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ABSTRACT 

BURIED AND SURFACE MINE DETECTION FROM 

THERMAL IMAGE TIME SERIES 

 

 

KAYA, Serkan 

M.Sc., Department of Geodetic and Geographic Information Technologies 

         Supervisor: Assoc. Prof. Dr. Uğur Murat LELOĞLU 

 

 

May 2016, 117 pages 

 

 

Since many countries suffer from existence of landmines in their territory, there is a 

growing demand for reliable landmine detection systems. Most of these systems require 

an operator to enter into the minefield. However, infrared sensor methods can be used 

remotely; hence, they do not put lives at risk during the search operation. In this thesis, a 

new approach to the infrared sensor method, which gives promising results, is presented. 

Buried landmines generate specific spatiotemporal thermal image patterns on the 

surface. Noise-reduced thermal image time series were used after preprocessing with a 

circularly symmetric filter different from other studies. Supervised classification 

methods (Support Vector Machine, Mahalanobis Discriminant Analysis, Quadratic 

Discriminant Analysis, and K-Nearest Neighbor) are applied on the filtered image 

series. 

Proposed method gives promising solutions that were verified with enlarged data sets. 

Different parameters (humidity, burial depths, training sample sizes, time intervals, 

seasons, spatial filter's sizes etc.) influences on the solutions were examined. To find the 
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most useful time intervals, a 2-D heat transfer simulation was performed. Particularly 

using image series within nighttime, sunrise, and sunset times allow finding four-

centimeter deep plastic and 6.8-centimeter deep metal practice landmines with the 

proposed method. The best solutions were got with the 50-pixel outer diameter spatial 

filter and the 24-sample on this diameter. Detection rates were calculated higher in 

quasi-humid soil than dry soil. 

Keywords: Thermal Infrared Imaging, Landmine Detection, Spatiotemporal Pattern 

Recognition, Supervised Classification, Thermal Simulation 
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ÖZ 

ISIL KIZILÖTESİ GÖRÜNTÜ SERİLERİ İLE GÖMÜLÜ VE YÜZEY 

MAYINLARININ TESPİTİ 

 

 

KAYA, Serkan 

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Sistemleri Bölümü 

                      Tez Yöneticisi: Doç. Dr. Uğur Murat LELOĞLU 

 

 

Mayıs 2016, 117 Sayfa 

 

 

Birçok ülke topraklarındaki kara mayınlarının varlığından mağdur durumda olduğundan, 

güvenilir mayın tespit sistemlerine olan talep giderek artmaktadır. Bu sistemlerin çoğu 

operatörün mayın tarlasına girmesini gerektirmektedir. Oysaki kızıl ötesi sensör 

sistemleri uzaktan kullanılabilmektedir. Böylelikle kimsenin hayatı, arama operasyonu 

sırasında, bu yöntemler sayesinde riske atılmamaktadır. Bu tezde, umut verici sonuçlar 

veren, kızıl ötesi sensör yöntemine yeni bir yaklaşım sunulmaktadır.   

Gömülü mayınlar toprak yüzeyinde farklı ısıl görüntüler oluşturur. Bu farklar görüntü 

serilerinde görülebilir. Diğer çalışmalardan farklı olarak, gürültüsü azaltıldıktan sonra 

dairesel simetrik süzgeç ile ön işlemeye tabi tutulmuş görüntü serileri kullanılmıştır. 

Denetimli sınıflandırma yöntemleri (Destekçi Vektör Makinesi, Mahalanobis 

Diskriminant Analizi, İkinci Dereceden Diskriminant Analizi ve K-En Yakın Komşu) 

filtrelenmiş görüntü serilerine uygulanmıştır. 
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Önerilen yöntem, genişletilmiş veri setleriyle kanıtlandığı gibi, umut verici sonuçlar 

vermiştir. Farklı parametrelerin (toprağın nemi, gömülme derinlikleri, eğitim setti 

büyüklükleri, zaman aralıkları, mevsim, uzamsal süzgeçin ölçüleri vb.) sonuçlar 

üzerinde ki etkileri incelenmiştir.  En uygun zaman aralıklarını tespit edebilmek için iki 

boyutlu ısı transfer simülasyonu uygulanmıştır. Özellikle gece, gün doğumu ve gün 

batımı saatlerini kapsayan görüntü serileri, dört santimetre derinlikte plastik ve 6.8 

santimetre derinlikte metal eğitim mayınlarının önerilen yöntemle bulunmasına imkan 

vermiştir. En iyi sonuçlar 50-piksel dış çaplı ve 24-örnekli uzamsal süzgeç ile alınmıştır. 

Tespit oranları nemli toprakta kuru toprağa oranla daha yüksek çıkmıştır. 

Anahtar Kelimeler: Kızıl Ötesi Görüntüleme, Kara Mayın Tespiti, Zaman-Uzamsal 

Örüntü Tanıma, Denetimli Sınıflandırma, Isıl Simülasyon  
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CHAPTER 1 

CHAPTERS 

1. INTRODUCTION 

 

 

1.1 What are Landmines? 

Since landmines are cheap and easy-to-place lethal passive weapons, they are used 

frequently all over the world. Most of them have simple working mechanisms and after 

placing them, there is no need for maintenance. In addition, landmines are much cheaper 

than having personal that can produce same effect as landmines can do on targets. 

Because of these advantages, there has been great demand on landmines. Thus, many 

counties have been manufacturing landmines as suppliers, and other country or groups 

have been purchasing as users. Therefore, there are a huge number of landmines to be 

detected and cleaned. 

The landmines’ actual number is not known [1] and it will not be known either. Most 

probably, this number is getting higher and higher every day. Therefore real number of 

landmines actually is not important at all [2], the important thing is antipersonnel 

landmines cause hundreds of civilian casualties every year, in addition to preventing use 

of these areas for agriculture or other purposes. 

A landmine contains explosives that can be triggered by people, vehicles, or animals via 

a mechanism [3]. The landmines can be divided mainly into two categories according to 

their targets: antitank landmines and antipersonnel landmines. The targets of antitank 

landmines are mainly military vehicles, and those of antipersonnel landmines are 

civilian or military people. Antipersonnel landmines can also be divided into two 



 2 

categories according to materials that they consist of, namely, metal antipersonnel 

landmines and plastic antipersonnel landmines. Antitank landmines mostly have metal 

shell and they contain quite large amount of explosives. Figure 1 shows an M15 practice 

antitank landmine. On the other hand, metal antipersonnel landmines mostly consist of 

fragmentation, and other metal contents. An M16 metal practice antipersonnel landmine 

is shown in Figure 2. Because of high amount of metallic content, antitank and metal 

antipersonnel landmines can be found by metal/conventional detectors. However, metal 

detectors have to be operated by an expert while detecting landmines. Lastly, 

antipersonnel plastic landmines have plastic shells and contain mainly explosives. An 

example plastic practice antipersonnel landmine is shown in Figure 3. The dielectric 

properties of plastic and soil are similar to each other and hence this makes detection of 

them virtually impossible using this technique. Therefore, metal detectors may not find a 

plastic landmine that contains little or no metal content [3], [4]. The plastic landmines 

may be masked by their background as well. 

 

Figure 1  M15 practice antitank landmine 

 

Figure 2  M16 metal practice antipersonnel landmine 
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Figure 3  M14 plastic practice antipersonnel landmine 

1.2 Landmine Detection and Minefield Cleaning 

Approximately US $1.093 billion of fund was used [5] only in 2013 in order to reduce 

or lessen negative effects of landmines. A landmine's cost of production is around $3, 

but disposal of the same mine costs between $300 -$1000. Thus, landmines cause a huge 

cost, not only for placed countries, but also for international community as well. A huge 

number of land mines have been cleaned up to now, but a few multiple of that number 

have been planted in the same time interval. In addition to the clearance cost, there are 

human costs, care cost [6]. Because of these reasons, mine detection has become a very 

important requirement. 

The principle of Infrared Red (IR) radiation is that landmines create an observable 

temperature changes on the soil surface because they have different thermal properties 

than other materials in the same medium [7]. Therefore, the landmines might be detected 

with accurate measurements, good modeling of the physical process and a collection of 

image processing and pattern recognition techniques. The proposed method, which is 

given in this thesis, depends on passive IR. Detailed explanation of the method is 

presented in Section 2. 

1.3 Problem Statement 

There are many detection systems but none of them is reliable enough to detect 

landmines without missing a fraction. The United Nations landmine clearance standard 

for detection rate is 99.6% for humanitarian demining [8]. The standard is too high and 
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essential. In addition to reaching this standard, safety during mine detection and cleaning 

is another necessity. The problem is that most of the methods need an operator, who 

detects the landmines in situ, or a tool, which is needed to detect landmines, or 

frequently both, to enter to the minefield. As mentioned before, neither people’s life, nor 

landmine detection tools are cheaper than a landmine.  

In addition to the necessity of detecting landmines without entering minefield, the 

minefield itself must be detected in the first place. Many landmines have been not 

marked after being planted. The minefields, which are built either by military personnel 

or civilian, most of the times are not signed because their aim is either to damage 

counterparties or to notice their approach in advance in order to be ready for a counter 

operation. Border minefields are signed intentionally to deter trespassers. 

In order to detect landmines, minefield itself has to be found in the first place. Following 

that, all mines should be detected without putting lives at risk. Therefore, an automatic 

safe landmine detection system that does not need an operator or any detection tools to 

enter the minefield is needed.  

1.4 Advantages of the Proposed Method 

To sum up, methods are needed to detect, first, the minefield’s approximate location by 

finding one or more landmines, because most of the time the minefields locations are not 

known as mentioned previous section. Then detecting the landmines in the minefield is 

necessary to clean the entire minefield. In addition, detected landmines should be 

classified according to their types, like antitank, metal, and plastic landmines by a 

method. 

After detection of landmines location with proposed method, an operator has to enter the 

minefield to clean the landmines. The operator has to use detectors to find landmines in 

their known location. Metallic landmines can be found easier than plastic landmines 

with these detectors. Therefore, it is important to distinguish landmines’ content. In 

addition, metal antipersonnel landmines give much more harm than plastic antipersonnel 
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Thus firstly metal landmines should be found, which also means finding minefield most 

of the times, after that plastic landmines should be found. Therefore, it is important to 

determine landmines’ types in advance to be able to plan a safe and effective cleaning 

operation. 

1.5 Contribution of the Thesis 

To detect landmine types and their location in the minefield without entering it gives the 

cleaning personnel the opportunity to estimate the minefield location, and the minefield 

map that shows the landmine placement pattern. After getting this information about 

landmines, cleaning of minefield would be much safer and faster when compared to 

conventional methods. 

This thesis aims to contribute automated landmine detection systems that rely on thermal 

cameras, which can be installed on the borders of the area obliquely or can be carried on 

board of an unmanned air vehicle. Different from earlier work, proposed method 

consists of a two-step algorithm for detection landmines in time series images. At the 

first step, a specific spatial filter is applied on the image series and the filtered image 

series is classified with various supervised classifiers. At the second step, the classified 

pixels are combined using connectivity analysis to detect mines. Hence, the algorithm 

described not only detects mines but also classifies them into mine types. The method is 

strictly image-based and does not depend on any thermal model; however, a thermal 

model is also established to verify various assumptions. The classification and detection 

performances of the algorithm are shown on multiple sets of real data. 
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CHAPTER 2 

 

 

2. BACKGROUND INFORMATION AND LITERATURE REVIEW 

 

 

2.1 Heat Flow on the Soil Surface 

IR cameras can detect the radiated energy from the soil surface [9], [10]. The 

atmosphere and the soil thermal emissivity modify the energy to some extend recorded 

by a sensor. The atmosphere reduces the energy illuminating at the ground surface, and 

it adds scattered path radiance to the signal detected by the IR sensors [11]. If there were 

no atmosphere, the measured signal by the IR sensor would be a function of the energy 

from the sun, reflectance, and emission properties of the ground [12]. Direct sunlight, 

aerosol-scattered sunlight, thermal emissions from the air reflected by the ground, and 

thermal emissions from the soil are the contributors to a thermal image of the ground. 

