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ABSTRACT 

 

 

BIOPHYSICAL CHARACTERIZATION OF PROTEINS IN SOLUTION 

AND HUMAN FLUIDS FOR CANCER DIAGNOSIS APPLICATIONS USING 

FOURIER TRANSFORM INFRARED SPECTROSCOPY  

 

 

 

Abbas, Sherif Abbas Mousa  

Ph.D., Department of Biological Sciences 

Supervisor: Prof. Dr. Feride Severcan 

Co-Supervisor: Prof. Dr. Mete Severcan 

May 2016, 89 pages 

 

Proteins play very important roles in cells regulation and structure. Understanding of 

proteins structures greatly help in understanding of the mechanism of action of these 

proteins. The optical spectroscopic techniques such as Fourier transform infrared 

(FTIR) and circular dichroism (CD) spectroscopy can be used to study proteins in its 

native environment without complicated sample preparations that is required for a high 

resolution technique such as x-ray. In order to calculate the protein secondary structure 

from amide I band in FTIR spectra, different methods can be used such as curve fitting 

and deconvolution. However, these techniques have some disadvantages due to the 

noise and dependence on the operator.    In this study, a protein FTIR dataset of known 

proteins structures was produced using FTIR transmission mode. This database was 

used as a training set for an artificial neural networks (ANNs). Because of the limited 

number of our proteins in the dataset (35 proteins), a leave-one-out approach for 

training and testing our neural networks was performed. To achieve generalized ANNs 

in a limited number proteins dataset, discrete wavelet transform (DWT) was 

successfully used as a data reduction technique for amide I spectra. The results of 
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ANNs predictions showed 96.88%, 93.92% and 95.98% success in β-sheets, α-helix 

and other structures respectively. In the second part of this thesis, Human Apo- and 

Holo-transferren structure and their thermal denaturation behavior in dilute and 

artificial crowded environment was studied using FTIR spectroscopy.  Dextran 70 and 

Ficoll 70 as a “molecular crowder” did not have a major effect on the secondary 

structure of transferrin as deduced from the analysis of the amide I band. However, it 

does alter the tertiary structure since significant differences in hydrogen-deuterium 

exchange was seen by monitoring the intensity of the residual amide II band as a 

function of time. The study of transferrin thermal denaturation using 2D-IR showed 

two different aggregated secondary structures patterns in dilute and in an artificial 

crowded environment. Finally, the proteins secondary structure of human pleural fluid 

accumulated due to malignant pleural mesothelioma (MPM), lung cancer (LC) and 

benign transudate (BT) was studied using attenuated total reflectance FTIR 

spectroscopy. Wavelet analysis was performed to extract the amide I spectral features. 

The extracted features were used as an input for the previously trained artificial neural 

network in the first part of this thesis. The ANNs results indicated significant 

differences in protein content of BT, LC and MPM pleural fluid samples. The 

chemometric results of the plural fluid proteins secondary structure lead to an accurate, 

cost effective method for the diagnosis of MPM from lung cancer and benign 

transudate with 88% sensitivity and 100% specificity.  

 

Keywords: Proteins, molecular crowding, malignant pleural mesothelioma, ATR-

FTIR spectroscopy, 2D-IR correlation, ANNs. 
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ÖZ 

 

 

Fourier Dönüşüm Kızılötesi Spektroskopisi Kullanarak  Proteinlerin Çözelti İçindeki 

Formları ile Kanser Teşhisi Uygulamalarında İnsan Sıvılarınının Biyofiziksel 

Karakterizasyonu 

 

 

 

Abbas, Sherif Abbas Mousa 

Doktora, Biyolojik Bilimler Bölümü 

Tez Yöneticisi: Prof. Dr. Feride Severcan 

Ortak Tez Yöneticisi: Prof. Dr. Mete Severcan 

 

Mayıs 2016, 89 Sayfa 

 

 

Proteinler hücre içinde yapısal ve düzenleyici olarak önemli rol alırlar. Protein 

yapılarını anlamak, onların etki mekanizmalarını anlamada oldukça yardım sağlar. 

Protein çalışmalarında, FTIR ve CD gibi optik spektroskopik teknikler, X-ışınları gibi 

yüksek çözünürlüklü tekniklerin gerek duyduğu karışık örnek hazırlama yöntemleri 

olmaksızın kullanılabilir. Amid I bandından protein ikincil yapılarını tahmin etmek 

için eğri benzeştirme ve dekonvolüsyon gibi farklı teknikler kullanılabilir. Fakat bu 

teknikler uzman kullanıcılara gereksinim duyar ve sonuçlar kullanıcıya bağlıdır. Bu 

çalışmada, FTIR geçirgenlik modu kullanılarak bilinen proteinlere ait bir FTIR protein 

veri seti oluşturuldu. Bu veri seti, yapay sinir ağı için eğitici set olarak kullanıldı. 

Proteinlerin sayısı sınırlı (35 protein) olduğu için, sinir ağlarının eğitimi ve testi için 

leave-one-out yaklaşımı kullanıldı. Sınırlı sayıda proteinler veri kümesi içinde 

genelleştirilmiş YSA elde etmek için, kesikli dalgacık dönüşümü (DWT) amid I bandı 

için veri indirgeme tekniği olarak başarıyla kullanılmıştır. YSA'ların tahmin sonuçları, 
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sırasıyla tabaka, heliks ve diğer yapılarda 96.88%, 93.92% ve 95.98% başarı 

göstermiştir. Bu tezin ikinci bölümünde, insan Apo ve Holo-transferrin yapısı ve 

termal denatürasyon davranışları seyreltik ve yapay kalabalık ortamda FTIR 

spektroskopisi kullanılarak incelenmiştir. Amid I bandı analizlerinden çıkarıldığı 

üzere moleküler kalabalıklık olarak Dekstran 70 ve Ficoll 70 transferrinin ikincil 

yapısı üzerinde önemli bir etkisi olmamıştır. Bununla birlikte, üçüncül yapıda 

değişikliğe yol açmıştır, çünkü zamanın fonksiyonu olarak artık amid II bandın 

şiddetinin izlenmesi ile hidrojen-döteryum dönüşümünde önemli farklılıklar 

görülmüştür. 2D-IR korelasyonu kullanılarak transferrinin termal denatürasyon 

çalışması, seyreltik ve yapay kalabalık bir ortamda iki farklı toplanmış ikincil yapı 

desenleri gösterdi. Son olarak, malign plevral mezotelyoma (MPM), akciğer kanseri 

(LC) ve benign transüda (BT) hastalıkları için insan plevral sıvısı proteinlerinin ikincil 

yapısı ATR-FTIR spektroskopisi kullanılarak incelenmiştir. Dalgacık analizi, amid I 

spektral özelliklerini çıkarmak için uygulandı. Çıkarılan özellikler önceden eğitilmiş 

yapay sinir ağı için bir girdi olarak kullanılmıştır (bu tezin 1. bölümü). YSA sonuçları, 

BT, LC ve MPM plevral sıvı örneklerinin protein içeriğinde önemli farklılıklar 

göstermiştir. Plevral sıvı proteinleri ikincil yapı kemometrik sonuçları, MPM'in 

akciğer kanseri ve benign transüdadan ayrımı için % 88 duyarlılık ve % 100 özgüllük 

ile doğru, uygun maliyetli bir yönteme sebep olmuştur. 

 

Anahtar Kelimeler: Proteinler, moleküler kalabalıklık, malign plevral mezotelyoma, 

ATR-FTIR spectroskopi, 2D-IR korelasyonu, yapay sinir ağı. 
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CHAPTER 1 

 

 

1                                           INTRODUCTION 

 

 

 

Proteins are large, complex biomolecules which play important roles in the body. For 

example, they are required for the structure, function, and regulation of the body’s 

tissues and organs.  Amino acids are the building unit for all types of proteins. There 

are 20 different types of amino acids which can be combined in one chain or more to 

make proteins. Amino acids are linked to each other by peptide linkages to form 

primary structure of the protein. This primary structure produces the secondary, 

tertiary and quaternary structure which will be discussed in details in this chapter. The 

functions of protein are highly structure dependent; this means that any small variation 

of the protein structure can strongly affect its function. Proteins can be classified 

according to their functions in the body to be: Antibody, Enzyme, Messenger, 

Structural component, Transport/storage. On the other hand, the structure of proteins 

secreted from cells and tissues can be affected in case of diseases. Because of this the 

study of proteins structure excreted from the cells can help in diagnosis of many 

diseases. 

Proteins structures can be investigated using different techniques such as X-ray, NMR, 

Raman and FTIR. Each technique has its advantages and disadvantages, however only 

X-ray and NMR can predict the complete proteins 3D structures. X-ray technique 

requires a highly pure protein crystal which is not possible for all protein specially 

membrane proteins. NMR is limited to low molecular weight proteins. Because of 

those limitations in high resolution techniques (X-ray and NMR) the low resolution 

techniques such as (Raman and FTIR spectroscopy) can help in estimation of proteins 

structures variations in vivo. 
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1.1 Proteins structure 

1.1.1 Proteins primary structure 

Amino acids (the building unit of protein) usually contains amine (-NH2), carboxylic 

acid (-COOH) functional groups and a specific side chain group (Figure 1). Two or 

more amino acids linked by peptide bonds will form a polypeptide (Figure 2). 

Polypeptides or proteins consist of a backbone and side chains.  The backbone contains 

the amide nitrogen, the alpha carbon and the carbonyl carbon that are contributed by 

each amino acid unit. The side chains contain the “R” groups which is differs 

according to the amino acid type. 

 

Figure 1: Amino Acid typical structure 

A polypeptide is considered as a protein when it is folded into a well-defined 3-

dimensional structure. The 3d structure is required for protein in order to do its 

functions.  

 

Figure 2: Formation of peptide from two amino acids. 
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1.1.2 Proteins secondary structure: 

In 1950s the American chemist Linus Pauling discovered the two most 

important secondary structures (α-helix and β-sheet). Pauling recognized that the bond 

angles and planar configuration are preserved because of the folding of the peptide 

bond. This also keeps atoms at fixed since they repel of each other through van der 

Waal's interactions.  

1.1.2.1 α-helix  

In α-helix the H-bond are regularly spaced along the polypeptide chain. For H-bond 

the amide hydrogen is H-bond donors and the carbonyl oxygen are the acceptors 

(Figure 3a). 

 

Figure 3: a) Hydrogen bonds in peptide link B) α-helix structure* 

* B) Adopted from http://itech.dickinson.edu/chemistry/?p=381#more-381 

As the α-helix turns, the carbonyl oxygen of the peptide bond point upwards toward 

the downward-facing amide protons, making the hydrogen bond. The R groups of the 

amino acids point outwards from the α-helix (Figure 3b). 

1.1.2.2 β-sheet: 

In β-sheets protein secondary structure the backbone residues forms H-bonding. This 

structure occurs when a part of a polypeptide chain overlap on another one and form a 

row of hydrogen bonds. β-sheets can be either parallel, which means both chains point 

to the same direction. Or antiparallel, which means both chains point to opposite 

direction when represented by the amino- to carboxyl- terminus (Figure 4). 

http://itech.dickinson.edu/chemistry/?p=381%23more-381
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Figure 4: Parallel B-Sheet structure 

1.1.3 Proteins tertiary and quaternary structure 

The three-dimensional structure of a protein is known as Tertiary structure. Different 

sorts of bonds are included for keeping up the tertiary structure of proteins. As an 

example of these bonds there are hydrogen bonds, dipolar bonds, electrostatic bonds, 

and disulfide bonds. The disulfide bond can be considered as the strongest one from 

them. This disulfide bond consists of covalent bond between two cysteine amino acid 

side chains. The Hydrogen bond can be formed between any two appropriate atoms. 

The attraction of oppositely charged groups present in two amino acid chains can form 

electrostatic bonds. Also the interaction between electron clouds can form the Van der 

Waals bonds (Whitaker 1994, Platis et al. 2006. Damodaran et al. 2007). For the 

Quaternary structure; it can be consist of more than one polypeptide chain to form the 

protein final structure (Damodaran et al. 2007) as shown in figure 5. 
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Figure 5: Structure of the transferrin protein based on PyMOL rendering of PDB 1a8e. 

A) Tertiary and B) Quaternary structure  

1.2 Fourier Transform Infrared Spectroscopy (FTIR) 

1.2.1 The electromagnetic spectrum: 

Electromagnetic radiation consists of an oscillating electrical and magnetic fields 

perpendicular to each other and perpendicular to their traveling direction as shown in 

figure (Figure 6). Electromagnetic radiation can be classified according to wavelength, 

wavenumber, frequency or energy. (Table 1) shows the main classification of 

Electromagnetic radiation. 

 

Figure 6: Electrical field (E) and magnetic field (M) (taken from Stuart, 1997 ) 

A 

B 
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Table 1: Summary of the electromagnetic radiation. 

 

Figure 7 shows graphical representation of electromagnetic spectrum ranges 

from the shorter wavelengths to the longer wavelengths.  

