,0.500000,0.500000,0.500000, -0,500000) V=20% PATH
9,-98.9,826.0,0.500000,0.500000,0.500020,-0,500000) V=20% CIRCLE
@,-102.0,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
0,-102.0,826.0,0.500000,0.500000,0.500000, -0,500000) V=100% PATH
@,-102.0,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
0,-102.0,826.0,0.500000,0.500000,0.500000, -0,500000) V=100% PATH
@,-102.0,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
1,-98.0,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% CIRCLE
2,-86.8,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
©,-69.9,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% CIRCLE
®,-50.9,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% PATH
®,-50.0,826.0,0.500000,0.500000,0.500000, -0.500000) V=100% PATH
®,50.0,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% PATH
©,50.0,826.0,0.500000,0.500000,0.500000, -0.500000) V=100% PATH
®,50.0,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% PATH
©,69.9,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% CIRCLE
2,86.8,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
1,98.9,826.0,0.500000,0.500008,0.5000008, -0.500000) V=20% CIRCLE
©,102.0,826.0,0.500000,0.500000,0.500000, -0,500000) V=20% PATH
©,102.0,826.0,0.500000,0.500000,0.500000,-0,500000) V=100% PATH
©,102.0,826.0,0.500000,0.500000,0.500000, -0,500000) V=20% PATH
©,102.0,826.0,0.500000,0.500000,0.500000,-0,500000) V=100% PATH
©,102.0,826.0,0.500000,0.500000,0.500000, -0,500000) V=20% PATH
9,98.9,826.0,0.500000,0.500008,0.500000, -0.500000) V=20% CIRCLE
8,86.8,826.0,0.500000,0.500000,0.500020,-0.500000) V=20% PATH
©,69.9,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% CIRCLE
®,50.0,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% PATH
©,50.0,826.0,0.500000,0.500000,0.500000, -0.500000) V=100% PATH
®,-50.9,826.0,0.500000,0.500000,0.500000, -0.500000) V=20% PATH

Figure E-6: Fifth part of the generated path to deburr the mentioned 63 edges of part two.
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Figure E-7: Sixth part of the generated path to deburr the mentioned 63 edges of part two.
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Figure E-8: Seventh part of the generated path to deburr the mentioned 63 edges of part two.
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Figure E-9: Eighth part of the generated path to deburr the mentioned 63 edges of part two.
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©,0.0,816.0,0.500000,0,500000,0,.500000,-0.500000) V=20% PATH
2,-26.2,816.9,0.500000,0,500000,0.500000, -0.500000) V=20% CIRCLE
@,-37.9,816.0,0.500000,0,500000,0.500000, -0.500000) V=20% PATH
8,-26.2,816.9,0.500000,0,500000,0.500000, -0.500000) V=20% CIRCLE
©,0.0,816.0,0.500000,0,500000,0,.500000,-0.500000) V=20% PATH
8,26.2,816.0,0.500000,0,500000,0.500000,-0.500000) V=20% CIRCLE
©,37.0,816.0,0.500000,0,500000,0.500000,-0.500000) V=20% PATH
©,37.0,868.0,0.500000,0.500000,0.500000,-0.500000) V=100% PATH
©,23.0,868.0,0.500000,0.500000,0.500000,-0.500000) V=100% PATH
©,23.0,816.0,0.500000,0.500000,0.500000,-0.500000) V=100% PATH
©,23.0,816.0,0.500000,0,500000,0.500000,-0.500000) V=20% PATH
3,16.3,816.0,0.500000,0.520000,0,500000,-0.500000) V=20% CIRCLE
©,0.0,816.0,0.500000,0,500000,0,.500000,-0.500000) V=20% PATH
3,-16.3,816.0,0.500000,0.500000,0.500000,-0.500000) V=20% CIRCLE
0,-23.9,816.0,0.500000,0,500000,0.500000, -0.500000) V=20% PATH
7,-16.3,816.0,0.500000,0.500000,0.500000, -0.500000) V=20% CIRCLE

