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ABSTRACT 

 

 

 

DYNAMIC MODELLING AND ANALYSIS OF GUN TURRET ELEVATION 

DRIVE SYSTEM 

 

 

Çiloğlu, Çağıl 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. M.A. Sahir Arıkan 

Co-Supervisor: Mr. Oykun Eren 

June 2016, 125 pages 

 

 
  

In this thesis, dynamic models for the elevation axis of a gun turret are 

developed by using MATLAB/Simulink and the multi-body dynamics software 

MSC-Adams. The developed models include the driveline stiffnesses of individual 

components as well as the viscous damping of the bearings in the elevation drive-

train. State space representations of gun turret model with different degrees of 

freedoms are presented and compared. Both time and frequency domain analyses are 

conducted in order to get a basic idea about the behavior of the system. 

The theory of gear dynamics is introduced as a first step for integrating the 

flexibilities of gear pairs into the gun turret model. For this purpose, different gear 

mesh stiffness and gear mesh damping models available in the literature are 

investigated. The elastic contact forces in the gear-train are computed by taking into 

account the gear deformations due to bending, shear, foundation deflection and 

Hertzian contact of the gear teeth. The existing Hertzian contact models in the 

literature are compared and differences between them are investigated. 

With the help of the contact parameters, the gear dynamics model is 

constructed that takes into account backlash and gear impact. Furthermore, a realistic 

friction model which takes into account the lubricant characteristics is added to the 

developed gear dynamics model. The effect of gear dynamics on the overall 
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performance characteristics is then investigated in both time and frequency domains. 

A controller is designed via MATLAB for tracking a reference input speed by using 

the developed model. 

All of the analytical formulations that are developed in MATLAB-Simulink, 

are verified by the multi-body dynamics software MSC-Adams.  

Finally, dynamic effects of the compliant adjustment type anti-backlash 

mechanism, which is commonly used in gun turret drives, is investigated by means 

of the developed multibody dynamics model. Various target tracking scenarios are 

constructed and different simulations are conducted in MSC-Adams. 

Keywords: Gun turret dynamics, gear dynamics, target tracking, backlash, multi-

body dynamics, gear mesh stiffness, gear friction, compliant adjustment type anti-

backlash mechanisms 
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ÖZ 

 

 

 

SİLAH KULESİ YÜKSELİŞ TAHRİK SİSTEMİNİN DİNAMİK 

MODELLENMESİ VE ANALİZİ 

 

 

Çiloğlu, Çağıl 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez DanıĢmanı:Prof. Dr. M.A. Sahir Arıkan 

Tez Yardımcı DanıĢmanı: Oykun Eren 

Haziran 2016, 125 sayfa 

 

 

Tez kapsamında, silah kulesi yükseliĢ ekseni için MATLAB/Simulink ve 

çoklu cisim dinamiği yazılımı MSC-Adams kullanılarak dinamik modeller 

geliĢtirilmiĢtir. Modelleme esnasında eksen tahriki için kullanılan elemanların 

esneklikleri ile, rulmanlardaki viskoz sönümleme göz önünde bulundurulmuĢtur. 

Silah kulesini temsilen oluĢturulan farklı serbestlik derecelerine sahip dinamik 

modeller, durum uzayı modeli Ģeklinde tanımlanmıĢ ve birbirleri ile karĢılaĢtırma 

amaçlı kullanılmıĢtır. Sistem hakkında temel fikir sahibi olma amacı ile zaman ve 

frekans düzlemlerinde analizler sunulmuĢtur. 

DiĢ/diĢli esnekliklerini hesaplamalara dahil edebilmek için diĢlilerin dinamik 

davranıĢlarını içeren bir model geliĢtirilmiĢtir. Modelleme esnasında, diĢlilerin 

arasındaki yay direngenliği ve sönümleme katsayısı ile ilgili farklı yaklaĢımlar 

karĢılaĢtırılmıĢtır. DiĢ teması sırasında oluĢan deformasyonlar bulunurken bir diĢ 

üzerindeki eğilme, kesme ve diĢli gövdesindeki deformasyonlar ile Hertz 

deformasyonları ayrı ayrı hesaplanmıĢtır. Literatürdeki farklı Hertz teması modelleri 

kullanılarak hesaplamalar yapılmıĢ, sonuçlar karĢılaĢtırılmıĢ ve aralarındaki farklar 

gözlemlenmiĢtir. 

Açıklanan temas parametreleri kullanılarak oluĢturulan diĢli dinamiği 

dinamik modelinde, diĢ boĢluğu ve darbe yükleri hesaba katılmıĢtır. Ayrıca 



viii 

 

kullanılan yağlayıcının özelliklerine bağlı, gerçekçi bir diĢli sürtünme modeli 

oluĢturulan dinamik modele dahil edilmiĢtir. GeliĢtirilen diĢli dinamiği modeli, silah 

kulesi modeline entegre edilerek diĢlilerdeki esnekliklerin tüm sisteme olan etkileri 

zaman ve frekans düzlemlerinde incelenmiĢtir. OluĢturulan model ve MATLAB 

kullanılarak, verilen bir referans hız girdisini takip eden bir kontrolcü tasarlanmıĢtır. 

MATLAB ve Simulink ortamlarında oluĢturulan tüm modeller çoklu cisim 

benzetim yazılımı MSC-Adams kullanılarak doğrulanmıĢtır.  

Son olarak; silah kulelerinde yaygın olarak kullanılan esnek ayarlamalı tipte 

bir diĢ boĢluğu alma mekanizmasının sistem üzerindeki etkileri, geliĢtirilmiĢ olan 

çoklu cisim modeli kullanılarak araĢtırılmıĢtır. 

Anahtar Kelimeler: Silah kulesi dinamiği, diĢli dinamiği, hedef takibi, diĢ boĢluğu, 

çoklu cisim dinamiği, diĢli direngenliği, diĢli sürtünmesi, esnek ayarlamalı diĢ 

boĢluğu alma mekanizması 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

1.1 Introduction to the Problem 

Today, most of the modern infantry fighting vehicles or main battle tanks use 

electrical drives in order to operate the turrets in azimuth and elevation axes. 

Utilization of gear pairs along with those electrical drives is unavoidable in order to 

comply with the mobility requirements within the limited space in the interior 

volume of a gun turret. These electrical drive systems need to provide a smooth 

operation platform with the help of weapon control systems in order to provide a 

better engagement capability and higher first round hit probability for the gunner. 

The objective of these control systems can be classified into two major categories. 

First objective is to keep the gun barrel at a desired orientation regardless of the 

disturbances coming from the ground. This mode of operation is called stabilization 

as shown in Figure 1-1.  

 

Figure 1-1 Effect of stabilization [1] 

Second objective is to operate the gun barrel at a desired angular velocity. This 

objective is called target tracking or gun laying. It is primarily used for surveillance 
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of moving targets or to engage moving targets. It can be performed by the gunner or 

by automatic target tracking systems. 

In reality, there are many adverse effects that may degrade the performance of any 

weapon control system. These are non-linear friction, backlash or play in the 

driveline, noise from the sensors, driveline compliance and saturation. 

Backlash [2] is defined as the amount of distance between mating gears along the 

line of action as shown in Figure 1-2. There is also a corresponding angular backlash 

definition, however this linear definition of the backlash will be used throughout the 

thesis because of its mathematical significance. 

 

Figure 1-2 Backlash definition along the line of action 

Backlash may become a significant problem in applications where there are strict 

accuracy requirements. Hale et al. [3] states that:  

“Although required for proper tooth action, too much backlash may lead to limit 

cycling for systems with output position feedback, unacceptable position errors for 

systems with motor position feedback, or chatter for systems excited by time-varying 

loads.” 

Considering the sudden direction changes of the motor pinion in order to synchronize 

itself to load side gear under high frequency disturbances on a bumpy terrain, 

backlash elimination becomes vital in order to provide satisfactory control 

performance in weapon systems. 

Backlash elimination can be achieved via mechanical solutions, advanced non-linear 

control algorithms or both. In turret drives, regardless of the control system 
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architecture, there is almost always a mechanical form of backlash elimination 

device. 

1.2 Review of Literature 

Accurate dynamic modeling of gun turrets constitutes the basis of any weapon 

control system. As expected, number of papers directly about dynamic modeling of 

gun turrets is scarce due to the military nature of the topic. The existing know-how is 

usually kept within the companies who build drives for gun turrets.  

Many of the work that was conducted after 2000's take Purdy [4] as reference and 

use his model as a basis for improvement. The purpose of the mentioned study is to 

use a feed-forward controller by measuring the angular velocity of the vehicle hull, 

and to demonstrate that it yields a better stabilization performance. The dynamic 

model in the paper consists of the motor and trunnion viscous friction in the bearings, 

the flexibility of the gun barrel by a torsional spring, proportional servo motor gain 

and the stiffnesses of the entire elevation mass is assumed as a lumped linear 

driveline stiffness of the elevation axis as shown in Figure 1-3. The gearbox in the 

system is treated as a speed reducer element. 

 

Figure 1-3 Dynamic model of the gun turret elevation axis [4] 
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In another study; Purdy [5], included the effect of out of balance in his model and 

demonstrated that stabilization can still be achieved. A very similar dynamic model 

to that used in [4] has been used in that work. 

Different gun barrel models have been investigated in another study by Purdy [6]. 

The purpose of this study is to model the gun barrel more accurately as a flexible 

element. The compliances in the system are a lumped driveline stiffness and the gun 

barrel as a Euler-Bernoulli type flexible beam as shown in Figure 1-4. The gearbox 

in this model is again assumed as a rigid speed reducing element. 

 

Figure 1-4 Flexible beam and an equivalent driveline stiffness [6] 
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In a modeling and control thesis performed in Aselsan Inc., Afacan [7], models the 

gun turret elevation axis including hydraulic actuator dynamics, orifice flow 

characteristics, Coulomb friction with emphasis on stick-slip and the compressibility 

of the hydraulic fluid (Figure 1-5). Drive-line compliances are not included in the 

mentioned study.  

 

Figure 1-5 Barrel and actuation mechanism [7] 

In a more recent study performed by Karayumak [1], both azimuth and elevation 

axes of a weapon system are modeled. A coincidence window algorithm which takes 

into account the gun barrel flexibilities is constructed. The elevation axis model used 

in that study is based on the dynamic model explained in [4]. The gun barrel is 

assumed to be connected by a series of torsional springs and dampers.  

One of the studies, that take into account the gear dynamics and gear backlash, in the 

overall turret dynamics is performed by Yumrukçal [12]. Structural parameters such 

as stiffness and damping are modeled and identified by means of experimental 

frequency sweeps. However, the equations of motion that govern the overall 

dynamics are not explicitly given in the presence of driveline compliances and 

backlash.  

Another scope of the thesis study is backlash elimination and its implementation on 

the elevation axis of a gun turret. For this purpose, backlash elimination techniques 

are presented in the subsequent parts. In the most general sense, backlash elimination 

by means of mechanical means can be classified into three major categories: 

1. Fixed center distance gears 
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2. Unconventional methods 

3. Variable center distance gears 

First category is the anti-backlash gear trains with fixed center distance gear pairs. 

Split pinion gears, as the name implies, consist of two halves. The halves are able to 

rotate relative to each other [3, 8] and they are preloaded against each other by means 

of springs (Figure 1-6). This preloading essentially increases the effective tooth 

thickness so that while the output gear is changing its direction of rotation; it 

encounters the resistance of the spring loaded half instead of encountering a 

clearance. These systems are preferable for light loading and low angular velocity 

operations. 

 

 

Figure 1-6 Split pinion type anti-backlash gear train [3, 8] 

The other type of anti-backlash gear train type which has a fixed center distance, is 

the dual pinion [3]. Dual pinion anti-backlash gears have two separate transmission 

paths from the input shaft to the output shaft. With the aid of the preloaded elements 

one transmission path opposes the other in a similar fashion as the split pinion. 
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Figure 1-7 Dual pinion type anti-backlash gear train [9] 

Note that both in dual pinion and split pinion type systems the input shaft needs to 

overcome an additional preload torque in addition to the load side inertia and 

driveline friction. It also induces extra friction torque on the input in the preloaded 

direction. Furthermore, they are prone to assembly and manufacturing errors because 

of their fixed center distance nature. 

Another possible solution technique is magnetic backlash elimination. By placing the 

north pole of one gear magnet at an intermediate position of the north and south 

poles of the opposing gear magnets, Figure 1-8, a backlash free operation without 

excessive friction is claimed in [10]. This solution is not utilized in practice very 

much though it sounds promising for light loaded, low speed operations. 

 

Figure 1-8 Magnetic backlash eliminator [10] 
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In addition to the conventional backlash elimination techniques, there are 

unconventional backlash elimination techniques such as harmonic drives, epicyclic 

drives and cycloidal drives [8]. Due to their high cost, they are restricted to mainly 

aviation and space applications when there are severe performance and weight 

requirements. One example of a harmonic drive with internal flexible spline is shown 

in Figure 1-9 [13]. 

 

Figure 1-9 Harmonic drive illustration [13] 

The final category of anti-backlash gear trains, which is the main scope of this thesis, 

is compliant adjustment type anti-backlash mechanisms. In these systems, the center 

distance between gears (hence the operating pressure angle between the meshing 

gear teeth) becomes variable. Usually the input pinion is pushed against or pulled 

towards the load side gear by means of a preloaded spring and it has a freedom to 

rotate around an independent rotation axis. A simple schematic of this system is 

shown in Figure 1-10. 

 

Figure 1-10 Compliant adjustment type anti-backlash gear pair [8] 

At this point it is important to note that compliant adjustment type anti-backlash gear 

pairs can compensate radial run-out in addition to backlash. Radial run-out can be 
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described as “the variations in the distance perpendicular to the axis of rotation 

between the indicated surface and a datum surface” [11]. It is a result of combined 

error sources such as deviation from the ideal tooth thicknesses during 

manufacturing, the distortion due to heat treatment of gears, general machining 

limitations etc. It is usually measured by placing an indicator over a pin and 

recording the variations as shown in Figure 1-11. 

