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ABSTRACT

QUASI-CARTAN COMPANIONS OF ELLIPTIC CLUSTER ALGEBRAS

Velioğlu, Kutlucan

Ph.D., Department of Mathematics

Supervisor : Assoc. Prof. Dr. Ahmet İrfan Seven

May 2016, 93 pages

There is an analogy between combinatorial aspects of cluster algebras and diagrams
corresponding to skew-symmetrizable matrices. In this thesis, we study quasi-Cartan
companions of skew-symmetric matrices in the mutation-class of exceptional elliptic
diagrams. In particular, we establish the existence of semipositive admissible quasi-
Cartan companions for these matrices and exhibit some other invariant properties.

Keywords: Cluster Algebra, Quasi-Cartan Companion, Admissible Companion, Ex-
ceptional Elliptic Diagrams
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ÖZ

ELİPTİK CLUSTER CEBİRLERİNİN QUASİ-CARTAN EŞLENİKLERİ

Velioğlu, Kutlucan

Doktora, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. Ahmet İrfan Seven

Mayıs 2016 , 93 sayfa

Cluster cebirlerinin kombinatorik yönleriyle anti-simetrize edilebilir matrisler ara-
sında benzerlik mevcuttur. Bu çalışmada istisnai eliptik diyagramların mutasyon sı-
nıflarındaki quasi-Cartan eşleniklerini çalışıyoruz. Bilhassa, bu diyagramların mutas-
yon sınıflarındaki elemanların admissible quasi-Cartan eşlenikleri olduğunu gösteri-
yoruz; ayrıca diğer bazı değişmezlerini buluyoruz.

Anahtar Kelimeler: Cluster Cebiri, Quasi-Cartan Eşleniği, Admissible Eşlenik, İstis-
nai Eliptik Diyagramlar
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CHAPTER 1

INTRODUCTION

Cluster algebras are certain commutative rings, whose generators and relations recur-

sively inter-related. They were first introduced-invented by Sergey Fomin and Andrei

Zelevinsky in [5]. Shortly after the cluster algebras introduced, it has been recognized

that the subject is related to diverse areas of mathematics such as algebraic geome-

try, representation theory, Teichmüller spaces and combinatorics of various kind. In

this thesis, we will study the last one of the examples: Combinatorial aspects of

cluster algebras. There is a strong correlation between diagrams corresponding to

skew-symmetrizable matrices and cluster algebras. Even though we will not apply

the structure theory of cluster algebras directly, in order to point out this correlation,

we will give some basic definitions and properties of cluster algebras and give some

examples to illustrate this relation. When we are making the definitions, giving prop-

erties and exhibiting examples we will be closely following [7]. Let us begin with a

brief description of Cluster Algebras.

1.1 Brief Description of a Cluster Algebra

A cluster algebra is a commutative ring with unity and without zero-divisors, endowed

with a distinguished set of generators called cluster variables. These cluster variables

could be finite or infinite. However, there are subsets of cluster variables of equal

cardinality which are called clusters and the cardinality of a cluster is called the rank

of the cluster algebra. Moreover, all of the clusters could be recursively derived from

a cluster that is called the initial cluster.
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1.2 Definition of a Seed

Let n be a positive integer and letQ(x1, ..., xn) be the field generated by the x1, ..., xn.

A seed is a pair (B, u) whereB = (Bij) is a skew-symmetrizable matrix (see Chapter

2) such that the diagram Γ(B) (see Chapter 2) without loops or 2-cycles and the

vertices of Γ(B) is labeled by the set {1, 2, ..., n} and u = {u1, u2, ..., un} is a set of

elements in Q(x1, ..., xn) such that {u1, u2, ..., un} generates Q(x1, ..., xn) freely.

1.3 Definition of Seed Mutation

Let (B, u) be a seed and let k be a vertex of Γ(B), then mutation µk of (B, u) at k

is defined to be another seed (B′, u′) where B′ is the matrix mutation (see Chapter 2)

of B and u′ = {u′1, ..., u′n} is the set of elements in Q(x1, ..., xn) such that u and u′

satisfy a special relation below which is called the exchange relation:

uku
′
k =

∏
i

u
[Bik]+
i +

∏
i

u
[−Bik]+
i

Note that for a diagram Γ of a skew-symmetric matrix B = (Bij), i.e. Γ(B) = Γ, the

exchange relation takes the form:

uku
′
k =

∏
edges:i→k

ui +
∏

edges:k→j

uj

where product over empty set defined to be 1.

It could be checked easily that the mutation operation on seeds is involutive, i.e.

µ2
k(B, u) = (B, u).

1.4 Cluster Algebras and Diagrams

Now fixing a skew-symmetrizable matrix B, and (B, {x1, ..., xn}) being the initial

seed, a cluster associated to B is a set u = {u1, ..., un} such that there is a seed

(B̃, u) obtained from te initial seed (B, {x1, ..., xn}) by a sequence of mutations. The

2



union of all such elements u is called cluster variables. Then cluster algebra AB cor-

responding to the matrix B is defined as Q-subalgebra of Q(x1, ..., xn) generated by

cluster variables. Now if (B, {x1, ..., xn}) and (B̃, {u1, ..., un}) are as above then the

natural isomorphismQ(x1, ..., xn) ' Q(u1, ..., un) induces aQ-algebra isomorphism

AB ' AB̃. This induced isomorphism preserves clusters and cluster variables since

it is induced by the natural isomorphism Q(x1, ..., xn) ' Q(u1, ..., un) which sends

xi to ui. Two diagrams Γ,Γ′ (see Definition 2.2) are said to be mutation-equivalent

if one is obtained from the other by a sequence of diagram mutations (see Defini-

tion 2.4). Now if B, B̃ are mutation-equivalent as matrices (the diagrams Γ(B) and

Γ(B̃) are also mutation equivalent.) then the cluster algebras AB and AB̃ are isomor-

phic by above construction. Therefore, studying mutation-classes (equivalence class

of a diagram taking mutation equivalence as our equivalence relation) of diagrams

and matrices; and putting efforts to find some algebraic invariants on their mutation-

classes may give some direct results on cluster algebras or may help to understand

cluster algebras.

1.5 An Example

Consider the Q-algebra generated by variables xi for i ∈ Z, which satisfy the recur-

sive relation which is called exchange relation:

xi−1xi+1 = 1 + xi

Let us consider the variables xi for i ≥ 3,

x3 =
1 + x2
x1

x4 =
1 + x3
x2

=
1 + x1 + x2

x1x2

x5 =
1 + x4
x3

=
x1x2 + x1 + x2 + 1

x1x2

x1
1 + x2

=
1 + x1
x2

x6 =
1 + x5
x4

=
x1 + x2 + 1

x2

x1x2
1 + x1 + x2

= x1

x7 =
1 + x6
x5

= (1 + x1)
x2

1 + x1
= x2

3



Therefore, xi’s are 5-periodic. Thus cluster variables are {x1, x2, x3, x4, x5} and clus-

ters are {xi, xi+1} for i = 1, 2, 3, 4. Now since clusters are of cardinality 2. Then the

rank of this cluster algebra is 2.

1.6 Main Aim of the Thesis: The Combinatorial Aspect of Diagrams and Mu-

tations

In this thesis we mainly study the combinatorial aspects of diagrams, more precisely

we will try to establish an algebraic invariant on mutation-class of each of the elliptic

diagrams E(1,1)
6 , E(1,1)

7 and E(1,1)
8 (see Figure 4.1). We will exhibit the existence of

an admissible quasi-Cartan companion (see Definition 2.17) for any element in the

mutation class of each of the elliptic diagrams E(1,1)
6 , E(1,1)

7 and E(1,1)
8 . Moreover,

these admissibility structure of quasi-Cartan companions change via the companion-

mutation to stay admissible while the diagrams in the mutation-class are changing

under the diagram mutation. Then we will investigate reflection group relations aris-

ing from the quasi-Cartan companions of skew-symmetric matrices in each mutation

class. Finally, we study the quasi-Cartan companions in a mutation-class of a dia-

gram corresponding to a triangulation of a triangulable surface and exhibit admis-

sibility structure of the quasi-Cartan companions of elements in its mutation-class.

Meanwhile, it is well-known that E(1,1)
6 , E(1,1)

7 and E(1,1)
8 are diagrams that are not

originated from a triangulation of a surface. As a result, we will show that there are

admissible quasi-Cartan companions of skew-symmetric matrices in mutation-classes

of a diagram obtained from a triangulation of a surface (see Chapter 6) and diagrams

that are not obtained from triangulation of a surface.

4



CHAPTER 2

BASIC DEFINITIONS

2.1 Skew-symmetrizable matrices and their diagrams

Firstly, we give some definitions and statements from [1, 6]. Throughout the thesis, a

matrix will always be a square integer matrix without further description.

Definition 2.1 LetB = (Bij) be an n×n integer matrix. Then the matrixB is called

skew-symmetrizable if there exists a diagonal matrix D whose entries are positive

such that DB is skew-symmetric.

We could characterize skew-symmetrizable matrices as follows [6, Lemma 7.4]: B is

skew-symmetrizable if and only if B is sign-skew-symmetric (i.e. for any i, j either

Bij = Bji = 0 or BijBji < 0) and for all k ≥ 3 and all i1, . . . , ik , it satisfies

Bi1i2Bi2i3 · · ·Biki1 = (−1)kBi2i1Bi3i2 · · ·Bi1ik . (2.1)

The above characterization is employed in the following construction which connects

skew-symmetrizable matrices and graphs [6, Definition 7.3]:

Definition 2.2 Let n be a positive integer and let I = {1, 2, ..., n}. The diagram of

a skew-symmetrizable (integer) matrix B = (Bij)i,j∈I is the weighted directed graph

Γ(B) with the vertex set I such that there is a directed edge from i to j if and only if

Bij > 0, and this edge is assigned the weight |BijBji| . By a diagram, we mean the

diagram of a skew-symmetrizable matrix.

5



Now let us recall some basic notions (notations and conventions) on graphs (or dia-

grams) :

1. For a diagram Γ, by abusing the notation we denote by the same symbol Γ the

underlying undirected graph of a diagram.

2. We occasionally denote an edge between vertices i and j by {i, j}. If an edge

e = {i, j} has weight which is equal to 1, then it will not be specified in the

picture.

3. If all edges of a diagram Γ have weight 1, then we call Γ simply-laced.

4. By a subdiagram of Γ, we always mean a diagram Γ′ obtained from Γ by taking

an induced (full) directed subgraph on a subset of vertices and keeping all its

edge weights the same as in Γ.

5. A vertex v of a diagram Γ is called source (sink) if each edge incident to v is

oriented away (towards) v.

The property (2.1) puts a condition on weights of graphs obtained from skew- sym-

metrizable matrices as in the above manner. To be more precise, let Γ be as in the

definition: a cycle C in Γ is an induced (full) subgraph whose vertices can be la-

beled by {1, 2, ..., r}, r ≥ 3, such that there is an edge between i and j if and only if

|i− j| = 1 or {i, j} = {1, r}. If the weights of the edges in C are w1, w2, ..., wr, then

the product w1w2...wr is a perfect square (i.e. square of an integer) by (2.1).

Example 2.3 We will determine the diagrams corresponding to the matrices given

below.

A =


0 −1 1

1 0 −1

−1 1 0

 B =


0 −1 1

1 0 1

−1 −1 0

 C =


0 −1 1

1 0 −2

−1 2 0



6
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� J
JJJJ]r r

r
1 3

2

Γ(A) :
-





� J
JJ

JĴrr
r

1 3

2

Γ(B) :
-





� J
JJJJ]r r

r
4

1 3

2

Γ(C) :

Figure 2.1: Diagrams corresponding to the matrices above

Definition 2.4 For any vertex k in a diagram Γ, there is the associated mutation µk

which changes Γ as follows:

• The orientations of all edges incident to k are reversed, their weights intact.

• For any vertices i and j which are connected in Γ via a two-edge oriented path

going through k (see Figure 2.2), the direction of the edge {i, j} in µk(Γ) and

its weight c′ are uniquely determined by the rule

±
√
c±
√
c′ =
√
ab , (2.2)

where the sign before
√
c (resp., before

√
c′) is “+” if i, j, k form an oriented

cycle in Γ (resp., in µk(Γ)), and is “−” otherwise. Here either c or c′ can be

equal to 0, which means that the corresponding edge is absent.

• The rest of the edges and their weights in Γ remain unchanged.









�
J
JJ

JĴr r
r

a b

c

k
µk←→







� J
JJJJ]r r

r
a b

c′

k

Figure 2.2: Diagram mutation

Definition 2.5 Let B = (Bij) be an n × n skew-symmetrizable matrix. Then µk(B)

‘mutation of B at k’ for k = 1, ..., n is a matrix B′ = (B′ij) such that B′ij = −Bij if

i = k or j = k; and B′ij = Bij + sgn(Bik)[BikBkj]+ otherwise; where [x]+ = x if

x > 0 and [x]+ = 0 else.

Basics of Mutation :

7



1. The operation is involutive, i.e. µk(µk(Γ)) = Γ, so it defines an equivalence

relation on the set of all diagrams.

2. Two diagrams are called mutation-equivalent if they can be obtained from each

other by applying a sequence of mutations.

3. The mutation class of a diagram Γ is the set of all diagrams which are mutation-

equivalent to Γ.

4. If B is a skew-symmetrizable matrix, then Γ(µk(B)) = µk(Γ(B)).

An important class of diagrams that behave very nicely under mutations are finite

type diagrams:

2.2 Diagrams of Skew-symmetrizable matrices of finite type

Definition 2.6 A diagram Γ is said to be of finite type if for any diagram Γ′ which is

mutation-equivalent to Γ, weight of any edge of Γ′ is equal to 1, 2 or 3. A diagram is

said to be of infinite type if it is not of finite type.

Some Properties Of Finite Type Diagrams:

• Any subdiagram of a finite type diagram is also of finite type.

• A diagram which is mutation-equivalent to a diagram of finite type is of finite

type.

• A diagram of finite type is of finite mutation type, i.e. its mutation class is

finite.

Proposition 2.7 Suppose that Γ is a diagram of finite type. Then any cycle in Γ is

oriented.

Proof. Firstly we will prove the proposition for a triangle (cycle of order 3). Suppose

for contradiction there is a non-oriented triangle C in Γ. Let C have edges with

8



weights a,b,c and assume without loss of generality the only vertex which is not a

source or sink is the vertex say k at which edges with weights a and b are incident.

Then mutating diagram at vertex k we obtain c′ = (
√
a
√
b+
√
c)2 ≥ 4 (since (

√
a
√
b+

√
c) ≥ 2) which cannot be true since Γ is of finite type, hence any mutation equivalent

diagram to Γ cannot have an edge of weight exceeding 3. Hence any triangle in Γ is

oriented.

Now induction on number of vertices of the cycle will prove the proposition. Assume

the claim of the proposition true for any cycle of order n − 1 and let C be the cycle

of order n. Now if the order is even, then there may be needed a mutation to obtain a

vertex which is not a source or sink. Without loss of generality assume there is such

a vertex say k. Mutating Γ at k and consider the subdiagram of C with the vertex k is

omitted then we obtain a cycle of order (n−1). Now by the induction assumption this

new cycle is oriented. However, the newly arising edge in the diagram and original

edges coming to the vertex and going out from vertex points the same orientation.

Hence C itself is oriented.

Therefore, any cycle in a diagram Γ of finite type is oriented. �

Classification of diagrams of finite type carried out by Fomin and Zelevinsky in [6,

Theorem 8.6]. We could state that result as:

Theorem 2.8 A connected diagram is of finite type if and only if it is mutation-

equivalent to an arbitrarily oriented Dynkin diagram (Fig. 2.4).

2.3 Diagrams of Skew-symmetrizable matrices of finite mutation type

Definition 2.9 A diagram Γ is said to be of finite mutation type (or mutation-finite) if

there are only finitely many elements in the mutation class containing Γ.

If Γ is a diagram of finite mutation type, then any diagram which is mutation-equivalent

to Γ is also of finite mutation type by definition. Also any subdiagram of Γ is of finite

mutation type,

9



Proposition 2.10 A connected diagram Γ of order (i.e. the number of vertices) at

least 3 is a diagram of finite mutation type if and only if the weight of any edge of any

diagram in the mutation class of Γ is at most 4.

Proof. If part is almost obvious. However, to be more precise, let Γ be a diagram

of n vertices. Then number of diagrams in the mutation class of Γ is bounded by 2n
2

without considering weights (even if we allow any vertex can be connected to all of

the vertices in the diagram including loops and 2-cycles). The number of edges in

any diagram is bounded by n2; again weights are not considered. Now the weight of

any edge cannot exceed 4. Even if we allow for any edge to have all possible weights

(0,1,2,3,4) then for any edge there are 5 possibilities. Hence 5n
2 bounds the number

of edges with weights in a fixed element in the mutation class of Γ, so 2n
2
5n

2 bounds

the number of elements in the mutation class of Γ. Therefore, Γ is mutation finite.

For the only if part we prove contrapositive of the statement. That is, if there is a

diagram in the mutation class of Γ which has an edge whose weight exceeds 4 then

mutation class of Γ has infinitely many elements. Without loss of generality assume

that Γ has such an edge. Then we will show that for any three edges forming a triangle

with weights a ≥ b ≥ c ≥ 0 (we allow degenerate triangles, i.e. one of the edges of

the triangle is missing) such that b ≥ 1 and a ≥ 5, there is a sequence of mutations

(depending on orientation the length of this sequence will be 1 or 2) that increase sum

of the weights of edges obtained via mutations. First assume the triangle is oriented.

Then mutating Γ at the vertex where edges with weight a and b incident we obtain

edges with weights a,b,(
√
ab−

√
c)2 sum of whose weights greater than the original

triple since (
√
ab−
√
c)2 = ab+c−2

√
abc > c since 2

√
abc = 2

√
a
√
bc and 2

√
a < a

and
√
bc ≤ b.

Let us now assume the triangle is not oriented. Then mutating at the source or sink

if necessary, we may assume that there is a vertex such that the edge with weight a

enters and the edge whose weight b goes out or the other way. Now we can make the

mutation at such vertex to which the edges with weight a and b incident we obtain

edges with weights a, b, (
√
ab+
√
c)2 whose sum obviously greater than a+b+cwhich

is the sum of the weights of original edges. Actually if we denote the resulting weight

triple (a′, b′, c′), in the non-oriented case (a′, b′, c′) = (a, b, (
√
ab +

√
c)2) and in this
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case obviously c′ ≥ b′ and after the mutation we obtain an oriented triangle. Now

apply the mutation at the vertex to which a′ and c′ are incident. Now if we can show

the existence of an infinite sequence of mutations for the oriented case that increases

total weight at each step we are done. But we know (a′, b′, c′) = (a, b, ab+c−2
√
abc)

and we show c′ ≥ b′ = b . For convenience, c = 0 case yields c′ = ab ≥ b = b′.