©,0.0,816.0,0.500000,0,500000,0,.500000,-0.500000) V=20% PATH

7,16.3,816.0,0.500000,0.500000,0.500000,-0.500000) V=20% CIRCLE
©,23.0,816.0,0.500000,0,500000,0.500000,-0.500000) V=20% PATH
©,23.0,868.0,0.500000,0.500000,0.500000,-0.500000) V=100% PATH
0,45.5,868.0,0.500000,0.500000,0.500000,-0.500000) V=100% PATH
0,45.5,826.0,0.500000,0.500000,0.500000,-0.500000) V=100% PATH
0,45.5,826.0,0.500000,0,500000,0.500000,-0.500000) V=20% PATH
9,43.9,826.0,0.500000,0,500000,0.500000,-0.500000) V=20% CIRCLE
5,40.0,826.0,0.520000,0.500000,0.500000,-0.500000) V=20% PATH
9,36.1,826.0,0.500000,0,500000,0.500000,-0.500000) V=20% CIRCLE
©,34.5,826.0,0.500000,0,500000,0,500000,-0.500000) V=20% PATH
1,36.1,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% CIRCLE
5,48.0,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
1,43.9,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% CIRCLE
©,45.5,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
©,45.5,868.0,0.500000,0.500000,0.500000,-0.500000) V=100% PATH
©,95.5,868.0,0.500000,0.500000,0.500000,-0.500000) V=100% PATH
©,95.5,826.0,0.500000,0.500000,0.500000,-0.500000) V=100% PATH
©,95.5,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
9,93.9,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% CIRCLE
5,9¢.9,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
9,86.1,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% CIRCLE
©,84.5,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
1,86.1,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% CIRCLE
5,9¢.9,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
1,93.9,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% CIRCLE
©,95.5,826.0,0.500000,0.500000,0.500000,-0.500000) V=20% PATH
©,95.5,868.0,0.500000,0.500000,0.500000,-0.500000) V=100% PATH
©,0.0,1585.0,1.000000,0,000000,0,000000,0.000000) V=100% PATH

Figure E-10: Ninth part of the generated path to deburr the mentioned 63 edges of part two.
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E.3 Part 3