 

Figure 1-11 Run-out measurement [11] 

Since the gear train in turrets usually consist of large diameter gears both in azimuth 

and elevation axes; the amount of radial run-out is non-negligible in these systems. 

Hence the ability to compensate run-out becomes critical. Furthermore, by avoiding 

fixing the rotation center of the motor pinion in a certain position in the turret hull 

allows the designers to relax the machining tolerances for gear mounting provisions 

which is imperative in order to reduce manufacturing costs. Finally, by changing the 

spring coefficient and the amount of preload, a wide range of dynamic forces can be 

achieved so that friction forces can be adjusted as low as possible while keeping 

backlash zero. Of course this would require a detailed dynamic analysis.  

In the following figures CAD images (Figure 1-12) of a traverse drive that actuates 

the turret in azimuth axis and the real physical system (Figure 1-13) are shown. The 

preloading element applies a torque which pushes the pinion against the ring gear. 

Note that the working principles are very similar for both elevation and traverse axes. 
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Figure 1-12 CAD models of traverse motors with anti-backlash mechanism [1,12] 

 

 

Figure 1-13 Image of a traverse drive [12] 

It is interesting to note that despite the widely utilization of these mechanisms in the 

military, there is no reported dynamic simulation study that investigates the 



11 

 

performance characteristics of these mechanisms and their effect on the overall turret 

dynamics. 

1.3 Objective and Scope of the Thesis 

The main contribution of this thesis to literature is the application of the gear 

dynamics to the overall gun turret dynamics. The developed dynamic model that 

includes gear dynamics, can be used to design more advanced controllers that take 

into account gear impact, the backlash and gear mesh friction. For this purpose, three 

independent modeling paradigms have been used; namely MATLAB, MATLAB-

Simulink and MSC-Adams. The MATLAB and the Simulink models are constructed 

by the solution of the differential equations of motion. Whereas the model in 

multibody dynamics program MSC-Adams is constructed by connecting the physical 

parts in the correct kinematic sequence and determining the correct contact 

parameters.  

In chapter 2, the groundwork of the thesis has been laid with the introduction of 

the basic elements of a gun turret and their kinematic relations with each other. Two 

simple state space models are constructed that treat the gear pair simple speed 

reduction elements. First model is the 3 degree of freedom (d.o.f.) model where the 

motor shaft and load stiffnesses and damping are considered. The equations of 

motion are derived by using Lagrange method. Then, as is commonly done in the 

literature, a simplified equivalent 2 d.o.f. system where the drive-line stiffnesses and 

the inertias are reflected to motor side is constructed. Open loop Bode plots are 

constructed for various transfer functions of interest. Time domain simulations are 

also performed. 

In chapter 3, the contact parameters of gears which constitute the foundation of 

the gear dynamics, namely gear mesh stiffness and mesh damping are explained in a 

detailed manner. The complicated variation of gear deflection as the point of contact 

travels along the line of action is computed with different gear deflection models 

available in the literature. The contributions of gear bending, shear, foundation and 

Hertzian deflections are all included in the calculations. These models are then 

compared with the formulation given in the ISO standard which is considered as the 

benchmark. 
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In chapter 4, the equations of motions for a fixed center distance gear pair are 

derived. The possible front side contact, back side contact and separation modes are 

considered. A MATLAB-Simulink model and a MSC-Adams model is constructed. 

The developed models are compared among themselves and with the literature as 

well. Then a realistic gear friction model which is used in AGMA standards, is 

inserted into the developed model while considering various contact scenarios. The 

inverse dynamics model which can capture the force variation on a single tooth is 

also constructed for verification purposes. 

In chapter 5, the final dynamic model which includes, driveline compliances as 

well as gear flexibilities is constructed both in MATLAB-Simulink and MSC-Adams 

environment. After having the open loop system in MATLAB, the angular velocity 

of the gun is controlled for target tracking purposes. The required controller is 

designed by adjusting the closed loop poles of the system via root locus diagram in 

MATLAB SISO toolbox. The controls toolkit is used for target tracking in MSC-

Adams environment. Finally, a compliant adjustment type anti-backlash mechanism 

commonly used in military applications is inserted to the developed multi-body 

dynamics model. Various target tracking performance criteria are compared for 

different preload values. 
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CHAPTER 2 

 

 

2 SIMPLIFIED DYNAMIC MODEL OF THE GUN TURRET ELEVATION 

AXIS 

 

 

 

2.1 Introduction  

This chapter introduces a simple 3 d.o.f. dynamic model of a gun turret elevation axis 

upon which the rest of the thesis is going to be built. The compliance of the driving 

shaft as well as the compliance of the load side has been taken into account. The 

equations of motion are derived from Lagrange equations. The open loop time 

domain and frequency responses are plotted.  

2.2 Dynamic Modeling 

Any gun turret that is used in military vehicles should have some similar elements in 

order to fulfill the mobility requirements in a military environment. These are the 

drive systems (i.e. motors), gear pair(s), trunnions, gun mounts, rotor structure, turret 

hull, bearings that allow rotation in elevation axis, and the guns. 

 

Figure 2-1 FNSS medium caliber one man turret SABER 

 Turret hull: It acts as the main frame for the non-elevating components. It is 

fixed to the vehicle chassis. 
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 Rotor: It acts as the main frame for all of the elevating components. The rotor 

is connected to the turret hull by means of bearings, therefore by a revolute 

joint. 

 Pinion shaft: Pinion shaft is the geared part of the elevation motor. It is where 

the motor torque is transmitted to the load side. It is connected to the turret 

hull by bearings therefore a revolute joint. Pinion shaft's internal compliance 

is included therefore, there is a torsional spring that connects the driving part 

of the shaft to the driven part. 

 Sector gear: Sector gear meshes with the pinion gear to increase the torque 

reflected to the load side. it is to be connected to the rotor by means of a 

torsional spring since the driveline compliance is considered. 

 Gun barrel: Gun barrel is the tube where the ammunition exits the weapon. In 

the scope of this thesis, it is assumed to be rigidly connected to the gun body. 

A simplified isometric view of the turret which shows the aforementioned elements 

is shown in Figure 2-2. 

 

Figure 2-2 A schematic of a gun turret 

An illustration with the scientific notation used is given in Figure 2-3. Note that all of 

the elevated mass is lumped as a single unit. This lumped mass is referred as the 

"load". 
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Figure 2-3 Elevation axis model with the notations 

In the above notation, the torque applied by the motor is given as   . The discs have 

the following inertias,             to represent motor inertia, pinion inertia (gear 1), 

sector gear inertia (gear 2) and the load inertia respectively. N is the gear ratio given 

as   /   where    is the pitch diameter of gear 2 and    is the pitch diameter of gear 

1. The pinion shaft compliance is given as    and the load side compliance is given 

as   . The viscous friction coefficient on the motor side is given as    whereas the 

viscous friction coefficient on the load side is given as   . 

The motor shaft stiffness can be calculated from elementary strength theory as; 

 
m

G J
k

L
  (2.1) 

Where G is the shear modulus of rigidity, J is the polar moment of inertia and L is 

the length of the motor shaft. 

The load side stiffness needs to be determined either by a finite element analysis or 

system identification. Within the scope of this thesis, it is treated as known. 

Viscous damping coefficients of the bearings can be determined from the related 

bearing catalogues.  
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The gear train is modeled as rigid for the time being, therefore it only acts as a speed 

reduction element. The motion constraints are; 

 1 1 1

2 2 2

N
  

  
    (2.2) 

2.3  Lagrange Equations of Motions 

Lagrange equations of motion with the generalized coordinates    for any system is 

given as follows [14]. 

 k k

k k k

K U D
p Q

q q q

  
   
  

 (2.3) 

With the selection of generalized coordinates as          the kinetic energy of the 

system is; 
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  (2.4) 

The potential energy of the system is given as; 

 
2 21

1

1 1
( ) ( )

2 2
m m L L

U k k
N


        (2.5) 

The dissipation function is given as; 

  
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    

 

  (2.6) 

The necessary symbolic derivatives are given as; 
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m m

Q T  (2.17) 

When the Lagrange equations are applied to individual generalized coordinates and 

presented in matrix form, the following equations is obtained; 

 

2

1 1 12 2

12

0 0 0

0 ( ) 0 ( )

0 0
0

0
1

( ) 0

0

0

m m m

m m

L L

m m

L L

L L

L

m m

m

L L

m m m

L

L

L

I c c

I c c
I c c

N N N

I c
c

N

k k

k k
k k T

N N

k
k

N

 

 

 







 

  
     

        
     
            

 

 

 
    

        
    
        

 

 

 (2.18)   

Or more generally it becomes; 

            d
M C K I u       

   
 (2.19) 

The above system can be converted to state space equation form; 

 
x A x B u

y C x D u

 

 
 (2.20) 
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The output matrix C given in Eqn. (2.20) should not be confused with the damping 

matrix [C] given in Eqn. (2.19). 

The system matrices can be obtained from; 
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3 3 3 3

1 1

[0 ] [ ]

[ ] [ ]
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 (2.22) 

Where the state vector is; 

 
1 1

T

m L m L
x       

 
 (2.23) 

The motor torque is the only input of the system, and the selection of the output state 

determines the remaining C and D matrices. The possible logical outputs that can be 

selected are the motor position, motor speed, load position or load speed. As an 

example, if the load speed is selected as the output; 

  0 0 0 0 0 1C    (2.24) 

 0D   (2.25) 

It is conventional [4, 6] to simplify the developed model in Figure 2-3 to a 2 d.o.f. 

system by reflecting all of the driven inertias, stiffness and damping terms to the 

motor side as shown in Figure 2-4; if the inertias of the gear 1 and gear 2 are small 

compared to inertias of the motor and load sides. 

 

Figure 2-4 Dynamic model of the gear train reflected to motor side 
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In the above figure, equivalent stiffness     and equivalent damping     terms 

reflected to the motor side can be calculated as; 

 

2

2

1 1 1
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The inertia of the load and the angular position reflected to the motor side is; 
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With the simplified configuration the matrix equation of motions become; 

 
0 1

0 0

eq eq eq eqm mm m

m

eq eq eq eqL R L RL R L R

c c k kI
T

c c k kI

 

 

            
             

            

 (2.30) 

 
   

2 2

1 1

2 2
[0 ] [ ]

[ ] [ ]

x x
I

M K
A

M C
 

 













 (2.31) 

 2 1

1

[ 0 ]

[ ] [ ]

x

d

B
M I



 
  

 

 (2.32) 

Where the state vector is; 

 
T

m L R m L R
x     

 
 (2.33) 

Similarly, with the motor torque as the input and reflected load speed as the output 

the remaining state matrices become; 

  0 0 0 1C    (2.34) 

 0D   (2.35) 

It should be noted that, reflecting the values to the motor side causes losing a 1 d.o.f. 

in the system. This is due to the fact that load and gear 2 inertias are lumped together. 
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2.4 Open Loop System Simulations 

Results of the model given by Figure 2-3 is referred to as the 3 d.o.f. model whereas 

the results of the model given by Figure 2-4 is referred to as the 2 d.o.f. model. The 

following representative parameters are used for the simulation purposes of the 

thesis. 

Table 1 Gun turret parameters 

Motor inertia-    (kgm
2
) 3      

Pinion inertia-   (kgm
2
) 3      

Gear inertia-   (kgm
2
) 1.5 

Load inertia-   (kgm
2
) 50 

Motor shaft stiffness (Nm/rad) 5 10
4 

Load side torsional stiffness (Nm/rad) 5     

Motor shaft viscous damping 

coefficient (Nms/rad) 

0.3 

Trunnion bearings viscous damping 

coefficient (Nms/rad) 

10 

 

For a sinusoidal motor torque input,                                 , 

the load side speeds for two models are plotted in Figure 2-5. 

 

Figure 2-5  ̇  vs. time (low frequency excitation) 
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The results look quite similar. However when the frequency of excitation is increased 

such that                                    , Figure 2-6 is obtained. 

 

Figure 2-6  ̇  vs. time (high frequency excitation) 

A significant difference in the load speed is predicted by the two models. This is due 

to the fact that one degree of freedom was lost while reflecting the load side 

parameters to the motor side.  

For the increased frequency of excitation, this difference can be observed in the 

frequency domain much more easily. Bode plots of the possible transfer functions are 

plotted in Figure 2-7, Figure 2-8 and Figure 2-9 respectively. 
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Figure 2-7 Bode plot (input: motor torque, output: load speed) 

 

Figure 2-8 Bode plot (input: motor torque, output: motor speed) 
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Figure 2-9 Bode plot (input: motor speed, output: load speed) 

Inspection of the above figures indicate that there is an extra resonance around 2200 

Hz predicted by the 3 d.o.f. model.  
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The extra peak predicted by the 3 d.o.f. model is at 2199 Hz. Since this frequency is 

outside the bandwidth for most controllers, it does not have a practical significance. 

The following conclusions can be deducted by investigation of the open loop 

responses of the gun turret for different parameters. 

 Higher stiffness at motor side and load side give higher resonance frequency. 

 Higher load inertia gives a lower resonance frequency. 

10
0

10
1

10
2

10
3

-8

-6

-4

-2

0

P
h
a
s
e
 (

ra
d
)

 

 

motor speed to load speed

Frequency  (Hz)

-150

-100

-50

0

50

100
M

a
g
n
it
u
d
e
 (

d
B

)
2 d.o.f.

3 d.o.f.



24 

 

 Viscous damping coefficients have little effect on the resonant frequencies, 

however higher damping coefficients make the resonant "smoother". 