 

Figure 7: The electromagnetic spectrum (created by Philip Ronan ) 

 

http://commons.wikimedia.org/wiki/User:Sakurambo
http://upload.wikimedia.org/wikipedia/commons/f/f1/EM_spectrum.svg
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1.2.2 Energy levels: 

The molecules can be excited by absorbing the energy of light. According to 

quantum mechanics, the excited molecule absorbs a discrete amount (quanta) of 

energy to be excited. This amount of energy (quanta) is equal to the difference between 

the energy level of excited and ground state (lowest energy level). 

The main molecular energy levels are Electronic transition, Vibrational, 

Rotational and transitional (Figure 8). The Energy of a molecule (Etotal) can be 

calculated using by: 

Etotal= Etransition+ Erotation+ Evibration+ Eelectronic+ Eelectron spin orientation+ Enuclear spin orientation 

Each E in the equation represents the appropriate energy as indicated by its 

subscript. 

 

Figure 8: Molecular energy levels 

 

The separations between respective energy levels of Etranslation, Eelectron spin 

orientation and Enuclear spin orientation are very small because of this their contributions are 
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usually negligible. The energy levels corresponding to Erotation, Evibration and Eelectronic 

are associated with the microwave, infrared and ultraviolet-visible region of the 

electromagnetic spectrum, respectively (Campbell and Dwek, 1984). Molecules 

absorb energy if the intermolecular distance of two or more atoms changes. Stretching 

and bending are the two types of oscillations correspond to the normal modes of 

vibration in atoms. Stretching oscillations can be symmetric or antisymmetric 

rhythmical movement along the bond. The bending oscillations happen when the bond 

angle between two atoms occurs. Also, the bending oscillations occure when a group 

of atoms change relative to the remainder atoms in the molecule. These bending 

motions can be scissoring, wagging, rocking, and twisting as shown in figure (Figure 

9) (Marcelli et al., 2012).   

 

Figure 9 The vibrational modes associated to a molecular dipole moment change 

detectable in an IR absorption spectrum . 

1.2.3 Infrared spectroscopy 

Spectroscopy defined as the study of interaction of electromagnetic radiation 

with matter. In spectroscopy the sample irradiate with electromagnetic radiation to 

measurement the scattering, absorption, or emission in order to get some parameters 

such as peak height, peak wavenumber or peak area. Interpretation of these parameters 

can leads to useful information about the studied sample. Infrared spectroscopy (IR 
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spectroscopy) is concerned with the transition between vibrational energy levels. The 

electromagnetic spectrum of Infrared can be divided into near-, mid- and far- infrared 

according to their energy. The lowest energy far-infrared (400–10cm−1) is adjacent to 

microwave spectrum region and may be used for rotational spectroscopy. The mid-

infrared (4000–400 cm−1) can be used to study the fundamental vibrations and 

associated rotational-vibrational structure. The higher-energy near-IR (14000–4000 

cm−1) can be used to study the overtone or harmonic vibrations.  

1.2.3.1 Michelson Interferometer and FTIR Technology 

Michelson Interferometer is used in FTIR spectroscopy machines. Using of   

Michelson Interferometer the IR beam split into two optical beams. Then one of these 

two beams directed to a settled mirror and the other beam directed to the moving 

mirror. The moving mirror moves some millimeters to and away from the beam 

splitter. After that the two IR beams superimposed on each other at the beam splitter 

after their reflections. When the two IR beams interact with each other the 

interferogram is formed. In interferogram, all the frequencies are simultaneously 

measured at the same time. This gives the advantage of highly fast measurements of 

FTIR. In order to convert the interferogram to   intensity-versus-frequency spectrum, 

a mathematical function known as Fourier transformation is used. This Fourier 

transformation conversion can be performed using a computer by a plot of the IR 

intensity versus wavenumber (cm-1). This plot can be used for further analysis (Figure 

11).  

A background spectrum is collected before the collection of sample spectrum for 

relative scaling of absorption intensity (Figure 10). The background spectrum is 

compared the sample spectra to calculate the percent transmittance. After these 

calculations the sample spectra can be produced. 
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Figure 10 : A background spectrum from air. 

 

Figure 11 Basic principles of FTIR spectrometer (Adopted from Gasper, 2010). 
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1.2.3.2 ATR-FTIR Spectroscopy 

In ATR-FTIR mode the refractive index of ATR-FTIR crystal must be much greater 

than the refractive index of sample. On the other hand, sample and crystal should have 

very good contact. Example of ATR crystals are diamond, germanium, silicon and zinc 

selenide (ZnSe) (Kazarian and Chan, 2006).  When IR beam drop on the surface of 

ATR-FTIR crystal, part of the IR beam pass into the sample which is directed on the 

crystal. This wave is being attenuated when the sample absorbs the related spectral 

energy. Then attenuated energy is reflected back to the IR beam and leaves the crystal 

from opposite end and finally reaches the detector to generate the infrared spectrum 

(Figure 12) (Goormaghtigh et al., 1999, Gasper, 2010). Using ATR-FTIR a wide range 

of liquids or solids samples can be easily measured without complicated preparations. 

 

Figure 12 ATR mode in IR spectroscopy. 

1.3 Spectra processing and classification methods 

For spectra processing, OPUS spectroscopy software (Bruker Corporation) allows to 

do various spectral analysis steps as outlined in the following sections: 

1.3.1 Baseline Correction 

Due to instrument drift or inappropriate choice of background, the spectral baseline 

may be become not flat. By using the baseline correction function, we can correct 

sloping and curved baselines to make them flat. Figure 13 shows an example of an 

absorption spectrum before and after baseline correction using “Rubberband” and 

“concave rubberband” corrections. 



 

12 

 

Figure 13: An absorption spectrum before and after baseline correction using Rubber 

band baseline correction. 

1.3.2 Normalization 

The spectra are normalized for the comparison with respect to each other. With OPUS 

software there are different spectral normalization methods such as: 

• Min/Max normalization, the spectrum is changed so that the minimum 

intensity value becomes 0 and the maximum intensity value is expanded to 2 

absorbance units. 

• Vector normalization – The vector normalization is achieved using the 

following steps:  

1) Calculate the average y-value of the spectrum.  

2) Subtract the average y from the spectrum to pull the middle of the 

spectrum to y=0. 

 3) Calculate the sum of the squares of all y-values.  

4) Dividing the spectrum by the square root of this sum. 
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1.3.3 Discrete Wavelet Transform (DWT) 

Wavelets are a mathematical tool used to analyze signals like Fourier transform. It has 

been applied to many different problems in engineering, computers science and 

scientific research including image processing, heart rate and ECG 

(electrocardiogram) analyses. Wavelet transform is effective processes for signal 

analysis and feature extraction (Wan et al. 2014). In wavelet transform, the results of 

signal analysis are wavelet coefficients which contain valuable information about the 

signal. Because of this, the wavelet coefficients can be used as features for the signal. 

There are two types of wavelet transform one is continuous wavelet transform (CWT) 

and the other is discrete wavelet transform (DWT). The wavelets used in this study is 

DWT with wavelet known as Daubechies (db2), this wavelet was developed by 

Daubechies in the 1990's [26]. Details of DWT will be explained in materials and 

methods chapter 2. 

1.3.4 2D-IR Correlations spectroscopy 

Two dimensional correlation Infrared spectroscopy (2D-IR) is a powerful tool for 

spectral analysis, as it is able to reveal correlations between spectral changes and to 

deconvolve overlapping peaks. There are two types of (2D-IR) correlation: 

synchronous and asynchronous.  

Synchronous spectrum reflects the simultaneous changes occurs in measured spectral 

series. In the synchronous spectrum the peaks can be found on the diagonal which 

known as autocorrelation peaks. The out of diagonal peaks are always symmetrical 

along the diagonal. Intensity of autocorrelation peaks is indicating of the strength of 

this peak. The peaks present in the out of diagonal are called cross-peaks which 

represent a degree of correlation between two peaks in the spectra. When this cross-

peaks is positive then both the peaks, that it is formed from, are changing in the same 

direction i.e both are decreasing or increasing. When this cross-peaks is negative, this 

means the peaks, that it is formed from, are changing in the opposite way i.e one is 

increasing and the other is decreasing or vice versa (Figure 14). 
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Figure 14: Example of 2D-IR correlation. A) Set of spectra representing 2 growing 

Gaussian peaks. B) Synchronous C) Asynchronous. 2D-IR correlation (Adopted from 

T. Pazderka and V. Kopeck´y Jr.). 

 

Asynchronous spectrum is indicating the sequential changes of the measured IR 

spectral series. In asynchronous spectra no peaks on the diagonal are present. Also the 

peaks are always antisymetrical along the diagonal. When the cross-peak is positive 

then a band from the first spectra is growing earlier or more intensive then a band from 

second spectra and vice versa. 
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1.3.5 Chemometrics analysis of FTIR spectra 

The application of statistical and or mathematical calculations in order to gain the 

information from the spectra of vibrational spectroscopy known as chemometrics 

analysis (Lavine, 2000). The vibrational spectra are very informative because they 

contain many molecular associated spectral peaks. The Multivariate data analysis can 

be used to find the meaningful data from the IR spectra. In general, multivariate 

analysis methods can be divided into two groups one named as unsupervised and the 

other is supervised chemometric approaches (Brereton, 2003). 

1.3.5.1 Unsupervised chemometric approaches 

In unsupervised chemometric approaches, there is no need for priori information about 

studied samples. Among the unsupervised methods, principal component analysis 

(PCA) and hierarchical cluster analysis (HCA) are used in this study.  

1.3.5.1.1 Principal Component analysis (PCA) 

Principal Component analysis (PCA) is a powerful  technique for dimension reduction 

of multivariate data. PCA can be used to reduce the dimensionality of the data in order 

to generate a figure of data with groups clustering. Generally there are two types of 

PCA plots:first onw known as score and the second one known as loading plots. The 

degree of contributions of the spectral variations between sample groups can be shown 

by loading plots. Furthermore, the relationship between the samples can be deduced 

from the score plots.  Based on the principal components (PCs), loading and score 

plots can be created.  The advantage of PCA is that there are no need for information 

about the samples groups is required for the PCA calculation (Severcan and Haris, 

2012). 

1.3.5.1.2 Cluster analysis 

Cluster analysis is used to check if there is discrimination between sample groups or 

not. In cluster analysis spectra tend to group according to their characteristic (Mun et 

al. 2008). Similar spectra will classify in a same group which are shown as a 

dendrograms. The distances between groups calculated by Euclidean Distance value 

in Ward’s algorithm which is a commonly used algorithm. The heterogeneity values 

indicate the differences between the clusters in dendogram.  
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1.3.5.2 Supervised chemometric approaches 

1.3.5.2.1 Soft Independent Modeling of Class Analogy (SIMCA) 

SIMCA is a statistical method for supervised classification of data developed by 

CAMO and included in Unscrambler multivariate data analysis commercial software. 

In this approach Principal Component Analysis (PCA) is run on the whole spectra 

dataset to identify the groups of the spectra. Then local models are estimated for each 

spectra group. Based on these local models the new spectra are classified to one of the 

established models. The advantage of SIMCA is that the unknown spectrum is 

assigned to the group which has high probability only. If the variance of a spectrum 

exceeds the upper limit for all modeled datasets, the spectra will not assign to any of 

the groups because, it is either an outlier or comes from a class that is not represented 

in the dataset. Another very important feature of SIMCA is it can work with few 

samples in each group which is an important consideration (Pirhadi et al. 2015). 

1.3.5.2.2 Artificial Neural Networks (ANNs) 

Neural network or Artificial Neural Network, is a mathematical model of the 

biological neural networks present in living animals. The neural network consists of 

an interconnected group of neurons.  These neurons processes the information using a 

certain computation calculations (Figure 15). Commonly, neural network can be 

considered as an adaptive system which means it will change its characteristics during 

the learning stage. The complex relationships between inputs and output can be 

predicted using ANN. 

 

Figure 15: Artificial Neural Network 
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In an artificial neural network, simple artificial nodes, called neurons are connected 

together to form a network.  These artificial neural network  mimics a biological neural 

network (Mallick 2015). There is no certain definition of what is an artificial neural 

network is. In generally, the ANN can involve a network of neurons that show complex 

behavior by the connections between the neurons and neurons parameters. The 

algorithms of ANN designed to alter the strength of the connections in the network in 

order to produce a certain signal flow. “Similar to biological neural networks, the 

Neural networks are also in that functions are performed collectively and in parallel 

by the units, rather than there being a clear delineation of subtasks to which various 

units are assigned. The term "neural network" usually refers to models employed in 

statistics, cognitive psychology and artificial intelligence” (Filip Zavoral, Jakub 

Yaghob, Pit Pichappan 2010). Neural network models which emulate the central 

nervous system are part of theoretical neuroscience and computational neuroscience. 

In modern software implementations of artificial neural networks, the approach 

inspired by biology has been largely abandoned for a more practical approach based 

on statistics and signal processing. “In some of these systems, neural networks or parts 

of neural networks (such as artificial neurons) are used as components in larger 

systems that combine both adaptive and non-adaptive element” (Hassoun 1995a). 