Now suppose c is nonzero and a ≥ 9 then c′ = ab + c − 2
√
abc =

√
a
√
b(
√
a
√
b −

2
√
c)+c ≥ b′ = b since (

√
a
√
b−2
√
c) ≥ 1. For the rest of the case, i.e. when a ≤ 8

there are not too many choices for triple (a, b, c) since product of abc must be perfect

square and the least value c′ could get is 8 corresponding to the triple (6, 3, 2) which

is greater than or equal to a and hence b′ = b. Now we have an oriented triangle to

make the mutation at the vertex at which a′ and c′ incident will make the total weight

greater and this process allow us to increase the total weight at each step of mutations.

Therefore, the mutation class is infinite.

�

Lemma 2.11 LetB be a skew-symmetric matrix and Γ(B) be a diagram correspond-

ing to B. Let Γ′ = µk(Γ(B)). Then B′ = µk(B) is skew-symmetric such that

Γ′ = Γ(B′). Moreover, the weight of any edge of Γ(B) where B a skew-symmetric

matrix is perfect square.

Proof. Let B′ = µk(B). Consider the triangle {i, j, k}. First suppose it is non-

oriented. If k is a source or sink in the triangle then B′ij = Bij , B′ji = Bji, B′ik =

−Bik, B′ki = −Bki, B′kj = −Bkj , B′jk = −Bjk. Hence B′ = µk(B) is skew-

symmetric. Now suppose k is not a source or sink. Then, without loss of generality,

we may assume Bik, Bkj both positive. Only thing we have to worry is B′ij and B′ji.

However, B′ij = Bij +BikBkj and

B′ji = Bji −BkiBjk = −Bij −BikBkj since B is skew-symmetric.

Thus B′ij = −B′ji.

Now suppose the triangle is oriented. Then, without loss of generality, we may as-

sume Bik, Bkj both positive. Then B′ij = Bij + BikBkj and B′ji = Bji − BkiBjk =

−Bij −BikBkj since B is skew symmetric. Thus B′ij = −B′ji.

11



Last part is almost obvious. The weight of the edge {i, j} is |BijBji| and Bij = −Bji

by B being skew symmetric. Hence the weight of the edge {i, j} is (Bij)
2.

�

2.4 Quasi-Cartan companions of skew-symmetrizable matrices

A description of finite type diagrams was obtained in [1] employing the notion of

"quasi-Cartan matrices", which we will use in this thesis to describe the mutation

classes of diagrams:

Definition 2.12 Let A be an n × n integer matrix. Then the matrix A is called sym-

metrizable if there exists a diagonal matrix D whose entries are positive such that

DA is symmetric. We say that A is a quasi-Cartan matrix if it is symmetrizable and

all of its diagonal entries are equal to 2.

The symmetrizable matrix A is sign-symmetric, i.e. sgn(Ai,j) = sgn(Aj,i). We say

that A is (semi)positive if DA is positive (semi)definite, i.e. (resp. xTDAx ≥ 0)

xTDAx > 0 for all x 6= 0 (here xT is the transpose of x which is a vector viewed as

a column matrix). We say that u is a radical vector of A if Au = 0; we call u sincere

if all of its coordinates are non-zero. We call A indefinite if it is not semipositive. A

quasi-Cartan matrix is a generalized Cartan matrix if all of its non-zero off-diagonal

entries are negative.

We are going to benefit from the following equivalence relation on quasi-Cartan ma-

trices :

Definition 2.13 Quasi-Cartan matrices A and A′ are called equivalent if they have

the same symmetrizer D, i.e D is a diagonal matrix whose entries are positive such

that both C = DA and C ′ = DA′ are symmetric, and C ′ = ETCE for some integer

matrix E with determinant ±1.

A characteristic example of the equivalence for quasi-Cartan matrices is the matrices

obtained via the sign change operation: To be more precise, the ‘sign change at (ver-
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tex) k’ replaces A by A′ obtained by multiplying the k-th row and column of A by

−1.

Quasi-Cartan matrices and skew-symmetrizable matrices are inter-related via the fol-

lowing definition:

Definition 2.14 Let B be a skew-symmetrizable matrix. A quasi-Cartan companion

of B is a quasi-Cartan matrix A satisfying |Aij| = |Bij| for all i 6= j. Also we

say that A is a quasi-Cartan companion of a diagram Γ if it is a companion for a

skew-symmetrizable matrix B whose diagram is equal to Γ.

Example 2.15 Let

B =


0 1 −1

−1 0 1

1 −1 0



Then there are more than 1 quasi-Cartan companion for B. We exhibit two quasi-

Cartan companions for B to illustrate:

A =


2 1 1

1 2 1

1 1 2



A′ =


2 −1 1

−1 2 1

1 1 2



Here A and A′ are quasi-Cartan companions of the matrix B. For future reference,

note that two quasi-Cartan companions of the the same matrix need not be equivalent

as in this case. In our case A is invertible but A′ is not, thus they could not be

equivalent companions.
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Definition 2.16 The restriction of the companion A of a diagram Γ to a subdiagram

Γ′ is the quasi Cartan matrix obtained from A by removing the rows and columns

corresponding to the vertices of Γ which are not in Γ′.

If B is skew-symmetric, then any quasi-Cartan companion of it is symmetric.

Let us note that for a diagram Γ, we may view a quasi-Cartan companion A as a sign

assignment to the edges (of the underlying undirected graph) of Γ; more explicitly an

edge {i, j} is assigned the sign of the entry Aij (which is the same as the sign of Aji

because A is sign-symmetric).

Now we will recall the notion ‘admissibility’.

Definition 2.17 [9, Definition 2.10] Suppose that B is a skew-symmetrizable matrix

and letA be a quasi-Cartan companion ofB. ThenA is called admissible if it satisfies

the following sign condition: for any cycle C in Γ, the product
∏
{i,j}∈C(−Aij) over

all edges of C is negative if C is oriented and positive if C is non-oriented.

Basic Properties: The sign condition in the definition above could also be understood

as follows: if C is (non)oriented, then there is exactly an (resp. even) odd number

of edges {i, j} such that (Aij) > 0(recall that, since A is symmetrizable, we have

sgn(Aij) = sgn(Aji)). In this case we sometimes say A assigns odd(or even) (+) to

edges of C. Therefore, an admissible quasi-Cartan companion distinguishes the ori-

ented cycles from non-oriented cycles in a diagram. Note also that A is admissible if

and only if its restriction to any cycle is admissible. Hence if we restrict an admissible

companion to a subdiagram then it stays admissible. We also note that changing sign

at a vertex does not violate admissibility.

In general, for a diagram Γ, an admissible quasi-Cartan companion may not exist.

It necesserily exists if Γ has no non-oriented cycles [1, Corollary 5.2]. Now the

following theorem shows that if an admissible companion exists, then it will be unique

up to sign changes.

Thanks to following theorem, we will have the uniqueness of admissible companions

up to sign changes. For the proof of the Theorem 2.18 see [9, Theorem 2.11]
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Theorem 2.18 Let B be a skew-symmetrizable matrix. Suppose A and A′ are admis-

sible quasi-Cartan companions of B. Then A and A′ could be recovered from each

other by a sequence of simultaneous sign changes in rows and columns. In particular,

A and A′ are equivalent .

Example 2.19 Let

B =


0 1 −1 0

−1 0 1 −1

1 −1 0 1

0 1 −1 0



A =


2 −1 −1 0

−1 2 1 −1

−1 1 2 −1

0 −1 −1 2



A′ =


2 1 −1 0

1 2 −1 −1

−1 −1 2 1

0 −1 1 2



Now A and A′ are admissible quasi-Cartan companions of the same matrix B and

one can be obtained from the other only by sequence of sign changes. In our case A′

could be obtained from A by changing signs of first and third columns and rows and

this corresponds changing signs at vertices 1 and 3 of Γ(B).

The one of the main tools in this thesis will be the following mutation operation on

quasi-Cartan companions which will be defined in complete analogy with the muta-

tion operation on skew-symmetrizable matrices:
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Definition 2.20 Let Γ be a diagram and suppose A be a quasi-Cartan companion

of Γ. Let k be a vertex in Γ. ‘The mutation of A at k’ is the quasi-Cartan matrix

A′ such that for any i, j 6= k: A′ik = sgn(Bik)Aik, A′kj = −sgn(Bkj)Akj , A′ij =

Aij − sgn(AikAkj)[BikBkj]+. The quasi-Cartan matrix A′ is equivalent to A. It is a

quasi-Cartan companion of µk(Γ) if A is admissible [1, Proposition 3.2].

Example 2.21 Let Γ = Γ(B) for,

B =


0 2 −1

−1 0 1

0 −2 1


Then,

A =


2 −2 1

−1 2 −1

1 −2 2


is an admissible quasi-Cartan companion forB. Then mutatingB andA at the vertex

2 we will obtain, the matrices,

µ2(B) =


0 −2 1

1 0 −1

−1 2 0



µ2(A) =


2 −2 −1

−1 2 1

−1 2 2



Thus µ2(A) is a quasi-Cartan companion for µ2(B).

However, instead of taking the above A as the quasi-Cartan companion which is

admissible let us take a non-admissible companion A′ s.t,

16



A′ =


2 −2 −1

−1 2 −1

−1 −2 −2


Then µ2(B) is the same matrix but let us consider µ2(A

′) where,

µ2(A
′) =


2 −2 −3

−1 2 1

−3 2 2



Now µ2(A
′) is not a quasi-Cartan companion for µ2(B).

Example 2.22 Even if A is admissible µk(A) may not be admissible : e.g. if A is an

admissible quasi-Cartan companion of the diagram ‘The Ears’ in Figure 4.2 and k is

the vertex x3, then µk(A) is not admissible.
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Ď
(1)
n (r),

r ≥ 3

6

@
@

@
@�

�

�
�

@
@R

qq q

q

qq
q

qq qa1 c1b1

b2bi

br

�-
�
�	

bi is a source or sink
for some 3 ≤ i ≤ r

‘1− 4′ qqq q qq qq
q q qqq q-@

@I
�
�

6
-
�

�	

@
@I

�
� @

@

�
�

?
4

‘No− 4s′
6

@
@

@
@�

�

�
�

@
@R�
�

�	-
6
�
� @

@

�
�@

@q q

q q
q qq q qq q

q

q

q
qqq q

‘2− 4s′ �

6@
@
@R

r
r

r
r r-6���	4 4

x2

x1

x3 x5

x4

Figure 2.6: Diagrams that occur in the proof of Lemma 4.5. Note that cycles without
a specified orientation are assumed to be non-oriented.

21



Type 1 qqb2q
b1

q q q q q qqq q�
�
HH2 ama1

Type 2 qqb2q
b1

q q q q q qqq q
��
H
H �

�2 ama1

Type 3 qqb2q
b1

q q q q qqq q
q qqcic2

c1

c3

cr�
�
HH �

�
�H

�2 ama1

Type 4 qqb2q
b1

q q q q q qqq q��
H
H

ama1

Type 5 qqq q q q qqqqq
qq q �� @

@
@
@�

�

@
@

q q q
b1

b3

bi

br

b2

a1 a2 am

Figure 2.7: Some diagrams of infinite mutation type; each edge can be taken to be
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CHAPTER 3

PROPERTIES OF SEMIPOSITIVE QUASI-CARTAN

COMPANIONS

In this chapter we will exhibit some properties of semipositive quasi-Cartan compan-

ions. Their most basic property that we will use is the following:

Proposition 3.1 [9, Proposition 4.1] Suppose that A is a semipositive quasi-Cartan

companion of a diagram Γ. Suppose also that u is a radical vector for the restriction

of A to a subdiagram Σ, i.e. u is in the span of the standard basis vectors which

correspond to the vertices in Σ and xTAu = 0 for all x in the same span. Then u is a

radical vector for A as well (i.e. xTAu = 0 for all x).

For the proof of above proposition see [9, Proposition 4.1]

Let us exhibit some other properties of semipositive quasi-Cartan companions by the

following proposition:

Proposition 3.2 Let Γ be a diagram and A be a semipositive quasi-Cartan compan-

ion of Γ. Then we have the following:

(i) The weight of any edge of Γ cannot exceed 4.

(ii) The restriction of A to any edge of Γ of weight 4 is non-positive.

(iii) If e is any edge whose weight is 4, then any connected three-vertex diagram

that contains e is a triangle whose edge weights are either 4, 1, 1 or 4, 4, 4 or

4, 2, 2 or 4, 3, 3.
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(iv) If C is a non-simply-laced cycle, then the product
∏
{i,j}∈C(−Aij) over all

edges of C is negative (hence A assigns (+) to odd number of edges of C).

(v) Suppose C is a simply-laced cycle such that for each edge of C the correspond-

ing entry of A is−1. Let u be the vector whose coordinates are 1 in the vertices

of C and 0 in the remaining vertices. Then u is a radical vector for A.

(vi) Suppose that C is a simply-laced cycle such that the product
∏
{i,j}∈C(−Aij)

over all edges of C is positive(i.e A assigns even number of (+)). If a vertex k

is connected to C, then it is connected to at least two vertices in C.

(vii) Suppose that Γ is simply-laced and let C be a cycle in Γ such that the product∏
{i,j}∈C(−Aij) over all edges of C is positive. If a vertex is connected to C,

then it is connected to exactly an even number of vertices in C.

(viii) Suppose that {i,j} is an edge of Γ of weight 4 and supposeAij = Aji = −2 then

the vector u whose ith and jth coordinate are 1 and the rest of the coordinates

are zero, is a radical vector for A.

Proof. Let Γ be a diagram and let A be a quasi-Cartan companion of Γ that is

semipositive.

(i): Assume Γ contains an edge whose weight exceeds 4. Then, without loss of

generality, we may assume {1, 2} is such an edge (i.e. (A12)(A21) ≥ 5 ). Then let D

be the symmetrizer matrix for A whose first two diagonal entries are d1 and d2. Also

let C = DA and C1,2 denote 2 × 2 principal minor corresponding to the vertices 1

and 2. Then det(C1,2) = d1d2(4 − (A12)(A21)) < 0 since (A12)(A21) ≥ 5. Thus, C

could not be positive semi-definite and so A could not be semipositive by definition,

which contradicts to semipositivity of A. Therefore, our assumption that Γ contains

an edge whose weight exceeds 4 is wrong.

(ii): Assume Γ contains an edge whose weight equals to 4. Then, without loss of

generality, we may assume {1, 2} is such an edge (i.e. (A12)(A21) = 4 ). Then let D

be the symmetrizer matrix for A whose first two diagonal entries are d1 and d2. Also

let C = DA and C1,2 denote 2 × 2 principal minor corresponding to the vertices 1

and 2. Now det(C12) = d1d2(4 − (A12)(A21)) = 0 since (A12)(A21) = 4. Thus, C
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could not be positive definite and so restriction of A to 1, 2 whose weight 4 could not

be positive by definition.

(iii): Let e be an edge of weight 4. We may assume without loss of generality that

e is the edge corresponding to A12 and A21. Also let us assume without loss of

generality that the third vertex which forms a connected 3-vertex diagram together

with 1 or 2, is the vertex 3(which corresponds 3rd column and row of A). Then,

perfect square condition forces the edge weights to the following triples: (4, 1, 0),

(4, 2, 0), (4, 3, 0), (4, 4, 0) which represent non-triangle connected 3-vertex digrams

and (4, 4, 1), (4, 1, 1), (4, 2, 2), (4, 3, 3), (4, 4, 4) which represent triangles with cor-

responding weights determined by the triples. Now let D be the symmetrizer matrix

for A whose first two diagonal entries are d1 , d2 and d3. Also let C = DA and C1,2,3

denote 3× 3 principal minor corresponding to the entries d1 , d2 and d3. Then,

det(C1,2,3) = d1d2d3[(4−A12A21)+(A12A23A31+A21A32A13−2A23A32−2A13A31)]

and since A12A21 = 4 we have,

det(C1,2,3) = d1d2d3[(A12A23A31 + A21A32A13 − 2A23A32 − 2A13A31)]

Here we note that if entries corresponding to a pair of vertices are zero then this means

exactly that one ofA13 = A31 andA23 = A32 is 0. Then in either case det(C1,2,3) < 0

contradicting semipositivity ofA. Therefore, (4, 1, 0), (4, 2, 0), (4, 3, 0), (4, 4, 0) can-

not occur as edge weights. Now for the case (4, 4, 1), without loss of generality, we

may asssume A23A32 = 4 and A13A31 = 1 and symmetrizability condition forces

A12A23A31 = A21A32A13 = ∓4. Now if A12A23A31 = A21A32A13 = −4 then

det(C1,2,3) = −18d1d2d3, and if A12A23A31 = A21A32A13 = 4 then det(C1,2,3) =

−2d1d2d3. In both cases det(C1,2,3) is negative and so A cannot be semipositive.

Therefore, (4, 4, 1) cannot occur as edge weight triple. For the rest of the triples,

there are always a sign choice for the entries of A as we are going to show now.

First we note that determinants of all principal minors of C1,2,3 of length 1 are pos-

itive being equal 2di for i = 1, 2, 3. Also determinants of the principal minors of

length 2 of C1,2,3 are equal to didj(4 − AijAji) for i 6= j and i, j = 1, 2, 3 and

AijAji ≤ 4 shows det(Ci,j) ≥ 0. Rest is to arrange (if possible) sign of the en-

tries to guarantee det(C1,2,3) ≥ 0. Now for (4, 1, 1) symmetrizability condition

forces A12A23A31 = A21A32A13 = ±2 . Now choosing each entry positive makes
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A12A23A31 = A21A32A13 = 2 and hence det(C1,2,3) = 0 which does not violate

semipositivity. Therefore, (4, 1, 1) may occur. Now for (4, 2, 2) symmetrizability

condition forces A12A23A31 = A21A32A13 = ±4 . Now choosing each entry positive

makes A12A23A31 = A21A32A13 = 4 and hence det(C1,2,3) = 0 . Therefore, (4, 2, 2)

may occur. For (4, 3, 3) and (4, 4, 4) by the same token det(C1,2,3) = 0.

(iv): Let C be a non-simply-laced cycle and assume
∏
{i,j}∈C(−Aij) over all edges of

C positive(i.e. there are even number of edges assigned (+) by A). Now by changing

signs at vertices we may further assume all edges assigned (−) by A (see proof of

part (vi) of this proposition). Actually this process gives a matrix equivalent to A

but two equivalent companions are both semipositive or neither of them semipositive.

Hence there is no harm to assume A assigns all edges (−) (see proof of part (vi)

of this proposition). Now assume without loss of generality that A12 ≤ −2, and let

D = (d1, .., dn) be a symmetrizer forA and setC = DA and let x = (1, 1, .., 1). Now

consider, xTCx = d1(2 + A12 + A1n) + d2(2 + A21 + A23) + ... + di(2 + Ai(i−1) +

Ai(i+1)) + ... + dn(2 + An1 + An(n−1)) < 0 since 2 + A12 + A1n < 0 and rest of the

expressions in other parantheses are less than or equal to zero by A12 ≤ −2 and rest

of the nonzero entries ofA less than or equal to−1. This contradicts semipositiveness

of A hence the product
∏
{i,j}∈C(−Aij) over all edges of C must be negative.

