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ABSTRACT

DIRECT ADAPTIVE FLIGHT ENVELOPE PROTECTION

Gürsoy, Gönenç

Ph.D., Department of Aerospace Engineering

Supervisor : Assoc. Prof. Dr. İlkay Yavrucuk

May 2016, 130 pages

In this thesis, two vital signals to enable flight envelope protection, namely the

onset to the flight envelope, i.e. limit margin, and the available control travel

to reach the limit boundary, i.e. control margin, are estimated using adap-

tive neural-network-based approximate models. An adaptive learning method,

known as concurrent learning, is used to update the adaptive weights online with

guaranteed signal bounds. Current and previously recorded data are used con-

currently in the weight update. Minimum singular value maximization method

is used to record necessary data online for concurrent learning. Results showed

better convergence properties of the network weights compared with results in

the literature in which only the current data is used for network weight up-

dates. New methodologies are introduced to calculate limit and control margins

from approximate online models. None of the introduced methods require on-

line iterations and therefore remove a previously introduced assumption related

to iteration convergence. Nonlinear fixed wing and rotary wing aircraft models

are used to show the effectiveness in simulation for estimating limit and control
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margins and avoiding the limit through artificial control saturation.

Keywords: flight envelope protection, limit prediction, limit avoidance, carefree

maneuvering, active controls, fly-by-wire
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ÖZ

DOĞRUDAN ADAPTİF UÇUŞ ZARFI KORUMASI

Gürsoy, Gönenç

Doktora, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. İlkay Yavrucuk

Mayıs 2016 , 130 sayfa

Bu tezde uçuş zarfı koruması için gerekli olan iki önemli sinyal: limit marjini

olarak bilinen zarf limitlerine uzaklık ve kontrol marjini olarak bilinen kontrol

limitlerine uzaklık sinyalleri, adaptif sinir ağı tabanlı yaklaşık modeller kullanıla-

rak tahmin edilmiştir. Eş zamanlı öğrenme olarak bilinen ve sinyallerinin sınırlı

olduğu garanti edilen bir adaptif öğrenme yöntemi, yapay sinir ağı katsayılarını

güncellemek için kullanılmıştır. Anlık veriler ve geçmişte kaydedilen veriler eş

zamanlı olarak katsayı güncellemesinde kullanılmıştır. Eş zamanlı öğrenme için

gerekli olan veriler, en küçük tekil değeri büyütme yöntemi kullanılarak çevrimiçi

kaydedilmiştir. Literatürde bulunan, anlık verileri kullanmaya dayalı öğrenme

yöntemlerine göre daha iyi adaptasyon sonuçları elde edilmiştir. Elde edilen çev-

rimiçi modeller kullanılarak limit ve kontrol marjinleri tahmin edebilecek yeni

yöntemler sunulmuştur. Sunulan yeni yöntemler, çevrimiçi iterasyonları ve ön-

ceki adaptif yöntemlerde ihtiyaç duyulan çevrimiçi iterasyon tabanlı varsayımları

gerektirmemektedir. Geliştirilen yeni yöntemlerin verimliliği, doğrusal olmayan
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uçak ve helikopter modelleri kullanılarak limit ve kontrol marjinleri tahmininde

ve kontrol limitleme yöntemi ile limitlerden kaçınılarak gösterilmiştir.

Anahtar Kelimeler: uçuş zarfı koruma, limit belirleme, limitlerden kaçınma, aktif

kontroller
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CHAPTER 1

INTRODUCTION

Aircraft have limits that should be avoided during flight to increase the overall

confidence and safety. For a piloted aircraft pilot has to monitor the limits using

the visuals in the cockpit and ensure safety in the cost of increased workload.

Flight envelope protection is an area of research in literature and its focus is

to develop algorithms or methods that can effectively cue pilots during flight

to stay within the boundaries of a flight envelope. Such algorithms or methods

are used to develop Envelope Protection Systems (EPS) to improve handling

qualities and safety for both manned and unmanned aircraft.

1.1 Preliminaries

Boundaries of a flight envelope are generally restricted by aerodynamic, struc-

tural, power, control and operation specific limits (Fig. 1.1). For instance, the

boundaries of a V-n diagram may define the aerodynamic limits such as angle

of attack and airspeed limits. Related with structural integrity, maximum and

minimum normal load factor limits define the structural operating boundaries.

The limits associated with maximum engine torque and power are some exam-

ples of power related limits. Most of the aerodynamic, structural and power

limits are associated with allowable sets of control positions, therefore, are of-

ten regarded as control limits [1]. There are additional limits such as vertical

speed limits, typically defined to increase safety for a helicopter in a low height

operation. Several operations or missions may require additional limits to in-

crease safety. All these limits and others define the restricted flight conditions,

1
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Figure 1.1: Maximization of Operational Envelope to the boundaries of Flight
Envelope

hence, are regarded as the boundaries of a flight envelope. Note that in the

terminology of flight envelope protection, a state or a parameter which limits

the boundary of a flight envelope is called as limit parameter. Therefore, the

parameters summarized above are only a few examples of limit parameters in

the area.

1.1.1 Basic Methods for Flight Envelope Protection

Envelope Protection Systems are not only designed to warn a pilot to avoid flight

envelope boundaries but also designed to enable effective maneuvering along the

boundaries of a flight envelope. In literature, Envelope Protection Systems are

also known as Carefree Maneuvering Systems (CFMS). Carefree maneuvering

is a term used to describe a handling quality for modern aircraft such that the

pilot is enabled to fly along the edges of a flight envelope. In the absence of an

envelope protection or carefree maneuvering system, the monitoring of aircraft

limits may significantly increase the workload on the pilot and may result in

degraded aircraft performance and poor handling qualities. Whereas, in the

presence of an EPS or CFMS, the allowable operational envelope, which is a

2



safe envelope that pilots typically use, can be maximized to the boundaries of

an actual flight envelope (Fig. 1.1), hence the full performance of an aircraft can

be maintained. It is apparent that systems which enable carefree maneuvering

will become more important as the design requirements related with agility and

maneuverability dominate the design of future aircraft.

The task of envelope protection is done in the past using simple devices or

methods. Aural warnings and visual cues in the cockpit are just some ways of

cueing the pilot for the task of envelope protection. A simple way is to visualize

the distance of the considered parameters to the envelope limits through the

Multi Functional Displays (MFDs), where the colour of the visuals might change

according to the current distance to the limiting value. Also, visual cues can be

sustained with aural cues as the aircraft fly closer to the envelope limits. Other

than visual or aural aids, some devices such as stick shakers are often used to

vibrate pilot controls as a stall warning for fixed wing aircraft. These simple cues

can be initiated when a conservative envelope limit, also known as a pre-limit,

is exceeded as in Figure 1.2.

Envelope	Limit	

Time	(sec)	

Pilot	Cue	ini)a)on	

Limit		
Exceedance	

t1	 t2	

Pi
lo
t	I
np

ut
	

Li
m
it	
Pa
ra
m
et
er
	

Conserva)ve	Limit	

Figure 1.2: Exceedance of a Conservative Envelope Boundary
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A concern in the selection of conservative limits is that a selected limit might be

too preventive to maneuvere at some flight conditions. Hence, the performance

and the handling qualities might degrade due to the over protection and care-

free maneuvering along the actual boundaries might not be possible. On the

other hand, at some flight conditions, aircraft may have relatively fast transient

dynamics. In that case, the time of a conservative limit exceedance might be

too late for a pilot to react against the actual limits. Therefore, the selection

of a conservative limit requires flight testing activities to predict the dynamic

behaviour of the aircraft around the flight envelope boundaries and tuning ac-

tivities with the pilots. Some examples of conservative limits for envelope cueing

can be found in the Commanche RAH-66 helicopter [2]. In RAH-66, visual cues

are given through the Helmet Mounted Display (HMD), and aural cues are given

through the pilot headset. Conservative limits for load factor, main rotor shaft

bending and engine torque limits are provided to the pilot. Instead of enabling

the carefree handling capability, the featured envelope cueing system is designed

to maintain safety and increase situational awareness during flight.

Other than providing the pilot with a variety of cues, the inputs of the pilot can

be reshaped for automatic envelope protection. This idea is applicable if there

exist an Automatic Flight Control System (AFCS) or a Stability Augmentation

System (SAS) integrated to the flight control system of the aircraft. As depicted

simply in Figure 1.3, the pilot input u can be modified by the flight control

system for not to violate a flight envelope limit. In this technique, AFCS/SAS

system gains (controller gains) can be manipulated as the aircraft fly closer

to the limit parameter boundaries. This concept is first introduced in [3, 4]

AircraH	
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u u + �uFlight	
  Control	
  
System	
  (FCS)	
  

Figure 1.3: Modification of the Pilot Input through AFCS/SAS
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for load factor limiting. Even with the full deflection of the stick, maximum

load factor is shown to be avoided by manipulating the controller gains. Later,

similar approaches are applied for Eurofighter and Airbus A319/320 aircraft. In

the Eurofighter, pilot inputs are manipulated automatically in the flight control

system to avoid the angle of attack and the load factor boundaries [5]. For the

Airbus A319/320, relatively simple feedback laws are used for the maximum

load factor and the maximum angle of attack protection [6]. Feedback laws are

kept simple since the aircraft is not maneuvered aggressively.

Another example where the controller gains are manipulated for envelope pro-

tection is the RAH-66 helicopter. In the flight tests of RAH-66 program [7],

very large longitudinal hub moments are reported for given longitudinal cyclic

inputs. Instead of developing a hub moment cueing system, the solution is done

through modifying the AFCS laws. At the end, the AFCS laws are manipulated

to maintain the hub moments in a structurally safe region.

Note that the manipulation of the controller gains or the pilot inputs according

to the limits or changing flight conditions require a careful investigation since

the handling qualities for a conventional aircraft or helicopter can easily be

degraded by the modification of the controller gains. An additional care may

also be required if the pilot is not allowed to override the protection system as

in the Eurofighter and A319/320 aircraft [5, 6]. Therefore, the design of such

a system, based on the manipulations of the controller gains and pilot inputs,

may require a complete information and analysis about the dynamics of the real

aircraft. Such an engineering activity may not be straightforward, and in general

require flight testing and evaluation.

1.1.2 The Use of Fly-By-Wire Systems

For aircraft that have Fly-By-Wire (FBW) control systems, more advanced en-

velope protection methods are applicable. In a FBW system, pilot controls and

control surfaces are not mechanically linked. Typically, an active control stick

driven by a software is used to transfer pilot inputs to the control surfaces, as

in Figure 1.4. The active control software is programmed to simulate the aero-
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dynamic and mechanical loads on the pilot stick in order to match the real feel

of the handling of the aircraft. Other than simulating the aerodynamic and me-

chanical loads, active controls in a FBW aircraft can be programmed to apply

tactile cues for envelope protection.
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Figure 1.4: Schematic of a Fly-By-Wire Control System

The term tactile cues refers to the cues given in a FBW control system. Using

the programmable force-feedback feature of the active controls, various control

travel limiting and control rate limiting cues or several combinations of both can

be given through the pilot stick. In general, the cues are known as hard stops

and soft stops in active control terminology. Hard stops are generally used for

the aircraft parameters that have limits which should never be exceeded. These

limits are also known as hard limits. Structural limits such as maximum normal

load factor for a fixed wing aircraft and maximum resultant hub moment for

a rotorcraft might be some examples of hard limits. Soft stops are typically

used for the aircraft parameters that have relatively more tolerance after a limit

exceedance. These limits are known as soft limits. Transient torque and tem-

perature limits for a helicopter engine might be some examples of soft limits.

In previous studies [8, 9, 10, 11], tactile cues given through a FBW system are

shown to be more effective for envelope protection then the cues given through

aural and visual protection methods. It is also demonstrated that the effective-

ness of the tactile cues can be significantly enhanced if they are provided before
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the time of an actual limit exceedance.

Tactile cues can be enabled through an active control stick when the proximity

of a future state of the aircraft to the envelope boundaries, and its mapping

to the control axes are available. Proximity of a future state to the envelope

boundaries is known as limit margin in flight envelope protection. Limit margin

can be thought as an indication of closeness to the envelope limits. When the

limit margin information is translated to the control axes, the translated margin

is known as control margin. Control margins are the allowable control travels

that would result in flight envelope boundaries. Both margins are the two vital

signals for flight envelope protection and the determination or the prediction of

both information is known as limit detection.

Limit detection concerns with the estimation of limit and control margins. An

example for limit detection is demonstrated in Figure 1.5. In the figure, response

of a limit parameter for a given control input along with the predicted limit and

control margins are presented. Typically, estimation of a limit or control margin
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Figure 1.5: Demonstration of Limit Detection
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require estimation of a future state, hence require lead time estimations. When

a future state is detected to reach the flight envelope boundary, that is when

the limit or control margin is zero (at time t1 in Figure 1.5), the cueing of the

pilot can be initiated.

Following the task of limit detection, estimated margins can be used to cue

a pilot to avoid approaching envelope boundaries. This task is called limit

avoidance. For a FBW aircraft limit avoidance can be done through control

limits (Figure 1.5). Control limits can be thought as the locations of the hard

and soft stops on the control axes for envelope cueing. Also, control limits can

be considered as the artificial limits on the control axes, which are constructed

using the control margin estimation. Estimation of control limits using the

control margin estimation will be detailed in the following chapters. When a

control margin is detected as zero, that is when a pilot input exceeds an allowable

control position, hard stops and soft stops can be given as tactile cues through

the active control stick for limit avoidance.

A real implementation of such an envelope cueing system, including the esti-

mation of limit and control margins and their integration to FBW controls, is

recently done for CH-53K heavy lift helicopter. A brief summary of the meth-

ods applied are published in [12]. In the application, tactile cues are provided

to the pilot for the avoidance of power and load factor limits. For the avoidance

of power limits, soft stops are provided on the collective axis when the power

signal is detected to reach the MCP (Maximum Continuous Power) limit. After

the MCP level, collective shaker cues are provided to avoid MAP (Maximum

Available Power) limit. Power calculation is made as a function of the torque

signal, therefore, an approximate predictive model between the torque response

and the collective input is used for the estimation of collective limits. The pre-

dictive model is mentioned to be a function fit generated through the flight tests

which are done specifically for the generation of the predictive model. For the

avoidance of load factor limits, soft stops are applied on the longitudinal axis

of the cyclic when the load factor is detected to reach the limit value. After

exceeding the load factor limit by a specified tolerance a shaker is triggered to

provide further cues. A predictive model which relates the load factor and the
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longitudinal cyclic input is used to estimate the longitudinal cyclic limits which

are also the soft stop locations. Again, specific flight tests were performed for

the generation of such a model. Power limit cues and load factor cues were found

to be usable and effective by the pilots at the end of the tests.

To conclude, the estimation of limit and control margin information is a major

task for envelope protection. If the aircraft doesn’t have a FBW control system,

then at least both margins can be displayed in the cockpit visuals to generate

visual cues. Whereas, if the aircraft is a FBW aircraft, control margins can be

used for effective protection and cueing. Note that the active control systems

are typically programmed to avoid a control limit or a zero control margin.

1.1.3 Limit Parameters and Response Types

In the area of flight envelope protection limit parameters are classified with

respect to their response types [13]. This is because the type of response of

a limit parameter ascertains which limit detection and avoidance approach to

implement. Reference [9] is an example in which envelope cueing methodologies

are implemented according to the response types of limit parameters.

Limit parameter response types are summarized in Figure 1.6. For a given step

input, some limit parameters exceed their limits during a transient response.

These parameters are known as peak response critical limit parameters in the

literature. Hub moments, main rotor angular speed and flapping amount of

the main rotor blades are some examples of the peak response critical limit

parameters in the literature for rotorcraft. Another type of a limit parameter

is called steady state critical limit parameter. For a given step input, these

type of parameters reach their maximum value at their steady state response

as shown in Figure 1.6b. In general, the angle of attack and the load factor

are some examples for the steady state critical limit parameters of a fixed wing

aircraft. Yet, some limit parameters have both steady state critical and peak

response critical limits as in Figure 1.6c. In general, power related limits of a

helicopter have both type of limits. For instance, the torque and the temperature

signals for the turboshaft engines of a helicopter are known to have peak and
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steady state critical limits. However, it is important to note that for some limit

parameters the peak limit exceedance may not be as critical as the exceedance

of the steady state limit. In such a case, the considered limit parameter can be

treated as steady state critical only. Another response type, shown in Figure 1.6,

is called integral response critical type. Typically, the attitude angles such as

pitch and bank angles are examples of that response type. In [9], bank angle

is used as an integral response critical limit parameter and a related envelope

cueing methodology is proposed.
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Figure 1.6: Limit Parameter Response Types for a given Step Input
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1.2 A Survey of Existing Limit Detection Methodologies

Up to this section a variety of methods for flight envelope cueing have been

introduced. Those methods can be classified as the ones that use a lead time

estimation and the ones that do not use. The methods [2, 5, 6, 7] given in

Subsection 1.1.1 are based on the detection of conservative limits, or the manip-

ulation of controller gains. Note that these methods do not take into account

the proximity of a future state estimate to the envelope boundaries, hence do

not use lead time predictions. Whereas, the studies [8, 9, 10, 11] and [12] given

in Subsection 1.1.2 are based on the proximity of a future state estimate to the

limits, therefore use lead time estimations for envelope cueing. In this section,

existing limit detection methodologies in the literature, which are based on lead

time estimations of the limit parameters or controls, are presented.

Envelope protection studies related with lead time estimations begin with [14]

and the references therein. Reference [14] is related with RPM cueing in the

collective axis for rotorcraft. A linear adaptive element is used for time series

prediction. In the approach, the current and the preceding values of the collective

input and the current value of the RPM of the main rotor are used to predict the

next time step value of the RPM. Constructed time series predictor is inverted

to calculate artificial limits on the collective. In the inverted model, the term

related with the future time step prediction, i.e. the next time step value of the

RPM, is replaced with the RPM limit for control limit prediction. Note that in

that study, the prediction horizon of the limit parameter is limited to one time

step ahead.

In [15], polynomial neural networks (PNNs) are used to provide the pilot with

main rotor hub moment and torque limit cues. In the approach, PNNs are

trained offline and used to make online predictions in a fixed time horizon.

Offline trained PNNs are augmented online with a bias correction to increase

accuracy. Compared to [14], a larger prediction horizon which is between 0.25 to

0.5 seconds is achieved using PNNs. PNNs are also used in [8] for lead time pre-

dictions. Reference [8] concerns with the comparison of conventional inceptors

and active sidesticks. Conventional inceptors are the ones that have large dis-
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placements as the typical helicopter controls and active sidesticks are the short

displacement controls which are already mentioned in Subsection 1.1.2. In the

comparison study, torque and equivalent retreating indicated tip speed (ERITS)

limit cues are provided to the pilot through both type of active controls. Fixed

time horizon predictions are obtained with offline trained PNNs. In Figure 1.7

the control margin estimation algorithm of [8] is presented. In the approach,

PNNs are corrected with the actual measurements in the low frequency region,

i.e. using low pass filters, to increase the prediction accuracy at the steady state.