These mentioned components are illustrated in Figure 4 [13]. Since the illumination by 

direct light is not uniform due to the roughness of the surface and shadows, IR clutter is 

formed on the surface. This is not noise, but an unwanted slowly changing contribution 

to the desired signal and hence it makes detection more difficult. The total radiance (   ) 

received by the IR sensor is given in the formula:  

where   is the surface reflectivity in the thermal band,   is the surface emissivity,       

is the radiance because of the sunlight, and       is the radiance because of the sunlight 

scattered by particles and molecules in the earth's atmosphere and thermal radiation from 

the warm atmosphere. Lastly    is the surface thermal radiance. 

The surface emissivity for an opaque body is         . If we make the definition 

                                      (1) 
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then     is turns to be  

Note that emissivity is around 0.95 for most natural materials and hence reflectance is 

very small. Equation (3) is presented as a well-known problem in IR detection by 

Sendur and Baertlein [13]. 

 

Figure 4  Contributors to a thermal image 

2.2 Karhunen-Loève Transformation (KLT) 

There are various algorithms in order to select features or combination of features. One 

of the most commonly encountered algorithms in remote sensing is Karhunen-Loève, 

Hotelling, or in other saying, the Principal Components, Transform. The aim of the 

                              (2) 

                              . (3) 
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transformation is to create the most discriminating band combinations and discard the 

rest of data, so that feature reduction can be carried out by transforming to the new set of 

axes that are uncorrelated [12]. This reduction can also be possible for image series, 

because images series have high degree of redundant information in their raw form. This 

reduction enables storing data efficiently as well [14]. 

Figure 5 illustrates hypothetical two dimensional, two class data illustrating lack of 

separability in original data but separability along the principal component. Black axes 

represent the original coordinate system and red axes represent principal axes. The 

transformation allows representing the multidimensional data in a lower dimensional 

space. Therefore, KLT reduces the space and hence the computational complexity 

during the classification process [15].  

 

Figure 5  Hypothetical two-dimensional data' KLT transformation  

The time-varying four-set of image sequences IR data used in this study consist of 48, 

96, 39, and 96 images respectively. Therefore, data sets need to be reduced for 

minimizing the time of process and allowing programs process the data. 
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2.3 Classification 

The aim of image classification is to sort all pixel vectors into PLs and soil 

automatically. Normally, multispectral data are used to carry out the classification, but 

thermal image time series are used in this study [11]. Every image in the image cube can 

be thought as a different spectral band.  

2.4 Supervised Classification 

Training set can be named as representative signature or interpretation key that describes 

the spectral attributes for each feature type. There is an analyst who decides or selects 

the training fields/representative signatures and these training sets are used by the 

algorithms to characterize feature types in supervised classification method. This 

process is frequently termed training [11], [12]. In this study, training set pixels were 

selected randomly from predefined class locations using the ground truth. Some 

classification algorithms compare each pixel vector to each representative signature in 

the training set numerically and labels pixels in the most likely category using 

predefined decision rule. A few pixels are not labeled because of insufficient similarities 

to any training data set, and they are labeled as unknown [11]. 

The training process is the major step of supervised classification. If representative 

signatures do not represent the classes good enough, this causes poor classification. 

Therefore supervisor have to be experienced in marking the training sets. 

The result can be presented as either a thematic map or a table. [12]. In this study, 

classification results are shown as thematic maps. Figure 6 is given as an example of 

classification thematic map, where labeled pixels are represented with colors shown in 

the legend.  
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Figure 6  An example of supervised classification result. The labeled pixels are 

represented by different colors 

2.5 Unsupervised Classification 

Unsupervised classification does not use training data for classification. The algorithms 

examine the unknown pixels in data and aggregate them into a number of symbolic 

classes based on clusters in the feature values. 

The symbolic classes resulting from unsupervised classification are spectral classes and 

they represent only natural groups according to image values. Therefore the analyst, who 

does not get involved in the classification process at the beginning, intervenes in the 

posteriori identification when he/she attaches information class labels to the segments 

established by clustering [11], [12]. 

2.6 Landmine Detection Methods 

Even though there are many landmine detection systems, the most frequently used ones 

are sensor-based systems. The magnetic field-based metal detectors have been widely 

used for landmine detection [16]. The other sensor-based systems are Infrared (IR), 

Ground Penetrating Radar (GPR) [4], and Ultra Sound Sensor (US). These methods 

have some advantages and disadvantages. 
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GPR is one of the most frequently used sensor in order to detect landmine and 

unexploded ordnance (UXO). GPR is operated just above the soil [17] and there are 

some examples in use like Husky, which had been created for humanitarian landmine 

cleaning in South Africa. These vehicle-mounted mine detection systems are being used 

in Afghanistan, Iraq and other places for military purposes. The GPR's transmitter sends 

an electromagnetic signal into the soil, and detects the reflected signal at the receiver 

[18], [19]. The transmitter sends signals continuously and the receiver collects 

backscatter signals from discontinuities. The depth of object can also be given by GPR, 

but its performance depends on humidity of soil. Very dry soil's electrical contrast is less 

than plastic landmines so GPR cannot find plastic landmines in dry soil [7]. Even though 

the GPR is inbuilt in armored vehicles, when it encounters missed landmines or UXO, 

the consequences of explosion could be harmful. 

These types of tools are quite expensive, and they are not easy to operate because of 

their sizes. On the other hand, IR detection systems are quite cost-effective, and 

operationally friendly. In addition to that, the radar-based technology uses microwave 

part of the spectrum and small landmines or Improvised Explosive Devices can be 

missed because of the spatial resolution limit imposed by the corresponding wavelengths 

[16]. These misses can lead to destruction of the tools or even can be fatal for the 

operator. 

Metal detectors are most widely used tools for mine detection. Metal detector produces a 

magnetic field, and this field interacts with the electrical or magnetic properties of the 

target. This interaction causes generation of a new magnetic field. The detector's 

receiver detects the new magnetic field that signals an object that contains metal. 

However, in order to detect landmines, the landmine has to contain considerable amount 

of metal. The metal detectors cannot detect low metal-content mines [16]. Especially 

antipersonnel landmines are difficult to find because they have small sizes and plastic 

ones have little or no metal content [3]. The metal detector cannot distinguish landmine 

and metal debris as well [7]. If the soil contains much debris or other metal elements, 
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metal detector cannot distinguish landmines from other metal contents and hence gives 

false alarms continuously. 

In addition to these factors, the operator of the detector has to enter to the minefield and 

keep metal detector near the soil surface, therefore operator has to be alert and has to 

concentrate all the time when he/she is in the minefield. Thus, the metal detector's 

detection accuracy actually depends mostly on operator's performance. 

Buried landmine-sized objects cause measurable changes in the local elastic properties 

of the ground. These changes can also be detected by acoustic probing. This theory dates 

back to the 1950s [16]. The principle of landmine detection with the ultrasound is 

similar to that of the GPR's principle. The frequencies of ultrasound waves are much 

lower than those of the GPR. The transmitter emits the signal and the receiver collects 

backscattered signals [20]. While GPR signal do not make any physical disturbance in 

the medium, sound wave creates mechanical disturbance of molecules [20]. 

2.7 Thermal Infrared in Landmine Detection 

While introductory information is given in Section 1, detailed information about thermal 

infrared in landmine detection is given in this section. 

IR working principle is based on the fact that, different objects can have different 

thermal characteristics [7], i.e., thermal conductivity and heat capacity. The landmines 

can be thought of as unnatural volume for flow of the heat inside soil. This might cause 

specific spatiotemporal thermal pattern on the surface of the soil, which can be detected 

by IR imaging systems [21]. According to Santulli [22], IR-based detection systems 

depend mainly on soil surface conditions, soil nature, climatic variations, buried objects 

characteristics, their positions and lastly on the thermal excitation. When all these 

factors are handled appropriately, IR thermography is a noteworthy detection tool for 

detecting buried objects. 

If these spatiotemporal thermal patterns occur because of landmines, it is called the 

volume effect. On the other hand, if they occur because of disturbed soil it is called the 
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surface effect [21]. We experienced that the surface effect is detectable during only a 

short time interval after planting. During this period, the thermal contrast is quite 

distinguishable [20]. IR system may detect these anomalies as an evidence of landmines 

[23]. 

According to Kasban et al. [7] IR images do not need too much preprocessing, and this 

system can work with passive (natural) or active (human made) heat sources. However, 

it might be affected by weather conditions and humidity of the soil. Soil moisture 

contributes positively to a non-metallic landmine's thermal signature and improves 

detection rate; on the other hand, it reduces the detection rate of metallic landmines 

because of shifting thermal characteristics with moisture [24].  

Deeply buried objects could not be detected with IR sensors [25]. The maximum limit of 

detecting landmines by IR is found to be around 10 cm [21]. Khanafer and Vafai [26] 

worked on imaging buried mines under three different soil surface conditions. 

According to their conclusion, mines that are buried moderate depths in the soil do not 

produce a direct signature. 

There are similar studies published on detecting landmines using IR sensors. Hong et al. 

[27] monitored areas that contained buried anti-tank mines and analyzed surface 

temperature changes during diurnal cycle to compare various soil textures and soil 

moistures. According to their analysis, a cyclic behavior of landmines’ thermal 

signatures can be predicted except for silt loam soil. Paik et al. [20] used 24-hour IR 

image time series in their studies. They used Karhunen-Loève Transformation (KLT) to 

reduce the size of the data, and applied three different methods to segment landmines. 

They enhanced the image/images using gray scale morphology. After that, a marker-

based watershed algorithm is applied on the data for segmentation with these three 

methods. Ajlouni and Sheta [6], [28] presented landmine detection using KLT and 

watershed segmentation. In their studies, they offer nighttime image series from 20:00 to 

01:00 with 30 minutes time interval. According to them, the images that are taken in the 

morning and afternoon time have redundant information. Therefore, they used night 
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image series and KLT, which reduces number of images and hence time, required to 

process the data.  

Nguyen et al. [29] worked on a three-dimensional thermal model for landmine detection 

problems. Martínez et al. [30] developed a three-dimensional thermal model to study the 

effect of landmines in bare soil. They worked on low or no metal content landmines. 

They modeled thermal behavior of soil with known boundary conditions. After that, they 

proposed an iterative method to classify the data. This iterative method gives the nature 

and depth of the objects. Sendurd and Baertlein [31] developed thermal radiometric 

model. They used a finite element method in order to describe the thermal phenomena. 

They used a 25 cm anti-tank mine stimulant and a virtual sensor which is assumed to be 

a LWIR camera operating near the 10 µm wavelength. Additionally, they incorporated 

surface roughness into their thermal and radiometric models in order to take self-

shadowing of the surface into account because of the soil surface topology. According to 

the authors, the surface temperature over the mine is cooler at dawn and the surface is 

hotter during the day. Lastly, during the night the layer of the soil above landmine is 

cooler. In addition, they represent the spectral differencing concept and they developed a 

detection algorithm based on pattern recognition principles in a different study [31]. 

