
OFF-LINE NOMINAL PATH GENERATION OF 6-DOF ROBOTIC MANIPULATOR

FOR EDGE FINISHING AND INSPECTION PROCESSES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

MAHMOUD NEMER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR

THE DEGREE OF MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

JUNE 2016

ii

iii

Approval of the thesis:

OFF-LINE NOMINAL PATH GENERATION OF 6-DOF ROBOTIC

MANIPULATOR FOR EDGE FINISHING AND INSPECTION PROCESSES

Submitted by MAHMOUD NEMER in partial fulfillment of the requirements for the

degree of Master of Science in Mechanical Engineering Department, Middle East

Technical University by,

Prof. Dr. Gülbin Dural Ünver

Dean, Graduate School of Natural and Applied Sciences ____________________

Prof. Dr. R. Tuna Balkan

Head of Department, Mechanical Engineering ____________________

Assoc. Prof. Dr. E. İlhan Konukseven

Supervisor, Mechanical Engineering Dept., METU ____________________

Examining Committee Members:

Prof. Dr. Reşit Soylu

Mechanical Engineering Dept., METU ____________________

Assoc. Prof. Dr. E. İlhan Konukseven

Mechanical Engineering Dept., METU ____________________

Assoc. Prof. Dr. Yiğit Yazıcıoğlu

Mechanical Engineering Dept., METU ____________________

Asst. Dr. Ali Emre Turgut

Mechanical Engineering Dept., METU ____________________

Prof. Dr. Arif Adlı

Mechanical Engineering Dept., Gazi University ____________________

Date: 23/06/2016

iv

All information in this document has been obtained and presented in accordance with

academic rules and ethical conduct. I also declare that, as required by these rules and

conduct, I have fully cited and referenced all material and results that are not original to

this work.

 Name, Last Name: Mahmoud Nemer

 Signature:

v

ABSTRACT

OFF-LINE NOMINAL PATH GENERATION OF 6-DOF

ROBOTIC MANIPULATOR FOR EDGE FINISHING AND

INSPECTION PROCESSES

Nemer, Mahmoud

Ms., Department of Mechanical Engineering

Supervisor: Assoc. Prof. İlhan E. KONUKSEVEN

June 2016, 157 pages

This thesis deals with the development of a Computer Aided Robotic Machining

Process Planning package. The main aim of the package is to generate an efficient,

collision-free, nominal tool path needed for edge finishing and inspection processes by

utilizing a 6-DoF robotic arm.

Automation of edge deburring and chamfering consists of two main parts. First

part is generating the overall nominal tool path. While the second part focuses on

controlling the material removal. The overall nominal tool path planning involves

analyzing the geometry of the workpiece, determining and designing an efficient

collision-free tool path

vi

and generating the tool path data for the robot and finally verifying it. The generated tool

path can also be used for different robotic machining processes.

One of the most popular PC-based CAD software, SolidWorks, is chosen as the

user interface platform. A software package programmed in the application programming

interface (API) of SolidWorks generates tool path data for the robot. The ABB IRB2000

robot is chosen for executing the generated tool path. The programming language used

for developing this software is Visual Basic. Ultimately, such path is to be utilized as the

nominal tool path by any control strategy present in the literature for a complete automatic

edge finishing process.

Keywords: Offline programming, CAD-based tools, Edge deburring, Edge

scanning, Path generation.

vii

ÖZ

SON IŞLEM TAŞLAMASI VE YÜZEY MUAYENESI

AMACIYLA, 6 SERBESTLIK DERECELI ROBOTIK

MANIPULATÖR KULLANARAK ÇEVRIMDIŞI

YÖRÜNGE ÇIKARIMI

Nemer, Mahmoud

Ms., Department of Mechanical Engineering

Supervisor: Assoc. Prof. İlhan E. KONUKSEVEN

Haziran 2016, 157 sayfa

Bu tezde Bilgisayar Destekli Robotik İşleme Prosesi Planlama pakteti

irdelenmiştir. Bu paketin ana amacı, kenar işlemesi ve muayenede kullanılan, verimli, ve

çarpışma riski olmayan, takım ucunun izlediği nominal yolu, 6 serbestlik derceli bir robot

ile geliştirmektir.

Malzemenin kenarındaki çapakların alınmasında ve pah kırma işlemlerinin

otomasyonu iki bölümden oluşmaktadır. İlki, bütün işlem için bir nominal yol

geliştirmektir. İkinci bölümde ise temel amaç malzeme kaldırma miktarını kontrol

viii

etmektir. Aletin takibi için geliştirilen nominal yolu planlamak için birkaç işlemin

gerçekleşmesi lazım: parçanın geometrisinin analizi, çarpışmayı verimli bir şekilde

önlemek, robotun kullanması için aletin yol verilerinin oluşturulması ve son olarak

işlemin doğrulanması.

Arayüz platform olarak bilgisayar tabanlı CAD yazılımlarının en popülerlerinden

olan SolidWorks kullanılmıştır. Robotun yol verilerini üretmek için SolidWork’ün API’yı

ile bir yazılım paketi geliştirilmiştir. Bu yolu takip etmesi için ise ABB IRB2000 robotu

seçilmiştir. Programlama dili olarak Visual Basic kullanılmıştır. Sonuç olarak bu yol

tamamen otomatik bir kenar işleme prosesi için aletin takip etmesi gereken nominal yol

olarak kullanılabilir.

Anahtar kelimeler: Çevrimdışı programlama, CAD tabanlı araçlar, Çapak alma,

Çapak tarama, Yörünge üretimi.

ix

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof. Dr. E. İlhan Konukseven for providing

me this research opportunity, guiding me throughout the study, and his patience. I am also

indebted him for his precious evaluations and feedbacks in writing this thesis. I would

like to express my gratitude to Asst. Prof. Dr. Bugra Ahmet Koku for making me a better

engineer. I owe many thanks to my friends who study in the METU Mechatronics

Laboratory for their precious support and presence. To my family, I really appreciate their

endless support and patience.

x

To my family,

with the deepest gratitude

xi

TABLE OF CONTENTS

ABSTRACT………………………………………………………………………...... v

ÖZ………………………………………………………………………………….... vii

ACKNOWLEDGMENT…………………………………………………………….. ix

TABLE OF CONTACTS……………………………………………………............. xi

LIST OF TABLES…………………………………………………………….......... xiv

LIST OF FIGURES…………………………………………………………………. xv

NOMENCLATURE……………………………………………………………….. xxii

CHAPTERS

INTRODUCTION ...1

1.1 Overview ...1

1.2 Literature Survey ...2

1.3 Thesis Motivation and Objective ..10

1.4 Thesis Outline ...11

KINEMATIC ANALYSES ...13

2.1 Hartenberg-Denavit (HD) Convention ..13

2.2 Position Analyses ..17

2.2.1 Forward Position Analysis ...17

2.2.2 Inverse Position Analysis ...19

PATH GENERATION ..26

3.1 Preparation Stage ...27

3.1.1 Setting the Global Coordinate System ...27

xii

3.1.2 Selecting the Edges to be Processed .. 32

3.2 Processing Motion Generation .. 34

3.2.1 Calculating Processing Motions .. 35

3.2.2 Collision Detection Test .. 42

3.3 Introducing Critical Positions Concept ... 46

3.4 Non-Processing Motion Generation .. 47

3.4.1 Calculating Non-Processing Motions .. 48

3.4.2 Collision Detection Test .. 55

3.5 Planning the Overall Path .. 56

COMPUTER PROGRAMS ... 60

4.1 SolidWorks Add-Ons Package .. 60

4.1.1 User Guide of Software ... 61

4.1.2 Code’s Working Procedure .. 66

4.2 ABB User Interface Software ... 67

4.2.1 User Guide of Software ... 68

4.2.2 Code’s Working Procedure .. 78

SAMPLE RUNS AND EXPERIMENTAL RESULTS .. 81

5.1 Introduction ... 81

5.2 Sample Part 1 .. 82

5.3 Sample Part 2 .. 86

5.4 Sample Part 3 .. 90

CONCLUSION .. 95

6.1 Discussion and Summary .. 95

6.2 Future Work .. 97

REFERENCES .. 99

xiii

APPENDICES

A. METHODS DEVELOPED AND USED IN THE SOFTWARE…….................... 103

B. USED ARAP PROTOCOL’S FUNCTIONS………………...……...………….... 109

C. FLOWCHART OF PATH GENERATION ALGORITHM………...………….... 115

D. TECHNICAL DRAWINGS…………………………………………………….... 117

E. GENERATED PATHS IN CHAPTER 5…………………………………..….…. 123

F. SNAPSHOTS OF THE PROCESSES IN CHAPTER 5………………………..... 135

G. A STEP BY STEP EXAMPLE FOR USING THE SOFTWARE………………. 139

xiv

LIST OF TABLES

Table 2-1: Denavit-Hartenberg parameters of ABB IRB 2000 manipulator………………….. 15

xv

LIST OF FIGURES

Figure 1-1: Strategy for tool path control ..3

Figure 1-2: a) Three-wire type teaching support device ..5

Figure 1-3: Generation of chamfering points. ..7

Figure 2-1 Schematic of the Denavit-Hartenberg convention parameters of a link.14

Figure 2-2: Reference frames of ABB IRB2000 Manipulator. ..16

Figure 3-1: Defining the location and orientation of the part with respect to the global

coordinate system. ..27

Figure 3-2: Selecting a ground face by the user...33

Figure 3-3: Result of the automated convex edge selection ..33

Figure 3-4: the geometric model of the robotic arm used in the study for performing the

collision detection test. ...35

Figure 3-5: a) Illustration of an offset direction, 𝑑, that is equal to the average of the two

normals of the adjacent faces of the edge, 𝑛1 and 𝑛2 b) Illustration of an offset direction,

𝑑, in the normal direction to the formed burr. ...36

Figure 3-6: Illustration of formed burrs direction [19]. ...36

Figure 3-7: a) The location of the end-effector's starting position b) The location of the

end-effector's ending position. ...38

Figure 3-8: a) Taking the offset desired from a straight edge for generating the

corresponding processing motion. d is the offset vector, n1 and n2 are the adjacent faces

normals, the shown coordinates is the orientation of the end-effector of the ABB IRB2000

b) The CAD simulation of the corresponding motion in a).. ...39

Figure 3-9: Taking the offset desired from a circular edge for generating the

corresponding processing motion ..40

xvi

Figure 3-10: An example of a straight line edge that has adjacent edges that form angles

less than 180o with it and how it affects the corresponding processing motion. 41

Figure 3-11: An example of a circular arc edge that has an adjacent edge that form an

angle less than 180o with it and how it affects the corresponding processing motion. 41

Figure 3-12: An illustration of discretizing the processing motion corresponding to a

straight edge ... 43

Figure 3-13: An illustration of discretizing the processing motion corresponding to an arc

edge .. 44

Figure 3-14: The trigonometry used to derive the formulas below. 44

Figure 3-15: Example for a straight edge collosion detection test 45

Figure 3-16: Different snap shots for an arc edge collosion detection test 45

Figure 3-17: An example of a detected collision. .. 46

Figure 3-18: Each processing motion has two critical positions. a) shows the critical

positions of a straight edge b) gives the critical positions of an arc edge 47

Figure 3-19: The bounding box of an arbitrary part. ... 49

Figure 3-20: Outline representation of the non-processing motion generation

algorithm. ... 49

Figure 3-21: Trigonometry used to find the value of s. ... 50

Figure 3-22: Different snap shots of the first segment of the retraction motion from a

critical position where both last two links are under the safety level. 51

Figure 3-23: The first and last positions of the second segment of the retraction motion

from a critical position where both last two links are under the safety level................... 52

Figure 3-24: Illustration of the non-processing motion when both start and end positions

point at the same vertex. .. 53

Figure 3-25: Illustration of the non-processing motion when both the start and end

positions share a reachable edge. ... 53

xvii

Figure 3-26: Flowchart of generating all possible non-processing motions.54

Figure 3-27: An example of a three processing motions (PM) and the representing graph

for finding route solution of the TSP “The non-processing motions between the home

position and other poses are not shown for simplicity” ...57

Figure 3-28: The solution of the TSP graph given in Figure 3-27 using nearest neighbor

algorithm. ...59

Figure 4-1: Main window of the SolidWorks Add-Ons Package.61

Figure 4-2: Setting the working table dimensions. ..62

Figure 4-3: Setting the tool's dimensions. ..63

Figure 4-4: Setting the tool's body box dimensions. ..63

Figure 4-5: Confirming the selection of faces. ..64

Figure 4-6: Window for confirming the selected edges. ..65

Figure 4-7: A portion of a path program generated by the software and stored in a text

file. ...66

Figure 4-8: Selecting open serial port from File tab. ...69

Figure 4-9: Selecting the corresponding COM port connecting the ABB robot.70

Figure 4-10: Closing the serial port from File tab. ..71

Figure 4-11: Choosing Numerical Base for Manual Communication.72

Figure 4-12: Function 19 in ARAP Protocol filled in the command region.73

Figure 4-13: Response of function 19 in ARAP Protocol filled in the command

region. ..74

Figure 4-14: The GUI of the Automatic Communication Mode.75

Figure 4-15: Window for selecting the text file that includes the path program.76

Figure 4-16: Displaying the path program of the previously selected text file................77

Figure 4-17: Displaying the path program of the previously selected text file................78

xviii

Figure 5-1: Test Setup Illustration. .. 82

Figure 5-2: Trimetric view of part 1. ... 83

Figure 5-3: The defined reference frame is shown as Coordinate System1. 84

Figure 5-4: Selecting the ground face. ... 84

Figure 5-5: User input for scanning Part one. .. 85

Figure 5-6: The order of which the edges of part one are scanned. 86

Figure 5-7: Trimetric view of part 2. ... 87

Figure 5-8: The defined reference frame is shown as Coordinate System1. 88

Figure 5-9: Selecting the ground face. ... 88

Figure 5-10: User input for scanning Part two... 89

Figure 5-11: The order of which the edges of part two are deburred. 90

Figure 5-12: Trimetric view of part 3. ... 91

Figure 5-13: The defined reference frame is shown as Coordinate System1. 92

Figure 5-14: Selecting the ground face. ... 92

Figure 5-15: User input for scanning Part three... 93

Figure 5-16: The order of which the edges of part three are deburred. 94

Figure B-1: Command telegram of function 1. .. 109

Figure B-2: Response telegram of function 1. ... 110

Figure B-3: Command telegram of function 2. .. 110

Figure B-4: Response telegram of function 2. ... 110

Figure B-5: Command telegram of function 19. .. 111

Figure B-6: Response telegram of function 19. ... 111

Figure E-1: The generated path to scan the mentioned 13 edges of part one…………. 123

xix

Figure E-2: First part of the generated path to deburr the mentioned 63 edges of part

two……………………………………………………………………………………. 124

Figure E-3: Second part of the generated path to deburr the mentioned 63 edges of part

two……………………………………………………………………………………. 125

Figure E-4: Third part of the generated path to deburr the mentioned 63 edges of part

two……………………………………………………………………………………. 126

Figure E-5: Fourth part of the generated path to deburr the mentioned 63 edges of part

two... 127

Figure E-6: Fifth part of the generated path to deburr the mentioned 63 edges of part

two…………………………………………………………………………………..... 128

Figure E-7: Sixth part of the generated path to deburr the mentioned 63 edges of part

two…………………………………………………………………………………..... 129

Figure E-8: Seventh part of the generated path to deburr the mentioned 63 edges of part

two... 130

Figure E-9: Eighth part of the generated path to deburr the mentioned 63 edges of part

two... 131

Figure E-10: Ninth part of the generated path to deburr the mentioned 63 edges of part

two... 132

Figure E-11: First part of the generated path to deburr the mentioned 16 edges of part

three... 133

Figure E-12: Second part of the generated path to deburr the mentioned 16 edges of part

three…………………………………………………………………………………... 134

Figure F-1: Snapshots from the processing of part one in chapter 5. …………...…….. 135

Figure F-2: Snapshots from the processing of part two in chapter 5. ……………….. 136

Figure F-3: Snapshots from the processing of part three in chapter 5. ………….…….. 137