 Gear ratio has a complex behavior for the resonant frequency. Although 

increasing the gear ratio would decrease the equivalent stiffness, it also 

decreases the equivalent inertia reflected to the motor side.  
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CHAPTER 3 

 

 

3 DETERMINATION OF CONTACT PARAMETERS FOR GEAR 

DYNAMICS 

 

 

 

3.1 Introduction  

The contact force between a meshing gear pair is expressed as, 

 
n

F k c    (3.1) 

where   is the penetration depth of driving gear into the driven gear and  ̇ is the 

penetration velocity. The first term on the right hand side of Eq. (3.1) is the elastic 

portion of the force term and the second is related to the gear friction damping. This 

chapter explains how to determine the gear mesh stiffness k and gear mesh damping 

c for different spur gears. 

3.2 Gear Mesh Stiffness 

Computation of the gear mesh stiffness values along the line of action which is the 

most dominant factor that affects gear contact force is a fundamental research area. 

There have been many different approaches to this problem. First approach is to use 

the classical finite element method (FEM) in order to compute deflections along the 

line of action as is done in [15, 16]. Even though this method is the most accurate, it 

is computationally expensive since for each gear pair of interest, a new FEM model 

is necessary. To overcome this difficulty there have been numerous analytical 

attempts to calculate the mesh stiffness, in addition to semi-analytical or empirical 

estimations that give close approximations with the FEM models.  

Almost all of the studies divide the mesh stiffness problem into finding the two types 

of deflections, namely localized deflections and gear body deflections, and 

superimposing them. Localized deflections are calculated by using the Hertzian 

contact theory by assuming two contacting cylinders. Other deflections, namely tooth 
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deflections due to bending and shear, and foundation deflection of the gear body are 

found by assuming the gear tooth as a trapezoidal beam.  

 

3.2.1 Local Deflection Models 

In their renowned rotary model paper which includes effects such as backlash and 

impact in the equations of motion; Yang and Sun [17] estimated the penetration by 

considering an external cylinder to cylinder contact as shown in Figure 3-1. 

 

Figure 3-1 Schematic view of cylinder to cylinder contact in gears 

By applying the Hertzian theory, they estimated the interpenetration formula as, 

 
2

4 (1 )
F

E L







  (3.2) 

from which the stiffness can be calculated as: 

 
2

4 (1 )

E L
K







 (3.3) 

In the above equation; F is the normal load acting on the teeth, E is the modulus of 

elasticity, ѵ is the Poisson’s ratio and L is the face width of the gear. This formula 

which implies a constant stiffness for the gear pair has been widely accepted and 

used by the gear dynamics researchers [18, 19, 20] as a convenient way of 

calculating the Hertzian deflection portion of the overall deflection. 
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However, the problem of cylinder to cylinder contact deserves a more rigorous 

treatment because of the fact that many different contact models have been proposed 

by researchers and are available in literature. A good overview of these models is 

given in [21].  

Johnson derived a formula for external cylinder to cylinder contact based on the 

Hertz theory. The indentation δ is expressed as, 

 
*

*

4
ln 1

/

F E R

E L F L






  
   

  

  (3.4) 

 

2 2

1 2

*

1 2

1 11

E E E

  
    (3.5) 

 
i j

R R R     (3.6) 

In the above set of equations, F is the load acting on the bodies. L is the length of the 

cylinders,    is the equivalent modulus of elasticity which can be calculated if 

Poisson’s ratios (  and     and elasticity moduli (   and     of the corresponding 

materials are known.    and    are the radii of the contacting cylinders (Figure 3-2). 

 

Figure 3-2 Cylinder to cylinder contact 

In another set of formulas proposed by Radzimovsky indentation   is given as, 

 
*
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ln ln

3

ji
RRF

E L b b
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  (3.7) 
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i j

i j

R R
R

R R



  (3.9) 

Lankarani and Nikravesh suggested the following explicit formula with a force 

exponent     to 1.5 for cylindrical contact. 

 

1 /

* 1 / 2

3( / )

4

n

F L

E R




 

 
 

  (3.10) 

Note that, deflections are all implicit functions of the term unit F/L (force per 

length). Furthermore, they are functions of the radii of the corresponding curvatures. 

These radii correspond to radii of curvature of the pinion and the gear teeth in a 

meshing spur gear pair. However, the radii of curvature of both pinion and gear 

change as the contact point travels along the line of action. This means that the 

Hertzian stiffness is not constant but changes its value as the point of contact travels 

along the line of action.  

In order to compute the variation of the radii of curvatures, some background 

information regarding involute gear geometry needs to be introduced. 

The derivations that follow are applicable to gear pairs that have a contact ratio 

which is less than two. The gear pairs that have a higher contact ratio than two are 

called high contact ratio gears. High contact ratio gear pairs are not in the scope of 

this study. 

During a complete mesh cycle, gear pairs undergo different contact regimes which 

are double tooth contact and single tooth contact. As the names imply, the single 

tooth contact zone refers to the zone where one pair of gear tooth is engaged whereas 

in the double tooth contact zone, there are two pairs of gear tooth that are engaged. 

Note that in Figure 3-3, gear 1 is taken as the driver and gear 2 is taken as the driven 

gear. For the common speed reduction application, gear 1 is also called the pinion 

and gear 2 is called the gear. 
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Figure 3-3 Contact points along the line of action [13] 

The radii of base circles of gear 1 and gear 2 are designated as     and    ; the radii 

of addendum circles are designated as     and     respectively. The angle    is 

called the rack cutter pressure angle. This angle is usually 20° for common 

applications. 

The location of single tooth and double tooth contact points can be determined by 

simple geometry. 

 
1 2

( ) tan
c

b b
A B r r     (3.11) 

 
2 2

2 2a b
A C A B r r      (3.12) 
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2 2

1 1a b
A D r r    (3.13) 

 
b

A E A D p    (3.14) 

 
b

A F A C p    (3.15) 

In the above equations    is called the base circle pitch and it is given as, 

 co s
c

b
p m    (3.16) 

where   is the module. 

Referring to Figure 3-3, the contact of a driver gear tooth with the driven gear tooth 

starts at point C. At this instant, there is another tooth pair in contact at point F. As 

the contact point, which was at point C, travels along the line of action, it comes to 

point E where the double tooth zone ends. At this instant, the tooth pair at point D 

have been separated from each other hence the single tooth contact zone begins. 

Single tooth contact zone continues from point E to point F. When the tooth arrives 

at point F, another gear tooth has made contact at point C, hence there is another 

double tooth contact zone until the tooth separates at point D. One complete mesh 

cycle of a gear tooth refers to the travelling of one gear tooth from point C to point 

D. Based on this explanation, regions CE and FD are called double tooth contact 

zones and region EF is called the single tooth contact zone. There is another 

important point called the pitch point P. It is the point where the pitch diameters 

intersect. Pitch point has a special kinematic importance which will be explained in 

Chapter 4. 

In order to determine the instantaneous radii of curvatures along the line of action, 

two new angle definitions are needed.    is called the instantaneous pressure angle 

and     is called the roll angle. The instantaneous pressure angle should not be 

confused with the rack cutter pressure angle    which is constant and usually 20°. 
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Figure 3-4 Instantaneous pressure angle and roll angle 

From the above figure, 

 co s
b j

ij

m jj

r

r
   (3.17) 

Furthermore, the involute property relations give [13], 

 tan
i j i j

   (3.18) 

During a mesh cycle in a double tooth contact instant; there are four possible 

pressure angles and consequently roll angles: Two roll angles for the driver gear 

teeth and two roll angles for the driven gear teeth. The subscripts are used to 

differentiate which tooth of the mentioned gear is specified. According to the 

notation followed in [18] and also in this thesis, the subscript "i" refers to the gear 

number of interest and the subscript "j" refers to the tooth number of interest (Figure 

3-5). Driver gear is represented as gear 1 hence the corresponding "i" subscript of the 

driver is 1. Consecutively "i" subscript of the driven gear is gear 2. 
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Figure 3-5 Illustration of pressure angle subscripts 

In Figure 3-5,     and     represent the pinion and gear radii of curvatures of the 

first contacting teeth respectively. The following formulas can be used to calculate 

their value [22]: 

 
2

2 2

1 1 1 1
( )

4

b

m

d
r    (3.19) 
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2 1 2 1
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4

b

m

D
r    (3.20) 

The roll angle and the corresponding rotation angle    relation can be found with the 

aid of Figure 3-6 as; 

 1 1 1

1b

A C

r
    (3.21) 
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b

b

A B r

r





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Figure 3-6 Rotation angle, pressure angle and roll angle relation [18] 

Furthermore, due to base pitch definition; 

 1 2 1 1

1

b

b

p

r
    (3.23) 

 2 2 2 1

2

b

b

p

r
    (3.24) 

However, note that Equation (3.23) and (3.24) are valid only when     is in approach 

section. 

To sum up, if the angular position    of the driver gear is known for every instant, 

(which is usually obtained during a simulation) the corresponding roll angles     of 

all four contacting teeth can be obtained via Eqs. (3.21)-(3.24). Then; by using Eqs. 

(3.18) and (3.17), one can compute the corresponding pressure angles     and the 

instantaneous radial distances      respectively. Substitution of      values into Eqs. 

(3.19) and (3.20) will yield the instantaneous variation of radii of curvatures of the 

pinion and gear along the line of action.  
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In order to demonstrate the difference of various contact models, an example gear 

pair from [18] will be used as a benchmark case study. The gear parameters are given 

in  Table 2. 

Table 2 Example gear pair parameters 

 Pinion, Gear 

Module (mm) 2  

Number of teeth 20, 80 

Addendum modification 

coefficient 
0,0 

Inertia (kg-m
2
) 1.5285E-5, 3.9E-4 

Elasticity modulus (GPa) 206.8 

Poisson's ratio 0.3 

Rack cutter pressure angle (°) 20 

Face-width (m) 0.01 

Backlash (m) 0.00005 

Contact ratio 1.69 

Damping ratio 0.05 

 

The deflections given by different models under a unit load (    ) are computed 

with respect to the rotation angle   as given in Figure 3-7. Instantaneous   and    

values required in these equations are computed by using Eqs. (3.19) and (3.20). 

The driver gear 1 is rotated such that it undergoes a complete mesh cycle. In other 

words, contact point starts at point C and ends at point D. 
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Figure 3-7 Different Contact Models vs.   (rad) 

It is interesting to note that despite both the pinion and gear radii of curvature are 

treated as variable, both Johnson and Radzimovsky models predict a constant 

deflection like Yang and Sun. What is more interesting is the fact that the amount of 

deflection predicted by Yang and Sun is almost ten times less than these 

aforementioned models. This means that these models which are more specifically 

tailored for cylinder to cylinder contact, predict a significantly lower Hertzian 

stiffness. Lankarani and Nikravesh model is the only model that predicts a deflection 

variation due to variable radii of curvature. However, the force exponent term     

to       in this model causes a wide range of deflection values and it is difficult to 

judge which value for n should be used. 

Due to the fact that the discrepancy among these four contact models is substantial, 

another verification with the literature is necessary in order to be able to select and 

justify a contact model to be used in the dynamic analysis. Another analytical 

Hertzian deflection formulation specifically derived for spur gears in a PhD thesis 

conducted at MIT in 1956 [23] uses complex potential functions and integration of 

stresses and strains along the common normal. The results of this study is given in 

Figure 3-8. The deflection values are plotted for various equivalent gear numbers of 
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teeth   . Note that both horizontal and vertical axes are non-dimensionalized. The 

vertical axis is the amount of Hertzian deflection divided by the base pitch   . The 

horizontal axis is the non dimensional normal load where the term    is the force per 

unit length and E is the modulus of elasticity. The linear approximations for different 

   values are also tabulated. 

 

Figure 3-8 Non-dimensionalized Hertzian deflection [23] 

For comparison purposes, the formulations of Johnson, Radzimovsky and Yang-Sun 

are also plotted in this non dimensional form by performing the necessary 

manipulations. As can be seen in Figure 3-9, Radzimovsky’s and Johnson’s 

predictions behave more similar to the results shown in Figure 3-8. 

In the light of the given data and comparisons, the following conclusions can be 

deducted. 

 For all of the contact points along the line of action, the total contact 

deformation for a tooth pair can be considered as constant under a constant 

load. During rotation, at the contact point, radius of curvature of the driver 

tooth increases, and radius of curvature of the driven tooth decreases; their 

sum being constant. This results in a constant deformation along the line of 

action, when deformations are calculated by using the equations which have 

sum of the radius of curvature values as input parameters. 
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 Thus, the stiffness values for practical range can be treated as constant which 

is a result of the fact that deformation and normal load variation is almost 

linear as seen in Figure 3-8 and 3-9. 

 Johnson’s and Radzimovsky’s deformation models, although they are for 

general cylinder to cylinder contact, predict the gear mesh deformation values 

in accordance with [23], hence it can be concluded that, while constructing 

the dynamical model, one of these models should be selected rather than 

Lankarani-Nikravesh or Yang-Sun deformation formulations. 

 

Figure 3-9 Hertzian Deflections for      

3.2.2 Gear Body Deflection Models 

A gear tooth under a normal load   , will deflect as shown in Figure 3-10. 

The factors that contribute to gear body deformations can be classified into four 

categories [23]. 

 Tooth bending as a cantilever beam 

 Shear deformation due to tangential load 

 Compression deformation due to radial load 

 The deformations of the foundation (gear hub or rim) 
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Figure 3-10 Deformation of a gear tooth [18] 

The deflection contributions from each category need to be superimposed onto the 

Hertzian local deflection value to find the overall deformation    along the line of 

action. The total deflection amount under a unit load of 1 N, is defined as the mesh 

compliance of a single gear tooth. Compliance is again a function of the rotation 

angle because as the point of contact travels along the line of action, different 

deflections are going to be obtained. Hence this variation of compliance for different 

contact positions will be elaborated.  

The gear tooth can be approximated as a cantilever trapezoidal beam plus a 

cantilever rectangular beam as is done in [18]. The rectangular section is the portion 

between the dedendum circle and base circle. Trapezoidal section is the portion 

between addendum circle and base circle (Figure 3-11). Note however that, if the 

dedendum diameter is greater than the base circle diameter the rectangular portion 

vanishes. 
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Figure 3-11Cantilever trapezoidal beam approximation 

The total deformation amount along the line of action is found by superposition of 

each deformation. 