They used weighted difference of visible and IR images from the same scene in order to 

remove the reflected radiance from the warm atmosphere to decrease the clutter resulted 

from reflected light. According to authors, there is a tradeoff between decreasing clutters 

and increasing mine signature [13]. Khanafer et al. [9] examined how the thin outer case 

made of metal and the air gap left above the buried antipersonnel and antitank mines 

affect the IR images. They used finite element method (FEM) to describe the thermal 

phenomena. They simulated buried antitank mines with and without a thin metal outer 

case, and surface/buried antipersonnel mines. In order to analyze top air gap effect, they 

simulated antipersonnel mine with top air gap as well. The simulated mines had TNT 

thermal properties in the model. According to their results, thin metal outer case has 

significant effect on the temperature distribution because of an appreciable difference in 

the thermal conductivity between the metal case and the TNT. The top air gap has a 
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more noticeable effect on depth wise temperature variation within a given time cycle 

because of air gap’s low thermal conductivity compared to soil. In addition to that, their 

results show that surface mines produce larger temperature extremes than buried mines. 

Thành et al. [32] introduced and validated a 3-D thermal model for detecting landmines 

in outdoor minefield data sets. They proposed a finite-difference approximation of 

generalized solutions of the model. Besides, they proposed methods to estimate the bare 

soil and air-soil interface thermal properties. They confirmed their estimated soil 

parameters by comparing the simulations with real data sets. They [33] also developed a 

method that gives buried objects’ thermal diffusivity, depth, and size. In the first step, 

they presented a method that could detect the landmines. This method depends on 

thermal differences on the soil surface caused by buried objects. In the second part, their 

proposed method finds the thermal diffusivity, depth, and size of buried objects using 

the inverse problem setting. Three-dimensional simulations have been developed in 

order to model passive IR signature of land mines that are buried or placed on the soil 

surface using the (FEM). Nguyen et al. [10] proposed a two-step method in their review 

study. At the first step, they found soil temperature using their new thermal model 

provided by soil and buried object thermal properties. At the second step, detected 

objects are classified using proposed enhanced inverse problem setting. They referred 

the second step as inverse problem setting for landmine detection. They estimate buried 

object’s depth, shape, and its thermal diffusivity with their two-step method. Muscio et 

al. [34] proposed a method that enables reproduction of thermal properties of outdoor 

conditions with reduced size of data and compressed time. They generated a generalized 

formula for this purpose. They imaged the built-in test area during eight and six hours 

with two hours period. They used a binary reduction algorithm to detect mines. 

However, according to their remarks this algorithm did not work well because of its 

noise sensitivity. 

In our study, we used three to four hours sunset and sunrise data besides nighttime data 

that is around 10 hours. In addition, a simple yet effective circular spatial filter, whose 

shape is similar to landmines' shapes, is applied on the data. The algorithm both detected 



 17 

and recognized the landmines and the performance of the complete system is 

quantitatively determined. 

Systems that fuse data from multiple sensor types have been offered as well. Nath and 

Bhuiyan [4] proposed a geometrical feature-based fusion system that consists of IR and 

GPR. According to the authors, false alarm rate was decreased in their fusion-based 

system and the system is an effective technique for detection and classification of anti-

personnel landmines. Bhuiyan and Nath [35] also mentioned three different fusion 

methods which are data-level, feature-level and decision-level fusion. In order to get 

higher detection rate, shorter detection time and less false alarm rate, they propose these 

fusion methods. 
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CHAPTER 3 

 

 

3. PREPARATION OF PRACTICE LANDMINES AND THE TEST MINEFIELD 

 

 

In this section, preparation of the practice landmines (PLs) and the test minefields that 

are used in the study are explained. 

Two minefields were constructed and four sets of data were captured using two different 

cameras on three different dates. Second minefield was constructed to evaluate proposed 

algorithm performance with 20 DM11 PLs. 

3.1 Preparation of Practice Landmines 

The landmines that are used in this study do not contain any explosives; however, they 

should represent actual mines’ geometric and thermal properties. In order to represent 

frequently encountered landmines, M15 antitank, M16, M2, and M48 metal, DM11, and 

M14 plastic PLs were used in our study. M15 and plastic mines were filled with wax 

that represents explosives’ thermal characters [34]. Images from the procedure of filling 

M15 PL, M14, and DM11 with wax can be seen in Figure 7, Figure 8 and Figure 9, 

respectively. Real M2 landmines contain 60 mm mortar shells. Therefore, M2 PL was 

filled with metal content (Figure 10). 

M14 plastic landmine’s radius is only 5.6 cm, which is one of the smallest landmines, 

and it contains little metal content. Because of this reason, it is accepted as nonmetallic 

landmine. Therefore, M14 plastic PL was intentionally used in this study in order to see 

IR response to nonmetallic, small plastic landmines. The aim is to see whether buried 

M14 and DM11 PLs can be detected by the proposed method or not, because one of the 
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biggest problem is buried nonmetallic small plastic landmine detection. If the proposed 

algorithm can detect M14, most probably all landmines that are plastic nonmetallic and 

small can be detected by the proposed algorithm as well.  

 

Figure 7  Filling M15 PL with wax 

 

Figure 8  Filling M14 plastic PL with wax 

 

Figure 9  Filling DM11 plastic PLs with wax 
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Figure 10  Filling the M2 landmine with metal bar 

3.2 Preparation of the Test Minefields 

The experiments were carried out in two different safe zones. The soil types are clay and 

clay loam, respectively. The minefields' locations were selected according to their 

thermal appropriateness. There are not any obstacles, which can cast shadow on the 

selected test area at these locations. However, we have seen at the end of the study that 

nighttime images are better than daytime images and sufficient for detection, therefore 

partial shadowing is not a major problem. 

3.3 Preparation of the First Test Field 

First landmine was established in July of 2015. The clay dry soil surface was cleaned 

from sparse vegetation. Then, a 2.2 x 2.2 m area was dug 50 cm deep and all objects like 

stones, metal debris etc. in the 50 cm deep soil was cleaned. A stone with a shape similar 

to that of an M14 and another stone whose shape was similar to DM11 were buried in 

known locations in order to see their effect on detection accuracy of the proposed 

algorithm. The area dug can be seen in Figure 11. Thirteen PLs and two stones were 

used in total. Eleven PLs and two stones were buried and two plastic PLs that were a 

DM 11 and an M14 were located on the surface of the minefield. 
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Figure 11  The test area preparation 

The PLs were planted apart from each other to prevent thermal interaction among them. 

Figure 12 shows the placing of PLs and stones. The layout of the minefield is given in 

Figure 13 along with the depths that mines are buried. 

The depths of PLs were selected according to the most encountered depths in real 

minefields. Therefore, the landmines were buried at different depths. For example, M15 

anti-tank mine should be buried 2 cm deep from the soil surface [36]. All the visible area 

is dug before burial to avoid any disturbed earth effect in the images at the locations of 

mines. Figure 14 shows the placing of landmines at different depths. 

 

Figure 12  Placing PLs and stones in the first test field 
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All PLs and stones can be seen in Figure 15 before they were buried in the minefield 

with the exception of two plastic PLs that stay on the surface, indicated on the figure as 

"Surface Mine".  

 

Figure 13  Layout of landmines in the test field 

 

Figure 14  The depths of the PLs and stones 

The PLs were buried/placed on 7 July 2015. The minefield's appearance is given in 

Figure 16 after all PLs and stones were buried/placed. 
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Figure 15  The PLs in the test area before burial 

3.4 Preparation of the Second Test Field 

The second test minefield was formed in order to evaluate proposed algorithm’s 

performance in different conditions with larger number and same type of plastic 

antipersonnel PL, namely DM11. The different conditions are different soil type (Clay 

loam) and soil humidity as well as different weather and season. The second minefield’s 

construction and placement of the PLs and the stones were carried out on 18 of February 

2016 during the rainy season of Ankara.  

The humid clay-loam soil surface was cleaned from sparse vegetation. Then, a 1.5 x 

1.5 m area was dug 20 cm deep and all objects were removed as done in the first 

minefield. The preparation of the area can be seen in Figure 17 and Figure 18.  

Thirteen PLs and two stones were used in total. Eleven PLs and two stones were buried 

and two plastic PLs that are a DM 11 and a M14 were located on the surface of the 

minefield. The layout of the minefield is given in Figure 19 along with the depths that 

mines are buried at. 
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Figure 16  The final appearance of the minefield after all PLs and stones were 

buried/placed 

 

Figure 17  Preparation of the second minefield - 1 
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Figure 18  Preparation of the second minefield - 2 

Even though DM11 landmines should be emplaced at a depth of one cm, in real 

minefield they can be located at different depths and most of the times the depths are 

larger than one cm. Therefore, in order to simulate real minefield conditions PLs were 

emplaced at depths of three and four cm. 

 

Figure 19  Layout of landmines in the second minefield 
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Fourteen PLs were emplaced at a depth of three cm to evaluate the performance of the 

proposed method correctly. Two DM11 PLs were buried at four cm deep to see the 

performance of the method at larger depths. In addition, nine stones with shapes and 

diameters similar to the DM11 were emplaced at three cm deep and lastly four DM11 

PLs were located on the soil surface.  

All PLs and stones can be seen in Figure 20 before they were buried in the minefield 

with the exception of four plastic DM11 PLs that stay on the surface, indicated on the 

figure as "Surface Mine". Final form of the second minefield is given in Figure 21. 

 

Figure 20  The PLs in the second minefield before burial 
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Figure 21  Final appearance of the second minefield 
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CHAPTER 4 

 

 

4. DATA ACQUISITION 

 

 

In this section, the data used in this study is presented. The details of how the images are 

acquired are described in the following sections. 

4.1 Cameras and Their Characteristics 

FLIR T 650 SC and ATOM
TM

 1024 IR cameras were used for collecting the data. The 

cameras' properties are given in Table 1. 

Table 1  IR cameras and their properties 

Camera IR detector Array size Spectral range 

ATOM
TM

 1024 Uncooled Micro bolometer 1024 × 768 8 – 14.0 μm 

FLIR T650SC Uncooled Micro bolometer 640 × 480 7.5 – 13.0 μm 

4.2 Viewing Geometry 

Two different cameras were used collecting the data from the first minefield. The look 

angles with respect to nadir were approximately 27
0
-30

0,
 and the elevations of cameras 

from the soil surface were 524 cm (FLIR T650SC), and 555 cm (ATOM
TM

 1024). 

The cameras were located on a platform that was parallel to the minefield and did not 

cast any shadow on the minefield during the day. In addition to that, platform's elevation 

enabled cameras to have a 2 x 2 m footprint. Therefore, cameras could image whole 

minefield. FLIR T650SC's viewing geometry is given in Figure 22, and ATOM
TM

 

1024's viewing geometry is given in Figure 23. 
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Only FLIR T650SC camera was used for capturing data from the second minefield. In 

this setting, the camera's view angle was approximately 35
0
 and elevation of camera 

from the soil surface was 365 cm. 

 

Figure 22  FLIR T 650 SC's viewing geometry 

 

Figure 23  ATOM
TM

 1024's viewing geometry 
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Figure 24  The second minefield camera viewing geometry 

4.3 First Acquisition: One Day After Establishment of the First Minefield 

The first data set was captured on 8 July 2015, one day after PLs and stones were 

emplaced in the first minefield. As mentioned in section 2.6, the landmines can be 

thought of as an unnatural volume for flow of the heat inside the soil. This will surely 

create a specific spatiotemporal thermal pattern on the surface of the soil. If the 

anomalies occur because of disturbed soil, it is called the surface effect [21]. The surface 

effect is detectable for only short period after landmine planting. During this period, the 

thermal contrast is quite noticeable [20]. Therefore, if surface effect can give detectible 

spatiotemporal thermal pattern that is detectable by IR sensors on the surface where 

there are newly buried objects, IR sensor can be used for finding improvised explosive 

devices that are one of the biggest threats for civilian and military personnel all over the 

word. Examples of images that were captured from 8 July 2015 at 11:10 a.m. to 9 July 

2015 at 05:10 are given in Figure 25 and Figure 26. These two images were taken by 

ATOM
TM

 1024. The 768 x 1024-pixel camera’s ground footprint was approximately 

2 m x 2 m from the highest suitable platform, which corresponds to approximately 0.25 

x 0.25 cm of resolution. 
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Figure 25  The image captured on 8th of July 2015 at 11:10 a.m.  

by ATOM
TM

 1024 

The time series consists of images that are captured with 30 minutes time intervals. At 

every 30 minutes time interval, four images are captured in less than one second.  

