
ON VERIFIABLE INTERNET VOTING SYSTEMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

KÖKSAL MUŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

APRIL 2016





Approval of the thesis:

ON VERIFIABLE INTERNET VOTING SYSTEMS

submitted by KÖKSAL MUŞ in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Department of Cryptography, Middle East Technical
University by,

Prof. Dr. Bülent Karasözen
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Assoc. Prof. Dr. Murat Cenk
Supervisor, Cryptography, METU

Examining Committee Members:

Prof. Dr. Ersan Akyıldız
Department of Mathematics, METU

Assoc. Prof. Dr. Murat Cenk
Cryptography Department, METU

Prof. Dr. Ali Aydın Selçuk
Computer Engineering Department, TOBB-ETÜ

Assoc. Prof. Dr. Ali Doğanaksoy
Department of Mathematics, METU

Assist. Prof. Dr. Fatih Sulak
Department of Mathematics, Atılım University

Date:





I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: KÖKSAL MUŞ

Signature :

v



vi



ABSTRACT

ON VERIFIABLE INTERNET VOTING SYSTEMS

Muş, Köksal

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

April 2016, 51 pages

After the Estonian Parliamentary Elections held in 2011, an additional verification
mechanism was integrated into the i-voting system in order to resist malicious voting
devices, including the so-called Student’s Attack. This mechanism gives voters the
opportunity to verify whether the vote they cast is stored in the central system correctly.
However, the verification phase ends by displaying the cast vote in plain form on the
verification device. Indeed, when applied in wide range, this would even compromise
the fairness and the overall secrecy of the elections. In this work, our aim is to inves-
tigate this verification phase in detail and to point out that displaying the cast vote in
plain form may leak voter privacy. In this respect, we propose an alternative verifica-
tion mechanism for the Estonian i-voting system to overcome this vulnerability. Not
only is the proposed mechanism secure and resistant against corrupted verification de-
vices, so does it successfully verify whether the vote is correctly stored in the system.
We also highlight that our proposed mechanism brings only symmetric encryptions
and hash functions on the verification device, thereby mitigating these weaknesses in
an efficient way. More concretely, it brings only m additional symmetric key decryp-
tions to the verification device, with m denoting the number of candidates. Finally,
we prove the security of the proposed verification mechanism and compare the cost
complexity of the proposed method with that of the current mechanism.

Keywords : Internet Voting, Privacy, Secrecy, Verifiability, Trust

vii



viii



ÖZ

DOĞRULANABİLİR İNTERNET OYLAMA SİSTEMLERİ HAKKINDA

Muş, Köksal

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Nisan 2016, 51 sayfa

2011’de yapılan Estonya Parlamento Seçimlerinden sonra, internet oylama sisteminde
kötücül yazılım barındıran bilgisayarlara yapılabilen Öğrenci Atağı’nı (Student’s At-
tack) engelleyen bir doğrulama mekanizması eklendi. Bu mekanizma seçmenlere oy-
larının merkezi sistemde doğru kaydedilip kaydedilmediğini doğrulama imkanı sun-
maktadır. Fakat, doğrulama adımının sonunda seçmenin oyu açık şekilde ekranda
gözükmektedir. Dahası, ataklar geniş ölçekli uygulandığında genel seçim bütünlüğünü
ihlal edebilmektedir. Bu çalışmadaki amacımız doğrulama adımını güvenlik açısından
detaylı şekilde incelemek ve oyun ekranda açık şekilde görüntülenmesi işleminden
kaynaklı seçmen mahremiyet probleminin olup olmadığını ortaya çıkarmaktır. Bu
bağlamda, Estonya için bu zayıflığın üstesinden gelebilecek alternatif bir doğrulama
mekanizması önermekteyiz. Önerdiğimiz mekanizma kötücül yazılım içeren doğrulama
cihazlarına karşı da güçlü olmasının yanında, oyun sisteme doğru yüklenip yüklenmediğini
de kontrol etmektedir. Ayrıca, önerilen sistem bu zayıflıkları çözmek için doğrulama
cihazına sadece simetrik şifre ve özet fonksiyon maaliyeti getirdiğini de vurgulamak
gerekir. Yani, doğrulama cihazına aday sayısı m olmak üzere, m tane ekstra simetrik
şifre çözme işlemi yaptırır. Sonuç kısmında önerilen doğrulama sisteminin güvenlik
ispatını ve önerilen sistemle kullanılan sistemin işlem maaliyetlerini karşılaştıracağız.