Figure G-1: Opening the considered Workpiece. ……………………………………. 139

Figure G-2: Defining a new reference frame. ………………………………………... 140

xx

Figure G-3: Launching Off-Line Path Generation Add-On. ………………………… 140

Figure G-4: Starting the Off-Line Path Generation Add-On. ………………………... 141

Figure G-5: Entering the offset value of the defined reference frame with respect to the

global coordinates of the robot. ………………………………………………………. 141

Figure G-6: Entering the working table dimensions. ………………………………… 142

Figure G-7: Entering the tool's bounding box dimensions. ………………………….. 142

Figure G-8: Entering the spindle's/scanner's bounding box dimensions. ……………. 143

Figure G-9: Selecting the type of process to be done. ……………………………….. 143

Figure G-10: Entering the offset value between the each edge and the tip-point of the

robot. …………………………………………………………………………………. 143

Figure G-11: Choosing the approach angle of the end-effector. …………………….. 144

Figure G-12: Selecting the first face of the given workpiece example. ……………... 144

Figure G-13: Selecting the second face of the given workpiece example. ………….. 144

Figure G-14: Selecting the third face of the given workpiece example. …………….. 145

Figure G-15: Selecting the fourth face of the given workpiece example. …………… 145

Figure G-16: Selecting the fifth face of the given workpiece example. ……………... 145

Figure G-17: Selecting the sixth face of the given workpiece example. …………….. 146

Figure G-18: Selecting the seventh face of the given workpiece example. ………….. 146

Figure G-19: Selecting the eighth face of the given workpiece example. …………… 146

Figure G-20: Selecting the ninth face of the given workpiece example. …………….. 147

Figure G-21: Selecting the tenth face of the given workpiece example. …………….. 147

Figure G-22: Selecting the eleventh face of the given workpiece example. …………. 147

Figure G-23: Selecting the twelfth face of the given workpiece example. ………….. 148

Figure G-24: Selecting the thirteenth face of the given workpiece example. ……….. 148

Figure G-25: Selecting the fourteenth face of the given workpiece example. ………. 148

xxi

Figure G-26: Selecting the fifteenth face of the given workpiece example. ………… 149

Figure G-27: Selecting the sixteenth face of the given workpiece example. ………... 149

Figure G-28: Selecting the seventeenth face of the given workpiece example. ……... 149

Figure G-29: Selecting the eighteenth face of the given workpiece example. ………. 150

Figure G-30: Selecting the nineteenth face of the given workpiece example. ………. 150

Figure G-31: Selecting the twentieth face of the given workpiece example. ………... 150

Figure G-32: Confirming the face selection procedure. ……………………………… 151

Figure G-33: Selecting the defined reference frame and ground face. ………………. 151

Figure G-34: Modifying the default edge selection and confirming it. ……………… 152

Figure G-35: Feedback message to the user at the end of path generation process. …. 152

Figure G-36: Opening the serial port with ABB. …………………………………….. 153

Figure G-37: Opening "Off-Line Path Uploading" tab. ……………………………... 154

Figure G-38: Opening the previously generated path text file. ……………………… 155

Figure G-39: Result of uploading the generated path example. ……………………... 156

Figure G-40: Setting the program number in ABB memory. ………………………... 156

Figure G-41: Setting the end-effector velocities. ……………………………………. 156

Figure G-42: Setting the end-effector velocities. ……………………………………. 157

Figure G-43: Selecting RECT. COORD. ……………………………………………. 157

xxii

NOMENCLATURE

2D Two Dimensional.

3D Three Dimensional.

ADLP10 ABB Data Link Protocol.

API Application programming interface.

ARAP ABB Robot Application Protocol.

𝑎𝑖 Length of link i, distance between �⃗� 3
(𝑖−1)

 and �⃗� 3
(𝑖)
 along �⃗� 1

(𝑖−1)
.

CAD Computer-Aided Design.

CAM Computer-Aided Manufacturing.

𝐶(𝑖−1,𝑖) Rotation matrix of link i with respect to link i-1.

𝑐𝑖𝑗 Element of the C matrix in ith row and jth column.

DoF Degree of freedom.

𝑑 Offset vector from an edge.

𝑑𝑖 Offset of link i, distance from the origin of frame i-1 to �⃗� 1
(𝑖)

 along �⃗� 3
(𝑖−1)

.

𝑙𝑖 Length in the direction of the major axis of link i.

O0 Origin of the global coordinate system.

RF Reference frame.

𝑟 Position vector of the tip-point with respect to the origin of global

coordinate.

𝑟 𝑖−1,𝑖 Relative position of the origin of frame i with respect to frame i-1.

TSP Traveler Salesman Problem.

�⃗⃗� Position vector of the wrist with respect to the origin of global coordinate.

�⃗� 1
(𝑛)

 Unit vector of frame n in the direction of x-axis.

�⃗� 2
(𝑛)

 Unit vector of frame n in the direction of y-axis.

xxiii

�⃗� 3
(𝑛)

 Unit vector of frame n in the direction of z-axis.

𝛼𝑖 Twist of link i, angle from �⃗� 3
(𝑖−1)

 to �⃗� 3
(𝑖)
 about �⃗� 1

(𝑖)
.

𝛾 Safety level, in the direction of z-axis of the global coordinate.

∆𝑥 Difference in the x-axis direction.

∆𝑦 Difference in the y-axis direction.

∆𝑧 Difference in the z-axis direction.

𝜃𝑖 Angle of joint i, angle between �⃗� 1
(𝑖−1)

 and �⃗� 1
(𝑖)
 about �⃗� 3

(𝑖−1)
.

xxiv

 1

INTRODUCTION

1.1 Overview

Deburring processes have been identified as the bottleneck in many machine industries.

The burr removal methods can induce dimensioning errors to the workpiece if improperly

executed. Burrs are caused by many machining process including milling, drilling,

turning, and broaching. Edge finishing like chamfering is important for several reasons,

sharp edges may pose personal hazardous, since they can cause injuries to worker or user.

Part mating may be more difficult due to clearance restriction caused by burrs. High stress

concentration at sharp corners can cause product failures, reduce tool life during hard

finishing. Presently, manual finishing accounts for 12% of the total labor cost [1].

Chamfering is performed at the final stage of manufacturing, where parts have their

highest added value, quality control is absolute necessity. Despite this requirement, even

in today’s most fully automated factories it is still a common sight to see dozens of worker

manually chamfer produced parts. Edge finishing is typically performed manually using

hand held power tools with brushes, abrasive tips, or rotary files or by manual files and

knives. The techniques employed with these tools are not well documented and inspection

of these chamfered edges is not quantitatively defined. Typically the worker runs the

finger over the edge to inspect the work. Improving both the efficiency and quality of

chamfering is a major concern. Chamfering is labor intensive and can represents a

 2

significant portion of the expense of manufacturing machined parts. In addition,

chamfering is frequently a dirty, noisy, and undesirable job and high turnover in terms of

personnel. Training personnel in proper chamfering technique coupled with high turnover

rate adds to the overall expense of the chamfering. Variation in skill level of chamfering

personnel causes variation in the quality of the part. Errors encountered in the chamfering

operation which causes the part to be scrapped are costly, as the part is near the end of its

manufacturing cycle. Consequently, quality control and part inspection are key processes

in the lifecycle of a product. These processes are able to verify product quality; and can

provide essential feedback for enhancing other processes. No change is made to product

during inspection, in order to increase its value. Time and resources are spent on these

processes, without a gain in profit, making the reduction of the time spent on these

processes an attractive concept to manufacturer.

An amazing transformation of edge finishing has occurred over the past 50 years trying to

mimic adaptive nature of human intelligence in order to replace manual deburring.

Anthropomorphous robots are the best state of the art compromise between performance

and flexibility for automated deburring tasks [2]. They provide larger work volumes,

safety and efficiency at a lower cost than CNC machines. Also they provide a greater

reachability and working capabilities on the complex paths of the deburring tasks.

1.2 Literature Survey

Two main topics were considered in the literature survey, namely, path generation of the

deburring process and path generation of laser scanners.

Starting with the first paper, Valente and Oliveira [3] define three steps for creating and

controlling a tool path that leads to the desired deburring results. The first step mentioned

was the offline programming, in this stage the user manually generates a nominal path

 3

with the use of the 3D CAD model that the tool center point (TCP) will be following. The

second step called contact evaluation module. In this stage the contact between the tool

and the workpiece during the execution of the nominal path is evaluated using a modified

version of Malkin’s model for grinding, which determines the grinding power needed to

insure efficient deburring. The final step is called the active path control. This stage

monitors and control the robot path during the actual deburring process in order to

maintain the power signal as close as possible to its target level. This control strategy is

based on two signals, Acoustic Emission and Power. This signal is compared with two

limits, a lower one (T1) and a higher limit (T2), and hence the nominal path is modified

by keeping the signal between T1 and T2, see the figure below.

Figure 1-1: Strategy for tool path control.

In their paper, Murphy et al. [4] offer a technique to automate robot programming. The

technique uses CAD geometry data to automatically generate robot deburring path and

then corrects it using a force sensor attach to the tool head. Using a graphics interface, an

operator specifies the edges on a part to be deburred, the deburring tools to be used, the

speeds, feed rates and contact force desired. After that, a robot path planner generates an

initial deburring path for the robot. The initial path generation is done in two steps. First

 4

step is edge organization. The deburring data developed by the graphic interface is an

unordered list of edges. Edges with the same deburring tool and roughly the same

deburring parameters are grouped in deburr-paths. The path planner then divides each

deburr-path into one or more loops (a loop is a set of edges that can be deburred without

lifting the tool from the part). The second step is pose generation. Once edges are

organized, the path planner creates a sequence of poses which define the trajectory for

each deburr-path (the poses contain position and orientation information in the part’s

coordinate frame) during deburring the robot moves between these poses in straight-line

motion. There are two types of poses in a deburr-path: Vertex pose, at which the tool

makes contact with the part, and go-to pose, used for approaching and depart trajectories.

After that these position are adjusted using a force sensor to compensate for offset errors.

Leali et al. [2] discusses an off-line programing (OLP) approach to overcome the

disadvantage of the point-to-point teaching method. The main idea is to use a 3D CAD

model of the workpiece and define the teaching points on it. The first step concern the

analyses of the industrial problem and the workpiece geometry and material, aiming at

clarifying the robotic tasks. The main robot operations are clarified, addressing finishing

tools, manufacturing parameters. The next macro-phase is the CAD-based OLP. The

model must contain all the information needed to simulate the robot work-cycle. In a

CAD-based OLP two types of software can be used. The first is based on general purpose

software platforms. They create the work path from the mathematical description of the

CAD features. Such “Paths from the Math” approach is very intuitive and quick but not

manufacturing oriented. The second one represents an extension of the typical CAM

simulation, where the robot is typically regarded as a 5 + 1 axes tool machine. After robot

programming all the designed 3D modular models and subprogram modules are

assembled in a virtual workcell layout. A workcell virtual prototype is then available to

simulate and virtually optimize the process performances and generate the robot code. A

workcell calibration process is finally required to define the exact position of the reference

frames.

 5

A teaching method using teaching support devices was developed by Sugita et al [5] for a

deburring robot. The main idea is to teach the robot using devices other than the robot

itself, so that there will not be a down time and the programming can be done off-line.

Two kinds of teaching support devices were developed to prepare the tool path. One is a

three-wire type teaching support device. The structure of the device is shown in Figure 1-

2 a). This is a device that can measure a position in 3D coordinates, and it is composed of

a position measuring unit and a posture measuring unit. These units are connected with a

wire to measure the distance between them, and the device can measure the position and

direction vector of the dummy tool on the tip of the posture measuring unit in the device’s

coordinates. Figure 1-2 a) shows the structure of the second teaching support device. This

device is composed of two arms and a wrist, and has six axes of freedom. Optical encoders

are adopted as angle detectors for each link in order to reduce the influence of noise and

temperature fluctuation to the accuracy. The detecting resolution of each link is 17 bit.

This method can solve the wire-damping problem in positioning the device.

Figure 1-2: a) Three-wire type teaching support device

 b) Structure of arm-type teaching support device.

 6

El-Bestawi et al. [6], presented an approach that focused more on the off-line planning

part. In particular, a “hypothesis and test” method approach was adopted, that is, random

discrete poses of the robotic hand were generated between the start and goal positions

while checking for collisions in these random poses. Afterwards, a smoothening algorithm

is applied to the collision-free poses to yield a continues path. Nonetheless, it was pointed

out that a presence of a user is required, hence not fully automated, and that this procedure

takes about 3 hours on a normally sized workpiece.

Asakawa et al. [7] offers an approach to automate the nominal path needed for deburring

a hole on free-curved surface on the basis of CAD data. The 3D curve of the edge is

equally divided by points P, depending on a chamfering condition. A normal vector Npn

is defined at the point Pn, Fn is the vector directing from Pn to Pn1, respectively. An outer

product of Npn and Fn corresponds to the tool axis vector D, see Figure 1-3. Doing this for

all the P points then transforming these information into robot control commands results

in a nominal path to be followed by the end-effector. The paper also adds a touch sensor

in order to control the initially generated path in real-time to make sure the end result of

the chamfering process is as desired.

 7

Figure 1-3: Generation of chamfering points.

Zhang and his team [8] proposed a method for on-line path generation for robot deburring

of cast aluminum wheels. The automated robot path generation system is developed to

automatically generate a 6 DOF robot path based on the vision, force and position sensor

fusion. Before generating a path to deburr a wheel, the tool path is manually marked on

the surface of the wheel. The robot tool is controlled to continuously follow the center of

the marked tool path on the surface while the tool tip is kept continuous contact with the

surface using a force control strategy. Thus the z coordinate of the tool tip in the tool frame

can be directly obtained. From the images captured by the camera, the x and y coordinates

and the roll orientation can be controlled using the visual input. The other two orientations

are determined by finding the local surface normal based on the (x, y, z) coordinates in a

local region which are obtained by moving the tool in a zigzag pattern. The position and

orientation are recorded and a path is generated that follows the feature and is

perpendicular to the local surface. The generated path is then smoothed to obtain a final

tool path. The robot is then automatically programmed to perform a task.

 8

Lee et al. [9] worked on enhancing the teaching and playback method of path generation

for deburring process. By compressing and smoothing the initial path using Douglas-

Peucker (DP) algorithm the path becomes less noisy and vibrations that may arise due to

the physical limitations of the robotic manipulator’s joints are damped. Moreover, due to

the unexpected shape of the burrs, this research presents a method that protects the tool

from damage by reducing the tool velocity based on the measured reaction force, which

was measured and utilized at the tool with a force sensor, and it offered information on

the estimated size of the burrs. That is, when the burr was big, the measured force was

also large. The size of the tangential force at the tool had to be controlled so that the tool

would not be damaged. The larger the burrs were, the more slowly the manipulator had to

move in the tangential direction to maintain a relatively constant tangential force so as to

tear off the plotted burrs; and when it encountered a burr, the slower speed of the endpoint

along the surface implied a constant volume of material that had to be removed for every

unit of time, which made the force constant in the tangential direction. The tangential force

was found to have been linearly related to the tool velocity, so that even though the

material removal rate decreased, the operator had to slow down the tool velocity to

overcome this problem.

Song et al. [10] proposes a hybrid off-line path generation method for minimizing the error

offset that may arise due to imperfections, Furthermore, impedance control is used to

avoid applying excessive contact force in real-time. Tool path generation based on

matching between the tool paths from the CAD model to teaching point is proposed to

minimize the position and orientation errors of the workpiece. The basic tool path for

deburring can be generated by the CAM software with a CAD model by extracting the G-

code and converting its commands into the initial tool path. Using direct teaching based

on impedance control, some contact points between the tool and the actual workpiece are

manually selected as the teaching points, which are the minimum number of points to

feature the shape of the workpieces. Based on matching the tool path extracted from the

CAD model to the teaching points, the transformation matrix reflecting the position and

orientation errors of the workpiece can be achieved. Then, the tool path can be modified

 9

to minimize the position and orientation errors. Therefore, the proposed method can take

the advantages of both the teaching method and the CAD/CAM approach.

A paper written by Ziliani et al. [11] deals with the implementation of a mechatronic

methodology for the robotic deburring of planar workpieces with an unknown shape

performed by an industrial manipulator. The approach is based on the use of a hybrid

force/velocity control law and on a correlated suitable design of the deburring tool by

utilizing a contour tracking method that aims to control the normal force and the tangential

velocity of the robot probe along the normal and tangential directions on the contacting

point, respectively.

Princely and Selvaraj [12] developed a teaching-less robot system for deburring planar

workpieces having burrs on the edges using image processing system. This system does

not require the contour shape data from the CAD profile or by manual entry of the data by

the robot operator. In this work a vision sensory system is used to capture the image of

the workpiece. This image of the workpiece is then processed to acquire the edges to be

deburred by segmentation of the edges into straight lines. The robot language program for

each workpiece is generated automatically from the workpiece shape data and finishing

condition data. The main advantage of this method is that it provides the orientation,

position, and shape of the workpiece on the deburring workstation in a short time,

overcoming the offset errors that may arise from mounting the workpiece on pallets and/or

working tables.