(v): Let C be simply-laced cycle of length n such that for each edge corresponding

entry of A is −1. We may assume without loss of generality that the cycle C is the

subdiagram of Γ with vertices i = 1, 2, ..., n. By abusing the notation we let A to

denote restriction of A to the cycle C for the time being, it means the diagonal entries

are 2 ; Ai(i+1) = Ai(i− 1) = −1 for i = 2, .., n and A12 = An(n−1) = A1n = An1 =

−1 and rest of the entries are 0. Then Ax = 0 for x = (x1, .., xn) s.t. xi = 1 for

i = 1, .., n since entries of any row of A add up to 0. Hence x is a radical vector for

the restriction matrix of A to the cycle C . Now let u = (u1, ..., um) s.t ui = 1 for

i = 1, .., n and ui = 0 for i > n. Now by Proposition 3.1, such u is a radical vector

for A.

(vi): Let C be simply-laced cycle of length n such that
∏
{i,j}∈C(−Aij) over all edges

of C positive(i.e. there are even number of edges assigned (+) by A). Now changing

signs of some vertices(i.e. multiplying corresponding rows and columns of A by
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−1 or equivalently changing the signs of the entries corresponding edges that are

incident on the vertices) if necessary we may assume C is as in the part (v). We

could do this operation and get a matrix as in (v) since A assigns even number of (+)

signs to C. Indeed,we first make sign changes at vertices which are incident to edges

both assigned (+) by A. Now each sign change turns 2 (+) signed edges into 2 (−)

signed edges. Hence number of positive signed edges are again even. Now all positive

signed edges are incident to a vertex whose other incident edge is negative. Now if

any positive signed edge is left, say there are one incident to vertex k. Now change

sign of vertices starting from k consecutively for adjacent vertices up to the vertex say

l where 2 edges incident to l are positive. Then make the sign change at l makes them

negative and hence we have made two originally (+) assigned edges negative and the

other edges that are negative between k and l stays negative after 2 sign changes for

each. If necessary, apply this process to any other such vertices. This process kills

two positive edges and creates two negative edges after each process hence at the end

all edges assigned (−). The new matrix A′ obtained via sign changes at vertices is

equivalent to original companion A. Thus, without loss of generality we may assume

A′ = A. Now if a vertex k > n in Γ is connected to exactly one vertex of C. Say that

vertex is j in C.Therefore, Akj 6= 0. Then the first n entries of kth row of A is zero but

the Akj . Now letting u be as in part (v). Then kth component of Au is nonzero being

equal to Akj 6= 0 contradicting u being radical vector for A. Therefore, if a vertex is

connected to C then it must be connected to at least two of the vertices of C.

(vii): Let Γ be simply-laced and Let C be as in part (vi). Again if necessary we

can make sign changes to assume C, A and u are as in part (v). Assume that a

vertex k > n is conected to an odd number say m of vertices of C then there are m

nonzero entries in the first n entries of the kth row of A and they are all 1 or −1 since

Γ is simply-laced. Then if the number of positive entries even(odd) then number

of negative entries is odd(even) since number of nonzero entries is odd. Thus kth

component of Au is nonzero contradicting u being a radical vector for A. Therefore,

if a vertex is connected to C then it must be connected to even number of vertices of

C.

(viii): Suppose {i,j} is such an edge. Then restriction of A to {i,j} is 2 × 2 matrix

whose diagonal entries are 2 and off-diagonal entries are -2. Then two dimensional
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vector with coordinates 1 is a radical vector for the restriction and hence by Proposi-

tion 4.1. the vector whose ith and jth coordinate are 1 and the rest is zero, is a radical

vector for A.

�

Next we exhibit some properties of semipositive admissible quasi-Cartan compan-

ions:

Proposition 3.3 Let Γ be a diagram. Suppose that A is a semipositive admissible

quasi-Cartan companion. Then we have the following:

(i) If e is an edge of weight 4, then any three-vertex subdiagram that contains e is

an oriented triangle (see also part (iii) in the above proposition).

(ii) Any non-oriented cycle C is simply-laced. Moreover, the restriction of A to C

is not positive.

(iii) Any diagram in Figure 2.5 has an admissible quasi-Cartan companion of corank

1 with a sincere radical vector.

Proof. Let Γ be a diagram and suppose that A is a semipositive admissible quasi-

Cartan companion.

(i): Let e be an edge of weight 4. Then by (iii) of Proposition 3.2 any three vertex

diagram containing e is a triangle. Now by part (iv) of the same proposition odd

number of edges must be assigned (+) by A. Now since A is admissible the triangle

must be oriented by the definition of admissibility.

(ii) Let C be a non-oriented cycle. By admissibility of A; even number of edges of

C must be assigned (+) by A. If C were non-simply laced, odd number of edges

of C would be assigned positive by A by Proposition 3.2 part (iv) which would be a

contradiction. Thus, C must be simply laced. Now since C is simply laced and even

number of edges assigned (+) by A and so by part (v) of the Proposition 3.2 (Also

see part (vi) of the same proposition to see how A transforms into matrix that satisfies
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conditions in part (v)) there is a radical vector for the matrix A restricted to C hence

the restriction of A to C could not be positive.

(iv): We will exhibit sample companion matrices of diagrams with arbitrary number

of vertices for n = 7 which will be of general certainty. For each case, the vector u

in the very next to that matrix will be its sincere radical vector.

A
(1)
7 =



2 −1 0 0 0 0 0 −1

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

−1 0 0 0 0 0 −1 2


u =



1

1

1

1

1

1

1

1



B
(1)
7 =



2 0 −1 0 0 0 0 0

0 2 −1 0 0 0 0 0

−1 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −2 2


u =



1

1

2

2

2

2

2

2



C
(1)
7 =



2 −2 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −2 2


u =



1

1

1

1

1

1

1

1


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D
(1)
7 =



2 0 −1 0 0 0 0 0

0 2 −1 0 0 0 0 0

−1 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 −1

0 0 0 0 0 −1 2 0

0 0 0 0 0 −1 0 2


u =



1

1

2

2

2

2

1

1



E
(1)
6 =



2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 −1 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 −0 0

0 0 −1 0 0 2 −1

0 0 0 0 0 −1 2


u =



1

2

3

2

1

2

1



E
(1)
7 =



2 −1 −1 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 −1 0 0

0 0 0 −1 2 0 0 0

0 0 0 −1 0 2 −1 0

0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 −1 2


u =



1

2

3

4

2

3

2

1


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E
(1)
8 =



2 −1 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0

0 −1 2 −1 −1 0 0 0 0

0 0 −1 2 0 0 0 0 0

0 0 −1 0 2 −1 0 0 0

0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 −1 2



u =



2

4

6

3

5

4

3

2

1



F
(1)
4 =



2 −1 0 0 0

−1 2 −1 0 0

0 −2 2 −1 0

0 0 −1 2 −1

0 0 0 −1 2


u =



1

2

3

2

1



G
(1)
2 =


2 −3 0

−1 2 −1

0 −1 2

 u =


3

2

1



Now to see the admissible quasi-Cartan companions of the diagrams in Figure 2.5 are

of corank 1 it is enough to observe that when we are to construct a radical for vector

for each, one row of that matrix such that only two nonzero entries exist, forces two

entries of the radical vector to be certain integers or the multiples of them by same

integer. Once we fix such initial data, all other entries are forced to take only one

value. Therefore, there could not exist more than one radical vector for each. On the

other hand we have exhibited a radical vector for each. Therefore, there are one and

only one radical vector exists for each and thus the companions are of corank 1.

�

Lemma 3.4 Let A be a quasi-Cartan companion of a diagram Γ and let u be a radi-
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cal vector for A. Also let A′ be the matrix obtained by a sequence of sign changes at

some set of vertices of Γ(i.e. multiplying columns and rows ofA by−1 corresponding

to the set of vertices) and let u′ be the vector obtained by making the sign changes at

coordinates corresponding to the same set of vertices. Then u′ is a radical vector for

A′.

Proof. Let A be a quasi-Cartan companion of some diagram Γ and let u be a radical

vector for A. Let V = {i1, .., im} be the set of vertices at which we will make sign

changes and obtain A′. Then A′ij = Aij if i /∈ V and j /∈ V , or i and j ∈ V . Also

A′ij = −Aij if exactly one of i and j is in V . Furthermore, we have u′i = ui if i /∈ V
and u′i = −ui if i ∈ V . Now first let k ∈ V . Then the kth row of the A′ is the same

as A except for the columns that appearing in V being minus of that of A. Thus,

(A′u′)k = (Au)k = 0. Now let k ∈ V . Then A′kj = Akj if j ∈ V and A′kj = −Akj if

j /∈ V . Thus (A′u′)k = (Au)k = 0. Thus, A′u′ = 0. Therefore, u′ is a radical vector

for A′.

�

Lemma 3.5 Let A be a semipositive quasi-Cartan companion of corank r and let u

be a radical vector for A. Suppose ith coordinate of u is 1. Now let A′ be the matrix

obtained by removing the ith row and column of A. Then the corank of A′ is equal to

(r − 1).

Proof. Let A be a semipositive quasi-Cartan companion of corank r and let u be

a radical vector for A whose ith coordinate is 1. Now let A′ be the matrix obtained

by removing the ith row and column of A. Suppose A′ has corank greater than or

equal to r. This is equivalent to saying that A′ has at least m linearly independant

radical vectors say {v1, ..., vm} where m ≥ r. Now by Proposition 3.1 {u1, ..., um},
obtained from {v1, ..., vm} by placing an extra coordinate which is zero appearing at

ith coordinate, are radical vectors for A. Moreover, {u1, ..., um} are linearly inde-

pendant since {v1, ..., vm} is. Now since corank of A is r, there could not be more

than r linearly equivalent vectors. Thus, m ≤ r. Now suppose m = r. Then there

must be a linear combination of the vectors {u1, ..., um} which equals to u. This is
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impossible since ith coordinate of u is nonzero however, ith coordinate of each vector

in the set {u1, ..., um} is zero. Therefore, the corank of A′ is less than or equal to

(r− 1). Now let m ≤ (r− 2). Suppose {v1, .., vm} are maximal linearly independant

radical vectors for A′. Then there corresponds linearly independant radical vectors

{u1, ..., um} of A and note that ith coordinate of each vector in the set {u1, ..., um}
is zero. Now suppose there is another radical vector ũ apart from u whose ith coor-

dinate is also nonzero. Then there exist nonzero c and c̃ such that ith coordinate of

cu + c̃ũ is zero and thus cu + c̃ũ lies in the span of {u1, ..., um}. Otherwise, there

must exist another radical vector w whose ith coordinate is zero and {u1, ..., um, w}
linearly independant. However, this is impossible since in this case restriction of

these set to A′ must give linearly independant set of vectors but {v1, .., vm} is max-

imal set already. Therefore, the set {u1, ..., um, u, ũ} is linearly dependant since we

exhibited nontrivial relation and thus there could not be any other radical vector with

nonzero ith coordinate hence {u1, ..., um, u} is maximal linearly independant set of

radical vectors for A. As a result, it must be of corank at most r − 1 which gives

contradiction. Therefore, A′ is of corank r − 1. �

Lemma 3.6 Let A be a quasi-Cartan companion and let u be a radical vector whose

ith coordinate is 1. Let A′ be the matrix obtained by removing the ith row and column

of the matrix A. Then if A′ is semipositive then A is semipositive.

Proof. We prove the lemma by proving contrapositive of the statement. Let A be

an n× n quasi-Cartan companion which is not semipositive. We can further assume

i = n for the sake of simplicity (relabeling vertices this is always possible). Let

C = DA where D is the symmetrizer of A. Let u = (u1, .., un) where un = 1. Then

Cu = 0 since D is diagonal matrix. Hence, if we denote columns of C as Ck; we

have C1u1 + ..+Cn−1un−1 +Cn = 0 which implies Cn = −(C1u1 + ..+Cn−1un−1)

andCnn = −(Cn1u1+..+Cn(n−1)un−1) = −(C1nu1+..+C(n−1)nun−1) Now sinceA

is not semipositive, by definition there exists a vector x = (x1, .., xn) s.t. xTCx < 0.

Now let ũ and x̃ are the vectors obtained from u and x respectively by omitting the

last coordinates of u and x. We also let C ′ = D′A′ where D′ is the symmetrizer of

A′ obtained by D by removing last row and column of D. We denote columns of C ′

C ′k and abusing the notation even C’ does not have the nth row or column we set C ′n
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as the vector obtained from Cn by removing the last coordinate of Cn. Therefore, we

have C ′n = −(C ′1u1 + ..+ C ′n−1un−1). Now our claim is the following:

Claim: (x̃− xnũ)TC ′(x̃− xnũ) < xTCx < 0.

To prove the claim, note that,

1. (x̃−xnũ)TC ′(x̃−xnũ) = x̃TC ′x̃− x̃TC ′(xnũ)−(xnũ)TC ′x̃+(xnũ)TC ′(xnũ)

= x̃TC ′x̃− 2xn(x̃TC ′ũ) + x2n(ũTC ′ũ)

Since,

2. x̃TC ′ũ = ũTC ′x̃.

Then,

3. x̃TC ′x̃ =
n−1∑
i,j

x̃iC ′ijx̃j =
n−1∑
i,j

xiCijxj

Thus,

4. −2xn(x̃TC ′ũ) = −2xn(x̃T (C ′1ũ1 + ..+ C ′n−1ũn−1))

= 2xn(x̃T (−(C ′1u1 + ..+ C ′n−1un−1)))

= 2xn(x̃TC ′n)

=
n−1∑
i

2xnC
′
inxi

=
n−1∑
i

2xnCinxi

5. x2n(ũTC ′ũ) = x2n(ũTC ′n) = x2n(C ′inui + ...+ C ′(n−1)nun−1)

= x2n(Cinui + ...+ C(n−1)nun−1)

= x2n(−Cnn)

= −x2nCnn

Now, combining (3),(4),(5) in (1) we have,

6. (x̃− xnũ)TC ′(x̃− xnũ) =
n−1∑
i,j

xiCijxj +
n−1∑
i

2xnCinxi − x2nCnn

<
n−1∑
i,j

xiCijxj +
n−1∑
i

2xnCinxi + x2nCnn

= xTCx < 0
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Therefore, the claim is valid. Hence, A′ is not semipositive. Thus we proved the con-

trapositive statement. As a result, if A′ is semipositive then A must be semipositive.

�

Lemma 3.7 Let C be a cycle (oriented or not). Let Ck be a diagram obtained by

connecting a new vertex k to C and let A be a companion of Ck such that the product∏
{i,j}∈C(−Aij) is negative. Suppose that k is connected to an even number of vertices

in C. Suppose also that k is connected to C in such a way that it is connected to two

vertices which are not connected to each other in C (this condition excludes only

the case when k is connected to exactly two vertices in C and those vertices are

connected to each other). Then Ck necessarily has a cycle C ′ which contains k such

that
∏
{i,j}∈C′(−Aij) is positive.

Proof. Let C be a cycle and let k be a new vertex that is connected to C in even

number of vertices and not just to two adjacent vertices. Now let A be the companion

of Ck such that
∏
{i,j}∈C(−Aij) is negative(i.e. odd number of edges of C assigned

(+) by A). Now suppose for all cycles C ′ of Ck ,
∏
{i,j}∈C′(−Aij) is negative(i.e

odd number of edges of C ′ assigned (+) by A). Since we exclude the case that k is

connected to exactly 2 vertices that are adjacent; Ck has exactly even number(Say

2m) of cycles containing k. Now the total sum of the number of (+) edges in these

2m cycles add up to be even since there are even number of cycles. However, we note

that if an edge connecting k to C is assigned (+) then it contributes twice to that total

sum. Thus, if we discard the contribution of such connecting edges to the total sum,

again the number of edges assigned (+) is even but this number is exactly the number

of (+) edges of C. Therefore, the number of (+) edges of C must be even which

contradicts the assumption of the lemma. Thus, there must be a cycle of Ck such that

even number of edges assigned (+) that is there exist a cycle C ′ in Ck which contains

k such that
∏
{i,j}∈C′(−Aij) is positive.

�
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CHAPTER 4

QUASI-CARTAN COMPANIONS OF ELLIPTIC DIAGRAMS

Exceptional elliptic diagrams E(1,1)
6 , E(1,1)

7 and E(1,1)
8 are diagrams that are not orig-

inated from a triangulation of a surface, nevertheless they are of finite mutation type

by [2]. In this chapter we will establish our main result of the thesis (see Theorem 4.1

below). More precisely, we will prove the existence of an admissible quasi-Cartan

companion for any element in mutation classes of E(1,1)
6 , E(1,1)

7 and E
(1,1)
8 , where

admissibility is also preserved under mutation.
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Figure 4.1: Exceptional elliptic diagrams of finite mutation type we will investigate.

Theorem 4.1 (The Main Theorem): Let Γ be a diagram which is mutation equiv-

alent to one of E(1,1)
6 , E(1,1)

7 and E(1,1)
8 (see Figure 4.1). Then Γ has a semipositive

admissible quasi-Cartan companion of corank 2 whose invariant properties (admis-

sibility, semipositivity, and corank) are preserved under mutation.
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The following result which is obtained by A. Seven in [8] is going to be one of the

stepping stones to prove the Main Theorem.

Proposition 4.2 Let Γ be a diagram which is mutation equivalent to one ofE(1,1)
6 ,E(1,1)

7

and E(1,1)
8 . Then Γ contains a subdiagram which is mutation equivalent to E6 (see

Figure 2.4).

Now we will prove the following proposition which we employ in the proof of the

Theorem 4.1:

Proposition 4.3 Each ofE(1,1)
6 ,E(1,1)

7 andE(1,1)
8 has an admissible semipositive quasi-

Cartan companion of corank 2.

Proof. For E(1,1)
n , n = 6, 7, 8; we will denote the corresponding admissible quasi-

Cartan companion as A(E
(1,1)
n )

A(E
(1,1)
6 ) =



2 −1 0 0 0 0 0 0

−1 2 −1 −1 0 0 0 0

0 −1 2 2 −1 0 −1 0

0 −1 2 2 −1 0 −1 0

0 0 −1 −1 2 −1 0 0

0 0 0 0 −1 2 0 0

0 0 −1 −1 0 0 2 −1

0 0 0 0 0 0 −1 2



Now we note that labeling of the vertices as in the Figure 4.1. NowA(E
(1,1)
6 ) admissi-

ble since it assigns odd number(only 1 in our case) to three oriented triangles ofE(1,1)
6

by choosing the entries (A(E
(1,1)
6 ))34 and (A(E

(1,1)
6 ))43 positive and the rest of the en-

tries negative. Now a straightforward calculation yields that A(E
(1,1)
6 ) has a radical

vector and it must be of the form (a, 2a, x, y, 2b, b, 2c, c)T and x+ y = 3a = 3b = 3c.