POS=(1027.0,-25.0,949.0,0.707107,0.000000,0.707107,0.000000) V=100% PATH
POS=(1@27.0,-25.0,906.0,0.707107,0.000000,0.707107,0.000000) V=100% PATH
P0OS=(1027.0,25.0,906.0,0.787107,0.000000,0.707107,0.000000) V=207% PATH
P0O5=(1027.0,26.4,905.4,0.653261,-0.270647,0.653261,-0.270647) V=10@% PATH
POS=(1@27.0,76.4,855.4,0.653261,-0.270647,08.653261,-0.270647) V=20% PATH
P0OS=(1025.0,77.8,854.0,0.653261,0.270647,0.270647,-0.653261) V=100% PATH
P0S=(825.0,77.8,854.0,0.653261,0.270647,0.270647,-0.653261) V=20% PATH
P0OS=(823.0,76.4,855.4,0.653261,-0.270647,0.653261,-0.270647) V=100% PATH
P0S=(823.0,26.4,905.4,0.653261,-0.270647,0.653261,-0.270647) V=20% PATH
P0OS=(823.0,25.0,906.0,0.707107,0.000000,0.707107,0.000000) V=100% PATH
P0O5=(823.0,-25.0,906.0,0.707107,0.000000,0.707107,0.000000) V=20% PATH
P0OS=(823.0,-26.4,905.4,0.270647,-0.653261,-0.270647,0.653261) V=1@0% PATH
P0OS=(823.0,-76.4,855.4,0.270647,-0.653261,-0.270647,0.653261) V=20% PATH
P05=(825.0,-77.8,854.0,0.653261,-0.270647,0.270647,0.653261) V=100% PATH
POS=(1@25.0,-77.8,854.0,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
P0OS=(1027.0,-76.4,855.4,0.270647,-0.653261,-0.270647,0.653261) V=100% PATH
POS=(1027.0,-26.4,905.4,0.270647,-0.653261,-0.270647,0.653261) V=2@% PATH
POS=(1025.0,-26.4,997.4,0.653261,-0,270647,0.270647,0.653261) V=100% PATH
P0OS=(825.0,-26.4,907.4,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
P0OS=(823.0,-25.0,906.0,0.787107,0.000000,0.707107,0.000000) V=100% PATH
P05=(823.0,25.0,9906.0,0.707107,0.000000,0.707107,0.000000) V=100% PATH
P0OS=(825.0,26.4,907.4,0.653261,0.270647,0.270647,-0.653261) V=100% PATH
P0OS=(1025.0,26.4,907.4,0.653261,0.270647,0.270647,-0.653261) V=20% PATH
P0O5=(1025.0,68.0,949.0,0.653261,0.270647,0.270647,-0.653261) V=100% PATH
P0OS=(990.0,-80.4,949.0,0.653261,-0.270647,0.270647,0.653261) V=100% PATH
P0OS=(990.0,-31.6,900.2,0.653261,-0.270647,0.270647,0.653261) V=100% PATH
P05=(990.0,-31.6,900.2,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
POS=(10@9.8,-37.4,894.4,0.653261,-0,270647,0.270647,0.653261) V=20% CIRCLE
POS=(1018.0,-51.4,880.4,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
POS=(1009.8,-65.4,866.4,0.653261,-0.,270647,0.270647,0.653261) V=20% CIRCLE
POS=(9%9.0,-71.2,860.6,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
P0OS=(97@.2,-65.4,866.4,0.653261,-0.270647,0.270647,0.653261) V=20% CIRCLE
POS=(962.0,-51.4,880.4,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
P0S=(970.2,-37.4,894.4,0.653261,-0.270647,0.270647,0.653261) V=20% CIRCLE
P0OS=(99@.0,-31.6,900.2,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
P0OS=(990.0,-80.4,949.0,0.653261,-0.270647,0.270647,0.653261) V=100% PATH
P05=(925.0,-80.4,949.0,0.653261,-0.270647,0.270647,0.653261) V=100% PATH
P0OS=(925.0,-31.6,900.2,0.653261,-0.270647,0.270647,0.653261) V=100% PATH
P0S=(925.0,-31.6,900.2,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
POS=(944.8,-37.4,894.4,0.653261,-0.270647,0.270647,0.653261) V=20% CIRCLE
P0S=(953.0,-51.4,880.4,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
P0OS=(944.8,-65.4,866.4,0.653261,-0.270647,0.270647,0.653261) V=20% CIRCLE
P0S=(925.0,-71.2,860.6,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
P05=(905.2,-65.4,866.4,0.653261,-0.270647,0.270647,0.653261) V=20% CIRCLE
POS=(897.8,-51.4,880.4,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
P0S=(905.2,-37.4,894.4,0.653261,-0.270647,0.270647,0.653261) V=20% CIRCLE
P0S$=(925.0,-31.6,900.2,0.653261,-0.270647,0.270647,0.653261) V=20% PATH
P0S=(925.0,-80.4,949.9,0.653261,-0.270647,0.270647,0.653261) V=1080% PATH

®®®®®®®®®®®®®®®®®®

Figure E-11: First part of the generated path to deburr the mentioned 63 edges of part three.
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Figure E-12: Second part of the generated path to deburr the mentioned 63 edges of part three.
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APPENDIX F

SNAPSHOTS OF THE PROCESSES IN CHAPTER 5

Figure F-1: Snapshots from the processing of part one in chapter 5.
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Figure F-2: Snapshots from the processing of part two in chapter 5.
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Figure F-3: Snapshots from the processing of part three in chapter 5.
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Appendix G

A STEP BY STEP EXAMPLE FOR USING THE
SOFTWARE

This appendix gives a fully detailed example for using both the SolidWorks package and
the ABB user interface software. Part 3 from chapter 5 is used to illustrate the correct way

of using both programs.