While the more general approach of such adaptive systems is more suitable for real-

world problem solving, it has far less to do with the traditional artificial intelligence 

connectionist models. What they do have in common, however, is the principle of non-

linear, distributed, parallel and local processing and adaptation. “Historically, the use 

of neural networks models marked a paradigm shift in the late eighties from high-level 

(symbolic) artificial intelligence, characterized by expert systems with knowledge 

embodied in if-then rules, to low-level (sub-symbolic) machine learning, characterized 

by knowledge embodied in the parameters of a dynamical system” (Hassoun 1995b). 

1.4 Estimation of proteins secondary structure in dilute solution using infrared 

spectroscopy 

Protein secondary structures are built up from the combinations of some 

secondary structural parts name as -helices and β-sheets. These two structure and 

others form the core region and can be connected by loop at the surface. x-ray 

crystallography and NMR can be used to obtain the secondary and tertiary structure of 



 

18 

proteins. However, NMR can be used only for small proteins i.e. up to 15 kilodalton 

proteins (Berg et al. 2002). Also for x-ray crystallographic approach there are some 

problems raised due to sample preparations. For example, the analysis of x-ray data 

can only reflect the static structure of the proteins. Because of this, the structure of a 

proteins in the crystal form may not reflect their actual structure in solution. 

Furthermore, some proteins such as membrane proteins are difficult to be crystallized 

which means there is no possibility to predict the structure using x-ray crystallography. 

On the other hand, x-ray crystallography need highly sophisticated expensive 

machines which may not be easily available. Because of these disadvantages of high 

resolution techniques, the development of low resolution techniques for proteins 

structure estimation is necessary. Fourier transform infrared spectroscopy is one of 

those techniques which is widely used in protein secondary structure estimation 

because of its sensitivity and rapidity.  Different conformational types such as α-helix, 

sheet, turns, etc. result in different absorption bands (Figure 16).  

 

 

 

 

 

 

 

Figure 16 Secondary structure motifs in the amide I region of IR spectrum (Figure is 

adopted from Barth and Zscherp, 2002). 

 

These bands are overlapping under the broad amide I band located in between 

1700-1600 cm-1. Unfortunately, it is not easy for accurate quantification of protein 

secondary structure from FTIR spectra. Various techniques such as curve fitting, 

second derivative and factor analysis have been used to predict secondary structure of 
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proteins from their infrared spectra however each of these techniques has its limitation 

beside that they all need an expert user.   

1.5 Biophysical studies on Human Transferrin protein in artificial crowded 

environment 

1.5.1 Human Transferrin 

Human serum transferrin (TF) (80 kDa) is an iron transport glycoprotein that involved 

in the regulation and balance of iron content in blood plasma and cells. X-ray crystal 

structure of transferrin shows that it contains two iron-binding sites (Cheng et al. 

2004). One is located in the N-terminal lobe, the other in the C-terminal one. The 

secondary structure of iron bonded transferrin (Holo-Transferin or HTF) using its x-

ray crystal structure and pdbsum (3qyt) informatics tool shows 17.8% β-sheets, 33.1 

% alpha α- helix and 49% others structures. This secondary structure makes the protein 

very flexible. In the iron free form of transferrin (Apo-Transferrin or ATF) the two 

domains open up into a 'V' shaped conformation ready to trap the iron inside. Upon 

the iron uptake, large conformational changes in the protein occur (Kilár and Simon 

1985). Little is known about the effect of molecular crowding on the structure, 

dynamics and aggregation of Transferrin, because of that, this study will utilize the 

FTIR spectroscopy in order to investigate the effect of Dextran 70 and Ficoll 70 as 

macromolecular crowders on Holo and Apo- Transferrin. 

1.5.2 Macromolecular crowding  

Traditionally, studies of protein stability, in vitro, have been done using dilute buffer 

with low concentrations of macromolecules. This environment is totally different than 

native environment of proteins which known as “macromolecular crowded 

environment” such as Ficoll and dextran (Figure 17) . Crowding environment provides 

a non-specific force and affect the total excluded volume according to excluded 

volume theory. According to excluded volume theory; an increase in the melting point 

and a change in thermo-dynamic of proteins on crowded environment is expected. 

Also, measurements of the proteins properties that are made in dilute solutions (in 

vitro) may be different by many orders of magnitude from the true values seen in living 

cells crowded environment (in vivo). Because of this, addressing the effect of 

crowding on protein stability experimentally is of great current interest. 
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Figure 17: Chemical structure of A) Dextran 70 B) Ficoll 70 
 

Adopted from: https://commons.wikimedia.org/w/index.php?curid=23268355 and 

https://commons.wikimedia.org/w/index.php?curid=15527143 

 

1.6 Studies of proteins secondary structure in biological fluids using Infrared 

spectroscopy. 

FTIR spectroscopy and imaging is useful tool for the identification and 

characterization of the molecular components of biological processes in cells (Krafft 

and Sergo 2006). Figure 18 shows a typical mid-FTIR spectra and their bands 

assignment which can provide information about the proteins, lipids, carbohydrates of 

biological fluids (Krafft et al. 2006; Krafft et al. 2008). As these molecular features 

change during carcinogenesis the spectra can be monitored sensitively as phenotypic 

markers for cancer diagnosis. Since the information is obtained label-free and non-

destructively, the methods can also be applied under in vivo conditions for screening 

(Baker et al. 2014a). Information related to protein composition and secondary 

structure can be obtained by performing qualitative and quantitative analysis of amide 

bands. The amide I band (1700-1600 cm-1) is the most sensitive and accurate peak for 

secondary structure determination.  

https://commons.wikimedia.org/w/index.php?curid=23268355
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Figure 18 Typical biological spectrum showing biomolecular band assignments in the 

3,000–800 cm – 1 region. 

 where ν = stretching vibrations, δ = bending vibrations, s = symmetric vibrations and 

as = asymmetric vibrations. The spectrum is a transmission-type micro-spectrum from 

a human breast carcinoma. (adopted from Baker et. al.,2014). 

1.6.1 Malignant Pleural Mesothelioma 

Mesothelioma or malignant pleural mesothelioma (MPM) is a rare form of lung 

cancer that originated from cells in the mesothelium. The mesothelium is the protective 

layer covers the lung and some others organs. The most common site for mesothelioma 

is the lung pleura which is the inner layer of the chest wall and lungs. The inhalation 

of asbestos dust and fibers can develop mesothelioma. Also there are no clear link 

between mesothelioma and tobacco smoking, however smoking may increases the risk 

of the other asbestos-induced cancers (McCarthy et al. 2012). Shortness of breath due 

to pleural effusion or chest wall pain can be considered as a signs or symptoms of 

mesothelioma. X-ray and CT scan can be used for the diagnosis of MPM. But the 

diagnosis must be confirmed pathologically, either with serious effusion cytology or 
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with a biopsy and microscopic examination (Sutedja 2003). Early and accurate 

diagnosis of MPM can greatly help to increase of patients survival rate. 

1.7 Aim of the Study 

Proteins structure and dynamics are very important in understanding of many human 

diseases. The study of proteins secondary structure using Fourier transformed infrared 

(FTIR) in dilute, artificial crowded environment and in a human pleural fluid can 

greatly improve the understanding of many proteins related diseases. In order to 

accurately predict the protein secondary structure from FTIR spectra, a novel method 

for extraction of protein FTIR features using wavelet transform analysis and artificial 

neural network (ANN) has been introduced. 

For the training of ANN, we produced a proteins database from known structures of 

proteins in dilute 7.4 phosphate buffer solution condition. Then this database was used 

as a training set for an artificial neural networks (ANNs). Because of the limited 

number of our proteins dataset (35 proteins), we developed a leave-one-out approach 

Matlab algorithm for the training and testing our neural networks. 

In order to understand the effect of crowded environment on the proteins structure, we 

investigated the secondary structure, thermal denaturation, aggregation and hydrogen-

deuterium (H/2H) exchange of Apo and Holo transferrin in the presence and absence 

of the molecular crowding agents.   

Malignant Pleural Mesothelioma is hard to diagnose and aggressive cancer type. Due 

to the inability of early and accurate diagnose of MPM, it has a high mortality rate 

both in Turkey and throughout the world. Diagnosis of this disease usually done by 

cytological methods from pleural fluids and by histochemical and 

immunohistochemical methods from biopsy samples. However, the sensitivity and 

specificity of these methods are not very high. Early diagnosis of the disease together 

with the application of appropriate and effective treatment strategies is crucial for the 

decrease in the mortality rate of the disease and the increase in the survival of patients. 

Therefore, there is a need for non-invasive methods having a high sensitivity and 

specificity, which can be used for the screening and diagnosis of MPM disease.  To 
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identify whether the human pleural fluid is accumulated due to MPM or LC or BT 

diseases, the details of pleural fluid’s proteins content and their secondary structure 

has been studied using Attenuated Total Reflection Fourier Transform Infrared (ATR-

FTIR) spectroscopy.  
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CHAPTER 2 

 

 

2 MATERIALS AND METHODS 

 

 

 

2.1 Estimation of Proteins secondary structure using wavelet based ANN 

2.1.1 Preparation of proteins solutions 

FTIR spectra of 35 water-soluble proteins were collected in phosphate buffer solution. 

All protein samples were obtained from (Sigma-Aldrich, UK) and were used without 

further purification. The secondary structure contents of these proteins are known from 

X-ray crystallography (Table 2). For infrared measurements, samples were prepared 

by dissolving certain amount of protein in phosphate buffer to obtain a final 

concentration of 20 mg/ml protein in pH 7.4. 

2.1.2 FTIR experimental setup and scanning parameters 

Infrared spectra were recorded by using a Vector 22 Bruker spectrometer equipped 

with DTGS detector with (128 scans at 4 cm-1 resolution). 4 µl of each aqueous sample 

was placed in between the two special CaF2 windows with 6 um pathlength. The 

temperature of the protein was maintained at 25 oC using of a circulating water. In 

order to eliminate the effect of water vapor, the FTIR spectrometer has been purged 

with dry air.  

 

 

 



 

26 

Table 2: The 35 proteins dataset with their secondary structure using X-ray and 

bioinformatics tool (Joosten et al. 2011). 

Proteins 
Pdb 

code 

X-ray based results % 

β-

sheets 

α- 

helix 
Others 

(MOUSE) -  Acetylcholinesterase 1C2O 15.2 35.6 49.2 

(YEAST) -  Alcohol dehydrogenase 1 2HCY 29.1 25.9 45 

(HORSE) -  Alcohol dehydrogenase  4DXH 24.6 27 48.4 

(BOVIN) -  Chymotrypsinogen A 1YPH 34.4 2.3 63.4 

(RAT) -  Chymotrypsinogen B 1KDQ 33.1 0.0 66.9 

(HUMAN) -  Alpha-lactalbumin 1A4V 6.5 43.9 49.6 

(HORSE) -  Ferritin light chain 4DE6 0 74.4 25.6 

(HUMAN) -  Fibroblast growth factor 2 1BFG 38.9 9.5 51.6 

(BOVIN) -  Serum albumin 4F5S  0 73.6 26.4 

(HUMAN) -  C-reactive protein 1B09 39.8 8.8 51.5 

(BOVIN) -  Carbonic anhydrase 2 1V9E  29 14.3 56.8 

(CANEN) - Concanavalin-A 3CNA  40.5 0 59.5 

(BOVIN) -  Cytochrome c 2B4Z 0 39.4 60.6 

(BOVIN) -  Cytochrome c oxidase 1V54 0.4 70.4 29.2 

(THUAA) - Cytochrome c 3CYT  0 41.7 58.3 

(HORSE) -  Cytochrome c 1HRC  0 41.3 58.7 

(PIG) -  Chymotrypsin-like elastase 1QNJ 34.2 10 55.8 

(YEAST) -  Enolase 1 3ENL 16.5 42.5 41.1 

(HUMAN) -  Coagulation factor XIII 1F13 39.8 14.4 45.8 

(HUMAN) -  Fibrinogen 3GHG 1.7 70.6 27.6 

(LEUME) -  Glucose-6-phosphate 1-dehydrogenase 1DPG 34.2 46.4 42.3 

(HORSE) -  Hemoglobin 1NS6 0 76.6 23.4 

(HUMAN) -  Hemoglobin 1HHO 0 70.9 29.1 

(HUMAN) -  Serotransferrin 3QYT 17.8 33.1 49 

(RABIT) -  L-lactate dehydrogenase 3H3F 21.5 43.2 35.3 

(CHICK) -  Lysozyme C 2LYZ 6.2 41.1 52.7 

(HORSE) -  Myoglobin 2V1H 0 74.5 25.5 

(CHICK) -  Ovalbumin 1OVA 32.1 32.1 35.8 

(PAEPO) -  Bacillolysin 4GER  17.4 43.4 39.1 

(BOVIN) -  Ribonuclease pancreatic 4AO1 34.7 20.1 45.2 

(BACLI) -  Subtilisin Carlsberg 3UNX 17.9 29.6 52.6 

(RABIT) -  Triosephosphate isomerase 1R2R 15.4 44.3 40.2 

(BOVIN) -  Cationic trypsin 1TGS 37.8 8.4 53.8 

(SOYBN) -  Trypsin inhibitor A 1BA7 36.4 1.8 61.8 

(BOVIN) -  Cationic trypsin 1S0R 32.3 8.5 59.2 
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2.1.2.1 ANN Training parameters 

The neural network initiated using random weights and the following parameters has 

been used: 

Performance goal= 0 

Performance function= sum squared error (sse) 

Maximum number of epochs to train= 1000 

Learning rate= 0.01 

For implementation of these parameters in Matlab please refer to appendix. 