For laser scanning related topic, no paper that utilizes a point laser scanner discussed the

generation of the scanning path itself for piece inspection. [13] and [14] show an example

of such papers where the main concern is the algorithm used for scanning and organizing

the collected data from the scanner itself. On the other hand, line laser scanners are widely

used for freeform surface inspection. Xi et al. [15] proposed path planning method that

utilizes the CAD model of the considered workpiece. By determining the surface profile,

 10

the method considers how to set the field of view of the scanner in order to achieve a

maximum coverage. Son et al. [16] developed an automated laser scan planning system

for the multi-patched freeform surfaces. The scan plan includes scan directions, scan

regions and the corresponding scan paths. Morozov and his team are developing a custom

MATLAB toolbox in an ongoing project [17]. Their goal is to achieve an automated path

generation system for non-destructive tests. However, none of these research conceder the

objective of scanning the edges of a given workpiece.

1.3 Thesis Motivation and Objective

Going through the literature of the automatic edge finishing one can notice that the major

concern is directed towards the real-time path planning of the end-effector of the robot

while performing the action of deburring. Less attention is given for the initial (nominal)

path or motion of the robot, which is done before the actual finishing process.

Furthermore, the motion needed for scanning the edges of a part shares many features with

that of the edge finishing motion, making it possible to develop one algorithm capable of

generating both kind of motions.

Hereby, the main objective of this study is to utilize a 6-DoF industrial manipulator and

generate a nominal collision-free path for a given workpiece from its CAD model. This

path is then used for either scanning or finishing the wanted edges on that workpiece.

However, if the path is generated for edge finishing processes then a real-time control

strategy has to be applied on the generated path in order to achieve the desired end results

on the workpiece.

It is necessary to point out that this study aims to proof the concept of generating an off-

line path for an automatic edge scanning/finishing. On the other hand, this does not mean

that the offered solution is the absolute optimal one. There are other algorithms for both

 11

collision-free path generation and solving the Traveler Salesman Problem (TSP) that can

be applied to this problem. Nonetheless, the proposed method in this thesis significantly

reduces the complexity of the problem. Yet it offers an efficient overall solution. With one

disadvantage that it might overlook some edges, if found unreachable by the robot

manipulator.

ABB IRB2000 model is assumed throughout the thesis as the 6-DoF manipulator.

SolidWorks 2014 is used as the CAD software. A software developed in the API

environment of SolidWorks and written in visual basic programming language serves as

the main program to perform the main goal of the study. Finally, the generated path is

converted into motion commands and sent to the ABB IRB2000 by an independent

software that is developed in C++ language.

1.4 Thesis Outline

In this thesis, the main components of the development of an off-line path generation

system are introduced and how they are constituted is described.

Chapter 2 includes basic concepts of robot kinematics of ABB IRB2000. Forward and

inverse positional kinematic analyses are derived. Implementations of these analyses to

the computer program is also discussed.

Chapter 3 explains the path planning procedure of the tip point of the robotic arm.

Collision detection test is also discussed in this chapter.

Chapter 4 describes the developed programs covering all parts of the software except for

those explained in the previous chapters.

 12

Chapter 5 discusses the outcome of experimental tests to verify the working procedure of

the study.

Chapter 6 concludes the thesis by summarizing the work done and discussing possible

future work

 13

KINEMATIC ANALYSES

Kinematics is the science of motion. ABB IRB2000 is considered as a series of links

connected by joints. Joints of robots have one degrees of freedom. The user/programmer

is interested in the position and orientation (pose) of the end-effector. However, the robot

is controlled by the joint actuators and actuators controls the joints in terms of angles.

There are two main parts of these analyses, forward and inverse kinematics. In the

kinematic analyses, the translational and rotational relations between adjacent links must

be described. Hartenberg and Denavit proposed a matrix method for this purpose. First

HD convention parameters will be expressed and position analyses will be done

accordingly.

2.1 Hartenberg-Denavit (HD) Convention

A systematic technique for establishing the displacement matrix for each two adjacent

links of a mechanism was proposed by Hartenberg and Denavit in 1955. The same

convention will be used in this investigation [18].

 14

The HD convention is mainly implemented in robot manipulators, which consist of an

open kinematic chain in which each joint contains one degree of freedom and the joint is

either revolute or prismatic. The HD convention is implemented through the following

steps:

1. Number the links and joints, starting at the base. The stationary base is denoted as

link 0 and the end effector is link m, as demonstrated in Figure 2-1. Link n moves

in respect to link n-1 around (for revolute) or along (for prismatic) joint i.

2. Establish links’ coordinate system for each of the joints.

3. n+1, dn+1,

an+1 n+1.

Figure 2-1 Schematic of the Denavit-Hartenberg convention parameters of a link.

 15

Using these parameters, the orientation matrix Ĉ(n−1,n) and the relative position of link n

with respect to link n-1 is given by (2.1) and (2.2), respectively:

Ĉ(n−1,n) = eũ3θneũ1αn (2.1)

𝑟 𝑛−1,𝑛 = dn�⃗� 3
(𝑛−1)

+ an�⃗� 1
(𝑛)

 (2.2)

Where,

�̃� = [
0 −𝑛3 𝑛2
𝑛3 0 −𝑛1
−𝑛2 𝑛1 0

] if �̅� = [

𝑛1
𝑛2
𝑛3
]

And,

eũ1θ = [
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

], eũ2θ = [
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
], eũ3θ = [

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

]

According to the robot’s links and distance definitions in Figure 2-2, the HD parameters

are as shown in table 2-1:

Table 2-1: Denavit-Hartenberg parameters of ABB IRB2000 manipulator.

Link 𝑎𝑖 [𝑚𝑚] 𝛼𝑖 𝑑𝑖 [𝑚𝑚] 𝜃𝑖

1 0 𝛼1 = −𝜋/2 𝑑1 = 750 𝜃1

2 𝑎2 = 710 0 0 𝜃2

3 𝑎3 = 125 𝛼3 = 𝜋/2 0 𝜃3

4 0 𝛼4 = −𝜋/2 𝑑4 = 850 𝜃4

5 0 𝛼5 = 𝜋/2 0 𝜃5

6 0 0 𝑑6 = 100 𝜃6

 16

Figure 2-2: Reference frames of ABB IRB2000 Manipulator.

The orientation matrices between each two consecutive links can be found using (2.1) as:

Ĉ(0,1) = eũ3θ1e−ũ1
π

2 (2.3)

Ĉ(1,2) = eũ3θ2 (2.4)

Ĉ(2,3) = eũ3𝜃3eũ1
π

2 (2.5)

Ĉ(3,4) = eũ3𝜃4e−ũ1
π

2 (2.6)

Ĉ(4,5) = eũ3𝜃5eũ1
π

2 (2.7)

Ĉ(5,6) = eũ3𝜃6 (2.8)

 17

The location of each link’s origin with respect to the previous link’s origin is calculated

as follows:

r̅0,1
(0) = d1u3 (2.9)

r̅1,2
(1) = a2e

ũ3𝜃2u1 (2.10)

r̅2,3
(2) = a3e

ũ3θ3eũ1
π

2u1 (2.11)

r̅3,4
(3) = 𝑑4u3 (2.12)

r̅4,5
(4) = 0 (2.13)

r̅5,6
(5) = d6u3 (2.14)

2.2 Position Analyses

2.2.1 Forward Position Analysis

The position and orientation of the end-effector is determined using joint angles. This is

named as forward position analysis. This analysis is done symbolically. Found position

and orientation elements are used in other kinematic analyses. In robotic applications,

generally inverse kinematic analyses are used, because, generally the pose (position &

orientation) of end-effector is known values but joint angles are unknown values. The

orientation can be found first, because, part of the position is found using orientation.

Orientation of the end-effector is found by multiplying all rotation matrices, because, the

lengths of the links and offsets cannot affect the orientation. The orientation matrix is then:

 18

Ĉ(0,6) = Ĉ(0,1)Ĉ(1,2)Ĉ(2,3)Ĉ(3,4)Ĉ(4,5)Ĉ(5,6)

Ĉ(0,6) = (eũ3θ1e−ũ1
𝜋
2
)(eũ3θ2)(eũ3𝜃3eũ1

π
2)(eũ3𝜃4e−ũ1

π
2)(eũ1

π
2)(eũ3𝜃6)

 = (eũ3θ1)(e−ũ1
𝜋
2
 eũ3(𝜃2+θ3)eũ1

π
2)(eũ3𝜃4)(e−ũ1

π
2eũ3𝜃5eũ1

π
2)(eũ3𝜃6)

 = (eũ3θ1)(eũ2𝜃23)(eũ3𝜃4)(eũ2𝜃5)(eũ3𝜃6)

Then,

Ĉ(0,6) = eũ3θ1eũ2𝜃23eũ3𝜃4eũ2𝜃5eũ3𝜃6 (2.15)

Where, 𝜃23 = 𝜃2 + 𝜃3. Also recall that, e−ũ1
π

2eũ3𝜃eũ1
π

2 = eũ2𝜃

Using (2.2), the equation of the tip point position relative to the base is:

𝑟 0,6 = 𝑟 0,1 + 𝑟 1,2 + 𝑟 2,3 + 𝑟 3,4 + 𝑟 4,5 + 𝑟 5,6

�̅� = r̅0,6
(0) = r̅0,1

(0) + Ĉ(0,1)r̅1,2
(1) + Ĉ(0,2)r̅2,3

(2) + Ĉ(0,3)r̅3,4
(3) + Ĉ(0,4)r̅4,5

(4)

+ Ĉ(0,5)r̅5,6
(5)

Substituting from (2.3)-(2.14),

�̅� = d1u3 + e
ũ3θ1eũ2𝜃2𝑎2u1 − e

ũ3θ1eũ2𝜃23𝑎2u1 + e
ũ3θ1eũ2𝜃23𝑑4u3 +

eũ3θ1eũ2𝜃23eũ3𝜃4eũ2𝜃5𝑑6u3 (2.16)

 19

2.2.2 Inverse Position Analysis

Inverse position analysis is to find joint angles from given pose of the end-effector. First

we must determine rotation & translation matrices with given position and orientation.

After the matrices are formed, using the detailed expressions of the elements, we can find

the joint variables of the robot. The elements in the position matrix are independent, but

in rotation matrix, only 3 of 9 elements are independent. This means, there are 6

independent equation for 6 unknown joint variables.

The first thing to do is to convert tip point position to wrist point position. This can be

done by subtracting 𝑟 5,6 from 𝑟 0,6:

�̅� = �̅� − d6Ĉ
(0,6)u3 = d1u3 + e

ũ3θ1eũ2𝜃2𝑎2u1 − e
ũ3θ1eũ2𝜃23𝑎2u1 + e

ũ3θ1eũ2𝜃23𝑑4u3

Let �̅�∗ = �̅� − d1u3 = eũ3θ1(eũ2𝜃2𝑎2u1 − e
ũ2𝜃23𝑎2u1 + e

ũ2𝜃23𝑑4u3) (2.17)

θ1 can be found by Pre-multiplying (2.17) by u2
𝑡
e−ũ3θ1, as explained below:

First, pre-multiply (2.17) by e−ũ3θ1:

e−ũ3θ1�̅�∗ = eũ2𝜃2𝑎2u1 − e
ũ2𝜃23𝑎2u1 + e

ũ2𝜃23𝑑4u3 (2.18)

Next, post-multiply by (2.18) by u2
𝑡
:

 u2
𝑡
e−ũ3θ1�̅�∗ = 𝑤3 = u2

𝑡
(eũ2𝜃2𝑎2u1 − e

ũ2𝜃23𝑎2u1 + e
ũ2𝜃23𝑑4u3) = 0

 20

On the other hand,

e−ũ3θ1�̅�∗ = [
cos 𝜃1 sin 𝜃1 0
−sin 𝜃1 cos 𝜃1 0
0 0 1

] [

𝑤1
𝑤2

𝑤3 − 𝑑3
] = [

𝑤1 cos 𝜃1 + 𝑤2 sin 𝜃1
𝑤2 cos 𝜃1 − 𝑤1 sin 𝜃1

𝑤3 − 𝑑3

]

Then, 𝑤2 cos 𝜃1 − 𝑤1 sin 𝜃1 = 0

Consequently,

θ1 = 𝑎𝑡𝑎𝑛2(𝜎1𝑤2, 𝜎1𝑤1),𝑤ℎ𝑒𝑟𝑒 𝜎1 = ±1 (2.19)

In this thesis 𝜎1 will always be taken as +1. The reason is that the parts to be processed

will be positioned in the global coordinate system such that θ1 𝜖 [−90
𝑜 , 900].

Now θ2 can be found from (2.18)

e−ũ3θ1�̅�∗ = eũ2𝜃2𝑎2u1 − e
ũ2𝜃23𝑎3u1 + e

ũ2𝜃23𝑑4u3

 = 𝑎2 [
cos 𝜃2
0

−sin 𝜃2

] − 𝑎3 [
sin 𝜃23
0

cos 𝜃23

] + 𝑑4 [
cos 𝜃23
0

−sin 𝜃23

]

So, the first and third components of e−ũ3θ1�̅�∗ are:

𝑤1 cos 𝜃1 + 𝑤2 sin 𝜃1 = 𝑎2 cos 𝜃2−𝑎3 sin θ23 + 𝑑4 cos 𝜃23 (2.20)

𝑤3 − 𝑑1 = −𝑎2 sin 𝜃2+𝑎3 cos θ23 + 𝑑4 sin 𝜃23 (2.21)

 21

Multiply both (2.20), (2.21) and add them:

(𝑤1 cos 𝜃1 + 𝑤2 sin 𝜃1)
2 + (𝑤3 − 𝑑1)

2

= 𝑎2
2 + 𝑎3

2 + 𝑑4
2 + 2𝑎2𝑑4(cos 𝜃2 sin 𝜃23−sin 𝜃2 cos 𝜃23)

− 2𝑎2𝑎3(cos 𝜃2 cos 𝜃23 + sin 𝜃2 sin 𝜃23) (2.22)

Utilizing the trigonometric identities, cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽 = cos(𝛼 − 𝛽) and

sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 = sin(𝛼 + 𝛽), (2.22) can be simplified into:

(𝑤1 cos 𝜃1 + 𝑤2 sin 𝜃1)
2 + (𝑤3 − 𝑑1)

2

= 𝑎2
2 + 𝑎3

2 + 𝑑4
2 + 2𝑎2𝑑4 sin 𝜃3 − 2𝑎2𝑎3 cos 𝜃3 (2.23)

Dividing (2.23) by 2𝑎2√𝑎3
2 + 𝑑4

2 and rearranging,

(𝑤1 cos 𝜃1 + 𝑤2 sin 𝜃1)
2 + (𝑤3 − 𝑑1)

2 − 𝑎2
2 − 𝑎3

2 − 𝑑4
2

2𝑎2√𝑎3
2 + 𝑑4

2

=
𝑑4

2𝑎2√𝑎3
2 + 𝑑4

2
sin 𝜃3 −

𝑎3

2𝑎2√𝑎3
2 + 𝑑4

2
cos 𝜃3 (2.24)

Let cos 𝛾 =
𝑑4

2𝑎2√𝑎3
2+𝑑4

2
 and sin 𝛾 = −

𝑎3

2𝑎2√𝑎3
2+𝑑4

2

Then (2.24) can be rewritten as:

sin(𝜃3 + 𝛾) =
(𝑤1 cos 𝜃1 + 𝑤2 sin 𝜃1)

2 + (𝑤3 − 𝑑1)
2 − 𝑎2

2 − 𝑎3
2 − 𝑑4

2

2𝑎2√𝑎3
2 + 𝑑4

2

So,

 22

𝜃3 = sin
−1 (

(𝑤1 cos 𝜃1 + 𝑤2 sin 𝜃1)
2 + (𝑤3 − 𝑑1)

2 − 𝑎2
2 − 𝑎3

2 − 𝑑4
2

2𝑎2√𝑎3
2 + 𝑑4

2
) − 𝛾 (2.25)

Where, 𝛾 = atan2(−
𝑎3

2𝑎2√𝑎3
2+𝑑4

2
,

𝑑4

2𝑎2√𝑎3
2+𝑑4

2
)

Note that (2.25) gives two possible solutions for 𝜃3; however, since only an upper arm

configuration is needed throughout the motion the solution that gives 𝜃3 in the second or

third quadrant is taken. That is, 𝜃3 ∈ [90°, 270°].