 

Figure 26  The image captured on ninth of July 2015 at 05:10 a.m.  

by ATOM
TM

 1024 
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4.4 Second Acquisition: Two Months After the Establishment of the First Minefield 

The FLIR T 650 SC and ATOM
TM

 1024 IR cameras were used together for collecting 

the data during the second acquisition. The data were captured on 8-9th of September 

2015 two months after establishment of the first minefield. 

ATOM
TM

 1024 captured diurnal cycle data with 15 minutes interval. FLIR T650SC 

started to collect data at 21.12 o'clock on 8 September 2015 and finished at 13.27 o'clock 

on 9 September 2015 with 15 minutes interval as well. Every 15 minutes time interval, 

cameras captured four images within one second. The 480 x 640 pixel FLIR T650SC's 

ground footprint was approximately 2 m x 2 m from the platform, which corresponds to 

approximately 0.45 x 0.45 cm of resolution. Besides capturing images, environment 

temperature was recorded during diurnal cycle. One shut of the image, which was taken 

at 2 a.m. by FLIR T650SC, is shown in Figure 27 as an example. 

 

Figure 27  The image captured at 2:00 a.m. by FLIR T 650 SC 
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4.5 Third Acquisition from the Second Minefield 

The FLIR T 650 camera was used for collecting the data. The data was captured on 9-10 

March of 2016, 20 days after establishment of the second minefield. The imaging was 

started at 12:00 pm and finished next day at 11:45 am, every 15 minutes time interval, 

the camera captured four images within one second. 

The 480 x 640 pixel FLIR T650SC's ground footprint was approximately 1.8 m x 1.8 m 

from the platform, which corresponds to approximately 0.34 x 0.34 cm of resolution. 

One shot of the image, which was taken at 6:45 a.m. can be seen in Figure 28 as an 

example. 

 

Figure 28  The image was captured at 6:45 a.m. 
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CHAPTER 5 

 

 

5. SIMULATION OF HEAT FLOW IN MINEFIELDS 

 

 

The aim of the simulation is to enhance proposed method through detailed and rigorous 

analyses of heat transfer in minefields with various parameters (time of the day, soil 

type, landmine type, burial depth of mine etc.). The weather data and soil thermal 

properties that were used during simulations correspond to the two test areas and test 

dates. The soil and PLs are assumed homogeneous. Software-based finite element model 

(FEM) was used to simulate thermal behavior of buried land mines in the soil. 

5.1 Simulation Software 

All simulations were performed using MATLAB
®

 2015a and the Partial Differential 

Equation Toolbox using a PC with HP Intel (R) Core (TM) i5-3210M CPU @ 2.50GHz, 

8.00 GB RAM and 64-bit operating system. Finite elements method was used for 

simulations. 

5.2 Assumptions and Parameters 

Since the ideal geometry is circularly symmetric, it is reasonable to assume that the 

temperature pattern is circularly symmetric as well and hence a 2-D simulation in a 

vertical plane passing through the center of the mine is sufficient. The soil and the PLs 

are assumed homogeneous and isotropic, and soil surface is assumed smooth in this 

study. In addition, the soil is assumed dry for the first test area and slightly moist for the 

second test area.  
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5.2.1 Boundary and Initial Conditions 

The heat transfer function (4) needs initial and boundary conditions. The upper 

boundary, which is the soil surface, is affected continuously from thermal conditions. 

Therefore, heat flux, which is given in next section, is time variant. The simulation takes 

upper boundary condition from a time variant heat flux model. Along the vertical 

boundaries, the normal fluxes are set the zero [37], and it is assumed that there is heat 

balance along the vertical boundaries [32] along which temperature gradients are set to 

zero. 

In order to find proper depth of the soil, the bottom edge is assumed to have a zero heat 

flow boundary (isolated), that is, specific form of Neumann boundary condition in first 

trials. After that, the depth of the simulation was changed until finding the proper depth, 

which is given by negligible temperature change during diurnal cycle along the bottom 

boundary of the simulation (soil). The maximum temperature change along the bottom 

became 0.0055° K peak-to-peak when the depth was set to two meters, and the average 

temperature was 291.8 K (Figure 29). Fixing bottom boundary as isolated does not 

simulate the real condition. Therefore, the bottom boundary is assumed to have Dirichlet 

boundary and it is set to the constant value of 291.8 K.  

The initial air temperature is set to 293 K and bottom nodes' initial temperature is set to 

291.8 K. The test areas' geographic information and thermal values are given in Table 2. 

 Table 2  Test areas' geographic and thermal properties 

Test 

Area 

Latitude 

(degree) 

Longitude 

(degree) 

Altitude 

     

Minimum 

Temperature 
    

Maximum 

Temperature 
    

First  39.9403 32.9171 1.033 284 309 

Second 39.9092 32.8413 0.926 273 292 
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Figure 29 Bottom border temperature change when the soil depth is one meter Soil and 

PLs' Properties 

M48 metal and DM11 plastic PLs are used in the simulation. PLs' dimensions and 

thermal properties [9], [38] are given in Table 3.  

Table 3  PLs' dimensions and assumed thermal properties 

PL 
Height 

(mm) 

Diameter 

(mm) 

Thermal 

Conductivity 
        

Specific 

Heat 
         

Density 
         

M48 PL 165 63.5 54 465 7830 

DM11 PL 37 81 0.5 1260 1760 

Soils’ thermal properties and densities [38], [39] are given in Table 4. 

Table 4  Soils’ assumed thermal properties and densities 

Soil Type 
Thermal 

Conductivity 
        

Specific 

Heat 
         

Density 
         

Clay 2.7 1100 1900 

Moist Clay 3.8 1100 1900 
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5.3 The Mathematical Model 

5.3.1 Physical Description of the Processes 

Heat transfer mechanism, which occurs from the soil surface to the mine, is given as 

follows. Convection and irradiative mechanism take place at the soil-air interface and in 

the soil and the buried objects interfaces conduction occurs [31]. The total heat transfer 

mechanism is depicted in Figure 30. 

 

Figure 30  Heat transfer processes taking place at the air-soil interface and  

in the soil. 

The temperature obeys the heat-flow equation [9], [31] 

          
      

  
                            (4) 
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where T(K) is the temperature distribution, k (     ) is the thermal conductivity, c 

(       ) is the specific heat, and ρ (     ) is the density of the soil. The process is time 

varying during the diurnal cycle, and the starting times of simulation were taken as real 

data captured time in this study. However, the simulation is first repeated for a few days 

periodically as the burn-in period. 

5.3.2 Soil-Surface Heat Flux 

The approximate net heat flux into the soil surface is given as [9] 

                                          (5) 

where qconv  (       )  is the convective heat transfer at the soil-air interface. It is 

usually estimated as 

                          ),  (6) 

sometimes named Newton's law of cooling [40], where h is the convective heat transfer 

coefficient and it is accepted as 5        based on 2      average wind speed [9]. 

Tair is the time variant air temperature for diurnal cycle and is estimated as 

                                 - (12 +          ))  (7) 

where Tavg (K) is the average temperature of the simulated day, Tamp (K) is the half of 

the differences between maximum and minimum temperature of simulated day, tlocal is 

the time of the day in hours, and tcoldest is the coldest time of simulated day in hours. 

Tsurface (K) is the soil surface temperature and it is calculated iteratively by the 

simulation itself. 

Electromagnetic radiation is emitted from everything that has a non-zero temperature. 

The sun emits its energy in dominantly shorter wavelengths according to the Planck’s 

law. Even though the Earth is cooler than the Sun, it still emits energy but with much 

longer wavelengths [41]. 
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qsun (       ) is the incident solar irradiance and it is reduced by the cloud cover, 

atmospheric absorption and the sun's incident cosine angle of zenith. The short-

wavelength incident solar radiation model is given [9] as 

                                 (8) 

where     is the cloud cover,   is the ground albedo,    is the solar constant, and they are 

taken as 0.2, 0.3 and 1385     , respectively [9].      is the atmospheric 

transmissivity and it is given [42] as 

                        (9) 

where   is the incident zenith angle of the sun. 

qsky (       ) is the long-wave sky irradiance and it is given [9], [32] as            
  

where σ = 5.67 x 10
-8 

        is the Stephan–Boltzmann constant, ϵ is the mean 

emissivity of the surface, and      (K) is the effective sky radiant temperature and 

whose formula [42] is given as              . 

qemis (     ) is the long-wave radiation emission given [9] as  

                
  . Emissivity (ϵ) values are taken as 0.95 in this study.  

Even though soil       , which is latent cooling of the soil, is neglected in this study, for 

the sake of completeness, formulation is given [43] as 

                                             (10) 

where     (1.16        is the density of air,       (1007         is the specific heat of 

air,      (0.002) is the wind drag coefficient, and  is the wind speed. 
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5.4 Implementation 

The width of the simulation is set to 80 cm and depth is set to two meters. The PLs are 

located along the central vertical line. The depths of the PLs are changed to see the 

impact of the depth on the thermal pattern at the soil surface. As mentioned in previous 

section, two kinds of PLs are simulated. The example geometries are given in Figure 31 

and Figure 32. M2 metal PL and DM11 plastic PL are located at three cm depth from the 

soil surface in the example geometries. The numbers in the geometry represent 

boundaries.  

The grid size of triangles is set to one cm. The meshed example of geometry can be seen 

in Figure 33. 

 

Figure 31  The simulation geometry for M2 PL metal mine 
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Figure 32  The simulation geometry for DM11 PL plastic mine 

 

Figure 33  The meshed example of soil cross-section geometry 
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The time step is set to 15 minutes, and the burn-in time is fixed to 10 days. In order to 

see the effect of buried PLs, temperature changes through the soil surface when the 

surface temperature is maximum and minimum are plotted. An example of temperature 

distribution through the surface is given in Figure 34 and 1-D the temperature 

distribution on the soil surface during entire diurnal cycle is given in Figure 35. The 

plastic PL is located at the center of the cross-section. 

 

Figure 34  The soil surface' temperature distribution 

An example of the temperature distribution inside the soil is also given in Figure 36 

when the soil surface temperature is maximum and minimum during the diurnal cycle. 
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Figure 35  3-D the temperature distribution on the soil surface during the diurnal cycle 

 

Figure 36  Temperatures distribution inside the soil 
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CHAPTER 6 

 

 

6. PROPOSED LANDMINE DETECTION ALGORITHM 

 

 

The flowchart that describes the steps of the proposed algorithm is given in Figure 37. 

Proposed method is applied on data sets that are captured by the FLIR camera. Data 

Acquisition step is already given in a previous section. Noise reduction and spatial 

filtering are explained in detail in the preprocessing sub-sections. Dimension Reduction, 

Supervised Classification, and Smoothing are given in Classification sub-sections. Next, 

Detection is described in this section as the last step of the proposed method. All the 

algorithms described have been implemented in MATLAB
®
. The results are given in the 

next section. 

6.1 Preprocessing 

Most of the time the soil surface temperature that encounters metal PLs and plastic PLs 

are different from bare soil surface temperature. However, differences are very small 

and can be observed during certain periods of the day. Therefore, the proposed method 

uses a spatial filter to detect the differences, and uses time series to recognize the 

temporal pattern. 