Anahtar Kelimeler : İnternet Oylaması, Mahremiyet, Güvenlik, Doğrulama, Güven

ix



x



Aileme, özellikle babama

xi



xii



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. Murat
Cenk for supporting me at the point of giving up and throughout the entire thesis work.
Additionally, I would like to express my deepest gratitude to Mehmet Sabır Kiraz for
his guidance and insight he provided throughout the thesis work. Although, the current
legislation does not allow me to have the chance to be a formal student of him, his
ideas and tremendous support had a major influence on this thesis and his motivating
attitudes made the thesis an enjoyable academic journey for me. I am also thankful to
İsa Sertkaya for sharing his inspiring ideas at the critical moments. Moreover, it is a
great pleasure for me to thank Ali Aydın Selçuk and Ersan Akyıldız for motivating me
about post-PhD period.

My sincere thanks goes to Ali Doğanaksoy to his endless support and care like a father
throughout my life in METU. And, special thanks should be given to Fatih Sulak for his
friendship and guidance like a brother from my very first days in METU. Additionally,
I am thankful to my wife Sinem Sasmaz Mus for her understanding especially while
writing the thesis.

I also would like to thank everyone at IAM-METU, especially Nejla Erdoğdu and
Muhiddin Uğuz for their problem solving talents about all administrative problems.
Furthermore, I thank to Zack Crist and Tayfun Evyapan for language corrections.

It was also a privilege to being a part of METU Aikido Society and aikido family all
over the world to refreshing my mind and giving me to opportunity to understand why
I should have another profession.

The last but not least, my special thanks goes to my family, my friends in İstanbul,
Ankara and all other parts of the world. They sometimes motivate, sometimes demoti-
vate me, but they help me to be who I am today and also they give me a reason to live
for.

xiii



xiv



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

CHAPTERS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Symmetric Key Encryption and Hash Functions . . . . . . . 7

2.1.1 Advanced Encryption Standard (AES) . . . . . . . 7

2.1.2 Cryptographic Hash Functions . . . . . . . . . . . 10

2.2 Public Key Encryption and Digital Signature . . . . . . . . . 10

2.3 Mix-net Protocols . . . . . . . . . . . . . . . . . . . . . . . 12

xv



2.3.1 Decryption Mix-net . . . . . . . . . . . . . . . . . 12

2.3.2 Re-encryption Mix-net . . . . . . . . . . . . . . . 13

2.3.2.1 El-Gamal Encryption Scheme . . . . . 13

2.3.2.2 El-Gamal Based Re-encryption Mix-net 13

Achieving Verifaibility and Robustness 13

2.4 TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 ID Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Threshold Key Management . . . . . . . . . . . . . . . . . . 16

2.7 Double Envelope Voting Method . . . . . . . . . . . . . . . 16

2.8 Quick Response (QR) Codes for Verifiability . . . . . . . . . 18

2.8.1 QR Code Types. . . . . . . . . . . . . . . . . . . 19

2.8.2 Error Correcting Capability . . . . . . . . . . . . . 20

2.8.3 Deciding the Version of QR Code . . . . . . . . . 21

3 Estonian Internet Voting Protocol and its Security Analysis . . . . . . 25

3.1 System Architecture and Participating Parties . . . . . . . . . 25

3.1.1 Voter, Voting Application (VotingApp), and Verifi-
cation Application (VerifApp) . . . . . . . . . . . . 25

3.1.2 Central System . . . . . . . . . . . . . . . . . . . 26

3.1.3 Privacy Preserving Auditing Mechanism . . . . . . 27

3.1.4 Key management . . . . . . . . . . . . . . . . . . 27

3.2 Estonian I-Voting Protocol . . . . . . . . . . . . . . . . . . 27

3.2.1 Voting Stage: . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Verification Stage: . . . . . . . . . . . . . . . . . 28

xvi



3.3 Security Analysis of Estonian I-voting System . . . . . . . . 29

3.4 A New Potential Privacy Issue with the Estonian Verification
Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Privacy Attacks . . . . . . . . . . . . . . . . . . . 31

3.5 Complete Set of Attack Scenarios . . . . . . . . . . . . . . . 32

4 Our Proposed Verification System . . . . . . . . . . . . . . . . . . . 35

4.1 Warmup: Verification Mechanism with Fake Votes . . . . . . 35

4.1.1 Voting Stage: . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Verification Stage: . . . . . . . . . . . . . . . . . 37

4.2 Our Main Proposal: Verification Mechanism with Additional
Symmetric Encryptions . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Voting Stage: . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Verification Stage: . . . . . . . . . . . . . . . . . 40