Finding can be done by going back to (2.20) and (2.21). Rewriting them in matrix format,

[
𝑎2 + 𝑑4 sin 𝜃3 − 𝑎3 cos 𝜃3 𝑑4 cos 𝜃3 + 𝑎3 sin 𝜃3
𝑑4 cos 𝜃3 + 𝑎3 sin 𝜃3 −𝑎2 − 𝑑4 sin 𝜃3 + 𝑎3 cos 𝜃3

] [
cos 𝜃2
sin 𝜃2

]

= [
𝑤1 cos 𝜃1 + 𝑤2 sin 𝜃1

𝑤3 − 𝑑1
]

[
cos 𝜃2
sin 𝜃2

]

= [
𝑎2 + 𝑑4 sin 𝜃3 − 𝑎3 cos 𝜃3 𝑑4 cos 𝜃3 + 𝑎3 sin 𝜃3
𝑑4 cos 𝜃3 + 𝑎3 sin 𝜃3 −𝑎2 − 𝑑4 sin 𝜃3 + 𝑎3 cos 𝜃3

]
−1

[
𝑤1 cos 𝜃1 + 𝑤2 sin 𝜃1

𝑤3 − 𝑑1
]

= 𝐴 [
−𝑎2 − 𝑑4 sin 𝜃3 + 𝑎3 cos 𝜃3 −𝑑4 cos 𝜃3 − 𝑎3 sin 𝜃3
−𝑑4 cos 𝜃3 − 𝑎3 sin 𝜃3 𝑎2 + 𝑑4 sin 𝜃3 − 𝑎3 cos 𝜃3

] [
𝑤1 cos 𝜃1 + 𝑤2 sin 𝜃1

𝑤3 − 𝑑1
]

Where, 𝐴 =
−1

(𝑎2+𝑑4 sin𝜃3−𝑎3 cos𝜃3)2+(𝑑4 cos𝜃3+𝑎3 sin𝜃3)2

Notice that the denominator of A can never be zero.

 23

Then,

cos 𝜃2

=
(𝑎2 + 𝑑4 sin 𝜃3 − 𝑎3 cos 𝜃3)(𝑤1 cos 𝜃1 +𝑤2 sin𝜃1) + (𝑑4 cos 𝜃3 + 𝑎3 sin 𝜃3)(𝑤3 − 𝑑1)

(𝑎2 + 𝑑4 sin𝜃3 − 𝑎3 cos 𝜃3)
2 + (𝑑4 cos 𝜃3 + 𝑎3 sin 𝜃3)

2

sin𝜃2

=
(𝑑4 cos 𝜃3 + 𝑎3 sin𝜃3)(𝑤1 cos 𝜃1 +𝑤2 sin 𝜃1) + (𝑎2 + 𝑑4 sin𝜃3 − 𝑎3 cos 𝜃3)(𝑤3 − 𝑑1)

(𝑎2 + 𝑑4 sin𝜃3 − 𝑎3 cos 𝜃3)
2 + (𝑑4 cos 𝜃3 + 𝑎3 sin 𝜃3)

2

So, 𝜃2 can be found as 𝜃2 = atan2(sin𝜃2 , cos 𝜃2) (2.26)

The remaining three joint angles will be found from the orientation of the end-effector. At

this point 𝜃1, 𝜃2 and 𝜃3 are known; hence, the following operation can be performed on the

orientation matrix Ĉ(0,6):

Ĉ(0,6) = eũ3θ1eũ2𝜃23eũ3𝜃4eũ2𝜃5eũ3𝜃6

Let Ĉ∗ = e−ũ2𝜃23e−ũ3θ1Ĉ(0,6) = eũ3𝜃4eũ2𝜃5eũ3𝜃6 = [

𝑐11
∗ 𝑐12

∗ 𝑐13
∗

𝑐21
∗ 𝑐22

∗ 𝑐23
∗

𝑐31
∗ 𝑐32

∗ 𝑐33
∗
]

To find 𝜃5 pre-multiply Ĉ∗ by u3
𝑡
 and post-multiply by u3:

u3
𝑡
Ĉ∗u3 = (u3

𝑡
eũ3𝜃4)eũ2𝜃5(eũ3𝜃6u3) = u3

𝑡
eũ2𝜃5u3 = cos 𝜃5

Then, 𝜃5 = atan2(𝜎5√1 − cos2 𝜃5 , cos 𝜃5) 𝑤ℎ𝑒𝑟𝑒 𝜎5 = ±1 (2.27)

 24

Note that 𝜎5 points to a wrist flip ambiguity, meaning that the physical configuration of

the end-effector in both cases are the same. Hence, 𝜎5 has no effect on the physical

orientation of the end-effector. For the sake of completeness, it is to be taken as +1 in this

work.

Similarly, 𝜃6 can be found as follows:

u3
𝑡
Ĉ∗u1 = (u3

𝑡
eũ3𝜃4)eũ2𝜃5(eũ3𝜃6u1) = u3

𝑡
eũ2𝜃5eũ3𝜃6u1 = −sin 𝜃5 cos 𝜃6 = 𝑐31

∗

u3
𝑡
Ĉ∗u2 = (u3

𝑡
eũ3𝜃4)eũ2𝜃5(eũ3𝜃6u2) = u3

𝑡
eũ2𝜃5eũ3𝜃6u2 = sin 𝜃5 sin 𝜃6 = 𝑐32

∗

So, 𝜃6 = atan2(𝜎5𝑐32
∗ , −𝜎5𝑐31

∗) , sin 𝜃5 ≠ 0 (2.28)

Same procedure to find 𝜃4:

u1
𝑡
Ĉ∗u3 = (u1

𝑡
eũ3𝜃4)eũ2𝜃5(eũ3𝜃6u3) = u1

𝑡
eũ3𝜃4eũ2𝜃5u3 = sin 𝜃5 cos 𝜃4 = 𝑐13

∗

u2
𝑡
Ĉ∗u3 = (u2

𝑡
eũ3𝜃4)eũ2𝜃5(eũ3𝜃6u3) = u2

𝑡
eũ3𝜃4eũ2𝜃5u3 = sin 𝜃5 sin 𝜃4 = 𝑐23

∗

So, 𝜃5 = atan2(𝜎5𝑐23
∗ , 𝜎5𝑐13

∗) , sin 𝜃5 ≠ 0 (2.29)

In case sin θ5 = 0 this means θ5 = 0 𝑜𝑟 ± 𝜋. However θ5 cannot be ±𝜋 due to physical

constraints. Therefore, one scenario is possible, where Ĉ∗ becomes:

 Ĉ∗ = eũ3𝜃4eũ20eũ3𝜃6 = eũ3𝜃4eũ3𝜃6 = eũ3(𝜃4+𝜃6) (2.30)

 25

(2.30) means that at this singularity it is not possible to find 𝜃4 and 𝜃6 separately, but only

their sum. Fortunately, this will not affect the collision check test, as will be further

explained in the next chapter. Nonetheless, for sin θ5 = 0, 𝜃4 + 𝜃6 are found as shown

below:

Ĉ∗ = eũ3(𝜃4+𝜃6) = [
cos(𝜃4 + 𝜃6) − sin(𝜃4 + 𝜃6) 0
sin(𝜃4 + 𝜃6) cos(𝜃4 + 𝜃6) 0

0 0 1

] = [

𝑐11
∗ 𝑐12

∗ 𝑐13
∗

𝑐21
∗ 𝑐22

∗ 𝑐23
∗

𝑐31
∗ 𝑐32

∗ 𝑐33
∗
]

Then, 𝜃4 + 𝜃6 = atan2(𝑐21
∗ , 𝑐11

∗) (2.31)

 26

PATH GENERATION

This chapter is the heart of the thesis. Here, the overall path of the end-effector is going

to be generated in order to be later executed by the robotic manipulator. Starting with the

preparation stage, the edges needed to be scanned or deburred are selected. Next, for each

selected edge the corresponding needed motion of the end-effector in order to process that

specific edge is generated. Such motions will be referred to as processing motions. Then,

all possible combination of motions that connect separated processing motions are

calculated and generated. Such motions will be referred to as non-processing motions.

After that, a search algorithm is utilized to select a subset of the non-processing motions

that yield an efficient connected path along with the processing motions. Lastly, this

overall path will be translated into motion commands and sent to ABB IRB2000

 27

3.1 Preparation Stage

This section discusses the parameters that the user need to input to the program. These

parameters will serve as the foundation or basis that the software will use to generate the

overall motion of the robot.

3.1.1 Setting the Global Coordinate System

The user is expected to define a datum reference frame. The frame is to be an orthogonal,

right-handed and isoscaled “equally scaled in the coordinate axes” coordinate system. All

the paths, edges and points will be expressed in this coordinate system throughout the

study. Such reference coordinate system can be easily defined using the reference

geometry tool provided by the software, which can be reached from “Features/Reference

Geometry/Reference Coordinate System” as shown in Figure 3-1. Note that these defined

coordinates corresponds to a given position on the working space.

Figure 3-1: Defining the location and orientation of the part with respect to the global coordinate system.

 28

The necessary transformations can be performed using the reference frame (RF) to

correctly position the workpiece with respect to the global coordinates of the robot.

Viewing RF from the global coordinates as a surface represented by its xy-plane with a

normal parallel to z-axis, the following reasoning can be followed to easily create the

needed rotation matrix.

First, replace the x-axis components of RF in the first column, which result in rotating the

axis to the global x-axis. Then, to make the x’y’-plane lie on the global xy-plane, the unit

vector perpendicular to the x’y’-plane is to be oriented towards the global z-axis. This

means that the components of z’-axis should be placed in the third column of the matrix.

Finally, in order to assure that all axes are perpendicular to each other the third axis is the

result of the cross product of z’-axis and x’-axis “in the mentioned order”, resulting in the

y’-axis to be placed in the second column of the rotation matrix. This procedure is

illustrated in the following formulae:

𝑥′ = 𝑥1
′ 𝑖̂ + 𝑥2

′ 𝑗̂ + 𝑥3
′ �̂� (3.1)

𝑦′ = 𝑦1
′ 𝑖̂ + 𝑦2

′ 𝑗̂ + 𝑦3
′ �̂� (3.2)

𝑧′ = 𝑧1
′ 𝑖̂ + 𝑧2

′ 𝑗̂ + 𝑧3
′ �̂� (3.3)

𝑅 = [

𝑥1
′ 𝑦1

′ 𝑧1
′

𝑥2
′ 𝑦2

′ 𝑧2
′

𝑥3
′ 𝑦3

′ 𝑧3
′
] (3.4)

Where x’, y’ and z’ are the axes of RF viewed from the global coordinates and R is the

rotation matrix.

 29

Such rotation matrix R can be converted or represented in three basic rotations. Here these

rotations are taken about the three global axes in the sequence z-y-x. Note that such

sequence is arbitrarily chosen and other sequences can be used to end up with the same

overall rotation. Therefore, the multiplication of the rotation matrices will be equal to R

as shown in equation (3.5).

𝑅 = [

𝑥1
′ 𝑦1

′ 𝑧1
′

𝑥2
′ 𝑦2

′ 𝑧2
′

𝑥3
′ 𝑦3

′ 𝑧3
′
] = 𝑅𝑧𝑅𝑦𝑅𝑥

= [
cos ∅ sin ∅ 0
− sin∅ cos ∅ 0
0 0 1

] [
cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃
] [

1 0 0
0 cos𝜓 sin𝜓
0 − sin𝜓 cos𝜓

]

= [

cos𝜙 cos 𝜃 sin 𝜙 cos𝜓 + cos𝜙 sin 𝜃 sin𝜓 sin𝜙 sin𝜓 − cos 𝜙 sin 𝜃 cos𝜓
−sin𝜙 cos 𝜃 cos𝜙 cos𝜓 − sin𝜙 sin 𝜃 sin𝜓 cos𝜙 sin𝜓 + sin𝜙 sin 𝜃 cos𝜓

sin 𝜃 −sin𝜓 cos 𝜃 cos𝜓 cos 𝜃
]

Where Rz, Ry and Rx are the rotation matrices about z, y and x axes, respectively.

From the above equation, the three rotation angles can be found as follows,

𝑥3
′ = sin 𝜃

𝜃 = arcsin 𝑥3
′ (3.5)

Note that equation (3.5) will yield two possible solutions for . Both are valid however,

once an angle is chosen to be the correct angle it will affect the other two angles. Here the

angle between [-90o, 90o] is chosen. Next,

sin𝜙 =
−𝑥2

′

cos 𝜃
 , cos 𝜃 ≠ 0

cos𝜙 =
𝑥1
′

cos 𝜃
 , cos 𝜃 ≠ 0

 30

𝜙 = 𝑎𝑡𝑎𝑛2(sin𝜙 , cos𝜙)

Similarly, for ,

sin𝜓 =
−𝑦3

′

cos 𝜃
 , cos 𝜃 ≠ 0

cos𝜓 =
𝑧3
′

cos 𝜃
 , cos 𝜃 ≠ 0

𝜓 = 𝑎𝑡𝑎𝑛2(sin𝜓 , cos𝜓)

In case cos=0 the solution discussed above is not valid and hence this case must be treated

specially. However, in such case is directly found and is equal to either -90o or 90o, and

from (3.5) this ambiguity is eliminated. That is, if x’3 is 1 then is 90o and -90o if x’3 is -

1. Physically, this case means that the x’-axis is parallel to z-axis and by rotating around

y-axis by either 90o or -90o x’-axis will be brought to x-axis. From the last sentence, it can

be deduced that after rotating about y-axis, rotating about x-axis in a specific angle will

align RF to the global coordinates without the need to rotate around z-axis. That is = 0o.

Note that this case is actually a singularity point.

 31

𝑅 = [

𝑥1
′ 𝑦1

′ 𝑧1
′

𝑥2
′ 𝑦2

′ 𝑧2
′

𝑥3
′ 𝑦3

′ 𝑧3
′
] = 𝑅𝑧𝑅𝑦𝑅𝑥

= [
cos 0 sin 0 0
− sin 0 cos 0 0
0 0 1

] [
cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃
] [
1 0 0
0 cos𝜓 sin𝜓
0 − sin𝜓 cos𝜓

]

= [
1 0 0
0 1 0
0 0 1

] [
cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃
] [
1 0 0
0 cos𝜓 sin𝜓
0 −sin𝜓 cos𝜓

]

= [

cos 𝜃 sin 𝜃 sin𝜓 − sin 𝜃 cos𝜓
0 cos𝜓 sin𝜓

sin 𝜃 − sin𝜓 cos 𝜃 cos𝜓 cos 𝜃
]

𝑅 = [

cos 𝜃 sin 𝜃 sin𝜓 −sin 𝜃 cos𝜓
0 cos𝜓 sin𝜓

sin 𝜃 − sin𝜓 cos 𝜃 cos𝜓 cos 𝜃
] (3.6)

So, can be determined from (3.6),

sin𝜓 = 𝑧2
′

cos𝜓 = 𝑦2
′

𝜓 = 𝑎𝑡𝑎𝑛2(sin𝜓 , cos𝜓)

Lastly, after rotating the part by these angles, It will be translated linearly in each axis to

bring the origin of RF to the (0, 0, 0) point of the global coordinates by the simple

following equations,

 32

𝑂 = (𝑂𝑥, 𝑂𝑦, 𝑂𝑧)

Δ𝑥 = −𝑂𝑥

Δ𝑦 = −𝑂𝑦

Δ𝑧 = −𝑂𝑧

Where O is the RF origin expressed from the global frame point of view and x, y and

z are the linear translation along the x, y and z axes, respectively. The relative distance

of the RF with respect to the global coordinate system, O, is entered by the user through

the graphical user interface (GUI) of the software. A complete explanation about the GUI

is presented in chapter 4.

3.1.2 Selecting the Edges to be Processed

Before starting with path generation, first the edges on the part that are to be processed

(scanned or finished) is to be selected. The user need to first define the planar faces that

will be in direct contact with the working table or fixture, such faces will be referred to by

Ground Faces. Figure 3-2 below shows an example of a selected ground face.

 33

Figure 3-2: Selecting a ground face by the user

In edge finishing and scanning it is the convex edges that needs to be processed. Using

Power Select Utility in SolidWorks, a filter can be set in order to select only convex edges

out of all the edges in a part, this is done automatically by the software. After selecting

the convex edges, the ones laying on the ground faces are recognized and eliminated. The

reason for it is that the tool will not be able to reach such edges due to the physical

constraints imposed by the working table.