Thus, x and y free and choosing x and y determines a = b = c. Therefore, A(E
(1,1)
6 )

is of corank 2. Actually (1, 2, 3, 0, 2, 1, 2, 1)T , (1, 2, 0, 3, 2, 1, 2, 1)T generates the
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space of radical vectors for A(E
(1,1)
6 ). However, to apply the lemma 3.6, we note

that taking x = −y = 1 generates the radical vector u = (0, 0, 1,−1, 0, 0, 0, 0)T .

Now to see A(E
(1,1)
6 ) is semipositive since we have a radical vector u whose third

coordinate is 1. Now we could apply the Lemma 3.6. Let (A(E
(1,1)
6 ))′ denote the

matrix obtained by removing the 3rd column and row of A(E
(1,1)
6 ). Then (A(E

(1,1)
6 ))′

corresponds to admissible quasi-Cartan companion of the subdiagram obtained by

removing the vertex {3} which is equal to E
(1)
6 (see Figure 2.5). Also we know

E
(1)
6 is extended Dynkin and each of admissible quasi-Cartan companions of it is

semipositive. Therefore, by the Lemma 3.6, A(E
(1,1)
6 ) is also semipositive. Actually

to see A(E
(1,1)
6 ) is of corank 2 we could have applied Lemma 3.5 after showing there

is a radical vector with coordinate corresponding to one of the vertices incident to

edge e of weight 4 is 1, but we have shown it above by a direct proof.

A(E
(1,1)
7 ) =



2 −1 0 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0 0

0 −1 2 −1 −1 0 0 0 0

0 0 −1 2 2 −1 −1 0 0

0 0 −1 2 2 −1 −1 0 0

0 0 0 −1 −1 2 0 0 0

0 0 −1 −1 0 0 2 −1 0

0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 −1 2



Firstly we note that labeling of the vertices as in the Figure 4.1. A(E
(1,1)
7 ) is ad-

missible since it assigns odd number(only 1 in our case) to three oriented triangles

of E(1,1)
7 by choosing (A(E

(1,1)
7 ))45 and (A(E

(1,1)
7 ))54 positive and the rest of the

entries negative. Then A(E
(1,1)
7 ) has a radical vector and it must be of the form

(a, 2a, 3a, x, y, c, 3b, 2b, b)T and x + y = 4a = 4b = 2c. Thus, x and y free and

choosing x and y determines 2a = 2b = c. Therefore, A(E
(1,1)
7 ) is of corank 2.

Actually (1, 2, 3, 4, 0, 2, 3, 2, 1)T , (1, 2, 3, 0, 4, 2, 3, 2, 1)T generates the space of rad-

ical vectors for A(E
(1,1)
7 ). However, to apply the Lemma 3.6, we note that taking

x = −y = 1 generates the radical vector u = (0, 0, 0, 1,−1, 0, 0, 0, 0)T .
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Now to see A(E
(1,1)
7 ) is semipositive since we have a radical vector u whose fourth

coordinate is 1 ; hence we could apply the Lemma 3.6. Now let (A(E
(1,1)
7 ))′ de-

note the matrix obtained by removing the 4th column and row of A(E
(1,1)
7 ). Then

(A(E
(1,1)
7 ))′ corresponds to admissible quasi-Cartan companion of the subdiagram

obtained by removing the vertex {4} which is equal to E(1)
7 (see Figure 2.5). Also we

know E
(1)
7 is extended Dynkin and each of admissible quasi-Cartan companions of it

is semipositive. Therefore, by the Lemma A(E
(1,1)
7 ) is also semipositive. Similarly

as above to see A(E
(1,1)
7 ) is of corank 2 we could apply Lemma 3.5 after showing

there is a radical vector with coordinate corresponding to one of the vertices incident

to edge e of weight 4 is 1.

A(E
(1,1)
8 ) =



2 −1 0 0 0 0 0 0 0 0

−1 2 −1 −1 0 0 0 0 0 0

0 −1 2 2 −1 −1 0 0 0 0

0 −1 2 2 −1 −1 0 0 0 0

0 0 −1 −1 2 0 0 0 0 0

0 0 −1 −1 0 2 −1 0 0 0

0 0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 0 −1 2



Similarly as in above cases, we note that labeling of the vertices as in the Figure 4.1.

A(E
(1,1)
8 ) is admissible since it assigns odd number(only 1 in our case) to three ori-

ented triangles of E(1,1)
8 by choosing A(E

(1,1)
8 )34 and A(E

(1,1)
8 )43 positive and the

rest of the entries negative. If A(1,1)
8 has a radical vector it must be of the form

(a, 2a, x, y, c, 5b, 4b, 3b, 2b, b)T and x + y = 3a = 3b = 3c. Thus, x and y free

and choosing x and y determines 3a = 6b = 2c. Therefore, A(1,1)
8 is of corank 2.

Actually (2, 4, 6, 0, 3, 5, 4, 3, 2, 1)T , (2, 4, 0, 6, 3, 5, 4, 3, 2, 1)T generates the space of

radical vectors for A(E
(1,1)
8 ). However, to apply the Lemma 3.6, we note that taking

x = −y = 1 generates the radical vector u = (0, 0, 1,−1, 0, 0, 0, 0, 0, 0)T .
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Now to see A(E
(1,1)
8 ) is semipositive since we have a radical vector u whose third

coordinate is 1 ; we could apply the Lemma 3.6. Now let A(E
(1,1)
8 )′ denote the

matrix obtained by removing the 3rd column and row of A(E
(1,1)
8 ). Then A(E

(1,1)
8 )′

corresponds to admissible quasi-Cartan companion of the subdiagram obtained by

removing the vertex {3} which is equal to E
(1)
8 (see Figure 2.5). Also we know

E
(1)
8 is extended Dynkin and each of admissible quasi-Cartan companions of it is

semipositive. Therefore, by the Lemma 3.6, A(E
(1,1)
8 ) is also semipositive. Again to

see A(E
(1,1)
8 ) is of corank 2 we could have applied Lemma 3.5 after showing there is

a radical vector with coordinate corresponding to one of the vertices incident to edge

e of weight 4 is 1.

�

At the end of the chapter we will prove the "Main Theorem" by showing the following

proposition:

Proposition 4.4 Let Γ be a diagram that is mutation equivalent one of E(1,1)
6 , E(1,1)

7

and E
(1,1)
8 . Suppose Γ has an admissible quasi-Cartan companion A. Let k be a

vertex of Γ and Γ′ = µk(Γ) and A′ = µk(A). Then A′ is an admissible quasi-Cartan

companion of Γ′.

Now we need the following three lemmas 4.5, 4.6, 4.9 to prove the Proposition 4.4.

Lemma 4.5 Let Γ′ be a diagram corresponding to a skew-symmetric matrix and A′

be the semipositive quasi-Cartan companion of Γ′ of corank 2 and let A′′ = µk(A
′).

Suppose A′ is not an admissible quasi-Cartan companion. Then A′′ is not an admis-

sible quasi-Cartan companion of Γ = µk(Γ
′) or the diagram Γ = µk(Γ

′) contains a

subdiagram that belongs to Figure 2.6.

Proof. Before starting the proof we make the following conventions : A′|C will

occasionally denote restriction of A′ to the subdiagram C. Moreover, we will occa-

sionally say that two cycles are ‘adjacent’ if they share at least one edge. Also, for

convenience, we will denote the subdiagram {C, k} by Ck.
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By assumption we have that A′ is non-admissible. Thus, there is a cycle C such that

A′|C is non-admissible namely sign condition is not satisfied.

First we will consider the case when k is on C. Let us first suppose k is a source or

sink. Then since there is a source or sink in C, this amounts to saying that C is a non-

oriented cycle. Moreover, since A′|C is non-admissible, by definition, exactly an odd

number of edges of C assigned (+) by A′. Since k is a source or sink in C, k is also

a source or sink in µk(C). Thus µk(C) is also a non-oriented cycle. Furthermore, A′′

assigns exactly an odd number of (+) to the edges of µk(C). This is because of the

following fact: By definition of companion mutation, if k is a source in C, mutation

at k changes sign of both of the edges incident to k; and if k is a sink in C, then there

is no change in the signs of the edges of C. Thus A′′ is non-admissible on µk(C). Let

us now suppose k is not a source or sink. In this case if C is a triangle, then A′′ fails

to be quasi-Cartan companion. If k is not a source or sink and C is not a triangle then

the cycle µk(C)−{k} cannot satisfy the sign condition of admissibility by definition.

Therefore, A′′ is non-admissible.

We will continue the proof assuming k is not a vertex of C. From now on we may

assume:

(∗) On any cycle containing k, A′ satisfies the sign condition of admissibility.

Here we note that for the rest of the proof weight of any edge in Γ′ is at most 4 by

semipositivity of A′ (see Proposition 3.2 (i)) and thus weight of any edge in Γ′ is

either 1 or 4 by the Lemma 2.11 about diagrams of skew-symmetric matrices.

Case 0: If k is connected to exactly 1 vertex in C then mutating Ck at k we have

µk(C) = C with A′′ = A′ restricted on C. Therefore, A′′ is non-admissible.

Case 1: C is an oriented cycle.

A′ must assign even number of (+) signs to C to violate admissibility. We may

assume without loss of generality that all edges of C is assigned (−) by A′ since

otherwise changing the signs at some vertices of C will yield such assignment. Fur-

thermore, note that by Proposition 3.2 part (iv) C must be simply-laced.
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Subcase 1.1: Suppose k is connected to a vertex, say c of C by an edge of weight 4.

By (∗) and Proposition 3.3 part (i), k is connected to vertices say c1 and c2 that are

adjacent to c to form two oriented triangles {k, c, c1} and {k, c, c2}. Moreover, k is

not connected to any other vertex in C. However, if one of {k, c, c1} and {k, c, c2}
is oriented then the other one must be non-oriented. This is because C is oriented.

Thus, this possibility is overthrown.

Therefore, for the rest of Case 1, we will assume the subdiagram Ck to be simply-

laced.

Subcase 1.2: k is connected to exactly 2 vertices say c1 and c2 of C; and c1 and c2

are adjacent.

Suppose first the triangle {k, c1, c2} is oriented. Then exactly one of {k, c1} or {k, c2}
is assigned (+) by A′. Moreover, the effect of µk on Ck is to eliminate the edge

{c1, c2}. Therefore, µk(Ck) is an oriented cycle. Then, either A′′ assigns (+) to both

{k, c1} and {k, c2} or (−) to both of them. Since all edges of C assumed to have (−)

at the beginning, A′′ either assigns (+) to exactly two edges of µk(Ck) or to no edges

of µk(Ck). Thus, A′′|µk(Ck) is non-admissible. Then so is for A′′.

Suppose now {k, c1, c2} is non-oriented. If k is source or sink in Ck, then A′′ is non-

admissible on µk(C) = C. Suppose k is not a source or sink in Ck. Then by (∗)
A′ restricted to {k, c1, c2} is admissible. Furthermore, by assumption A′ assigns (−)

to the edge {c1, c2}. Therefore, we have that {k, c1} and {k, c2} assigned both (+)

or (−) by A′. Then the effect of µk is just to change the weight of the edge {c1, c2}
leaving it with same direction and same sign assignment made by A′′. Therefore, A′′

is non-admissible on µk(C) which is a non-oriented cycle.

Hence, for the rest of this case we will assume that if k is connected to C then k is

connected to C in exactly 2 vertices, that are non-adjacent; or more than 2 vertices.

Now for the rest of this case we note that,

1. If k is connected to at least n = 2 non-adjacent vertices or more than n = 3

vertices of C there is exactly n cycles in Ck containing k.

2. If there is an oriented cycle Z in Ck containing k then for any cycle in Ck
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containing k and adjacent to Z must be non-oriented.

3. The vertex k cannot be connected to an odd number of vertices of C by Propo-

sition 3.2 (vii).

4. If k is connected to n = 2m vertices of C , combining (2) and (3) there are at

most m oriented cycles in Ck containing k.

5. The number of oriented cycles in Ck containing k must be even. Otherwise,

Ck violates sign condition but this is impossible since by (∗) we assume A′ is

admissible on the cycles containing k.

6. If k is connected to exactly 2 non-adjacent vertices, then there could not be any

oriented cycles in Ck containing k. Otherwise, there must be exactly 2 oriented

adjacent cycles by (1) and (5) and which is impossible by (2).

7. Any vertex in Ck that is connected to a non-oriented cycle in Ck must be

connected to at least 2 by Proposition 3.2 (vi) or even number of vertices by

(vii) of a non-oriented cycle containing k. Using either one and combining

with (2), any oriented cycle in Ck that contains k is a triangle and so is true for

adjacent non-oriented cycles containing k in Ck except for the case that k is

connected to exactly 2 non-adjacent vertices of C. In this case there are exactly

2 cycles that contain k and they must be non-oriented by (6) and Proposition

3.2 forces these cycles and C to be squares.

8. All edges of C can be assumed to be assigned (−) by A′. Otherwise, we could

make the sign changes on the vertices to have such assignment.

9. For any two adjacent non-oriented cycles containing k, we may assume that

that A′ assigns (−) to all edges of them. Since if this is not the case, all edges

of them that are incident to k must be assigned (+) by A′. Changing the sign

only at the vertex k solves the problem.

10. By Proposition 3.2 (v) and (8), there is a radical vector ũ for A′|C whose coor-

dinates are all 1’s. Thus by Proposition 3.1, ũ generates a radical vector u of Γ′

which has 1’s corresponding to vertices of C and 0’s for the rest.

11. If there are two adjacent non-oriented cycles say C1 and C2 that contain k in

Ck similarly to the last item, there are radical vectors ũ1 and ũ2 respectively of
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A′|Ck which has all 1’s corresponding to vertices of C1 and C2 respectively and

the rest are zeros. Thus by Proposition 3.1, ũ1 and ũ2 generates radical vectors

u1 and u2 of Γ′ which has 1’s corresponding to vertices of C1 and C2 and 0’s

for the rest.

12. If there are two adjacent non-oriented cycles say C1 and C2 that contains k then

u1 , u2 and u as being above form linearly independant set of radical vectors for

Γ′ and thus corank exceeds 2 being at least 3, which is impossible in our case.

This is because there are exactly 3 radical vectors u1 , u2 and u for Γ′. Now we

consider the coordinates corresponding to common vertices shared by exactly

two of C1, C2 and C. In this way we see that for such a coordinate, two of the

vectors have 1 in that coordinate the other has 0.

13. Two non-oriented cycles C1 and C2 that contains k and assigned (−) or (+)

to all of their edges that are incident to k(the edges that is common with C is

assumed to have (−)) generate radical vectors u1 and u2. Moreover, {u1, u2, u}
is a linearly independant set of vectors hence corank of A′ is greater than 3. By

the same reasoning as (12), C1, C2 contain k but C does not, and similarly for

the other vertices. Suppose the edges of C1 and C2 that are incident to k are

all assigned (−). Then by the same argument as in (12), u1, u2, u are linearly

independant. In the latter case we can assume (+) assigened edges are also (−)

by changing the sign at k.

Subcase 1.3: k is connected to exactly n = (2m+1)2 vertices form ≥ 1 or connected

exactly to 2 vertices, that are adjacent.

Then combining (2),(4) and (5) , there are 2 adjacent non-oriented cycles(actually

must be squares by (7) if k is connected to exactly two non-adjacent vertices of C and

triangles if k is connected to C in more than 3 vertices) containing k. Thus, by (12)

corank must be greater than 2 which is impossible.

Subcase 1.4: k is connected to exactly n = (2m)2 vertices of C for m ≥ 2.

Suppose first, the number of oriented cycles containing k is less than 2m. Then there

are 2 adjacent non-oriented cycles containing k. Therefore, by (12) corank is greater

than 3.
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Now suppose the number of non-oriented cycles is exactly 2m. Then there are at

least 2m non-oriented cycles and m non-oriented cycles with all edges assigned (−).

Moreover, m ≥ 2 by assumption. Thus, corank is greater than 3 by (13).

Subcase 1.5: k is connected to exactly 4 vertices of C.

If there is no oriented cycles containing k then corank is greater than 3.

If there are 2 oriented cycles in Ck containing k then there are exactly 2 non-oriented

cycles contain k and have the different signed edges for their edges that is connected

to k. Then the radical vectors obtained from these 2 cycles and the radical vectors ob-

tained from C form a linearly dependant set which does not violate corank since they

contribute corank at most 2 being linearly dependant(actually the exact contribution

is 2). If we consider µk(Ck), then it will be one of the following 3 forms:

i) Two oriented triangles that has exactly one vertex common (the common vertex is

k) and each of them has exactly one edge of weight 4 that is not incident to common

vertex k. This happens when C is a square. (See ‘2-4s’ in Figure 2.6)

ii) Two oriented triangles that has exactly one vertex (the common vertex is k), one

is simply-laced and a non-oriented cycle attached to the edge that is not incident to

common vertex k, and the other one of them has exactly one edge of weight 4 that is

not incident to common vertex k. This happens when exactly one of the non-oriented

cycles is triangle. (See ‘1-4’ in Figure 2.6)

iii) Two oriented simply-laced triangles such that each of the edges in both traingles

that is not incident to common vertex k is part of a non-oriented triangle. Moreover,

such non-oriented cycles have no common vertices and none of them contains k. This

happens when neither of non-oriented cycles is triangle. (See ‘No-4s’ in Figure 2.6)

Case 2: Suppose C is a non-oriented cycle.

In this case A′ assigns odd number of (+) to the edges of C to violate admissibility.

In this case;

1. If k is connected to C in exactly n > 2 vertices or exactly n = 2 non-adjacent

vertices, then there are exactly n cycles in Ck containing k.
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2. If k is connected to C in exactly n > 2 vertices or exactly 2 non-adjacent

vertices. Then there are odd number of oriented cycles in Ck that contains k by

sign condition and by (∗). In particular there always exists an oriented cycle in

Ck that contains k under the same conditions.

3. If k is connected to C via even number n = 2m for m ≥ 2 of vertices or k

is connected to C exactly in 2 nonadjacent vertices, then there exists a non-

oriented cycle in Ck that contains k.

Subcase 2.1: k is connected to C say in the vertex c with an edge e of weight 4.

Similar to the oriented case, by Proposition 3.2, k is connected to the adjacent vertices

of c say c1 and c2 and no other vertices. Then k is connected to exactly 3 vertices.

The cycles {k, c, c1} and {k, c, c2} are oriented triangles by Proposition 3.3 (i) and by

(∗). Moreover, this forces k to be a source or sink in Ck − {c}. Therefore, the cycle

Ck − {c} must be non-oriented. However, there must be exactly an odd number of

oriented cycles in Ck containing k by (1) and (2) which gives a contradiction.

For the rest of the case 2, we may assume weight of any edge that connects k to C

is less than 4 that is to say it is 1 since we are dealing with diagrams that is mutation

equivalent to diagrams of skew symmetric matrices.