Reference [11] is another example in which similar fixed time horizon prediction

methods are implemented for lead time estimations.
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Figure 1.7: Control Margin Estimation using PNNs [8]

Fixed time horizon prediction methods are often limited by neural network’s

prediction time step [13]. In general, the available lead time of a step response

is not guaranteed to be covered by a selected time horizon. This is a concern

in an approach based on fixed time horizon prediction. Note that the selection

of a time horizon may also depend on the size of the neural network and the

dynamics of the considered limit parameter. Therefore, the selection of a correct

fixed time horizon for a specific limit parameter may not be straight forward.

Another way to estimate a future response for the aircraft dynamics can be done

using a maneuvering steady state condition called dynamic trim. Dynamic trim

condition, which is analytically the trimming of fast aircraft states [10], is very

often used to predict future response of aircraft. Fast aircraft states such as

angle of attack, load factor or angular rates reach an equilibrium quickly for a
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given pilot control input, whereas the slow states of aircraft such as airspeed

may continue to change. Therefore, the estimation of the dynamic trim state of

fast aircraft parameters for a given set of control inputs, provide an estimation

about the future response and enables the calculation of the proximity to the

limit values at the onset of limit violations. In addition, the dynamic trim

condition can be used to estimate the allowable control travels which are the

maximum control travels that result in the flight envelope limits.

Dynamic trim concept for envelope protection is first used in [10] in which the

dynamic trim state and the allowable control travels of a tilt-wing aircraft are

estimated using function approximations. Angle of attack and the load factor are

taken as the limit parameters. Large datasets are obtained using high fidelity

simulation data to represent the dynamic trim state of the limit parameters,

and the datasets are fit into a multilayer neural network. In Fig. 1.8 the neural

network structure used in [10] is presented. In the approach the dynamic trim

data is used to represent a limit parameter as a function of slow states and

control inputs.
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Figure 1.8: Multilayer Neural Network used in [10]

The network is first trained offline with a-priori data and later used in simula-

tions to predict the dynamic trim state of aircraft. In parallel, allowable control

travels are estimated online by calculating the sensitivities of the neural network
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outputs with respect to the control inputs. Neural network is perturbed by each

control input and slow state to obtain the partial derivatives, hence the sensitiv-

ities. In [16], the algorithm is improved and named as Adaptive Dynamic Trim

Estimation by adding an online trained neural network. The network trained

online is used to compensate for the error bias between the network approxima-

tion and the limit parameter measurement (Fig. 1.9). The online correction for

the dynamic trim predictions are made through a low pass filter, hence the low

frequency region of the prediction response is corrected.
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Figure 1.9: Adaptive Dynamic Trim Estimation Algorithm [16]

Note that adaptive dynamic trim estimation algorithm is applicable for the

limit parameters that reach their maximum value at the steady state response

and is not capable of estimating the peaks that may exist for the transient

response critical limit parameters. In [16], a peak response estimation algorithm

is developed using linear fast state models that are obtained offline using high

fidelity simulation data.

The algorithms developed in [10, 16] are applied for various envelope protection

applications for both fixed and rotary wing aircraft. In [17], a comprehensive

collective axis cueing system is proposed for the avoidance of engine and trans-

mission limits of rotorcraft. Steady state torque limits are estimated using offline

trained neural networks, whereas the transient RPM and transient torque limits

are predicted using linear models. Collective cueing for one engine inoperative

and autorotation cases are studied. In [18], evaluations of the studies presented

in [17] are tested with pilots. The study shows that collective axis tactile cueing
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is effective in reducing pilot workload. In [19], main rotor hub moment limits

which are often critical in the transient response are studied. Later in [20], the

methods are tested with pilots in a high fidelity simulation environment.

Another study which requires a-priori datasets for dynamic trim estimation is [9].

In that study, various tactile cueing experiments are presented for rotorcraft.

The lead time estimations of the limiting variables such as hub moments are

obtained with offline trained neural networks. Predicted future response is used

with linear models to estimate control limits, i.e. soft stop locations. The capa-

bilities of the active controls for the envelope protection task are demonstrated

through a variety of examples.

A recent study is [21] in which a technique based on receding horizon control

is introduced. In the approach, Linear Parameter Varying (LPV) models of

aircraft dynamics are obtained offline using simulation models and later used

online to estimate control margins.

The main difficulty in the approaches above is that it is a demanding process to

obtain necessary datasets to generate data tables or approximate models that

are correct for a large region of actual flight conditions including the boundaries

of a flight envelope. Moreover, it is a challenging task to collect dynamic trim

data for a large region of flight conditions, various control positions, aircraft

mass and balance combinations, etc.

Advances in neural network based adaptive control algorithms [22, 23, 24, 25]

and adaptive observer solutions [26] has allowed the development of new meth-

ods. In [13] and [27], an adaptive envelope protection approach that requires

limited a-priori plant information is introduced for online limit and control mar-

gin estimation. Compared to previous studies, the motivation in that approach is

to obtain the information required for envelope protection through online adap-

tive learning even when the datasets representing the dynamic trim condition

are not available. In the proposed methodology, considered aircraft dynamics

are approximated online using nonlinear dynamic models [27]. Adaptive neural

networks are used in the approach to cancel out the modeling errors due to the

uncertainties between the actual dynamics and the dynamics approximated by
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the local linear models. Limit and control margins are estimated by inverting

and iterating the online generated approximate dynamics. Simulations are used

for the demonstration of the method in which a linear model of a helicopter

and a nonlinear model of the XV-15 tiltrotor are implemented. Dynamic trim

estimations are shown to be performed with a minimum amount of information

about the aircraft, therefore, the method is found to be an effective method.

Large datasets or flight test data representing the dynamic trim condition are

shown to be not required. For unmanned aircraft, the method is used to predict

allowable commands, i.e. command margins, to the autopilot [28] and tested in

real flight. In [29], unmanned aerial vehicles are used to demonstrate automatic

limit avoidance through establishing finite-time horizon prediction methods. In

that work, the online models developed in [28] and [27] are used.

The methods developed in [13, 27] and [28] are known to be the initial attempts

for the implementation of the online parameter estimation algorithms/laws for

flight envelope protection. A summary of the online parameter estimation laws

that exist in the literature can be found in [30]. Online parameter estimation is a

function approximation problem in which a set of parameters of an approximator

function are tuned online to fit the actual measurements. The tuned parameters

are in general called weights and the tuning is called weight update. Weights are

updated using certain mathematical rules known as weight update laws in the

literature. For the task of flight envelope protection [13, 27, 28], online weight

update laws are used to capture the unmodeled dynamics between approximate

models and actual measurements. Although many of the update laws in liter-

ature are shown to achieve asymptotic convergence of the approximation error

to zero, the convergence of the weights to the optimal values, i.e. to the ideal

neural network weights, can not be guaranteed [31]. This is related to a well-

known condition called persistency of excitation (PE) in the adaptive element.

In general it is required to have persistently exciting signals in the inputs of the

adaptive element to achieve convergence to the optimal values. Apparently in

practice, it may not be possible to give such inputs, i.e. PE type inputs, to an

aircraft online due to safety issues. Therefore, because of the limitations of the

weight update laws, the previous online models generated for the task of flight
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envelope protection [13, 27, 28] are locally valid online models.

Later, the methods presented in [28] and [27] are improved in [32] by adding

a recent neural network weight update law in the adaptation called concurrent

learning [33]. Concurrent learning is introduced in [34] to improve convergence

properties of the adaptive controllers for the scheme of Model Reference Adaptive

Control (MRAC). The goal in concurrent learning is to locate the adaptive

weights around a set of ideal values without requiring persistency of excitation

in the inputs of the adaptive element. This case is demonstrated by using both

instantaneous and online recorded data in the weight update. When both data is

used concurrently, adaptation in the long term is shown to be possible without

requiring PE type signals. For the problem of flight envelope protection, the

tools developed in [34] and [33] are applied in [32] in which online dynamic

models that are not only valid at the current state but also valid far from the

current state are obtained. A comparison study of using only instantaneous

data and using both instantaneous and recorded data in the weight update law

is demonstrated through simulations performed for a fixed wing aircraft model.

The accuracy of the limit and control margin estimations is shown to increase

in the long term [32]. The method is also implemented for the avoidance of the

engine limits such as engine outlet temperature and gas generator speed limits

of a helicopter [35].

1.3 Focus of This Research

Previously in the area of adaptive flight envelope protection [13, 28, 32, 27],

approximate dynamic models of relevant aircraft states and limit parameters

are generated online for the estimation of limit and control margins. One of the

challenges of these methods is the inversion of the online dynamic model. Online

dynamic models are first evaluated at the dynamic trim condition, and second

inverted to estimate limit and control margins. Since an adaptive element of an

online model can also be a function of limit parameters and aircraft states, as will

also be shown in Chapter-II, a direct inversion may not be possible. An option in

that case is to use online iterations to find an inverse. Therefore, in [13, 28, 32, 27]
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online iterations are proposed for the estimation of the dynamic trim state,

hence the limit and control margins. The online iterations of [13, 28, 32, 27]

are assumed to give a minimum of one fixed point solution. A drawback related

with the fixed point iterations of the previous methodologies is that a fixed point

solution obtained from the online iterations is not guaranteed to be the dynamic

trim condition, that is, no guarantee of convergence to the dynamic trim state

is given using the online iterations of the previous methodologies.

This thesis concerns with the removal of the fixed point solution assumption

made in the previous references [13, 28, 32, 27] for the problem of adaptive flight

envelope protection. Therefore, the focus is given to the development of new

methodologies that does not require online iterative solutions for the estimation

of limit and control margins.

1.4 Contributions of This Research

In this thesis new methodologies for the removal of the fixed point solution

assumption, hence the iterations required in the previous studies, are proposed

for adaptive limit and control margin estimation. Developed methodologies are

similar to online neural network based methods of [27, 28], yet in the proposed

methodologies the limit and control margin estimations are constructed in a

different way. In the new methods online adaptation is also improved. A list of

overall contributions of the thesis are given below:

• A new methodology, Direct Adaptive Limit Margin Estimation, is pro-

posed. In the approach, critical aircraft states are modeled online using

adaptive neural networks. Modeling is performed at a delayed moving

time step to make use of the state derivatives in the adaptive elements.

Also, a set of central difference expressions around the delayed moving

time are used to represent the state derivatives in the approximation. The

models constructed at the delayed moving time step are evaluated at the

current time to estimate the limit margins. Here, the central differences

are made zero using the dynamic trim condition, therefore, the dynamic
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trim state and the limit margins are obtained. The method is called di-

rect adaptive estimation since the limit margins can be estimated without

requiring online iterations. The fixed point solution assumption is shown

to be removed.

• A new methodology, Direct Adaptive Control Margin Estimation, is pro-

posed. In the approach, instead of modeling the limiting states, the control

inputs of interest are modeled online at a delayed moving time step. Sim-

ilar to the limit margin estimation case, central differences around the

delayed moving time is used to represent the derivatives in the adaptive

element. Using the dynamic trim condition at the current time step, in

which the central differences are zero, control margins are obtained. Fixed

point solution assumption and related online iterations are removed for

the problem of adaptive control margin estimation.

• In this thesis, concurrent learning neural networks which use a Minimum

Singular Value Maximization approach to record necessary data for con-

current adaptation are implemented for the proposed direct adaptive limit

and control margin estimation methodologies. A proof for the ultimate

weight error bounds of the proposed estimators are established. The proof

of [34] for the adaptive parameter estimation is extended for the case where

the structure of the uncertainty is unknown.

• Sensitivity estimation based control margin estimation methods are revis-

ited in this thesis. Since concurrent learning is used for online adaptation,

parameter convergence and a correct estimation of the control sensitivi-

ties become possible. Therefore, the sensitivity estimation based methods

for envelope protection are improved using concurrent learning and made

applicable for the task of control margin estimation.

• Control input saturation is directly used in this thesis for the verification

of the critical margins. When a control input is limited with the predicted

control limits, the limiting state is expected to be at the envelope boundary.

Unlike the previous adaptive methods, control input saturation can be

directly applied without using additional smoothing algorithms or logics
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at the limit boundary. The problem of chattering at the limit boundary

during control input saturation, existing in the previous approaches, is also

removed.

• Online adaptation, hence learn while flying capability, of adaptive limit

and control margin estimation algorithms are improved. Long term learn-

ing is made possible using concurrent adaptation.

• In this thesis, central difference expressions are brought into picture, at

least once again, for the online modeling and estimation of dynamical

systems. In the proposed methodologies, central difference expressions are

used in the adaptive element to represent the information of change, i.e.

the derivatives, of the related states or limit parameters. Derivatives are

not estimated but represented with difference expressions around a delayed

moving time.

1.5 Structure of The Thesis

This thesis is organized as follows: In Chapter II, an overview of the previous

methodologies of [13, 32, 27] is presented. Motivation of this thesis and re-

lated issues with the previous approach are mentioned as well. In Chapter III,

the Direct Adaptive Limit Margin Estimation and Sensitivity Estimation Based

Control Margin Estimation methodologies are presented. In that chapter, a

methodology is developed for limit margin estimation. The developed method-

ology is used to estimate control sensitivities which are also used to establish

functional relations between the limit margins and the control margins. In that

chapter, neural network augmentation is explained too. The implementation

of a Linear in the Parameter Neural Network (LPNN) for the developed online

estimators and the Minimum Singular Value Maximization approach for concur-

rent learning are presented. In Chapter IV, the Direct Adaptive Control Margin

Estimation approach is proposed to generate an online estimate of the limiting

control input. The estimation model is used at the dynamic trim condition and

evaluated at the envelope limits to estimate the control margins.
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Note that none of the calculations in the proposed methods require online itera-

tions as in [13, 27, 32] and [28]. In Chapter III and IV, effectiveness of the pro-

posed estimation algorithms are demonstrated using fixed wing and rotary wing

aircraft models. In the Appendix, a Lyapunov based proof for the boundedness

of the proposed adaptive estimators and an example case which demonstrates

the concept of Minimum Singular Value Maximization for concurrent adaptation

are presented.
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CHAPTER 2

ADAPTIVE LIMIT AND CONTROL MARGIN

ESTIMATION

In this chapter, adaptive limit and control margin estimation methodologies

of the previous works [13, 27, 32, 36, 37, 38] for the task of flight envelope

protection, and the reasons behind the motivation of this thesis are presented.

2.1 Problem Definition

Dynamic trim condition and dynamic trim state are directly related with the

dynamics of the fast aircraft states or limit parameters. Dynamic trim condition

is a quasi-steady condition in which the fast states are in their steady state while

the slow states are free to change [10]. The steady state value of the fast states

in this condition are called the dynamic trim state. Therefore, following [13, 27]

dynamics of the fast aircraft states are represented with the following nonlinear

state equation:

ẋf = f 1(xf ,xs,u), (2.1)

in which, xf ∈ <l is the vector of fast states with a known initial condition,

xf0. Here, xs ∈ <n−l and u ∈ <p are the known vectors of slow aircraft

states and control inputs, respectively. It is assumed that the vector function

f 1 : <n × <p → <l has continuous functions that satisfy a global Lipschitz

condition. The solution xf (t) of Eq. (2.1) is assumed to be bounded and exists

in finite time.

Dynamic trim condition is defined as a condition in which the time derivatives
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of the fast aircraft states are zero, that is

ẋf = 0, (2.2)

and the dynamic trim state is defined for the states and controls when ẋf = 0

is enforced in Eq. (2.1) as

0 = f 1(xfDT ,xs,uDT ). (2.3)

Here, xfDT and u
DT

are respectively the dynamic trim state values of the fast

states and the control inputs.

The main goal hereafter is the online estimation of the vectors xfDT and u
DT

that satisfies the dynamic trim condition, ẋf = 0. The methodologies given

in [13, 28, 32, 27] have been proposed to solve this problem. When xfDT and

u
DT

are estimated, the limit and the control margins can be calculated as will

be shown in the following section.

2.2 Adaptive Modeling Loops

In [13, 27], actual dynamics of the fast aircraft states, represented by Eq. (2.1), is

approximated online using adaptive modeling loops. Below is a brief explanation

of the methodology developed in [13, 27]. If we let f̂ 1 be an approximation of

f 1, then the actual dynamics of the fast states can be written as

ẋf = f̂ 1(xf ,xs,u) + ξ. (2.4)

Here, ξ is the modeling error in the fast state dynamics. Using an adaptive

element ∆ in order to cancel out the modeling errors, an approximate dynamic

model of the following form is established in [13, 27] as:

˙̂xf = f̂ 1(xf ,xs,u) + ∆(xf ,xs,u) +K(xf − x̂f ). (2.5)

Above, ∆ is an adaptive element such as neural networks and often written as a

function of aircraft states and controls. By subtracting Eq. (2.5) from Eq. (2.4)

and noting that e = xf − x̂f , the following error dynamics is obtained:

ė = −Ke+ ξ −∆ (2.6)
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Thus, if the modeling error, ξ, can be ideally cancelled through ∆, with a

positive definite matrix K, any estimation error of the actual plant dynamics

will decay asymptotically to zero. Neural networks can be used to generate the

signal ∆. Also note that the error gain matrix, K in Eq. (2.5), is used to obtain

a stable error dynamics in Eq. (2.6). Block diagram representation of the online

model given by Eq. (2.5) is presented in Figure 2.1.

Approximate		
Model	 AircraH	

xf

xs

u

˙̂xf x̂f
Z xf

-	 +	

e

K

Adap)ve	
Neural	Network	

xf

xs

u
�

+	

+	
+	

Figure 2.1: Adaptive Online Loop [13, 27]

In [13], two different neural network types such as Linear in the Parameter and

Single Hidden Layer neural networks are used in the adaptive loop of Figure 2.1

to cancel out the modeling errors. Various theorems and proofs related with the

stability of the modeling loops using both neural network types are provided

in [13]. Ultimate bounds on the weight error estimation and related bounds on

the system signals are also demonstrated through a Lyapunov based stability

approach. Reader should refer to [13] and [27] for further details.

2.3 Limit and Control Margin Estimation

Previously, Eq. (2.5) is used to obtain the dynamic trim state for the task of

adaptive envelope protection. Using the dynamic trim condition, Eq. (2.5) takes

the following form:

0 = f̂ 1(xfDT ,xs,uDT ) + ∆(xfDT ,xs,uDT ) +K(xfDT − x̂fDT ). (2.7)
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Here, xfDT and u
DT

are a set of vectors which satisfy the above algebraic equa-

tion. Note that both vectors are the unknowns. When K(xfDT − x̂fDT ) is ap-

proximated with K(xf − x̂f ) = K(e), then Eq. (2.7) is reduced to the following

form:

0 = f̂ 1(xfDT ,xs,uDT ) + ∆(xfDT ,xs,uDT ) +K(e). (2.8)

Since the goal is to estimate the dynamic trim state for a given set of inputs and

slow states, u
DT

can be replaced with the current value of the input vector, u.