 
T b p b n s f H

          (3.25) 

In the above equation,     is the deformation due to bending from       
  

component. 

    is the deformation term due to bending from       
  component. 

    is the deformation term due to shear force. 

   is the deformation of the foundation. 

   is the deformation term due to Hertzian contact. 
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In the above equations,   is the modulus of elasticity,   is the face width of the 

related gear,   is the modulus of rigidity and   is the Hertzian deflection 

contribution as explained in section 2.2.1. Furthermore, note that               are 

constants whereas     varies as the point of contact travels along the line of action. 

 
a i b i b i a i
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t t
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
 (3.30) 

The variation of the contact height     can be computed again using gear geometry 

(Figure 3-12) with the following equation. 

 co s
ci m i m d i

h r r   (3.31) 

In the above equation,     is obtained via Eq (2.7), and     is the dedendum radius. 

The angle    can be computed as follows. 
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m N
r   (3.34) 

    tanin v x x x   (3.35) 

In the above set of equations, inv is the involute function,     is the radius of the pitch 

circle of the     gear,    is the number of teeth of the     gear,     is the circular tooth 

thickness of the     gear at the pitch diameter,   is the addendum modification 

coefficient of the     gear. 
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Figure 3-12 Contact height hci 

Based on the above information; the variation of     can be computed along the line 

of action for each contact position. By implementing this variation to the deflection 

Eqs. (3.25)-(3.29); one can find the deflection for each contact position. Finally, 

stiffness of     gear can be computed as; 

 
n

i

T

F
k


  (3.36) 

The deflection variations from point C to point F for the example gear pair given in 

Table 2 are computed and plotted as was done in [18]. 

As can be seen in Figure 3-13 and Figure 3-14 the results are in excellent agreement 

which shows that the complicated deflection equations were implemented correctly. 
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Figure 3-13 Deflection variations of the 1st tooth of the driver gear 

 

Figure 3-14 Deflection variations of the 1st tooth of the driver gear [18] 

Under a unit normal load   , the reciprocal of the total deflection gives the stiffness 

of a single tooth. Since the variation of the stiffness values can be calculated for both 
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driver and driven gears, the combined stiffness of the contacting tooth pair can also 

be computed since they behave as springs which are connected in series.  

 
1 1 2 1

1

1 1 2 1

co m b in ed

k k
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k k



 (3.37) 

In gear dynamics literature, the variations are computed with respect to roll angle of 

the 1st tooth of the first gear traditionally. This is due to fact that the roll angle 

reveals the starting and ending points of single tooth contact and double tooth contact 

zones. In Figure 3-15, the variation of these stiffness values for the example gear pair 

of Table 2 can be seen. 

 

Figure 3-15 Stiffness variations vs. roll angle - Shing and Tsai 

Another mesh stiffness formula which was obtained via curve fitting by Kuang and 

Yang [24] as cited in [12, 20] in terms of the radial distance of the contacting point to 

the rotation center (     is given. 
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In the above set of equations,     is the pitch radius of the     gear in mm,    is the 

addendum modification coefficient of the     gear,   is the module in mm,    is the 

number of teeth of the     gear. As always, the 1st gear is the driver gear and the 

second gear is the driven gear. Implementation of the mesh stiffness model to the 

benchmark example gear pair of Table 2, the following variations are achieved. 

 

Figure 3-16 Stiffness variations vs. roll angle - Kuang and Yang 

By comparing Figure 3-15 and Figure 3-16, it can be seen that the stiffness 

predictions of the models are significantly different from each other. 

Fortunately, ISO 6336-1 International Standard [25] also gives equations for 

estimation of the average constant mesh stiffness of any given combined tooth pair. 

Based on the theory of elasticity and previous works of several authors, the standard 
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for external cylindrical gears that have a basic rack profile according to ISO 53. The 

reader can refer to ISO 6336-1 clause 9.3 for the equations that are used to calculate 

the mesh stiffness. ISO 6336-1 equations are implemented to the benchmark gear 

pair (Table 2) and the results are compared with the previous mesh stiffness models 

as shown in Figure 3-17. 

 

Figure 3-17 Combined stiffness variation of a tooth pair 

As can be seen in the above figure, Kuang-Yang model predicts a smaller stiffness 

than Shing-Tsai model.  Furthermore Shing-Tsai model is closer to ISO 6336-1 if the 

average values of both models are considered. It can be concluded that all three 

models predict the mesh stiffness' order of magnitude as 10
8
 N/m. These models 

need to be investigated independently for particular applications and their 

compliance with the  ISO 6336-1 formulation should be checked for individual gear 

pairs accordingly. However it is concluded that ISO 6336-1 can be taken as the 

benchmark for further dynamic studies. 
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3.3 Gear Damping Coefficient 

This term takes into account the energy dissipation which occurs during impact and it 

produces a corresponding contact force which is a function of the relative penetration 

velocity  ̇. 

Like stiffness, there are also many different models that estimate the damping 

coefficient however due to the complexity of the energy dissipation phenomenon, the 

formulas are usually empirical or they depend on the coefficient of restitution. 

Lankarani and Nikravesh [26] propose the following damping hysteresis coefficient, 

which is a function of the penetration depth δ, initial impact velocity  ̇   , coefficient 

of restitution    and stiffness K. 

 n
D X   (3.43) 

 

2

( )

3 (1 )

4

e
K c

X





  (3.44) 

Then the total contact force based on the above expression becomes: 

 

 n
F K D    (3.45) 

Note that this expression produces a non-zero dissipative force at zero penetration 

depth, at the time of separation. Hence Azar and Crossley [27] proposed a non-linear 

relation in the form of  

 n
F K D    (3.46) 

Yang and Sun [17] extended that model for spur gears and came up with the 

following formula where they fit a curve to Goldsmith’s coefficient of restitution 

experimental data. 

 
 

( )2

6 (1 )

2 1 3

e

e

c K
D

c 





  
 

 (3.47) 

 0 3 6) .(
1 0 .0 2 2

e
c 


    (3.48) 

The above equation implies that the relative impact velocities at the instant of impact 

should be known in order to calculate the dissipative force values for forward 

dynamic analysis. The determination of the instantaneous penetration velocity is 

computationally expensive during a dynamical simulation. Considering this; a simple 
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damping model which was developed by Dubowsky and Freudenstein [28] is used in 

the gear dynamics study of Shing [18];  

 

 
2 2

2 1 1 2

2 1

2
b b

I r I r
c k

I I



  (3.49) 

The above equation assumes that damping coefficient is constant and time 

independent. In the above equation, ξ is damping ratio, rb1 and rb2 are base circle radii 

of the gears, k is the mesh stiffness value, I1 and I2 are the mass moments of inertia of 

the gears. 

  

  

  

 

  

  

  



48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 

 

 

CHAPTER 4 

 

 

4 FIXED CENTER DISTANCE GEAR DYNAMICS 

 

 

 

4.1 Introduction 

In this chapter, gear dynamics will be investigated for gear pairs operating at fixed 

center distance. Even though the utilization of multi body dynamics programs such 

as MSC-Adams make complex dynamical simulations possible, a theoretical 

investigation is necessary to be used as a comparison tool in order to check the 

validity of the developed multibody dynamics models. 

Two distinct MATLAB Simulink models have been developed for this purpose. The 

first model can be considered as a forward dynamics problem in which the torque 

values at the input and output shafts are known. The angular acceleration, angular 

velocity and angular displacements of the gears need to be computed for the given 

torques. In this problem the non-linearity induced by the backlash needs to be 

included in the model. 

The second developed model is an inverse dynamics model in which the input 

angular velocity is constant regardless of the excitation from the mesh stiffness and 

there is a constant resistance torque at the output shaft. In order to realize this 

motion, the torque at the input shaft needs to vary with respect to time. This model is 

used for the computation of dynamic factor for different input angular velocities and 

used for frequency response characteristics. 

4.2 Equations of Motion of a Gear Pair with Backlash-Forward Dynamics 

In the subsequent equations    and     are the mass moments of inertia of the gears, 

   is the driving motor torque,     is the resistance torque,    and    are the angular 

positions of the driving and driven gear and     and     are the base circle radii of the 

driving and driven gears respectively. 
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In Figure 4-1, a schematic of a gear pair that has an amount of backlash “b” is 

shown. 

 

Figure 4-1 Gear meshing 

Due to existence of backlash, there are three possible modes of operation depending 

on the location of the point of contact. If the driving gear rotates in the clock-wise 

direction and the driven gear rotates in the counter-clock wise direction, the contact 

is named as front side contact (Figure 4-2). On the contrary, if the driving gear 

rotates in the counter-clockwise direction while the driven gear rotates in the clock 

wise direction, back side contact occurs. When there is no contact among gear teeth, 

the gear pair is said to be in the separation region. 



51 

 

 

Figure 4-2 Illustration of front and back side contact 

In the absence of backlash, when a gear rotates by an angle  , the point of contact 

travels along the line of action by an amount of    . Consequently, the penetration of 

one gear tooth into the corresponding gear tooth can be expressed as 

               (4.1) 

For front side contact; 

                (4.2) 

Whereas for backside contact; 

                (4.3) 

When there is backlash, it can be incorporated into the equations as shown. 

 
1 1 2 2f b b

r r b      (4.4) 

 
2 2 1 1b b b

r r b      (4.5) 

The contact force on gear teeth can then be expressed as explained in chapter 2. 

         ̇  (4.6) 

The equations of motions can be written for the three cases as shown. 

 If               : front side contact occurs 
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             ̈  (4.7) 

             ̈  (4.8) 

 If                : back side contact occurs 

             ̈  (4.9) 

             ̈  (4.10) 

 If                  : separation occurs 

       ̈  (4.11) 

       ̈  (4.12) 

Recall that a complete mesh cycle of a gear pair includes single tooth and double 

tooth contact zones. This effect must also be taken into account while deriving the 

equations of motion. For the sake of clarity, Figure 3-3 is repeated here as Figure 

4-3. Regions CE and DF are double tooth contact regions; whereas region EF is the 

single tooth contact region.  

 

Figure 4-3 Rotational sign convention 
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During a dynamical simulation, the instantaneous position   is usually obtained by 

solving the coupled differential equations. By using Eqns. (3.18) and (3.21) the 

instantaneous pressure angle     can be found. Then this angle can be used to 

determine whether a given instant is a single tooth or double tooth contact region. 

Using the geometrical relations developed in chapter 2; 

 
1

a tan ( )
C

b

A C

r
   (4.13) 

 
1

a tan ( )
E

b

A E

r
   (4.14) 

 
1

a tan ( )
F

b

A F

r
   (4.15) 

 
1

a tan ( )
D

b

A D

r
   (4.16) 

 If           : double tooth zone 

 
1 2

( ) ( )
n

F k c k c        (4.17) 

 If           : single tooth zone 

 
1

( )
n

F k c    (4.18) 

 If           : double tooth zone 

 
1 2

( ) ( )
n

F k c k c        (4.19) 

It should be noted that the instantaneous pressure angle is a periodic function. After 

one complete mesh cycle, the point of contact returns to point C, where another tooth 

pair has started contact. This periodicity can be computed from 

 
11 11

m od( , )
C D

     (4.20) 

By using the above equations, and by utilizing the methods explained in Chapter 3, 

MATLAB-Simulink model can be constructed. 
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Figure 4-4 Double tooth contact region 

4.3 Development of MATLAB-Simulink and MSC-Adams models 

The same set of gear parameters given in Table 2 are used for comparing the 

developed dynamic model with the literature. There are two types of simulations 

performed, namely free oscillations and constant load. In the free oscillation mode, 

the driver gear has an initial angular velocity of 50 rad/s, while the driven gear is at 

rest. There is no external torque acting on the gears. Initially the gears are at their 

neutral position as depicted in Figure 4-1 which means that there is an initial 

backlash b.   

In the constant load mode, the pinion external torque is      Nm and the gear 

resistance torque is       Nm. The driver again has an initial angular velocity of 

50 rad/sec while the driven gear is at rest. 

Since value of the mesh stiffness is taken as constant in [18], the same simplification 

is made for comparison purposes. The average mesh stiffness is taken as 1.39 N/m 

and the damping coefficient is taken as 237.7 Ns/m.  

In Simulink, a variable step size ode45 (Dormand-Prince) solution scheme is used 

with a relative tolerance of 1x10
-8

. The minimum step size is set to 1x10
-6 

and the 
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maximum step size is set to 1x10
-4

. A screenshot of the developed model is available 

at Appendix C, Figure C1. 

The dynamic model with the same set of gear parameters was also constructed in a 

previous work of the author in the multi body dynamics environment MSC Adams to 

verify the validity of the contact parameters [29] and the numerical solution 

capability of MSC-Adams. The equations of motions do not need to be derived and 

solved in MSC-Adams. The user simply creates the gears in an external CAD 

program, imports them into MSC-Adams in parasolid (x.t) format, and assigns the 

revolute joints and the inertia values. The development of this model is significantly 

easier than a MATLAB-Simulink model. 

 

Figure 4-5 Screenshot of the MSC-Adams model [29] 

The interaction of gears is provided by 3D contact command in MSC Adams. This 

command measures the instantaneous penetration depth        and the 

instantaneous penetration depth velocity  ̇ between two solids and the applied force 

is a function of those variables as well as the material related constants such as 

stiffness, damping, force exponent and penetration depth at which the damping  

value reaches its maximum. 
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Figure 4-6 3D contact schematic in MSC Adams [30] 

  0
0; 0

c
F x x    (4.21) 

  0 m ax 0 0 0
( ) , ,1, , 0 ; ( ) 0

e

c
F K x x c xST E P x x d x x x       (4.22) 

In order to equate Eq. (4.18) and (4.22), the force exponent e is taken as 1, and the 

penetration depth d is chosen a very small value so that c becomes constant rapidly. 