6.1.1 Noise reduction 

The time series consists of images that are captured with 15 and 30-minute time 

intervals. At each time step, four images are captured in less than one second and 

averaged to decrease the noise. The averaged images are joined together to form an 
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image cube. The image cubes obtained using the ATOM and FLIR cameras are given in 

Table 5. Figure 38 illustrates the imaging and noise reduction process. 

Even though the noise reduction process is applied on the image cubes, we have 

performed the whole process with un-averaged image cube and observed that results are 

nearly the same. We believe that the spatial filter reduces noise as a positive side effect 

more strongly than averaging at this phase. 

 

Figure 37  Steps of the proposed method 

Table 5  The image cubes sizes, used cameras, and dates 

Captured date Camera Time interval(minutes) Cube size 

8-9 July 2015 ATOM
TM

 30 768 x 1024 x 48 

8-9 September 2015 ATOM
TM

 15 768 x 1024 x 96 

8-9 September 2015 FLIR 15 480 x 640 x 39 

9-10 March 2016 FLIR 15 480 x 640 x 96 
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6.1.2 Spatial Filtering 

Depending on the size, the material and the depth of the mine, a specific spatial 

temperature pattern can be observed on the surface for a given environmental 

temperature history. A good approach can be using a matched filter for detecting these 

patterns. Lundberg et al. [44] have used finite element method to simulate temperature 

distribution on buried landmines and approximated the pattern with Gaussian functions. 

 

Figure 38  The image cube formation and noise removal process 

For any pixel, a small and a large circle are formed having the target pixel at the center. 

Then the average value of the small circle is subtracted from that of the large circle. The 

radius sizes are selected such that for a pixel located near the center of the mine, the 

outer circle values are sampled from bare soil out of the mine while the inner circle 

values are sampled from the soil above the mine. Spatial filtered image, y, is given as  

 

where, x is the original image, Ro and Ri are the neighborhood set of outer and inner 

circles respectively and n is the number of elements in each of these sets. Figure 39 

shows the spatial filter's circles, and sampling points.  
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Example images from the filtered image cubes obtained in the second and the third 

acquisition (FLIR camera) are shown in Figure 40 and Figure 41, respectively. Cold 

spots are pronounced as dark areas and hot spots are as white areas in these images. 

 

Figure 39  The circular spatial filter's representation 

 

Figure 40  An example band of spatial filtered image captured by FLIR camera from the 

first minefield 
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Figure 41  An example band of spatial filtered image captured by FLIR camera from the 

second minefield 

6.2 Classification 

The classification process is described below in four sub-steps. 

6.2.1 Preparation of the Training and the Test Sets 

First minefield consists of five classes are buried anti-tank, buried metal, buried plastic, 

surface plastic landmines, and soil.  

Each class has different number of samples. The training set was selected randomly for 

each class using the ground truth. For each antipersonnel landmine PL class, 200 

samples were selected, and for antitank landmine PL, 300 samples were selected. Due to 

abundance and variety of soil pixels, 4000 pixels were selected from the soil class. 

These classes, number of samples they have, and number of training samples are given 

in Table 6. The test set is all of the data except the training set and the gray zone pixels. 
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Table 6  The class names, sample sizes, and training set sizes 

Class Name # of Pixels # of Training Pixels 

Anti-tank 1653 300 

Metal 1350 200 

Buried plastic 732 200 

Plastic 366 200 

Soil 287975 4000 

 

Second minefield consists of three classes that are buried DM11, surface DM11, and 

soil. Training set size for each class consists of a pre-defined percentage of the class’s 

sample size. These percentages are chosen as 1% and 3% of the sample sizes to see the 

effect of the training set size on classification. These classes, number of samples they 

have, and number of training samples are given in Table 7. Test set is all of the data 

except the training set and gray zone pixels. 

Table 7  The class names, sample, and training set sizes for second minefield data 

Class Name # of Pixels #1% of Training Pixels #3% of Training Pixels 

Buried DM11 8014 81 243 

Surface DM11 2096 21 63 

Soil 255964 2586 7758 

The training set was selected randomly from pre-defined buried and surface DM11 PLs 

using the second minefield’s ground truth. The ground truth of the second minefield is 

given in Figure 42. The soil training set was selected off sites of the PLs and buffer 

zones. The DM11 buried PL classes training samples were taken from blue, DM11 

surface PL classes red and soil class training set samples white area. These areas are 

shown in Figure 43. 
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Figure 42  The second minefield’s ground truth with the buffer zones 

 

Figure 43  Training set formed version of ground truth 

6.2.2 Dimension Reduction 

To decrease the data size and processing time, KLT (also known as Principal 

Component Analysis, PCA) is applied and the feature size is decreased. The size of the 

features is determined for each classifier with the best classification performance. 
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6.2.3 Supervised Classification 

Supervised classifiers are used and compared in this study. The classifiers are listed as 

follows: Support Vector Machine (SVM), Mahalanobis Discriminant Analysis (MDA), 

and Quadratic Discriminant Analysis (QDA). K-nearest neighbor algorithm (k-NN) is 

used in addition to these classifiers during the last data sets classifications. 

6.2.4 Smoothing 

Post-classification smoothing is applied via a 3 x 3-majority filter. When the votes for 

the existing label and those for another label are equal, the original label is kept. This 

process removes individual labels that do not correspond to a mine. 

6.2.5 Post-Processing and Detection 

Following smoothing, segments are created based on connectivity. The segments whose 

areas are at least twice as large as the smallest landmine, which is M14 antipersonnel 

PL, are accepted as detected mines in QDA, MDA and the segments whose areas are 

equal or larger than the smallest landmine are accepted as detected mines in SVM and k-

NN. 
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CHAPTER 7 

 

 

7. RESULTS 

 

 

7.1 Results for the First Data Set 

Spatially filtered images consist of thermal differences between pixels over the mine and 

surrounding soil pixels. Therefore, every pixel in the data reflects thermal differences 

rather than original thermal radiance captured by the camera. Average behavior of pixels 

from each class as a function of time is plotted in Figure 44. 

  

Figure 44  The average behavior of pixels from each class as a function of time 
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Black line with square marker reflects the change of average thermal difference of 

shallowest metal mine, cyan lines without marker show buried two plastic landmines 

and others display anti-tank and other metal mines' thermal changes. Dashed red lines 

without marker reflect thermal change of four soil pixels sampled from different parts of 

the image. Vertical red lines specify sunset and sunrise times. 

There are significant thermal differences among soil, plastic PLs, and shallowest metal 

PL in different hours of the day, after applying the spatial filter. The red lines (soil) go 

smoothly and their values are around zero. As is seen from Figure 44 especially plastic 

PLs can be detected using newly captured data after spatial filtering. 

As a starting point, we used thermal signature of plastic PLs as a matched filter in order 

to find plastic PLs. Two DM11 PLs signatures were averaged and signature of DM11 

PL was created. After that, this signature is convolved with spatially filtered image cube. 

DM11 PLs locations showed up as lighter areas in the result of this filtering. Averaged 

DM11 signature and the result of filtering are given in Figure 45 and Figure 46, 

respectively. 

 

Figure 45  DM11 PL's averaged signature 
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Figure 46  Result of filtering 

7.2 Second Data Sets Processing Results  

In this section, the second group of data sets, which were captured from the first 

minefield on 8-9 September 2015, is evaluated.  

7.2.1 Thermal Image Time Series 

We have recorded one diurnal cycle using ATOM
TM

 and about 10 hours of data from 

9 p.m. to 7 a.m. using the FLIR camera. Average behavior of pixels from each class as a 

function of time is plotted in Figure 47, and Figure 48. Every pixel in the data reflects 

thermal differences rather than original thermal radiance captured by the camera. The 

thermal radiance change for the same pixels in unfiltered image cube is also given in 

Figure 49. 

Black line with square marker reflects the change of average thermal difference of 

shallowest metal mine, cyan lines without marker show buried two plastic landmines 

and others display anti-tank and other metal mines' thermal change. Dashed red lines 

reflect thermal change of four soil pixels sampled from different parts of the image. 

Vertical red lines specify sunset and sunrise times. 
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Therefore, there are significant thermal differences among soil, metal mines, plastic 

mines, and anti-tank mine in different hours of the day, after applying the spatial filter. 

The red lines (soil) go smoothly and their values are around zero as expected, while 

metal, and anti-tank mine areas are hotter than soil pixels. On the other hand, most part 

of the day plastic land mines are cooler. It is observed that daytime during which solar 

irradiation arrives on earth is not very useful for classification but the “signatures” are 

quite different during nighttime. On the other hand, nighttime patterns are almost 

symmetrical, so recording during only first or second half of this time may be sufficient. 

Because of this, our recording with the FLIR camera was shorter. 

 

Figure 47  Diurnal thermal differences captured by ATOM
TM

 1024 
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Figure 48  Intensity differences captured by FLIR T 650 SC  

(9:20 p.m. to 7:05 a.m.). 

7.2.2 Feature Reduction 

Data provided to classifiers are not only spatially filtered but also dimensionally reduced 

data. Feature sizes for each classifier are tested and selected according to the detection 

rate. All of the classifiers work best with feature sizes equal to or larger than 20. For 

three classification methods, classification rates versus feature sizes are given in Figure 

49 and Figure 50. 
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Figure 49  Diurnal original thermal radiance change captured by ATOM
TM

 1024 

 

Figure 50  Detection/False Alarm Rates vs. KLT feature sizes before smoothing the 

classification results 
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Figure 51  Detection/False Alarm Rates vs. KLT feature sizes after smoothing the 

classification results 

7.2.3 Classification 

The results of the three classification algorithms on the FLIR data are given in Figure 

52, Figure 53 and Figure 54. After smoothing, the segments are labeled as landmine by 

the automated detection algorithm. The detection results are given in Figure 56, Figure 

57 and Figure 58. 

 

Figure 52  The MDA classification result 
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Figure 53  The SVM classification result 

 

Figure 54  The QDA classification result 

7.2.4 Post Processing and Automatic Detection 

Smoothed QDA classification result is given in Figure 55 as an example. The visual 

improvement can easily been seen when Figure 54 and Figure 55 are compared to each 

other.  

7.2.5 Performance Assessment 

To evaluate the results, two main approaches are used: Pixel based evaluation and object 

based evaluation. Pixel based evaluation is based on correct classification of pixels with 

respect to the ground truth which is created by using known mine locations and radii 
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given in Figure 59. To avoid transition zone contribution to the accuracy assessment, 

4.5 cm width buffer zones are created around PLs in the ground truth, and buffer zone-

pixels are not taken into consideration during pixel based performance assessments.  

 

 

Figure 55  The smoothed QDA classification result 

 

Figure 56  The MDA automatic detection result after smoothing 
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Figure 57  The SVM automatic detection result after smoothing 

 

Figure 58  The QDA automatic detection result after smoothing 

 

However, due to unbalanced sample size, correct classification rate of pixels (overall 

accuracy) is not a suitable metric to use. Because when whole image is classified as soil 

and none of the 13 mines is detected, overall accuracy rate is calculated as 99%. 

Therefore, two metrics named detection rate and false alarm rate are utilized. Detection 

rate is ratio of correctly classified mine pixels to all mine pixels in the test set. This 

metric ignores whether soil pixels are classified correctly or not. False alarm rate is 

ratio of soil pixels incorrectly classified as PLs to all soil pixels in the test set. 
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Figure 59  The ground truth with buffer zones 

For the pixel-based approach, the detection rates and the false alarm rates of the 

classifiers are given before and after smoothing classification results given in Table 8 

and Table 9. In addition, these changes are depicted in Figure 50 and Figure 51, where 

continuous lines represent detection rates and dashed lines represent false alarm rates as 

a function of the KLT feature sizes. When Figure 50 and Figure 51 are compared, it can 

be seen that smoothing increases the detection rates and decreases the false alarm rates. 