Figure 3-3: Result of the automated convex edge selection

 34

3.2 Processing Motion Generation

As discussed before, the overall motion of the robot consists of two parts, namely,

processing and non-processing motions. Each processing motion corresponds to one edge

on the part; therefore, these motions are fixed, as will be seen in this subsection. For that

reason, each of these motions needs to be checked to be collision-free.

An edge is said to be reachable by a robotic manipulator, if the robot and the tool holder

do not collide with the part throughout the needed motion to process that edge. Checking

the reachability of an edge can be done in two steps. First, calculate the processing motion

for the selected edge. Secondly, simulate the calculated motion in SolidWorks and check

if there are any collisions. In case no collisions occurs then that edge will be marked as

reachable, otherwise it will be discarded from the process.

The robot manipulator’s links are modeled as cuboids as shown in Figure 3-4. Such model

is conservative, which can accommodate for some deviations. Also, it is faster to

maneuver cuboids in SolidWorks which will require fewer memory and time compared to

using an actual geometric model.

 35

Figure 3-4: the geometric model of the robotic arm used in the study for performing the collision detection test.

The following sub-sections describes the detailed procedure for generating the processing

motions that corresponds to each of the previously selected edges.

3.2.1 Calculating Processing Motions

Two types of edges are considered in this study, namely, Straight line and Circular edges.

In case of a straight line, the motion can be sufficiently defined by the start and end

positions of the end-effector. These positions can be found by taking the desired offset

value and direction (approach angle) from both ending vertices of that edge. The offset

value is the relative distance between the edge and end-effector during the processing

motion, such parameter is numerically entered by the user. While the offset direction can

be chosen as either the average of the adjacent faces’ normals, check Figure 3-5 a), or

normal to the direction of the formed burr, Figure 3-5 b). Generally, the burr forms in the

direction normal to both the normal vector of the later machined face between the two

adjacent faces and the direction of the edge itself [19], as shown in Figure 3-6.

 36

Figure 3-5: a) Illustration of an offset direction, 𝑑 , that is equal to the average of the two normals of the adjacent faces

of the edge, �⃗� 1 and �⃗� 2 b) Illustration of an offset direction, 𝑑 , in the normal direction to the formed burr.

Figure 3-6: Illustration of formed burrs direction [19].

 37

Mathematically, 𝑑 can be found for the two case as follows:

 For the average direction case,

𝑑 = 𝑑
�⃗� 1 + �⃗� 2
‖�⃗� 1 + �⃗� 2‖

 (3.7)

Where, 𝑑 is the offset value.

 Normal to the burr formation direction,

𝑑 = 𝑑 �⃗� 1 (3.8)

Where, 𝑑 is the offset value and �⃗� 1 is the normal of the face machined last.

Note that in the second case a small offset 𝑒 is introduced in order to position the tool tip

on the burr itself instead of the edge attached to it, the value and direction is calculated as

shown below,

𝑒 =

{

 𝑒

�⃗� 1𝑥𝑡 1

‖�⃗� 1𝑥𝑡 1‖
 , (

�⃗� 1𝑥𝑡 1

‖�⃗� 1𝑥𝑡 1‖
) . �⃗� 2 > 0

−𝑒
�⃗� 1𝑥𝑡 1

‖�⃗� 1𝑥𝑡 1‖
 , (

�⃗� 1𝑥𝑡 1

‖�⃗� 1𝑥𝑡 1‖
) . �⃗� 2 < 0

 (3.9)

Where, e is equal to half of the tool head’s width, 𝑡 1 is the direction of the edge in space

and �⃗� 1 is the normal of the face machined last. Note that 𝑡 1 can have two opposite

directions; therefore, the correct direction is the one that yield 𝑒 which have an angle

between [-900, 900] with �⃗� 2.

 38

Now, the position of end-effector is defined by its location in space, 𝑟 , and orientation,

𝐶(0,6). The location can be calculated for both starting and ending positions by simply

adding the position vector of the corresponding vertex and the previously calculated offset

vector, 𝑑 . See Figure 3-7.

Figure 3-7: a) The location of the end-effector's starting position b) The location of the end-effector's ending position.

As for the tip point orientation, it is found as follows. The opposite direction of the offset

vector, 𝑑 , is taken to be the z-axis of the end-effector. The y-axis is oriented such that it is

parallel to the edge. The sign of the direction of y-axis is decided such that the x-axis will

be pointing downwards with respect to the global coordinates, using the right-hand rule.

Figure 3-8 gives a good example of such calculation.

 39

Figure 3-8: a) Taking the offset desired from a straight edge for generating the corresponding processing motion. d is

the offset vector, n1 and n2 are the adjacent faces normals, the shown coordinates is the orientation of the end-effector

of the ABB IRB2000 b) The CAD simulation of the corresponding motion in a).

In the case of a circular edges, the edge will either be a full circle or an arc. Since, ABB

IRB2000 can create arc motions that are less than 180o at a time, full circles are going to

be divided into four equal arc segments. Partial arcs will be divided into two equal

segments. Each arc segment motion needs to be represented by three positions of the end-

effector, the start and end positions along with an intermediate position. This position is

used by the robot to decide on the direction of circulation.

Similar to the straight edge scenario, the offset vector is added to the edge location to give

the location of the tip-point of the robotic hand. As for the orientation, the z-axis will be

in the opposite direction of the offset vector. The y-axis points towards the tangent at the

given point. Note that y-axis can have two opposite direction, the one that gives an x-axis

pointing downwards, according to the right-hand rule, is selected.

 40

Figure 3-9: Taking the offset desired from a circular edge for generating the corresponding processing motion

Note that the angle between adjacent edges needs to be considered while calculating the

processing motions. A small modification on the starting and/or ending positions of a

processing motion is to be performed, in case the corresponding edge has an adjacent edge

that forms an angle less that 180o with it. For instance, the edge given in Figure 3-10 has

two adjacent edges that both creates an angle of 90o. Therefore, due to the physical

thickness of the tool, both the starting and ending positions of the corresponding

processing motion will be shifted by an amount equal to half the width of the tool in the

direction of the edge, see Figure 3-10.

 41

Figure 3-10: An example of a straight line edge that has adjacent edges that form angles less than 180o with it and how

it affects the corresponding processing motion.

Similar approach is also considered for circular arc edges. The main difference from a

straight edge is that the performed shift is an angle instead of a pure translation, see Figure

3-11. The angle 𝛼 is found by 𝛼 = arctan
𝑤

𝑅
. Where w is half the width of the tool and R

is the radius of the arc motion.

Figure 3-11: An example of a circular arc edge that has an adjacent edge that form an angle less than 180o with it and

how it affects the corresponding processing motion.

 42

This concludes the calculation procedure for each selected edge to find its corresponding

processing motion. Resulting in one processing motion for each selected edge.

3.2.2 Collision Detection Test

In the previous subsection, a processing motion for each of the selected edges was

calculated. Now, these motions need to be verified to be collision-free. Note that such

motions are necessary to perform the task, either scanning or deburring. Hence, if any of

these motions turns to have a collision it means that the corresponding edge cannot be

processed. Therefore, such edges are going to be marked as unreachable.

Each of these motions are divided into discrete poses of the robotic manipulator. In other

words, a discrete motion approach is adapted for the test of collisions. At any given posture

the position of each link of the manipulator is going to be calculated, using inverse

kinematics, and then check if any link collide with the part at the given posture. Such

approach although not continuous in nature, it actually covers the whole range of motion

as far as collision is concerned.

The procedure for discretizing the straight and circular motions are somewhat different.

For the straight line motion, note that the orientation of the end-effector is actually

constant. Hence all of the intermediate poses will also have the same orientation. The

number of poses can be directly found using equation (3.11). Basically, the equation

divides the straight line into equally spaced parts.

 43

Figure 3-12: An illustration of discretizing the processing motion corresponding to a straight edge

The number of poses needed = 2 + ⌈
𝐿

2𝑤
− 1⌉ (3.10)

Where L is the length of the straight motion and w is half the width of the tool holder.

In case of an arc edge, the swept angle of the edge is divided again into equal increment

angles using equation (3.11). The orientation of each pose is found by rotating the

orientation matrix of the previous pose along the axis of the arc edge by an angle α as

given in (3.12).

 44

Figure 3-13: An illustration of discretizing the processing motion corresponding to an arc edge

Figure 3-14: The trigonometry used to derive the formulas below.

The number of poses needed = 2 + ⌈
𝜃

𝛼
⌉ (3.11)

Where 𝛼 = 2 𝑡𝑎𝑛−1
𝑤

𝑅
 (3.12)

 45

Where 𝜃 and R are the swept angle and radius of the arc motion, respectively, and w is

half the width of the tool holder.

Figure 3-15: Example for a straight edge collosion detection test

Figure 3-16: Different snap shots for an arc edge collosion detection test

 46

Figure 3-17: An example of a detected collision.

While checking for collisions, the program will also be monitoring the joints’ angles. If

an angle exceeds its physical limitation then such motion cannot be performed by the

robot.

3.3 Introducing Critical Positions Concept

This part is important for the understanding of the following subsection. A critical position

(CP) refers to the starting or ending position of the end-effector in a processing motion.

Figure 3-18 gives a good example of some critical positions.

 47

Figure 3-18: Each processing motion has two critical positions. a) shows the critical positions of a straight edge b)

gives the critical positions of an arc edge

Notice that each processing motion will have two critical positions. Any non-processing

motion has to connect two critical positions from two different processing motions. In this

way, non-processing motions will complete the gap and create, together with processing

motions, an overall continuous path to be executed by the robot.

Finally, in order to keep the consistency, the home position (initial pose of the robotic

hand before start executing the motion) is also considered as a critical position.

3.4 Non-Processing Motion Generation

Recall that the overall motion of the robotic manipulator can be divided into two main

motions. The processing motion “the motion needed to scan or deburr an edge” and the

non-processing motion “a motion of which is needed to change the end-effector position

after processing an edge to go to another one”. The latter motion does not have any actual

processing and therefore it is not bounded to a specific trajectory as far as the trajectory is

collision-free.

 48

3.4.1 Calculating Non-Processing Motions

Such paths can be found using many different known algorithms in the literature [20] to

yield an efficient collision-free path. Some of the famous approaches for the case of

robotic manipulators in static environments are the probabilistic roadmaps planner [21],

which is probabilistically complete algorithm. Khatib [22] offered a very interesting

algorithm known as artificial potential field approach. However, the main drawback of

this method is the possibility of sticking in local minima, that is, the algorithm is not

necessarily complete. Another algorithm inspired from khatib’s is the artificial force field

approach. Many papers discuss slightly different models of such algorithm, [23] is an

example; nonetheless, the main idea is that obstacles applies forces on the robot links in

such a way that they repel the robot dynamically. Unfortunately, this method have the

possibility of sticking in a local minima, similar to the artificial potential field method. On

the other hand, due to the nature of the problem in hand a simple yet effective approach is

going to be discussed in this section. This does not mean that any of the algorithms found

in the literature related to this topic cannot be applied to this problem and implemented in

the main program.

One may take an advantage from the nature of the working space in hand. Notice that if

the manipulator assumes an upper configuration throughout its motion, there will not be

any collision with the part at any position above a certain elevation. To find such elevation,

imagine a bounding box that the piece can fit in. Figure 3-19 illustrates an example of the

bounding box of an arbitrary part. There are eight vertices of such box, the ones adjacent

to the top face share an elevation of value 𝑧 = 𝑧0. Adding half the width of the last link,

it can be guaranteed that the manipulator will not collide with the part as long as the end-

effector’s elevation point (z-axis component of the location of the end-effector) is

above 𝑧 = 𝑧0 + 0.5𝑤6, where 𝑤6 is the maximum width of the Tool holder.

 49

Figure 3-19: The bounding box of an arbitrary part.

Hence, if both the starting and ending positions of the non-processing motion are above

the aforementioned elevation, a straight line motion (which is also the shortest) is

available. However, most start and end positions are not above the safety elevation level.

Therefore, a retraction motion is to be executed to transfer the end-effector from starting

position to a position above the safety level. Similarly an approach motion is needed to

bring the end-effector from free-space to the ending position.

Figure 3-20: Outline representation of the non-processing motion generation algorithm.

 50

There are two scenarios when the end-effector’s location is under the safety level. First,

only the last link is below 𝑧 = 𝑧0 + 0.5𝑤6. The second scenario, is to have the last link to

be fully immersed and a portion of the fifth link be below 𝑧 = 𝑧0 + 0.5𝑤6.

For the first case, since the manipulator has six degrees of freedom, it is possible to retract

the end-effector with a constant orientation along �⃗� 3
(6)

 from the start position to the safety

level with a guarantee that this motion is collision-free. Mathematically, the orientation of

the end-effector remains constant through the motion, 𝐶1 = 𝐶2 = 𝐶
(0,6). While the

location of the end position is �̅�2
(0)
= �̅�1

(0)
− 𝑠𝐶(0,6)�̅�3. 𝑠 is found using simple

trigonometry as follows:

𝑠 =
𝑧0 + 0.5𝑤6 − 𝑟1,3

cos 𝛽
 (3.13)

Where cos 𝛽 =
𝑟1,3−𝑤1,3

𝑑6
 (3.14)

𝑟1,3 is the third component of �̅�1 and 𝑤1,3 is the third component of �̅�1.

Figure 3-21: Trigonometry used to find the value of s.

 51

For the second case, this motion can be divided into two segments. First one moves the

end-effector from the start position to the wrist point with an orientation similar to the

initial orientation of the fifth link. A collision test is to be performed at this case to make

sure it is a safe motion. As for the second segment, the end-effector moves with a constant

orientation along the new �⃗� 3
(6)

 until it reaches safety level.

Mathematically, the end position of the first segment motion can be defined by the initial

orientation of the fifth link, 𝐶2 = 𝐶(0,4). While the location is equal to the initial wrist

point, �̅�2
(0)
= �̅�1

(0)
− 𝑑6𝐶

(0,6)�̅�3. Consequently for the second segment, the start position

is basically the end position of the first segment. The end position, on the other hand,

consists of the same orientation as with the start position, 𝐶3 = 𝐶2, and the location

point �̅�3
(0)
= �̅�2

(0)
− 𝑠𝐶(0,6)�̅�3. 𝑠 is found from (3.13) and (3.14).

Figure 3-22: Different snap shots of the first segment of the retraction motion from a critical position where both last

two links are under the safety level.

 52

Figure 3-23: The first and last positions of the second segment of the retraction motion from a critical position where

both last two links are under the safety level.

It can be realized that the approach motion to the same critical position can be generated

by simply reversing its retraction motion.

Therefore, given a starting and an ending positions to generate a non-processing motion

between them, all is needed is to first generate the retraction and approach motion for the

corresponding positions. Then, connect these two motions with a straight line motion in

free-space. Such algorithm will be referred to as the Retraction-Free-Approach Motion

(RFA Motion). This approach significantly reduces the complexity that most collision-

free path generation methods suffer from.

The RFA motion may not be the shortest possible collision-free path between two given

positions, nonetheless, it offers a very efficient solution regarding CPU time and path

length.

In some special cases the shortest collision-free path is very easy to find. First special case

is when both start and end positions share the same vertex, check Figure 3-24. The motion

is a direct one (straight line in the configuration space). Such motion is collision-free since

the shared vertex is reachable.

 53

Figure 3-24: Illustration of the non-processing motion when both start and end positions point at the same vertex.

The second case is when both positions share a reachable edge. A direct motion can be

made by utilizing the previously generated processing motion of the shared edge, see

Figure 3-25. This motion is also collision-free since it is constructed of smaller collision-

free motions.

Figure 3-25: Illustration of the non-processing motion when both the start and end positions share a reachable edge.

 54

For generating the non-processing motion between two given positions, the algorithm will

first check if these two positions share a vertex or an edge. If so, the method explained

above is used to generate the path of the end-effector. Otherwise, an RFA motion is

generated.

This approach reduces the complexity of finding all possible non-processing motions from

O(n2) to O(n). Instead of generating a motion between each pair of critical positions, the

problem is reduced to calculate one retraction motion for each critical position.

Figure 3-26: Flowchart of generating all possible non-processing motions.

Lastly a 2D array of non-processing motions is constructed. This array includes all

possible non-processing motions between each pair of critical positions. Any of these

motions is represented by two indices. The first index represent the number of the critical

 55

position that the end-effector will start from. The second index is for the ending position

of the end-effector.