G.1. Path Generation

SolidWorks Package is the software responsible for generating the nominal path to
perform edge finishing or scanning on a workpiece. The following steps give the full

detailed explanation to generate a path using this package.

1. Launch SolidWorks
2. Open the workpiece you would like to generate a path for.

2
DS SOLIDWORKS

Open (Ctrl+0)
Opens an existing document.

Figure G-1: Opening the considered Workpiece.
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3. Define a reference frame and attach it to the workpiece. This can be done from
“Features/Reference Geometry/Reference Coordinate System”. This frame
shows the desired orientation of the workpiece with respect to the global
coordinates of the robot.

25 SOLIDWORKS O0-2-H-%- == EngineBlockV6.SLDPRT

5o (& Swept Boss/Base @ & ® Swept Cut Ft L‘Efjar & Rb @ Wrap Mf};m & &
Extruded Revolved [ |ofied Boss/Base | EXtruded  Hole Revolved [ [ofted Cut P @ Dreft @ Intersect ||t Instant3D
Boss/Base Boss/Base Cut  Wizard Cut - 24

® Boundary Boss/Base ™ Boundary Cut @ Sshell Mirror

Features [ Sketch | Evaluate | DimXpert | Office Products %S | Plane [
REAERE 2 . | Axis

b | Coordinate Syst
% EngineBlockV6 (Default<<[) oordinate System

@ History # | point

Sensors 4 | Center of Mass
lAllBnretaton ol | Mate Reference
1-3= Material <not specified>

Figure G-2: Defining a new reference frame.

4. Launch the path generator package. This is done by selecting Tools/Macros/.

R Pl G Ve et [Took | Window Hel EnieBoGVESLOPT

o
FirdiModify
Faatures (SR [ Eae [BRNGETE | Desion Crocksr YR e
[P EST L & | Format Panter.
 EncinaBlockVE (Dafaulte< Sirtch Entities
48 History Serteh Tocis ,

Sketch Setings v

=

g Front Plare.

% Toppiane
% Right Pl
L. Orii
4 Boss bt
@ Cut Eriicet
B ot Emiaad
£ 1 sketan
24 Coordinate Syt | cai
- New
| Featue Statistis. to) e
Z tauations. ..

38 Deviation A
| Deriation Analys.. ; Do - it Generation Ad-Cm v ‘
=+ | Inicness Analysis..

\Deskeop\Oft Line Bt adeOn 5op
& syrmetsy Creck.

AOne D Doct

{Th Code of & Codes-Take It Exsy Styicl1) wp

Dimpert B ments\U

| Mao Cusormize Moru

Aad Ins.

P

Figure G-3: Launching Off-Line Path Generation Add-On.
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5. Press play to start the macro.

ﬁ Microsoft Visual Basic for Applications - The_Code_of All_Codes_Take_lt_Easy_Style - [The_Code_of_All_Codes_Tak (Code)]

m File Edit View Insert Format Run Tools Add-Ins Window Help
T E~-d ) ‘ 3 u' o yEF Y @ | L3148, Col 1 =
ijen—The,Cude,of,il [(General) S
= &2 The_Code_of_AILC Dim swApp As Object
- (771 Solidwarks Objec Public part As PartDoc
=455 Forms Dim boolstatus As Boolean
;“"ﬁ;mse'“‘ Dim longstatus As Long, longwarnings As Long
S;Z;F;”:ES Public GlobalCoordinatesSelected, GroundFacesSelected, Extr
SpindleForm Public swSelectMgr As SldWorks.SelectionMgr
-8 TableForm Public swSelectData As SldWorks.SelectData
-3 ToolForm Public swMathUtil As SldWorks.MathUtility
=49 Modules Public Datum As SldWorks.Vertex
dﬁ{The_Cnde_nf_ -t - ~ - - ~ e « ~ -

Figure G-4 Starting the Off-Line Path Generation Add-On.