Stiffness and damping values are the same as the MATLAB model. 

In MSC-Adams, simulation time is set as 0.02 seconds and number of steps is taken 

as 10000. Solver type is chosen as GSTIFF with a specified error of 1x10
-8

.The 

reason for selecting the step size so small is to be able to capture the transient 

dynamics accurately since the contact algorithm in MSC-Adams may sometimes 

yield inaccurate results due to the high stiffness of the system. The user should keep 

increasing the number of steps (or decrease the number of step size) until the 

response no longer varies with respect to the previous solution.  

4.4 Simulation Results for Forward Dynamics 

4.4.1 Free Oscillations 

In Figure 4-7 and Figure 4-8, successive impacts (front side and back side contacts) 

and the effect of backlash can be clearly seen. In the separation regions, the angular 

velocities of both the driver and the driven gears remain constant. As time passes, the 

frequency of impacts becomes lower due to damping effects. 
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Figure 4-7 Angular velocity of gear 1 for free oscillation - MATLAB - Simulink 

 

Figure 4-8 Angular velocity of gear 2 for free oscillation - MATLAB – Simulink 

In Figure 4-9, the figures on the left are extracted from the developed MSC-Adams 

model, whereas the figures on the right side are taken from [18]. As can be seen, the 

results of the MATLAB-Simulink, MSC-Adams and the Reference [18] are very 

close to each other for the free oscillation case. 

The difference between “Yang and Sun” and “Improved Model” taken from [18] is 

that “Yang and Sun” model considers only The Hertizan deformations whereas the 
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“Improved Model” uses the trapezoidal beam approximation method as was 

explained in Chapter 3. 

 

Figure 4-9 Angular velocities: MSC-Adams, Ref. [18] 

4.4.2 Constant Load 

Under a constant load, the driven gear is expected to have a constant acceleration and 

therefore a linear velocity if everything is rigid. The deviation from the straight line 

as can be observed in Figure 4-10, Figure 4-11 and Figure 4-12 is due to the contact 

deformations and backlash. 
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Figure 4-10 Angular velocity of gear 1for constant load - MATLAB - Simulink 

 

Figure 4-11 Angular velocity of gear 2 for constant load - MATLAB - Simulink 
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Figure 4-12 Angular velocities: MSC-Adams, Ref. [18] 

Similarly, the figures on the left are from the developed MSC-Adams model, 

whereas the figures on the right side are taken from Reference [18]. Comparing the 

results, one can conclude that the trends are again very similar however MSC-Adams 

exhibits slight numerical errors in the driver angular velocity. That is judged to be 

due to the numerical convergence issue in contact algorithm, however the difference 

from a straight line is not much. Therefore, it can be concluded that with the correct 

selected contact parameters and a small enough step size, MSC-Adams is able to 

capture the transient dynamics quite sufficiently. 
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4.5 Incorporation of Friction into Model 

Up to now, the equations of motions were derived for a gear pair excluding friction. 

However, there is always friction between mating teeth even if there is lubricant 

between them. Considering the possibility of front side contact, back side contact, 

double tooth, single tooth contact regions and forward or backward rotation, there are 

different modes of operation [18]. Obviously, the equations of motion are different 

for each mode. Furthermore, when the point of contact reaches the pitch point, the 

friction force changes its direction. The equations of motion will be written for each 

mode. For better visualization, free body diagrams of some of the modes are shown 

in the following figures. Note that the forces acting only on the pinion are shown for 

the sake of clarity. The forces on the gear are equal in magnitude but opposite in 

direction. 

 If  ̇ >0 (forward rotation) 

 Front side contact 

 Double tooth contact (Figure 4-13) 

 
1 1 1 1 2 1 1 1 1 2 2 1 1b b

T r P r P fP fP I        (4.23) 

 
2 2 1 2 2 2 1 1 2 2 2 2 2b b

T r P r P fP fP I        (4.24) 

 

Figure 4-13 Forces acting on the pinion-double tooth zone 
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 Single tooth contact 

If the point of contact is in approach region (i.e. before the pitch point-Figure 4-14) 

 
1 1 1 1 1 1 1 1b

T r P fP I     (4.25) 

 
2 2 1 2 1 1 2 2b

T r P fP I     (4.26) 

 

Figure 4-14 Forces acting on the pinion-single tooth zone before the pitch point 

If the point of contact is in recess region (i.e. after the pitch point, Figure 4-15) 

 
1 1 1 1 1 1 1 1b

T r P fP I     (4.27) 

 
2 2 1 2 1 1 2 2b

T r P fP I     (4.28) 

 

Figure 4-15 Forces acting on the pinion-single tooth zone after the pitch point 
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 Back side contact 

 Double tooth contact 

 
1 1 1 1 2 1 1 1 1 2 2 1 1b b

T r P r P fP fP I        (4.29) 

 
2 2 1 2 2 2 1 1 2 2 2 2 2b b

T r P r P fP fP I        (4.30) 

 Single tooth contact 

If the point of contact is in approach region (i.e. before the pitch point) 

 
1 1 1 1 1 2 1 1b

T r P fP I    (4.31) 

 
2 2 1 2 2 1 2 2 2b

T r P fP I   (4.32) 

If the point of contact is in recess region (i.e. after the pitch point) 

 
1 1 1 1 1 2 1 1b

T r P fP I    (4.33) 

 
2 2 1 2 1 2 2 2b

T r P fP I    (4.34) 

 If  ̇ <0 (backward rotation) 

 Front side contact 

 Double tooth contact  

 
1 1 1 1 2 1 1 1 1 2 2 1 1b b

T r P r P fP fP I        (4.35) 

 
2 2 1 2 2 2 2 1 2 1 2 2 2b b

T r P r P fP fP I        (4.36) 

 Single tooth contact 

If the point of contact is in approach region (i.e. before the pitch point) 

 
1 1 1 1 1 1 1 1b

T r P fP I    (4.37) 

 
2 1 1 2 1 1 2 2b

T r P fP I    (4.38) 

If the point of contact is in recess region (i.e. after the pitch point) 

 
1 1 1 1 1 1 1 1b

T r P fP I     (4.39) 
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2 1 1 2 1 1 2 2b

T r P fP I     (4.40) 

 

 Back side contact 

 Double tooth contact 

 
1 1 1 1 2 1 1 1 1 2 2 1 1b b

T r P r P fP fP I       (4.41) 

 
2 2 1 2 2 2 1 1 2 2 2 2 2b b

T r P r P fP fP I       (4.42) 

 Single tooth contact 

If the point of contact is in approach region (i.e. before the pitch point) 

 
1 1 1 1 1 2 1 1b

T r P fP I    (4.43) 

 
2 2 1 2 1 2 2 2b

T r P fP I    (4.44) 

If the point of contact is in recess region (i.e. after the pitch point) 

 
1 1 1 1 1 2 1 1b

T r P fP I    (4.45) 

 
2 2 1 2 1 2 2 2b

T r P fP I    (4.46) 

4.6 Equations of Motions for Inverse Dynamics 

These set of equations are used when the driver angular velocity is assumed to be 

constant regardless of the output gear. There is a constant resistance torque at the 

output gear. Consequently, pinion torque and driven gear angular velocity are 

variable. The solutions are realized for the steady state response, therefore initial 

angular velocity of the output gear is computed as driver angular velocity multiplied 

by the gear ratio. This method has been the more conventional method for 

investigating variation of dynamic loads and the effect of friction on gears in the 

absence of backlash. It is also used commonly in frequency domain analysis for 

determining dynamic factor with respect to pinion angular velocity. 

By referring to Figure 4-16, and using the notation given in [16], 
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Figure 4-16 Free body diagram of gears 

 
1 1 1 2 1 1 1 1 1 2 2 2 1 1

( )
b

T r P P f P f P I        (4.47) 

 
2 2 1 2 2 1 1 1 2 2 2 2 2 2

( )
b

T r P P f P f P I        (4.48) 

Since the angular velocity of the driver gear is constant, the right hand side of Eq. 

(4.47) becomes zero.  

 
1 1 1 2 11 1 1 12 2 2

( ) 0
b

T r P P f P f P       (4.49) 

In the above equations    and    are the individual gear loads in the double tooth 

contact zone. 

 
1 1 1 1 2 2

( )
b b

P k r r    (4.50) 

 
2 2 1 1 2 2

( )
b b

P k r r    (4.51) 

Note that if the point of contact is in single tooth contact zone    becomes zero. The 

single tooth contact zone also includes the pitch point transition. Pitch point is the 

point at which the relative sliding velocities of gear teeth become zero. The friction 

force changes its direction while passing through the pitch point.  

If the point of contact is in approach region and in single tooth zone, 

 
1 1 1 11 1 1

0
b

T r P f P    (4.52)  
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2 2 1 2 1 1 1 2 2b

T r P f P I     (4.53) 

If the point of contact is in recess region and in single tooth zone, 

 
1 1 1 11 1 1

0
b

T r P f P    (4.54) 

 
2 2 1 2 1 1 1 2 2b

T r P f P I     (4.55) 

At this point, the usual practice is to introduce a new variable called transmission 

error [16] as; 

 
1 1 2 2

( )
r b b

x r r    (4.56) 

This transformation enables reduction of the coupled differential equations of 

motions into a single second order differential equation in terms of transmission 

error. However, in the developed model, this transformation has not been performed 

and the solution is obtained in a fully coupled form. 

Due to the existence of lubrication between the gear teeth, the coefficient of friction 

is not constant and it is dependent on the relative velocities of gears. There are many 

gear friction models in the literature. One of models that has been widely accepted is 

the Benedict- Kelley friction model as given in AGMA 925-A03 [31]. 

According to this formulation, the instantaneous sliding and entraining velocities of 

the gear pairs should be known during the dynamic analysis. For the sake of 

coherence, the notation will be as explained until now although a slightly different 

notation has been used in AGMA 925-A03. 

Rolling velocities; 

 
1 1rp p p

V    (4.57) 

 
1 1rG G G

V    (4.58) 

Sliding velocity; 

 
1 1 1s rp rG

V V V   (4.59) 

Entraining velocity; 

 
1 1 1e rp rG

V V V   (4.60) 

The above equations are valid for the first gear pair in the mesh. For the second 

mesh; 
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2 1p p b

p    (4.61) 

 
2 1G G b

p    (4.62) 

Rolling velocities are; 

 
2 2rp p p

V    (4.63) 

 
2 2rG G G

V    (4.64) 

Consequently the sliding velocities and the entraining velocities can be computed as; 

 
2 2 2s rp rG

V V V   (4.65) 

 
2 2 2e rp rG

V V V   (4.66) 

Knowing the instantaneous sliding and entraining velocities; coefficient of friction of 

the ith pair as predicted by Benedict-Kelley [31] becomes; 

 
1 0 2

2 9 7 0 0
0 .0 1 2 7 lo g

i n

m i R a vg x

M s i e i

X w
C

V V





 

  
 

 (4.67) 

where 

M
 is dynamic viscosity of the oil at gear tooth temperature,   . (mPa*s) 

i
X



 is the load sharing factor for the ith pair. 

n
w  is the normal load per unit length, (N/mm) 

R a vg x
C is the surface roughness constant which can be computed from, 

 
1 .1 3

1 3
1 .1 3

R a vg x

a vg x

C
R

  


 (4.68) 

where        is the average surface roughness of the pinion and gear surfaces. This 

value is usually available in handbooks of machinery for different types of 

manufacturing methods. Note that in the simulations, , ,
R a vg x M i

C X


 are constants 

whereas , ,
n si e i

w V V should be calculated at each time step of the simulation. 

4.7 Simulation Results for Inverse Dynamics 

Dynamic load variation on a single tooth pair for a complete mesh cycle is plotted for 

different angular speeds of the driver gear in Figure 4-17 and Figure 4-19. The gear 

parameters used in the simulation are given in Table 3 
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Figure 4-17 Variation of dynamic load on pinion tooth for 2000 rpm pinion speed 

 

Figure 4-18 Variation of dynamic load on pinion tooth for 2000 rpm pinion speed, 

Ref. [16] 
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Figure 4-19 Variation of dynamic load on pinion tooth for 4000 rpm pinion speed 

 

Figure 4-20 Variation of dynamic load on pinion tooth for 4000 rpm pinion speed, 

Ref. [16] 
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The similarity of the plots verify the developed model in the MATLAB Simulink 

environment. Based on this model, the required motor torques in order to realize the 

given motion are also plotted. 

Table 3 Simulated gear parameters for inverse dynamics 

Module 3.175 mm 

Pressure angle  20° 

Face width  6.35 mm 

Pinion number of teeth 28 

Gear ratio 1 

Pinion inertia 5.234E-4 kgm
2 

Gear inertia 5.234E-4 kgm
2
 

 

The required motor torque in order to provide the given motion is plotted in Figure 

4-21 and Figure 4-22 for 2000 rpm and 4000 rpm pinion angular velocities 

respectively. 

 

Figure 4-21 Required motor torque for 2000 rpm 
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Figure 4-22 Required motor torque for 4000 rpm 

The jumps in the motor torques are due to the sudden sign change of the friction 

force at the pitch point. 

A screenshot of the developed Simulink model for inverse dynamics is available in 

Appendix C, Figure C2. 

The variation of coefficient of friction for different angular speeds is also 

investigated for the given gear pair. The load sharing ratio 
i

X


is taken as unity. 

      is taken as 0.40 micron for ground gear teeth, and finally dynamic viscosity 

m
  is taken as 100 mPas. 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

10

20

30

40

50

60

70

T
p
 (

N
m

)

pinion tooth roll angle (rad)

 

 

no friction

Benedict Kelley



72 

 

 

Figure 4-23 Friction coefficient for different driver angular velocities- for inverse 

dynamics 

As can be seen in Figure 4-23, the friction coefficient decreases as the angular 

velocity of the driver gear increases. 
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CHAPTER 5 

 

 

5 DYNAMIC MODELLING OF THE GUN TURRET ELEVATION 

AXIS 

 

 

 

In this chapter, the theory of gear dynamics which has been developed in chapters 2 

and 3 is applied to the elevation axis of a one man turret with target tracking 

capability. In order to observe the effect of backlash on the target tracking 

performance, several simulations are conducted for different backlash values in 

MATLAB Simulink. 