Hence, the following equation is obtained:

0 = f̂ 1(x̂fDT ,xs,u) + ∆(x̂fDT ,xs,u) +K(e). (2.9)

In the above equation, x̂fDT is an estimate of the dynamic trim state of the

aircraft for a given set of control inputs and slow states. If x̂fDT can be calculated

using Eq. (2.9) then an estimation of the limit margin vector can be calculated

as follows:

x̂fmarg = x̂flim − x̂fDT , (2.10)

in which x̂flim is a known limiting fast state vector.

Eq. (2.8) can also be used to estimate control margins. In [13, 27], x̂fDT of

Eq. (2.8) is replaced with x̂fDTlim , which is a known limiting fast state vector

corresponding to a point on the boundary of the flight envelope, and u is re-

placed with û
DT

, which is an estimate of the control limit corresponding to that

particular limiting state, hence the following algebraic equation,

0 = f̂ 1(x̂fDTlim ,xs, ûDT ) + ∆(x̂fDTlim ,xs, ûDT ) +K(e), (2.11)

is obtained. Note that the control position, û
DT

, is the unknown variable in the

above equation. If û
DT

can be calculated using Eq. (2.11) then an estimation

to control margin vector can be calculated as follows:

ûmarg = û
DT
− u, (2.12)

in which u is the current control input vector.

Note that Eqs. (2.9) and (2.11) are in general nonlinear algebraic equations and

may not be solvable analytically. Therefore, in order to solve the dynamic trim

state, x̂fDT , and the critical control position that would result in the envelope
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limits, û
DT

, various iterative schemes have been introduced in [13]. One type of

iterations has been obtained when the approximate model f̂ 1 is taken as a local

linear model such as

f̂ 1(xf ,xs,u) = A1xf + A2xs +Bu. (2.13)

Using the linear approximation above, Eqs. (2.9) and (2.11) can be written

respectively as

0 = A1x̂fDT + A2xs +Bu+ ∆(x̂fDT ,xs,u) +K(e), (2.14)

0 = A1x̂fDTlim + A2xs +Bû
DT

+ ∆(x̂fDTlim ,xs, ûDT ) +K(e). (2.15)

In order to obtain a solution for Eqs. (2.14) and (2.15), the following fixed point

iterations are established in [13, 27] as

x̂fDTk+1
= − 1

A1

(A2xs +Bu+ ∆(x̂fDTk ,xs,u) +Ke), (2.16)

û
DTk+1

= − 1

B
(A1x̂fDTlim + A2xs + ∆(x̂fDTlim ,xs, ûDTk+1

) +Ke). (2.17)

The above iterations are called fixed point iterations since all the variables in-

cluding the neural network weights and the error bias, Ke, are kept constant, i.e.

fixed, during the iteration process. The variables iterated are only the unknowns,

x̂fDT and û
DT

. Note that the online iterations, Eqs. (2.16) and (2.17), have to be

performed at each time instant to estimate the critical margins. Therefore, once

a convergence is achieved with an error tolerance at a time instant, the limit

and control margins of that time instant can be estimated using Eqs. (2.10) and

(2.12).

It is important to note that Eqs. (2.16) and (2.17) are assumed to give a minimum

of one fixed point solution previously [13, 27, 28]. This is a valid theoretical

assumption since a solution is always guaranteed to be obtained when bounded

activation functions are used in the inputs of the adaptive element [24]. Note

that, when the iterations are not convergent, the signals are at least guaranteed

to be saturated at the bounds, which is also a fixed point solution. Therefore,

the bounds of the activation functions have been used in the previous studies

in order to guarantee the theoretical existence of solutions for the fixed point

iterations.
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2.4 Validation Studies

The methodology presented above including Subsections 2.2 and 2.3 have been

applied in a vareity of simulation studies [36, 37, 38, 35, 39] for the avoidance

of several critical envelope limits of fixed and rotary wing aircraft. Whereas,

the implementation of the methodology for a real flight is performed in [27]. In

that work, command margins of a closed loop controller are estimated for not

to violate a set of pre-specified envelope limits for an autonomous unmanned

aerial vehicle. Command margins are often defined as the controller commands

that would result in envelope limits. Note that command margin estimation for

a closed loop controller is similar to the control margin estimation of Subsec-

tions 2.2 and 2.3. A main difference is that the control input u is replaced with a

command limit vector in the adaptive elements and in the linear approximations

of equations between (2.1) and (2.17). Reader should refer to [27] for further

details. To briefly conclude, online iterative equations similar to Eqs. (2.14)

and (2.15) are obtained in [27] and related fixed point iterations, i.e. Eqs. (2.16)

and (2.17), are applied online. The effectiveness of the adaptive modeling loop

(Fig. 2.1) and the fixed point iterations similar to Eqs. (2.16) and (2.17) have

been demonstrated through a set of aggressive maneuvers in real flight.

Although the methodology of Subsections 2.2 and 2.3 have been implemented

for a considerable amount of simulation studies and validated in real time for an

unmanned aerial vehicle with promising results, an improvement in the approach

is still required due to the existence of online fixed point iterations and related

implementation difficulties. Before moving on to the implementation difficulties

of the method, a background of the fixed point solution assumption of the related

works in the literature is summarized in the following subsection.

2.5 Fixed-Point Solution Assumption in Literature

Fixed point solution assumption of adaptive loops including neural networks

have also been an issue for neural network based adaptive flight control [22, 23,

24, 33, 34, 40, 41] since 1997 and before. In the adaptive control problems of [22,
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23, 24, 40] and the references therein, neural networks are typically used to cancel

out reference tracking errors posed by a-priori designed stable linear controllers.

In those studies, adaptive control architectures similar to the adaptive output

feedback controller of [24] are used with minor modifications. In Figure 2.2,

the design of [24] is presented. In the considered output feedback controller

design, the neural network is made a function of its output through a loop, L,

as roughly sketched in Figure 2.2. Hence, an algebraic loop between the output,

vad, and the input, v, of the adaptive element is created intentionally by design.

Please refer to [24] for the details of the adaptive controller algorithm given

in that figure. Note that, in order for the adaptive element output to exist

theoretically, the considered algebraic loop, L, is required to have a fixed point

solution [24]. Therefore, the fixed point solution assumptions of [22, 23, 24, 40]

are made for the theoretical existence of the neural network output. In [40], at

least one fixed point solution is shown to be guaranteed with the use of bounded

activation functions in the inputs of the adaptive element.

Note that the fixed point solution assumption made previously in the area of

neural network based adaptive control is only a theoretical assumption that

guarantees the existence of the output, vad, of the adaptive element. In addition

to that, the fixed point iterations are not required in practice and have never

been used online in adaptive control designs. Related algebraic loops in such

adaptive control studies are simply avoided using filters or delay operators in

the input signal, v, as done in [41].

If we return to the problem of online limit and control margin estimation of
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Figure 2.2: Adaptive Output Feedback Control Architecture of [24]
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Subsections 2.2 and 2.3, it is clear that the fixed point solution assumption and

a resulting fixed point solution are not only required for the theoretical reasons

but also required for the estimation of limit and control margins. Therefore, the

fixed point iterations, i.e. Eqs. (2.16) and (2.17), used in the methodology of

this chapter are required to converge to a solution at each time instant. Whereas

in the area of neural network based adaptive control [22, 40, 23, 24, 41, 33, 34],

an online iteration is not necessary.

2.6 Issues with Implementation

As it is already mentioned, the previous method is based on online generation of

approximate aircraft dynamics and that approximation is Eq. (2.5). One issue

of the previous method is related with the number of required adaptive loops for

the online approximation. Aircraft states are in general coupled to each other,

hence, there exists dynamic couplings inherent in the state equations. Therefore,

one fast aircraft state is often treated as functions of other fast aircraft states

for a physically correct approximation. In the following form of Eq. (2.5), an

online approximation for a fast aircraft state is presented:

˙̂xf = f̂1(xf ,xs,u) + ∆(xf ,xs,u) +K(xf − x̂f ), (2.18)

in which, a single state, x̂f , is written as a function of the fast state vector, xf .

Note that, Eq. (2.18) is an adaptive loop for the online modeling of a single

fast state. Here, that adaptive loop is typically not sufficient to estimate the

dynamic trim state since Eq. (2.18) becomes a single algebraic equation with

multiple unknowns at the dynamic trim condition. For instance, at the dynamic

trim condition Eq. (2.18) takes the following form:

0 = f̂1(xfDT ,xs,u) + ∆(xfDT ,xs,u) +Ke, (2.19)

in which, xfDT is the unknown fast state vector and contains the dynamic trim

values of the fast aircraft states used in the approximation. Note that, in order

to solve for the unknown, xfDT , as many algebraic equations, that is, as many

online adaptive loops as the size of the vector xfDT is required and that size of
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the fast state vector can be chosen if the number of dynamic couplings between

the fast states is known or estimated a-priori.

As described in the above text, multiple adaptive loops are typically required in

the previous adaptive framework for the online estimation of the dynamic trim

state. The use of multiple adaptive loops brings additional complexity into the

approach since the design parameters to deal with increases with the number

of required adaptive loops. Note that for each additional adaptive loop, the

structure of the network, basis functions, scaling factors and learning gains have

to be reselected by the designer. Also note that, those design parameters are

often specific for a single fast state, thus, a design effort is typically required for

each considered state. Therefore, the minimization of the number of required

adaptive loops for the dynamic trim estimation is a motivation in this thesis

to improve the existing adaptive flight envelope protection methods. In the

following chapters, new adaptive methodologies are introduced and the dynamic

trim condition of a single fast state is shown to be estimated using only one

adaptive loop in the approach, i.e. without requiring the dynamic trim state

estimates of other fast states. Therefore, the necessity of multiple adaptive loops

of the previous adaptive framework is alleviated using the new methodologies

proposed in the following chapters.

Another issue of the previous adaptive framework is related with the convergence

of the fixed point iterations. There are multiple adaptive loops and therefore

multiple algebraic equations to iterate in the approach. Although the method-

ology presented in this chapter is guaranteed to give an estimation for the limit

and control margins through online fixed point iterations, the iterations are not

guaranteed to convergence to the dynamic trim state, i.e. there is no theoretical

guarantee for the convergence. Note that, the method is expected to give an

accurate result only in practice.

The convergence issue of the fixed point iterations is related with the adaptation

and learning properties of the adaptive elements. For an accurate estimation of

the dynamic trim state, the adaptive elements of the multiple loops are required

to be physically correct models. Therefore, the weights of the adaptive elements
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are required to converge to the optimal sets of weights during online adaptation.

Note also that, when the optimal sets of values are non-unique, the weights

may typically oscillate between different optimal solutions, indicating that the

bounds of the weight errors are relatively large. Therefore, the considered fixed

point iterations can typically converge to solutions different than the dynamic

trim state, especially when the ideal sets of weights in the adaptive elements are

non-unique, that is, when the weights oscillate in large bounds and exchange

their locations during online adaptation. Note also that, since there are multiple

adaptive loops, the oscillations can occur in each adaptive element of the online

model, therefore, the convergence to the dynamic trim state can be even difficult

in multiple algebraic equations. Also, the nonlinearity of the adaptive elements

(nonlinearity of the basis functions used) can increase the complexity in the

convergence. In order to overcome those problems in practice, additional terms,

i.e. relaxation terms, have been used in the fixed point iterations of the previous

works. Yet, none of the introduced terms established a guarantee in theory for

the convergence to the dynamic trim state. Therefore, the removal of the fixed

point iterations from the existing adaptive flight envelope protection methods is

the basic motivation of this thesis. In the following chapters, new methodologies

are proposed to remove the fixed point iterations, therefore to alleviate all the

issues mentioned above.

Another issue is related with the control margin estimation. Note that, Eq. (2.17)

requires the number of pilot controls be equal to the size of the fast state vector

in order to make the control matrix, B, invertible. When the number of inputs

are less than the number of fast states, estimation of the control limit typically

become non-unique, hence additional algorithms is often required and have been

used in the previous works to obtain a correct solution. Therefore, the inversion

of the control matrix is another issue in the approach.

2.7 Conclusions

In this chapter, a brief summary of the previous adaptive approach for flight

envelope protection and the fixed point solution assumption in which the theory
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is built on and an analogy, between the considered flight envelope protection

method and the previous adaptive control designs, are presented.

Although the methodology presented in this chapter is guaranteed to give an

estimation for the limit and control margins through online fixed point iterations,

the iterations are not guaranteed to convergence to a dynamic trim state in

theory. Also considering the issues mentioned in the previous subsection, it is

essential to improve the adaptive envelope protection algorithms and seek for

new methodologies for adaptive estimation of limit and control margins.

33



34



CHAPTER 3

DIRECT ADAPTIVE LIMIT MARGIN AND

SENSITIVITY ESTIMATION BASED CONTROL

MARGIN ESTIMATION

In this chapter, an adaptive limit margin estimation methodology, that doesn’t

require online fixed point iterations, is developed. The proposed online limit

margin estimator is used to obtain control margins through control sensitivity

estimations. Effectiveness of the proposed algorithm is demonstrated through

fixed wing and rotary wing aircraft simulation models.

3.1 Methodology

Let the following nonlinear state equations represent the aircraft dynamics:

ẋ = f(x,u); x(t0) = x0; (3.1)

where x ∈ <n is the state vector with known initial condition, x0, and u ∈
<p is a known control input vector. It is assumed that the vector function

f : <n × <p → <n has continuous functions that satisfy a global Lipschitz

condition. The solution x(t) of Eq. (3.1) is assumed to be bounded and exists

in finite time.

Similar to [27], the state vector x can be divided into fast and slow states as

x = [xf xs]
T ,xf ∈ <l,xs ∈ <n−l (3.2)
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where, the actual fast and slow state dynamics are represented by

ẋf = f 1(xf ,xs,u), (3.3)

ẋs = f 2(xf ,xs,u). (3.4)

At the dynamic trim condition, fast aircraft states reach a steady state faster

than the slow states [27]. The dynamic trim condition is defined as

ẋf = 0. (3.5)

Assumption (3.1): Considered aircraft dynamics given by Eq. (3.1) is a stable

plant.

3.1.1 Direct Adaptive Limit Margin Estimation

Fast aircraft states are of significant importance in envelope protection since

they exhibit a relatively quick response to pilot inputs. Angle of attack, load

factor and angular velocities are a few examples of fast aircraft states. The

relation of the fast aircraft states to the envelope limits are often considered

separately for the task of flight envelope protection. Using Eq. (3.3), an actual

representation of the fast states is written as

xf = f−1
1 (ẋf ,xs,u). (3.6)

Here, f−1
1 is obtained inverting the actual plant dynamics. Since the actual

plant, f 1, of Eq. (3.6) is not usually available or invertible, an approximate

inverted model is required. Let f̂
−1

1 be an approximate inverted model, then the

actual fast states is written as a summation of the approximate inversion and

the modeling error, ξ:

xf = f̂
−1

1 (ẋf ,xs,u) + ξ. (3.7)

ξ can be compensated using adaptive elements such as neural networks. Using

neural networks, the following approximation for xf can be established:

x̂f = f̂
−1

1 (ẋf ,xs,u) + ∆(ẋf ,xs,u). (3.8)
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∆ is a vector function containing neural networks and x̂f is the estimated signal.

∆ is trained online to minimize the model tracking error. Subtracting Eq. (3.8)

from (3.7) the model tracking error is obtained as

e = ξ −∆(ẋf ,xs,u). (3.9)

Thus, if ξ can be ideally cancelled by ∆, then the model tracking, e, will be

zero. Although neural networks are universal approximators, depending on the

network structure there exists an estimation error between ξ and ∆.

Assumption (3.2): Fast states, slow states and control inputs, that is the signals

xf , xs and u, are known, i.e measured, and sampled with the same sampling

rate.

Assumption (3.3): Sampling rate of the signals, xf , xs and u, is fixed and chosen

as sufficient as to approximate the considered aircraft dynamics.

Assumption (3.4): A moving time window, i.e. delay line, containing the pre-

vious consecutive samples of the signals xf , xs and u, is available at the time

of current sampling. Therefore, the following matrix is constructed as the delay

line matrix:

DL =




xftc−1 xftc−2 . . . xftc−w

xstc−1 xstc−2 . . . xstc−w

utc−1 utc−2 . . . utc−w


 , (3.10)

in which, tc is the time index for the current sampling and tc−w is the index of

the most previous data. Note that, DL ∈ <(n+p)×w and w ∈ ℵ+ is the number

of samples in the delay line.

Remark (3.1): A column of DL in Eq. (3.10) represents a delayed moving time

step. Therefore, the data in a considered column of DL are the values of the

variables at that delayed moving time step.

The estimator and the model tracking error in Eqs. (3.8) and (3.9) require ẋf .

However, measuring ẋf might be difficult or not possible at all. When the state

measurement is available, it is possible to estimate the state derivatives at a

delayed time step using optimal smoothing methods [42] or central difference

approximations [43]. Therefore, it is feasible to establish the online model at
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a delayed moving time step, d, and perform the estimations, x̂fd , at that time

accordingly. Hence, Eq. (3.8) is re-written at a delayed moving time as

x̂fd = f̂
−1

1 (ẋfd ,xsd ,ud) + ∆(ẋfd ,xsd ,ud), (3.11)

where, the subscript d denotes the values of the variables at a chosen delayed

moving time step. Using a central difference approximation [43], a smoothed

estimate of ẋfd can be written as a function of available central differences as

follows:

ẋfd = g(xfd+1
− xfd−1

,xfd+2
− xfd−2

, ...,xfd+k − xfd−k), (3.12)

where, k ∈ ℵ+ is the number of central differences.

Remark (3.2): The signals, xf , xs and u, are the samples obtained at the time

of current sampling, tc. Therefore, the subscript tc is omitted from the variables

intentionally.

Remark (3.3): Hereafter, the wording current time refers to the time of current

sampling.

Let ∂̄(.)t : <l → <l×k be an operator that takes a vector at a time t and outputs

a matrix of central differences, such that;

∂̄(.)t = [(.)t+1 − (.)t−1 , (.)t+2 − (.)t−2 , .... , (.)t+k − (.)
t−k ]. (3.13)

Using ∂̄(.)t at t = d to represent ẋfd , Eq. (3.11) is re-written as

x̂fd = f̂
−1

1 (∂̄(xf )d ,xsd ,ud) + ∆(∂̄(xf )d ,xsd ,ud). (3.14)

Note that the estimator is now a function of central differences at a delayed

moving time step, d. The model tracking error may also be written at the

delayed moving step using central differences:

e
d

= ξ
d
−∆(∂̄(xf )d ,xsd ,ud). (3.15)

In Eq. (3.14), the approximate inversion, f̂
−1

1 , is augmented with ∆ and the

resulting operator, f̂
−1

1 + ∆, is called the augmented inversion operator.