2.2 Biophysical characterization of proteins in artificial crowded environment 

Apo-transferrin, Holo-transferrin D2O and Dextran 70 was purchased from sigma 

aldrich and used without further purification. 

2.2.1 Sample preparation 

Stock Dextran solution prepared by dissolving the amount of dextran powder required 

to obtain 200 mg/ml concentration at pH/D 7.4 buffer saline solution. 

The samples for infrared measurements were prepared by dissolving the required 

amount of protein to obtain a final concentration of 50 mg/ml protein in pH/D 7.4 

buffer saline solutions and in dextran stock solution.  

2.2.2 Infrared spectroscopy 

In H2O: 4 µl of each sample was placed in between the two special CaF2 windows 

with 6 um pathlength. All spectra (128 scans for each sample) were recorded with a 

Vector 22 Bruker spectrometer equipped with DTGS detector. Although the system 

continuously purged by dry air to reduce the water vapor noise, the vapor spectra 

(before and after each experiment) has been recorded to be subtracted from the sample 

spectrum. For thermal denaturation study, each sample heated from 25C to 85 C for 

Apo-Transferrin (ATF) and from 25C to 95C for Holo-Transfferin (HTF) in 5 C steps. 

At each temperature certain time allowed for temperature stabilization before 

recording the spectra. The OPUS 6.5 software and custom written Matlab scripts was 

used for the one- and two-dimensional analysis of the 1700-1600 cm-1 spectral region. 

The amide I region, which consists of overlapping bands, was resolved by using 

Fourier self-deconvolution with a band width with factor 2 and a resolution 
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enhancement of 2. The deconvoluted spectra were normalized with respect to 1515 

cm-1 Tyrosine peak. The second derivative of each spectra has been calculated using 

the same software. In order to calculate both synchrone and asynchrone 2D plots, 

temperature has been used as perturbation to induce time-dependent spectral 

fluctuations for deconvoluted.   

In D2O for H/D exchange: 20 µl of each sample was placed in between the two flat 

CaF2 windows with 50 µm spacer. The first spectrum recorded after 3 minutes from 

onset time of dissolving protein in D2O buffer or D2O dextran buffer solution.  Then 

spectra recorded in two minutes intervals for an hour and each spectrum takes about 

one minute to average 64 scans. The spectra were normalized with respect to Amid I 

using OPUS 6.5. The intensity of Amid II’ at 1546 cm-1 calculated for each spectra 

using custom Matlab script. According to literature (Dong et al. 1996) using the 

following formula: F= (A2-A2∞)/A1ω. where A1 and A2 are the absorbance maxima of 

the amide I and amide II bands, respectively.  A2∞ is the amide II absorbance maximum 

of fully denaturated protein, and ω is the ratio of A20/AI0 , with A20 and A10 being the 

respective absorbance maxima for the amide II and amide I bands of the proteins in 

H2O. 

2.2.3 2D-IR correlation: 

There are two types of 2D IR correlation plots. The synchronous 2D IR represents in-

phase variation between the spectral components to an applied perturbation 

(Temperature in our case) (Noda 1990). The asynchronous 2D IR represent out-phase 

variation between the spectral components to an applied perturbation. The 

asynchronous 2D IR plot together with the synchronous plot provides details about the 

sequence of events following an applied perturbation (Paquet et al. 2001). The 2D IR 

plots are either symmetric (synchronous) or antisymmetric (asynchronous) with 

respect to the diagonal only peaks above the diagonal are discussed as it is also 

including information about the other part. In this thesis 2D-IR peaks are identified as 

Y vs X cm-1, where Y and X represent the wavenumber respectively. The sign of a 

cross peak, either to be positive or negative, determines the sequential relationship 

between two peaks according to the rules proposed by Noda (15). 
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2.3 Proteins in biological fluids 

2.3.1 Subject recruitment/ Study Subjects 

The current study protocol was approved by Hacettepe University Ethics Committee 

(HK 12/131-36). Before collection of pleural fluid samples, a written informed consent 

was taken from all patients following the ethical norms of the institute. The samples 

were collected from patients with Malignant Pleural Mesothelioma (MPM, n=24), 

lung cancer (LC, n= 20), and benign transudate (BT n=26). BT was considered as 

control group since these pleural fluids were due to benign diseases such as congestive 

heart failure. MPM and LC diagnosis were confirmed by standard Hematoxylin and 

eosin stain (HE) and immune-histochemical staining of biopsy specimens from the 

tumor sites. The diagnosis of BT was confirmed according to Light’s criteria via the 

analysis of protein and lactate dehydrogenase (LDH) levels in both pleural fluid and 

serum. 

2.3.2 ATR-FTIR Spectroscopy 

2.3.2.1 Sample preparation and spectral acquisition for FTIR spectroscopy 

Before FTIR measurements, frozen samples were thawed at the room temperature. 

Infrared spectra of the samples were collected using the one bounce ATR mode on a 

PerkinElmer Spectrum 100 FTIR spectrometer (PerkinElmer Inc., Norwalk, CT, USA) 

equipped with a universal ATR accessory. Briefly, 1 μl of pleural fluid was placed on 

the top of diamond/ZnSe crystal of ATR spectroscopy and dried with mild nitrogen 

gas for 3 min to remove the excess unbound water. 128 scans were collected for each 

spectral measurement in the spectral range between 4000 and 650 cm-1 with the 

resolution of 4 cm-1. Since water molecules in the air affect the IR spectrum (Mitchell 

et al. 2014), the spectrum of the empty diamond/ZnSe crystal was recorded as 

background and subtracted automatically by using appropriate software (Spectrum 100 

software, Perkin Elmer). Recording and analysis of the spectral data were performed 

using the Spectrum One software from Perkin Elmer. Randomly chosen three portion 

of the sample were scanned and their spectral average was used in further analysis. 

2.3.2.2 Spectral Pre-processing: 

Raw IR spectra from all pleural fluid samples were concave rubber band baseline 

corrected with 64 baseline and 50 iteration points. Then spectra were vector 
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normalized in order remove the effect of overall scaling or electronic gain effects may 

happened during samples measurements (Martens et al. 2003; Baker et al. 2014b). 

These pre-processed spectra were used for further chemometric analysis. 

All data manipulations were carried out by OPUS 6.5 software (OPUS, Bruker Optics, 

Ettlingen, Germany 

2.3.3 Chemometric Analysis 

To identify the spectral differences among BT, LC and MPM groups and to classify 

them, unsupervised and then supervised chemometric approaches were performed 

using Unscrambler X (Camo Software, Inc.) program. 

2.3.4 Unsupervised Chemometric Analysis 

To identify spectral differences and relationships among BT, LC and MPM groups, 

unsupervised chemometric approaches such as hierarchical cluster analysis (HCA) and 

principal component analysis (PCA) were performed using Unscrambler X (Camo 

Software, Inc.) for HCA analysis of the groups (BT, LC, MPM). HCA enables to 

assess the similarity between samples by measuring the distances between the points 

in the measurement space (Owens et al. 2014). Similar samples lie close to one 

another, whereas dissimilar samples are distant from each other (Muehlethaler et al. 

2014). PCA is commonly used as an unsupervised technique for data compression and 

visualization. The relationships between samples are defined by using their principal 

components (PCs). (PCs) are simply linear combinations of the variables that explain 

the greatest variance, the next greatest variance, etc. Thus by using PCA, the n-

dimensional data set can be plotted in a smaller number of dimensions. This allows the 

observation of clusters, which can define the structure of the data set (Owens et al. 

2014).  Based on HCA results,  to measure the performance of discrimination method, 

sensitivity and specificity  were  calculated as described in Table 3 (Gok et al. 2016).  
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Table 3. Definitions for sensitivity and specificity 

 Cluster  analysis results based on  ATR-FTIR data 

                           Positive* Negative * 

LC/MPM   A B                 Sensitivity=A/(A+B) 

Control (BT)   C D                 Specificity=D/(C+D) 

 

* Positive and negative values are determined as follows: 

A: the number of LC or MPM patients identified in LC/MPM groups (true positive). 

B: the number of LC or MPM patients identified in control group (false negative)  

C: the number of BT patients identified in LC/MPM groups (false negative). 

D: the number of BT patients identified in BT group (true negative). 

2.3.5 Supervised Chemometric Analysis 

 To classify the studied groups, Soft Independent Modeling of Class Analogy 

(SIMCA), a supervised classification technique, was performed by UnscramblerX 

(CAMO Software, Inc.). Firstly, the PCA models for each group were created and then 

3 samples from each group were randomly selected and tested to validate the 

developed methods. In SIMCA, each class of data set is modeled by principal 

component analysis (PCA) and then new samples are tested to each class set  whether 

they are similar or dissimilar  (Mueller et al. 2013). 
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CHAPTER 3 

 

 

3 RESULTS AND DISCUSSION 

 

 

 

This thesis is composed of three parts in order to study proteins structure and dynamics 

in dilute, artificial crowded environments and in real biological liquids. First part 

presents the method of proteins secondary structure estimation in dilute solution using 

artificial neural networks. The second part presents the study of Transferrin protein 

structure and dynamics in crowded environment. The second part also include the 

study of Transferrin thermal denaturation in dilute and crowded environment using 

2D-IR correlation. The third part is the study of protein secondary structure in real 

human biological liquids with application to Malignant Pleural Mesothelioma (MPM).    

3.1 Estimation of Proteins secondary structure using wavelet based ANN 

3.1.1 Features extraction using DWT 

In this study DWT has been used as data reduction for Amide I. The results of DWT 

have been used as an input vector for ANN. The amide I spectra are first range scaled 

to the interval between 0 and 1 then rubberband baseline corrected using OPUS 

program. By using Matlab algorithm "decROW" (appendix) the amide I of each 

protein decomposed to 7 Level decomposition using Near symmetric wavelet (db2, 

db3, db10 and haar). In order to find the best level of wavelet decomposition that 

represents the amide I with the lowest number of wavelet coefficient, all amide I bands 

of the proteins dataset have been decomposed to 7 levels.  

Figure 19 shows the  seven level of two different amide I signals. From the figure we 

can conclude that levels 7,6 and 5 are not acceptable because they loss most of the 

amide I features. Levels 2,3 and 4 show a better representation of amide I signals. 

However, level 2 consists of 35 coefficients which is not suitable with our limited 
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number of proteins for ANN training. After several trials and signals examination, we 

found that the decomposing of amide I to the 3rd level gives the best representation of 

amide I with lowest number of coefficients.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 Figure 19: Seven level (L1-L7) of wavelet decomposition for two different secondary 

structures proteins. A) Mainly sheet protein (protein 1). B) Mainly α-helix (Protein 2) 
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The wavelets used in this project are the Daubechies D2 developed by Ingrid 

Daubechies in the 1990's (Daubechies 1992). The major difference between the 

Daubechies and the Haar wavelets is that the Daubechies wavelets do not have jump 

discontinuities and as such represent signals in frequency or scale space with better 

localization (Quellec et al. 2008). In order to decide which wavelets type can be used 

for amide I,    

Figure 20 shows the amide I and its wavelet coefficients for three different types of 

proteins mainly β-sheets, α- helix and random structure.   

   

Figure 20: Wavelets coefficients at level 3 using db2, db3, db10 and haar for three 

different proteins 

The analysis of these amide I wavelets at level 3 for the three proteins show that db2 

coefficient gives the best representation reflecting the amide I characteristics. Each 

db2 coefficient vector at level 3 consist of 10 features which has been used as input 

for the neural network. 
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Wavelets coefficients and plots has been produced using Matlab wavelet toolbox and 

custom written Matlab script (appendix).  Amide I signal can be decomposed to 

different level using DWT. The first level contains the highest number of wavelets 

coefficients that represent the amide I signal. Using these coefficients, amide I signal 

can be accurately reconstructed from its wavelets coefficient (Alzubi et al. 2011).   The 

second level of wavelets coefficients contains a less number of coefficient which 

represent a less features of amide I by neglecting some minor features.  By the same 

logic, as the level of decomposition increase the number of coefficients will decrease 

and the reconstructed signal will contain less features about Amide I.  

Although the first level has the highest accuracy for amide I signal reconstruction, 

previous works (Hering et al. 2004b; Hering et al. 2004a) show that not all amide I 

wave numbers are useful for proteins secondary structure prediction. Furthermore, the 

other wave numbers in amide I can act as a noise affecting the prediction rate of the 

protein secondary structure.  On the other hand, because of the limited number of 

proteins in our ANN training set, the less number of wavelets coefficients can lead to 

a better training and prediction rate for the ANN.  In this study artificial Neural 

network has been trained using Matlab Neural Network Toolbox. For the training of 

ANN the resilient backpropagation has been used. Finally, the ANN consist of 10 

inputs, one hidden layer, and an output layer with three neurons. We found that three 

neurons in the hidden layer gives the best resulted with smaller prediction errors. The 

predictions obtained for the protein dataset are presented in Table 4. 