Within all three discriminant analysis methods, QDA has the best performance with 

detection rate of 99% (Table 9) and false alarm rate of 0.1% (Table 9). In other words, 

QDA classifies the mine pixels with an accuracy of 99% and only 0.1% of the soil pixels 

are classified as PLs. 

Table 8  Detection / False Alarm Rates of the classifiers before smoothing 

Classifier Detection Rate (%) False Alarm Rate (%) 

MDA 89 1.5 

SVM 94 0.5 

QDA 98 0.7 
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Table 9  Detection/ False Alarm Rates of the classifiers after smoothing 

Classifier Detection Rate (%) False Alarm Rate (%) 

MDA 90 0.4 

SVM 97 0.4 

QDA 99 0.1 

The other type of evaluation is based on objects detected. Detected number of mines 

(True Positives: TP), undetected number of mines (False Negatives: FN) and the soil 

detected as mine (False Positives: FP) are calculated.  

Then two metrics, True Positive Rate and Precision, are calculated as follows: 

True Positive Rate = TP / (TP + FN) 

Precision = TP / (TP + FP) 

For QDA and SVM classifications, all PLs are labeled correctly as mine and there is no 

FN. On the other hand for MDA classification there are two FNs (two M14 PLs), but 

other PLs correctly labeled as mine. TP, FP, and FN values are given in Table 10. 

Table 10  True Positive, False Negative and False Positive values 

Classifier TP FN FP 

MDA 11 2 0 

SVM 13 0 0 

QDA 13 0 0 

From TP, FP and FN values, True Positive Rate (recall) and Precision are calculated and 

are given in Table 11. When results are analyzed, it is observed that QDA and SVM give 

the best results. 

With these methods, all the mines are detected and no false negative exists, which is 

crucial in mine analysis. For pixel-based classification, QDA has the superiority over 

others.  
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Table 11  True Positive Rate and Precision 

Classifier True Pos. Rate (recall) (%) Precision (%) 

MDA 85 100 

SVM 100 100 

QDA 100 100 

When object based classification and pixel-based classification are taken into account 

together, QDA gives the best result by detecting all the PLs with the largest detecting 

rate and minimum false alarm rate with first minefield data and associated training sets. 

7.3 Third Data Processing Results 

Second minefield was set in order to test proposed algorithm's performance in different 

weather, humidity, soil, season, temperature etc. conditions with different, and decreased 

size of training sizes. In addition to these parameters, optimum pixelwise spatial filter 

diameter Ro (outer circle diameter) and optimum sample point numbers on the inner and 

outer circles are investigated. 

1% and 3% of samples from classes were used as training sets respectively in order to 

see the performance of the proposed method with different sizes of training sets. Spatial 

filter’s inner and outer diameters were chosen six and 50 pixels during implementations. 

7.3.1 Thermal Image Series 

We have recorded one diurnal cycle using the FLIR camera. Nighttime image cube, 

which was acquired between 21:00 pm to 06:45 am, was processed for detecting PLs. 

Average behavior of pixels from each class as a function of time is plotted in Figure 60 

and Figure 61. The original thermal radiance change is given in Figure 62. 

Black lines with plus markers reflect the change of average thermal difference of four 

surface DM11 PLs, cyan lines with circle markers show two DM11 PLs buried at four 

cm depth and blue lines without markers display 12 DM11 PLs' thermal change buried 

at three cm depth. Dotted red lines reflect thermal change of six soil pixels sampled from 

different parts of the image. Vertical red lines specify sunset and sunrise times. 
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There are significant thermal differences among soil and plastic landmines, especially 

during the nighttime, after applying the spatial filter. In this period, DM11 PLs are 

cooler than soil. As we observed also in second data set, daytime during which solar 

irradiation arrives on earth is not very useful for classification but the “signatures” are 

quite different during nighttime. Thus using nighttime patterns is sufficient to detect 

plastic PLs as we mentioned during second data set results. In order to demonstrate this 

phenomenon, Thirty-nine daytime images that were shot between 12:00 pm to 03:00 pm 

and 08:00 am to 11:45 am were combined. The proposed algorithm was applied on 

daytime image cube. Comparisons of the performances were given in section 7.3.7. 

7.3.2 Feature Reduction 

Spatially filtered data provided to classifiers are dimensionally reduced. Feature sizes for 

each classifier are tested and selected according to the detection rate. For four 

classification methods, classification rates versus feature sizes are given in Figure 63 

and Figure 64, where 1% of the data is used as the training set, and Figure 65 and Figure 

66, where 3% of the data is used as the training set. 

7.3.3 Classification 

The results of the four classification algorithms using the second minefield data, which 

was captured by the FLIR camera, are given in Figure 68, Figure 69, Figure 70, and 

Figure 70. 

7.3.4 Post Processing and Automatic Detection 

The segments are labeled as landmine with their class names by the automated detection 

algorithms after smoothing. Smoothed QDA classification result is given in Figure 71 

and detection results are given in Figure 72, Figure 73, Figure 74 and Figure 75. 
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Figure 60  Diurnal thermal differences captured by FLIR 

  

Figure 61  Intensities differences captured by FLIR (9:00 p.m. to 06:45 a.m.). 
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Figure 62  Original thermal radiance change for the 3
th

 data set 

  

Figure 63  Detection/False Alarm Rates vs. KLT feature sizes before smoothing the 

classification results with 1% training set 
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Figure 64  Detection/False Alarm Rates vs. KLT feature sizes after smoothing the 

classification results with 1% training set 

  

Figure 65  Detection/False Alarm Rates vs. KLT feature sizes before smoothing the 

classification results with 3% training set 
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Figure 66  Detection/False Alarm Rates vs. KLT feature sizes after smoothing the 

classification results with 3% training set 

7.3.5 Performance Assessment 

Pixel-based evaluation and object-based evaluation were performed in order to evaluate 

the results for the first landmine data set. During the performance assessment of the 

second landmine, 3% of the samples from classes were used as the training set. 

To avoid transition zone contribution to the accuracy assessment in which deciding for 

the ground truth is subjective, 4.5 cm width buffer zones are created around PLs in the 

ground truth, and buffer zone-pixels are not taken into consideration during pixel based 

performance assessments as performed earlier.  
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Figure 67  The k-NN classification result before smoothing 

 

Figure 68  The SVM classification result before smoothing 

 

Figure 69  The MDA classification result 
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Figure 70  The QDA classification result before smoothing 

 

Figure 71  The smoothed QDA classification result 

Smoothing the classification results before segmentation, and enlarging training set do 

not promote the detection rates for QDA and MDA. However, SVM's detection rates get 

better. Smoothing the classification result before segmentation does not contribute 

positive effect on k-NN detection result; however, enlarging training set increases the 

detection results of k-NN. On the other hand, false alarm rates decrease with enlarging 

training set size for all algorithms. Change of the detection and false alarm rates for two 

different training set sizes are given in Table 12 and Table 13, respectively. Change of 

the detection and false alarm rates for two different training set sizes after smoothing are 

given in Table 14. 
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Even though larger detection rates can be obtained with QDA and MDA, false alarm 

rates are also larger than SVM's and k-NN's false alarm rates at the same feature sizes 

that are five and six. Therefore, SVM and k-NN false alarm rate levels are more stable 

and near zero for all feature sizes. When false alarm rates and detection rates are 

considered together, optimum feature size is within the range of 7 to 11 for MDA and 

QDA. The feature size that gives the maximum detection rate can be accepted as the 

optimum feature size for SVM and k-NN because of stable and low false alarm rates of 

SVM and k-NN. Optimum feature sizes are given with detection rates and false alarm 

rates in Table 15. 

Table 12  Detection and false alarm rates chance with smoothing in  

1% training set 

Classifier Max. detection 

rate (%), 

before 

smoothing 

Max. detection 

rate (%), 

after 

smoothing 

False alarm rate 

(%), 

before 

smoothing 

False alarm rate 

(%), 

after smoothing 

k-NN 62 57 1.2 0.1 

SVM 75 78 0.5 0 

MDA 94 94 8 5 

QDA 95 95 8 4 

Table 13  Detection and false alarm rates chance with smoothing in  

3% training set 

Classifier Max. detection 

rate (%), 

before 

smoothing 

Max. detection 

rate (%), 

after 

smoothing 

False alarm rate 

(%), 

before 

smoothing 

False alarm rate 

(%), 

after smoothing 

k-NN 73 71 0.9 0.1 

SVM 79 81 0.3 0 

MDA 93 93 7 4 

QDA 95 95 8 3 
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Table 14  Detection/false alarm rates change after smoothing wrt to training sizes 

Classifier 

Max. detection 

rate (%), 

1% training set 

Max. detection 

rate (%), 

3% training set 

False alarm rate 

(%), 

1% training set 

False alarm rate 

(%), 

3% training set 

k-NN 57 71 0.1 0.1 

SVM 79 81 0 0 

MDA 94 93 5 4 

QDA 95 95 4 3 

Table 15  Optimum feature sizes 

Classifier Optimum 

feature size 

Detection rate (%) 

3% training set 

False alarm rate (%), 

3% training set 

k-NN 37 71 0.1 

SVM 16 81 0 

MDA 7 84 1.2 

QDA 11 90 0.7 

 

Figure 72  The k-NN automatic detection result 
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Figure 73  The SVM automatic detection result 

 

Figure 74  MDA automatic detection result 

 

Figure 75  The QDA automatic detection result. 



 76 

Table 16  True Positive, False Negative and False Positive values. 

Classifier TP FN FP 

k-NN 20 0 0 

SVM 19 1 0 

MDA 20 0 1 

QDA 20 0 0 

From TP, FP and FN values, True Positive Rate (recall) and Precision are calculated and 

are given in Table 17. When results are analyzed, it is observed that QDA and k-NN (k 

= 1) give the best results. 

When object-based classification and pixel-based classification are taken into account 

together, QDA gives the best result by detecting all the PLs with the largest detecting 

rate. SVM worked with minimum false alarm rates. In addition, SVM missed a PL and it 

is critical for mine cleaning on the spot. The k-NN algorithm gives the best results when 

the k parameter is selected as one (Figure 76). 

 

Figure 76 Detection rates & k 

Table 17  True Positive Rate and Precision 

Classifier True Pos. Rate (recall) (%) Precision (%) 

k-NN 100 100 

SVM 95 100 

MDA 100 95 

QDA 100 100 
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7.3.6 Optimization of Spatial Filter 

Different Ro sizes and sample point numbers influence on the QDA classification results 

were experienced on second minefield data with 3% training set in order to get an idea 

of the optimum spatial filter size. 

Firstly, sample-point number is fixed to 48 and Ro size is changed to calculate the 

optimum Ro size. These different outer radii were 15 (5.1 cm), 30 (10.2 cm), 50 (17 cm) 

and 70 (23.8 cm) pixels. The classification detection rates and false alarm rates before 

and after smoothing are given in Table 18 and Table 19, respectively, with respect to 

spatial filter outer radius sizes. 

These results' plots can be seen Figure 77 and Figure 78 as well. The algorithm gives the 

best result with 50 pixel-size spatial filter that corresponds to two times DM11 diameter 

(8.1 cm, 24 pixels). This size of the filter leads to maximum detection rates and 

minimum false alarm rates compared to other solutions. In addition, the positive effect 

of smoothing on decreasing false alarm rates can be seen clearly from Table 18, Table 

19 and Figure 77, Figure 78 as well. 