Assumption (3.5): The operator, (f̂
−1

1 + ∆), is a one-to-one mapping such that

(f̂
−1

1 + ∆) : <l×(k−1)+n+p → <l exists and is unique.
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Since the derivatives are represented with central differences, ∂̄(xf )t is expected

to be zero at the dynamic trim condition at any given time, t. Hence, the

dynamic trim condition in Eq. (3.5) also implies

∂̄(xf )t = 0. (3.16)

In order to estimate the dynamic trim state at the current time, the estimator

of Eq. (3.14) is used at the current time step, tc. This is applicable when the

network weights reach a compact neighborhood around optimal weights or the

delayed time is short compared to the aircraft dynamics. As a result, using

Eqs. (3.14), (3.15) and (3.16), the fast states in dynamic trim, x̂fDT , at the

current time can be estimated as follows:

x̂fDT = f̂
−1

1 (0,xs,u) + ∆(0,xs,u) + ed. (3.17)

Then the limit margin vector xfmarg can then be calculated as

xfmarg = xflim − x̂fDT . (3.18)

Limit margins can be used in various ways in carefree maneuvering. As it may

be used in the cueing algorithms, in this chapter, it is used to determine control

sensitivities and control margins, see Eqs. (3.38) and (3.39).

The proposed limit margin estimation algorithm is presented in Fig. 3.1. Note

that the variables and computations used at the delayed moving time step are

shown with the dashed lines, whereas, the parts of the algorithm used at the

current time are shown with the solid lines. The delay operator, z−d(.), is used

to obtain the value of the operator input at the delayed moving time step, d,

such that z−d(xf ) = xfd . The aircraft block represents the plant, but may also

include any control system. If a control system is present the aircraft dynamics

of Eq. (3.1) will simply include the closed loop dynamics.

A special case is when the approximate model is chosen as a linear model,

ẋf = A1xf + A2xs +Bu. In that case Eq. (3.11) is written as

x̂fd = −A−1
1 (−ẋfd + A2xsd +Bu

d
) + ∆(ẋfd ,xsd ,ud). (3.19)
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Figure 3.1: Direct Adaptive Limit Margin Estimation

In this equation the input, ẋfd , in ∆ is replaced with ∂̄(xf )d . However, the

derivative, ẋfd , which is the first term of the inverted the linear model, is ap-

proximated with an average sum of central differences. Note that any error

resulting from this approximation will be compensated through the neural net-

work. The operator, ∂(.)t = 1
k

k∑
j=1

∂̄(.)t(:, j) : <l → <l, is used to calculate the

average sum:

ẋfd
∼= ∂(xf )d =

1

k

k∑

j=1

∂̄(xf )d(:, j). (3.20)

Hence Eq. (3.19) is re-written as

x̂fd = −A−1
1 (−∂(xf )d + A2xsd +Bud) + ∆(∂̄(xf )d ,xsd ,ud). (3.21)

Using Eqs. (3.15), (3.16) and (3.21), the dynamic trim at the current time can

be estimated:

x̂fDT = −A−1
1 (A2xs +Bu) + ∆(0,xs,u) + ed. (3.22)

Note that ed and ∆ are known signals, and Eqs. (3.17) and (3.22) do not require

online iterations to find x̂fDT as it was the case in [27, 28] and [32]. Therefore

this approach is called the Direct Adaptive Limit Margin Estimation.
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Relative Degree Formulation

Note that the above methodology is developed assuming that the fast and the

slow aircraft states are measured. An alternative methodology can also be de-

veloped considering the measurements of a single limit parameter and the slow

states. In that case, the measured limit parameter, yp ∈ <, can be written as a

nonlinear function of aircraft states:

yp = h(xf ,xs). (3.23)

Using the definition of relative degree given in [44], the n-th order derivative of

yp can be established in the following form:

y(n)
p = hn(xf ,xs, yp, y

(1)
p , y(2)

p , ..., y(n−1)
p , ue). (3.24)

Assumption (3.6): The limit parameter, slow states and the effective control

input, that is the signals yp, xs and ue, are known, i.e measured, at a given

time, and sampled with the same sampling rate.

Assumption (3.7): Sampling rate of the signals, yp, xs and ue, is fixed and chosen

as sufficient as to approximate the considered limit parameter dynamics.

Assumption (3.8): The number of differentiations in Eq. (3.24) is known, that

is, the limit parameter has a known relative degree.

In Eq. (3.24), ue ∈ < is a single control input or a linear combination of multiple

controls obtained after n differentiations of h. Furthermore, when the relation

in Eq. (3.23) is known and invertible, i.e. xf = h−1(yp,xs), then Eq. (3.24) can

be written as

y(n)
p = gn(xs, yp, y

(1)
p , y(2)

p , ..., y(n−1)
p , ue). (3.25)

Assumption (3.9): The control input ue is a smooth and continuous signal.

In Eq. (3.25), ue is the control input that results in a flight envelope violation

of the limit parameter yp. When Eq. (3.25) is inverted, yp can be written as

yp = g−1
n (xs, y

(1)
p , y(2)

p , ..., y(n)
p , ue). (3.26)
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Here, g−1
n is the actual inverse of the plant dynamics and is an unknown function

and does not have to be a one-to-one mapping. Using an approximate model, ĝn,

yp can be written as a summation of the approximation and a modeling error,

ξ:

yp = ĝ−1
n (xs, y

(1)
p , y(2)

p , ..., y(n)
p , ue) + ξ. (3.27)

In Eq. (3.27), xs represents slow aircraft states that are required for the approxi-

mation. If we let yp = [yp y
(1)
p ... y

(n−1)
p ]T ∈ <n, then the derivatives in Eq. (3.27)

can be written as

ẏp = [y(1)
p y(2)

p ... y(n)
p ]T ∈ <n. (3.28)

Now, using an adaptive element, ∆, the following estimation to yp can be written:

ŷp = ĝ−1
n (xs, ẏp, ue) + ∆(xs, ẏp, ue). (3.29)

Note that, Eq. (3.29) requires the derivative signals ẏp to be available. It is

possible to estimate the derivatives from available past data [42]. Therefore, the

estimator of Eq. (3.29) can be established at a delayed moving time step, d, as

follows:

ŷpd = ĝ−1
n (xsd , ẏpd , ued) + ∆(xsd , ẏpd , ued) (3.30)

where, the subscript, d, represents the values of the variables at a considered

delayed moving time step.

Assumption (3.10): A moving time window, i.e. delay line, containing the pre-

vious consecutive samples of the signals yp, xs and ue, is available at the time

of current sampling. The following matrix is the delay line matrix:

DL =




yptc−1 yptc−2 . . . yptc−w

xstc−1 xstc−2 . . . xstc−w

uetc−1 uetc−2 . . . uetc−w


 , (3.31)

here, tc is the time index for the current sampling and tc−w is the index of the

most previous data. Note that, DL ∈ <(n−l+2)×w and w ∈ ℵ+ is the number

of samples in the delay line. Also, a chosen column of DL represents a delayed

moving time step, as in Remark (3.1).

Note that the derivatives, ẏp, can be written as a function of available central

differences around the delayed moving time step, d. Using the central difference
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expressions of [45], the following central difference operator, ∂̄(.)t : < → <n×k,
is defined:

∂̄(.)t(:, j) =




(.)
t+j
− (.)

t−j

(.)
t+j
− 2(.)t + (.)

t−j

(.)
t+j+1

− 2(.)
t+j

+ 2(.)
t−j − (.)

t−j−1

...




(3.32)

in which, j = 1, 2, ..., k represent each column of the operator and k ∈ ℵ+

of Eq. (3.32) is the number of available central differences around the time,

t. Note that the derivatives in Eq. (3.30) can be represented using Eq. (3.32)

when t = d as ∂̄(yp)d . Also, the nth row of the operator is the central difference

representation of the nth derivative of the limit parameter. In [46], central

difference representations of higher order derivatives are given.

Therefore, Eq. (3.30) can now be written as a function of central differences,

ŷpd = ĝ−1
n (xsd , ∂̄(yp)d , ued) + ∆(xsd , ∂̄(yp)d , ued). (3.33)

Subtracting Eq. (3.33) from ypd = ĝ−1
n (xsd , ∂̄(yp)d , ued) + ξ

d
, the delayed approx-

imation error, e
d
, is obtained as

e
d

= ξ
d
−∆(xsd , ∂̄(yp)d , ued). (3.34)

Assumption (3.11): In Eq. (3.33), the approximate inversion, ĝ−1
n , is augmented

with ∆. The resulting operator, (ĝ−1
n + ∆), is a one-to-one mapping such that

(ĝ−1
n + ∆) : <n(k−l)+1 → < exists and is unique.

At the maneuvering steady state condition, i.e. the dynamic trim condition, the

derivatives which are represented with central differences, ∂̄(yp)d , are expected

to be zero. Hence, the maneuvering steady state condition, ẏp = 0, also indicates

∂̄(yp)t = 0. (3.35)

Therefore, using Eq. (3.35), along with Eqs. (3.33) and (3.34), the maneuvering

steady state, ŷpDT , for a given limit, yplim , can be estimated at the current time

step as

ŷpDT = ĝ−1
n (xs, 0, ue) + ∆(xs, 0, ue) + ed. (3.36)

43



In Eq. (3.36), the delayed approximation error, ed, is used at the current time

step for the estimation. Note that this is reasonable when the network weights

reach a compact neighborhood of ideal weights.

The limit margin, ypmarg , can be calculated as

ypmarg = ŷplim − ŷpDT . (3.37)

In Fig. 3.2, the block diagram representation of the Direct Adaptive Limit Margin

Estimation using the Relative Degree Formulation is presented. Dashed lines

represent the variables or calculations that take place at the considered delayed

moving time step.
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Figure 3.2: Direct Adaptive Limit Margin Estimation with Relative Degree
Formulation

3.1.2 Sensitivity Estimation Based Control Margin Estimation

Control sensitivities can be used to estimate control margins using the estimator

of Eq. (3.17). The sensitivity vector S ∈ <l of fast aircraft states to the effective

control input, ue ∈ <, can be found by taking the partial derivative of Eq. (3.17)

with respect to ue:

S =
∂x̂fDT
∂ue

=
∂(f̂

−1

1 (0,xs,u) + ∆(0,xs,u))

∂ue
. (3.38)
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Now, let the control limits on a single control axis be represented by the vector

uelim , then the control margins, uemarg , can be calculated by subtracting the

control input of interest, ue, from the control limits, uelim :

uemarg = uelim − Ivue (3.39)

where, Iv is given by Iv = [1, 1, ..., 1 ]T ∈ <l. The vectors uelim and uemarg

contain control limits and margins, respectively, for multiple limiting states.

The limit margin vector can be expressed as a function of the control margin

vector using the Taylor series expansion around the point (xfmarg ,uemarg) and

neglecting the higher order terms:

xfmarg = diag
(
dxfmarg
duemarg

)
uemarg . (3.40)

Here, the operator diag(.) outputs a matrix with diagonal elements only. Noting

that

diag
( dxfmarg

duemarg

)
= diag(SITv ), Eq. (3.40) takes the following form:

xfmarg = diag(SITv )uemarg . (3.41)

Let M = diag(SITv ), the control margins, uemarg , on a single control axis, ue,

can be found as

uemarg = M−1xfmarg . (3.42)

Note that a control margin becomes zero if and only if an associated limit margin

becomes zero. Here, the diagonal elements of M in Eq. (3.42) are required to

be nonzero. This is also compatible when the goal is to initiate pilot cueing at a

time when a limit margin becomes zero, xfmarg = 0. Therefore, the effectiveness

of the control margin estimation is directly related to the limit margin estimation

in the approach.

Remark (3.4): To avoid any singularity, when a diagonal element of M is zero,

the sign of the approximate sensitivity ∂(f̂
−1
1 (0,xs,u))
∂ue

of Eq. (3.38) should be se-

lected with the correct sign and the magnitude of the estimated sensitivity for

each fast state should have a nonzero lower bound.

Once uemarg is calculated from Eq. (3.42), using Eq. (3.39) control limits on a

particular control axis can be estimated. Note that the sensitivity vector, S,
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can be obtained for any control axis. Therefore, the method can be applied to

estimate control limits of multiple control axes as well.

One shortcoming of this method is that there may exist large bounds in the

neural network weight errors. When the bounds are large the sensitivities can

be estimated with large errors. However, the sensitivities can be obtained with

sufficient accuracy when the concurrent learning adaptive law is used. Note that,

the weights can be located around a unique set of optimal values using concurrent

learning [47, 34], therefore the sensitivities can be accurate estimated.

Control margins can also be estimated using the estimator given by Eq. (3.36).

The sensitivity S ∈ < of the limit parameter to the effective control input, ue,

can be found by taking the derivative of Eq. (3.36) with respect to ue:

S =
∂ŷpDT
∂ue

=
∂(ĝ−1

n (xs, 0, ue) + ∆(xs, 0, ue))

∂ue
(3.43)

The control margin, uemarg , can be calculated by subtracting the control input

of interest, ue, from the control limit, uelim :

uemarg = uelim − ue (3.44)

The sensitivity, S can be used to establish a linear relation between the limit

margin and the control margin as done similarly in Eq. (3.40):

ypmarg = Suemarg (3.45)

Then the control limit, uelim , can be found using Eqs. (3.43),(3.44) and (3.45):

uelim =
1

S
ypmarg + ue (3.46)

Remark (3.5): Note that to avoid S = 0, the sign of the approximate control

sensitivity, ∂(ĝ−1
n (xs,0,ue))
∂ue

, should be selected with the correct sign and the mag-

nitude of the estimated sensitivity, S, should have a nonzero lower bound.

Note that Eqs. (3.36), (3.37) and (3.38)-(3.46) do not require a fixed point

solution assumption to find the limit and control margins as it was the case

in [28], [27] and [32].
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3.2 Online Model Generation

The main goal of the methodologies proposed above is to establish online models

that can represent actual dynamics of the fast states or the limit parameters. For

clarity, the online models in consideration are Eqs. (3.14) and (3.33). In order

for these models to represent the actual dynamics, the model approximation

errors of Eqs. (3.15) and (3.34) should be minimized online as much as possible.

Therefore, the adaptive element ∆ is used for that purpose.

In this section, online implementation of the adaptive element, which is a neural

network, is presented. In particular, the neural network structure and the weight

update law for the function ∆, and the implementation of a learning method,

i.e. concurrent learning, are briefly summarized.

Although the online models, Eqs. (3.14) and (3.33), are established at a delayed

moving time step, the subscript d is omitted from the variables and calculations

for simplicity in the following subsection. Therefore in the next subsection, the

equations and the variables are written as if they are valid at a time t.

3.2.1 Linear in the Parameter Neural Network Structure

For the methodology proposed above, the uncertainties are assumed to be lin-

early parameterizable. Therefore, a linear structure, i.e. Linear in the Parameter

Neural Networks (LPNNs), are proposed to cancel out the modeling errors on-

line.

Assumption (3.12): The uncertainty ξ of Eq. (3.9) is linearly parameterizable

with a set of unique optimal weights and a reconstruction error, ε, as

ξ = W ∗Tφ(x̄) + ε. (3.47)

Here, x̄ ∈ <r is the neural network input vector and includes the central differ-

ences of the fast states, the slow states and controls, that is x̄ = [∂̄(xf )t ,xs,u]T .

W ∗ ∈ <m×l represents a unique optimal set of weights and, φ(x̄) = [φ1(x̄), φ2(x̄),

..., φm(x̄)], in which φ(.) : <r → <m. Here, φi : <r → <, i = 1, 2, ...,m are

known and bounded functions over the domain of approximation.
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Since the basis functions are bounded by definition, the upper bound of the

norm of the basis vector can be defined using a constant, α0, as

||φ(x̄)|| ≤ α0. (3.48)

Since ξ is assumed to be a linear combination of a known basis, an LPNN with

the same basis can be constructed for ∆:

∆(x̄) = W Tφ(x̄). (3.49)

Note that, LPNNs are universal approximators [24]. Using Eqs. (3.47) and

(3.49), the model tracking error given by Eq. (3.9) takes the following form:

e = W̃ Tφ(x̄) + ε (3.50)

in which, W̃ T = W ∗T−W T is the error between the optimal and the approximate

weights.

The reconstruction error, ε, is shown to be bounded using the universal approx-

imation property of LPNNs, that is, for a positive definite ε and for a compact

set D such that all x̄ ∈ D, the largest ||ε|| can be given as [33]:

ε̄ = supx̄∈D||ξ −W Tφ(x̄)||. (3.51)

Similarly, for the case of Eqs. (3.33) and (3.34) presented in the relative degree

formulation, Eqs. (3.47), (3.49) and (3.50) should be written in scalar form. For

that case, x̄ consists of the central differences of the limit parameter, slow states,

and the control of interest, such that x̄ = [∂̄(yp)t ,xs, ue]
T .

The goal hereafter is to minimize e of Eq. (3.50). Note that the model tracking

error, e, is a function of two error components such as; the reconstruction error,

ε, and the weight error component, W̃ Tφ(x̄). Theoretically, e can be made equal

to ε only when the weight errors are made exactly zero, that is e|
W=W∗ = ε. Here,

ε can be reduced only with using a sufficiently larger basis, φ. Once a basis with

necessary functions inside is decided to be used for online modeling, the only

remaining task is to use an online weight update law to minimize the weight

error component, hence the modeling error.
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In this thesis, a weight update law, known as concurrent learning in the litera-

ture [33, 32], is used. Concurrent learning is a concept through neural network

based adaptive control in which both instantaneous data and online recorded

data are used simultaneously in the weight update. Next, the concurrent learn-

ing weight update law for the neural networks used in the proposed limit margin

estimation methodology is presented.

3.2.2 Concurrent Learning Weight Update Law

Theorem: At a delayed moving time, consider the plants given by Eqs. (3.7)

and (3.27) with the uncertainty of Eq. (3.47) and the derivative representations

obtained using Eqs. (3.13) and (3.32), which are ∂̄(xf )d and ∂̄(yp)d . Using the

Assumptions (3.1-3.12), let the following equation be used to update the weights

of the LPNNs, ∆, of Eqs. (3.14) and (3.33):

Ẇ = Γ
(
φ(x̄

d
)eT

d
+

p∑

j=1

φ(x̄j)e
T
j

)
(3.52)

where, Γ is a positive definite learning gain matrix. The weight update law of

Eq. (3.52) guarantees that the error in the weight estimation W̃ = W ∗ −W for

the estimators of Eqs. (3.14) and (3.33) are ultimately bounded.