Subcase 2.2: Suppose k is connected to exactly one vertex in C.

Then A′′|µk(C) = A′′|C is again non-admissible. Therefore, A′′ is non-admissible.

Thus, for the rest of the proof of Case 2, we may assume k is connected to at least 2

vertices of C.

Subcase 2.3: Suppose C has an edge e of weight 4.

Then C is a triangle by Proposition 3.2 (iii).

Then either k is connected to C in exactly two adjacent vertices of C that are incident

to the edge of weight 4 or k is connected to all three vertices of C. First suppose

that k is connected to exactly two vertices of C that are adjacent. Then k must be

connected to two ends of e and hence there is an oriented triangle with one edge is e
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with k as the third vertex. Then in µk(Γ′), µk(C) is a non-oriented cycle with edges

assigned same signs by A′′. The only difference is its being simply-laced. Therefore,

A′′|C is non-admissible and so is for A′′.

Now suppose k is connected all of the vertices of the triangle C. Then the triangle

containing the vertex k and the edge e is oriented. Thus, the other 2 triangles contain-

ing k cannot be both oriented. Therefore, the other 2 triangles containing k must be

both non-oriented by (2). Thus in µk(Γ′), µk(C) is a non-oriented cycle with same

signs assigned to its edges by A′′. Hence A′′|µk(C) is non-admissible.

Thus for the rest of the Case 2, we may assume Ck is simply-laced.

Subcase 2.4: k is connected to exactly 2 adjacent vertices say c1 and c2 of C.

First assume that the cycle {k, c1, c2} is non-oriented. Now if k is a source or sink

then C is again a non-oriented cycle in µk(Γ′) and A′′ assigns the same signs to edges

of C as A′ assigns to C. Hence A′′|C is non-admissible. Now if k is not a source or

sink. Then the signs of the edges of µk(C) is the same as those of C after mutation at

k. Moreover, µk(C) is a non-oriented cycle. Therefore, A′′|µk(C) is non-admissible.

Now suppose {k, c1, c2} is oriented. Then µk destroys the edge {c1, c2}. The resulting

cycle µk(Ck) is again non-oriented. This is because if there is a source or sink of C

other than c1 and c2, trivially it remains what it was(source or sink). If only source and

sink are c1 and c2. Then source stays as source and sink stays as sink after applying

µk. Now if {c1, c2} were (−), for the other edges {k, c1}, {k, c2} of the oriented

triangle {k, c1, c2}, A′ assigns exactly one (−) and one (+). After applying µk the

signs of the edges {k, c1}, {k, c2} are both (+) or both (−). Thus, µk(Ck) has the

same number of (+) edges mod 2. Now if {c1, c2} were (+), A′ assigns (−) or (+)

to both {k, c1}, {k, c2} .Mutation at k changes sign of only one of the edge that is

incident to k. Thus A′′ assigns same number of (+) to non-oriented cycle µk(Ck) as

A′ assigns to C mod 2. Therefore, A′′ is non-admissible on µk(Ck).

Subcase 2.5: k is connected to exactly 2 vertices say c1 and c2 of C, that are non-

adjacent.
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Then there is one non-oriented cycle sayC1 containing k by (3) and one oriented cycle

say C2 containing k by (2). Note also that C2 is an oriented square by Proposition

3.2 (vi) or (vii). Meanwhile C1 has a source or sink other than the vertices that are

adjacent to k, otherwise C would be oriented. Now µk(Ck) is of type Ď(1)
n (r) (see

Figure 2.6).

Subcase 2.6: k is connected to exactly 3 vertices of C.

Then there are either 1 or 3 oriented cycles in Ck containing k. However, there could

not be three pairwise adjacent oriented cycles in Ck containing k. Therefore, there

are 2 non-oriented cycles C1, C2 and an oriented cycle C3 containing k. Now by

Proposition 3.2 (vi); C1,C2 and C3 are triangles. Then the common vertex of C2 and

C3 that is not a vertex ofC1, is connected to exactly 3 vertices ofC1 which contradicts

Proposition 3.2 (vii).

Subcase 2.7: k is connected to exactly 4 vertices of C

Now by (3) there is at least one non-oriented cycle containing k and there exists at

least one oriented cycle by (2) containing k. Actually there is exactly 1 or 3 oriented

cycles in Ck containing k. Let C1, C2, C3 and C4 be the the cycles in Ck containing

k.

Firstly suppose that there is exactly one such oriented cycle say C4 is the one. Then

each of the cycles C1, C2, C3 and C4 is adjacent to a non-oriented cycle hence they

are all triangles by Proposition 3.2 (vi) (therefore C needs to be a square). We note

that edges of C1, C2, C3 may assumed to be assigned all (−) by A′. We also note

that in this case C1, C2, C3 generates radical vectors for each one by Proposition 3.2

(v). These vectors are trivially linearly independant. To show this fact, it is enough

to observe that two of the such non-oriented cycles must be non-adjacent and thus,

these cycles have a vertex that is not included in the other 2 such non-oriented cycles.

Therefore, corank exceeds 2 which is impossible.

Now suppose there are exactly 3 oriented cycles in Ck containing k say C2, C3 and

C4 are such cycles and C1 is the non-oriented one. Without loss of generality, C2, C3

are assumed to be the cycles that are adjacent to C1. Then by Proposition 3.2 (vi) or

(vii) C2 and C3 are triangles. Let V and V ′ denote the number of vertices of C1 and
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C4 respectively. Now if ,

1. V > 3 and V ′ = 3 then µk(Ck) is of type Ď(1)
n (1, r) (see Figure 2.6)

2. V > 3 and V ′ > 3 then µk(Ck) is of type Ď(1)
n (1, r, s) (see Figure 2.6)

3. V = 3 and V ′ = 3 then µk(Ck) is of type Ď(4)
n (see Figure 2.6)

4. V = 3 and V ′ > 3 then µk(Ck) is of type Ď(4)
n (1, r) (see Figure 2.6)

Subcase 2.8: k is connected to exactly n = 2m+ 1 vertices of C where m > 1.

In this case there are at least 5 cycles in Ck containing k and one of these cycles say

C1 must be non-oriented. Now, there exist a vertex say c in C that is connected to C1

only in the vertex k. Indeed, c could be taken as the vertex that is in C and incident to

common edge of any 2 adjacent cycles in Ck that contain k and that are non-adjacent

to C1. This contradicts to Proposition 3.2 (vi).

Subcase 2.9: k is connected to exactly n = 2m vertices of C where m > 2.

Now by Lemma 3.7, there is a non-oriented cycle Z in Ck containing k. Now, there

exist a vertex say c inC that is connected toC1 only in the vertex k. Indeed, c could be

taken as the vertex that is in C and incident to common edge of any 2 adjacent cycles

in Ck that contain k and that are non-adjacent to C1. This contradicts to Proposition

3.2 (vi).

�

Lemma 4.6 Let Γ be a diagram. Suppose Γ contains a diagram from Figure 2.6.

Then Γ is mutation-equivalent to a diagram that contains one of the diagrams from

the Figure 4.2 below as a subdiagram.

Proof.

When we say, some vertex v is a source or sink in the cases below, our intention is that

the vertex v is a source or sink in the cycle we want to transform. In any case we will
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Figure 4.2: Edges whose orientation unspecified are assumed to be arbitrarily ori-
ented.

not refer source or sink in the whole corresponding diagram even if they correspond

to a source or sink in whole diagram by chance.

Case 1: Γ contains Ď4
n.

Then applying the mutations µa2 ,µa3 ,..,µam−1,µam in the written order from left to

right, and then consider the subdiagram {b1, b2, a1, c1, c2} is exactly the ‘The Ears’.

Case 2: Γ contains Ď(4)
n (1, r).

Then applying the mutations µc3 ,µc4 ,..,µcr−1,µcr in the written order from left to right,

and then consider the subdiagram determined by the vertices {b1, b2, a1, c1, c2} is ex-

actly ‘The Ears’.

Case 3: Γ contains Ď(1)
n (1, r).

In the non-oriented cycle C determined by b′is, considering the set of vertices X that

are either source or sink , if the b1 is not a source for the non-oriented cycle then the

smallest indexed vertex in X is sink and the greatest indexed one is source. If b1 is a

source vertex, then the least indexed vertex in the set X apart from b1 is a sink. Note

also that two source vertices or two sink vertices cannot occur in the cycle in a row.

Consider the set X ∪ {b1, b2} (Of course b1 could be source and b2 could be sink.).

The set of vertices X ∪ {b1, b2} determines a non-oriented cycle say Z obtained via

applying mutations in middle vertices that are not in X ∪ {b1, b2}. It is a subdiagram

of Ď(1)
n (1, r) and the edges in Z are characterized as being one of the following three

forms: (1) orienting from a source to sink or (2) from a source to b1 or (3) from b2 to

a sink. Now proceeding in this manner inductively (if both the vertices {b1, b2} are

source or sink and if the resulting non-oriented cycle is not a triangle mutate at some
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vertex that is not in {b1, b2} and proceed) to obtain a non-oriented triangle with one

side is the edge {b1, b2} say {x, b1, b2} (Actually x must be in the set X .) Then if

the vertex x is not a source or sink then we mutate the diagram at x and consider the

subdiagram {b1, b2, a1, c1, c2} which is exactly the ‘The Ears’. Now if x is a source or

sink then, consider one of b1 and b2 which is not a sink or source of the non-oriented

triangle. Say for the sake of simplicity it is b1. Then, without loss of generality,

we assume the edges {a1, c1} and {a1, c2} is oriented from a1 to ci. Otherwise, we

mutate the diagram at one of or both of the vertices c1 c2 to reach that assumption.

Then apply in the written order µb1 ,µa1 and consider the subdiagram {x, b1, b2, c1, c2}
which is exactly ‘The Ears’.

Case 4: Γ contains Ď(1)
n (1, r, s).

Apply the same mutations for the oriented cycle as in Case 2 and then apply the same

process for the non-oriented cycle and the triangle adjacent to it as in the Case 3, then

consider the subdiagram {x, b1, b2, c1, c2} where x is such a vertex as in the Case 3.

Now {x, b1, b2, c1, c2} is exactly the ‘The Ears’.

Case 5: Γ contains Ď(1)
n (r).

Apply the same process as in the Case 3. Now if x taken as in that case , unlike the

cases above now we have only one possibility for the character of x in the resulting

non-oriented triangle {x, b1, b2}. In this case and in the resulting triangle, x must be

a source or sink. This is because we have at least a vertex as source or sink in the

non-oriented cycle determined by {b3, .., br}. Suppose without loss of generality that

b1 is not a source or sink in {x, b1, b2}. Then apply µb1 and consider the subdiagram

determined by the vertices {x, b1, b2, a1, c1} which is exactly ‘The Ears’ .

Case 6: Γ contains ‘1-4’ or ‘No-4s’

Apply the same process as in the Case 3 to the unique non-oriented cycle of ‘1-4’ or

to both of the non-oriented cycles of ‘No-4s’ create ‘2-4s’.

Case 7: Γ contains ‘2-4s’

Trivially Γ contains ‘2-4s’.
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With the following lemma below, we will obtain very efficient tools to show a diagram

is mutation-infinite .

Lemma 4.7 (Special Types of Mutation-Infinite Diagrams)

• Let Γ be a simply-laced diagram which contains a non-oriented cycle C and a

vertex v such that v is adjacent exactly to an odd number of vertices in Γ. Then

Γ is mutation-infinite.

• Let Γ be a simply-laced diagram which contains a cycle C and a vertex v such

that v is adjacent exactly to 2m+1 vertices in Γ form > 0. Then Γ is mutation-

infinite.

• Let Γ be a diagram which contains at least two non-oriented cycles C and no

oriented cycles. Then Γ is mutation-infinite.

• A non-simply-laced non-oriented cycle C is mutation-infinite.

• A connected 3-vertex diagram V which contains an edge of weight 4 and that

is not a triangle then V is mutation-infinite.

In particular if a diagram Γ contains a subdiagram that satisfies the conditions

of one of the items above then Γ is mutation-infinite.

For the proof of the above statement see the proof [8, Proposition 2.1]

Lemma 4.8 Let Γ be a diagram that is mutation-equivalent to the diagramE6. Then;

(i) For any two pairwise non-adjacent vertices i, j of Γ, there is another vertex,

say k of Γ, such that k is adjacent to exactly one of the vertices i, j.

(ii) For any cycle C in Γ, there is a vertex, say k of Γ, such that k is adjacent to

exactly one vertex in C.

Proof. By inspection on the diagrams in the Figure 2.3. �
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We will repeatedly use the Lemmas 4.7 and 4.8 above without further mention in the

proof of the Lemma 4.9 below to show a diagram is mutation-infinite.

Lemma 4.9 Let Γ be a diagram. Suppose Γ contains a diagram from Figure 4.2 as

a subdiagram and contains a subdiagram E that is mutation equivalent to E6. Then

Γ is of infinite mutation type. In particular Γ cannot be mutation equivalent to any of

E
(1,1)
6 , E(1,1)

7 and E(1,1)
8 .

Proof. Let us make a comment about the proof before commencing. Actually it is

enough for our purposes to assume Γ to be in mutation class of one of E(1,1)
6 , E(1,1)

7

and E(1,1)
8 . In such a case we could employ corank of corresponding skew-symmetric

matrix say B for Γ. The corank of B is 2. We recall that in the subdiagrams if there

is a non-oriented cycle or a special kind of subdiagram V that if a vertex is connected

to V then that vertex must be connected to even number of vertices in V then this

situation generates a radical vector for mod 2 reduction of B which contributes the

corank 1 for each. Then our job would be far more simple and very many situations

that is made complicated by non-oriented cycles or vertices that connects to even

number of vertices in some subdiagram would be overcame. The proof would be

substantially shorter and less technical. However, we have tried to give more general

proof that works independantly of corank.

Throughout the proof, we will denote occasionally subdiagrams of the form ‘The

Ears’ or ‘2-4s’ by X for the sake of brevity. Also throughout the proof, we will

occasionally denote the fact that x and y are adjacent to each other by ‘x ∼ y’.

Accordingly we denote x is not adjacent to y by ‘x � y’.

Let Γ be such a diagram satisfying the conditions. First, we note that if Γ has at

least 11 vertices then Γ is mutation-infinite by [2, Lemma 7.3]. Thus, we assume Γ

has at most 10 vertices and thus E and X has at least 1 common vertex since E has

exactly 6 and X has exactly 5 vertices. Note also that if any vertex e that belongs to

E is adjacent to ‘The Ears’ or ‘2-4s’ with an edge of weight 4, then the subdiagram

determined by the vertices of ‘The Ears’ or ‘2-4s’ and e generates a mutation-infinite

subdiagram. Thus, Γ itself is mutation-infinite. Now suppose for the rest of the proof

if a vertex e in E is adjacent to one of our diagrams in Figure 4.2 then weight of the
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the edge that connects e to X is 1.

We will consider the lemma for ‘The Ears’ first.

Let Γ contain a subdiagram in the form ‘The Ears’

Just before commencing the proof of this case, we note that there is at least 2 vertices

of E that is not contained in X . This is because of the fact that E6 has 6 vertices and

so for any element in its mutation class; and the number of common vertices of X

and E cannot exceed 4 since x1 and x2 cannot be both in E. Otherwise, there would

be an edge of weight 4 in E which is impossible. Note also that, the vertices labeled

by e of E are non-common with the vertices of subdiagram X in discussion unless

otherwise stated.

First of all, we will consider the case, if there is a vertex e of E that is adjacent to

exactly one of x4 and x5. We will show that if this is the case then Γ is mutation-

infinite. We may assume without loss of generality that e ∼ x4. If e is adjacent to no

other vertices of ‘The Ears’, then we have that the subdiagram {x1, x2, x3, x4, e} is of

Type 1 hence the subdiagram is mutation-infinite. Therefore, Γ is mutation-infinite.

Now if e ∼ x3 but e � x1 and hence non-adjacent to x2. Otherwise, we have a

three-vertex subdiagram with one edge of weight 4 that is not a triangle therefore the

situation generates infinite mutation-type subdiagram. For this situation in this case

and for the rest the following will be assumed without further mentioning:

(∗) For any 3-vertex subdiagram containing an edge of weight 4 is an oriented triangle

preventing the diagram from being trivially mutation-infinite.

Now the subdiagram {x1, x2, x3, x4, x5, e} is of Type 2 hence the subdiagram is in-

finite mutation type. Therefore, Γ is mutation-infinite. Now consider the situation

where e ∼ x1 (and trivially e ∼ x2) and e � x3. Then there is at least 1 simply-

laced non-oriented cycle (consider for instance {x1, x3, x4, e}) to which x5 is adjacent

with a single edge of weight 1. Therefore, we have a mutation-infinite subdiagram

(simply-laced) of Γ which makes Γ mutation-infinite. Now suppose e ∼ x1 (and triv-

ially e ∼ x2) and e ∼ x3. Then we have at least 1 simply-laced non-oriented triangle

(consider for instance {x1, x3, e}) to which x5 is adjacent in a single edge of weight

1. Therefore, Γ is mutation-infinite. Now we have covered all the cases when there
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is a vertex of E that is adjacent to exactly one of x4 and x5. For each such case we

have figured out that there is a mutation-infinite subdiagram of Γ which leaves Γ no

opportunity other than being muatation-infinite. Therefore, we assume for the rest of

the proof that:

(∗∗) There is no vertex in E −X that is adjacent to exactly one of x4 and x5.

In particular this implies the fact that both x4 and x5 cannot be vertices of E, without

Γ being mutation-infinite. This is because of the fact that x4 and x5 are vertices of E

which are non-adjacent; and there is only one vertex that is adjacent to x4 which is x3.

Then since E ∼ E6 and by the Lemma 4.8, there is a vertex e (regardless of x3 being

a vertex of E or not) that is adjacent to exactly one of x4 and x5. Thus it creates the

exact copy of the situation we have just proved which generates a mutation-infinite

subdiagram. Therefore, we will assume for the rest, at least one of x4 and x5 is not in

E.

Since we assumed (∗∗) for the rest, we will prove the lemma in the following two

cases which are logical negations of each other :

1. There is no vertex e of E − X that is adjacent to one of x4 and x5 (then Γ is

mutation-infinite.)

2. There is at least one vertex e of E − X that is adjacent to both of x4 and x5

(then Γ is mutation-infinite.)

Now we will prove the first statement.

Case 1: There is no vertex e of E that is adjacent to one of x4 and x5, (then Γ is

mutation-infinite.)

Now we will prove the Case 1 in the subcases. We will start with:

1.1: There is a vertex e of E −X s.t e ∼ x3.

1.1.1: e ∼ x1

Then there is a simply-laced non-oriented triangle, take for instance {x1, x3, e}, to

which x5 is adjacent with a single edge of weight 1. Therefore, Γ is mutation-infinite.
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1.1.2: e is adjacent to no other vertices of X .

Then {x1, x2, x3, x4, x5, e} is a mutation-infinite subdiagram. Hence Γ is mutation-

infinite.