Then the system is linearized which assumes front side contact, average mesh 

stiffness and no backlash. A PID controller has been designed for the linear system 

and then the performance of the controller is investigated for the real non-linear time 

varying system. 

After tuning the PID parameters of the controller in MATLAB, these parameters are 

applied to the dynamic model in MSC Adams using Adams Controls toolkit. 

The compliant and hinged anti-backlash mechanism is then incorporated into MSC- 

Adams. The turret dynamic model is improved by inserting the torsional elevation 

driveline stiffness into the structure.  

The errors in target tracking and energy consumption in the motor are investigated 

for different anti-backlash characteristics such as spring preload and stiffness values 

using the complex and realistic dynamic model in MSC-Adams. 

5.1 Incorporation of Gear Dynamics to the Model 

The basic elements of the elevation axis of gun turret were introduced in chapter 2. 

In that chapter the gear train was treated as rigid therefore it was assumed to be 

acting as a simple speed reduction element. However, because of the reasons 
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explained in chapters 3 and 4, the gears also acts as springs and dampers within 

themselves. This brings another degree of freedom to the system as depicted in 

Figure 5-1. 

 

Figure 5-1 Schematic of the improved dynamic model 

In the above figure,    and    represent the gear mesh stiffness and gear mesh 

damping coefficients. With the utilization of gear dynamics theory developed in 

chapter 4, assuming no backlash for the gears, the equations of motions can be 

written as; 

    1 1m m m m m m m
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0

L L L L L L
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When the equations are written in matrix form; 
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Once the mass, stiffness and damping matrices are available, the system can be 

described fully by conversion to state space equations as was done in chapter 2. 
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Where the state vector is; 

 
1 2 1 2

T

m L m L
x         

 
 (5.8) 

If the load side angular velocity is selected as the output; 

  0 0 0 0 0 0 0 1C   (5.9) 

 0D   (5.10) 

5.2 The Improved Dynamic Model in Simulink 

The level of complexity of the developed dynamic models have been gradually 

increased throughout the thesis. Despite the dynamic model which is developed in 

section 5.1 includes the gear mesh stiffness and damping of the gear train; the model 

inherently includes two assumptions; namely no backlash and viscous damping in 

gears. However, backlash might be present if it is not mechanically eliminated. 

Furthermore, during high frequency oscillating movements, it may degrade the 

dynamic performance significantly 

The Simulink gear dynamics model developed in Section 4.2 included backlash and 

realistic friction models.  In order to complete the dynamic modeling, the driveline 

compliances in the gun turret are integrated to that Simulink model. The improved 
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and final model includes the driveline compliances, realistic gear friction and 

possible backlash. The screenshot of the developed final model can be seen in 

Appendix C, Figure C3. 

5.3 Construction of the Dynamic Model in MSC-Adams 

Construction of the turret dynamic model in MSC-Adams is relatively easy. The 

revolute joints and fixed joints should be assigned at the appropriate positions. Then 

the inertia of the rotating elements should be input. Care must be taken while 

specifying the inertia of the rotating elements because the inertia around the rotation 

axis might be different than the inertia with respect to center of mass. Hence the 

inertia should be input with respect to the rotation axis of the elements. All of the 

elevating parts’ inertia is lumped to rotor body and the rotation axis of the rotor is 

specified as the inertia reference point. 

 

Figure 5-2 Isometric view of the turret (turret hull top and front not shown for 

clarity) 
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Table 4 System parameters 

Np 14 

NG 408 

Module 1.5 mm 

Imotor 3E-4 kgm
2
 

Ipinion 3E-4 kgm
2 

Isector 0.3 kgm
2
 

Iload 49.7 kgm
2
 

Ideal center distance of the gear pair 316.5 mm 

Coordinates of the pinion center (mm) 0,0,0 

Coordinates of the rotor center (mm) 278.80, 149.81,0  

 

The individual representative bodies of the turret have been created in CATIA V5 

and then imported into MSC-Adams environment in parasolid (x.t) format. Isometric 

and side view of the developed turret model can be seen in Figure 5-3 and Figure 5-4 

respectively. 

 

Figure 5-3 Isometric view of the turret in MSC Adams 
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Figure 5-4 Side view of the elevation axis 

5.4 Contact friction in MSC-Adams 

Coulomb friction is a discontinuous function due to its nature. During a dynamical 

simulation, discontinuities, hence sudden changes in the system parameters, may 

cause the solutions to diverge. In order to prevent this, MSC-Adams uses a friction 

model [30] that is continuous and dependent on the slip velocities of the contacting 

surfaces. 

 

Figure 5-5 Friction model in MSC Adams [30] 
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In the above figure;    and    represent static and dynamic friction coefficients 

respectively. The transition from the static friction to dynamic friction coefficients 

are determined via the stiction transition velocity    and the dynamic transition 

velocity     By choosing    to   ; and    to    close to each other; the friction model 

converges to the regular Coulomb friction. For comparison purposes with MATLAB-

Simulink model, this method has been applied so that the friction is almost Coulomb 

friction at the expense of computation time. In other words, solution step size needs 

to be decreased in order to prevent divergence that stems from the Coulomb 

discontinuity. 

5.5 Integration of the anti-backlash mechanism 

Spring preloaded, hinged anti-backlash mechanism is ready to be incorporated into 

the dynamic model as depicted in Figure 5-6 and Figure 5-7. As explained in chapter 

1, the anti-backlash mechanism pushes the pinion gear into the sector gear by 

pivoting around the pivot axis. The motor chassis is fixed to the turret hull whereas 

the pivot bracket is able to pivot around the revolute joint.  

 

Figure 5-6 Isometric view of the integrated anti-backlash mechanism 
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Figure 5-7 Isometric view of the integrated anti-backlash mechanism in 

 MSC-Adams 

 

Figure 5-8 Side view of the anti-backlash mechanism 

The preloaded springs constantly pushes the pivot bracket and the pinion shaft into 

the sector gear as shown in Figure 5-8. 



81 

 

 

Figure 5-9 Free-body diagram of the anti-backlash mechanism 

5.6 Target Tracking in MATLAB - Simulink 

In order to track a given angular velocity command, the angular velocity of the load 

side is fed back into the system. This information is usually available from a 

gyroscope in a gun turret and the torque is regulated by means of a negative feedback 

controller. The sensor dynamics are neglected hence the system is a unity feedback 

system. The controller design was performed via MATLAB SISO toolbox. 

The four degree of freedom state space model developed in section 5.1 is used for 

control purposes. The open loop transfer function  ̇           is determined with 

the command ss2tf in MATLAB. 

For a 1 rad/s reference input; the requirements for the controller are, 

 No overshoot is allowed 

 Settling time to be less than 1.2 sec 

By moving one of the closed loop poles along the imaginary axis, the desired 

performance specifications are achieved via simple P controller. 
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Figure 5-10 SISO tool screenshot 

The designed P controller is also applied to the developed Simulink model. 

5.7 Target Tracking in MSC-Adams 

The MSC-Adams model which was constructed in section 5.3 is improved so that the 

MATLAB Simulink model and the MSC-Adams model can be compared. For this 

purpose, the control toolkit of MSC-Adams has been used. Instantaneous angular 

velocity of the rotor is fed back into the controller. The measured angular velocity is 

subtracted by the desired angular velocity which gives the tracking error. This error 

is then amplified by P controller which becomes the motor torque. This torque is the 

torque applied on the motor shaft.  

 

Figure 5-11 Target tracking in MSC-Adams 
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Figure 5-12 Controls toolkit interface in MSC-Adams 

5.8 Simulation Results 

5.8.1 Open Loop Frequency Domain Results in MATLAB-Simulink 

The state space models for 2 d.o.f. The frequency response of the dynamic models 

with different degrees of freedoms are plotted for comparison purposes. The two and 

three d.o.f. systems explained in chapter 2 are compared with the four degree of 

freedom model that was developed in section 5.1. For the transfer function,  
 ̇    

     
, as 

shown in Figure 5-13 , the 4 d.o.f. model depicts an extra resonance. Similarly, for 

the transfer function, 
 ̇    

     
, there is one extra anti-resonance and resonance as shown 

in Figure 5-14.  
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Figure 5-13 Bode plot of motor torque to load speed 

 

Figure 5-14 Bode plot of motor torque to motor speed 
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Figure 5-15 Bode plot of motor speed to load speed 

The transfer function 
 ̇    

 ̇    
 is also commonly used for determining the system's open 

loop characteristics. Figure 5-15 shows that when the mesh stiffness of the gear pair 

is included, the frequency at which the magnitude peak occurs is shifted towards left 

which means that the open loop system is more susceptible to resonance behavior 

when it is excited sinusoidally. Obviously, this amount of shift is dependent on 

stiffness and inertia matrices of the system and it can be significant for higher inertia 

and less stiff gun turrets.  

5.8.2 Open Loop Time Domain Results in MATLAB-Simulink 

With the developed models throughout the thesis, various types of simulations are 

performed. 

5.8.2.1 Effect of Gear Friction  

By using the methods developed in sections 4.5 and 4.6, the Simulink model can be 

used to compare the open loop responses of the gun turret for various friction 

models.  Under a constant motor torque of 10 Nm, three different friction modes are 

investigated. The first mode assumes that Coulomb friction is zero in the gear mesh. 
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The second model is the classical Coulomb friction model as explained in section 

4.5. Finally the last model is the more realistic Benedict-Kelley friction model as 

explained in section 4.6. 

 

Figure 5-16 Comparison of different friction models on load speed vs. time 

5.8.2.2 Effect of Drive-line Stiffness 

Since the motor shaft stiffness is determined and usually fixed by the company that 

manufactures the electrical drives, the designer does not have a performance 

improvement capability on that parameter. However, the designer of a gun turret can 

influence the stiffness of the load side. Although it may seem desirable to keep the 

load side as rigid as possible, practical limitations on weight, volume and cost 

usually give the designers a very narrow margin on gun turrets. Therefore, the goal 

for the mechanical designer is usually to reach the sufficient stiffness without 

hindering controllability, but still to comply with the limitations mentioned above. 

For a constant torque of 10 Nm, the system is simulated for different load side 

torsional stiffness (    values in order to see the effect of load side stiffness on the 

open loop response of the system. In the below figure, k1, k2 and k3 values stand for 
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Figure 5-17 Comparison of different load side stiffness values 

 (                                 Nm/rad) 

A softer driveline obviously causes the load side to have higher amplitude and lower 

frequency oscillations. It should be noted that if everything was rigid, one would 

expect a straight line for the load side angular velocity under a constant torque. 

5.8.3 Closed Loop Results in MATLAB-Simulink 

The simulation results for closed loop system are presented in this section. The 

purpose of the controller is to track a reference input speed. Different performance 

evaluations can be made in order to see the effect of different parameters on the 

overall system performance. One performance parameter is the tracking error which 

can be defines as the difference between the actual speed and the desired speed. This 

error is amplified by the P controller and becomes the torque applied by the motor. 
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Figure 5-18 Block diagram of the system 

5.8.3.1 Effect of Backlash on the Control System Performance 

The possible effects of backlash on gear dynamics were investigated in chapter 4 in a 

detailed manner. Possibility of front side contact, separation and back side contact 

causes the system to be piece-wise continuous and therefore non-linear. The effect of 

backlash, on the performance of the gun turret under a simple proportional controller 

is investigated. A possible backlash value of 0.02 mm in the gear pairs is simulated 

and compared with the no backlash case. The reference input is 1 rad/s. 

 

Figure 5-19 Load speed vs. time for zero and 0.02 mm backlash 
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Figure 5-20 Motor torque vs. time for zero and 0.02 mm backlash 

As can be easily seen from Figure 5-20; the existence of backlash yields undesirable 

transients at the load side for short time intervals. After the initial transients die out, 

the system tracks the given input accordingly. In order to compensate the transients, 

motor torque tries to provide the torque accordingly causing the non-smooth 

behavior. 

 When backlash is increased, the system can't track the given input reference speed 

and hence becomes unstable. For a backlash value of 0.1 mm, the instability of the 

load speed can be observed in Figure 5-21. 
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Figure 5-21 Load speed vs. time (b=0.0001 m) 

Obviously, the instability mentioned above is due to the simple controller design, 

which can be solved by more advanced control algorithms. However, the fact 

remains same: Backlash causes transient errors and if not compensated, may cause a 

system to be unstable. 

5.8.3.2 Effect of Gear Friction on the Control System Performance 

In order to investigate the effect of friction models on the closed loop system 

performance, two main performance attributes are studied. The first attribute is 

naturally the response of the load side speed under the same control parameters. The 

second performance characteristic that is studied is the instantaneous power 

consumption of the motor. Power consumption is computed as; 

 
m m

P T   (5.11) 

When the system is operating in a closed loop, the controller compensates the 

differences that arise due to the physical nature of the friction models. As can be seen 

in the figures below; the response differences between the two friction models is 

small. 
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Figure 5-22 Power consumption vs. time 

5.8.4 MSC-Adams Verifications 

Throughout the thesis, the dynamic modeling in the MATLAB and Simulink 

environment was in conjunction with the MSC-Adams models. The level of 

complexities of dynamic systems have increased in a parallel manner in both 

programs. In this sense the MSC Adams serves as a verification tool to the rigorously 

developed complex models in MATLAB. Once the verified MSC-Adams model is 

available, the user can continue to add any kind of additional complexity to the 

multi-body dynamics environment. 