Proof: See the Appendix.

In Eq. (3.52), two main terms are used to update the weights online. One

term is the instantaneous error signal, φ(x̄
d
)eT

d
, which is the contribution of the

instantaneous data in the weight update. Subscript d is used since the adaptation

is performed at the delayed moving time. Note that the error signal, eT
d
, and the

basis function, φ(x̄
d
), are the data used for instantaneous adaptation. Whereas

the second term of Eq. (3.52), which is
∑p

j=1φ(x̄j)e
T
j , is the contribution of the

previously recorded data, hence the information of past, in the weight update.

The data with subscript j refers to the jth recorded error signal and the basis in

the recorded data set, which are eTj and φ(x̄j). Mathematically, recorded data

sets are the matrices that contain recorded error signals and neural network

bases. Such matrices are called history stacks in the concept of concurrent

learning.
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The weight update law given by Eq. (3.52) is found in [48, 34], and shown to

be asymptotically stable for a special case of adaptive parameter estimation

problem [34]. This special case is when the reconstruction error, ε, of Eq. (3.50)

is assumed to be zero. For a general case when the reconstruction error, ε,

of Eq. (3.50) is nonzero, the ultimate bounds of the LPNN weight estimation,

W̃ = W ∗ −W , can be established. In the proof in the Appendix, the related

error bounds of the LPNN weight estimation is presented.

Note that the concurrent learning weight update law given by Eq. (3.52) doesn’t

require persistency of excitation (PE) in the inputs of the adaptive element

for parameter convergence, i.e. the convergence of weights around a compact

neighbourhood of the optimal values is possible without requiring PE. In [47],

the related weight error bounds of MRAC are shown to be minimized when the

minimum singular value of the history stack of the recorded bases is increased,

i.e. maximized, online. In the proof given in the Appendix, the weight error

bounds for the considered estimators are established and similar to [34], it is

demonstrated that the bounds can be made even smaller with increasing the

minimum singular value of the history stack of the considered bases.

In the simulations presented in this chapter, the weight update law given by

Eq. (3.52) is used to update the weights of LPNN’s given by Eqs. (3.14) and

(3.33). The necessary data for concurrent adaptation is also recorded online

using the methods described in the following subsection.

3.2.3 Concurrent Learning Implementation

The method in concurrent learning is to record data online to be used later to

cancel out the modeling errors during flight. The recorded data is used with

the instantaneous data concurrently in the weight update of the neural network.

Model tracking error, eT
d
, of Eq. (3.50) and the network basis, φ(x̄

d
), are the

data to be recorded into history stacks. If Z is the history stack in which the

bases are recorded into, then Z is constructed as

Z = [φ1,φ2,φ3, ....,φp]. (3.53)
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Here, φj ∈ <m, j = 1, 2, ..., p, and Z is an m × p history stack matrix. In

addition, if E represents the history stack of the model tracking errors, then E

is constructed as

E = [e1, e2, e3, ...., ep], (3.54)

in which, ej ∈ <l, j = 1, 2, ..., p, and E is an l × p history stack matrix. Note

that a necessary data is recorded into the columns of the matrices Z and E to

generate a long term memory in the approach.
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Ẇ = �
�
�(x̄

d
)eT

d
+

pX

j=1

�(x̄j)e
T
j

�

[E Z]

[Eprev Zprev]

[Eupd Zupd]

e
d e

d

Z d+�t

d

Ẇ
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Figure 3.3: Concurrent Learning Implementation

The selection of the data to be recorded is a challenging task in concurrent

learning. A typical selection criteria, also used in [33], is:

(x̄
d
− x̄p)T (x̄

d
− x̄p)

x̄T
d
x̄
d

> εx. (3.55)

Here, p denotes the latest point stored in the history stack and εx is a design

parameter. Therefore, if x̄
d
is sufficiently different than x̄p such that Eq. (3.55)

is satisfied, then x̄
d
can be recorded into Z. The following criteria is used in [32]

to capture the data of a steady state condition:

εy1 <

√√√√
N∑

a=1

(x
d
(k)− x

d
(k − a))2 < εy2 (3.56)
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εz1 <

√√√√
N∑

a=1

(ue
d
(k)− ue

d
(k − a))2 < εz2 (3.57)

Here, x
d
is a state and ue

d
is a control input at the delayed moving time. x

d
(k)

is the state at the delayed time and x
d
(k − N) is the state at the N th time

step before the delayed time. εy1 , εy2 , εz1 and εz2 are selected to capture an

approximate steady state condition.

Note that a goal in concurrent learning is to decrease the weight error bounds

in order to place the adaptive weights in a compact neighborhood of the ideal

weights. Following the proof given in the Appendix, that goal is shown to

be achieved by recording data into the history stack such that the minimum

singular value of Z is maximized online. In [47] and [48] a minimum singular

value maximization algorithm has also been introduced to record necessary data

for concurrent learning. Note also that Eqs. (3.55), (3.56) and (3.57) do not

guarantee the maximization of the minimum singular value of Z, therefore in

this thesis, an algorithm similar to those of [47] and [48] is developed and used

to decrease the weight error bounds online.

The overall simulation block diagram of the concurrent learning implementation

is presented in Fig. 3.3. That figure also represents the inside of the Adaptive

NN block shown previously in Fig. 3.1.

In Figure 3.3, data recording is performed inside the gray colored box. First,

using Eqs. (3.55), (3.56) and (3.57) a necessary data is pre-selected. Then, the

neural network basis, which is calculated with that pre-selected data, is replaced

with each column of the history stack matrix of the previous time step, Zprev.

Once the considered basis is found to increase the minimum singular value of

Zprev, that is when a replacement is detected to increase σmin(Zprev) , then the

associated column is updated with that basis and the history stack is updated

as Zupd. For the implementation, that algorithm is run inside the gray colored

box at each simulation time step.

In the Appendix, a comparative example case is presented as well to demonstrate

concurrent learning with and without using minimum singular value maximiza-

tion in the weight update.
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3.3 Implementation and Simulation Results

The envelope cueing methodologies and the concurrent learning implementation

presented above are evaluated in this section using simulation studies. Fixed

wing and rotary wing aircraft models are used for the demonstration of the

adaptive limit and control margin estimations.

3.3.1 Flight Envelope Protection for Aircraft

In this section the effectiveness of the proposed limit and control margin esti-

mation algorithms is evaluated through simulations. Simulations are performed

using a fixed-wing aircraft model based on the model described in [49]. The

aircraft model used is similar to the Cessna182 fixed-wing airplane. The aero-

dynamic model described in [49] is extended with a set of nonlinear aerodynamic

data obtained from an open source flight dynamics library, known as JSBSim.

JSBSim is available to puplic over the web. The nonlinear lift and drag curves

of the same aircraft are extracted from the open source library (JSBSim) and

integrated into the aerodynamic model of [49]. The resulting aircraft model has

similar dynamic characteristics, i.e. phugoid, short period and dutch roll modes,

as the model described in [49].

Two examples are presented next. In both examples, the Direct Adaptive Limit

Margin Estimation is used to predict the limit margins for both angle of attack

and load factor. In the examples, the Sensitivity Estimation Based Control Mar-

gin Estimation is applied to predict the control sensitivities and control margins

on the elevator control. In the first example, purely longitudinal pull-up and

push-over maneuvers are performed to violate envelope limits in different adap-

tation schemes. In the second example, similar pull-up and push-over maneuvers

are applied during a transient turn. Control saturation is used to keep the air-

craft at the limit boundaries, hence is used to demonstrate the effectiveness of

the proposed methodologies.
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The angle of attack and the load factor are expressed using the following equa-

tions:

α = atan(
w

U
), nz = 1 +

Uq

g
(3.58)

where U is the forward velocity, q and w are the pitch rate and the z-axis body

frame velocity and g is the gravitational acceleration. Here, q and w are fast

states and U is a slow state. Therefore, a dynamic trim condition of q and w

will also correspond to a trimmed out angle of attack and load factor response.

Hence, both parameters are assumed to be fast aircraft states, and are known

to reach their critical limits at the steady state condition. The following flight

envelope boundaries are assumed: -5 to 12 degrees for the angle of attack, and

-0.5 to 3.5 g’s for the load factor.

In the examples, angle of attack, load factor and other signals required for

the implementation of the algorithms are assumed to be smooth and available

signals. Gust or sensor noise are not included.

3.3.1.1 Example-1: Longitudinal Pull-up & Push-over

In this example, the aircraft model is subjected to filtered step elevator inputs

starting from a trimmed flight condition to simulate pitch up and pitch down

maneuvers. A first order filter with 0.2 seconds of a time constant is used

to represent the actuator dynamics. Angle of attack, load factor, pitch rate,

airspeed and pitch angle are assumed to be accurately measured or estimated.

The delayed moving time step, d, is taken as d = tc−0.1s where tc is the current

time and the simulation time step is ∆t = 0.01s. The delayed moving time

step limits the number of central differences to be used in the approximation.

It is essential to have enough data points for central differences to represent

the derivatives of the signal. In this example, 4 data points are used in a time

window of 0.1s to generate central differences. Time derivatives of angle of

attack, pitch rate and load factor are represented by central differences at the

delayed time. Elevator control, airspeed and pitch angle are used to generate an

approximate model. Eq. (3.52) is used for the weight update. Using Eq. (3.21)

the following model is constructed at the delayed time step, d, for the angle of

54



attack and the load factor outputs:

 α̂

d

n̂zd


 = −A−1

1 [−[∂α ∂q]
T +Bδed ] +


 ∆α(∂̄(xfd), Ved , θd , δed , b1)

∆nz(∂̄(xfd), Ved , θd , δed , b2)


 , (3.59)

where, ∂̄(xf )d is constructed using Eq. (3.13) with xf = [α q nz]
T ∈ <3. ∂α and

∂q are the average sums of central differences used in the linear model inverse

and given below:

∂α = 1
k

k∑
j=1

∂̄(xf )d(1, j),

∂q = 1
k

k∑
j=1

∂̄(xf )d(2, j),

(3.60)

and the following matrices are used for A1 and B of Eq. (3.59):

A1 =


 −7.50 0.20

−129 −6.50


 , B =


 −0.71

−0.60


 . (3.61)

In this example, k of Eq. (3.13) is taken as k = 4, hence ∂̄(xf )d ∈ <3×4. The

parameter k can be larger, depending on the computation time. Note that, each

central difference expression corresponds to a weight. Therefore, the following

basis is constructed for the linear neural networks, ∆α and ∆nz :

φ(i) = φi(∂̄(xf )d(1, i)), i = 1 : 4

φ(i+ 4) = φi+4(∂̄(xf )d(2, i)), i = 1 : 4

φ(i+ 8) = φi+8(∂̄(xf )d(3, i)), i = 1 : 4

φ(13 : 18) = [φ13(δe) φ14(Ve) φ15(θ) φ16(δeVe) φ17(δeθ) b1]T .

(3.62)

Note that, φ(i) is the ith element of the basis vector and φi(.) is the correspond-

ing activation function. The following activation function is used to ensure

boundedness:

φi(.) = aitanh
(
.

ai

)
∈ <, i = 1, 2, ..., 18 (3.63)

where, a’s are design parameters. In the simulations, only the linear regime of

the function is used, that is, all the inputs are scaled approximately to the linear

regime of tanh().

The dynamic trim state, [α̂
DT
n̂zDT ]T , can be found by evaluating Eq. (3.59) when

the central differences and the average sums are zero, such that ∂̄(xf )d = 0 and
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∂α = ∂q = 0:

 α̂

DT

n̂zDT


 = −A−1

1 Bδe +


 ∆α(0, Ve, θ, δe, b1)

∆nz(0, Ve, θ, δe, b2)


+


 eαd

enzd


 , (3.64)

where, the model tracking errors, eαd and enzd , are given by

eαd = α
d
− α̂

d
, enzd = nzd − n̂zd . (3.65)

The limit margins are obtained as

α̂marg = α̂
lim
− α̂

DT
, n̂zmarg = n̂zlim − n̂zDT . (3.66)

Control sensitivities of fast states to elevator input at the dynamic trim condition

can be found by taking the derivative of Eq. (3.64) with respect to δe. The

sensitivities Sα = ∂α̂DT
∂δe

and Snz =
∂n̂zDT
∂δe

are found as

 Sα

Snz


 = −A−1

1 B +

[
∂∆α

∂δe

∂∆nz

∂δe

]T

∂̄(xf )
d

=0

. (3.67)

Then, the control margins are

δ̂emargα = 1
Sα
α̂marg , δ̂emargnz

= 1
Snz

n̂zmarg . (3.68)

Using the control margins, the control limits are calculated as

δ̂elimα = δ̂emargα + δe, δ̂elimnz
= δ̂emargnz

+ δe. (3.69)

In Figure 3.4, angle of attack, load factor, airspeed response and the control input

along with the dynamic trim and the control limit estimations are presented.

Open loop elevator inputs are provided that result in α or nz limit exceedances.

Both margins are predicted within a sufficient time range for a pilot to react to

the limits of a flight envelope. In fact, the points (α̂marg , δ̂emargα ) = (0, 0) and

(n̂zmarg , δ̂emargnz ) = (0, 0) are predicted using the estimation algorithm at the

onset of the actual violations of the angle of attack and the load factor limits.

The weight update time histories are shown in Fig. 3.5. Since the model is a

nonlinear model, the structure of the uncertainty is not exactly known. Hence

the weights can only be bounded around the optimal weights, which might be
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non-unique depending on the selection of the LPNN basis. Compared to [27,

28], the weight time history exhibits a tendency of steady state convergence

(Fig. 3.5). This is also the case for the control sensitivity estimations.
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Figure 3.4: Limit Prediction, Example-1

The modeling errors in the angle of attack and the load factor estimations, ξα,

ξnz , and the neural net outputs, ∆α, ∆nz , are presented in Fig. 3.6. Note that

without adaptation (0-10s), the modeling errors and the delayed approximation

errors, eα, enz , have the same magnitude. After adaptation is switched on, de-

layed error signals evolve to zero as the adaptive elements capture the modeling

errors.
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In Figure 3.6, the modeling errors are approximated with sufficient error bounds

using the adaptive elements, ∆α, ∆nz . Maximized singular values of the history

stack matrices, Zα and Znz are shown in Fig. 3.6. A maximum number of 30

data points are used for history stack and only data increasing the minimum

singular value is added into the stack.

The results of Fig. 3.4 are similar to a physical model behavior since as the

airspeed of the model increases the control margins of the load factor become

smaller, around t = 20−30s. Also, at the low speed region around t = 10−20s,

the angle of attack control margin become more critical.

The simulation is repeated when the weights start from nonzero initial condi-

tions. Results are given in Fig. 3.7. The related modeling error compensation

and maximized singular values are presented in Fig. 3.8. Although the modeling

error is large before the adaptation, the adaptive element compensates for that

error after adaptation is turned on. Although the weight matrix converged to

a different optimal set as in Fig. 3.9, the estimated sensitivities are very close,

indicating that the weights related with control sensitivities are around the same

optimal weights.

The reason why the weight matrix is converged to an optimal set, which is

different from the results in Fig. 3.5, is that the central difference expressions

have numerically close values in the neural network basis. Since the values are

numerically close, the ideal set of weights associated with the central difference

expressions of that basis can be non-unique, therefore, the weight error bounds

associated with those weights can be relatively large. That also makes the overall

weight error bound (weight error bound of the full basis) larger. Although there

exist linearly dependent elements in the basis such as central differences, the

minimum singular value of the history stack can still be increased due to the

existence of the linearly independent elements. Therefore, the larger weight error

bounds can still be minimized theoretically when the minimum singular value

of the history stack is made as maximum as possible.
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Note also that, the ideal set of weights associated with the control sensitivities

are unique (Figs. 3.5 and 3.9), since the considered basis functions are linearly

independent functions for online approximation. Therefore, the weight error

bounds associated with the sensitivities are expected to be made sufficiently

small in the approach. Whereas, the bounds of the weights related with the

central difference expressions are expected to be relatively larger.
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When the control input is limited with the estimated control limits the lim-

iting states are expected to follow the flight envelope boundary. Therefore, a

limit avoidance simulation is performed such that the actual control inputs are

saturated by the estimated control limits throughout the simulation. The ini-

tial conditions of the weights start at zero. Results are presented in Figure 3.10

where the limiting states stay at the envelope boundaries during artificial control

saturation with acceptable errors, indicating a verification of the online predicted

margins. In Section 3.3.2, the limit avoidance method will further be detailed.

Note that, in the previous work [28], additional filters and smoothing logics are
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used to avoid chattering during control input saturation. Chattering was due

to the fast instantaneous learning which resulted in oscillations in the weight

update. Compared to [28], smoothers are not required during control satura-

tion since the adaptive element has a steady state tendency, hence, parameter

convergence using concurrent adaptation.
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Figure 3.10: Limit Avoidance, Example-1

3.3.1.2 Example-2: Pull-up & Push-over during a Turn

In this example, the pitch up and pitch down maneuvers are repeated during a

high bank angle turn maneuver. The initial conditions of the weights and the

history stack matrix are the final values obtained from Example-1 (Fig. 3.4).

Results of the predictions and the aileron input, roll angle and airspeed response

are given in Fig. 3.11.
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Figure 3.11: Limit Prediction, Example-2

The aircraft is banked to the right and left during the maneuver. Two elevator

doublet inputs are applied. First, a doublet input is applied around t = 18s

while having a bank angle of 30 degrees.The second doublet is applied while

banking at an angle of -48 degrees (t = 40s). In both cases the dynamic trim of

the critical states and related control limits are estimated prior to reaching the

actual limits.
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Next, limit avoidance is applied. The aileron input scenario of the previous

simulation is repeated while the elevator inputs are limited with the estimated

control limits. Results are shown in Fig. 3.12. Both elevator doublets are sat-

urated and the aircraft is kept within the envelope limits. Compared to the

previous simulation, the second doublet input is applied during a bank angle of

-70 degrees.

Therefore, the obtained control margins can be used to cue the pilot of a fly-by-

wire aircraft both to avoid approaching envelope limits and also to stay at the

flight envelope limit to maximize the operational effectiveness.
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Figure 3.12: Limit Avoidance, Example-2
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3.3.2 Vertical Speed Limit Protection for Helicopters

Vertical speed is a critical flight parameter for a helicopter operating at low

height flight operations and sensitive to collective movement. A collective cueing

system that gives feedback to the pilot at the onset of a vertical speed down limit

would reduce the pilot workload and increase the overall safety of the helicopter

during operations in close proximity to the ground.

In this example, vertical speed (Vs) is treated as the measured limit parameter

that limits the operational envelope and is known to have a steady state critical

response, such that for a given collective input the maximum magnitude of the

response occurs at the steady state condition.