3.1.2 ANN Leave-one-out training approach 

A feed forward neural network has been constructed using "feedforwardnet" matlab 

function (appendix1). A good trained neural network should make good predictions 

when data from outside the training set is used as an input. This is known as neural 

network generalization which is the most important issue in developing a neural 

network (Ahmed 2005). If neural network has very few hidden units, it can fail to 

predict the complicated data set leading to under fitting. In contrast, if the neural 

network has too much hidden units it can be overtraining specially for limited size 

training dataset. The overtraining neural network tend to memorize the training set 

rather than learning itself (Toney and Vesselle 2014).  Both of under and over training 
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cause that the neural network will fail to predict the tested samples. In this study, only 

FTIR spectra of 35 proteins are available for the proteins dataset. Because of this, a 

neural network with only one unit in the hidden layer has been used initially. The 

results of one hidden unit neural network showed under fitting prediction. The two 

hidden units’ neural network showed a better prediction. However, with three hidden 

units it showed much more better prediction. A neural network with high (more than 

3) hidden units was not used because of our limited dataset and to avoid the 

overtraining problem. Finally the ANN consisted of one input layer with 10 neurons, 

one hidden layer with 3 neurons and one output layer with 3 neurons too (Figure 21).  

 

Figure 21: Structure of the feedforward ANN 

 

The leave-one-out approach is usually used to train a neural network with small 

training dataset.  In this method one vector (spectra) was removed from the dataset and 

considered as (blind test vector) for testing the neural network after training. From the 

remaining dataset (34 vector) one vector was used as a test and another one was used 

for validation then the neural network was trained by the 32 vectors. After training, 

the neural network was tested using the test vector and the root mean square error (rms) 

has been calculated from the outputs and targets values. The process of selection of 

one vector (as a test) was repeated for all vectors and the overall rms has been 

calculated. If the overall rms of the leave-one-out neural network blow a certain 

threshold value (calculated experimentally) the blind test vector was used to test the 

performance of the developed neural network. Figure 22 shows a schematic diagram 

for the leave-one-out learning process. 



 

38 

 

Figure 22: Schematic diagram for leave one out method used for proteins secondary 

structure prediction 

 

Then, another blind test vector was removed from the dataset and the previous whole 

leave one out process has been repeated again. In order to overcome the problem of 

error terms of networks that have fallen to different local minima, a jury of 10 networks 

has been used for each blind test. Then the mean of the rms of blind test was calculated 

and considered as indicator for the neural network prediction success.  
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Table 4: Comparison between the X-ray based and ANN based proteins secondary 

structures. 

Pdb 

code 

X-ray based results ANN based results Errors 

β-

sheets 

α- 

helix 
Others 

β-

sheets 

α- 

helix 
Others 

β-

sheets 

α- 

helix 
Others 

1C2O 15.2 35.6 49.2 17.76 32.37 54.04 2.56 -3.23 4.84 

2HCY 29.1 25.9 45 29.05 29.23 44.27 -0.05 3.33 -0.73 

4DXH 24.6 27 48.4 29.05 19.45 49.17 4.45 -7.55 0.77 

1YPH 34.4 2.3 63.4 36.31 2.44 64.70 1.91 0.14 1.30 

1KDQ 33.2 9.6 57.3 34.43 12.96 52.69 1.23 3.36 -4.61 

1A4V 6.5 43.9 49.6 6.92 50.64 41.85 0.42 6.74 -7.75 

4DE6 0 74.4 25.6 2.88 73.22 20.62 2.88 -1.18 -4.98 

1BFG 38.9 9.5 51.6 39.87 5.59 52.05 0.97 -3.91 0.45 

4F5S  0 73.6 26.4 0.26 78.27 22.61 0.26 4.67 -3.79 

1B09 44.7 6 49.3 47.04 5.90 47.10 2.34 -0.10 -2.20 

1V9E  29 14.3 56.8 32.91 8.09 58.95 3.91 -6.21 2.15 

3CNA  40.5 0 59.5 35.94 6.07 56.37 -4.56 6.07 -3.13 

2B4Z 0 39.4 60.6 0.00 44.02 56.02 0.00 4.62 -4.58 

1V54 0.4 70.4 29.2 0.00 90.55 22.37 -0.40 20.15 -6.83 

3CYT  0 41.7 58.3 0.00 62.90 49.92 0.00 21.20 -8.38 

1HRC  0 41.3 58.7 2.80 35.17 59.54 2.80 -6.13 0.84 

1QNJ 34.2 10 55.8 40.85 0.18 59.63 6.65 -9.82 3.83 

3ENL 16.5 42.5 41.1 18.76 30.62 44.61 2.26 -11.88 3.51 

1F13 39.8 14.4 45.8 35.70 7.58 56.06 -4.10 -6.82 10.26 

3GHG 1.7 70.6 27.6 0.00 68.27 35.54 -1.70 -2.33 7.94 

1DPG 34.2 46.4 42.3 33.59 44.86 43.28 -0.61 -1.54 0.98 

1NS6 0 76.6 23.4 0.00 62.89 36.32 0.00 -13.71 12.92 

1HHO 0 70.9 29.1 0.00 75.25 25.62 0.00 4.35 -3.48 

3QYT 17.8 33.1 49 18.04 29.84 51.77 0.24 -3.26 2.77 

3H3F 21.5 43.2 35.3 25.24 40.86 32.93 3.74 -2.34 -2.37 

2LYZ 6.2 41.1 52.7 1.08 53.41 44.89 -5.12 12.31 -7.81 

2V1H 0 74.5 25.5 10.83 63.40 25.49 10.83 -11.10 -0.01 

1OVA 32.1 32.1 35.8 29.64 40.45 31.10 -2.46 8.35 -4.70 

4GER  17.4 43.4 39.1 17.01 41.53 39.31 -0.39 -1.87 0.21 

4AO1 34.7 20.1 45.2 30.64 20.63 47.17 -4.06 0.53 1.97 

3UNX 17.9 29.6 52.6 18.19 27.80 56.38 0.29 -1.80 3.78 

1R2R 15.4 44.3 40.2 20.61 30.07 47.16 5.21 -14.23 6.96 

1TGS 37.8 8.4 53.8 47.34 0.00 62.90 9.54 -8.40 9.10 

1BA7 36.4 1.8 61.8 31.94 6.79 63.61 -4.46 4.99 1.81 

1S0R 32.3 8.5 59.2 29.75 9.54 60.80 0.00 1.04 1.60 

 

As seen from the table, the estimation accuracies we obtained are very good, and can 

be compared to those reported by previous works (Severcan et al. 2001; Severcan et 

al. 2004a; Khanmohammadi et al. 2009) for some proteins. The overall average rms 
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errors for α- helix, β-sheet and turns in our case were 3.12, 6.08, and 4.02 respectively. 

The artificial Neural networks (ANNs), as a method to predict protein secondary 

structure, has been developed in a previous work by our group that is able to provide 

predictions of secondary structure of proteins in solution better than previously used 

methods (Severcan et al. 2001; Hering et al. 2002a; Hering et al. 2004c; Severcan et 

al. 2004a; Hering and Haris 2009).The main difficulty in all of these approaches was 

the limitation of the available spectral data (18 proteins) for training of the NNs. In 

(Severcan et al. 2001), Bayesian regularization was used in order to train the ANN. 

Also, leave one out approach was used to show the applicability of the method. The 

networks have been tested and standard error of prediction (SEP) has been reported as 

4.19% for  α-helix, 3.49% for β-sheet, and 3.15% for turns have been achieved. 

Enhanced neural network by (Hering et al. 2002b; Hering et al. 2002a) revealed that 

by providing part of the amide I region in combination with appropriate pre-processing 

of the spectral data can produced a good prediction results. Their results showed a 

standard error of prediction with 6.16% for β-sheet, 4.47% for α-helix and 4.61% for 

turns. (Hering et al. 2003) showed that proteins can be accurately classified into two 

main classes “all alpha proteins” and “all beta proteins” merely based on the amide I 

band maximum position of their FTIR spectra using of specialized neural networks 

architecture combining an adaptive neuro fuzzy inference system. The standard errors 

of prediction (SEPs) in % structure were improved by 4.05% for α-helix structure, by 

5.91% for sheet structure, by 2.68% for turn structure, and by 2.15% for bend structure. 

(Severcan et al. 2004b) produced an artificially proteins training dataset using linear 

interpolation in order to improve the generalization ability of the neural networks. The 

networks have been tested and standard error of prediction (SEP) of 4.19% for a α-

helix, 3.49% for b sheet, and 3.15% for turns have been achieved. (Hering et al. 2004a) 

used a reference set composed of FTIR spectra recorded at different laboratories to 

investigate possible effects on prediction accuracy by neural network analysis. The 

SEP results show small difference between the datasets recorded at different 

laboratories suggests that FTIR may be safely combined into one reference set. 

(Severcan et al. 2001; Hering et al. 2002a; Hering et al. 2004c; Severcan et al. 2004a; 

Hering and Haris 2009) studies has been done on 18 proteins dataset. In order to 

increase the accuracy of ANN prediction, we increased the number of proteins in our 
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database to be 35 proteins. Up to best of our knowledge this is the first study uses that 

wavelets coefficient as a feature for amide I FTIR signal.  

Table 5: Comparison between x-ray, NMR and ANN based protein secondary structure 

for some proteins in protein dataset. 

X-ray based results NMR based results ANN based results 

Pdb 

code 

β-

sheets 

α- 

helix 
Others 

Pdb 

code 

β-

sheets 

α- 

helix 
Others 

β-

sheets 

α- 

helix 
Others 

1R2R 15.4 44.3 40.2 1ypi 16.2 43.0 40.9 20.61 30.07 47.16 

2V1H 0 74.5 25.5 1myf 0 73.2 26.8 10.83 63.40 25.49 

1HRC  0 41.3 58.7 1akk 0 37.5.3 62.5.7 2.80 35.17 59.54 

1NS6 0 76.6 23.4 2h35 0 62.4 37.6 0.00 62.89 36.32 

4AO1 34.7 20.1 45.2 1FS3 34.7 20.1 45.2 30.64 20.63 47.17 

 

Some of proteins in our dataset have been studied using NMR, because of this we 

compared the secondary structure of these proteins based on x-ray, based on NMR and 

based on our ANN. The results indicated that for four proteins in our data set (indicated 

in Table 5), the secondary structure prediction based on NMR are almost similar to 

their proteins secondary structure prediction based on x-ray. However, for 

Hemoglobin (pdb:1NS6), which is large molecular weight protein, The NMR showed 

a closer result to our ANN based proteins secondary structure analysis. This could 

indicate that the large proteins have different secondary structure in solution than the 

crystal form. This show the importance of the proteins prediction in solution rather 

than in crystal form in order to   reflect the real proteins structure in native form. 

Finally, our results show that ANN base proteins secondary structure method is very 

promising and can be used for proteins secondary structures estimation from FTIR 

spectra. 

3.2 Biophysical characterization of proteins in artificial crowded environment 

The previous FTIR studies of Transferrin in dilute solution indicate that upon iron 

binding the conformational changes occur at tertiary structure rather than the 

secondary structure (Hadden et al. 1994b). Thus, this makes the study of protein 

dynamics in solution very important to understand the properties of this protein. Inside 

the cell, the environment is not like a diluted solution but there is crowded environment 

of macromolecules such as proteins, carbohydrates and lipids (Fulton 1982; Minton 
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1983; Zimmerman and Trach 1991). This crowded environment could physically 

affect the properties and dynamics of transferrin (Harada et al. 2012). In the current 

study dextran and ficoll as a model crowding agents has been used because they are 

uncharged, inert polymers and FTIR transparent in amid  I region (Samiotakis et al. 

2009). Investigate the conformation of proteins can be deduced from FTIR spectra 

because it is a very well technique for the analysis of the amide peaks thus the 

denaturation and aggregation can be monitoring (Haris and Severcan 1999; Severcan 

et al. 2001). The amide I band has been used extensively used to determine the 

secondary structure of proteins (Dong et al. 1990; Dong et al. 1995; Haris et al. 2004). 

Dextran has been used to produce artificial crowded environment like crowded 

environment inside the cells to study the transferrin. In this study thermal denaturation, 

aggregation and Hydrogen deuterium exchange of transferrin in the presence and 

absence of dextran have been studied using deconvoluted, second derivative and two-

dimensional infrared correlation spectroscopy (2D-IR).  In order to generate 2D-IR 

analysis, thermal perturbation has been used as time dependent variations in infrared 

spectra. Our results present a direct evidence of the molecular crowding agents on the 

aggregation and dynamics of Apo and Holo transferrin. 