Then for the rest of the Case 1, we may assume the following:

(∗ ∗ ∗) There is no vertex in E −X that is adjacent to x3.

Therefore, we will consider the following:

1.2: There is e in E −X such that e ∼ x1

Now since e ∼ x1 and for any vertex v ∈ E −X , v could be adjacent to no vertices

of X − {x1, x2}. we have the following three possibilities:

1. Common vertices of E and X are exactly {x1, x3, x4}.

2. Common vertices of E and X are exactly {x1, x3}.

3. {x1} is the unique common vertex of E and X .

Now we will consider these 3 possibilities case by case:

1.2.1: Common vertices of E and X are exactly {x1, x3, x4}.

Now valencies of x3, x4 are 2 and 1 in E respectively and x3 must be adjacent to

a vertex in E that is not contained in a cycle in E since x1 could not be contained

in a cycle in E, otherwise this cycle would be non-oriented. Trivially x3 cannot be

contained in any cycle in E since its valency is 2 and one of the vertices that x3 is

adjacent cannot be a part of any cycle in E. Furthermore, valency of x1 is at least 2

in E being adjacent to x3 and e. Using these data, by inspection in the diagrams in

Figure 2.3, one may observe easily that E could be only (1) in Figure 2.3, Thus, we

have a subdiagram of Type 4 which makes Γ mutation-infinite.

1.2.2: Common vertices of E and X are exactly {x1, x3}.

Here, valency of x3 is 1 in E and x3 must be adjacent to a vertex in E that is not

contained in a cycle in E since x1 could not be contained in a cycle in E, otherwise
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this cycle would be non-oriented. Trivially x3 cannot be contained in any cycle in E

since its valency is 1. Furthermore, valency of x1 is at least 2 in E being adjacent

to x3 and e. Using these data, by inspection in the diagrams in Figure 2.3, one may

observe easily that E could be only (1) or (7) in Figure 2.3, and there are two choices

for x1 in (1) and that determines the connection shape ofE andX . For the first choice

of connection we have a subdiagram of Type 4, and for the second type of connection

we have two subdiagrams that are of Type 4 and Type 1 which makes Γ mutation-

infinite. Now if E is the diagram (7). Then there is a unique choice. In this case we

have a subdiagram of Type 2 that makes Γ mutation-infinite.

1.2.3: {x1} is the unique common vertex of E and X .

Now there are two possibilities:

1. There is another vertex say e′ of E other than e that is connected to x1. Now

if e ∼ e′ then {e, e′, x1} is a triangle in E which would be non-oriented but

it is impossible for E to contain non-oriented cycles. Then suppose e � e′.

Now there must be a vertex e′′ in E that is connected to exactly one of e and

e′. Suppose without loss of generality that e ∼ e′′ Now we have that e′′ � x1

otherwise the triangle {e, x1, e′′} would be non-oriented which is impossible.

However, in this case subdiagram of Γ determined by {x1, x3, x4, x5, e, e′, e′′}
is of Type 4. Therefore, Γ is mutation-infinite.

2. There is no other vertices of E to which x1 is adjacent. In this case, x1 is not a

part of the any cycle in E. Now by inspection(see Figure 2.3) all of the possible

diagrams contains subdiagrams that are either of Type 1, Type 2, Type 3 or Type

4. Therefore, Γ is mutation-infinite.

Case 2: There is at least one vertex e of E −X that is adjacent to both of x4 and x5.

Now let e be such a vertex in E − X that is adjacent to both x4 and x5. In addition

to this vertex e, suppose there is another vertex e′ in E − X(trivially other than x3)

that is also adjacent to both x4 and x5. Then there are 32 possible subdiagrams of Γ

determined by the vertices {x1, x2, x3, x4, x5, e, e′}which are mutation-infinite. Thus,

Γ is mutation-infinite. We will not exhibit all of them. Nevertheless we will exhibit 4
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typical examples of these 32 possibilities:

1. e and e′ are only adjacent to x4 and x5 in X and non-adjacent to each other.

Then there is a new vertex e′′ in E which is adjacent to exactly one of e and e′.

Then if e′′ is not adjacent to any other vertex in X . Then the diagram has a sub-

diagram of Type 1. Thus, Γ is mutation-infinite. Else if e′′ is adjacent to some

other vertex in X then there is a simply-laced non-oriented cycle and a vertex

that is adjacent to one of the vertices of the non-oriented cycle in discussion

with odd number of edges of weight 1. Hence Γ is mutation-ininite.

2. Suppose e is adjacent to no other vertices and e′ ∼ x3 and e′ is adjacent to no

other vertices. There are three cycles in the subdiagram {x3, x4, x5, e, e′} and

whatever choice for orientations of the three cycles is made there is at least one

non-oriented cycle which is simply-laced and x1 is adjacent to that cycle with

exactly one edge of weight 1. Now discard x2 from the subdiagram. Now x1

and the non-oriented cycle generates a simply-laced subdiagram. Therefore, Γ

is mutation-infinite.

3. e ∼ x1, x2, e
′ and e′ ∼ x1, x2, e. Then e is adjacent to simply-laced cycle

{e′, x3, x4, x5} in exactly 3 vertices with edges of weight 1. Therefore, Γ is

mutation-infinite.

4. e ∼ x1, x2, e
′ and e′ ∼ x1, x2, x3, e. Then the subdiagram {e, e′, x1, x3} is

simply-laced and has only two cycles {x1, e, e′} and {x1, x3, e′}. These 2 trian-

gles are non-oriented. Therefore, Γ is mutation-infinite.

The remaining possibilities are handled in the same way; and in each possible case,

we have checked that Γ is mutation-infinite only by the methods in these 4 typical

examples above.

Therefore, for the rest of the case, we assume there is exactly one vertex e in E −X
that is adjacent to both x4 and x5. However, there is no vertex v in E − X which is

adjacent to one of the vertices x4 and x5 without being adjacent to both of x4 and x5

otherwise Γ is mutation-infinite. Therefore, we may assume all the vertices in E−X
other than e cannot be adjacent to any of them. In particular x4 and x5 is assumed not
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to be both in E. Therefore, without loss of generality, we may assume that x5 is not

in E throughout the proof of this case.

Firstly in the lemma below we will make some assumptions which will be valid

throughout this case and give their proofs what if otherwise assumed :

Lemma 4.10 1. We may assume by (∗ ∗ ∗) of Case 1, there is no e′ 6= e in E −X
such that e′ ∼ x3. Otherwise, Γ is mutation-infinite.

2. We may assume there cannot be two distinct vertices e′ and e′′ in E −X such

that e′, e′′ ∼ x1 (Note that unlike the above fact, one of e′, e′′ may be e.). Oth-

erwise, Γ is mutation-infinite.

Proof.

For each assumption above we will give proofs of them (i.e. if our assumptions in the

lemma were wrong then Γ would be mutation-infinite.).

Pf.of (1): For e′ 6= e in E − X , e′ � x4, x5. Therefore, discarding e from the

subdiagram we are in the same situation as in Case 1. Therefore, by (∗ ∗ ∗) of Case

1, there is no such e′. Otherwise, Γ is mutation-infinite.

Pf.of (2): Otherwise, let e′, e′′ be such vertices that is adjacent to x1. Then there are

two cases. e could be one of the vertices e′, e′′ or not. First consider the case where e

is not one of them. Then if they are not adjacent there is e′′′ that is adjacent to exactly

one of e′, e′′. Suppose without loss of generality that e′′′ ∼ e′′. In this case if e′′′

is non-adjacent to any other vertex in the subdiagram we have subdiagram of Type

4. Now if e = e′′′ or e′′′ ∼ e then e′ is adjacent to simply-laced non-oriented cycle

{x1, x3, e′′, e, x4} or {x1, x3, e′′′, e′′, e, x4} respectively via a single edge of weight

1. Now if e′, e′′ are adjacent to each other then e′′′ is adjacent to simply-laced non-

oriented triangle {x1, e′, e′′} if e′′′ � x1 or and if e′′′ ∼ x1 we could consider x3 is

adjacent to {x1, e′, e′′} via a unique edge of weight 1. Now suppose e = e′′. Then if

e, e′ non-adjacent then e′ is adjacent to simply-laced non-oriented cycle {x1, x3, e, x4}
or {x1, x3, e} (where the first one of the cycles corresponding the situation x3 � e

besides the second one x3 ∼ e). Thus, e and e′ must be adjacent, in which case x4 or
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x5 is adjacent to the simply-laced non-oriented triangle {x1, e′, e} via a unique edge

of weight 1. Γ is mutation-infinite.

�

In the rest of the proof we will only be able to exhibit what possible diagrams in Figure

2.3 E could be in the light of the assumptions of this case, above lemma and working

practice of earlier cases for the common vertices that will be assumed in each subcase.

This is due to the fact that we need direct check in each subcase. Nevertheless we will

show the exact type of some of the possible subdiagrams in Case 2.1. Note that there

is at least one common vertex of E and X as in above cases. As it is explained in the

beginning of the proof, if they do not share a common vertex then they would have

total 11 vertices.

Case 2.1: x4 is the unique common vertex of E and X .

Here we note that e could be adjacent to x3 or x1 (or both). Then we have 4 different

possible subdiagrams in hand in the very beginning of each subcase. Now if there is

e′ (could be same as e) that is adjacent to x1, then we have an oriented cycle with one

edge of weight 4 and the vertices incident to that edge of weight 4 is only adjacent

to e′. Here, we have the opportunity to discard x3 from the subdiagram or else we

employ the triangle {x1, x2, x3}. Here we note that, since there is no other vertex of

E that is adjacent to x4 by assumption, valency of x4 is 1 in E being adjacent only to

e. Then possible subdiagrams E (see Figure 2.3) such that our diagram Γ could have

as a subdiagram are (1),(2),(3),(6),(7),(8),(10),(12),(13),(14),(15). For each choice

and for each various connection types the subdiagram determined by the vertices of

X and E are one of Type 1,...,5. For instance if E = (13) and e is non-adjacent to

any other vertex. Then we have subdiagram of Type 1. At this point, if E = (7) and

e ∼ x1 we have a subdiagram of Type 2. Thus Γ is mutation-infinite.

Case 2.2: x3 is the unique common vertex of E and X .

Then e ∼ x3. There is no other vertices in Γ that is adjacent to x3 by the above

lemma. Then the possible E’s are (1),(2),(3),(6),(7),(8),(10),(12),(13),(14),(15). For

each choice and for each various connection types by direct check, the subdiagram

determined by the vertices of X and E are one of Type 1,...,5.
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Case 2.3: x1 is the unique common vertex of E and X .

Then x1 could not be contained in any cycle in E. The possible E’s are (1), (2), (3),

(6), (7), (8), (10), (12), (13), (14), (15) by inspection. For each choice and for each

various connection types by direct check, the subdiagram determined by the vertices

of X and E are one of Type 1,...,5. Therefore, Γ is mutation-infinite.

Case 2.4: x3, x4 are exactly the common vertices of E and X .

Since there is no vertex in E−X other than e could be adjacent to x3. Now if e ∼ x3

we have a triangle in E. In this situation valency of x3 and x4 are 2 and they are

contained in the same triangle in E. Therefore, the possible cases are (7),(8). Now if

E is (7) or (8) then we have a subdiagram of Type 1 or Type 2. Now if e � x3. Then

valency of x3 is 1 and valency of x4 is 2 in E. They are adjacent but not contained in

any cycle in E. Then E could be (1) or (7). Then we have a subdiagram that fits one

of Type 1 or Type 2. Therefore, Γ is mutation-infinite.

Case 2.5: x1, x4 are exactly the common vertices of E and X .

Now x1 cannot be contained in a cycle in E and its valency must be 1 in E since

x3 is not a common vertex and there is at most 1 vertex can be joined to x1(and in

fact there must be at least 1 since E is connected). Also valency of x4 is 1 in E.

By inspection possible E’s are (1),(2),(7),(10),(12). Then again by direct check the

subdiagram determined by the vertices of X and E are one of Type 1,...,5. Therefore,

Γ is mutation-infinite.

Case 2.6: x1, x3 are exactly the common vertices of E and X .

Valency of x1 is at least 1 and at most 2 in E. Also we have that x1 could not be

contained in a cycle in E and the valency of x3 in E is at least 1 and at most 2.

However, e cannot be adjacent to x1; and x3 cannot be contained in any cycle in E.

Also note that x1 and x3 are adjacent. Then possible E’s are (1) and (7). Then by

direct check, the subdiagram determined by the vertices of X and E are one of Type

1,...,5. Therefore, Γ is mutation-infinite.

Case 2.7: x1, x3, x4 are exactly the common vertices of E and X .
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In this case, valency of x1 is at least 1 and at most 2 in E. We also have that x1 could

not be contained in a cycle in E and valency of x3 in E is at least 2 and at most 3.

This is because there is no vertex in E−X other than e, could be adjacent to x3. Note

also that if x3 is contained in a cycle(such a cycle must be the triangle {x3, x4, e}) in

E then its valency is 3 inE and otherwise its valency is 2 inE. Moreover, the valency

of x4 in E is 2. Also taking adjacencies into account we obtain the fact that there is

no diagram in Figure 4.2 E could be. Thus, there is no diagrams to investigate.

Let Γ contain a subdiagram in the form ‘2-4s’

We will prove this case considering the various possibilities of common vertices of E

and X .

Before commencing the proof we will state a fact which will be valid in each possible

common vertex combination.

(∗) If some vertex e of E −X is adjacent to the middle vertex x3 which is contained

in the both of the triangles, then e must be adjacent to all other vertices of X . Other-

wise, if e is adjacent to no other vertex of X then we obtain subdiagram in the form

of X6 and E is already in the mutation class of E6 then Γ contains an X6 and a sub-

diagram mutation-equivalent to E6 hence it is mutation-infinite. Now if e is adjacent

to only one triangle that is e ∼ x1, x2 but e � x4, x5, Then the triangle {x1, x3, e}
is simply-laced non-oriented cycle and x4 is adjacent to this triangle with a unique

edge of weight 1 therefore Γ is mutation-infinite. We note that the roles of x1, x2

and x4, x5 are the same and the situation symmetric in each. Hence, we will use the

representatives x1,x4 in each triangles. And when we will consider exactly one vertex

from one of the two triangles, this vertex will be x1. Now we start to work in cases:

Case 1: x1, x3, x4 are exactly the common vertices of E and X .

Now if there is e ∈ X − E such that e ∼ x3, by (∗) we must have e is adjacent to

all other vertices of X , however in this case the triangle {x1, x3, e} is a non-oriented

triangle in E which is impossible since E does not have non-oriented cycles. Thus

there is no such e which is adjacent to x3. Therefore, valency of x3 in E is 2 being

adjacent to only x1, x4. Note also that since E is connected there is at least one e in
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E −X that is adjacent to one of the common vertices and it cannot be adjacent to x3,

without loss of generality we may assume e ∼ x1 and this makes valency of x1 in E

is at least 2. We have one more datum that is each of x1, x3, x4 cannot be contained in

cycles in E otherwise we have a non-oriented cycle in E which is not possible. Then

by inspection, there is only one possibility for E and that is E must be in the form of

(1) in Figure 2.3 and thus Γ contains a subdiagram of Type 1 by direct check. Thus,

Γ is mutation-infinite.

Case 2: x1, x3 are exactly the common vertices of E and X .

There is no vertex e ∈ E −X that is adjacent to x3 by the above argument in Case 1.

Then valency of x3 in E is 1 and valency of x1 is at least 2. Also we have that each of

x1, x3 cannot be contained in cycles in E. There are only two possibilities for E and

that is E could be in the form of (1) or (7) in Figure 2.3 by inspection and to get rid of

the possibility for a vertex in E −X to be adjacent to x4 or x5 we discard them from

the subdiagram and thus Γ contains a subdiagram of Type 1 or Type 2 respectively if

E is of the form (1) or (7) by direct check. Therefore, Γ is mutation-infinite.

Case 3: x1, x4 are exactly the common vertices of E and X .

3.1: There is e ∈ E −X such that e ∼ x3.

Then for such e, e is adjacent to all other vertices of X by (∗). Now consider

{x1, x2, x4, x5, e} is a subdiagram of Γ of the form ‘2-4s’, discarding x3 from the

subdiagram. Thus, we consider the vertex e as x3 then mimic the proof of Case 1

which is already closed.

3.2: There is no e ∈ E −X such that e ∼ x3.

Then by direct check on the diagrams in Figure 2.3 which has two vertices each of

which is not contained in a cycle we have that Γ is mutation-infinite.

Case 4: x1 is the unique common vertex of E and X .

4.1: There is e ∈ E −X such that e ∼ x3.

Then for such e, e is adjacent to all other vertices of X by (∗). Now consider

{x1, x2, x4, x5, e} is a subdiagram of Γ of the form ‘2-4s’, discarding x3 from the
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subdiagram. Thus, we consider the vertex e as x3 then we are back in the Case 2

which is already closed.

4.2: There is no e ∈ E −X such that e ∼ x3.

Discard x4, x5 and to get rid of the possibilities what if e ∈ E −X is adjacent to one

of them. Then by direct check on the diagrams in Figure 2.3 which has a vertex not

contained in a cycle we have that Γ is mutation-infinite.

Case 5: x3 is the unique common vertex of E and X .

There must exist e ∈ E − X which is adjacent to x3. Then for such e, e is adjacent

to all other vertices of X by (∗). Now consider the subdiagram determined by the

vertices {x1, x2, x4, x5, e}. Then this subdiagram of Γ is of the form ‘2-4s’. Thus, any

other vertex say e′ which is adjacent to emust be adjacent to x1, x2, x4, x5. Therefore,

inductively, all vertices of E must be adjacent to each of x1, x2, x4, x5 and this is

trivially true for x3. We also have the fact that valency of any vertex of a diagram that

is mutation equivalent to E6 cannot exceed 4. Then there is a pair e, e′ in E −X s.t

e ∼ x3 e
′ ∼ e and e′ � x3 However, in this case consider the subdiagram determined

by the vertices {x1, x3, e, e′}. Now this diagram does not contain any oriented cycles

but contains exactly two non-oriented cycles. Hence Γ is mutation-infinite.

Thus we have proven the lemma for an arbitrary Γ that satisfies the conditions of the

lemma. Now let Γ be a diagram which is mutation equivalent to any of E(1,1)
6 , E(1,1)

7

and E(1,1)
8 and suppose Γ satisfies conditions of the lemma then Γ would be mutation-

infinite since any diagram that is mutation-equivalent to one ofE(1,1)
6 ,E(1,1)

7 andE(1,1)
8

contains a subdiagram that is mutation equivalent to E6. This is because of the fact

that each of E(1,1)
6 , E(1,1)

7 and E(1,1)
8 contains a subdiagram of the form of E6. Then

one may apply [8, Theorem 1.4] to get the result. Meanwhile, it is well-known that

E
(1,1)
6 , E(1,1)

7 and E(1,1)
8 are mutation-finite(see [2]), thus Γ has to be mutation-finite

being mutation-equivalent to a mutation-finite diagram. Therefore, Γ cannot have any

of ‘The Ears’ and ‘2-4s’ as a subdiagram.