The prediction algorithm shown in Fig. 3.2, is applied to predict vertical speed

limit margins for a utility helicopter, operating at hover, low speed and low

height above terrain flight conditions. The Sensitivity Estimation Based Con-

trol Margin Estimation is applied to predict allowable margins on the collective

control. A ground speed controller is used to keep the helicopter in hover and

in 20-60 kts forward flight conditions for the demonstration.

The simulation model is a high-fidelity nonlinear helicopter model with a 3-state

dynamic inflow model and flapping dynamics in the main rotor, resembling a

generic utility helicopter. The helicopter model is similar to the UH-1H utility

helicopter and modeled using a modeling and simulation tool called Heli-Dyn+.

Heli-Dyn+ is a software tool in which various helicopter components such as

main rotor, tail rotor, fuselage and etc. can be modeled individually and com-

bined all together using a component build-up method [50]. For the simulations

presented next, the main rotor of the considered helicopter is modeled in the

software using the Peters-He Finite State Dynamic Wake Model, whereas the

tail rotor is modeled using Blade Element Momentum Theory. Flat plate drag

areas are used to model the fuselage in the software, and first order aerodynamic

models are used for the aerodynamic surfaces. The final model is exported into

the MATLAB/Simulink environment as a dynamic link library (.dll) using the

export function of the software, and implemented for the proposed limit and
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control margin estimation algorithms.

For the online approximation of the vertical speed signal, the parameters such

as; airspeed (Ve), height above terrain (h), pitch angle (θ), roll angle (φ), the

collective input (δcoll) and the central difference expressions are used. Using

Eq. (3.33) the following online model is constructed at the delayed time step, d,

as

V̂sd = A−1
11 (∂

Vs
−B11δcolld) + ∆(∂̄(Vs)d , hd , Ved , θd , φd , δcolld , b1) (3.70)

in which, the first term represents the inverse of a linear model approximation.

Here, the central differences, ∂̄(Vs)d , are obtained using Eq. (3.32) and ∂
Vs

is

calculated using the average sum of central differences as below:

∂
Vs

= 1
k

k∑
j=1

∂̄(Vs)d(1, j). (3.71)

The following basis is constructed for the neural network, ∆ = W TΦ
d
:

φ(i) = φi(∂̄(Vs)d(1, i)), i = 1 : 4

φ(i+ 4) = φi+4(∂̄(Vs)d(2, i)), i = 1 : 4

φ(9 : 17) = [φ9(δcoll) φ10(Ve) φ11(θ) ...

... φ12(φ) φ13(δcollVe) φ14(δcollθ) ...

... φ15(δcollφ) φ16(Veθ) b1]T

(3.72)

Note that, φ(i) is the ith element of the basis vector and φi(.) is the correspond-

ing activation function. The following activation function is used to ensure

boundedness:

φi(.) = aitanh
(
.

ai

)
∈ <, i = 1, 2, ..., 17 (3.73)

where, a’s are design parameters.

Using the variables of the current time step, the dynamic trim value, V̂sDT , can

be found evaluating Eq. (3.70) at the dynamic trim condition (V̇s = 0) as

V̂sDT = −A−1
11 B11δcoll + ∆(0, h, Ve, θ, φ, δcoll, b1) + e

d
(3.74)

where, the delayed approximation error, e
d
, is given by,

e
d

= Vsd − V̂sd (3.75)
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and the limit margin is given as

V̂smarg = V̂slim − V̂sDT . (3.76)

The control sensitivity between the vertical speed and the collective input at the

steady state condition(V̇s = 0) can be found by taking the derivative of Eq. (3.64)

with respect to δcoll. The sensitivitiy of the vertical speed with respect to the

collective input, S =
∂V̂sDT
∂δcoll

, is

S = −A−1
11 B11 +

[
∂V̂sDT
∂δcoll

]

V̇s=0

. (3.77)

Then the control margin and control limits are found as,

δ̂collmarg =
1

S
V̂smarg , δ̂colllim =

1

S
V̂smarg + δcoll. (3.78)
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Figure 3.13: Simulation Block Diagram

In the following examples, the simulation block diagram given in Fig. 3.13 is

used for the demonstration. Ground speed controllers in the outer loop and

attitude controllers in the inner loop are used to maintain ground speed reference

inputs. While the controllers maintain horizontal velocities, open loop collective

inputs are given to helicopter. Three different examples are given. Examples

are performed to demonstrate the effectiveness of the proposed algorithm during

aggressive collective inputs given in hover and forward flight conditions. For the

forward flight examples, 20 kts and 60 kts of ground speed conditions are used.
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3.3.2.1 Example-1: Hover

The simulation is initialized at a hovering flight condition at 500 ft height above

terrain. Controllers are used to keep the helicopter at zero ground speed through-

out the simulation. Open loop collective inputs are given to result in vertical

descent. In Fig. 3.15, the vertical speed response and steady state predictions

are shown along with the vertical speed limit signal which is a function of the

altitude. Vertical speed down limit is written as a function of helicopter’s height

above terrain, h, as shown in Fig. 3.14.
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Figure 3.14: Vertical Speed Limit Profile

As shown, the future steady state values of vertical speed are predicted prior

to actual violations with a significant lead time. Note that in Fig. 3.15 the

positive sign of the vertical speed signal refers to a descending vertical speed.

The collective inputs, estimated collective limits and the height above terrain

information are presented as well. Note that the exceedances of the limits on

the collective control happen at the same simulation time when the limit margin

estimations of the vertical speed is zero (Fig. 3.15).

In Fig. 3.16, the modeling error compensation and the weight time histories of the

neural network signal are presented. Since the weights reach approximate steady

values rather fast, the modeling error compensation is fast as well. The data

recording for concurrent adaptation starts from the beginning of the simulation.

The maximized singular value of the history stack and the estimated sensitivity

parameters are shown as well. Note that the estimated sensitivity is closely

around a steady value. Helicopter attitudes and ground speeds are presented in

Fig. 3.17. Ground speeds are kept at zero to maintain a vertical flight.
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Figure 3.15: Limit Prediction, Example-1

Next, the limit avoidance algorithm given in Fig. 3.18 is added into the sim-

ulation. The limit avoidance algorithm is used to verify results. Note that,

an algebraic loop exists during the control input saturation since an estimated

control limit at the current time, δcolllim , is also required by the control margin

estimation block at the current time. Therefore, a low pass filter is used to avoid

that algebraic loop, A, of Fig. 3.18.

Here, the pilot input is saturated with the online obtained control limits. There-

fore, the vertical speed is expected to be at the limit boundary during the control

saturation. The limit margin is expected to be zero when the control margin is

zero, or vice a versa. The result is presented in Fig. 3.19. The vertical speed

is kept at the boundary with a significant lead time when the control limit is

followed.

In the examples of Section 3.3.1, the limit avoidance technique given in Fig. 3.18

is used as well. In Figures 3.10 and 3.12, the elevator control inputs are saturated

using the estimated elevator control limits through a low pass filter.
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Figure 3.16: Modeling Error and NN Output, NN Weights, Predicted Collective
Sensitivity, Minimum Singular Value of the History Stack, Example-1
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Figure 3.17: Euler Angles and Ground Speeds, Example-1
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Figure 3.19: Limit Avoidance, Example-1
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3.3.2.2 Example-2: Low Speed Forward Flight

Next, the algorithm is used in a low speed forward flight simulation. First, the

simulation is initialized at the hovering condition. Then, the ground speed con-

troller is used to bring the helicopter’s ground speed to 20 kts. When t = 20 sec,

adaptation is turned ON. Data recording for concurrent learning is used from

the beginning of the simulation. In Fig. 3.20, prediction results are presented.

The predictions indicate the capability of the algorithm for adapting to different

flight conditions.
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Figure 3.20: Limit Prediction, Example-2

In Fig. 3.21, the modeling error compensation, weight update time history, sensi-

tivity estimation and singular value maximization results are presented. The fast

convergence of weights to steady values are observed in the figure. Helicopter

attitudes and ground speeds are shown in Fig. 3.22.
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Figure 3.21: Modeling Error and NN Output, NN Weights, Predicted Collective
Sensitivity, Minimum Singular Value of the History Stack, Example-2
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Figure 3.22: Euler Angles and Ground Speeds, Example-2
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When the collective is limited by the online estimated control limits, the vertical

speed is expected to be within its boundaries. The algorithm of Fig. 3.18 is used

for this simulation. Results are shown in Fig. 3.23. The helicopter follows the

estimated vertical speed limit when the collective control follows the control

limit.
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Figure 3.23: Limit Avoidance, Example-2

3.3.2.3 Example-3: Forward Flight

In Figures 3.24-3.26, simulation results are presented for the 60 kts forward

flight condition. Here, the helicopter model is initialized at the hovering flight

condition at 500 ft ground altitude and then accelerated to 60 kts forward speed

using the ground speed controller. Adaptation is turned on at t = 20s, and
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at t = 110s collective inputs are given to the trimmed helicopter to result in

excessive vertical speed. In Figure 3.24, the vertical speed response and the

steady state estimations are presented. When the steady state prediction is

at the envelope boundary, the collective control input is also at the allowable

control boundary. As shown in Figure 3.24, the helicopter model is close to the

ground at about t = 200s with an excessive vertical speed. At the instants when

the control limits are violated the pilot could have been cued through active

inceptors of a fly-by-wire helicopter.
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Figure 3.24: Limit Prediction, Example-3

In Figure 3.25, the estimator error compensation, adaptive weights, control sen-

sitivity estimation and the maximized singular value of the concurrent learning

adaptive law are presented. Data recording for concurrent learning is initialized

at the beginning of the simulation and at t = 110s the minimum singular value

increases (Figure 3.25). The recorded data in the history stack becomes differ-

ent enough at that time step so that the minimum singular value is maximized.
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The estimator error (ξ) is compensated by the adaptive element (∆) with ac-

ceptable errors. Note that the weights and the sensitivity estimations are slowly

changing compared to the system response and the collective input, indicating a

tendency to convergence steady state. Corresponding helicopter states are given

in Figure 3.26. When the control input is limited to the estimated control limit,

the vertical speed is expected to follow the envelope boundary. Therefore, a

limit avoidance simulation is presented next in which the collective inputs are

saturated with the online estimated collective limits. Results are presented in

Figures 3.27 and 3.28. The vertical speed is at the limit boundary when the con-

trol is at the boundary. Although aggressive inputs are given to the helicopter,

vertical speed is kept at the limit with a significant lead time.
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Figure 3.25: Modeling Error and NN Output, NN Weights, Predicted Collective
Sensitivity, Minimum Singular Value of the History Stack, Example-3
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Figure 3.26: Euler Angles and Ground Speeds, Example-3
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Figure 3.27: Limit Avoidance, Example-3
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In Figure 3.28, estimator error compensation, adaptive weights, control sensi-

tivity estimation and the maximized singular values of the concurrent learning

adaptive law are presented for the limit avoidance simulation. Note that the

weights and the estimated sensitivity are close to steady values after t = 250s,

indicating a long term learning in the estimations. Therefore, a better estima-

tion accuracy is expected over time. According to that, the estimation error is

compensated with better accuracy over time (Figure 3.28). Minimum singular

value of the history stack is maximized.
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Figure 3.28: Modeling Error and NN Output, NN Weights, Predicted Collective
Sensitivity, Minimum Singular Value of the History Stack, Example-3
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3.4 Concluding Remarks

In this chapter, the previous adaptive framework for the online estimation of

limit margins is improved. Sensitivity estimation based control margin estima-

tion technique is revisited and shown to be improved using the proposed limit

margin estimation methodology and concurrent learning in the weight update.

For the limit margin estimation, approximate models of fast aircraft states are

constructed using online trained adaptive neural networks. A delayed moving

time step is chosen for the generation of the online models. A sufficient set of

central differences around the delayed moving time is used to represent the time

derivatives of the fast aircraft states in the approximation. Models constructed

in the past are used in the current time for the limit margin estimation. Central

differences used in the approximation are set to zero at the current time to

estimate the dynamic trim state. Estimations are performed without requiring

online fixed point iterations. Note that this was an implementation difficulty in

the previous methodologies. Since the parameters of the adaptive element are

found to reach the steady values at a delayed moving time, the delayed models

are found to be effective to estimate the dynamic trim state at the current time.

For the control margin estimation, the proposed online limit margin estimator is

used to calculate control sensitivities at the dynamic trim condition. Estimated

limit margins and control sensitivities are used to construct control margins.

The sensitivity estimation based control margin estimation method is found to

be effective since the control sensitivity estimations are observed to have approx-

imately constant values during aggressive maneuvering. No large changes in the

sensitivity estimations are obtained as it was a drawback of the previous meth-

ods based on control sensitivity estimations. Therefore in this chapter, previous

shortcomings of the sensitivity estimation based methods in the literature are

also improved using concurrent learning in the adaptive element.

In the methodology, linear neural network structures, i.e. LPNNs, are used along

with concurrent learning in the weight update. For concurrent adaptation, the

data that increase the minimum singular value of a history stack are recorded
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online. Minimum singular value maximization method is shown to locate the

adaptive weights around optimal values. A Lyapunov based proof is presented in

the Appendix to show the ultimate bounds of the weight errors of the proposed

estimators. It is shown that the bounds on the weight errors can be decreased

even further if the minimum singular value of the data history stack is maximized

online. Therefore, using concurrent learning in the weight update, bounded

control sensitivities and adaptive weights in a compact neighborhood of the

optimal values are obtained and used online to construct limit and control margin

estimations.

The effectiveness of the proposed methodologies is evaluated in simulations us-

ing fixed wing and rotary wing aircraft dynamic models. Critical parameters

such as; load factor, angle of attack and vertical speed are considered for the

implementation of the methodologies. It is shown that limit margins can be es-

timated with sufficient lead times to react on approaching angle of attack, load

factor and vertical speed limit boundaries. The control sensitivities are shown

to be accurate estimated using the limit margin estimator in which the estima-

tor weights are ultimately bounded. Using concurrent learning in the weight

update, sensitivity estimation based control margin estimation methodology is

shown to be effective. Also, using the minimum singular value maximization to

record necessary data for concurrent adaptation, the sensitivity estimations are

shown to reach the expected (physically correct) values fast.

Estimated limit and control margins are verified using control input saturation

at the limit boundary. It is observed that the parameters stay at the limit

boundary, enabling carefree maneuvering, when the control inputs are saturated

artificially with the estimated control limits. No chattering is observed at the

limit boundary during control input saturation. Note that the chattering was a

drawback of the previous adaptive frameworks due to the oscillations triggered

by instantaneous learning during the control input saturation.

In the proposed methodologies, the limit margin and the control margin esti-

mations are directly related using the estimated control sensitivities, i.e. linear

algebraic relations are established between the two critical margins. Therefore in
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the proposed approach, a control margin is guaranteed to be zero only when an

associated limit margin become zero. That constraint is beneficial since, in the-

ory, both margins are expected to be zero, that is at the limit boundary, at the

same time instant. Using the sensitivity and the limit margin estimations, that

theoretical constraint is made practical in the proposed methodologies. Whereas

in the previous adaptive frameworks for envelope protection, no constraints have

been established between the two critical margins. Therefore, using the previous

approach it is possible for both margins to be at the limit boundary at different

time instants, which can be confusing while avoiding the limits or establishing

mathematical rules for limit avoidance.

Based on the simulation results, the new adaptive framework is shown to be

effective to estimate limit and control margins to be used to warn pilots at the

onset of the limiting flight conditions. Note that the limit margin cues can be

displayed through cockpit visuals or given through aural indications for pilot

cueing. Whereas, the control margin cues can be given to pilots through the

active controls in a fly-by-wire aircraft.
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CHAPTER 4

DIRECT ADAPTIVE CONTROL MARGIN

ESTIMATION

In this chapter, an adaptive control margin estimation methodology, that doesn’t

require online fixed point iterations, is proposed for the task of envelope cueing

for Fly-By-Wire aircraft. Compared to the previous chapter, limit margin and

control sensitivity estimations are not required for the estimation of the control

margins in this chapter. Fixed and rotary wing aircraft dynamic models are

used to show the effectiveness in the simulation.

4.1 Methodology

Using the plant definitions of the previous chapter, which are Eqs. (3.1) and (3.2),

and the assumptions made in Section 3.1, dynamics of the fast aircraft states

and the dynamic trim condition are redefined here as

ẋf = f 1(xf ,xs,u), (4.1)

ẋf = 0. (4.2)

4.1.1 Direct Adaptive Control Margin Estimation

In this section, an inverse modeling approach is used to estimate the control

margins similar to the limit margin estimations. In order to find control margins

on a single control axis, the control of interest, ue ∈ <, can be formulated using
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Eq. (4.1) with the following representation:

ue = f−1
1 (ẋf ,xf ,xs,u

′). (4.3)

Here, u′ ∈ <p−1 is the control input vector excluding ue and f−1
1 is an inverse

of the actual plant dynamics. When the relation given by Eq. (3.23) is inverted

such that xf = g−1(yp,xs), then Eq. (4.3) can be approximated as a function of

yp as:

ue = f̂−1
1 (ẋf , yp,xs,u

′) + ξ. (4.4)

where, f̂−1
1 is an approximate inversion and ξ is the modeling error. Using the

neural network function approximation, ∆, the following estimation to ue can

be written:

ûe = f̂−1
1 (ẋf , yp,xs,u

′) + ∆(ẋf , yp,xs,u
′), (4.5)

and, subtracting Eq. (4.5) from (4.4), the function approximation error, e, is

obtained:

e = ξ −∆(ẋf , yp,xs,u
′). (4.6)

Assumption (4.1): The limit parameter, fast states, slow states and control

inputs, that is the signals yp, xf , xs and u, are known, i.e measured, and

sampled with the same sampling rate.

Assumption (4.2): Sampling rate of the signals, yp, xf , xs and u, is fixed and

chosen as sufficient as to approximate the considered pilot control input (ue).

Assumption (4.3): A moving time window, i.e. delay line, containing the previ-

ous consecutive samples of the signals yp, xf , xs and u, is available at the time

of current sampling. Therefore, the following matrix is constructed as the delay

line matrix:

DL =




yptc−1 yptc−2 . . . yptc−w

xftc−1 xftc−2 . . . xftc−w

xstc−1 xstc−2 . . . xstc−w

utc−1 utc−2 . . . utc−w



, (4.7)

in which, tc is the time index for the current sampling and tc−w is the index of

the most previous data. Note that, DL ∈ <(n+p+1)×w and w ∈ ℵ+ is the number
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of samples in the delay line. Also, a chosen column of DL in Eq. (4.7) represents

a delayed moving time step, as in Remark (3.1).