4.3 Security Analysis of Our Verification Mechanism . . . . . . 41

4.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Usability and Optimization Improvement for the Ver-
ification q . . . . . . . . . . . . . . . . . . . . . . 43

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xvii



xviii



LIST OF FIGURES

Figure 2.1 A round of the AES algorithm . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2 General Mix-net Protocol . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.3 An example of X.509 certificate . . . . . . . . . . . . . . . . . . . 15

Figure 2.4 Double Envelope Vote Generation in Voter Application . . . . . . . 17

Figure 2.5 Double Envelope Vote Counting in VCS . . . . . . . . . . . . . . . 18

Figure 2.6 QR Code of Types 1 and 2. The Figure is taken from [36] . . . . . 19

Figure 2.7 Micro QR Code. The Figure is taken from [36] . . . . . . . . . . . 20

Figure 2.8 iQR Code. The Figure is taken from [36] . . . . . . . . . . . . . . 21

Figure 2.9 SQRC. The Figure is taken from [36] . . . . . . . . . . . . . . . . 22

Figure 2.10 Frame QR Code. The Figure is taken from [36] . . . . . . . . . . . 22

Figure 3.1 Election Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.2 General Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.3 Voting stage of the Estonian i-voting protocol . . . . . . . . . . . . 28

Figure 3.4 Verification stage of the Estonian i-voting protocol . . . . . . . . . 29

Figure 4.1 Voting Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.2 Verification Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 4.3 The voting phase of the proposed protocol . . . . . . . . . . . . . 39

Figure 4.4 The Verification phase of the proposed protocol . . . . . . . . . . . 40

xix



xx



LIST OF TABLES

Table 2.1 QR Error Correction Capability . . . . . . . . . . . . . . . . . . . . 21

Table 2.2 Table of QR Code Version Number [36] . . . . . . . . . . . . . . . 23

Table 3.1 Possible Attacks and Countermeasures for Different Malicious Sce-
narios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 4.1 Computational Costs. . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 4.2 Shortened verification parameter on the screen on of the voter computer. 43

Table 4.3 Original and shortened verification values. . . . . . . . . . . . . . . 43

Table 5.1 Possible Attacks and Countermeasures for Different Malicious Sce-
narios for Our Updated Verification Mechanism . . . . . . . . . . . . . . 46

xxi



xxii



LIST OF ABBREVIATIONS

NEC National Electoral Committee

NIST National Institute of Standars and Technology

I-voting Internet voting

E-voting Electronic Voting

VFS Vote Forwarding Server

VSS Vote Storage Server

VFS Vote Counting Server

VoterApp Voter Application

VerifApp Verification Application

HSM Hardware Security Module

TLS Transport Layer Security

SSL Secure Socket Layer

QR code Quick response Code

IFP Integer Factorization Problem

DLP Discrete Logarithm Problem

CA Certification Authority

M Message

SymEnc(.)(.) Symmetric Encryption

SymDec(.)(.) Symmetric Decryption

H(.) Hash Function

V Voter

pkV Voter Public Key

skV Voter Private Key

pkS Election Specific Public Key

skS Election Specific Private Key

voteref Vote Reference

Easym Encrypted Vote

SignEncV ote Signed and Encrypted Vote

r Random Number

CL Candidate List

xxiii



c Candidate number

m Number of Candidates

Q Potential Verification Parameter List

q Verification Parameter

xxiv



CHAPTER 1

Introduction

Technology is frequently used in daily routines for governmental or banking services
via the internet using computers or smart devices. Among these services, internet
voting (i-voting) has the potential of increasing election participation, allowing voters,
especially handicapped citizens or those citizens living abroad, to cast a vote without
going to polling stations on a specific day or time. However, related security issues
have not been taken into extensive consideration when the users install applications
onto their devices. In particular, by not paying attention to the permissions given to the
applications, users turn their smart devices into potential targets for malicious malware
that may be used to obtain critical information about users [33].

Estonian i-voting protocol with its verification mechanism present an interesting case
because Estonian protocol avoids the additional pre- and post-channels as seen in the
Norwegian protocol, in which verification is performed via smart devices. Since 2005
Estonian i-voting system is still being used and the number of i-voters increased in
every election. In 2005 local election trial, while only 1.9% of all votes were cast us-
ing the i-voting system, more specifically, 5.5%, 14.7%, 15.8%, 24.3%, 21.2%, 31.3%
and 30.5% of votes were cast using the i-voting system in the later elections, respec-
tively [12]. These statistics show that the increasing number of citizens prefer to use
i-voting system. Accordingly, security concerns related the i-voting system should be
considered more seriously.