�

Now the proof of the Proposition 4.4 will follow as corollary:
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Proof. (of Proposition 4.4) We will prove the contra-positive statement of the propo-

sition. Let Γ be a diagram that is mutation equivalent one of E(1,1)
6 , E(1,1)

7 and E(1,1)
8 .

Suppose Γ has a quasi-Cartan companion A. Let k be a vertex of Γ and Γ′ = µk(Γ)

and A′ = µk(A). Now by Lemma 4.5, if A′ is non-admissible then A is non-

admissible or Γ contains a diagram from Figure 2.6. However, by Lemma 4.6, if

a diagram contains one of the diagrams in Figure 2.6 then it is mutation equivalent to

a diagram that contains ‘The Ears’ or ‘2-4s’ as a subdiagram. At this point, without

loss of generality, we may assume Γ contains one of the 2 such diagrams as a sub-

diagram. Then by Proposition 4.2, Γ must contain a subdiagram mutation-equivalent

to E6. Now, by Lemma 4.9, Γ is mutation-infinite which is impossible since Γ is

mutation equivalent to one of E(1,1)
6 , E(1,1)

7 and E(1,1)
8 , each of which is known to be

mutation-finite. Then Γ itself must also be mutation-finite. Therefore, the diagram Γ

cannot contain a diagram in Figure 2.6. Thus A is non-admissible. �

Now we are in the position to prove the Main Theorem (Theorem 4.1) as a corollary

in the light of lemmas and propositions above:

Proof. (of Main Theorem) Let Γ be a diagram that is mutation equivalent to one

of E(1,1)
6 , E(1,1)

7 and E(1,1)
8 . Note that by Proposition 4.3, each of E(1,1)

6 , E(1,1)
7 and

E
(1,1)
8 has a semipositive admissible quasi-Cartan companion of corank 2. Now if Γ is

obtained from one of E(1,1)
6 , E(1,1)

7 and E(1,1)
8 by a finite sequence S of mutations and

A is a matrix obtained from the corresponding quasi-Cartan companion by the same

S. Then by Proposition 4.4,A is an admissible quasi-Cartan companion of Γ. We also

know that equivalent quasi-Cartan matrices have the same corank and if one of them

is semipositive then so is the other. We also have that finite sequence of mutations

applied to an admissible quasi-Cartan matrix at each step, creates a matrix that is

equivalent (as equivalence of quasi-Cartan matrices) to the original one. Therefore, Γ

has a semipositive admissible quasi-Cartan companion of corank 2 . �
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CHAPTER 5

REFLECTION GROUP RELATIONS

Even though most of the discussions in this chapter are valid for skew-symmetrizable

and their symmetrizable quasi-Cartan companions, for the sake of simplicity we will

work with skew-symmetric matrices and their symmetric quasi-Cartan companions.

Throughout the chapter, B0 will denote the skew-symmetric matrix whose diagram is

one of E(1,1)
6 , E(1,1)

7 , E(1,1)
8 and A0 be an admissible quasi-Cartan companion corre-

sponding to B0. Now we know that from the previous chapter, if B is in the mutation

class of B0, then we obtain A, an admissible quasi-Cartan companion for B via the

same set of mutations that changes B0 into B.

Symmetric quasi-Cartan companions could be considered as the Gram matrices of

some symmetric bilinear form. Also under a change of basis, a Gram matrix turn into

a congruent matrix,i.e. ifG is a Gram matrix andM be the change of basis matrix then

the Gram matrix of the bilinear form with respect to the new basis isMTGM . We also

know that any two admissible companions of the same matrix is equivalent(as quasi-

Cartan companions) which is a matrix congruence with detM is 1 or -1. Similarly

mutation-equivalent quasi-Cartan companions are equivalent quasi-Cartan matrices

(hence congruent). Note also that mutation of an admissible quasi-Cartan companion

is a quasi-Cartan companion of the corresponding skew-symmetric matrices.

Now let A0 be the Gram matrix of some symmetric bilinear form. That is A0ij =

(ei, ej) where {e1, .., en} is the standard basis. For each ei, we have a reflection sei
such that sei(ej) = ej − (ej, e

∨
i )ei = ej − A0ijei. Now the group generated by

the reflections is called the reflection group associated to e1, ..., en. Throughout the

chapter the symmetric bilinear form denoted by (.,.) will correspond to a symmetric
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quasi-Cartan companion. Note that in our setting ‘standard basis’ is used by no means

to imply the basis elements are orthogonal. In fact they are not orthogonal under the

symmetric bilinear form (.,.) determined by A0.

Definition 5.1 For any vector α, we say α is non-isotropic (w.r.t. a fixed symmetric

bilinear form) if (α, α) 6= 0. Now for any non-isotropic vector α of a symmetric

bilinear form (.,.), we define α∨ = 2α
(α,α)

. Moreover, the linear operator sα defined by

sα(β) = β − (β, α∨)α for any vector β, is called the reflection corresponding to α.

Lemma 5.2 For any non-isotropic vector α, the reflection sα has order 2 and sα

fixes(pointwise) the hyperplane that is orthogonal to α and sends the elements of the

line generated by α to its negative. Moreover, sα is recovered by this data.

Proof. s2α(β) = sα(sα(β))

= sα(β)− (sα(β), α∨)α

= β − 2(β, α∨)α + (β, α∨)(α, α∨)α

= β − 2(β, α∨)α + 2(β, α∨)α

= β

Therefore, the order of sα is 2. Now to see sα fixes the hyperplane orthogonal to α;

let β be a vector such that (α, β) = 0. Then we have (β, α∨) = 0. Thus, sα(β) =

β − (β, α∨)α = β which shows sα fixes(pointwise) the hyperplane. Now consider

sα(tα) = tα − (tα, α∨)α = tα − 2tα = −tα which shows sα sends the elements

of the line generated by α to its negative. Moreover, trivially any transformation that

satisfies these properties is equal to sα.

�

Definition 5.3 Let {e1, .., en} be the standard basis for the n-dimensional vector

space Zn equipped with symmetric bilinear form (., .) determined by a symmetric

quasi-Cartan companion A0. Then the reflections sei will be called principal reflec-

tions for each i = 1, ...n.

Definition 5.4 (Reflection Group) The reflection group W generated by the princi-

pal reflections is called principal reflection group.
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Definition 5.5 (Canonical vector) Let β be a vector such that, there is w ∈ W and

an ek s.t β = w(ek) then β will be called a canonical vector.

Lemma 5.6 Let α be a non-isotropic vector and sα is the corresponding reflection

. Then sα is an orthogonal transformation and if w be an element of W . Then

wsαw
−1 = sw(α).

Proof. First consider,

(sα(x), sα(y)) = (x− (x, α∨)α, y − (y, α∨)α)

= (x, y)− (
2(x, α)(y, α)

(α, α)
)− (

2(x, α)(y, α)

(α, α)
) +

2(x, α)

(α, α)

2(y, α)

(α, α)
(α, α)

= (x, y)

which shows sα is an orthogonal transformation. Also, wsαw−1(w(α)) = −w(α).

Thus, wsαw−1 sends elements in the line generated by w(α) to its negative. Now to

see wsαw−1 fixes hyperplane orthogonal to w(α) note that w is orthogonal transfor-

mation and w(γ) is in the hyperplane orthogonal to w(α) if and only if γ is in the

hyperplane orthogonal to α. Then wsαw−1(w(γ)) = wsα(γ) = w(γ). Therefore,

wsαw
−1 = sw(α). �

Lemma 5.7 If ei is an element of the standard basis for V and w is an element of the

principal reflection group W then (w(ei))
∨ = w(ei). (i.e. for each canonical vector

β we have β∨ = β). In particular, each canonical vector β is non-isotropic.

Proof. It is enough to check

(sej(ei))
∨ = (ei − (ei, ej)ej)

∨

=
2(ei − (ei, ej)ej)

(ei − (ei, ej)ej, ei − (ei, ej)ej)

=
2(ei − (ei, ej)ej)

(ei, ei)− (ei, ej)2 − (ei, ej)2 + (ei, ej)2(ej, ej)

=
2(ei − (ei, ej)ej)

(ei, ei)

= (ei − (ei, ej)ej).
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= sej(ei).

Therefore, the result follows. �

Definition 5.8 (Companion Basis): A basis {β1, ..., βn} of the lattice generated by

standard basis e1, ..., en will be called companion basis for the skew-symmetric matrix

B or its quasi-Cartan companion A if Aij = (βi, β
∨
j ) where each βi is a canonical

vector.

Definition 5.9 Let {β1, ..., βn} be a companion basis for a skew-symmetric matrix B

or its quasi-Cartan companionA. Then the mutation µk(βi) for k = 1, ..., n is defined

as follows:

• µk(βi) = βi − Aikβk if i 6= k and Bik > 0

• µk(βi) = βi if i 6= k and Bik ≤ 0

• µk(βk) = −βk

Lemma 5.10 Let A be a symmetric admissible quasi-Cartan companion and also

{β1, ..., βn} be a companion basis for A such that Aij = (βi, βj) then A′ = µk(A) is

a quasi-Cartan companion with companion basis {β′1, ..., β′n} where β′i = µk(βi)

such that A′ij = (β′i, β
′
j). Moreover, {sβ′1 , ..., sβ′n} generates the same group as

{sβ1 , ..., sβn} does .

Proof. Since A is admissible then A′ is a quasi-Cartan companion. Now if Bik ≤ 0

then (β′i, β
′
k) = (βi,−βk) = −Aik. Now since A′ik = sgn(Bik)Aik we have A′ik =

−Aik therefore A′ik = −Aik = (β′i, β
′
k). Now suppose Bik > 0. Then (β′i, β

′
k) =

(βi −Aikβk,−βk) = −Aik +AikAkk = −Aik + 2Aik = Aik and A′ik = sgn(Bik)Aik

hence A′ik = Aik therefore A′ik = Aik = (β′i, β
′
k). Note that since A and A′ is

symmetric there is no need to check A′ki.

Now for the rest of the proof suppose i 6= k and j 6= k.

Case 1: Bik ≤ 0 and Bjk ≤ 0.
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(β′i, β
′
j) = (βi, βj) = Aij and,

A′ij = Aij − sgn(AikAkj)[BikBkj]+.

Now since Bjk ≤ 0 we have Bkj ≥ 0 hence

[BikBkj]+ = 0. Therefore, A′ij = Aij = (β′i, β
′
j).

Case 2: Bik > 0 and Bjk ≤ 0

(β′i, β
′
j) = (βi − Aikβk, βj) = Aij − AikAkj

Now if Bjk = 0 we have Ajk = Akj = 0(or Bkj = 0) and,

A′ij = Aij − sgn(AikAkj)[BikBkj]+ = Aij therefore,

(β′i, β
′
j) = A′ij

Now suppose Bjk < 0. Then we have Bkj > 0. Now if Aik,Akj have the same signs

then,

A′ij = Aij −BikBkj = Aij − AikAkj by the mutation formula, therefore,

(β′i, β
′
j) = A′ij .

Also, if Aik,Akj have opposite signs then,

A′ij = Aij +BikBkj = Aij − AikAkj . Again we have

(β′i, β
′
j) = A′ij .

Case 3: Bik > 0 and Bjk > 0

(β′i, β
′
j) = (βi − Aikβk, βj − Ajkβk)

= Aij − AikAjk − AikAkj + AikAjkAkk = Aij and,

A′ij = Aij − sgn(AikAkj)[BikBkj]+ = Aij therefore,

(β′i, β
′
j) = A′ij .
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Now we have to show {β′1, ..., β′n} is actually a companion basis, i.e.

A′ij = (β′i, (β
′
j)
∨) and each β′i is a canonical vector corresponding to the symmetric

bilinear form (.,.) and {β′1, ..., β′n} is a linearly independant set of vectors. Linear

independance is trivial since {β′1, ..., β′n} is obtained by a single mutation from a lin-

early independant set {β1, ..., βn}. Then consider,

(β′j)
∨ =

2β′j
(β′j, β

′
j)

=
2β′j
A′jj

=
2β′j
2

= β′j

.

Thus the equality A′ij = (β′i, (β
′
j)
∨) follows. Now to show each β′i is a canonical

vector, by definition of the mutation it is enough to consider the case i 6= k and

Bik > 0. Then we have,

β′i = βi − Aikβk = βi − (βi, βk)βk = βi − (βi, β
∨
k )βk = sβk(βi)

Thus β′i is a canonical vector. Therefore, {β′1, ..., β′n} is a companion basis for A′.

Now to show they generate the same group consider sβ′i . Then if i 6= k we have,

sβ′i = ssβk (βi) = sβksβisβk for Bik > 0 and sβ′i = sβi for Bik ≤ 0. Meanwhile for

i = k we have sβ′k = s−βk = sβk . Thus, symmetrically for Bik > 0 we also have,

sβi = sβ′ksβ′isβ′k

Also, in the cases Bik ≤ 0 and i = k we have that sβ′i = sβi . Therefore, the groups

generated by {sβ′1 , ..., sβ′n} and {sβ1 , ..., sβn} are equal.

�

Lemma 5.11 Let B be the matrix which lies in the mutation class of B0 where Γ(B0)

is one of the elliptic diagrams E(1,1)
6 , E(1,1)

7 , E(1,1)
8 . Let A0 be admissible (symmetric)

quasi-Cartan companion of B0 .Let {β1, ..., βn} (obviously n is one of 6,7,8) be a

companion basis for A. Then the reflections corresponding any companion basis that

is obtained via the sequence of mutations from {e1, ..., en} generate W .

Proof. This lemma follows as corollary of the lemma 5.10 above by using that lemma

as the inductive step. The base of induction is to define the symmetric bilinear form
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as (ei, ej) = A0ij where {e1, ..., en} is the standard basis. By the above discussions

trivially {e1, ..., en} is a companion basis for A0. Now since {se1 , ..., sen} generate

W; by the above discussion in the lemma 5.10, the result follows. �

The following theorem exhibits properties on orders of reflections or certain com-

positions of reflections corresponding to canonical vectors making use of admissible

companions and proves equality of reflection groups generated by distinct companion

bases.

Theorem 5.12 Let B be the matrix which lies in the mutation class of B0 where

Γ(B0) is one of the elliptic diagrams E(1,1)
6 , E(1,1)

7 , E(1,1)
8 . Let A0 be admissible

(symmetric) quasi-Cartan companion of B0 and W be the principal reflection group

corresponding to A0. Suppose A is an admissible quasi-Cartan companion of B and

let {β1, ..., βn} (obviously n is one of 6,7,8) be a companion basis for A. Then the

reflections {si = sβi : i = 1, ..., n} satisfy the following relations:

1. s2i = e

2. For vertices i, j in Γ(B) (sisj)
mij = e for mij as in Lemma 5.13

3. For any oriented cycle C = {1, ..., d} in Γ(B) and any vertex i in C, taking

|Ajk| as |Aj′k′| if j = j′ (mod d) for j > d; k = k′ (mod d) for k > d and sl

as sl′ if l = l′ (mod d) for l > d where 1 ≤ j′, k′, l′ < d. Then we have,

(sisi+1...si+d−1si+d−2...si+1) has order m where m is determined by the fol-

lowing condition:

Let p = (|Ai(i+1)|...|A(i+d−2)(i+d−1)| − |A(i+d−1)(i+d)|)2, Now,

(a) if p = 0 then m = 2

(b) if p = 1 then m = 3

Moreover, the Coxeter group generated by the reflections {si = sβi : i = 1, ..., n} is

the same group as W .

We need the following lemma to prove the thorem.
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Lemma 5.13 Let {βi, βj} (for i 6= j) be linearly independant canonical vectors de-

fined by symmetric quasi-Cartan companion A0. Then the order mij of sβisβj is

determined as follows: Let x = (βi, β
∨
j )(βj, β

∨
i ) = (βi, βj)(βj, βi) = (βi, βj)

2. Now

if x = 0 then mij = 2 ; if x = 1 then mij = 3 and if x = 4 then mij =∞.

Proof. Let V be the lattice defined by non-degenerate symmetric bilinear form (.,.)

corresponding to A. Firstly we note that by Lemma 5.7, βi, βj are non-isotropic

vectors. Now consider V ′ = span{βi, βj} in V and let V ′′ be the orthogonal comple-

ment of V ′. Then sβi and sβj fix the elements of V ′′ pointwisely. Thus, sβisβj fixes

V ′′ pointwisely. Therefore, to determine the order of sβisβj it is enough to find the

order of sβisβj on V ′. Now, without loss of generality we can take i = 1 and j = 2

for the sake of simplicity and we use the symbols s1, s2 for sβ1 , sβ2 respectively. We

also note that A12 = (β1, β
∨
2 ) = (β2, β

∨
1 ) = (β1, β2),

Case 1: x = 0

Then,

s1s2(c1β1 + c2β2) = −c1β1 − c2β2.

Then,

(s1s2)
2(c1β1 + c2β2) = s1s2(−c1β1 − c2β2) = c1β1 + c2β2

Thus, the order of s1s2 on V ′ is 2. Then mij = 2

Case 2: x = 1

Subcase 2.1: (β1, β2) = 1

Then,

s1s2(c1β1 + c2β2) = c2β1 − (c1 + c2)β2.

Hence,

(s1s2)
2(c1β1 + c2β2) = s1s2(c2β1 − (c1 + c2)β2) = −(c1 + c2)β1 + c1β2

Therefore,

(s1s2)
3(c1β1 + c2β2) = s1s2(−(c1 + c2)β1 + c1β2) = c1β1 + c2β2.

Subcase 2.2: (β1, β2) = −1

Then,

s1s2(c1β1 + c2β2) = −c2β1 + (c1 − c2)β2.
Thus,
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(s1s2)
2(c1β1 + c2β2) = s1s2(−c2β1 + (c1 − c2)β2) = (c2 − c1)β1 − c1β2

Therefore,

(s1s2)
3(c1β1 + c2β2) = s1s2((c2 − c1)β1 − c1β2) = c1β1 + c2β2.

Thus the order of s1s2 on V ′ is 3. Therefore, mij = 3

Case 3: (β1, β2) = ±2.

Then when n goes large, absolute value of the coefficient of β1 in (s1s2)
n(β2) in-

creases strictly to diverge to∞. Thus, mij =∞

�

Proof. of the Theorem 5.12

We first consider,

(i): For any i, we have the reflection si that fixes all the vectors pointwisely in the

hyperplane which is orthogonal to βi and sends each vector in the line generated by

βi to its negative. Thus, (si)
2 = e and obviously (si) 6= e therefore the order of si is

2.

Now we will consider (ii). Any pair {βi, βj} consists of linearly independant vectors

as they are being a part of the companion basis. Then (ii) directly follows by the

lemma where mij’s are as in the lemma 5.13.