When Eqs. (4.5) and (4.6) are established at a delayed moving time step, d, the

derivatives, ẋfd , can be represented using a central difference operator as done

in the previous chapter. Therefore, using Eqs. (3.12) and (3.13), the following

input estimator can be constructed:

ûed = f̂−1
1 (∂̄(xf )d , ypd ,xsd ,u

′
d
) + ∆(∂̄(xf )d , ypd ,xsd ,u

′
d
). (4.8)

The model tracking error, ed, can now be written at the delayed moving time

step as:

ed = ξd −∆(∂̄(xf )d , ypd ,xsd ,u
′
d
). (4.9)

Assumption (4.4): In Eq. (4.8), the approximate inversion f̂−1
1 is augmented

with ∆. The resulting operator, (f̂−1
1 + ∆), is a one-to-one mapping such that

(f̂−1
1 + ∆) : <l(k−1)+n+p → < exists and is unique.

Remark (4.1): Assumption (3.9) of the previous chapter is required hereafter.

Using the dynamic trim condition, ∂̄(xf )t = 0, along with Eqs. (4.8) and (4.9),

the control limit, ûelim , for a given output limit, yplim , can be estimated at the

current time step as

ûelim = f̂−1
1 (0, yplim ,xs,u

′) + ∆(0, yplim ,xs,u
′) + ed. (4.10)

In practice, Eq. (4.10) is used to estimate uelim with yplim , the known limit

boundary of the aircraft. Then, the control margin, uemarg , can be calculated:

uemarg = ûelim − ue. (4.11)

In Fig. 4.1 the block diagram of the control margin estimation algorithm is

presented. The dashed lines represent the variables or calculations of the delayed

moving time step, d, and the solid lines are the ones that run at the current time

step.

If a reduced order linear plant model, ẋf = A11xf + B11ue, is available and

yp = xf , then the approximate inversion, f̂−1
1 , can be obtained by inverting

similar to ue = B−1
11 (ẏp − A11yp).
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ûelim
= f̂−1

1 (0, yplim
, xs, u

′) + ∆(0, yplim
, xs, u

′) + ed ∆(∂̄(xf )
d
, ypd

, xsd
, u′

d
)

f̂−1
1 (∂̄(xf )

d
, ypd

, xsd
, u′

d
)

ypypd

Figure 4.1: Direct Adaptive Control Margin Estimation

The methodology presented here does not require sensitivity and limit margin

estimations to obtain control margins. Also no iterations are required. Therefore

the method is called, the Direct Adaptive Control Margin Estimation.

Relative Degree Formulation

Using Eqs. (3.23), (3.24) and (3.25) of Section (3.1.1), an alternative methodol-

ogy can be developed for the task of control margin estimation.

In Eq. (3.25), ue is the effective control input that results in a flight envelope

violation of the limit parameter yp. Hereafter, the goal is to establish a functional

approximation between ue and yp. When Eq. (3.24) is inverted, ue can be written

as in Eq. (4.12).

ue = g−1
n (xs, yp, y

(1)
p , y(2)

p , ..., y(n)
p ) (4.12)

Here, g−1
n is the actual inverse of the plant dynamics and is an unknown function.

Using an approximate model, ĝn, ue can be written as a summation of the

approximation and a modeling error, ξ:

ue = ĝ−1
n (xs, yp, y

(1)
p , y(2)

p , ..., y(n)
p ) + ξ. (4.13)

In Eq. (4.13), xs represents slow aircraft states that might be required for the

approximation. If we let yp = [yp y
(1)
p ... y

(n−1)
p ]T ∈ <n then the derivatives in
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Eq. (4.13) can be written as

ẏp = [y(1)
p y(2)

p ... y(n)
p ]T ∈ <n, (4.14)

and using an adaptive element, ∆, the following estimation to ue can be written:

ûe = ĝ−1
n (xs, yp, ẏp) + ∆(xs, yp, ẏp). (4.15)

Remark (4.2): Assumptions (3.6-3.10) of the previous chapter are required here-

after.

Note that, Eq. (4.15) requires the derivative signals ẏp to be available. Similar

to Eq. (3.30) of Section (3.1.1), the estimator of Eq. (4.15) can be established

at a delayed moving time step, d, as follows:

ûed = ĝ−1
n (xsd , ypd , ẏpd

) + ∆(xsd , ypd , ẏpd
). (4.16)

where, the subscript, d, represents the variables of a delayed moving time step.

Note that the derivatives, ẏpd
, can be written as a function of available central

differences around the delayed moving time step, d. As in Eq. (3.32) of Sec-

tion (3.1.1), the same operator can be used here to take the limit parameter, yp,

at time d and output a matrix of central differences around that time. Therefore,

Eq. (4.16) can now be written as a function of central differences as

ûed = ĝ−1
n (xsd , ypd , ∂̄(yp)d) + ∆(xsd , ypd , ∂̄(yp)d). (4.17)

Subtracting Eq. (4.17) from ued = ĝ−1
n (xsd , ypd , ∂̄(yp)d) + ξ

d
, the delayed approx-

imation error, e
d
, is obtained as

e
d

= ξ
d
−∆(xsd , ypd , ∂̄(yp)d). (4.18)

Assumption (4.5): In Eq. (4.17), the approximate inversion, ĝ−1
n , is augmented

with ∆. The resulting operator, (ĝ−1
n + ∆), is a one-to-one mapping such that

(ĝ−1
n + ∆) : <n(k+1)−l+1 → < exists and is unique.

Since the derivatives are represented with central differences, ∂̄(yp)d is expected

to be zero at the maneuvering steady state condition. Hence, the maneuvering

steady state condition, ẏp = 0, also indicates

∂̄(yp)t = 0. (4.19)
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Therefore, using Eq. (4.19), along with Eqs. (4.17) and (4.18), the control limit,

ûelim , for a given limit, yplim , can be estimated at the current time step, t, as

ûelim = ĝ−1
n (xs, yplim , 0) + ∆(xs , yplim , 0) + ed. (4.20)

In Eq. (4.20), the delayed approximation error, ed, is used at the current time

step. Note that this is applicable when the network weights reach a compact

neighborhood of the ideal weights.

The control margin, uemarg , can be calculated as

uemarg = ûelim − ue. (4.21)

A block diagram representation of the proposed control margin estimation algo-

rithm is presented in Fig. 4.2. Dashed lines represent the values of the variables

or calculations that take place at the delayed moving time step and the straight

lines are the calculations of the current time step.
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Figure 4.2: Direct Adaptive Control Margin Estimation with Relative Degree
Formulation

It should be noted that the methodologies presented in [13, 27, 28] and [32]

as well as the approaches proposed in the previous chapter and in this chapter

are applicable for the aircraft states or limit parameters that reach their limiting

value in the steady state response as opposed to the ones that reach their limiting

values in their transient response. Using Eqs. (4.10), (4.11), (4.20) and (4.21)

control limits and control margins can be estimated.
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4.2 Online Model Generation

In this chapter, an effective pilot control input, ue, is aimed to be modeled

online. Therefore, the modeling errors are in that control input channel and the

related online estimators, Eqs. (4.8) and (4.17), are established to cancel out

the modeling errors. Note that the neural network augmentation of the errors is

similar to the implementation presented in Section 3.2, hence, the reader should

refer to Section 3.2 for the online compensation of the modeling errors.

4.3 Implementation and Simulation Results

In the simulation examples of this chapter, LPNNs are used in both estimators to

cancel out the modeling errors. Also, the data for concurrent learning is recorded

through maximizing the minimum singular values of the history stacks. Next,

the implementation of the proposed algorithms for the fixed wing and rotary

wing aircraft models is presented.

4.3.1 Flight Envelope Protection for Aircraft

In this example, simulation scenarios of Section 3.3.1 of the previous chapter

are repeated for the same aircraft model. The Direct Adaptive Control Mar-

gin Estimation methodology of this chapter is used to calculate related control

margins.

The following online models are constructed at the delayed time step d using

Eq. (4.8):

δ̂e1d = (1/C1)(C2 [∂α ∂q]
T − α

d
) + ∆α(∂̄(xf )d , αd , Ved , θd , b1), (4.22)

δ̂e2d = (1/C3)(C4 [∂α ∂q]
T − nz

d
) + ∆nz(∂̄(xf )d , nzd , Ved , θd , b1). (4.23)

Here, ∂α and ∂q are constructed using Eq. (3.60) and ∂̄(xf )d is obtained using

Eq. (3.13), in which xfd = [α
d
q
d
nzd ]

T ∈ <3 and k = 4. Note that, the first

terms of Eqs. (4.22) and (4.23) are obtained using reduced order linear models.
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In Eq. (4.22), the angle of attack is used as the limit parameter, and in Eq. (4.23),

the limit parameter is the the load factor.

The following bases are constructed for the neural networks given in Eqs. (4.22)

and (4.23), respectively:

φα(13 : 18) = [φ13(α) φ14(Ve) φ15(θ) φ16(αVe) φ17(αθ) b2]T ,

φnz(13 : 18) = [φ13(nz) φ14(Ve) φ15(θ) φ16(nzVe) φ17(nzθ) b3]T ,
(4.24)

where, the first 12 elements of each basis, φα and φnz , are constructed similar

to Eq. (3.62).

Control limits are estimated at the current time step using Eqs. (4.22) and (4.23)

at the dynamic trim condition (∂̄(xf )d = 0, ∂α = ∂q = 0) and by substituting

the envelope limits into the equations as:

δ̂e1lim = (1/C1)(−αlim) + ∆α(0, α
lim
, Ve, θ, b1) + e1d ,

δ̂e2lim = (1/C3)(−nzlim) + ∆nz(0, nzlim , Ve, θ, b1) + e2d .
(4.25)

in which, e1d and e2d are delayed model tracking errors of each estimator as in

Eq. (4.10), and calculated at the delayed moving time as

e1d = δed − δ̂e1d , e2d = δed − δ̂e2d (4.26)

4.3.1.1 Example-1: Longitudinal Pull-up & Push-over

In Fig. 4.3, control margin predictions for the angle of attack and the load factor

response are presented along with the airspeed response. As in the examples of

the previous chapter, the limit boundaries on the control travel are estimated

prior to actual limit violations. Here, the estimation of control limits do not

require the estimation of limit margins or control sensitivities. Yet, results are

similar to the ones shown in Fig. 3.4 of Section 3.3.1.
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Figure 4.3: Limit Prediction, Example-1

In Fig. 4.4, the modeling error compensation and the maximized minimum singu-

lar values are shown. Both online models have reasonable tracking performance

where the approximation error is kept within sufficient bounds. Minimum sin-

gular values are maximized in time. At each increment in Fig. 4.4 a new basis

is recorded into the history stacks.

In Fig. 4.5, the neural network weight update time histories are shown. Note

that in these results and in the results of Section 3.3.1, the weights have a

tendency to move slowly compared to the changes in other flight parameters.

This indicates a long term adaptation in the adaptive element.
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Next, the maneuver is repeated for a control input that repeats itself after 35s

until about 100 seconds to demonstrate the long term response of the weight up-

date. The weight update time history is shown in Fig. 4.6, also further indicating

a tendency of steady state convergence in the long term.

Limit avoidance is achieved by saturating the controls at the estimated control

limits. Results are presented in Fig. 4.7. The limiting states are also at the

envelope boundary when the control is saturated.

4.3.1.2 Example-2: Pull-up & Push-over during a Turn

In this example, the simulation scenario of Example 2 of Section 3.3.1 is repeated.

Weights and the history stacks obtained at the end of Fig. 4.5 are used as the

initial conditions in this example. Estimated control limits are shown in Fig. 4.8.

Limit avoidance is applied and results including the aircraft response are shown

in Fig. 4.9. In the simulation, the aircraft is kept in the flight envelope.
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4.3.2 Vertical Speed Limit Protection Helicopters

In this section, collective control limits for a helicopter operating in hover and

forward flight conditions are estimated online using the Direct Adaptive Control

Margin Estimation methodology. For the implementation, Eqs. (4.12), (4.21)

and between are used.

For the online approximation of the collective input (δcoll), the parameters such

as; vertical speed (Vs), airspeed (Ve), height above terrain (h), pitch angle (θ),

roll angle (φ) and the central difference expressions of the vertical speed are used.
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Using Eq. (4.17), the following online function approximation is constructed at

a delayed time step, d:

δ̂colld = B−1
11 (∂

Vs
− A11Vsd) + ∆(∂̄(Vs)d , hd , Ved , θd , φd , Vsd , b1) (4.27)

in which, ∂̄(Vs)d is calculated using Eq. (3.32) and, the first term represents

the inverse of a linear model approximation. ∂
Vs

is the average sum of central

differences used in the linear model inverse:

∂
Vs

= 1
k

k∑
j=1

∂̄(Vs)d(1, j). (4.28)

The following basis is constructed for the neural network, ∆ = W TΦ
d
:

φ(i) = φi(∂̄(Vs)d(1, i)), i = 1 : 4

φ(i+ 4) = φi+4(∂̄(Vs)d(2, i)), i = 1 : 4

φ(9 : 17) = [φ9(Vs) φ10(Ve) φ11(θ) ...

... φ12(φ) φ13(VsVe) φ14(Vsθ) ...

... φ15(Vsφ) φ16(Veθ) b1]T

(4.29)

Note that, φ(i) is the ith element of the basis vector and φi(.) is the correspond-

ing activation function. The following activation function is used to ensure

boundedness:

φi(.) = aitanh
(
.

ai

)
∈ <, i = 1, 2, ..., 17 (4.30)

where, a’s are design parameters.

Using the variables of the current time step, the collective limit, δ̂colllim , can

be estimated evaluating Eq. (4.27) at the dynamic trim condition (V̇s = 0 or

∂
Vs

= 0) as

δ̂colllim = −B−1
11 A11Vslim + ∆(0, h, Ve, θ, φ, Vslim , b1) + e

d
(4.31)

where, the delayed approximation error, e
d
, is given by,

e
d

= δcolld − δ̂colld (4.32)

and the control margin is given as

δ̂collmarg = δ̂colllim − δcoll. (4.33)
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Note that compared to the methodologies given in the previous chapter, in

this chapter, control sensitivity estimations is not required for control margin

estimation. Yet, for the cases in which the limit margin information is required,

i.e. for the visualization of the limits on the cockpit visuals, the limit margin

estimation methodology of the previous chapter can be used.

4.3.2.1 Example-1: Hover

In this example helicopter model is initialized at a hovering flight condition at

500 ft height above terrain. Simulation scenario for the hover example of the

Section 3.3.2 is repeated. Controllers demonstrated previously in Fig. 3.13 are

used to keep the helicopter at zero ground speed throughout the simulation and

the limit profile given in Fig. 3.14 is used to define the vertical speed down limits

as a function of helicopter’s height above terrain. Open loop collective inputs

are given to result in vertical descent. In Fig. 4.10, the vertical speed response

and steady state predictions are shown along with the vertical speed limit signal.
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Figure 4.10: Limit Prediction, Example-1
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In Figure 4.10, limit margins and control sensitivities are not estimated, yet the

control limits are estimated. In addition to that the exceedance of control limits

are estimated prior to the actual exceedance of the vertical speed down limits.

An advantage of the Direct Adaptive Control Margin Estimation methodology is

that the estimated control margins can be used without considering limit margin

or sensitivity estimations. Also, the control limits can be used directly as the

soft stop locations in the active control system of a fly-by-wire aircraft.
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Figure 4.11: Modeling Error and NN Output, NN Weights, Minimum Singular
Value of the History Stack, Example-1

In Figure 4.11, modeling error compensation, weight time history of the adap-

tive element and maximized minimum singular values of the history stack are

presented. Modeling errors are augmented in sufficient error bounds using the

adaptive element with a fast convergence of weights around a steady region.
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Next, limit avoidance is applied through saturating the pilot collective inputs at

the estimated collective limits. A block diagram of the limit avoidance scheme

is presented in Fig. 4.13. A similar limit avoidance scheme has also been pre-

sented in Fig. 3.18 of Section 3.3.2 in which a low pass filter is used to avoid

an algebraic loop existing in the approach. Whereas, using the Direct Adaptive

Control Margin Estimation methodology such an algebraic loop do not exist

during control input saturation as in Fig. 4.13 since the pilot input is not re-

quired for the estimation of the control limits at the current time step. In the

approach, the collective input is only required to calculate the model tracking

error at the delayed moving time.
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Figure 4.12: Limit Avoidance, Example-1
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In Fig. 4.12, results for the limit avoidance example are presented. As shown,

the vertical speed is at the limit boundary whenever the controls are saturated

with the estimated collective limits.
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with Controllers Pilot 
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Direct Adaptive Control 
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Figure 4.13: Control Limiting for Limit Avoidance

4.3.2.2 Example-2: Low Speed Forward Flight

In this example, helicopter model is accelarated to 20 kts of ground speed and

later automatic controllers are used to keep the helicopter at that ground speed.

Excessive collective inputs are applied to exceed the vertical speed limits. Predic-

tion results are presented in Fig. 4.14 in which the collective limits are estimated

at the onset of actual limit exceedances. Modeling error compensation and the

weight time history of the adaptive element are shown in Fig. 4.15. Results are

agree with the previous example, the hover case. Note that the response of the

helicopter to collective inputs at 20 kts is different than the the response of the

helicopter at the hover case. Therefore, using the learn while flying capability of

the adaptive element, modeling errors associated with different flight conditions

are canceled out and correct estimations are obtained.

Limit avoidance is presented next. Results are presented in Fig. 4.16. As in the

previous examples, vertical speed limits are avoided at the limit boundary using

the control input saturation. Note that the helicopter is above the ground, i.e.

at 200 feets, at the end of the simulation.
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Figure 4.14: Limit Prediction, Example-2
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Figure 4.16: Limit Avoidance, Example-2

4.3.2.3 Example-3: Forward Flight

In this example, helicopter model is accelerated to 60 kts of ground speed and

later, i.e. after 100 seconds, aggressive collective inputs are applied. Prediction

results are shown in Fig. 4.17. Until the time is 100 seconds of the simulation,

necessary data for concurrent adaptation is recorded online and later used con-

currently after that time for the control margin estimation. Note that at the

end of the simulation the helicopter hits the ground with an excessive vertical

speed since the limits are not avoided by the estimated collective control lim-

its. Related modeling error compensation and weight time histories along with

the maximized minimum singular values are presented in Fig. 4.18. Results are

agree with the results of the previous chapter and agree with the results of the

previous examples of this chapter in which modeling errors are approximated by

the adaptive elements within adequate error bounds.
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Figure 4.17: Limit Prediction, Example-3
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Figure 4.18: Modeling Error and NN Output, NN Weights, Minimum Singular
Value of the History Stack, Example-3
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Figure 4.19: Limit Avoidance, Example-3

4.4 Concluding Remarks

In this chapter, an adaptive control margin estimation methodology is proposed

for the task of control margin cueing for fly-by-wire aircraft. The previous

adaptive framework for the online estimation of control margins is improved.