6. Enter the location of the previously defined reference frame. This location
represent the offset value from the global coordinates’ origin. In this example,
x=0.9, y=0 and z=0.9

Flease select a refrence frame to be set as the global coordinate system and the
faces of the part that will be directly contacting the mounting table.

Specify the part's offset from the origin of the global
coordinate system

¥-component [meters]: | g
y-component [meters]: | g
z-component [meters]: | g

Figure G-5: Entering the offset value of the defined reference frame with respect to the global coordinates of the
robot.

7. Update the dimensions of the working table. Clicking on the (Update
Dimensions of Working Table) button a window pops up and the user can enter
the width, length and thickness of the working table. If you are using the black
metal table in the lab, then there is no need to do this step.
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Working Table Dimensions x

Enter the dimensions of the working table below in
meters:

Length (in the direction of y-axis): 0.8
width (in the direction of x-axis): 0.5

Thickness (in the drection of z-axis): 0.05

Cancel | Update |

Figure G-6: Entering the working table dimensions.

8. Update the tool’s dimensions. Clicking on the (Update Tool’s Bounding Box)
button a window pops up and the user can enter the length and width of the tool.
For this example, enter 0.033 for length and 0.002 for width. In case you are to
generate a path for scanning, you can skip this step.

Tool's Bounding Box Dimensions x

Enter the length and width of the tool in
millimeters below:

Length (in the direction of the major axis): 0.033
Width (in the dirction of the miner axis): 0.004

Cancel | Update |

Figure G-7: Entering the tool's bounding box dimensions.

9. Update the Spindle’s/Scanner’s dimensions. Clicking on the (Update
Spindle’s/Scanner’s Bounding Box) button a window pops up and the user can
enter the length and width of the spindle or scanner. If you are using the white
spindle holder that was 3D printed by Mahmoud Nemer, enter 0.2 for length and
0.04 for width.
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X

Spindle's/Scanner's Bounding Box Dimensions

Enter the dimensions of the bounding box of
the spindel/scanner in meters below:

Length (in the direction of the major axis): 0.2
Width (in the dirction of the minor axis): 0.08

Cancel | Update |

Figure G-8: Entering the spindle's/scanner's bounding box dimensions.

10. Select the process type. Select between edge finishing or scanning, depending in
your goal of the path. In this example, Edge Finishing is selected.

Process Type
® Edge Finishing

" Edge Scanning

Figure G-9: Selecting the type of process to be done.

11. Select the offset value from the edge. Zero offset value means directly touch the
edge by either the tool or scanner. In this example, it is taken as 2 mm.

Offset Value

Offset distance from edges [millimeters]: 2

Figure G-10: Entering the offset value between the each edge and the tip-point of the robot.

12. Select the approach angle option. The user get to select from two options. Either
approach each edge with an angle that is the average of the adjacent faces’
normal, or to approach the edge in the direction normal to the formed burrs. In
this example the second option is selected.
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— Approach angle:

(" Average vector of the normals of the two adjacent faces.

f® ‘Normal to the normal of the adjacent face milled lastly. |

Figure G-11: Choosing the approach angle of the end-effector.

13. If the second option of step 12 is selected then the user needs to specify the order
of which the faces were machined. This is necessary so that the program can
calculate the direction of the formed burrs. For this example the faces were
selected as shown in the next 20 figures. Note the direction of burrs is along the
face that was machined last.

CEF

G W E

Figure G-12: Selecting the first face of the given workpiece example.

u
q
[T TR S

Engmotiocti Edng ot [T 9

Figure G-13: Selecting the second face of the given workpiece example.
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Figure G-14: Selecting the third face of the given workpiece example.
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Figure G-15: Selecting the fourth face of the given workpiece example.
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Figure G-16: Selecting the fifth face of the given workpiece example.
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Figure G-17: Selecting the sixth face of the given workpiece example.
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Figure G-18: Selecting the seventh face of the given workpiece example.