3.4.2 Collision Detection Test

As in the case of processing motions, the non-processing motions generated between each

two positions need to be collision-free. Only the retraction and approach parts of the RFA

motion need to be checked. Since the portion of the RFA motion made in free space is by

definition free of collisions.

It is critical to realize that both the approach and retract motions for a given critical

position is in fact the same motion but reversed in the order of execution. Therefore, the

collision detection test boils down to checking the retraction motion of each critical

position separately.

The test nature is similar with the one performed on processing motions. That is, the

motion is discretized into a number of poses that in turn covers the whole range of motion.

Figure 3-22 and 3-23 show an example of such discretization of a retraction motion.

If the retraction motion from a critical position is collision-free, then its corresponding

edge is reachable from any other position in free space. Otherwise, the given edge is

considered unreachable.

While checking for collisions, the program will also be monitoring the joints’ angles. If

an angle exceeds its physical limitation then such motion cannot be performed by the

robot.

 56

3.5 Planning the Overall Path

After generating all possible non-processing motions next step is to select a subset of them

that creates a connected path together with the processing motions. In fact, such problem

is a TSP (Traveler Salesman Problem).

The Traveling Salesman Problem, or TSP, is an ongoing study in computer science. The

TSP has a long history ranging back to the 1920’s [24]. This problem became popular

after it was publicized by a mathematician named Merrill Flood at the RAND corporations

in 1948 [25].

The TSP problem is defined as the following. Given a complete graph G with Vertices V

and edges E, where each edge e
ij
∈ E has an associated cost c

ij
incurred when traversing

from vertex i ∈ V to j ∈ V, find the optimal, or cheapest, Hamiltonian cycle of G. The

vertices can be considered buildings, landmarks or other geographical locations. Thus, a

Hamiltonian cycle of G is also considered a Tour. In this study, these vertices represent

the critical positions of end-effector. The edges represent motions of the robot. Therefore,

a Hamiltonian cycle represents the overall path of the robot.

To further understand this representation refer to Figure 3-27. Notice that each node in the

graph represents a critical position of the end-effector, labeled as Pose(i). The connected

edges represents processing motions PM(i) and the dashed ones is for non-processing

motions. So the problem statement would be similar to that of the TSP problem (each

position is to be passed once) with the addition that the connected edges are also to be

passed one time each. Unfortunately, general TSP is known to be an NP-complete

problem. Hence, there is not a systematic approach to reach the optimum solution in a

polynomial time algorithm.

 57

Figure 3-27: An example of a three processing motions (PM) and the representing graph for finding route solution of

the TSP “The non-processing motions between the home position and other poses are not shown for simplicity”

There are different variations of the TSP. In the general case, there are no restrictions on

the edge costs. Therefore, each edge may have two associated costs, cij ∈ ℜ and cji∈ ℜ,

which may not necessarily be equal. Thus, G can be a directed graph and the edge costs

can be negative.

Another variation is the metric TSP, the main feature of this type is that the triangle

inequality holds on all the vertices, which means that for any three vertices A, B and C, if

you wish to go from vertex A to vertex C, it is always cheaper to go from A directly to C

rather than passing through B. This added restriction gives a possibility to find

approximated solutions, which is not possible for the general case. These solutions can be

found in a polynomial time scale, one of these algorithms is known as 2-approximation

algorithm. As the name implies, it gives a solution that is at most twice the length of an

optimal tour. 3/2-approximation algorithm [26] is another approach that guarantees the

founded tour to be at most 1.5 times longer than an optimal solution.

A third variation is the Euclidean TSP. Along with the validity of the triangle inequality,

all of the vertices are points in space. The plane can be 2-dimensional, or d-dimensional

 58

in general. The edge costs are the Euclidean distances between the points. Since the

problem here takes place in Euclidian space, there are restrictions on the edge costs, and

some assumptions can be made, which simplify the problem. Making it possible to apply

even better approximated solution in polynomial time. Arora [27] presented a polynomial

time approximation solution (PTAS) algorithm for the two dimensional case and shortly

after two years generalized the algorithm to d-dimensions [28]. The accuracy and CPU

time depends on the approximation parameter c. Where the accuracy is (1+1/c)-

approximation and the processing time is 𝑂 (𝑛(log 𝑛)(𝑂
(√𝑑𝑐))

𝑑−1

). In the same time

period Mitchell [29] independently proposed a PTAS algorithm where he was able to

achieve (1 +
2√2

𝑚
)-approximation that runs in 𝑂(𝑛20𝑚+5) time.

Unfortunately, the TSP representing the problem of this section is neither Euclidian nor

metric in its nature. As mentioned before, general TSP does not have any polynomial time

approximation algorithms. The practical approach is to apply heuristic algorithms to find

a solution. There are many heuristic algorithms that can be found in the literature. The

nearest neighbor (NN) algorithm is one example. NN always choose to visit the nearest

vertex to the current reached vertex until all vertices has been visited. This approach will

often keep its tour within 25% of the Held-Karp lower bound. Another heuristic known as

Greedy algorithm gradually constructs a tour by repeatedly selecting the shortest edge and

adding it to the tour as long as it doesn’t create a cycle with less than N edges, or increases

the degree of any node to more than 2. This algorithm normally keeps the solution within

15-20% of the Held-Karp lower bound. Kahng and Reda [30] proposed a heuristic they

called Match Twice and Stitch (MTS). Their approach offers four different variations

where a trade-off between accuracy and run time is present. As they reported, the

algorithm on average yield a solution that is 6-8% of the Held-Karp lower bound.

In this study, the nearest neighbor algorithm is adopted and implemented in the software.

Starting from the home position, the red node shown in Figure 3-27, the shortest non-

processing motion will be selected, where the distance is the length of the trajectory of

 59

each motion. Next, the processing motion connected to the reached node is taken. After

that, the shortest non-processing motion is selected and so on so forth until all the nodes

are reached. Lastly, the end-effector is brought back to the home position using the last

available non-processing motion.

Figure 3-28: The solution of the TSP graph given in Figure 3-27 using nearest neighbor algorithm.

In conclusion, the solution of the TSP given in this subsection will correspond to a

collision-free motion trajectory which represents the overall path to be executed by the

robotic manipulator.

 60

COMPUTER PROGRAMS

.

4.1 SolidWorks Add-Ons Package

Here, all the previously discussed points are developed and applied in this software. First

part is a user guide to give the reader the appropriate way of using the software. Second

part explains the general working procedure of the software. Refer to appendix A for more

details on the structure and main methods used in the program.

 61

4.1.1 User Guide of Software

Preparation Stage

In this stage, the parameters that the user is expected to specify before generating the path

are entered to the program. Figure 4-1 shows the main window of the software.

Figure 4-1: Main window of the SolidWorks Add-Ons Package.

 62

As mentioned in earlier chapters, the user has first to define a reference frame (RF) and

attach it to the workpiece or to the fixture if present, refer to section 3.1 for a detailed

explanation of RF. Staring from the top, the user can specify the origin of RF by simply

entering the x, y and z components of its location in respect of the global coordinate system

of the ABB.

Entering the dimensions of the working table can be achieved by first clicking on the

Update Working Table Dimension button. Clicking on this button, another window,

shown in Figure 4-2, appears and the user then can enter all three dimensions of the table.

Clicking Update will store these values and bring the user back to the main window.

Figure 4-2: Setting the working table dimensions.

In the Process Type frame the user choose between finishing and scanning. The main

reason for this is for the software to decide whether to include a finishing tool or not. In

case the user selects the finishing process he/she needs to enter the dimensions of the

deburring/chamfering tool by clicking on the Update Tool’s Dimensions button. Once

clicked a window opens as shown in Figure 4-3. Then, after entering the dimensions the

user clicks on Update.

 63

Figure 4-3: Setting the tool's dimensions.

The “Update Spindle’s/Scanner’s Bounding Box” button allows the user to specify the

cuboid that represents the bounding box of the spindle/scanner. Figure 4-4 shows the

window appearing after clicking on the aforementioned button.

Figure 4-4: Setting the tool's body box dimensions.

Offset value frame is simply for entering the magnitude distance of the end-effector while

processing the edges.

Approach angle frame is for selecting between approaching the edge with a direction equal

to the average of its adjacent faces’ normals or normal to the first machined face between

the adjacent faces. Refer to section 3.1 for more details.

 64

Lastly, if the second option in the approach angle is selected, the user need to give the

order in which the faces of the part where machined. This can be done by first clicking on

the button next to Run button. After the user clicks on the button he/she starts selecting

the faces of the part in the order they were machined. Figure 4-5 shows the mentioned

window.

Figure 4-5: Confirming the selection of faces.

Edge Selection

After entering all the necessary information the user clicks the Run button in the main

window. The software then selects the convex edges of the part. At this point, all the

default selected edges are highlighted on the workpiece and the software is paused. The

user is asked to check if the selection is satisfactory and if he/she would like to edit the

selection by either selecting more edges or deselecting some of the already selected ones.

After that the user click on Proceed button.

 65

Figure 4-6: Window for confirming the selected edges.

Getting Results

Now, the display of the part is temporarily turned off to make the program run faster.

Calculating all the necessary motions and checking for collisions, the program at the end

will creates a text file in the same directory with the opened SolidWorks part. This text

file will include the overall nominal path to be executed by the robot. The syntax is similar

to that used by ABB IRB2000 when generating paths by the teaching method. The only

difference between these formats is that in S3 controller the information of each position

is implicitly given. While here the position is explicitly given after the POS keyword, e.g.

POS=(x, y, z, q1, q2, q3, q4) where x, y and z are the Cartesian coordinates of the tip-point

location and qi’s are the four quaternion components that describe the end-effector

orientation [31]. Figure 4-7 gives an example of a program path opened from such text

file. Refer to the programming manual of ABB IRB2000 for detailed explanation of the

syntax [32]. Lastly, a message box pops up to inform the user that the path has successfully

been generated.

 66

Figure 4-7: A portion of a path program generated by the software and stored in a text file.

4.1.2 Code’s Working Procedure

The main function of the overall code “main()” utilizes two class types, namely,

MainWindow and PathGeneratorEngine classes. MainWindow class coordinates the flow

of the software as a whole. Responding to user inputs, it organizes the variables needed to

be set before starting the actual path generation. It also schedule the calling of main

methods in the PathGeneratorEngine. Lastly, it creates the final output of the software as

a text file that is stored independently from the program on the working computer. On the

other hand, PathGeneratorEngine class is responsible for all the background calculations

of the different motions. It also checks each motion segment for collisions. And lastly

generates the overall path and pass it to the MainWindow class.

For the preparation stage, the procedure was indirectly explained in the user guide section.

This step is simple as it is, only assigning the inputs of the user into their corresponding

variables that will be used by other parts of the program.

First main method that gets called is the EdgeSelection(SelectionScheme) function. Here

by utilizing the PowerSelect utility, provided by SolidWorks, all the convex edges of the

workpiece get selected. Then, by checking each selected edge the ones that are adjacent

to a ground face are deselected.

 67

After the user click Proceed. A PathGeneratorEngine instant is created which then takes

all the selected edges and calculate a processing motion for each one of them. Next, each

of the calculated process motions is checked for collision. In case a process motion found

to cause a collision then the corresponding edge is discarded along with the process

motion. Then, both starting and ending end-effector positions of all the collision-free

process motions are stored properly, such poses are referred to as critical positons. After

that, the retraction motion from each critical position is calculated and checked for

collision. Any critical position that possesses a retraction motion that includes a collision

is marked and their corresponding edges are taken as unreachable. Now,

PathGeneratorEngine creates a non-processing motion between every two critical poses

and store these motions in a 2D array. The indices indicate the starting and ending

positions of each motion, respectively. What is left is a search algorithm to connect all the

processing motions by finding a suitable non-processing motions from the 2D array

previously created resulting in an overall connected path. Finally, this path is then

translated into motion commands and stored in a text file to be later uploaded to the robot.

4.2 ABB User Interface Software

This software was developed for the general purpose of communicating with the ABB

IRB2000 robot. A more specific function of this program is uploading the previously

generated path from the SolidWorks Add-Ons package. The first sub-section serves as a

user guide. Second sub-section describes briefly the procedure adopted by the software to

function properly. Refer to appendix A for more detailed explanation of the structure and

main methods of the software.

 68

4.2.1 User Guide of Software

Serial Port Connection

The very first thing need to be done when launching the software is to open the serial port

between the computer and ABB robot. This step has been simplified from the user point

of view. That is, all of the serial communication’s configuration is set automatically by

the software according to ADLP10 communication protocol. The user only has to select

the COM number that the ABB is connected to. The software will also search for the

available COM ports and show them to the user.

 69

Such step can be easily done as shown in the figures below:

 First, select Open Serial Port from File.

Figure 4-8: Selecting open serial port from File tab.

 70

 Second, select the port connected to ABB robot.

Figure 4-9: Selecting the corresponding COM port connecting the ABB robot.

 71

 Finally, in case the user desire to close the serial port. He/she can click on Close

Serial Port in File tab.

Figure 4-10: Closing the serial port from File tab.

Numerical Bases Available

In the manual communication mode, the user can choose between hexadecimal and

decimal bases for writing and receiving telegrams. He/she can also switch between the

two bases while writing the telegram in case some bytes were calculated in different base.

The selection of the numerical base can be found in File/ Numerical Base in Use, as shown

in Figure 4-11.

 72

Figure 4-11: Choosing Numerical Base for Manual Communication.

Manual Communication

As the first mode of communication offered by the software, such mode requires the user

to be familiar with ARAP Protocol [33]. The manual communication tab is divided into

three regions, namely, Command, ABB Respond and Massage Box. As for the user, the

command to be send is filled in the command region according to ARAP Protocol.

As an example consider a user desire to know the status of the ABB robot. Hence, the

corresponding function for such task is function 19 in ARAP Protocol. Assuming the

computer address is 0 and ABB’s is 99.

 73

Figure 4-12: Function 19 in ARAP Protocol filled in the command region.

After filling the command the user click Send to ABB button. ABB will respond by a

telegram that will be shown in ABB Response region. Note that the Massage Box gives

feedback to inform the user about the status of the communication continuously.

 74

Figure 4-13: Response of function 19 in ARAP Protocol filled in the command region.

Automatic Communication

The second mode of communication is called Automatic Communication. The reason is

called this way is because instead of manually typing the telegram of the function to be

executed by the ABB, the user only fill some parameters to be sent to ABB. While the

software itself generates the telegram according to ARAP protocol. However, only the

most common functions are considered in this mode, namely, status request (function 19),

requesting the six joint angles (part of function 44), maneuvering of ABB (function 24)

and lastly running a program inside the ABB registers to let it go to the home position

(using function 2).

 75

Figure 4-14: The GUI of the Automatic Communication Mode.

In order for the user to get the status of ABB all he/she has to do is click on the Update

Status button, the software will automatically fill the parameters in the ABB Current

Status box. Same goes for the joint angles. On the other hand, for maneuvering of ABB,

the user has to first specify if Robot or Rectangular coordinates is to be used and also fill

the velocity of the end-effector and its desired position and orientation with respect to the

base coordinates of ABB. Lastly, Go To Home Position button lets the user command the

robot to change its configuration to the home position posture. It is also worth mentioning

that the massage box will be informing the user useful information especially in case some

errors arise while communicating with ABB.

 76

Off-Line Path Uploading

The third, and most important part for this thesis, is the uploading of the path program

from the computer to ABB IRB2000. There are two types of “syntax” a user can use in

defining the path program. First one is used only in cases where the user is very

experienced with S3 controller assembly language. The user has to set each byte separately

to be sent by the software to the robot. The main goal of this option is to make the software

more flexible for potential programs that other software may generate.

After selecting the Off-Line Path Uploading tab in the main window of the software, select

the open file button in the upper part of the window, which is dedicated for this type of

syntax. A window will show up as shown below, select the text file that includes the path

program in it. By doing so, the software will display the contents of the text file in the text

box so that the user can check the program and perform modifications if desired.

Figure 4-15: Window for selecting the text file that includes the path program.

Then, the user specifies the number of the program to be assigned in the robot memory.

The software will display the progress of the upload procedure to the user, at the end of

the window a small notification and a progress bar will pop up directly after the user hit

 77

the upload button. In case an error occurs the software will give feedback to the user so

he/she could either recheck the program syntax or resend the program.

Figure 4-16: Displaying the path program of the previously selected text file.