Proposed method is based on online generation of approximate models of pilot

control inputs. Compared to the methodology presented in the previous chap-

ter, control margins are calculated without requiring limit margin and control

sensitivity estimations. In the proposed approach, adaptive neural networks are

trained online to generate an approximate model of the effective pilot control

input at a delayed moving time. A one-to-one relation between the limit pa-
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rameter of interest and the effective control input is enforced including only the

limit parameter of interest as being a fast state in the online model. Central

difference expressions of the considered limit parameter are used at the delayed

time to represent the time derivatives of the limit parameter and used in the

network for online adaptation. Models generated at the delayed time are then

used in the current time. The central differences are set to zero at the current

time to estimate the control limits associated with the known envelope bound-

aries. In the approach, the use of delayed input models at the current time step

to estimate the control limits, is found to be effective since the network param-

eters are observed to converge to steady, i.e. approximately constant, values

during aggressive maneuvering. Note that, the online iterations required in the

previous adaptive frameworks, are removed using the proposed control margin

estimation methodology.

The effectiveness of the proposed technique is simulated using nonlinear fixed

wing and rotary wing aircraft models exposed to aggressive maneuvers. It is

shown that using the Direct Adaptive Control Margin Estimation, accurate con-

trol margins which result in the envelope boundaries can be estimated with

sufficient lead times to react on approaching load factor, angle of attack and

vertical speed limits. In the method, envelope limits are avoided by limiting

the actual control input using the estimated control limits, which is done for

the verification of the control limit estimations. In that case, no chattering in

the limit boundary is observed as it was a drawback of the previous adaptive

methods. Based on simulation results, the new adaptive framework is shown

to be effective to find control limits and margins to be used to warn pilots in

advance of approaching exceedances of flight envelope boundaries.
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CHAPTER 5

CONCLUSIONS

Limit and control margins are the two vital signals sought in the area of flight

envelope protection. One way of predicting both signals can be done through

using adaptive methods. In this dissertation, adaptive frameworks are proposed

for the online estimation of limit and control margins.

For limit margin estimation, theDirect Adaptive Limit Margin Estimation method-

ology is proposed. In that approach, adaptive elements are trained online to

generate reduced order approximate models of fast aircraft states or limit pa-

rameters. At a maneuvering steady state condition called dynamic trim, the

approximate models are evaluated and used to estimate limit margins. Based

on the simulation results, the method is shown to be effective for limit margin

cueing since approaching limit exceedances are estimated within effective lead

times for a pilot to react.

For control margin estimation, two different approaches are proposed. In the first

approach, the limit margin estimator, obtained using the Direct Adaptive Limit

Margin Estimation, is used to calculate control sensitivities. Control margins

are related to the limit margins linearly using the control sensitivity estima-

tions. In that method, control margins are guaranteed to be estimated when

the proximity of the limit parameters to the envelope boundary, i.e. limit mar-

gin, become zero. In the second approach, the Direct Adaptive Control Margin

Estimation methodology is used to estimate control margins without requiring

limit margin and sensitivity estimations. In that approach, adaptive elements

are trained online to generate approximate models of an effective control input.
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At the dynamic trim condition, approximate models are evaluated using the

known envelope limits to estimate related control limits and margins. Both ap-

proaches are shown to be effective in simulations since control limit exceedances

are estimated in advance of reaching the actual flight envelope boundaries.

Throughout the thesis, a recent advance in the area of Model Reference Adaptive

Control, i.e. a concurrent learning adaptive law with minimum singular value

maximization algorithm, is applied to estimate relevant aircraft states, limit

parameters and control inputs online, and used to decrease the weight error

bounds of the proposed online estimators. A tailored rule is used to collect data

sets online for concurrent learning.

For the verification of the online obtained margins, a limit avoidance scheme is

applied by artificially saturating the controls at the estimated control limits. In

that case, the response reaches and rides the limit boundary and makes use of

the actual flight envelope.

In the proposed methodologies, a critical design parameter is found to be as

the adaptive element itself. Note that a considered adaptive element should be

able to capture all the uncertainties recorded into a data history stack. There-

fore, the resulting online models should be physically correct to represent the

uncertainties. According to that, the size of the basis and the activation func-

tions inside have to be selected carefully to obtain accurate adaptation results.

In this thesis, a different online modeling strategy is used, in which the basis

functions are classified and used as two different sets of functions. One set of

basis functions is made as a function of central difference expressions and the

other set is made as a function of the control inputs, slow states, other necessary

parameters and their multiplications. Note that the functions associated with

the difference expressions are typically excited relatively more compared to the

other set of functions during a transient response. In addition, the set of func-

tions associated with the aircraft states and inputs have typically nonzero values

at the steady state response, whereas, the other set associated with the central

differences have zero values at the steady state. By doing that, the functions as-

sociated with the difference expressions is used to model the transient response,
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whereas, the other set is used to model the steady state response online. In this

thesis, that strategy is found to be physically correct and effective for online

modeling and supported in theory using the definition of relative degree in the

previous chapters.

Another critical design parameter can be the learning gains. For the selection

of the learning gains, relatively low values are found to be sufficient. Note that

the concurrent learning adaptive law enabled to select low gains and maintain

adaptation in long term. Therefore, after a few trials proper learning gains were

selected easily.

The following specific conclusions can be made:

• Online models are established at a delayed moving time and later used

at the current time to estimate the dynamic trim state and control limits.

The use of delayed models at the current time to estimate both information

is found to be effective.

• Central difference expressions used instead of state derivatives in the adap-

tive element are found to be sufficient in generating approximate models.

• The network parameters are seen to have an increased tendency to steady

state convergence when concurrent learning is used. Moreover the use of

singular value maximization in the collection of data sets improved weight

convergence even further. A Lyapunov based proof is presented to show

the boundedness of the weights of the proposed estimators.

• The direct methods presented in this work deal with the uncertainty in the

states, not in its derivatives. In the related studies of MRAC and in the

previous works of adaptive limit and control margin estimation, modeling

errors were written as functions of state derivatives. Yet in this this work,

the implementation of concurrent learning is found to be less involved since

derivative estimations and related smoothing algorithms are not required

directly.

• The Sensitivity Estimation Based Control Margin Estimation requires a

model that is converged. If the model undergoes fast changes, the con-
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trol sensitivities and therefore the control limit estimations would undergo

large changes. The results in this thesis were adequate since the adaptive

element parameters quickly converged to approximate steady states.

• When the control inputs are saturated in simulation by the estimated

control limits, the limiting states are observed to ride the limit boundary.

No signal chattering is observed at the limit boundaries. Therefore, no

smoothing functions are used during control input saturation.

• The new adaptive frameworks introduced in this dissertation removed

some of the restrictions and implementation difficulties that have already

been present in the adaptive envelope protection methods. A major con-

tribution of the new frameworks is that the fixed point iterations of the

previous methods are not required. Note that, the fixed point solution as-

sumption, which have been required for the existence of the limit and

control margins estimations, is removed. Therefore, the new adaptive

frameworks introduced in this dissertation do not require any iteration

after the approximate models are established.

As a future research, the algorithms proposed in this thesis can be imple-

mented in a high fidelity simulation environment including both fixed wing

aircraft and helicopter dynamic models. For the piloted simulation of fixed

wing models, the angle of attack and the load factor limit parameters can

be considered again. For the helicopter models, collective axis cueing can

be applied to avoid collective limits due to engine torque and temperature

steady state limits. Vertical acceleration and vertical speed limits can be

considered as well in piloted simulations. Online estimated control limits

can be given through the active controllers as being the soft stop and the

hard stop cues or a combination of both in the related control axis. Vari-

ous handling quality assessments can be made with piloted simulations in

normal and aggressive maneuvering flight conditions.

Another potential research can be related with the limit parameters that

exceed their envelope limits during a transient response. The algorithms

proposed in this thesis are based on the estimation of a dynamic trim
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state. Therefore, the control margins presented are the allowable control

travels that would result in the steady state envelope limits. Whereas, new

algorithms or methods can be developed to estimate peak response of a

transient critical limit parameter and its related control cue in the control

axis. That research can focus on the estimation of the rate limits in the

control axis since a peak in the response can be written as a function of

the input rates.

The methodologies proposed in thesis are also applicable for command

margin estimation of closed loop control systems or autopilots. When the

control input signal is replaced with the command input signal, considered

limit and command margins can be estimated online using the proposed

algorithms. Estimation of command margins can be performed without

requiring online fixed point iterations as it was a shortcoming of the previ-

ous adaptive frameworks of the envelop protection for UAVs and aircraft

autopilots.
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APPENDIX A

APPENDIX

A.1 Proof of Theorem

In [34], the following proof was performed for the case when the structure of the

uncertainty is exactly known, that is, the reconstruction error ε of Eq. (3.47) is

zero. In that case it is proven that the weight update law given by Eq. (3.52)

guarantees asymptotic stability for the problem of adaptive parameter estima-

tion. Here, the proof of [34] for adaptive parameter estimation is extended for

the case where the structure of the uncertainty is unknown such that the recon-

struction error ε of Eq. (3.47) is nonzero. Hence, the ultimate bounds on the

weight errors of LPNN are established.

First, consider the estimator of Eq. (3.8). When the modeling error ξ of Eq. (3.7)

is replaced with the uncertainty of Eq. (3.47), and ∆ of Eq. (3.8) is replaced

with Eq. (3.49), one can write the actual fast states and the estimator as:

xf = f−1
1 (ẋf ,xs,u) +W ∗Tφ(x̄) + ε (A.1)

x̂f = f̂
−1

1 (ẋf ,xs,u) +W Tφ(x̄) (A.2)

Second, consider the estimator of Eq. (4.5). When the modeling error ξ of

Eq. (4.4) is replaced with the uncertainty expression of Eq. (3.47), and ∆ of

Eq. (4.5) is replaced with Eq. (3.49), one can write the actual input of interest

and the input estimator as:

ue = f−1
1 (ẋf ,xf ,xs,u

′) +W ∗Tφ(x̄) + ε (A.3)

ûe = f̂−1
1 (ẋf ,xf ,xs,u

′) +W Tφ(x̄) (A.4)
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The function approximation error, e = xf − x̂f or e = ue − ûe, is written by

subtracting Eq. (A.2) from Eq. (A.1) or Eq. (A.3) from Eq. (A.4) and can be

written in the form:

e = W̃ Tφ(x̄) + ε (A.5)

The bounds on ε are shown using the universal approximation property of Neural

Networks given in Eq. (3.51). Hereafter, the goal is to establish the bounds on

the weight error dynamics.

Let’s write the weight error dynamics as:

˙̃W (t) = Ẇ ∗ − Ẇ (A.6)

Similar to [34], substituting Eq. (3.52) into Eq. (A.6) and using Ẇ ∗ = 0, the

parameter error dynamics takes the form:

˙̃W (t) = −Γφ(x̄)eT −
p∑

i=1

Γφ(x̄i)e
T
i . (A.7)

Now, substitute Eq. (A.5) and ei = W̃ Tφ(x̄i) + εi into Eq. (A.7):

˙̃W (t) = −Γφ(x̄)(W̃ Tφ(x̄) + ε)T −
p∑

i=1

Γφ(x̄i)[W̃
Tφ(x̄i) + εi]

T , (A.8)

when expanded:

˙̃W (t) = −Γφ(x̄)φ(x̄)T W̃ − Γφ(x̄)εT −
p∑

i=1

Γφ(x̄i)φ(x̄i)
T W̃ −

p∑

i=1

Γφ(x̄i)ε
T
i

(A.9)

Consider the following positive definite and radially unbounded function as the

Lyapunov candidate:

V (W̃ ) =
1

2
tr(W̃ TΓ−1W̃ ) (A.10)

where, V (0) = 0 and V (W̃ ) > 0 ∀ W̃ 6= 0.

The time derivative of V (W̃ ) along the system trajectories can be written as:

V̇ (W̃ ) = tr(W̃ TΓ−1 ˙̃W ) (A.11)
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Substitute Eq. (A.9) into Eq. (A.11), then the following time derivative of the

Lyapunov function is obtained:

V̇ (W̃ ) = −tr
(
W̃ T [φ(x̄)φ(x̄)T +

∑p
i=1φ(x̄i)φ(x̄i)

T ]W̃

)
+ ...

...− tr
(
W̃ T [φ(x̄)εT +

∑p
i=1φ(x̄i)ε

T
i ]

) (A.12)

Note that φ(x̄)φ(x̄)T ≥ 0 ∀ φ(x̄), and Ω =
∑p

i=1φ(x̄i)φ(x̄i)
T is a matrix. Then

V̇ (W̃ ) can be bounded as:

V̇ (W̃ ) ≤ −λmin(Ω)||W̃ ||2 + ||W̃ T ||(||φ|| ||εT ||+∑p
i=1 ||φi|| ||εTi ||) (A.13)

Using Eq. (3.48), the basis vector is further bounded as ||φ(x̄)|| ≤ α0. Noting

that the reconstruction error is bounded using Eq. (3.51) as ||ε|| ≤ ε̄, and all

bounds are valid for the ith recorded data, that is ||φ(x̄i)|| ≤ α0 and ||εi|| ≤ ε̄,

then the bounds on V̇ (W̃ ), Eq. (A.13), become as:

V̇ (W̃ ) ≤ −λmin(Ω)||W̃ ||2 + ||W̃ ||(p+ 1)α0ε̄ (A.14)

V̇ (W̃ ) ≤ −||W̃ ||(λmin(Ω)||W̃ || − (p+ 1)α0ε̄) (A.15)

Note that V̇ (W̃ ) is strictly negative when

||W̃ || > (p+ 1)α0ε̄

λmin(Ω)
(A.16)

Now, within a domain, D0 , over which the neural network approximation is

valid, let ζ represent W̃ , then a ball, Br, can be defined such that,

Br = {ζ : ||ζ|| ≤ r} (A.17)

Let η be the minimum value of the function V (ζ) on the trajectories of Br, that

is

η = min(
1

2
ζTΓ−1ζ) =

1

2
r2λmin(Γ−1) (A.18)

Define the following set of ζ’s from Br, where V (ζ) is less than η

Θη = {ζ ∈ Br : ζTΓ−1ζ ≤ η} (A.19)
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Hence, Θη ⊂ Br is a positive invariant set of Eq. (A.7) since the time derivative

of V is shown to be negative definite when Eq. (A.16) is satisfied. Next, using

Eq. (A.16), define the set:

Θβ = {ζ ∈ Br : ||ζ|| ≤ (p+ 1)α0ε̄

λmin(Ω)
} (A.20)

If Θβ ⊂ Θη, then it is required that

(p+ 1)α0ε̄

λmin(Ω)
< η (A.21)

Then the minimum size of Br is given by

r2 >
2(p+ 1)α0ε̄

λmin(Ω)λmin(Γ−1)
. (A.22)

Here, D0 must be sufficiently large, hence Br ⊂ D0 . When ζ(t0) ∈ Θη and D0

is sufficiently large the weight errors ζ will be ultimately bounded.

Since LPNNs are universal approximators, ε̄ of Eq. (A.20), hence Θη, can be

made sufficiently small by choosing a larger basis in the network. Another way

to make Θη sufficiently small is to maximize λmin(Ω) of Eq. (A.20). This can

be done through recording data such that the minimum singular value of Z is

maximized online [34, 47]. Note that, Ω =
∑p

i=1φ(x̄i)φ(x̄i)
T = ZZT where

Z ∈ <m×p is the history stack matrix, therefore, λmin(Ω) = λmin(ZZT ) where

ZZT ∈ <m×m. Also nothing that the singular values of a matrix A are the

square roots of the nonzero eigenvalues of the matrix AA∗, in which A∗ is the

transpose-conjugate of A, therefore, σ(Z)2 = λ(ZZT ) holds using linear algebra

in which σ(.) is the singular value operator of a matrix. Therefore, an increase

in the minimum singular value of Z corresponds to an increase in the minimum

eigen value of Ω and a decrease in the established bounds.

As in [34], the weights will be bounded in a compact neighbourhood of the ideal

weights when λmin(Ω) is maximized online such that the theorem holds. The

bound is given when V̇ (W̃ ) ≤ 0 such that

||W̃ || ≥ (p+ 1)α0ε̄

λmin(Ω)
. (A.23)
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A.2 Concurrent Learning for Online Parameter Estimation

In this example, the weight update time histories using concurrent learning with

and without minimum singular value maximization in the recorded data are

compared. A linear model is used as the plant, and the linear coefficients of the

plant are aimed to be estimated. The Direct Adaptive Limit Margin Estimation

methodology is used to construct an estimator for the angle of attack. The

derivatives in the linear model are assumed to be known at the delayed time.

Hence, the central difference representation for the derivatives is not used in this

example.

Using a reduced order longitudinal model, the angle of attack, α, is linearly

parameterized at a delayed time step, d, as follows:

α
d

= C1α̇d + C2q̇d + C3δed . (A.24)

An approximation to Eq. (A.24) is established using ∆:

α̂
d

= Ĉ1α̇d + Ĉ2q̇d + Ĉ3δed + ∆(α̇
d
, q̇

d
, δed) (A.25)

where, Ĉ’s are the approximate coefficients. The model tracking error, e
d
, can

be written at the delayed time by subtracting Eq. (A.25) from Eq. (A.24) as:

e
d

= C∗1 α̇d + C∗2 q̇d + C∗3δed −∆(α̇
d
, q̇

d
, δed) (A.26)

where, C∗ = C − Ĉ’s are the optimal weights and ∆ = W Tφ. If we let the

network basis be

φ
d

= [α̇ q̇ δe α̇q̇ δeα̇ δeq̇ b1]T
d
, (A.27)

then, the weights, W , are expected to converge to the following ideal weights:

W ∗ = [C∗1 C∗2 C∗3 0 0 0 0]T . (A.28)

In the simulation the plant model of Eq. (A.24) is used to simulate the α re-

sponse for a given elevator input and Eq. (A.25) is used as an approximation. In

Fig. A.1a-b, adaptation results for the cases with and without minimum singular

value maximization are compared. In both cases the necessary data for concur-

rent adaptation are pre-selected with criteria of Eqs. (3.55), (3.56) and(3.57).
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Data recording is initiated at the beginning of the simulation, whereas the adap-

tation is initiated at t = 10s. Note that neural network weights converge to the

ideal values faster using singular value maximization in the recorded data.
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In [34], it is shown that for the case of linearly parameterizable uncertainty,

the minimum singular value of the history stack is a measure of the speed of

weight convergence. In Fig. A.2, minimum singular values of the history stacks

are compared. Here, every increment of σmin corresponds to the instants that

a necessary data is recorded. Note that at t = 10s, where the adaptation is

initiated, the minimum singular value of the history stack with maximization

is about 50 times higher then for the case without maximization. As a result,

adaptations are faster with minimum singular value maximization.
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