Table 18  Rate results with various Ro before smoothing classification results 

Classifier 
Ro 

(pixels) 

Max. detection rate (%), 

3% training set 

False alarm rates (%), 

at max. detection rate points 

QDA 

15 79 21 

30 91.5 10.4 

50 95 7.8 

70 94 5.4 

Table 19  Rate results with various Ro after smoothing classification results 

Classifier 
Ro 

(pixels) 

Max. detection rate (%), 

3% training set 

False alarm rates (%), 

at max. detection rate points 

QDA 

15 83 15 

30 92 5 

50 95 3.5 

70 94 5.4 
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Figure 77  Detection/False Alarm Rates vs. KLT feature sizes before smoothing the 

classification results with 3% training set 

 

Figure 78  Detection/False Alarm Rates vs. KLT feature sizes after smoothing the 

classification results with 3% training set 

Secondly, Ro size is fixed to 50 pixels that is optimum Ro size and sample-point number 

is changed to estimate optimum sample-point number. The detection results, false alarm 

rates, FP numbers are calculated and entire solutions are given in Table 20. The three-

hour data set is used during this calculation. The simulation results showed that sunset 

and sunrise times could be used instead of nighttime image cube. The simulation results 

contribution to the proposed method is given in section 8.3. 

Optimum solutions are taken when the sample-point number selected as 24. Thus, 

optimum spatial filter is calculated as 50 pixels outer diameter with 24 sample-point 

number. 
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Table 20  Sample-point numbers' influence on detection results 

Classifier 

Sample 

point 

number 

Max. detection 

rate (%) 

False alarm rates 

(%) 

FP 

QDA 

12 92 1.89 4 

24 90 0.77 - 

48 82 0.34 - 

96 84 0.48 - 

 

7.3.7 Performance Comparisons of the Daytime and Nighttime Image Cubes 

50-pixel Ro spatial filter was applied to the daytime and nighttime image cubes, and 3% 

of classes were used as the training set. During application of the proposed method QDA 

algorithm was used. The results of detection rates and false alarm rates of the two data 

sets are given in Table 21 for comparison. 

Table 21  Detection and false alarm rates with respect to imaging time of the day 

Data Max. detection rate (%) 
False alarm rate (%), 

at max. detection rate point 

Nighttime 95 5.2 

Daytime 82 25.1 

 

Broader results are plotted in Figure 79. In addition, the classification and detection 

results are given in figures from Figure 80 to Figure 83. The results are obtained using 

the optimum feature size that is 11 for QDA. 
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Figure 79  Detection/False Alarm Rates vs. KLT feature sizes after smoothing the 

classification results with respect to used data sets 

 

Figure 80  The classification result of nighttime image cube (m = 11) 

 

Figure 81  The classification result of daytime image cube (m = 11) 
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Figure 82  The detection result of nighttime image cube (m = 11) 

 

Figure 83  The detection result of daytime image cube (m = 11) 

It can be easily seen from Table 21 and Figure 80-Figure 83 that nighttime detection and 

false alarm rates are much better than daytime images as mentioned in Sections 

7.2.1Error! Reference source not found. and 7.3.1. 

7.3.8 The Unfiltered (raw) and Filtered Image Cubes Performance Comparisons 

The unfiltered and filtered nighttime image cubes were used during comparison. 50-

pixel Ro spatial filter was applied to the sunset and sunrise image cubes, and 3% of 

classes were used as the training set. During application of the proposed method QDA 
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algorithm was used. The results of detection rates and false alarm rates of the two data 

sets are given in for comparison. 

Table 22  Detection and false alarm rates comparisons of raw and filtered date 

Image Cube Imaging period 
Max. detection rate 

(%) 

False alarm rate (%), 

at max. detection rate point 

Raw 
9:00 pm – 6:45 am 

91 13 

Filtered 95 5.2 

The classification and detection results are given in Figure 84 and Figure 85. The results 

of raw image cube are obtained using 12-feature size. 

 

Figure 84  The classification result of nighttime raw image cube (m = 12) 

 

Figure 85  The detection result of nighttime raw image cube (m = 12) 
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Filtering image cube with presented spatial filter increases the detection rates and 

decreases the false alarm rates. The results can be seen in Table 22. In addition, same 

result can be inferred visually when comparing Figure 80 - Figure 84 and Figure 82 - 

Figure 85. 
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CHAPTER 8 

 

 

8. SIMULATION RESULTS AND DISCUSSIONS 

 

 

8.1 M48, and DM11 PLs Simulation Results with the First Test Area's Parameters 

The M48 PLs were buried at 1.2 cm and 3.8 cm and DM11 plastic PLs were buried two 

and three cm (Figure 13) in the first minefield. However, in this section one cm, three 

cm, and seven cm burial depth results are given in order to see soil depth influence on 

temperature differences between the soil surface above a PL and bare soil. 

8.1.1 M48 Metal PL Simulation Results 

When the burial depth is selected as one cm, diurnal temperature change is formed as in 

Figure 86 that reflects temperature change along the 80 cm soil surface during the 

diurnal cycle. The PL is at the center of the cross-section and it can be easily seen that 

there is a large temperature difference between PL encountered soil surface and the soil 

surface itself. Even the PL diameter can be predicted from Figure 86. 

Figure 88 was taken at 6 a.m. on 9 September 2015 by the FLIR camera. The 1.8 cm 

deep M48 PL is seen on the very top-right corner of the image. If the pixel resolution is 

known, the PL diameter can be predicted from the image. 

Change of the PL's soil-top surface and the soil-surface temperature difference are given 

in Figure 89. The black line shows temperature change between PL encountered soil 

surface and the soil surface, red line reflects temperature differences between one cm 

deep soil temperature and soil surface temperature. Vertical blue lines show sunset and 

sunrise times, and vertical fine red lines show the maximum difference times between 
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PL encountered soil surface, and the soil surface. As can be seen from Figure 86 and 

Figure 89, the metal PL is colder is during the daytime and the maximum difference 

(6.35 
o
) emerges at two pm, and the nighttime PL is hotter and the maximum positive 

difference (3.69 
o
) occurs at 5:15 am. The temperature variations though the soil cross-

section is given in Figure 87 at the maxima times. 

 

Figure 86 3-D temperature distribution on the soil surface during diurnal cycle        

(depth = 1 cm) 

Figure 90 reflects the cross section of temperature distribution along the soil surface 

when these differences are the largest. The PL surface encountered soil surface pixels 

are also distinguished in this figure.  

It can be understood from Figure 89 that the difference of one cm depth soil 

temperatures and soil surface temperatures are quite small. However, the gradient 

magnitude during daytime is larger than nighttime's. 
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Figure 87  Cross-section of temperature distribution when the PL encountered soil 

surface, and soil surface's temperature differences are maximum 

 

Figure 88  The image captured at 6 am with FLIR T 650 SC on 9 September 2015 
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Figure 89  Soil surface temperature and PL encountered soil surface/deep soil 

temperature difference during diurnal cycle (depth = 1 cm) 

When the metal PL is buried at three cm depth the magnitude of the maximum 

temperature difference gets smaller. The maximum differences are 4.98 
o
, 3.07 

o
, and 

they occur at 2:00 pm, and at 5:45 am respectively. The entire temperature distributions 

along the cross-section of the soil at these times can be seen in Figure 92. However, the 

gradient of deep soil temperature chance gets larger during the daytime (Figure 91, 

Figure 93). 



 89 

 

Figure 90  The soil surface temperature distribution (depth = 1 cm) 

 

Figure 91  3-D temperature distribution on the soil surface during diurnal cycle (depth = 

3 cm) 
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Figure 92  Cross-section of temperature distribution when the PL encountered soil 

surface, and soil surface's temperature differences are maximum 

 

Figure 93  Soil surface temperature and PL encountered soil surface/deep soil 

temperature difference during diurnal cycle (depth = 3 cm) 
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Contrary to one cm depth, the soil-surface temperature distribution gets curved shape 

where there is PL encountered soil surface (Figure 94). However, the PL still can be 

seen with naked eye. The M2 PL, whose diameter is identical with M48, is located at the 

very right bottom corner of the Figure 88, can be distinguished. 

When the burial depth increased to seven cm, the temperature differences between PL 

encountered soil surface and soil surface gets smaller. Maximum differences are 2.82 
o
 

and 1.78 
o
. The differences take place at 3:30 pm, and at 6:45 am, respectively (Figure 

96). The temperature distribution along the cross-section of soil at these times is given in 

Figure 97. 

When the soil depth increases, the temperature differences between the soil surface and 

deep soil increase as well. The reason is that when going in deeper soil, temperature gets 

cooler with respect to the soil surface temperature until a specific depth. At this depth, 

soil temperature stays nearly stable. However, surface temperature does continuously 

chance. Especially during daytime, soil surface gets hotter after sunrise and the gradient 

gets larger as well, on the other hand during nighttime soil surface temperature relatively 

stays stable so that gradient becomes stable and relatively small too. The valleys' depths 

and hills' heights are getting smaller when the depth of PL increases. When Figure 95, 

Figure 94, Figure 91 and Figure 86 are compared, the change among them can be easily 

seen. 

  

Figure 94  The soil surface temperature distribution (depth = 3 cm) 
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Figure 95  3-D the temperature distribution on the soil surface during diurnal cycle 

(depth = 7 cm) 

After three cm depth, metal PLs can be detected with neither naked eye, nor proposed 

method from thermal images without applying presented spatial filter. Proposed method 

using spatially filtered data set found 6.8 cm depth metal PLs. This shows that 1.78 
o 

temperature difference is enough to detect metal PL that is buried seven cm depth. 

8.1.2 DM11 Plastic PL Simulation Results 

Contrary to metal PL, plastic PL encountered soil surface is hotter than soil surface 

during daytime and cooler during nighttime. 3-D the temperature distribution on the soil 

surface during diurnal cycle is given in Figure 98 when the PL is buried one cm depth. 

The PL location is obvious. 
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Figure 96  Soil surface temperature and PL encountered soil surface/deep soil 

temperature difference during diurnal cycle (depth = 7 cm) 

 

Figure 97  Cross-section of temperature distribution when the PL encountered soil 

surface, and soil surface's temperature differences are maximum 
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Figure 98  3-D the temperature distribution on the soil surface during diurnal cycle 

(depth = 1 cm) 

 

Figure 99  Soil surface temperature and PL encountered soil surface/deep soil 

temperature difference during diurnal cycle (depth = 1 cm) 
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The differences of the plastic PL encountered soil surface temperatures and soil surface 

temperatures through the diurnal cycle are given in Figure 99. Maxima differences occur 

at 1:30 pm and 5:15 am, the values at these times are 5.32 
o 
and 3.09 

o 
respectively.  

The soil surface temperature-distribution is plotted in Figure 100 at the maximal 

difference times, and the cross-section is given in Figure 101. 

 

Figure 100  The soil surface temperature distribution (depth = 1 cm) 

 

Figure 101  Cross-section of temperature distribution when the PL encountered soil 

surface, and soil surface's temperature differences are maximum 
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Figure 102  3-D the temperature distribution on the soil surface during diurnal cycle 

(depth = 3 cm) 

In the event that buried depth is chosen, the maximum differences become 3.29
 o

, 1.96 
o
 

at 1:45 pm, and 5.15 am respectively. The 3-D temperature distribution is given in 

Figure 102, the temperature differences distribution between PL-encountered soil 

surface and soil surface is given in Figure 103, soil-surface temperature distribution, and 

temperature change along the soil cross-section at these times are given in Figure 104 

and Figure 105, respectively. 