The second syntax to express the path program is more user friendly and understandable.

This format is similar to that of the S3 controller way of expressing the taught paths. Figure

4-17 gives an example of a program path opened from a text file in a similar manner as in

the previous case. Again the software will give the user continues feedback of the upload

process.

 78

Figure 4-17: Displaying the path program of the previously selected text file.

Unlike the case of using the assembly syntax, here the path information taken from any

text file should consists of lines in the form of POS=(795, 0, 879, 0, -0.383, 0, 0.924)

V=100% PATH. While the initialization of the program can be done by filling the text

lines shown in Figure 4-17.

4.2.2 Code’s Working Procedure

The main function of the overall code “main()” utilizes two class types, namely, ADLP10

and ARAP class. The former class mimics ABB data link protocol, which is the protocol

created by ABB Company to look over the connection and communication between the

 79

computer and ABB robots connected to it. Such protocol take charge of establishing the

connection and maintain it as long as needed. On the other hand, the latter protocol is only

responsible for generating telegrams for each specific task or massage that is to be

exchanged. These two protocols are fully explained by ABB user manual in the Computer

Link part.

In the case of the manual communication, there is no need for the use of ARAP class.

Since the user gives the telegram already. Once the user hit send, an instant of ADLP10

class is created, and the method EstablishContactAndSendTelegram(SerialPort,

Telegram) is called where the first argument is the serial port to be used for the connection

and the second one is the telegram to be sent. Next, this method will arrange the telegram

and prepare it to be sent according to ADLP10 protocol standards. Each byte is sent

separately and after sending all the bytes in the telegram a checksum is created and sent

to the corresponding ABB robot. Then, the class awaits for ABB feedback. In case the

telegram was successfully sent, the class either prepare for receiving a telegram from the

robot or terminates the communication, according to the nature of the initial command or

message sent from the computer. On the other hand if the telegram was corrupted while

sending it, the class will act according to the protocol and either send the telegram again

or terminates the connection.

For the case of automatic communication, an instance of ARAP class is created and for

each button in the automatic communication tab there is a corresponding method to

convert that specific order to a telegram. After that the same procedure with the manual

communication takes place to send the desired command.

Moving on to off-line path uploading, when the user open a text file expressed in the

assembly level syntax and click on the upload button, the following series of actions

happen in the background. First, the program is stored as an array where each element

represents a byte. Then the ConstructTelegramsOfPathProgram(AssemblyProgram,

 80

ProgNumber) method in ARAP class takes both the number of the program and the

program itself and divides the overall program into a number of telegrams to be sent in

ordered manner. The number of telegrams depends solely on the size of the program (since

the program can exceeds 128 bytes, which is the maximum length of one telegram). Then,

ADLP10 class take charge in sending these telegram one at a time according to the rules

put by ABB. If in the process of uploading the program something goes wrong in the

communication, ADLP10 class will inform the user and terminates the process.

Consequently, if the user prefers to use the second syntax type describes earlier, the

software will first convert the program into its assembly language format using

ConvertToAssembly(Program) method. Then, the same procedure described in the

paragraph above takes place.

 81

SAMPLE RUNS AND EXPERIMENTAL RESULTS

5.1 Introduction

In this chapter three sample workpieces are presented to test the practical functionality of

the study. First part will show the result of generating a path for edge scanning. The second

one is presented to show the capability of the software to generate a path for a relatively

crowded part, in terms of edge numbers and shapes, on one plane. Lastly, the third part

will provide an example of an overall collision-free path that can process different edges

in different planes and elevations.

The test setup consists of the ABB IRB2000, working table and the workpiece to be

processed. In addition, for the two last parts, a spindle holder and a flex attachment spindle

(Dremel 225) are used, see Figure 5-1. As for the computer connected to ABB IRB200 it

has an Intel® Core™ i7-4700HQ CPU processor working at 2.4 GHz.

 82

Figure 5-1: Test Setup Illustration.

The spindle holder consists of two pieces that are attached to each other by four M6 screw

rods. Check Appendix D for the technical drawing of the spindle holder.

5.2 Sample Part 1

This part is an arbitrary part that was manufactured for the sole purpose of testing and

confirming the overall algorithm of the study, see Figure 5-2. The bounding box of the

part is 125mmx95mmx70mm. For the full technical drawing refer to appendix D.

 83

Figure 5-2: Trimetric view of part 1.

The objective is to generate a path for the end-effector in order to scan the edges of the

given part. The part is not directly mounted on the working table. Instead, a smaller piece

acts like a base, is mounted on the working table and then the part is placed on top of it as

shown in Appendix F. This is done just to give the robot extra freedom to reach more

edges.

First step is defining the position of the part with respect to the global coordinates system.

This is done by defining a reference frame and attach it to the part. Figure 5-3 shows such

reference frame.

 84

Figure 5-3: The defined reference frame is shown as Coordinate System1.

Next, the ground face is selected, as seen in Figure 5-4.

Figure 5-4: Selecting the ground face.

Then, following the steps explained in chapter four, the user input were selected as

follows, see Figure 5-5:

 Process Type: Scanning

 85

 offset value: 5mm

 offset direction: equal to the average of the normals of the two adjacent faces of

each edge

Figure 5-5: User input for scanning Part one.

The part has a total of 21 edges, all convex. Excluding the six ground edges, the software

tries to generate a path to scan the remaining 15 edges. However, two of the edges turns

out to be unreachable in the given orientation, shown in red in Figure 5-6. Therefore, the

overall generated path goes over 13 edges of the part. The order at which these edges are

processed is given in Figure 5-6. The software took 19 seconds to generate the output

motion.

 86

Figure 5-6: The order of which the edges of part one are scanned.

The complete generated path for scanning the mentioned 13 edges can be found in

Appendix E.

5.3 Sample Part 2

This part represents the general characteristics of a casing part, i.e, pump casing, engine

casing etc., see Figure 5-7. The bounding box of the part is 250mmx200mmx23mm. For

the full technical drawing refer to appendix D.

 87

Figure 5-7: Trimetric view of part 2.

The objective is to generate a path for the end-effector in order to deburr the edges of the

given part. Since no actual deburring is taking place the part is directly mounted in the

working table without fixing it to a fixture.

First step is defining the position of the part with respect to the global coordinates system.

This is done by defining a reference frame and attach it to the part. Figure 5-8 shows such

reference frame.

 88

Figure 5-8: The defined reference frame is shown as Coordinate System1.

Next, the ground face is selected, as seen in Figure 5-9.

Figure 5-9: Selecting the ground face.

Then, following the steps explained in chapter four, the user input were selected as

follows, see Figure 5-10:

 Process Type: Finishing

 offset value: 1mm

 offset direction: Normal to the formation of burrs

 89

Figure 5-10: User input for scanning Part two.

The part has a total of 71 convex edges. Excluding the eight ground edges, the software

tries to generate a path to process the remaining 63 edges. All these edges are actually

reachable. Therefore, the overall generated path goes over all of the 63 edges. The order

at which these edges are processed is given in Figure 5-11.Moreover, the software took

45 seconds to generate the overall path.

 90

Figure 5-11: The order of which the edges of part two are deburred.

The complete generated path for deburring the mentioned 63 edges can be found in

Appendix E.

5.4 Sample Part 3

This part represents the general characteristics of a V6 engine block, see Figure 5-12. The

bounding box of the part is 200mmx150mmx100mm. For the full technical drawing refer

to appendix D.

 91

Figure 5-12: Trimetric view of part 3.

The objective is to generate a path for the end-effector in order to deburr the convex edges

of the given part. Since no actual deburring is taking place the part is directly mounted in

the working table without fixing it to a fixture.

First step is defining the position of the part with respect to the global coordinates system.

As discussed earlier, this is done by defining a reference frame and attach it to the part.

Figure 5-13 shows such reference frame.

 92

Figure 5-13: The defined reference frame is shown as Coordinate System1.

Next, the ground face is selected, as seen in Figure 5-14.

Figure 5-14: Selecting the ground face.

Then, following the steps explained in chapter four, the user input were selected as

follows, see Figure 5-15:

 Process Type: Finishing

 offset value: 1mm

 offset direction: Normal to the formation of burrs

 93

Figure 5-15: User input for scanning Part three.

The part has a total of 24 convex edges. Excluding the four ground edges, the software

tries to generate a path to process the remaining 20 edges. Four of these edges turn to be

unreachable in the given orientation by the end-effector, shown in red in Figure 5-16.

Therefore, the overall generated path goes over 16 edges. The order at which these edges

are processed is given in Figure 5-16. Where the time needed by the software to complete

the path generation was 26 seconds.

 94

Figure 5-16: The order of which the edges of part three are deburred.

The complete generated path for deburring the mentioned 16 edges can be found in

Appendix E.

 95

CONCLUSION

6.1 Discussion and Summary

The main goal of this study is to automatically generate a nominal collision-free path for

6-DoF robotic arm for performing edge finishing and scanning processes. This objective

was achieved by developing a software in the SolidWorks API using Visual Basic

programming language. ABB IRB2000 model was considered as the robotic manipulator

throughout the study. The performance of the software was verified by running tests on

several workpieces.

The system has five main logical steps for reaching the main objective, as described in

Chapters 2, 3, and 4. In the first step, all the processing motion segments are generated

and the ones that are collision-free are stored.

In the second step, all the starting and ending positions of each processing motions are

recognized and stored, referred to as critical positions, mainly for the generation of non-

processing motions, since each non-processing motion connects two of these critical

positions.

 96

In the third step, all possible non-processing motion segments are generated and again the

ones with no collision are stored in memory. This step is considered as one of the main

contributions of the study. The RFA motion approach reduces the complexity of both

calculating a motion between two positions and the number of calculations needed for

constructing all possible non-processing motions.

In the fourth step, a greedy search algorithm is utilized to find a suitable subset of non-

processing motions from the list of all possible non-processing motions. Such subset when

put together with the collision-free processing motions results in a connected overall path

that the robot is meant to execute.

In the fifth step, the overall path is transformed into motion commands and sent to the

ABB IRB2000 as a motion program that get stored in the memory of the robot and can be

executed at any time.

The study was verified by performing three sample runs on different workpieces. In all

three runs the algorithm was able to generate a path in less than a minute for each

workpiece, making it a fast off-line path generator algorithm for edge finishing and

scanning. Compared with the classical point-to-point teaching method, which takes

several hours to a day to perform, depending on the skill of the worker and the complexity

of the piece. While other off-line path generation approaches using the CAD model of the

considered workpiece, such as [2], need a processing time around three hours on average.

 97

6.2 Future Work

This study can be further extended to include any arbitrarily shaped edges. Different

approaches may be applied to achieve this objective. Discretizing the 3D curve of the edge

into small straight lines can be a solution. The sampling period may be of constant value

or a variable one that depends on the curvature of the curve at the sampled point.

More algorithms can be applied to generate the non-processing motions between critical

poses. RFA motion was developed and used in this study; however, many other different

algorithms can be implemented and a comparison may be made. Examples of such

algorithms can be artificial potential field approach [22], probabilistic road maps [21] and

artificial force field method [23]. Moreover, RFA motion algorithm can be modified by

utilizing one of the previously discussed algorithms to generate the retract/approach

motions, making RFA more efficient.

Different search algorithms can be utilized for solving the TSP problem. Although the

nearest neighbor algorithm gives a solution that on average is in the 25% of best solutions.

Some other heuristic algorithms, like Match Twice and Stitch method (MTS) [30],

discussed earlier, can be implemented.

 98

 99

REFERENCES

[1] T. Jawanjal and B. S., "An Advanced Chamfering System," International Journal

of Emerging Technology and Advanced Engineering, vol. 3, pp. 598-601, 2013.

[2] F. Leali, M. Pellicciari and F. Pini, "An Offline Programming Method for the

Robotic Deburring of Aerospace Components," Robotics in Smart Manufacturing,

Communications in Computer and Information Science, vol. 371, pp. 1-13, 2013.

[3] O. Valente, "A New Approach for Tool Path Control in Robotic Deburring

Operations," in 17th international Congress of Mechanical Engineering, Sao Paulo,

2003.

[4] N. P. Murphy, "CAD Directed Robotic Deburring," in Second International

Symposium on Robotics and Manufacturing Research, Education and Applications,

1988.

[5] S. Sugita, T. Itaya and T. Y. , "Development of robot teaching support devices to,"

International Journal of Advanced, vol. 23, p. 183–189, 2004.

[6] M. Elbestawi, G. Bone and P. Tam, "An Automated Planning, Control, and

Inspection System for Robotic Deburring," CIRP Annals - Manufacturing

Technology, vol. 41, pp. 397-401, 1992.

[7] N. Asakawa, K. Toda and Y. Takeuchi, "Automation of chamfering by an industrial

robot; for the case of hole on free-curved surface," Robotics and Computer

Integrated Manufacturing, vol. 18, p. 379–385, 2002.

[8] H. Zhang, H. Chen, N. Xi, G. Zhang and J. He, "On-Line Path Generation for

Robotic Deburring of Cast Aluminum Wheels," in Proceedings of the 2006

 100

IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing,

2006.

[9] S. Lee, C. Li, D. Kim, J. Kyung and H. ChangSoo, "THE DIRECT TEACHING

AND PLAYBACK METHOD FOR ROBOTIC DEBURRING SYSTEM USING

THE ADAPTIVEFORCE-FORCE-," in 2009 IEEE International Symposium on

Assembly and Manufacturing, Suwon, 2009.

[10] H. Song, K. Byeong-Sang and S. Jae-Bok, "Tool Path Generation based on Matching

between Teaching Points and CAD Model for Robotic Deburring," in The 2012

IEEE/ASME International Conference on Advanced Intelligent Mechatronics,

Kaohsiung, 2012.

[11] G. Ziliani, A. Visioli and G. Legnani, "A mechatronic approach for robotic

deburring," Mechatronics, vol. 17, p. 431–441, 2007.

[12] L. Princely and S. T, "Vision Assisted Robotic Deburring of Edge Burrs in Cast

Parts," Procedia Engineering, vol. 97, pp. 1906-1914, 2014.

[13] C. M. Rejc, "Dimensional measurements of a gray-iron object using a robot and a

laser displacement sensor," Robotics and Computer-Integrated Manufacturing, pp.

155-167, 2009.

[14] W. Jayaweera, "Measurement Assisted Automated Robotic Edge Deburring of

Complex Components," in 9th WSEAS international conference on Signal

processing, robotics and automation, 2010.

[15] S. Xi, "CAD-based path planning for 3-D line laser scanning," Computer-Aided

Design, p. 473–479, 1999.

[16] K. L. Son, "Path planning of multi-patched freeform surfaces for laser scanning,"

The International Journal of Advanced Manufacturing Technology, pp. 424-435,

2003.

 101

[17] M. P. Morozov, "Computer-Aided Tool Path Generation for Robotic Non-

Destructive Inspection," in 52nd Annual Conference of the British Institute for Non-

Destructive Testing, Telford, 2015.

[18] J. Denavit and R. Hartenberg, "A kinematic notation for lower-pair mechanisms

based on matrices," Trans ASME J. Appl. Mech, vol. 23, p. 215–221, 1955.

[19] H. B. J. Kazerooni and B. Kramer, "An Approach to Automated Deburring by Robot

Manipulators," Journal of Dynamic Systems, Measurement, and Control , vol. 108,

pp. 353-359, 1986.

[20] S. Lavalle, Planning Algorithms, Cambridge: Cambridge University Press, 2006.

[21] L. E. Kavraki, P. Svestka, J.-C. Latombe and M. H. Overmars, "Probabilistic

roadmaps for path planning in high-dimensional configuration spaces," IEEE

Transactions on Robotics and Automation, vol. 12, p. 566–580, 1996.

[22] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots,"

International Journal of Robotics Research, vol. 5, p. 90–98, 1986.

[23] P. Chotiprayanakul, D. K. Liu, D. Wang and D. G., "A 3-Dimensional Force Field

Method for Robot Collision Avoidance in Complex Environments," in 24th

Internationa Symposium on Automation & Robotics in Construction, Madras, 2007.

[24] D. AppleGate, R. Bixby, V. Chvatal and W. Cook, "On the Solution of the Traveling

Salesman Problems," Documenta Mathematica – Extra Volume ICM, chapter 3, pp.

645-656, 1998.

[25] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, The Traveling

Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley &

Sons, 1985.

 102

[26] N. Christofides, Worst-case analysis of a new heuristic for the travelling salesman

problem, Report 388, Graduate School of Industrial Administration, CMU, 1976.