 

3.2.1 1D-IR spectroscopy 

3.2.1.1 Effect of molecular crowding on HTF and ATF secondary structures: 

Figure 23A shows Fourier deconvolved infrared spectra of amide I and amid II regions 

for HTF, ATF, HTF in Dextran (200 mg/ml and 400mg/ml), HTF in Ficoll (200 mg/ml 

and 400mg/ml), ATF in Dextran (200 mg/ml and 400mg/ml) and ATF in Ficoll (200 

mg/ml and 400mg/ml) all of which are in phosphate buffered (pH 7.4) saline solution 

at 25°C. The second derivative spectra (Figure 23B) of all spectra in figure 1A 

unraveled three bands; a dominant band at 1654 cm-1 and two smaller bands at 1682 

cm-1 and 1635 cm-1. Figure 23A and B also show that the Dextran and Ficoll with 

concentrations (200mg/ml and 400mg/ml) don’t have an effect on the HTF and ATF 

secondary structure at room temperature. The band at 1656 cm-1 is characteristic of the 

protein amide groups in alpha-helices or irregular structure while the bands at 1685 

cm-1 and 1634 cm-1 are generally associated with turns and β-sheets, respectively 
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(Byler and Susi 1986).  The quantitative analysis of HTF and ATF using a method 

described at (Yan et al. 2006) has been calculated using a custom written Matlab script. 

The secondary structure results showed 35% α-Helix and 22 % ß-sheets. These results 

were in good agreement with those obtained by X-ray crystal structure of HTF (pdb 

code: 3qyt) which shows 33.1% α-Helix, 17.8% ß-sheets calculated using pdbsum 

bioinformatics tool (Chang et al. 2015).  Furthermore, our Transferrin secondary 

structure calculations were in good agreement with a previous FTIR study on 

Transferrin (Hadden et al. 1992).  

 

 

 

Figure 23: : Original (A)  and second derivative (B)  FTIR  spectra for Transferrin in 

the amide I  and II region at 30°C. 
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According to the analysis of ATF and HTF FTIR spectra at room temperature, the 

secondary structure analysis of transferrin did not show significant changes up on 

binding of iron. This result was in agreement  with a previous small-angle neutron 

scattering study (Martel et al. 1980) which indicated that iron binding alters the relative 

position of the two lobes of the transferrin molecule rather than the structure of the 

lobes. The study also suggested that iron binding may result in some kind of twisting 

of the two lobes relative to each other.    

3.2.1.2 Effect of molecular crowding on H/D exchange: 

 

Figure 24A, shows the variation of the amide II peak absorption of HTF in the absence 

and presence of dextran at 25 oC. These spectra were normalized with respect to the 

amid I band. The results obtained indicated a large decrease in H/D exchange rate in 

the presence of dextran.  

 
 

Figure 24: Time-dependent 1H-2H exchange of Amide II intensity for Transferrin in 

absence (blue) and presence (red) of dextran at 25 C. A) HTF only B) ATF only. 
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 Figure 25 : Time-dependent 1H-2H exchange of Amide II intensity for ATF (blue) and 

HTF (red) at 25 C. a) diluted solution only b) in dextran solution. 

 

The fraction of unexchanged amide protons (F) has been calculated as described in 

method section. After 1 hour of dissolving HTF in H2O buffer at 25 C, about 63% of 

amide protons in HTF were exchanged in contrast to only 21% exchange in the 

presence of dextran.  This suggests over 3-fold reduction in hydrogen-deuterium 

exchange of the amide protons in HTF the presence of dextran.  This could be due to 

an increase in the compactness of the HTF structure induced by the molecular 

crowding effect of the dextran molecules.  The more rigid/compact structure prevents 

the replacement of H with 2H within the peptide groups due either to an increase in H-

bonding within the peptide groups and/or due to the inability of the D2O to penetrate 

the interior core of the HTF molecule.   

Figure 24B shows the variation of the amide II absorption at 25 C for ATF in the 

absence and presence of dextran in D2O buffer (spectra normalized to amide I). The 

fraction of unexchanged amide protons has been calculated by the same method 

described in the methods section. After 1 hour of dissolving ATF in D2O buffer at 25 

C, about 52% of the amide protons undergo exchange.  In contrast, only 43% of the 

amide protons underwent exchange in the presence of dextran.  The magnitude of 

difference in exchange was far less compared to what was seen for HTF.  This 

suggested that the impact of molecular crowding on ATF was far less compared to 
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what was seen for HTF. The hydrogen deuterium exchange (H/D) results of ATF and 

HTF in D2O Figure 25A shows similar exchange rate at the beginning time but a 

decrease was seen subsequently for HTF relative to ATF.  The explanation for the 

rapid exchange at the beginning can be attributed to the exchange of amide protons 

located on the surface and solvent accessible region of both ATF and HTF.   The slower 

exchange rate corresponded to the exchange of buried solvent in-accessible residues 

and/or residues that were strongly hydrogen-bonded. But in case of HTF the closed 

structure lowered the rate of exchange. Although part of this results was similar to the 

previous study (Hadden et al. 1994a) to the best of our knowledge first time H/D 

exchange rate was used to confirm the open and closed structure of transferrin. Figure 

25B showed that the H/D exchange rate of ATF and HTF in dextran solution 

significant which indicates the physical effect of dextran on the solvent accessibility 

of the transferrin molecule. This (Figure 25B) confirmed that in crowded environment, 

the physical properties of confined water differed considerably from those 

corresponding to bulk water and effect on transferrin dynamics and stability (Despa et 

al. 2004).   We observed that the amount of H/D exchange rate decrease in HTF was 

higher than ATF in presence of dextran. This could be attributed to the open structure 

form of ATF that allowed more exchange from inside the transferrin rather than the 

closed structure of HTF.  

 

3.2.1.3 Effect of molecular crowding on HTF and ATF thermal 

denaturation: 

Figure 26A shows the amide I band of HTF at 25C and 90C in dilute, dextran crowded 

and ficoll crowded solutions. Figure 4B show the second derivative of Figure 26A 

spectra. The main absorption peak of HTF at 25C is 1656 cm-1 strongly shifted to 1647 

cm-1 at 90C. However, in the presence of dextran the main absorption peak of HTF 

shifted to 1653 cm-1 at 90C.  
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Figure 26: Amide I FTIR absorption spectra (A) and their second derivative (B) of 

HTF at room temperature (black) and (HTF (blue), HTF+dextran (red)  and 

HTF+ficoll  (orange) ) at 90 oC. 

 

In the presence of Ficoll the main absorption peak shifted only to 1655 cm-1. The less  

shift (1-3 cm-1) of the 1656 cm-1 peak in the presence of Dextran and Ficoll at 90 C 

respectively may indicate the protective effect on the HTF thermal stability due to 

macromolecules crowded environment (Kuznetsova et al. 2014). Commonly, the 

protein aggregation is shown in the IR spectroscopy by the formation of two peaks at 

;1618 and ;1681 cm-1. These two peaks was previously assigned to hydrogen bonded 

extended intermolecular β-sheet structures. This extended intermolecular β-sheet 

structures was formed upon aggregation of the thermally denatured proteins (Yan et 

al. 2003a). However, the denaturation of HTF can be observed in the infrared spectra 
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by a broadening of Amid I, decrease in 1656 cm-1 band intensity and formation of 1645 

cm-1 and 1676 cm-1 peaks (Figure 26 A, B). This uncommon behavior of HTF has been 

reported before in a previous FTIR study (Hadden et al. 1994b). In the presence of 

Dextran and Ficoll, the HTF denaturation was observed by a broadening of amid I, a 

decrease in 1656 cm-1 band and a formation of 1616±2 cm-1, 1638±2 cm-1 and 1676±2 

cm-1 peaks rather than 1645 cm-1 peak. Similar results have been obtained by using 

Ficoll rather than Dextran at the same conditions.  

 

Figure 27: Amide I FTIR absorption spectra (A) and their second derivative (B) of 

ATF at room temperature(black) and (ATF(blue), ATF+dextran (red) and ATF+ficoll 

(orange) at 90 oC. 
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This can clearly prove that the protective effect on HTF thermal stability was due to 

the physical effect of the macromolecules rather than a special case due to chemical 

interaction between HTF and Dextran or Ficoll which has been suggested by several 

previous studies  (Chebotareva et al. 2004; Chebotareva 2007). Similarly; ATF 

denaturation was reflected in the infrared spectra and its second derivative mainly by 

a broadening of amid I and formation of 1680 cm-1 and 1616 peaks (Figure 27A, B). 

In the presence of Dextran and Ficoll, the ATF denaturation was reflected by a 

broadening of amid I, a decrease in 1656 cm-1 and 1634 cm-1 bands intensity and a 

formation of 1680 cm-1, 1643±2 cm-1 and 1623±3 cm-1 peaks. These results again 

indicated the effect of macromolecules on the formation of two different secondary 

structure of ATF in diluted and crowded environments.  

3.2.2 2D-IR Correlation: 

In order to gain more insight  about the variation of HTF and ATF secondary structure 

with temperature in the presence and absence of both dextran and Ficoll, we performed 

2D-IR correlation analysis. 2D-IR method allows to study the response of a protein on 

different physical-chemical impulses with use of conventional spectrometers (Yan et 

al. 2003b). The main 2D-IR concept is that; the peaks that undergo changes in intensity 

result in correlation peaks in the 2D plots, whereas the peaks that remain constant 

result in no or very small correlation peaks (Noda et al. 1988). 

In the synchronous 2D-IR plot of HTF deconvoluted spectra (Figure 28A), four 

autocorrelation peaks (along the diagonal) centered at 1624, 1642, 1657, 1674  cm-1 

were observed. , indicating that the relative intensities of these bands changed with 

temperature. The negative cross-correlation peaks were observed at 1642 vs 1657 cm-

1 and at 1624 vs 1657 cm-1, revealing that the unfolding of alpha-helices (1657 cm-1) 

is accompanied by formation of two peaks at (1642 cm-1 and 1624 cm-1) which 

indicated the HTF protein aggregation. The positive cross-correlation peak at (1642 

cm-1 vs 1624 cm-1) confirms that these two peaks were formed together upon HTF 

denaturation. 

 The asynchronous 2D IR plot was antisymmetric with respect to the diagonal line. 

Asynchronous plot had no autopeaks at the diagonal position and consisted only of 

cross peaks located at off-diagonal positions. In 2D-IR figures, each peak can be 
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denoted by its y-axis value versus its x-values such as (1656 vs 1630 cm-1). Figure 28B 

shows HTF asynchronous 2D IR plot. The figure shows four positive peaks at (1674 

vs 1624, 1674 vs 1640, 1685 vs 1674 and 1640 vs 1630 cm-1). There was also one 

strong negative peak located at (1674 vs 1659 cm-1) and another two weak peaks at 

(1657 vs 1630 and 1630 vs 1620 cm-1). The position and sign of the cross peaks of an 

asynchronous 2D correlation spectrum reveal useful information about the relative 

temporal relationship or order of the actual sequence of reorientation. The positive 

peaks at (1674 vs 1624 cm-1 and 1674 vs 1640 cm-1) clearly indicate that the weak 

structures at 1674 cm-1 is highly affected by temperature and lead the formation of the 

aggregate structure at 1624 and 1674 cm-1.  The negative peak at (1674 vs 1659 cm-1) 

shows that the rate of change in the peak intensity at 1674 is slower than the change 

of 1659 cm-1.  

In the presence of Dextran (Figure 28C) the two autocorrelation peaks at 1624 and 

1657cm-1 were disappeared indicating that the presence of dextran prevents the 

unfolding of α-helix structure and formation of 1624 cm-1 aggregate structure. 

However in the presence of Ficoll (Figure 28E) the weak 1657 cm-1 peak indicated a 

weak effect of the temperature on the α-helix structure. The shift of 1624 cm-1 

autocorrelation peaks to 1630 cm-1 was observed in the presence of either Dextran or 

Ficoll indicating that the presence of the macromolecules has an effect on the final 

aggregated structure. The asynchronous 2D-IR plot of HTF in the presence of Dextran 

(Figure 28D) showed a high similarity to the asynchronous 2D-IR plot of HTF only. 

However the asynchronous 2D-IR plot of HTF in the presence of Ficoll (Figure 28F) 

showed some differences such as disappear once of the negative peak at 1674 vs 1659 

cm-1 and appearance of strong positive peak at 1640 vs 1624 cm-1. From this we can 

conclude that although both Dextran and Ficoll show a protective effect for the alpha 

α-helix structure, the Ficoll does affect the rate of the peaks intensity changes. 

In the synchronous 2D-IR plot of ATF deconvluted spectra (Figure 29A), two 

autocorrelation peaks (along the diagonal) centered at 1634 and 1678 were observed, 

indicating that the relative intensities of these bands change with increasing 

temperature. The absence of the 1656 autocorrelation peak indicated that the 

attachment of Iron to Transferrin (ATF) make it stronger than HTF and prevent the 

complete unfolding of the alpha α-helix structure. 
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Figure 28: 2D IR (A, C, E) synchronous and (B, D, F) asynchronous plots of the amide 

I FTIR spectra of  HTF (A,B), HTF+Dextran (C,D) and HTF+Ficoll (E,F). 
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Figure 29: 2D IR (A, C, E) synchronous and (B, D, F) asynchronous plots of the amide 

I FTIR spectra of : ATF (A,B), ATF+Dextran (C,D) and ATF+Ficoll (E,F). 