D-2-@-5-9 @8 70 LgritieavusLo © EEE
@ b Ewelete g o @wenos |0 W ok wwe | XY OO
Ldraded  Mavehee r o  Lnnided Hoe Revohee amsa it ot At ot ot o
s G et il i & o | T
e i e P
e aasn®-J ey W

[SIEE
o Eee————
% ExgeBcat Defakes
T8 oy

L S

. Coeinas Syt

Crginebiecs Caiting Part. NS - ]

Figure G-19: Selecting the eighth face of the given workpiece example.
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Figure G-21: Selecting the tenth face of the given workpiece example.
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Figure G-22: Selecting the eleventh face of the given workpiece example.
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Figure G-23: Selecting the twelfth face of the given workpiece example.
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Figure G-24: Selecting the thirteenth face of the given workpiece example.
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Figure G-25: Selecting the fourteenth face of the given workpiece example.
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Figure G-26: Selecting the fifteenth face of the given workpiece example.
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Figure G-27: Selecting the sixteenth face of the given workpiece example.
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Figure G-28: Selecting the seventeenth face of the given workpiece example.
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Figure G-29: Selecting the eighteenth face of the given workpiece example.
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Figure G-30: Selecting the nineteenth face of the given workpiece example.
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Figure G-31: Selecting the twentieth face of the given workpiece example.
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14. After selecting all faces, in order. Click on Done. This will save the order and
now you can remove the face selection.

Selecting Faces x

Please select all the faces of the part in the same order that
they were machined.

Go Back Abort

Figure G-32: Confirming the face selection procedure.

15. Remove the face selection by clicking anywhere in empty space.

16. Select the reference frame defined earlier and any faces that are in direct contact
with the working table or fixture. In this example only one face is in direct
contact with the table, as shown below.

Figure G-33: Selecting the defined reference frame and ground face.

17. Click Run.

18. Check the default edge selection. The software predicts the edges to be processed
and select them automatically for the user. The user can still modify this
selection by selecting or deselecting any other edges at well. In this example four
edges were deselected from the default selection. After finishing with modifying
edge selection click on Proceed.
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Figure G-34: Modifying the default edge selection and confirming it.

19. Wait for the program to generate the path.
20. When path is generated a message box shows up to inform the user. Click OK.

Path was Succesfully Generated x

All set and done! 16 edges from 16 are included

OK

Figure G-35: Feedback message to the user at the end of path generation process.

21. Go to the directory of the CAD model part. The generated path is going to be
stored in the same directory with the name NominalPath.
22. Congratulations now you generated a path for your task.
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G.2. Path Execution

The ABB User Interface is the software responsible for transferring the nominal path from
the computer to ABB IRB2000’s memory, in order to be able to execute the path. The

following steps give the full detailed explanation to generate a path using this package.

1. Launch ABB User Interface software.
Plug the USB cable of the ABB to your computer.

3. Set up the connection. Simply go to “File/Open Serial Port” then choose the
correct COM number.

N

|87 ABB User Interface - O X

File = Help
Open Serial Port
MNumarical Base in Use * patic Communication Off-Line Path Uploading
Exit

OTTITTTArT ABB Response

Number of Bytes Number of Bytes

Destination Address l:l Destination Address l:l

Source Address l:l Source Address l:l

Function Code l:l Function Code l:l
[ ] [ 1]

Function Suffix l:l Function Suffix l:l

Send to ABB

Massege Box

Figure G-36: Opening the serial port with ABB.
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4. Open “Off-Line Path Uploading” tab.

[B7 ABB User Interface — O b4
File Help
Manual Communication Automatic Communication Off-Line Path Uploading

Path Program in Assembly Language Form

This part is used when the program is expressed byte by byte

Program Number: Open File

Upload Path

Path Program in Normal Language Form

This part is used when the program is expressed in the normal format given
in the ABB IRB2000 Manuals

Program Number: | Open File

TeP o |

FRAME 0

V= mm/s MAX: mm/s

RECT. ~ COORD.