Even though plastic landmines are not buried seven cm deep, the solutions are given in 

Figure 106, Figure 107, Figure 108 and Figure 109 for this depth in order to see the 

thermal distribution on the soil surface. The maximum differences take place at 3:15 pm, 

and 7:00 am. The maximum differences values are 1.52
 o
, and 0.94 

o
, respectively. 
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Figure 103  Soil surface temperature and PL encountered soil surface/deep soil 

temperature difference during diurnal cycle (depth = 3 cm) 

 

Figure 104  The soil surface temperature distribution (depth = 3 cm) 
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Figure 105  Cross-section of temperature distribution when the PL encountered soil 

surface, and soil surface's temperature differences are maximum 

The PL's influence is inversely proportional to the buried depth of the PL as expected. 

However, the temperature anomaly that is caused by the metal PL is almost twice larger 

than plastic PL's when the depth of PL is seven cm. Because of that, detecting deeper 

metal PLs is easier than plastic counterparts with the IR-based method. 

 

Figure 106  3-D the temperature distribution on the soil surface during diurnal cycle 

(depth = 7 cm) 
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Figure 107  Soil surface temperature and PL encountered soil surface/deep soil 

temperature difference during diurnal cycle (depth = 7 cm) 

 

Figure 108  The soil surface temperature distribution (depth = 7 cm) 
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Figure 109  Cross-section of temperature distribution when the PL encountered soil 

surface, and soil surface's temperature differences are maximum 

The entire solution for first test area's simulation is summarized in Table 23. 

Table 23  First test area based simulation solution  

 M48 Metal PL DM11 Plastic PL 

Depth of PL(cm) 1 3 7 1 3 7 

Max. Temperature 6.35 4.98 2.82 5.33 3.29 1.52 

Difference(degree) 3.70 3.07 1.79 3.09 1.96 0.94 

Max. Temperature 2:00 

pm 

2:00 

pm 

3:30 

pm 

1:30 

pm 

1:45 

pm 

3:15 

pm 

Difference's Hours 5:15 

am 

5:45 

am 

6:45 

am 

5:15 

am 

5:15 

am 

7:00 

am 

Sunset 7:10 pm 

Sunrise 6:23 am 

It can be inferred that maximum differences occur from 1:30 pm to 3:15 pm.  

8.2 DM11 PL Simulation Results with the Second Test Area's Parameters 

The second test area's soil was moist when the data was captured (8-9 March 2016). 

Therefore, the moist clay's thermal conductivity is used in this section. Twelve DM11 

plastic PLs were buried at three and four DM11 were buried at four cm depth in the 

second test area. 
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3-D simulation result of temperature distribution is given in Figure 109, and PL's caused 

anomaly in 30 cm soil surface is given in Figure 111 with different fields of view. The 

PL is located at the center of 30 cm cross-section. The soil surface above the PL is 

colder in both simulation and real data during the nighttime. In addition, the PL 

encountered soil surface reached the coldest temperature around at 6:00 am, which 

almost coincides with the sunrise hour, in both solutions. However, in simulation results 

the maximum positive anomaly occurs at 2:00 pm (Figure 112). Nevertheless, in the real 

results there are not any significant temperature anomalies.  

 

Figure 110  3-D the temperature distribution on the soil surface during diurnal cycle 

(depth = 3 cm) 

During daytime inconsistent temperature-changes are captured by the IR camera. These 

inconsistencies occur because of the clutter. The primary clutter sources are the effect of 

surface reflected sunlight and sky light on not perfectly smooth surface during the 

daytime. The clutter lessens the performance of IR cameras during daytime [13]. 

However, simulation's daytime portion gives the largest temperature differences because 
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the clutter's influences and signal to noise ratio are not included in the simulation. To 

sum up, the nighttime images are better for detecting surface anomalies as mentioned 

and showed in the results in 7.3.7. The temperature distributions on the soil surface and 

inside the soil are given in Figure 113 and Figure 114 respectively. 

  

  

Figure 111  Diurnal temperature distribution of 3 cm buried PL 
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Figure 112  Soil surface temperature and PL encountered soil surface/deep soil 

temperature difference during diurnal cycle (depth = 3 cm) 

 

Figure 113  The soil surface temperature distribution (depth = 3 cm) 
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Figure 114  Cross-section of temperature distribution when the PL encountered soil 

surface, and soil surface's temperature differences are maximum 

 

Figure 115  3-D the temperature distribution on the soil surface during diurnal cycle 

(depth = 4 cm) 
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If the burial depth increases to four cm, the solutions occurred as below. The results are 

given in Figure 115 - Figure 118. The overall simulation results are given in Table 24. 

 

Figure 116  Soil surface temperature and PL encountered soil surface/deep soil 

temperature difference during diurnal cycle (depth = 4 cm) 

 

Figure 117  Cross-section of temperature distribution when the PL encountered soil 

surface, and soil surface's temperature differences are maximum 
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Figure 118  The soil surface temperature distribution (depth = 4 cm) 

Table 24  Simulation solutions for the second test area 

 DM11 Plastic PL 

Depth of PL (cm) 3 4 

Max. Temperature Difference (degree) 
2.7693 2.2452 

2.2344 1.8860 

Max. Temperature's Times 
2:00 pm 2:20 pm 

6:30 am 6:15 am 

Sunset 5:48 pm 

Sunrise 6:09 am 

When we compare the first test area simulation and the second test area simulation, we 

can see that at the same depth, the occurring maximum temperature differences are 

larger in the second test area. This can be seen even by naked eye in Figure 119. Figure 

119 (a) and Figure 119 (b) are images captured at 6:00 am from the first and the second 

test areas respectively. The DM11s' locations are clearer on the second test area's image. 

The blurry black areas are PLs buried areas in Figure 119 (b). 

The visible phenomenon can be explained with the different thermal conductivities. The 

second minefield's soil thermal conductivity is larger because of moisture content of the 

soil. Water fills the air gap in the soil and increases the thermal conductivity. The 

numeric solutions, which we got from the simulation results, also support this 

interpretation. The maximum difference at three cm depth was occurred 2.24 
o 

in second 

test area and this value is 1.96 
o 
in the first test area.  
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(a) 

 

(b) 

Figure 119  Images captured at 6:00 am from first and second test areas 

Currently most of the mine detection and cleaning operations are done during summer 

times when the soil is dry; however, if the IR based systems are used, either these 

operations should be done during spring times or the minefields should be humidified in 

order to increase soil thermal conductivity.  

8.3 Contributions of Simulation Results to the Study 

The results of the simulations and the results of two real data sets show that maximum 

temperature differences occur approximately within the time range from two hours 

before sunrise to two hours after. However, the first maximum temperature difference 

that occurs in the afternoon cannot be used because of the clutter and hence relatively 

low signal to noise ratio with regard to nighttime images. In addition, maximum 

temperature gradient occurs within the time range approximately from one hour before 

the sunset to two hours after. These inferences can be made when the experimental 

results (Figure 47, Figure 60, Figure 62) and the simulation results (Figure 89, Figure 

93, Figure 96, Figure 99, Figure 103, Figure 107, Figure 112, Figure 116) are compared. 

At this point one opportunity appears. This opportunity is to decrease the data capturing, 

filtering times and to get rid of PCA step from the proposed method, which also lessen 
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the detection time. This can be possible if sufficient detection results are obtained with 

smaller image cube. 

Detection results acquired by using filtered image cubes that were captured in the time 

ranges of 4:45 am - 7:45 am, 4:00 am - 7:15 am and 9:20 pm - 7:05 am and QDA 

classification method are given in Figure 120, Figure 121 and Figure 122. The detection 

rates, false alarm rates, and detection algorithm processing times are given in Table 25.  

Even though there is one object-based False Positive alarm at each 4:00 am - 7:15 am, 

and 5:00 pm - 8:00 pm periods processed detection result, the detection rates, and the 

false alarm rates are quite good with regard to nine hours 45 min image cube result. 

There is not any false positive alarm at 4:45 am - 7:45 am image cube result, however, 

detection rate is not as good as others. Thus, using three to four hours data from the 

sunset and the sunrise periods give opportunity to detect all PLs with high detection 

rates and low false alarm rates without applying PCA transformation and finding 

optimum PCA size. In addition, even though detection duration differences, which are 

given in Table 25, are not significant, data capturing time decrease from approximately 

from 10 hours to three hours.  

 

Figure 120  4:45 am - 7:45 am period object-based detection result 
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Figure 121  4:00 am - 7:15 am period object-based detection result 

 

Figure 122  5:00 pm - 8:00 pm period object detection result 

Table 25   Detection results with respect to time intervals 

Imaging Period  False Alarm Rate (%) Detection Rate (%) Detection Time (s) 

4:45 am - 7:45 am 

(3 hrs) 0.62 77 209 

4:00 am - 7:15 am 

(3 hrs 15 min) 0.88 89 197 

9:00 pm - 06:45 am 

(9 hrs 45 min) 0.70 90 202 

5:00 pm - 8:00 pm 

(3 hrs) 0.74 94 198 
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CHAPTER 9 

 

 

9. CONCLUSIONS 

 

 

Thermal differences between the bare soil and the soil surface above buried mines are 

quite small. In this study, a circularly symmetric spatial filter is applied to amplify these 

differences. Applying presented spatial filter increases the detection rates and decreases 

false alarm rates. Since this signal has a dynamical behavior throughout the day, using 

time series has the benefit of detecting and classifying mines with a high accuracy. It is 

observed from two different data sets captured in very different conditions that the time 

between two hours before the sunset, two hours after the sunrise, and nighttimes are the 

most useful periods.  

The period from two hours before sunset/sunrise to after two hours sunset/sunrise is 

furthermore valuable. Using this period in the proposed algorithm without applying PCA 

transform allows the detection of all the PLs. This could decrease the processing time, 

and it could make the execution easier for operators. 

Classification algorithms, which are applied on processed data, can detect and classify 

most of the buried objects with quite small training set. QDA has given the best results 

with both data sets. This is expected by us because QDA uses individual class means 

and class covariance different from other maximum likelihood classifiers like MDA or 

matched filter classifiers. Matched filter classifier uses covariance matrix calculated 

from the entire data set [45].  

Meanwhile the proposed algorithm did not miss (FN) any PL or give any FP alarm when 

using QDA algorithm in the proposed method when the 10 hours nighttime image cube 

used. When the three hours sunset and sunrise times used, one FP alarm emerged. 
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However, during mine detection and cleaning FP alarms do not cause problem if their 

numbers are in acceptable range. The biggest threat is undetected mines, and proposed 

method did not miss any PL even with three hours sunset and sunrise filtered image 

cubes. In addition, algorithm did not confuse buried stones' pixels with landmine pixels 

and soil pixels as well.  

Temperature anomalies are larger on the soil surface when the soil is moist. This is 

verified with simulation results using slightly moist second test area's parameters. Thus, 

mine detection dates should be selected when the searching areas are moist if the IR-

based detection system is used. If the time could not be selected according to soil 

moisture level, humidifying the search area would increase the detection rate.  

It is observed that enlarging training set decreases false alarm rates for all algorithms; in 

addition to that, it increases detection rates for SVM and k-NN. Enlarging only soil 

pixels size in training set contributes to increasing the detection rate, and decreasing the 

false alarm rate. 

The spatial filter’s radii and number of sample points also affects the results. The best 

results are obtained with 50 pixels Ro (outer radii of spatial filter) that corresponds to 

two times the DM11 diameter and 24-sample points. 

The major problem of conventional magnetic field based detection systems is inability to 

detect buried plastic landmines that has small amount of metal or no metal at all. The 

proposed algorithms overcome this difficulty of finding plastic and metal landmines 

thanks to the spatially filtered data. 

To further the research, real effects (rough terrain, vegetation, rain, snow etc.) can be 

investigated. In addition, aircrafts like drones can be used as platforms that carry thermal 

cameras for capturing images from large test/real minefields and can be worked on with 

these image series as well.  
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