The i-voting system aims to be at least as secure as traditional paper ballots, mean-
ing that i-voting should meet both cast-as-intended and recorded-as-cast requirements
[29, 5]. As mentioned in [20, 18], client-side weaknesses were experienced in both
the cast-as-intended and recorded-as-cast mechanisms during Estonia’s 2011 parlia-
mentary elections, so called Student’s Attack. Therefore, after the 2011 election, a
verification mechanism was added to the system that gives voters the opportunity to
verify their votes stored in the system. The verification mechanism pilot was first
tested in the 2013 local elections and then used in the European Parliament Elections
and in 2014, and the Parliamentary Elections in 2015. Although using an application
on a smart device for voting verification solves the aimed security weaknesses, it may
bring with it additional problems related not only to the voter privacy, but also to the
secrecy of election results.

The limitations of the system to fulfill the aimed security level is given in [5]. In the

1



following, we group the important limitations of Estonian i-voting system [11] under
the general electronic voting limitations [4] to make the concept more clear:

• Voter Eligibility: Eligibility is decided under the legislation. All eligible voters
should authenticate before casting vote (authorization of voters) and it is allowed
to vote more then once (possibility for electronic re-vote). However, the last vote
should be taken into account as voter’s choice (one person-one vote). Within a
certain time of i-voting period, conventional voting opportunity is given to the
voters who prefer to vote manually or want to vote again (supremacy of conven-
tional voting). Obviously, all the Voters should have equal voting opportunity
and every vote should have equal weight (uniformity of voting).

• Secrecy and Privacy: It should be impossible to determine the voter’s intention,
voting time, date and device (privacy of the fact of voting). Additionally, the
system should not leak any information about the vote and the voter (secrecy of
vote).

• Accuracy : It is expected that votes are received, stored and tallied accurately by
the Central System (controllability of vote counting). Additionally, vote count-
ing process must be repeatable (repeatability of vote counting).

• Integrity : Nobody should not be able to change the vote and give falsified votes
to the system (prohibition of falsification of votes).

• Verifiability : There are two kinds of verifiability. Individual verifiability: every
voter should be able to check his/her own vote. Universal verifiability: Every-
body is able to check the election results without knowing the intention of voters.

• Secrecy of voting results : Nobody should get any idea about the partial results
of the election before the voting period ended.

• Receipt-freeness : It should not be possible to prove voter’s intention (unprov-
ability of voting).

• Incoercibility : The system should protect voters from coercion and vote buying
issues.

• Auditability : The processes before and after the election should be transparent
(transparency). And, all the processes should be audited by independent autho-
rized auditors (auditability).

• Operability : The election system must be easily operable and stable.

• Practicality and scalability : The system should be easy to understand, practi-
cal to use and flexible to deploy for large scale elections.

All the aforementioned limitations are not easy to satisfy simultaneously. There are
some conflicted limitations and they should be solved by using special techniques or
trade off between the limitations must be considered. “Privacy of the vote” aims to
release the link between the vote and voter while “individual verifiability” needs a

2



connection in between. “Privacy of the voter” provided by encrypting the vote us-
ing a publickey cryptography while digital signature on the encrypted vote ensures
the “secrecy of the vote”. Using this technique provides “individual verifiability” to
the system. On the other hand, using double envelope method exterminates the rela-
tion between the vote and voter during counting process. Another conflict is between
“receipt-freeness” and “verifiability”. While a receipt is required for verification, the
system is expected to be receipt-free. We solved this problem by encrypting a voter
defined verification parameter using symmetric key cryptography.

1.1 Previous Work

After the 2011 elections in Estonia, Heiberg et al. published a paper discussing new
attacks and weaknesses resulting from client and server side weaknesses [18, 20]. The
designers of the Estonian i-voting system improved it by adding a verification mech-
anism. Like in the Norwegian i-voting scheme, using SMS services as a post channel
was a possible solution; however, not all citizens may register their mobile numbers.
Furthermore, the post channel mechanism was not only rather expensive, it also had
various problems, as already seen in the Norwegian election system [32]. After a pe-
riod of research and analysis, it was agreed that an individual verification mechanism
using smart devices without requiring any personal information would be the most
suitable verification channel for the Estonian i-voting system [20].