 

In ATF two negative cross-correlation peaks were observed at 1674 vs 1656 cm-1 and 

at 1674 vs 1634 cm-1, revealing that the partial unfolding of alpha-helices (1656 cm-

1) were accompanied by protein aggregation (1674 and 1634 cm-1). In ATF 

asynchronous 2D IR plot the negative elongated peak at (1674 vs 1645 cm-1) indicated 

that the variation of weak structure at 1674 lead the formation of aggregated structure 

at 1645 and suggested that additional peaks were buried underneath. Figure 29B shows 

A 
B 
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ATF asynchronous 2D IR plot. The figure showed four positive peaks (similar to HTF) 

at (1674 vs 1628, 1674 vs 1640, 1682 vs 1674 and 1642 vs 1634 cm-1). There was also 

one strong negative peak located at (1674 vs 1659 cm-1) and another two weak peaks 

at (1660 vs 1630 and 1630 vs 1622 cm-1). In the presence of Dextran (Figure 29C), 

the negative peak at 1657 vs 1684 cm-1 was disappeared indicating that the presence 

of dextran there was no more correlation between the unfolding of α-helix structure 

and formation of 1684 cm-1 aggregate structure. However, the autocorrelation peak at 

1630 became very strong indicating a formation of large aggregated structure at 1634. 

In the presence of Ficoll (Figure 29C) the ATF asynchronous 2D IR plot showed one 

more negative peak at (1643 vs 1657) indicating that the presence of Ficoll induced 

the unfolding of α-helix to an aggregated structure at 1643 cm-1.  The asynchronous 

2D-IR plot of ATF in the presence of Dextran (Figure 29D) showed a high similarity 

to the asynchronous 2D-IR plot of HTF only. However, the asynchronous 2D-IR plot 

of HTF in the presence of Ficoll (Figure 29F) showed some differences. Similar to the 

situation of HTF we can conclude that although both Dextran and Ficoll showed a 

protective effect for the α-helix structure, the Ficoll did affect the rate of the peaks 

intensity changes. 

Finally, the effect of macromolecular crowding on protein thermal stability can be 

explained based on two types of interactions which are volume exclusion and soft 

interactions (non-specific chemical interactions) [24]. Volume exclusion decrease the 

space available to the protein under study thereby it can increase protein stability as 

shown from our results. On the other hand, soft interactions can be destabilizing 

stabilizing [24]. This can explain the few differences between the effect of Dextran 

and the effect of Ficoll on the aggregated structure of the HTF and ATF.   
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3.3 Proteins secondary structure analysis of pleural fluids and its application in 

the diagnosis of MPM. 

 

The asbestos-induced lung cancer or Malignant pleural mesothelioma (MPM) arises 

due to occupational and/or environmental exposures to asbestos for a long time. The 

main symptom of MPM is the accumulation of pleural fluid around the lungs. 

However, the accumulation of pleural fluid could be due to other kinds of diseases 

such as inflammation. Therefore, pleural fluid may contain some plasma proteins and 

also it can contain some proteins derived from the tissues and cells in the lung. The 

investigation of whether these proteins can be used as biomarkers for diagnosis of lung 

cancer and other diseases was shown by  (Tyan et al. 2005). 

 In order to identify whether the pleural fluid is due to MPM or other benign diseases, 

the details of pleural fluid’s proteins content and their secondary structure has been 

studied using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR). In 

this study, IR spectroscopy is used to develop a non-invasive, operator independent 

diagnostic method for MPM from pleural fluid samples with the assist of Wavelet 

based ANN and Chemometrics analysis techniques.  Pleural fluids spectra were 

collected in the wavenumber range from 4000 to 650 cm-1.   
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Figure 30 A and B show representative absorbance and their second derivative spectra 

for BT, LC and MPM, respectively of pleural fluids in amide I band (1700-1600cm-1).  
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As it can be seen from (Figure 30), the amide I of pleural fluid spectra contain different 

characteristics peaks overlapped on each other. As can be deduced form Figure 30B, 

there are obvious alterations between the pleural fluid groups. For example, in BT 

group there is an increase in the intensities of peak located at 1656 cm-1, which indicate 

the α- helix content, relative to the other groups. In absorption spectroscopy, according 

to the Beer-Lambert law, the increase in the intensity of the spectral band indicates 

increased concentration of this secondary structure content (Severcan and Haris 2012). 

Therefore, increased intensity in 1656 cm-1 bands implies increment in α-helix content 

of BT pleural fluid samples. Similarly, in MPM group the increase in 1634 cm-1 band 

indicated an increase in β-sheets content of this group. As supporting to our findings, 

the increase in the soluble mesothelin related protein content in pleural fluid of 

mesothelioma patient has been previously shown in other studies (Creaney et al.).  

In order to calculate the proteins secondary structure of all pleural fluids samples, we 

used the ANN approach which we developed based on our proteins database (part 1 of 

this thesis). The secondary structure results of all samples are summarized in (Table 

6). 
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Table 6: Proteins secondary structure analysis results of pleural fluids using ANN  

 

The evaluation of the usefulness of pleural total protein measurements for 

differentiating between exudates and transudates has been shown by (Patel and 

Choudhury). They showed that the total proteins can be used to differentiate between 

BE and BT and the results were comparable to Light's criteria methods. In this study 

and as shown from  

Figure 31A, the β-sheets content of LC and MPM was significantly higher relative to 

control group BT. Figure B shows a significant decrease the α- helix structure in LC 

and MPM relative to the control group BT. These results of α- helix and β-sheets 

structure content of the 3 groups were in agreement with the secondary structure 

prediction using the second derivative analysis method.   

Sheets Helix Others Sheets Helix Others Sheets Helix Others

1 12.48 39.78 49.92 31.2 26 42.8 44.1 5.2 47.33

2 13.26 38.11 62.41 31.62 21.84 46.54 44.44 6.18 46.57

3 5.15 42.23 39.21 34.68 34.96 30.36 46.2 11.44 44.2

4 15.3 40.8 53.75 57.54 26.25 16.21 43.26 2.15 44.94

5 15.3 42.64 45.36 32.55 26.25 41.2 24.44 10.2 50.02

6 12.36 38.48 26.73 30.16 25.5 44.34 43.26 27.07 23.44

7 16.64 40.95 42.32 49.87 24.48 25.65 48.3 14.42 44.91

8 23.39 60.92 66.38 28.56 24.72 46.72 44.88 9.18 46.06

9 7.85 46.35 37.19 29.29 25.75 44.96 27.94 19.55 50.69

10 14.7 43.86 45.46 40.16 24.72 35.12 34.88 6.24 53.86

11 12.12 43.68 50.02 26.78 23.69 49.53 43.05 5.1 78.87

12 34.28 45.32 66.86 33.99 26.25 39.76 18.3 5.2 47.3

13 14.28 46.35 61.08 42.32 25.25 32.43 47.47 4.04 48.24

14 17.34 43.43 51.9 26.4 21.84 51.76 42.42 5.05 44.71

15 6.48 29.78 68.05 30.9 44.24 42.85 44.1 13.65 44.92

16 23.52 40.56 48.33 33.66 24.15 21.11 59.46 4.2 46.51

17 25.44 38.85 52.38 6.52 23.69 69.79 46.35 5.2 53.65

18 14.7 50.95 27.82 13.33 21.63 65.04 56.2 28.08 55.56

19 19.64 13.86 33.26 31.62 12.05 56.33 41.82 7.28 50.44

20 10.1 43.43 49.49 29.12 24.72 46.16 45.15 4.16 56.02

21 30.1 45.32 40.66 29.35 3.14 49.36

22 16.16 43.43 47.78 47.84 10.4 47.18

23 10.5 20.56 42.73 40.46 12.12 48.7

24 15.75 43.43 52.57 41.74 18.08 49.88

25 10.5 41.82 42.8

26 14.84 43.42 52.47

Avg 14.84 41.09 48.34 32.01 25.4 42.43 41.89 9.889 48.89

STD 15.85 8.812 10.98 10.88 5.967 13.34 9.243 7.164 8.874

BT LC MPMSample 

No.
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Figure 31:  Means with Standered Errors of Means (SEMs) for each group. showing t-

test statistical analysis between the studied groups. A) Β-sheets, B) β- helix C) others 

proteins secondary structure of pleural fluids. 

 

The change in proteins secondary structure may be due to the expression of new 

proteins in the pleural fluids such as methoselin in case of MPM group.  

Figure 31 shows a detailed descriptive analysis of each secondary structure 

components. In a previous study (Hsieh et al. 2006), the proteomic profiles of 14 

malignant and 13 transudate pleural effusions were studied using two-dimensional gel 

electrophoresis. ELISA and Western immunoassay studies showed that pigment 

epithelium-derived factor levels (mainly α- helix protein) were significantly increased 

in BT than in MPM. This could explain our finding that the α- helix structure in MPM 

was much more less than in BT group as shown in  
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Figure 31.  The C-reactive (mainly β-sheets protein) levels in pleural fluid were 

significantly lower in the BT group (Yilmaz Turay et al. 2000). Again this confirms 

our finding that the β-sheets content of MPM is higher in comparison to BT group. 

(Paramothayan and Barron 2002) showed that measurement of fluid LDH values and 

the calculation of fluid to serum total protein ratios will aid in differentiating exudates 

from transudates. In benign exudate the level of LDH (mainly α- helix protein) was 

higher than BT group (Paramothayan and Barron 2002). This again confirm our 

finding that the α- helix content of benign exudate is higher than the α- helix content 

of BT group. 

To extract meaningful data from complex data such as that of protein secondary 

structure of pleural fluids, advanced chemometric analysis approaches including 

unsupervised and supervised methods are required. Therefore in the present study , in 

order to accurately characterize and identify the differences in proteins secondary 

structure pleural fluid, firstly unsupervised chemometric analysis such as HCA and 

PCA were employed to the constituents of the BT, LC and MPM groups. For 

unsupervised approach no priori information about studied samples is required so 

samples are clustered into a number of classes based on their similarity degree. 

Therefore, different classes of samples can be identified easily. Figure 32 demonstrates 

HCA results of BT, LC and MPM groups achieved for the amide IR spectral region 

(1700-1600 cm-1). 
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Figure 32: Hierarchical Cluster analysis of the three BT, LC and MPM groups in the 

amide I spectral region. 

 

 As can be seen from Figure 32, BT group was successfully clustered from the other 

groups with a higher heterogeneity value.  To validate our HCA classification method, 

we calculated the sensitivity and specificity values for MPM and LC groups as 

described in materials and methods chapter. These terms are generally used to indicate 

the diagnostic performance of the models in clinical diagnostics. For MPM group, 88% 

sensitivity and 100% specificity were obtained.  For LC, 85% sensitivity and 88.5% 

specificity were acquired. These high values implied successful discrimination 

capacity of HCA method in the MPM and LC groups from BT ones. In addition to 
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HCA to differentiate the groups, another unsupervised chemometric method namely 

PCA was applied to the IR spectra of amide I region to differentiate the groups.  

 

 

 

Figure 33: PCA A) Scatter plots B) Loading plot for BT, LC and MPM in amide I 

spectral regions. 

 

Figure 33A represents two dimensional score plot of the first two principal 

components. These components represent the variation among the samples. Analysis 
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of the scores plot for the whole region showed 64% of the variation which was 

accounted by the first principal component (PC) and 25% by the second PC. As can 

be deduced from the Figure 33A, MPM and LC groups were distinguished from BT 

one and from each other.   

 

In PCA method, the loading plot (Figure 33B) enables the analysis of IR spectra and 

to identify of the variant that contribute most to the variation described in the PC terms. 

It is clearly seen from the loading plot that there was a higher variation of Eigen vector 

values for both α-helix and β-sheets content in PC1 indicating that they have the major 

contribution for PC1.   Figure 34 shows the amount of contribution for α-helix (H), β-

sheets (S) and other structure (O) in each PC. For PC-1 it is clear that H and S have a 

high contribution in this PC but O almost has no contribution. However, in PC-2 the 

three structure (H, S and O) contribute equally for this PC.  

In our study the number of samples are relative small, because of this the validation was used 

in order to obtain a PCA model can be used for the new samples. 

 

For all PCA calculations in this study a full cross validation was used.  Figure 35 shows the 

PCA result calculated from the calibration set (blue) and the scores corresponding to leave-

one-out cross validation (red) for each sample. The PCA in Figure 35  show that the 

calibration and cross validation results for the studied spectra are close to each other which 

means the developed PCA model was reliable and can be used for new samples. 
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Figure 34: Amount of contribution for α- helix (H), β-sheets (S) and other structure 

(O) in each PC.  
 

 

Figure 35: Leave-one-out cross validation analysis of the pleural fluids proteins 

secondary structure. 
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Following successful discrimination results obtained from HCA and PCA, to develop 

a more precise classification, we applied supervised chemometric analysis approach 

to the pleural fluid spectra of the studied samples.  This approach requires initial 

knowledge about class of samples such as disease vs healthy and enables more 

accurate classification with class borders. Among supervised methods, SIMCA is 

commonly used for classification of spectral data since it enables good classification 

samples even with low sample size and high variability within-class (Bylesjö et al. 