A quick comparison of MSC Adams figures with the relevant MATLAB figures 

yields that the results are in agreement with each other for both open loop and closed 

loop systems.  
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Figure 5-23 MSC-Adams for no friction and Adams contact friction 

 

Figure 5-24 Comparison of different friction models in Matlab 

 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
a
d
 s

p
e
e
d
 (

ra
d
/s

e
c
)

Time(sec)

 

 
Coulomb friction

Benedict-Kelley

no friction



93 

 

 

Figure 5-25 MSC-Adams plot for different load side stiffness values 

 

Figure 5-26 Matlab plot for different load side stiffness values 
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Figure 5-27 Step response of load side in MSC-Adams  

 

Figure 5-28 Step response of load side in Matlab  
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Figure 5-29 Power consumption plot in MSC-Adams  

 

Figure 5-30 Power consumption plot in Matlab  
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5.8.5 Simulations with Anti-backlash Mechanism 

In order to see the effect of anti-backlash mechanism on the target tracking 

performance, a simulation scenario is constructed. A target is assumed to have a 

translational sinusoidal known velocity in the form of                   

  .The objective of the gunner is to track this known velocity. The distance to target 

is also assumed to be known. This data is usually obtained via laser range finders, 

which is a part of the sight systems. The reference angular velocity is computed by 

dividing the translational target velocity by the distance to target. This reference 

angular velocity behaves as the input velocity, coming from the sight system.  

 

Figure 5-31 Isometric view of MSC-Adams model 

The reference target velocity profile is given as in Figure 5-32.  
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Figure 5-32 Reference target velocity 

The system is simulated for different anti-backlash mechanism preload values. The 

tracking error and power consumption are plotted with respect to time. 

 

Figure 5-33 Tracking error vs. time for different anti-backlash mechanism preload 

values 
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Figure 5-34 Power consumption vs. time for different anti-backlash mechanism 

preload values 

Due to the sinusoidal nature of the input, increasing the preload has a variable effect 

on the tracking error as can be seen in Figure 5-33. In other words, for 600 N 

preload, tracking error is smaller compared to other preloads until 0.09 seconds. 

Then it stays larger until t = 0.15 seconds. This trend continues in a periodic manner. 

A similar trend can also be observed for the power consumption from the motor. 

Since increasing the preload increases the friction force in the gears, it also affects 

the consumed power. For the times, where the load side needs to accelerate, friction 

hinders the motion thereby increasing the power consumption of the motor to track 

the reference speed. However, for the deceleration period of the load, friction acts as 

a helping force thereby reducing the power consumption. The difference between the 

peaks for a given preload can be attributed to the dissipation of energy due to 

friction.  

One important observation regarding the power consumption is that there is an 

optimal value for the preload if the initial power transients are to be minimized. For 

the 1200 N preload, the power consumption starts and keeps going as smooth 

however for other preloads, there is an initial jump in the power.  
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CHAPTER 6 

 

 

6 CONCLUSION AND FUTURE WORK 

 

 

 

6.1 Conclusions 

The gun turrets on infantry fighting vehicles or main battle tanks must always have 

gear pairs in their driveline in order to satisfy the mobility requirements while 

keeping the motor sizes within reasonable limits. The ultimate goal of this thesis was 

to develop verified dynamic models of elevation axis of a gun turret. The developed 

model takes into account the driveline stiffnesses as well as the gear flexibilities and 

possible backlash. The utilized friction model for the gear mesh; that depends on 

lubricant viscosity, surface roughness and sliding velocities of gear teeth is believed 

to capture the complex dynamics more accurately. In the MSC-Adams model, a 

compliant adjustment type anti-backlash mechanism is simulated for the first time in 

the literature. 

An introduction to elevation axis of a gun turret and its components is presented in 

chapter 2. An elementary dynamic model is constructed with driveline compliances 

and damping. The equations of motions are obtained by using Lagrange method. 

Then, an independent model in which the load side is reflected to the motor side is 

developed. Equivalent stiffnesses and equivalent inertia concepts are explained. The 

importance of the drive-line stiffness and how it changes the resonance values for the 

open loop system is shown. The transfer functions of interest are obtained by the 

state space model and open loop Bode plots are constructed. This enables to get a 

rough idea about the open loop bandwidth and natural frequencies of the system. 

Anti-resonance and resonance phenomenon are demonstrated. It is mathematically 

shown the reflection to motor side approximation is valid only at relatively low-

moderate frequencies. It can be stated that when the system is excited at higher 

frequencies; the simplified and reflected model does not give accurate results. 
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In Chapter 3; mesh stiffness and damping characteristics of a gear pair are explained 

thoroughly. Gear deformations due to Hertzian, bending, shear and foundation 

deformations of a gear tooth are obtained as functions of the roll angle. The variation 

of these deflections as the point of contact travels along the line of action is 

investigated. To obtain Hertzian deformations, various cylinder to cylinder contact 

models are investigated for gear to gear contact. It is concluded that different 

Hertzian models yield significantly different results. It is also concluded that 

deflection due to Hertzian contact is small compared to the other deflections. The 

average combined mesh stiffness can be computed either from the ISO standard, a 

curve fit formulation or analytical functions derived from cantilever trapezoidal 

beam approximation of gear tooth. All of the formulations predict values with the 

same order of magnitude for the combined mesh stiffness. Considering the 

complexity of the involute gear profile, accurate estimation of mesh stiffness is an 

important work. It is observed that the trapezoidal beam approximation and the ISO 

standard predict similar values for the gear pair given/analyzed in the thesis. 

Chapter 4 starts with the derivation of the equations of motion for a fixed center 

distance gear pair. The piecewise continuous differential equations of motions that 

can capture the front side contact, possible backlash and backside contact are 

embedded into MATLAB-Simulink model. Then the same dynamic model for the 

fixed gear pair is constructed in MSC-Adams environment. Similarity of the results 

with the literature demonstrate the fact that gear dynamics can be captured accurately 

in MSC-Adams provided that the correct contact parameters and appropriate 

resolution in solution time step is selected. It was shown that dynamic modeling of 

friction in gears is very complicated and there are numerous modes that yield 

different equations of motion depending on the direction of the rotation, front-side or 

back-side contact and single or double tooth contact. The developed dynamic model 

includes these different scenarios. Furthermore, in order to compute the variation of 

dynamic force on a single gear tooth, a different dynamic model has been developed 

and verified with the existing literature. The most important conclusion of chapter 4 

is that possible backlash in gear drives may cause tooth separation due to gear teeth 

impact; which results in a non-smooth dynamic response. The chapter is ended by 

investigating the friction coefficient at different gear rotational speed values and it 



101 

 

was shown that as the gear speed is increased, the average friction coefficient 

decreases. 

In Chapter 5; the complete elevation axis of a one man medium caliber turret is 

modeled by using three different methods. The first method is the derived state space 

representation of the system that includes gear flexibilities but no backlash. The 

second model is the improved Simulink model explained in chapter 4 which can take 

into account backlash as well. The third method is the multibody dynamics model 

which is constructed in MSC-Adams. The compliant adjustment type anti-backlash 

mechanism is included in the final model. The results are divided into two major 

categories; namely open loop simulation results and closed loop simulation results. 

Firstly, effect of different friction models on the overall system response is 

investigated and different models predicted different load responses for a constant 

torque. It can be concluded that Coulomb friction model is sufficient enough as a 

friction model when the system is excited by a constant torque at low to moderate 

speeds. However, at high speed operation, the difference between Benedict-Kelley 

and Coulomb frictions become more dominant. Secondly the effect of drive-line 

stiffness on the load speed is investigated. It was concluded that, the more compliant 

system exhibits higher amplitude and lower frequency oscillations.  

MATLAB-SISO tool is used to design a proportional controller via root locus 

method for target tracking purposes. The required transfer functions are extracted 

from the four d.o.f. state space model. Adams Controls toolkit is used for controlling 

the gun velocity in MSC-Adams. For a step input, angular velocity of the gun for 

different backlash values are plotted. The effect of backlash, which is non-smooth 

transients on the gun velocity while tracking a target, is demonstrated for no backlash 

and backlash cases. The motor torque transient spikes are also shown when backlash 

is present. The simulation results with the realistic friction model and the simple 

Coulomb friction are plotted. The instantaneous power consumption of the motor 

shows slight differences for the two models. All of the simulations are also 

performed in MSC-Adams as a verification tool to the MATLAB models. Chapter 5 

is ended with the integration of the anti-backlash mechanism. The tracking error and 

power consumption from the motor under different anti-backlash preload values are 
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plotted. It is concluded that for a sinusoidal reference input, there exists a preload 

value which minimizes the power consumption transients.  

6.2 Future Work 

In the light of the conducted work, the backlash and its effect on system instability 

can be investigated in a more rigorous fashion by construction of the piecewise 

continuous state space models. The possible backlash values that make the plant 

instable can be determined. Furthermore, the controllability matrix can be 

constructed as a function of backlash in order to calculate the maximum allowable 

backlash value.  

The variable center distance gear pairs in the anti-backlash mechanism can also be 

constructed analytically. This analytical model should capture the complex contact 

phenomenon among gear pairs which does not follow the rules of conventional fixed 

center distance gear pair. 

The dynamic model can be enhanced by taking into account the flexibility of the gun 

barrel, and inclusion of stick slip like friction models for the bearings in the rotor. 

The radial flexibilities of the bearings can also be included in the dynamic model as 

well. 
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7 APPENDIX A 

 

 

ADAMS VIEW-FLEX SOLUTIONS 

 

 

Adams View-Flex module which is an add-on package of MSC-Adams enables 

flexible solutions under dynamic loads during a simulation. The package is 

compatible with most of the major commercial finite element packages such as 

MSC-Nastran, Ansys or Abaqus. The user creates a file called modal neutral file 

(mnf) in one of those programs. This file contains the mesh geometry and boundary 

conditions of the imported geometry.  

MSC-Nastran is used for creation of the mnf file in this study.The solid geometry 

that is intended to be flexible is then imported into Nastran for preprocessing. The 

pinion and sector gear are meshed with tetrahedral elements as shown in Figure A.1 

and Figure A.2 respectively. 

 

Figure A.1 Pinion meshing in MSC-Nastran 
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Figure A.2 Sector gear meshing in MSC-Nastran 

The cylindrical surfaces of the pinion and the cylindrical inner surface of the sector 

gear are taken as fixed and the boundary condition is applied as RBE2 elements. The 

prepared model is sent into MSC-Patran for creation of the mnf file. Following the 

generation of the mnf file, the rigid parts are replaced with the corresponding flexible 

parts in MSC Adams.  

Different mode shapes corresponding to the different modes can be inspected when 

the gears are modeled flexible. One example mode of the pinion shaft is given in 

Figure A.3 . 

 

Figure A.3 Flexible pinion in MSC Adams 



109 

 

 

Figure A.4 Screenshot of the flexible gears simulation 

Two different types of simulations are run for analyzing the differences between 

modeling the gears via Adams View Flex module and Adams contact. The first 

scenario is to apply a constant torque of 10 Nm to the pinion. The load side angular 

velocity is observed for flexible and normal gear pairs. The second simulation is 

applying sinusoidal torque to the pinion in the form of                      

 

Figure A.5 Comparison of Adams View Flex and Adams View for constant torque 
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Figure A.6 Comparison of Adams View Flex and Adams View for sinusoidal torque 

Since the differences between two models are small, the solution obtained by contact 

algorithm is used for the MSC-Adams solutions. Utilization of this module will be 

beneficial when the stresses in the gears are of concern. Under the realistic dynamic 

loading, the user can extract the predicted Von Mises stress values and design the 

gears accordingly.  
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8 APPENDIX B 

 

SAMPLE MATLAB CODES 

4 d.o.f. state space model 

clc 

  
clear all 

  
close all 

  
Im = 3*10^-4; 

  
I1 = 3*10^-4; 

  
I2 = 0.3; 

  
IL = 49.7; 

  
km = 3*10^4; 

  
kL = 2.5*10^7; 

  
cm = 0.3; 

  
cL = 10; 

  
m = 1.5*10^-3; 

  
N1 = 14; 

  
N2 = 408; 

  
phi = 20; 

  
Rb1 = m*N1/2*cosd(phi); 

  
Rb2 = m*N2/2*cosd(phi); 

  
kg = 5.5*10^8; 

  
cg = 2300; 

  
n = 408/14; 

  
M = [Im 0 0 0;0 I1 0 0;0 0 I2 0;0 0 0 IL]; 

  
C = [cm -cm 0 0;-cm (cm+cg*Rb1^2) -cg*Rb1*Rb2 0; 0 -cg*Rb1*Rb2 

cL+cg*Rb2^2 -cL;0 0 -cL cL]; 
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K = [km -km 0 0;-km (km+kg*Rb1^2) -kg*Rb1*Rb2 0;0 -kg*Rb1*Rb2 

kL+kg*Rb2^2 -kL;0 0 -kL kL]; 

  
Id = [1;0;0;0]; 

  
A = [zeros(4,4) eye(4,4);-M^-1*K -M^-1*C]; 

  
B = [zeros(4,1);M^-1*Id]; 

  
Css = [0 0 0 0 0 0 0 1]; 

  
D = 0; 

  
[b1,a1] = ss2tf(A,B,Css,D); 

  
G1 = tf(b1,a1); 

  
bode(G1,{0.1,50000}) 

  
Css = [0 0 0 0 1 0 0 0]; 

  
D = 0; 

  
[b2,a2] = ss2tf(A,B,Css,D); 

  
G2 = tf(b2,a2); 

  
figure(2) 

  
bode(n*G1/G2,{0.1,50000}) 

  
nat_freq = [1/(2*pi)]*sqrt(eig(M^-1*K)) 
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Calculation of gear tooth deformations 

clc 

  
clear all 

  
close all 

  
m=1.5*10^-3; 

  
Np= 14; 

  
Ng= 408; 

  
xp = 0.5; 

  
xg = -0.5; 

  
E = 2.068*10^11; 

  
G = 70*10^9; 

  
nu = 0.3; 

  
f = 0.0254; 