[27] S. Arora, Polynomial Time Approximation Schemes for Euclidean Traveling

Saleman and Other Geometric Problems, Princeton University, 1996.

[28] S. Arora, Nearly Linear Time Approximation Schemes for Euclidean TSP and other

Geometric Problems, Princeton University, 1997.

[29] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions_Part

II - A simple polynomial-time approximation scheme for geometric k-MST, TSP, and

related problems, State University of New York, Stony Brook, 1996.

[30] A. B. Kahng and S. Reda, "heuristic, Match twice and stitch: a new TSP tour

construction," Operations Research Letters, vol. 32, p. 499–509, 2004.

[31] Asea Robotics, Quaternions or how to twist a robot, October, 1987.

[32] ABB-IRB2000, Product Manual, 1992.

[33] ABB Robotics Products, Computer Link / ADALP 10 / ARAP S3, 3HAA 3911-102,

January, 1992.

 103

APPENDIX A

METHODS DEVELOPED AND USED IN THE SOFTWARE

A.1 SolidWorks Add-Ons Package

This software was developed in SolidWorks API using Visual Basic programming

language. Therefore, an object oriented approach is adopted. All the methods belong to

one of the main classes of the code, namely, MainWindow and PathGeneratorEngine. The

general purpose of each class is as follows:

 MainWindow: Responsible for the graphical interface with user, both for inputs

and outputs.

 PathGeneratorEngine: Calculates both the processing and non-processing motions

of the end-effector and checks if any of these motions have collisions. It also

generates the overall path by selecting a subset from the non-processing motions

in order to yield a connected motion.

A.1.1 MainWindow Methods

SelectEdges(): Performs the default edge selection.

 104

OrderFaces(ByRef swSelectMgr As SldWorks.SelectionMgr): This methods assigns the

order of which the faces were machined. This is used when the approach angle is chosen

to be normal to the first machined face between the two adjacent faces of the given edge.

CreateTxtFile(Collection OverallPath): Creates a text file of the overall path in the syntax

given by ABB mentioned earlier.

A.1.2 PathGeneratorEngine Methods

CalculateProcessMotions(NumberOfLines As Integer, l() As Line): Calculates the

processing motion of each selected edge.

InverseKinematics(Rot As Variant, r As Variant): this method performs the positional

inverse kinematics of ABB IRB2000 for a given position.

BuildLink(ByVal Link As LinkPose, ByVal LinkNumber As Integer): This method is

called six times, each time for creating the cuboid representing one of the six links of the

robot arm.

CalculateLinksPose(theta As Variant): This is the positional forward kinematics analysis.

Where the methods decides on the position of each link for a given joint angles.

GetProcessMotionsOfReachableEdges(NumberOfLines As Integer, l() As Line): Check

each processing motion for collisions and takes the ones that are collision-free.

 105

GetCriticalPoses(Collection ProcessMotions): Creates a critical pose instant for each

starting or ending position of a processing motion.

GetRetractionMotionFromPoseAndCheckCollision(Pose As CriticalPose): Calculates the

retraction motion of the given critical pose and check it for collisions.

GenerateNonProcessMotionBetween(StartPose As CriticalPose, EndPose As

CriticalPose): This method generates the non-processing motion between the given start

and end positions.

GetOverallPath(ProcessMotion As Collection, AllNonProcessMotions As Motion()):

This is for the search algorithm applied for selecting a suitable subset from the list of all

non-processing motions to yield a final overall connected path.

A.2 ABB User Interface Software

As mentioned earlier this software was developed in C++ language. Therefore, an object

oriented approach is adopted. All the methods belong to one of the main classes of the

code, namely, MainWindow, ADLP10Protocol and ARAPProtocol. The general purpose

of each class is as follows:

 MainWindow: Responsible for the graphical interface with user, both for inputs

and outputs.

 ADLP10Protocol: Establishes the connection and maintains it as long as needed.

Makes sure each telegram received by any party is fully understood and if not act

accordingly. Finally it ends the connection once all the data is exchanged.

 ARAPProtocol: Transform the command given by the user into telegrams, which

is later sent by ADLP10Protocol to the robot.

 106

A.2.1 MainWindow Methods

OpenCloseSerialPort(QString COMname): Toggles the state of the serial port specified

by COMname.

UpdateMsgBoxes(): This method checks which tab is activated an update all the widgets

in that tab according to the data received by ABB.

A.2.2 ADLP10Protocol Methods

EstablishContactAndSendTelegram(QSerialPort *serial, QList<QByteArray>

Telegram): Establish the connection between the computer and ABB robot and then send

the list of telegrams in ordered manner.

ConcludeTelegram(QSerialPort *serial): Concludes the telegram by calculating the Bit

Check Sum (BCS) and sending it to the robot followed by ETX.

DataRecieved(QSerialPort *serial): This method takes the received data and interprets it

according to the state of the communication and decides if the received data is actual

information or communication data and acts accordingly.

SendAcknowledgment(QSerialPort *serial): Sending ACK byte to ABB to acknowledge

a previously sent telegram or order from the ABB.

 107

TerminateContact(QSerialPort *serial): This method is used at the very end of the

communication stage, it basically terminates the connection.

A.2.3 ARAPProtocol Methods

UpdateStatusCommand(): Constructs a telegram for function 19 of ARAP, which requires

the robot to give its status.

GetAnglesCommand (): Constructs a telegram for function 44 of ARAP, which requires

the robot to give an extended status message that includes the angles of its joints.

MovementCommand(): Constructs a telegram for function 24 of ARAP, which commands

the robot to move to the given position. All the parameters of the motion is retrieved from

the text boxes filled by the user.

GoHomeCommand(): Constructs a telegram for function 2 of ARAP, which commands

the robot to execute a program in its memory. In this case it is 2202 program.

ConstructTelegramsOfPathProgram(QByteArray AssemblyProgram, QByteArray

ProgNumber): Translate the normal syntax of the path program to assembly format.

 108

 109

APPENDIX B

USED ARAP PROTOCOL’S FUNCTIONS

This appendix shows the syntax or structure of the functions, which is used in this study,

to communicate and command the ABB IRB2000 robot. Each line is one byte of

information. These telegrams are sent through a USB port.

Function 1: Transfer of program/ block of programs from the computer to robot. Used to

transfer the path program.

Figure B-1: Command telegram of function 1.

 110

Figure B-2: Response telegram of function 1.

Function 2: Start of robot Program. Used to start the generated path and to command the

robot to go to home position.

Figure B-3: Command telegram of function 2.

Figure B-4: Response telegram of function 2.

 111

Function 19: Requests the status of the robot. Used to fill the information in the

automatic communication tab in the ABB user interface software.

Figure B-5: Command telegram of function 19.

Figure B-6: Response telegram of function 19.

 112

Function 24: Maneuvering of robot from the user computer. Used in the automatic

communication tab in the ABB user interface software to command to the robot to go

the desired position from its current position.

Figure B-7: Command telegram of function 24.

Figure B-8: Response telegram of function 24.

 113

Function 44: Requests an extended status of the robot. Used to get the current joint

angles values in the automatic communication tab in the ABB user interface software.

Figure B-9: Command telegram of function 44.

Figure B-10: Response telegram of function 44.

 114

 115

APPENDIX C

FLOWCHART OF PATH GENERATION ALGORITHM

 116

 117

APPENDIX D

TECHNICAL DRAWING

 118

 119

 120

 121

 122

 123

APPENDIX E

GENERATED PATHS IN CHAPTER 5

E.1 Part 1

Figure E-1: The generated path to scan the mentioned 13 edges of part one.

 124

E.2 Part 2

Figure E-2: First part of the generated path to deburr the mentioned 63 edges of part two.

 125

Figure E-3: Second part of the generated path to deburr the mentioned 63 edges of part two.

 126

Figure E-4: Third part of the generated path to deburr the mentioned 63 edges of part two.

 127

Figure E-5: Fourth part of the generated path to deburr the mentioned 63 edges of part two.

 128

Figure E-6: Fifth part of the generated path to deburr the mentioned 63 edges of part two.

 129

Figure E-7: Sixth part of the generated path to deburr the mentioned 63 edges of part two.

 130

Figure E-8: Seventh part of the generated path to deburr the mentioned 63 edges of part two.

 131

Figure E-9: Eighth part of the generated path to deburr the mentioned 63 edges of part two.

 132

Figure E-10: Ninth part of the generated path to deburr the mentioned 63 edges of part two.

 133

E.3 Part 3

Figure E-11: First part of the generated path to deburr the mentioned 63 edges of part three.

 134

Figure E-12: Second part of the generated path to deburr the mentioned 63 edges of part three.

 135

APPENDIX F

SNAPSHOTS OF THE PROCESSES IN CHAPTER 5

Figure F-1: Snapshots from the processing of part one in chapter 5.

 136

Figure F-2: Snapshots from the processing of part two in chapter 5.

 137

Figure F-3: Snapshots from the processing of part three in chapter 5.

 138

 139

Appendix G

A STEP BY STEP EXAMPLE FOR USING THE

SOFTWARE

This appendix gives a fully detailed example for using both the SolidWorks package and

the ABB user interface software. Part 3 from chapter 5 is used to illustrate the correct way

of using both programs.

G.1. Path Generation

SolidWorks Package is the software responsible for generating the nominal path to

perform edge finishing or scanning on a workpiece. The following steps give the full

detailed explanation to generate a path using this package.

1. Launch SolidWorks

2. Open the workpiece you would like to generate a path for.

Figure G-1: Opening the considered Workpiece.

 140

3. Define a reference frame and attach it to the workpiece. This can be done from

“Features/Reference Geometry/Reference Coordinate System”. This frame

shows the desired orientation of the workpiece with respect to the global

coordinates of the robot.

Figure G-2: Defining a new reference frame.

4. Launch the path generator package. This is done by selecting Tools/Macros/.

Figure G-3: Launching Off-Line Path Generation Add-On.

 141

5. Press play to start the macro.

Figure G-4 Starting the Off-Line Path Generation Add-On.

6. Enter the location of the previously defined reference frame. This location

represent the offset value from the global coordinates’ origin. In this example,

x=0.9, y=0 and z=0.9

Figure G-5: Entering the offset value of the defined reference frame with respect to the global coordinates of the

robot.

7. Update the dimensions of the working table. Clicking on the (Update

Dimensions of Working Table) button a window pops up and the user can enter

the width, length and thickness of the working table. If you are using the black

metal table in the lab, then there is no need to do this step.

 142

Figure G-6: Entering the working table dimensions.

8. Update the tool’s dimensions. Clicking on the (Update Tool’s Bounding Box)

button a window pops up and the user can enter the length and width of the tool.

For this example, enter 0.033 for length and 0.002 for width. In case you are to

generate a path for scanning, you can skip this step.

Figure G-7: Entering the tool's bounding box dimensions.

9. Update the Spindle’s/Scanner’s dimensions. Clicking on the (Update

Spindle’s/Scanner’s Bounding Box) button a window pops up and the user can

enter the length and width of the spindle or scanner. If you are using the white

spindle holder that was 3D printed by Mahmoud Nemer, enter 0.2 for length and

0.04 for width.

 143

Figure G-8: Entering the spindle's/scanner's bounding box dimensions.

10. Select the process type. Select between edge finishing or scanning, depending in

your goal of the path. In this example, Edge Finishing is selected.

Figure G-9: Selecting the type of process to be done.

11. Select the offset value from the edge. Zero offset value means directly touch the

edge by either the tool or scanner. In this example, it is taken as 2 mm.

Figure G-10: Entering the offset value between the each edge and the tip-point of the robot.

12. Select the approach angle option. The user get to select from two options. Either

approach each edge with an angle that is the average of the adjacent faces’

normal, or to approach the edge in the direction normal to the formed burrs. In

this example the second option is selected.

 144

Figure G-11: Choosing the approach angle of the end-effector.

13. If the second option of step 12 is selected then the user needs to specify the order

of which the faces were machined. This is necessary so that the program can

calculate the direction of the formed burrs. For this example the faces were

selected as shown in the next 20 figures. Note the direction of burrs is along the

face that was machined last.

Figure G-12: Selecting the first face of the given workpiece example.

Figure G-13: Selecting the second face of the given workpiece example.

 145

Figure G-14: Selecting the third face of the given workpiece example.

Figure G-15: Selecting the fourth face of the given workpiece example.

Figure G-16: Selecting the fifth face of the given workpiece example.

 146

Figure G-17: Selecting the sixth face of the given workpiece example.

Figure G-18: Selecting the seventh face of the given workpiece example.

Figure G-19: Selecting the eighth face of the given workpiece example.

 147

Figure G-20: Selecting the ninth face of the given workpiece example.

Figure G-21: Selecting the tenth face of the given workpiece example.

Figure G-22: Selecting the eleventh face of the given workpiece example.

 148

Figure G-23: Selecting the twelfth face of the given workpiece example.

Figure G-24: Selecting the thirteenth face of the given workpiece example.

Figure G-25: Selecting the fourteenth face of the given workpiece example.

 149

Figure G-26: Selecting the fifteenth face of the given workpiece example.

Figure G-27: Selecting the sixteenth face of the given workpiece example.

Figure G-28: Selecting the seventeenth face of the given workpiece example.

 150

Figure G-29: Selecting the eighteenth face of the given workpiece example.

Figure G-30: Selecting the nineteenth face of the given workpiece example.

Figure G-31: Selecting the twentieth face of the given workpiece example.

 151

14. After selecting all faces, in order. Click on Done. This will save the order and

now you can remove the face selection.

Figure G-32: Confirming the face selection procedure.

15. Remove the face selection by clicking anywhere in empty space.

16. Select the reference frame defined earlier and any faces that are in direct contact

with the working table or fixture. In this example only one face is in direct

contact with the table, as shown below.

Figure G-33: Selecting the defined reference frame and ground face.

17. Click Run.

18. Check the default edge selection. The software predicts the edges to be processed

and select them automatically for the user. The user can still modify this

selection by selecting or deselecting any other edges at well. In this example four

edges were deselected from the default selection. After finishing with modifying

edge selection click on Proceed.

 152

Figure G-34: Modifying the default edge selection and confirming it.

19. Wait for the program to generate the path.

20. When path is generated a message box shows up to inform the user. Click OK.

Figure G-35: Feedback message to the user at the end of path generation process.

21. Go to the directory of the CAD model part. The generated path is going to be

stored in the same directory with the name NominalPath.

22. Congratulations now you generated a path for your task.

 153

G.2. Path Execution

The ABB User Interface is the software responsible for transferring the nominal path from

the computer to ABB IRB2000’s memory, in order to be able to execute the path. The

following steps give the full detailed explanation to generate a path using this package.

1. Launch ABB User Interface software.

2. Plug the USB cable of the ABB to your computer.

3. Set up the connection. Simply go to “File/Open Serial Port” then choose the

correct COM number.

Figure G-36: Opening the serial port with ABB.

 154

4. Open “Off-Line Path Uploading” tab.

Figure G-37: Opening "Off-Line Path Uploading" tab.

5. Click on “Open File” button in “Path Program in Normal Language Form”

frame.

 155

Figure G-38: Opening the previously generated path text file.

6. Select the previously generated path.

7. Check if the text is uploaded on the software. Make sure that there is not any

empty lines in the text. Especially at the very end of the text.

 156

Figure G-39: Result of uploading the generated path example.

8. Enter the program number for the path. This is the name of the path when it will

be stored in the robot’s memory. Choose any number from 20-2000. In this

example 25 is entered.

Figure G-40: Setting the program number in ABB memory.

9. Define the TCP number for the path. This is for the kinematics for the end-

effector, read programming manual for full details. In this example, TCP 1 is

taken. This is the TCP that correspond to the white spindle holder.

Figure G-41: Setting the TCP number to be used in the path.

 157

10. Set the velocity of the end-effector while executing the path. For processing

motions, the end-effector’s speed is 40% of the set speed. In this example 40

mm/s is set as the speed. Therefore when processing, the end-effector moves at

16mm/s.

11. Set the MAX speed. Recommended value is 1.5V. Hence, for this example

MAX=1.5*40=60mm/s.

Figure G-42: Setting the end-effector velocities.

12. Always let the Coordinates be (RECT.). Use ROBOT COORD. Only if you are

very familiar with the robot!

Figure G-43: Selecting RECT. COORD.

13. Click “Upload Path”.

14. Feedback message next to the “Upload Path” is going to show up to inform the

user if the upload was successful or not. Depending on the length of the path text.

As an average time, wait for one minute or less for the path to be fully

transferred to ABB.