2006). Therefore, in our study, we performed SIMCA supervised chemometric 

analysis technique for the amide I bands to identify the class membership of unknown 

samples (test samples). To perform SIMCA analysis, three PCA models were 

developed from the spectra of the samples that make up the training data (BT:22, 

LC:17, MPM:21).  Figure 36 demonstrates the distance of MPM and LC models to BT 

models. The model distance plot enables to determine how different each model from 

each other with respect to PC space and thus reveals the success of the classification 

method. In the creation of distance, total residual standard deviations are used as a 

measure. A model distance greater than three, indicates that models are significantly 

different from each other (Mouwen et al. 2005; Lu et al. 2011).  

As can be seen from Figure 36, the distance of both MPM and LC models to BT model 

was 38 and 32 respectively, implying very robust and clear differentiation of both 

groups from BT.  The discrimination of MPM from BT and also LC group with 10% 

significance level can also be seen in Cooman’s plot in  

Figure 37. This plot is used to show the discrimination between two classes and to test 

the validation and accuracy of the diagnostic models. In order to test our models, 3 

samples from each group were randomly selected to form an overall 9 samples in the 

test group. These test group spectra were not included in SIMCA training set. The 

process of randomly selected samples was repeated three times and each time the 

percentage of correct spectra classification has been calculated. The results revealed 

100%, 89% and 100% for the 1st, 2nd and 3rd trials, respectively with overall 96.3% 

correct spectra classification.  
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Figure 36: Distance in PCA space of BT and LC calibration models from MPM model. 

 
 

Figure 37: A) SIMCA Cooman’s plot of MPM (green)  LC (red) and  BT (blue) for 

pleural fluids proteins secondary structure.  

 

 



 

66 

 

 

 

 

Figure 38: Discrimination power of the proteins secondary structures. A) BT from LC, 

B) BT from MPM and C) LC from MPM. 
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Figure 38A shows the discrimination power of the three proteins secondary structures 

to differentiate BT and LC pleural fluids. As it is clear from the figure, the β-sheets 

structure has more contribution to the differentiation of BT and LC.  Similarly  

Figure 38B shows that the both β-sheets and  α-helix structures have high contribution 

in the differentiation of BT from MPM.  

Figure 38C shows that the differentiation of MPM from LC were mainly dependent on 

the α-helix continent of each group. In previous study (Segal et al. 2013) they showed 

that the cytological diagnosis of MPM can be done with positive predictive value of 

99% from pleural fluid however the absolute sensitivity was only 68%. In another 

study (Hegmans et al. 2009), the diagnosis methods for MPM,  based on soluble 

mesothelin-related proteins [SMRP] revealed only 76% and 69%, sensitivity and 

specificity, respectively. In comparison to those previous studies, our study gave 

satisfactory results with 93% sensitivity of MPM diagnosis and overall 96.3% correct 

classification using SIMCA for the three groups. The results of this study indicated 

that IR spectroscopy can be considered as a promising tool for screening and diagnosis 

of MPM cancer disease. 
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CHAPTER 4 

 

 

4                                        CONCLUSION 

 

 

 

In this study we focused on the applications of FTIR spectroscopy for proteins 

structure and dynamics prediction in dilute, artificial crowded and native 

environments. Proteins play very important roles in cells regulation and structure. 

Understanding of a protein structures greatly help in understanding the mechanism of 

action of this protein. The alteration in a certain protein structure can be linked to some 

diseases; thus the study of proteins structure can help for the diagnosis of many 

diseases. Up to know, the most accurate techniques for proteins structure 

determination are x-ray crystallography and NMR. However, those techniques have 

some limitations in the study of certain proteins. For example, membrane proteins are 

very difficult to be crystalized into single crystal which is required for x-ray 

crystallography. In addition, static nature of a crystal that is used in x-ray technique 

cannot monitor the dynamic structure of a protein in native aqueous environment.   The 

study of protein structure by NMR spectroscopy is limited to small size proteins 

because of NMR signals complexity.   On the other hand, the optical spectroscopy 

such as FTIR and CD spectroscopy can deal with almost all kind of proteins without 

complicated sample preparation and, in some cases, in the protein native environment. 

In FTIR, the amide I peak plays the most important role for the proteins secondary 

structure predictions. In order to calculate the protein secondary structure from amide 

I, different methods can be used such as curve fitting, deconvolution, and signal 

intensity amide I second derivative spectra. One of the promising methods for the 

estimation of proteins secondary structures is the ANNs.  Because of this, we 

developed a protein FTIR dataset of known proteins structures in dilute buffer solution. 

This database was used as a training set for ANNs. The 35 proteins have been scanned 
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using FTIR transmission mode in 7.4 phosphate buffer aqueous solution. For the first 

time, wavelet analysis has been used as a data reduction of amide I in order to reduce 

the number of inputs neurons for the ANNs.  Because of the limited number of proteins 

in dataset, we used leave-one-out approach for training and testing our neural 

networks. To achieve generalized ANNs dataset with a limited number protein, for the 

first time up best to our knowledge, discrete wavelet transform (DWT) was 

successfully used as data reduction technique for amide I spectra. Unlike 

transformations techniques such as Fourier transform, the DWT preserve the local 

information of the amide I signal (). This feature of wavelet analysis is very important 

for the analysis of amide I, because each part of amide I reflects a certain protein 

secondary structure. The results of ANNs predictions showed 96.88%, 93.92% and 

95.98% success in β-sheets, α-helix and other structures respectively. After 

successfully prediction of the proteins secondary structure using ANNs in dilute 

solution, we attempted to the answer of the following question: Does the crowded 

environment affect the proteins structure and its dynamics?   

The second part of this thesis is to answer the previous question, in order to highlight 

this phenomena, the proteins structure prediction and dynamics should be studied in 

an environment that mimics the native protein environment rather than the dilute 

solution. Proteins, in native, present in a crowded environment. Because of this, 

proteins structures studies should take the effect of macromolecules crowding in 

consideration. Human Apo- and Holo-transferren structures and their thermal 

denaturation behavior have been studied in dilute and artificial crowded environment 

using FTIR spectroscopy.  Dextran 70 and Ficoll 70 as a “molecular crowder” did not 

have a major effect on the secondary structure of transferrin as deduced from the 

analysis of the amide I band. However, it does alter the tertiary structure as causing 

significant differences in hydrogen-deuterium exchange which was seen by 

monitoring the intensity of the residual amide II band as a function of time. The 

hydrogen-deuterium exchange is reduced in the presence of dextran which suggests 

that molecular crowding produces a more compact and rigid protein structure. 

Furthermore, the study of transferren thermal denaturation using 2D-IR spectroscopy 

showed two different aggregated secondary structures patterns in dilute and in artificial 

crowded environment. We can conclude from our study that molecular crowding does 
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indeed have an effect on the tertiary structure and dynamics of a protein and this may 

have important implications for its functional activity.  

Finally, as an application for proteins secondary structure, we studied the proteins 

secondary structure of human pleural fluid accumulated due to malignant pleural 

mesothelioma (MPM), lung cancer (LC) and benign transudate (BT). In order to 

identify whether the pleural fluid is due to MPM, LC or BT, the details of pleural 

fluid’s protein and their secondary structure contents has been studied using ATR-

FTIR spectroscopy. For the analysis of proteins secondary structure from FTIR 

spectra, commonly, the amide I region (1700-1600 cm-1) is utilized. Wavelet analysis 

has been used to extract the amide I spectral features. The extracted features were used 

as an input for a previously trained artificial neural network using protein database to 

estimate the proteins secondary structures (part 1 of this thesis). Spectral analysis 

indicated significant differences in protein content of BT, LC and MPM pleural fluid 

samples.  Furthermore, an increase of beta- sheet structure in the MPM pleural fluid 

has been observed which could be attributed to the presence of Mesothelin and other 

beta sheet structure proteins. The chemometric results of the plural fluid proteins 

secondary structure lead to an accurate, cost effective method for the diagnosis of 

MPM from lung cancer and benign transudate with 88% sensitivity and 100% 

specificity. This enabled an accurate and specific differentiation of MPM pleural fluid 

from the others two groups.  

In summary, this study highlights the advantages of FTIR as a spectroscopic technique 

to study proteins structure. We improved the prediction accuracy using wavelet based 

ANNs. However, we are looking forward to establish an online proteins database that 

can be easily used by scientist to estimate their proteins secondary structure using our 

trained ANNs. 
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APPENDIX  

 

 

 

Matlab code for artificial neural networks with leave-one-out approch  

 

clear; clc; 

for jury =1:10              % No of jury results to be avage 

    load('Final35proteinsnormalized.mat'); 

    inputs = Final35proteinsnormalized;  

    load('fnal35proteinstargetall.mat'); 

    targets2=fnal35proteinstarget;%(1,:); % In sheet-helix-others order 

  

    HL= 3;   %% no. of hidden layers  example: [10 15 20] for three layes 

  

    %% Wavelet analysis %% 

  

    dirDec = 'c';         % Direction of decomposition 

    level  = 7;           % Level of decomposition   7 

    wname  = 'db2';       % Near symmetric wavelet the best is db2 

    decROW = mdwtdec(dirDec,inputs,level,wname); 

  

    wvlt3  = decROW.cd{1, 3}; % the best is 3 then 2 

     

   %% Plot for Wevwelt coeff. %% 

    for n=20:27 

        figure(n),  

        subplot(2,1,1); 

        plot(inputs(:,n)); 

        title('Original Data'); 

        title(fnal35proteinstarget(:,n)); 

        axis tight 

         

        subplot(2,1,2); 

        plot(wvlt3(:,n)); 

        title('Corresponding approximations at level 3'); 

        axis tight 

    end 

    %% NN %% 

    inputs2=wvlt3;%(2:9,:); % first and last coeff. not used  

    finished=1; 

    for protn=1:35                          % how many blind protein to test  

       inputs2 = circshift(inputs2,1,2);     % shift inputs, one columb every run 

       targets2 = circshift(targets2,1,2);   % shift outputs, one columb every run 

       inputsx= inputs2(:,1:34);             % Remove the last protein for the blind test   

       targetsx=targets2(:,1:34);            % Remove the last targt for the blind test  

       net1 = feedforwardnet (HL,'trainrp');    

       net1 = configure(net1,inputsx,targetsx); % strating nn 
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        currentRMSE=100;                     % just to generat currentRMSE variable 

        nn=0;                                % count the no. of trials that ANN doesn't show 

RMSE less than thr. 

        while  currentRMSE> 8                % The threshold value for accepted RMES 

            nn=nn+1; 

  

            for tp=1:34                      % Repeat training to find the best trained nn 

               inputsx = circshift(inputsx,1,2);   % shift inputs one columb every run 

               targetsx = circshift(targetsx,1,2); % shift inputs one columb every run 

                

               net1.divideFcn = 'divideind'; 

               net1.divideParam.trainInd=1:32;       

               net1.divideParam.valInd=33;          % one protein for validation 

              %net1.divideParam.testInd=34;     

  

               net1.trainParam.goal=0; 

               net1.performFcn = 'sse'; 

               net1.trainParam.epochs=1000; 

               net1.trainParam.max_fail=6; 

               net1.trainParam.lr=0.01; 

               net1.trainParam.showWindow = false; 

  

               [net1,tr] = train(net1,inputsx,targetsx); 

  

               outputsx(:,tp) = net1(inputsx(:,34));       % array of test the lefted protein  

               errors(:,tp)=gsubtract(targetsx(:,34),outputsx(:,tp)); % error  

  

            end % End of Repeat training to find the best trained nn 

  

           errsqr=errors.^2; 

           errsqrmean=mean(mean(mean(errsqr))); 

           RMSE(nn)=errsqrmean.^0.5;               %Root mean squar error 

           currentRMSE=RMSE(nn);                    

           %%% Only for folowing durin run %%% 

           currentRMSEdisp(1,1)=jury;              % just for following the run (jury) 

           currentRMSEdisp(1,2)=finished;          % just for following the run (protiens 

done) 

           currentRMSEdisp(1,3)=RMSE(nn)           % just for following the run  

(current RMSE) 

           %%%%%%%%%%%%%%%%%%%%%% 

  

        end  % End of while (if RMSE still higher than the thr value) 

         

        %%%% If the RMSE of nn is less than thr, blind protein will be tested% 

         

        test(:,protn) = net1(inputs2(:,35));       % The blind protein tested with the nn 

after training 
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        tok(:,protn)=targets2(:,35);               % tok is the target for blind protein 

        er(:,protn)= targets2(:,35)-test(:,protn); % er is the error for the blind protein 

        finished=finished+1;                       % to count no. of blind proetins done     

  

    end  % End of testing all blind proteins 

  

    methoderror=er.^2;                              

    methoderrormean=mean(methoderror')'; 

    methodRMSE(:,jury)=methoderrormean.^0.5;       % RMSE of the method from 

one jury 

  

end % End of jury check 

  

jurymethodRMSE=mean(methodRMSE')'  % Avarge of error from all jurys 
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