Upload Path

Figure G-37: Opening "Off-Line Path Uploading" tab.

5. Click on “Open File” button in “Path Program in Normal Language Form”
frame.
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[m7 ABB User Interface - O X
File Help
Manual Communication Automatic Communication Off-Line Path Uploading

Path Program in Assembly Language Form

This part is used when the program is expressed byte by byte

Program Mumber:

Open File
Upload Path
Path Program in Normal Language Form
This part is used when the program is expressed in the normal format given
in the ABB IRB2000 Manuals
Program Mumber: ‘ Open File

TP o |
FRAME 0
V= mm/s MAX: mm/s

RECT. =~ COORD.

Upload Path

Figure G-38: Opening the previously generated path text file.

Select the previously generated path.
Check if the text is uploaded on the software. Make sure that there is not any
empty lines in the text. Especially at the very end of the text.
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[m7 ABB User Interface -
File Help

Manual Communication Automatic Communication 0Off-Line Path Uploading

Path Program in Assembly Language Form

This part is used when the program is expressed byte by byte

Program Number:

Path Program in Normal Language Form

This part is used when the program is expressed in the normal format given
in the ABB IRB2000 Manuals

Program Number: ‘

TP [0 |

FRAME 0

V: mm/s MAX= mm/fs

RECT. ~ COORD.

Open File

Upload Path

Open File

POS=(984.8,-65.4,862.4,0.653281,-0.270598,0.270598,0.653281) V=40% CIRCLE
=(965.0,-71.2,856.6,0.653281,-0.270598,0.270598,0.653281) V=40% PATH
=(945.2,-65.4,862.4,0.653281,-0.270598,0.270598,0.653281) V=40% CIRCLE
POS=(937.0,-51.4,876.4,0.653281,-0.270598,0.270598,0.653281) V=40% PATH
POS=(945.2,-37.4,890.4,0.653281,-0.270598,0.270598,0.653281) V=40% CIRCLE
POS=(965.0,-31.6,896.2,0.653281,-0.270598,0.270598,0.653281) V=40% PATH
POS=(965.0,-95.4,960.0,0.653281,-0.270598,0.270598,0.653281) V=100% PATH
POS=(1183.0,0.0,1585.0,1.000000,0.000000,0.000000,0.000000) V=100% PATH

~

Figure G-39: Result of uploading the generated path example.

Upload Path

Enter the program number for the path. This is the name of the path when it will
be stored in the robot’s memory. Choose any number from 20-2000. In this
example 25 is entered.

Program Mumber: |25

Figure G-40: Setting the program number in ABB memory.

Define the TCP number for the path. This is for the kinematics for the end-
effector, read programming manual for full details. In this example, TCP 1 is
taken. This is the TCP that correspond to the white spindle holder.

Program Number: |25|

TCP

Figure G-41: Setting the TCP number to be used in the path.

156




10. Set the velocity of the end-effector while executing the path. For processing
motions, the end-effector’s speed is 40% of the set speed. In this example 40
mm/s is set as the speed. Therefore when processing, the end-effector moves at
16mm/s.

11. Set the MAX speed. Recommended value is 1.5V. Hence, for this example
MAX=1.5*40=60mm/s.

Program Mumber: |25

TCP

FRAME 0

‘u'= mmy/s MA}(z mmy/s

Figure G-42: Setting the end-effector velocities.

12. Always let the Coordinates be (RECT.). Use ROBOT COORD. Only if you are
very familiar with the robot!

Program Number: |25

TCcp

FRAME 0

V: mmy/s MA)(: mmy/s

RECT. = COORD.

Figure G-43: Selecting RECT. COORD.

13. Click “Upload Path”.

14. Feedback message next to the “Upload Path” is going to show up to inform the
user if the upload was successful or not. Depending on the length of the path text.
As an average time, wait for one minute or less for the path to be fully
transferred to ABB.

157