  
Fn = 1; 

  
phi_c = 20*(pi/180); 

  
a_c = 1*m; 

  
b_c = 1.25*m; 

  
% SAHIR ARIKAN NOTATION 

  
d = m*Np; 

  
D = m*Ng; 

  
do_s = m*Np+2*a_c;  

  
Do_s = m*Ng+2*a_c; 

  
dr_s = m*Np-2*b_c; 

  
Dr_s = m*Ng-2*b_c; 

  

  

  
d_b = m*Np*cos(phi_c); 

  
D_b = m*Ng*cos(phi_c); 
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pb = pi*m*cos(phi_c);   %base pitch 

  
do_m = do_s + 2*m*xp;  

  
Do_m = Do_s+ 2*m*xg; 

  
dr_m = do_m- 2*2.25*m;  

  
Dr_m = Do_m- 2*2.25*m;    

  
%disp(Do_m) 

  
%% PHD THESIS NOTATION 

  
%% base diameters 
rb1 = d_b/2; 

  
rb2 = D_b/2; 

  
%% tip diameters 
ra1 = do_m/2; 

  
ra2 = Do_m/2; 

  
%% root diameters 
rd1 = dr_m/2; 

  
rd2 = Dr_m/2; 

  
%% CONTACT LOCATIONS 
AB = (rb1+rb2)*tan(phi_c); 

  
AC = AB -  sqrt(ra2^2-rb2^2); 

  
AD = sqrt(ra1^2-rb1^2); 

  
AE = AD - pb; 

  
AF = AC + pb; 

  
CE = AE - AC; 

  

  

  
        if (dr_m < d_b)  

     
  hb1 = rb1 - rd1; 

   
  ha1 = ra1 - rd1;  

   
        else 

     
  hb1 = 0; 
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  ha1 = ra1-rd1;    

  
        end 

  
        if (Dr_m < D_b)  

     
  hb2 = rb2 - rd2; 

   
  ha2 = ra2 - rd2;  

   
        else 

    
  hb2 = 0; 

   
  ha2 = ra2-rd2;      

  
        end 

  
rp1 = d/2; 

  
rp2 = D/2; 

  
%% CIRCULAR TOOTH THICKNESS AT PITCH DIAMETER 

  
tp1 = (pi*m/2)+2*m*xp*tan(phi_c); 

  
tp2 = (pi*m/2)+2*m*xg*tan(phi_c); 

  
%% ROTATION ANGLES ALPHAS 

  
phi_m_C = atan(AC/rb1); 

  
alfa_11_C = tan(phi_m_C); 

  
phi_m_E = atan(AE/rb1); 

  
alfa_11_E = tan(phi_m_E); 

  
theta_1_E = alfa_11_E-AC/rb1; 

  
phi_m_F = atan(AF/rb1); 

  
alfa_11_F = tan(phi_m_F); 

  
theta_1_F = alfa_11_F-AC/rb1; 

  
phi_m_D = acos(rb1/ra1); 

  
alfa_11_D = tan(phi_m_D); 

  
theta_1_D = alfa_11_D-AC/rb1; 
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n = theta_1_D/500; 

  
theta1 = 0:0.001:theta_1_D; 

  
alfa11 = theta1+AC/rb1; 

  
alfa12 = alfa11 + pb/rb1; 

  
alfa21 = (AB-alfa11*rb1)/rb2; 

  
alfa22 = alfa21-pb/rb2; 

  
%% CALCULATION OF HCJ 

  

  

  
phi_m11 = atan(alfa11); 

  
gama_m11 = 0.5*(tp1/rp1+2*((tan(phi_c)-phi_c)-(tan(phi_m11)-

phi_m11))); 

  
phi_m12 = atan(alfa12); 

  
gama_m12 = 0.5*(tp1/rp1+2*((tan(phi_c)-phi_c)-(tan(phi_m12)-

phi_m12))); 

  
phi_m21 = atan(alfa21); 

  
gama_m21 = 0.5*(tp2/rp2+2*((tan(phi_c)-phi_c)-(tan(phi_m21)-

phi_m21))); 

  
phi_m22 = atan(alfa22); 

  
gama_m22 = 0.5*(tp2/rp2+2*((tan(phi_c)-phi_c)-(tan(phi_m22)-

phi_m22))); 

  

  

  

  
hc11 = (cos(gama_m11)./cos(atan(alfa11))-1)*rb1+hb1; 

  
hc12 = (cos(gama_m12)./cos(phi_m12)-1)*rb1+hb1; 

  
if rb2<rd2 

  
hc21 = ((rb2*cos(gama_m21)./cos(phi_m21))-rd2); 

  
else   

  
hc21 = (cos(gama_m21)./cos(phi_m21)-1)*rb2+hb2; 

  
end 
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hc22 = (cos(gama_m22)./cos(atan(alfa22))-1)*rb2+hb2; 

  
phi_ded = acos(rb2/rd2); 
dummy = tan(phi_ded)-phi_ded; 

  
%% CALCULATION OF TBJ TAJ W 

  

  
tb1 = 3.466*10^-3; 

  
tb2 = 3.523*10^-3; 

  
beta1 = acos(rb1/ra1); 

  
beta2 = acos(rb2/ra2); 

  
involute_phi_c = tan(phi_c)-phi_c; 

  
involute_beta1 = tan(beta1)-beta1; 

  
involute_beta2 = tan(beta2)-beta2; 

  
ta1 = ra1*(tp1/rp1+2*(involute_phi_c-involute_beta1)); 

  
ta2 = ra2*(tp2/rp2+2*(involute_phi_c-involute_beta2)); 

  

  

  
w1 = (ha1*tb1-hb1*ta1)/(tb1-ta1); 

  
w2 = (ha2*tb2-hb2*ta2)/(tb2-ta2); 

  
% DEFLECTION CALCUATIONS 

  

  

  
%% SHEAR DEFORMATION 

  
delta_shear11 = ((1.2*Fn*cos(phi_c)^2)/(G*f*tb1))*(hb1+(w1-

hb1)*log((w1-hb1)./(w1-hc11))); 

  
delta_shear12 = ((1.2*Fn*cos(phi_c)^2)/(G*f*tb1))*(hb1+(w1-

hb1)*log((w1-hb1)./(w1-hc12))); 

  

  

  
delta_shear21 = ((1.2*Fn*cos(phi_c)^2)/(G*f*tb2))*(hb2+(w2-

hb2)*log((w2-hb2)./(w2-hc21))); 
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delta_shear22 = ((1.2*Fn*cos(phi_c)^2)/(G*f*tb2))*(hb2+(w2-

hb2)*log((w2-hb2)./(w2-hc22))); 

  

 
%% HERTZIAN DEFORMATION 

  
        delta_h = (4*Fn*(1-nu^2))/(pi*E*f); 

  
        delta_h_m = zeros(length(theta1),1); 

  
        delta_h1 = delta_h+delta_h_m; 

         
        delta_h2 = delta_h+delta_h_m; 

 

  
%% BENDING BP 

  
        FIRST_TERM11 = 12*Fn*(cos(phi_c)^2)*hb1*(hc11.^2+hb1^2/3-

hc11*hb1)/(E*f*tb1^3); 

  

                
        FIRST_TERM21 = 12*Fn*(cos(phi_c)^2)*hb2*(hc21.^2+hb2^2/3-

hc21*hb2)/(E*f*tb2^3); 

         

 
        SECOND_TERM11 = (6*Fn*(cos(phi_c)^2)*(w1-

hb1)^3)/(E*f*tb1^3); 

         

         
        SECOND_TERM21 = (6*Fn*(cos(phi_c)^2)*(w2-

hb2)^3)/(E*f*tb2^3); 

         

 
        THIRD_TERM11  = ((w1-hc11)/(w1-hb1)).*(4-(w1-hc11)/(w1-

hb1))-2*log((w1-hc11)/(w1-hb1))-3; 

         

         
        THIRD_TERM21  = ((w2-hc21)/(w2-hb2)).*(4-(w2-hc21)/(w2-

hb2))-2*log((w2-hc21)/(w2-hb2))-3; 

         

       

  
delta_bp11 = FIRST_TERM11+SECOND_TERM11*THIRD_TERM11; 

  

 
delta_bp21 = FIRST_TERM21+SECOND_TERM21*THIRD_TERM21; 

 

  
%% BENDING BN 

  
constant1=(3*Fn*cos(phi_c)*sin(phi_c))/(E*f*tb1^2); 

  
constant2=(3*Fn*cos(phi_c)*sin(phi_c))/(E*f*tb2^2); 
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FIRST_TERMBN11 = hb1*(hb1-2*hc11).*(w1-hc11)/(w1-hb1); 

  
FIRST_TERMBN12 = hb1*(hb1-2*hc12).*(w1-hc12)/(w1-hb1); 

  
FIRST_TERMBN21 = hb2*(hb2-2*hc21).*(w2-hc21)/(w2-hb2); 

  
FIRST_TERMBN22 = hb2*(hb2-2*hc22).*(w2-hc22)/(w2-hb2); 

  
SECOND_TERMBN11 = (hc11-hb1).^2; 

  
SECOND_TERMBN12 = (hc12-hb1).^2; 

  
SECOND_TERMBN21 = (hc21-hb2).^2; 

  
SECOND_TERMBN22 = (hc22-hb2).^2; 

  
delta_bn11 = constant1*(FIRST_TERMBN11-SECOND_TERMBN11); 

  
delta_bn12 = constant1*(FIRST_TERMBN12-SECOND_TERMBN12); 

  
delta_bn21 = constant2*(FIRST_TERMBN21-SECOND_TERMBN21); 

  
delta_bn22 = constant2*(FIRST_TERMBN22-SECOND_TERMBN22); 

  
%% FOUNDATION DEFLECTION 

  
delta_f11 = (24*Fn*cos(phi_c)^2*hc11.^2)/(pi*E*f*tb1^2); 

  
delta_f12 = (24*Fn*cos(phi_c)^2*hc12.^2)/(pi*E*f*tb1^2); 

  
delta_f21 = (24*Fn*cos(phi_c)^2*hc21.^2)/(pi*E*f*tb2^2); 

  
delta_f22 = (24*Fn*cos(phi_c)^2*hc22.^2)/(pi*E*f*tb2^2); 

  

  

  
delta_total_11 = delta_f11+delta_bn11+delta_bp11+delta_shear11+ 

delta_h2'; 

  
delta_total_21 = delta_f21+delta_bn21+delta_bp21+delta_shear21+ 

delta_h2'; 

  
k_11 = Fn./delta_total_11; 

  
k_21 = Fn./delta_total_21; 

  
hold on 
grid on 
 plot(theta1,delta_f11,'c') 
 plot(theta1,delta_shear11,'r') 
 plot(theta1,delta_bn11,'b') 
 plot(theta1,delta_bp11) 
 plot(theta1,delta_h,'g') 



120 

 

  
plot(theta1,delta_total_11,'LineWidth',2) 

  
xlabel('\theta1(rad)') 
ylabel('\delta_1_1') 

  
figure(2) 
hold on 
grid on 

  
 plot(theta1,delta_f21,'c','LineWidth',2) 
 plot(theta1,delta_shear21,'r') 
  plot(theta1,delta_bn21,'b') 
  plot(theta1,delta_bp21) 
  plot(theta1,delta_h,'g') 
%  
 plot(theta1,delta_total_21,'LineWidth',2) 

  
xlabel('\theta1(rad)') 
ylabel('k_2_1') 

  
 jE = floor(theta_1_E/0.001); 
 jF = floor(theta_1_F/0.001); 

  
for i=1:jE; 

     
    theta_1_CE_ar(i) = theta1(i); 

     
    k_11dt(i) = k_11(i); 

     
    k_21dt(i) = k_21(i); 

     
    k_12dt(i) = k_11(i+jF); 

     
    k_22dt(i) = k_21(i+jF); 

     
    kdt(i) =  (k_11dt(i)* k_21dt(i))/(k_11dt(i)+k_21dt(i))+ ... 
        (k_12dt(i)*k_22dt(i))/(k_12dt(i)+k_22dt(i)); 

     

     

     
    delta_shear11dt(i) = delta_shear11(i); 
    delta_shear12dt(i) = delta_shear11(i+jF); 

         
end 

  
delta_shear1dt = delta_shear11dt+delta_shear12dt; 

  
 figure(3) 
hold on 
grid on 

  
delta11_dt = Fn./k_11dt; 
delta12_dt = Fn./k_12dt; 
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delta1 = delta11_dt+delta12_dt; 

  
delta21_dt = Fn./k_21dt; 
delta22_dt = Fn./k_22dt; 

  
delta2 = delta21_dt+delta22_dt; 

  

  

  
plot( theta1,k_11,'b') 
plot(theta1,k_21,'r') 

  
xlabel('\theta1(rad)') 
ylabel('Stiffness') 

  

 

  
for i=1:jF-jE+1 

     
    theta_1_EF_ar(i) = theta1(i+jE); 

     
    k_11st(i) = k_11(i+jE); 

     
    k_21st(i) = k_21(i+jE); 

     

     
    kst(i) = (k_11st(i)*k_21st(i))/(k_11st(i)+k_21st(i)); 

     
    delta_bp11_st(i) = delta_bp11(i+jE); 

     
    delta_f11_st(i) = delta_f11(i+jE); 

     
    delta_shear11_st(i) = delta_shear11(i+jE); 

     
end 

 
k_eq = [kdt kst]; 

  
theta1_eq = 0:0.001:theta_1_F; 

  
figure(4) 
hold on 
grid on 

  
plot(theta1_eq,k_eq,'LineWidth',2) 
xlabel('\theta_1(rad)') 
ylabel('k_e_q') 
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 9 APPENDIX C 

 

SIMULINK SCREENSHOTS 

 

 

Figure C.1 Simulink model cited in section 4.3 
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Figure C.2 Simulink model cited in section 4.6 
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Figure C.3 Simulink model cited in section 5.2 

 