Now we have to consider (iii). To show this consider the two cases p = 0 or p =

1. There is no other possibility as our diagrams are connected and correspond to

admissible semipositive symmetric matrices. Thus, any three vertex diagram with an

edge of weight 4 is triangle with possible weight triples as (4,1,1) and (4,4,4) however

if a vertex connects to a triangle (4,4,4) then it creates a non-oriented cycle with an

edge of weight 4 but it is impossible in our case. Now we have that p = 0 iff all edges

of C have weight 1; and p = 1 iff C is triangle in the form (4,1,1). Then consider,

Case 1: p = 0

Then all edges of C have weight 1 and by abusing notation we denote restriction of

A to C by A, then without loss of generality we may assume A1d = Ad1 = 1 > 0

and the rest of the off-diagonals of A are -1 for A to be admissible. Otherwise, we
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change signs at some vertices which creates equivalent admissible companion and

companion basis corresponding to that companion. Also without loss of generality

we may assume i = 1 for the sake of simplicity. Then,

(s2...sd...s3s2) = ss2s3...sd−1(βd)

and so,

(s1s2...sd...s3s2) = s1ss2s3...sd−1(βd)

Now since,

s2s3...sd−1(βd) = (βd + ...+ β2).

We have,

ss2s3...sd−1(βd) = s(βd+...+β2).

Now we note that β1, (βd+ ...+β2) is a linearly independant pair of canonical vectors

otherwise {β1, ...βn}would not be a companion basis and we also have (β1, (βd+...+

β2)) = 0 . Now x = (β1, (βd + ... + β2))
2 = 0 as it is defined in the Lemma 5.13.

Now by the same lemma,

(s1s2...sd...s3s2) = s1ss2s3...sd−1(βd) has order 2.

Case 2: p = 1

Now C must be triangle(4,1,1) as it is discussed above. Then let C = {1, 2, 3}.
Also by abusing notation we denote restriction of A to C by A Now without loss of

generality assume i = 1. Then since s2s3s2 = ss2(β3) and

s2(β3) = β3−A23β2. Then β1, β3−A23β2 are linearly independant pair of canonical

vectors. Moreover, (β1, β3−A23β2) = A13−A12A23. Now regardless of which edge

has weight 4 and how the signs are chosen to satisfy admissibilty, this number is 1

in absolute sense. Hence, x = (β1, s2(β3))
2 = 1 as in the form in the lemma 5.13.

Therefore, (s1s2s3s2) has order 3.

Now the group W is generated by {si = sβi : i = 1, ..., n} follows immediately after
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Lemma 5.11. Now by part (i) and (ii) {si = sβi : i = 1, ..., n} satisfies the same

relations in the group W as {se1 , ..., sen} does. Then for W , {si = sβi : i = 1, ..., n}
is another presentation.

�

Theorem 5.14 Let B be the matrix which lies in the mutation class of B0 where

Γ(B0) is one of the elliptic diagrams E(1,1)
6 , E(1,1)

7 , E(1,1)
8 . Let A0 be admissible

(symmetric) quasi-Cartan companion of B0. Suppose A is admissible quasi-Cartan

companion of B. Let {β1, ..., βn} (obviously n is one of 6,7,8) be a companion basis

for A. Then the reflections {si = sβi : i = 1, ..., n} satisfy the first two relations in

[3, Table 4.1].(The other relations corresponding to rest of the subdiagrams cannot

occur in our diagrams)

Proof. For the first relation, consider (s1s2s3s4s3s2) = s1ss2s3(β4). And without loss

of generality we may assume A13 = A31 > 0 and the rest of the off-diagonal entries

are non-positive. Now s2s3(β4) = β4 + β3 + β2. Then β1, β4 + β3 + β2 is linearly

independant pair of canonical vectors. And (β1, β4 + β3 + β2) = 0. Thus, x = 0 as it

is in the lemma 5.13. Therefore, the order of (s1s2s3s4s3s2) is 2 by the lemma.

For the second one, consider,

(s1s2s3s2s1s4s5...sns(n+1)sn...s5s4) = ss1s2(β3)ss4s5...sn(β(n+1)) and then without loss

of generality we may assume A3(n+1) = A(n+1)3 > 0 and the rest of the off-diagonal

entries are non-positive. Then we have that,

s1s2(β3) = β1 +β2 +β3 and, s4s5...sn(β(n+1)) = β4 +β5 + ...+β(n+1) which are lin-

early independant. Now consider (β1+β2+β3, β4+β5+...+β(n+1)) = 0. Thus, x = 0

as it is in the lemma 5.13. Therefore, the order of (s1s2s3s2s1s4s5...sns(n+1)sn...s5s4)

is 2 by the lemma.

�
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CHAPTER 6

MUTATION CLASS OF A DIAGRAM ORIGINATED FROM A

TRIANGULABLE SURFACE

There are diagrams, consider for example exceptional diagrams, which are not origi-

nated from triangulation of surfaces. In fact, very small number of diagrams are com-

ing from triangulations of surfaces compared to rest of the diagrams. We will consider

one specific example that is seen in the Figure 6.1. For the basics of the triangulation-

diagram correspondance and for the construction of diagrams corresponding to a tri-

angulation of a surface, see [4].
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Figure 6.1: A diagram with n-vertices that is originated from a triangulation

The diagram in Figure 6.1 corresponds to the torus with exactly one boundary com-

ponent and n − 3 marked points on the boundary component when the diagram has

exactly n vertices. In other words number of marked points of the triangulation is

equal to the number of edges that connects the vertex 3 to vertex 4 in Figure 6.1,
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namely the number of edges on the middle line.

Now our aim is to observe that any element in the mutation class of the diagram has

an admissible quasi-Cartan companion.
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Figure 6.2: A triangulation of the surface of genus 1 with 1 boundary component
and (n-3) marked points on the boundary component whose diagram corresponds to
the diagram in Figure 6.1. The double line below in the triangulation stands for the
boundary where mi for i = 1, ..., (n − 3) denotes the (n-3) marked points in the
boundary.

Theorem 6.1 Any diagram which is mutation equivalent to the diagram in the Figure

6.1 has an admissible quasi-Cartan companion.

To see this we have to examine the mutation class of the diagram and we will do

this, examining the different triangulations obtained via sequence of flips that give

the same surface. A flip at the edge k of a triangulation corresponds to mutation at

the vertex k of its diagram pair.

Proof. First of all we make the following conventions:
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1. Since sequence of any flips yield another triangulation of the same surface,

there are two arcs that must be in the same role as arcs 1, 2. However, then

we relabel that vertices as 1, 2 and thus we may assume arcs 1, 2 stay as arcs

of triangulation which occur at the boundary(we do not mean boundary of the

surface) of the gluing scheme after any sequence of flips. In the first three cases

this fact is obvious. For that reason, we will not provide an explanation. In the

Case 4, we will provide a brief explanation of this fact for that case.

2. A proof given for 1 will be assumed valid for 2 since the roles of 1 and 2 are

symmetric.

3. In a flipped triangulation diagram if we don’t permit a certain type of arc that

has one vertex common with arc labeled 1, then by symmetry we don’t permit

the arc with same properties for the arc 2 since the roles of 1 and 2 are symmet-

ric. Therefore, allowing such kind of an arc for 2 would create the unwanted

case for 2 as in 1 which we want to avoid.

Now there are 4 main cases for the flipped triangulations which are:

1. In the flipped triangulation there are arcs 3 and 4 where 1, 2, 3 and 1, 2, 4 form

two ideal triangles.

2. In the flipped triangulation there is exactly one arc 3 such that 1, 2, 3 is oriented

clockwise.

3. In the flipped triangulation there is exactly one arc 3 such that 1, 2, 3 is oriented

counter-clockwise.

4. In the flipped triangulation there is no arc together with 1, 2 that form a triangle.

Case 1: In the flipped triangulation there are arcs 3 and 4 where 1, 2, 3 and 1, 2, 4

form two ideal triangles.

Firstly these two ideal triangles can occur in only one way and arcs 1, 2, 3 and 1, 2, 4

in the triangulation must be triangles oriented clockwise. Thus, in the diagram pair
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Figure 6.3: Triangulation in Case 1

of the flipped triangulation we have two oriented cycles {1, 2, 3} and {1, 2, 4} with

an edge from 1 to 2 of weight 4. At this point, we note that regardless of the position

of the rest of the arcs, 3 is connected to 4 via a path that contains only the vertices

that corresponds to some subset of the arcs labeled 3, 4, 5, ..., n. Observe also that the

vertices 5, 6, ..., n cannot be adjacent to 1 or 2 since 3 and 4 are exactly the vertices

that are adjacent to 1 or 2. Therefore, 1 and 2 are sink and source respectively and

this creates 2 non-oriented cycles that is determined by the vertices 1, 3, 4 together

with the vertices of the path from 3 to 4 and; 2, 3, 4 together with vertices of the same

path. Also we have oriented triangles {1, 2, 3} and {1, 2, 4}. These 2 non-oriented

cycles and two oriented triangles are characteristic for the flipped triangulation that

is considered in this case. Each of the oriented triangles {1, 2, 3} and {1, 2, 4} share

exactly an edge with the each non-oriented cycles and these edges are different for

each. Now these are the all cycles that contain 1 or 2. There could be some more

cycles originated from the ‘interior’ arcs 3, ..., n but they must be oriented triangles

and they cannot share sides. Hence for two such triangles only possibility is sharing

a vertex. However, a non-characteristic oriented triangle either shares an edge with

a characteristic non-oriented cycle and it must share the same edge with the other

characteristic non-oriented cycle; or shares no edges with any other cycles.

Now an admissible structure on the quasi-Cartan companion for the diagram pair
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of the flipped triangulation that is our concern in this case could be constructed as

follows: Let quasi-Cartan companion A assign (+) to each edge of the two chrac-

teristic oriented triangles and (−) for the remaining edges of the characteristic non-

oriented cycles. Therefore, A has already assigned (−) to unique edge of any of

non-characteristic oriented triangles that is common with characteristic ones, and let

A assign one (+) and one (−) to the remaining two edges of each non-characteristic

triangles that shares an edge with non-oriented cycles. At this point, the companionA

is free while assigning signs to rest of the oriented triangles (that shares no edges with

any other cycles). The companion A either assigns exactly 3 (+) or exactly 1 (+) to

edges of the rest of the oriented triangles. Now characteristic oriented triangles have

exactly 3 (+) and non-oriented cycles have exactly 2 (+). Also non-characteristic

triangles(must be oriented) which shares an edge with a cycle have exactly 1 (+).

Moreover non-characteristic triangles which shares no edges with any other cycle

have exactly 1 (+) or exactly 3 (+). These are all of the cycles our diagrams can

have in Case 1. Thus admissibility follows.

Case 2: In the flipped triangulation there is exactly one arc 3 such that 1, 2, 3 is

oriented clockwise.

There are 2 subcases:

• There is an arc(loop) y connecting the free ends of arc 1 in the gluing scheme

of the triangulation.

• There is no such y in the flipped tringulation.

Subcase 2.1: There is an arc(loop) y connecting the free ends of arc 1 in the gluing

scheme of the triangulation.

There is an edge of weight 4 from 3 to 1. Furthermore, considering 3 as in the role of

1, 1 as in the role of 2, 3 as in the role of 4, y as in the role of the vertex 3; this is the

same case as in Case 1. Thus, the admissibility follows.

Subcase 2.2: There is no such y in the flipped tringulation.
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Figure 6.4: Triangulation in Case 2

Now if there is an arc that connects the lower end of the arc 1 in the left with lower

end of 2 in the right in the gluing scheme, then either there must be an arc connceting

free ends of 1 in the gluing scheme which is not possible by the assumption or there is

an arc 4 that makes 1, 2, 4 an ideal triangle in order this diagram to be a triangulation.

However, the latter case is a subcase that is implicitly treated in Case 1. Hence, we

could suppose there is no such arc. Then each of the remaining arcs start and end at

different marked points at the boundary hence are non-loops.

Now {1, 2, 3} is a simply-laced oriented triangle in the pair-diagram with an edge

from 1 to 2. Now suppose without loss of generality that x is the arc connecting

‘principal’ marked point of triangulation indexed by a at the ‘upper midpoint’(in the

gluing scheme) to another marked point and belongs to an ideal triangle which con-

tains 1. Thus, there is an edge from x to 1 in the pair diagram. Also suppose that y is

the arc connecting ‘principal’ marked point of triangulation indexed by a at the right

between 1, 2 in the gluing scheme to another marked point and belongs to an ideal

triangle which contains 2. Hence, there is an edge from y to 2 in the pair diagram.

In the pair diagram 3, x, y are connected via a path not containing 1, 2. There is a

vertex w that is connected to y via the path and the part of the ideal triangle {1, x, w}
and hence {1, x, w} determines an oriented triangle with an edge from w to x in the
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diagram.

Now, the cycles determined by 1, 2 together with the part of the path from w to y; 1

together with the part of the path from 3 to x; and 2 together with the part of the path

from 3 to y are non-oriented. These 3 non-oriented cycles and 2 oriented triangles

{1, 2, 3} and {1, x, w} are characteristic. Now each characteristic non-oriented cy-

cle shares exactly one edge with each of the characteristic oriented triangles {1, 2, 3}
and {1, x, w}. For a characteristic non-oriented cycle and characteristic oriented tri-

angles {1, 2, 3} and {1, x, w}, there is no edge that is common to three of them.

Now consider the possible remaining oriented triangles. Then the situation for non-

characteristic oriented triangles is the same as in Case 1. At this point, if the quasi-

Cartan companion of the diagram say A assigns signs to edges of the diagram as in

Case 1, then the admissibility follows.

Case 3: In the flipped triangulation there is exactly one arc 3 such that 1, 2, 3 is

oriented counter-clockwise.

We could consider this case as the top 1, 2 and 3 form an oriented cycle. Then there

are two subcases:

• There is an arc y in the gluing scheme from lower end of left 1 to lower end of

right 1 .

• There is no arc y in the gluing scheme from lower end of left 1 to lower end of

right 1.

Subcase 3.1: There is an arc y in the gluing scheme from lower end of left 1 to lower

end of right 1.

Here behaving 3 as 2 and 2 as 4; also y as 3 as in Case 1 then the situation is the same

as in Case 1. Then admissibility follows.

Subcase 3.2: There is no arc y in the gluing scheme from lower end of left 1 to lower

end of right 1.
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Figure 6.5: Triangulation in Case 3

Suppose there is an arc in the gluing scheme from lower end of left 1 to lower end

of right 2. Then one of the diagonals must be inscribed as an arc of the triangulation

which creates the one of the earlier cases. Therefore, we suppose there is no such arc.

Then there must exist two arcs x and y in the gluing scheme such that x is an arc

from the principal marked point a at left in the middle to another marked point(not a)

and y is an arc from a at right in the middle to a marked point which is not a. Then

without loss of generality we may suppose x, y and 3 form an oriented cycle in the

pair diagram, otherwise there are x′ and y′ that satisfies this and there is a sequence

of edges from x to x′ and y to y′. Now for such x, there is a path from 1 to x and a

path from y to 2. Now, in the pair diagram {1, 2, 3} and {x, y, 3} are charecteristic

oriented triangles and the cycle determined by 2, 3 and the path connecting y to 2 is

characteristic non-oriented cycle and similarly the cycle determined by 1, 3 and the

path connecting 1 to x is characteristic non-oriented cycle. Also the third character-

istic non-oriented cycle is the one determined by the vertices discarding the vertex 3 .

Here, between the characteristic cycles exact same properties hold as in above cases.

For the other oriented triangles that are not characteristic, if they share a side with a

non-oriented cycle they must share the same side with exactly two of the non-oriented

cycles. Then admissibility follows if A assigns signs as in cases above.
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Case 4: In the flipped triangulation there is no arc together with 1, 2 that form an

ideal triangle.
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Figure 6.6: Triangulation in Case 4

We first note that if we mutate the pair diagram at the vertex 1 (or 2 symmetrically)

then either we obtain the same triangulation type (relabeling the vertices) for the

mutated diagram or we obtain the triangulation corresponding to one of the earlier

cases.

Now, there must exist an arc x together with left-hand 1 in the gluing scheme which

lies in an ideal triangle; an arc w together with left-hand 2 in the gluing scheme which

lies in an ideal triangle; an arc y together with right-hand 1 in the gluing scheme which

lies in an ideal triangle and an arc z together with right-hand 2 in the gluing scheme

which lies in an ideal triangle. Moreover, it may be that w = y. However, with-

out loss of generality, we may assume w and y are distinct. Since w = y generates

the same diagram up to path that connects w to y. And this path will not affect the

characteristic cycles. Now in the pair diagram, {2, w, w′} and {1, y, y′} are the char-

acteristic oriented triangles, where x′, y′ are the remaining arcs in the corresponding

ideal triangles. Also, non-oriented cycles are the ones determined by {1, 2, y′, w′, z};
{1, x, w′, w, y} ; {2, w, y, y′, z}. Now the characteristic cycles and non-characteristic
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oriented triangles share the same properties as in above cases. Thus, an admissible

structure can be put on A.

Furthermore, we want to note that there is another way to see that there is an admis-

sible quasi-Cartan companion for each element in the mutation class. First we show

the existence of a semipositive admissible quasi-Cartan companion A of corank 2 of

the original diagram. Then we mimic the proof of the lemma 4.5.

A =



2 2 −1 −1 0 0 0 0 0 0

2 2 −1 −1 0 0 0 0 0 0

−1 −1 2 0 −1 0 0 0 0 0

−1 −1 0 2 0 0 0 0 0 −1

0 0 −1 0 2 −1 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0

0 0 0 0 0 −1 2 −1 0 0

0 0 0 0 0 0 −1 2 −1 0

0 0 0 0 0 0 0 −1 2 −1

0 0 0 −1 0 0 0 0 −1 2


Now, a straightforward calculation yields that kernel (radical vectors) of the linear

operator that corresponds to A consists of the vectors of the form:

(x, a− x, a, a, a, a, a, a, a, a) with x and a free hence A is of corank 2. At this point,

if we let x = 1 then the first coordinate of the such radical vector is 1. Thus, if we

erase first row and column of A and thus obtain a matrix A′. Now by the lemma 3.6

if A′ is semipositive then so is A. However, A′ is admissible quasi-Cartan companion

for extended Dynkin diagram A
(1)
n whose admissible quasi-Cartan companions are

semipositive of corank 1. Therefore, A′ is semipositive then so is A. Then if the

elements in the mutation class of the original diagram do not contain any diagram

from Figure 2.6, then any diagram in the mutation class has an admissible companion

coming from the original one directly by the lemma 4.5. At this step we note the

following: For each of the cases above the edges that are not contained in a cycle in

the pair diagram, could only be incident to a vertex (not a vertex contained in any

of the characteristic cycles) of a non-characteristic oriented triangle or incident to a
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vertex that is incident to another edge which is not contained in a cycle. However,

elements in the mutation class of the original diagram cannot have any such diagrams

from Figure 2.6 by inspection on the elements of the mutation class that occur in

Cases 1-2-3-4. Then the result follows.

�
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