The designers of the Estonian i-voting system claim that it was as reliable and secure as
the conventional election [10]. Contrary to their security claims, in [31], Springall et al.
reported that the system is plagued by serious procedural and architectural weaknesses
enabling client-side attacks that skew the results of the election undetectably bypass-
ing the ID card system and smart device verification mechanism. Additionally, it is
claimed that there are several inadequate procedural controls, lax operational security,
insufficient transparency and several vulnerabilities in the published code. Moreover,
in the same work, Springall et al. implemented a mock election in which they experi-
enced both client and server side attacks. In responses the authors presented their rec-
ommendations on how to eliminate inadequate procedural controls and lax operational
security weaknesses. In [19], Heiberg et al. researched ways to eliminate transparency
weaknesses using an auditing mechanism.

The future brings more security and privacy risks for mobile devices [16, 22, 38]. For
example, users can be fooled into installing malicious applications on their devices or
to grant unauthorized remote access [16, 22, 35, 38, 7, 2, 13, 15]. Hence, an adversary
can easily identify the owner of the smart device via private information, such as one’s
IMEI number, location, contacts, phone number, emails, and photos. More specifically,
IMEI numbers might also be required to be record into a central system beforehand
which are used to identify and authenticate the mobile device whenever there is a
connection request to a carrier. Those IMEI numbers not recorded into the system can
be banned from communicating (e.g., [21]). For these reasons, one should never be
able to obtain any information about the intention of a voter from the voting details on
the verification device .

3



1.2 Contributions

In this thesis, we point out an important privacy issue in the verification system of
the Estonian i-voting system. The motivation of our attack comes from the fact that
all voter details including the real vote are displayed by the verification device. We
stress that if the smart device running the verification application is corrupted, then
vote privacy can be easily compromised by sniffing the voting verification process on
a device of which the voter is most probably the owner. In fact, smartphone users
generally install mobile applications without paying attention to potential security or
privacy issues. Therefore, assuming the corruption of a smart device is relevant due to
the huge number of increase in malwares during the last years [16, 22, 35, 38, 7, 2, 13,
15]. Hence, it is possible for an adversary to acquire an IMEI number and other private
information, such as location, contacts, phone number, emails, and photos from smart
devices including voting details, thereby compromises the voters’ privacy.

The goal of this thesis is to mitigate the current privacy leakage of the Estonian i-voting
verification mechanism. In this respect, we propose a new, privacy-preserving, and an
efficient verification mechanism even in the case that a corrupted verification device is
used. Our proposal is quite practical since only a few additional symmetric encryptions
on the verification device is performed. Secondly, the secrecy of the election results
may also be violated within a wide range attacks. Specifically, attacker may obtain
information about the partial results of the election before it has concluded. Heiberg
et al. stated that any sufficiently strong verification mechanism facilitates both vote
selling and coercion [20]. In this thesis, however, our updated verification mechanism
ensures the same security level without leaking any information about the vote.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, the necessary preliminaries,
underlying cryptographic mechanisms and the components of the system are explained
in detail. We start with the symmetric key encryption and hash functions. Since we
propose a mechanism using symmetric systems, we include the advanced encryption
standard. Then, we briefly give the properties of the cryptography hash functions. The
basic idea of public key cryptography and digital signatures are also introduced in this
chapter. Moreover, we present decryption mix-net, re-encryption mix-net, El-Gamal
encryption scheme, TLS, ID card, threshold key management, double envelope voting
method, and QR codes in this section.

In Chapter 3, current Estonian i-voting election, security and threat model of the system
are explained. More specifically, we present system architecture and participating par-
ties, central system, Estonian I-voting protocol, security analysis of Estonian I-voting
system, a new potential privacy issue with the Estonian verification mechanism, and
complete set of attack scenarios.

The proposed verification mechanism is explained in Chapter 4. This section begins
with a warmup proposal. Then, our main proposal, verification mechanism with addi-

4



tional symmetric encryption, is described. This section also includes security analysis
and complexities of the mentioned systems compared.

Finally, in Chapter 5, updated malicious scenarios are given and thesis is concluded.

5



6



CHAPTER 2

Preliminaries

In this section, we will present the general setup and symbols needed for presenting
our protocol.

2.1 Symmetric Key Encryption and Hash Functions

Symmetric key cryptography algorithms use the same secret key, assumed to be shared
beforehand, for both encryption and decryption processes. Even if key sharing seems
to be a drawback in comparison to public key schemes, symmetric key systems are
much faster. The security of these systems relies on computationally infeasible key
spaces. We are going to denote a symmetric key encryption process with Esym =
SymEnck(M) and decryption with M = SymDeck(Esym), where k is a secret key
and M is a plaintext to be encrypted.

A cryptographic hash function is a one-way function which is used to create fixed
length digest or tag for an input data with variable length. We are going to denote the
hashing process with H(M), where M is a message. AES-256 and SHA3-256 can be
utilized for symmetric encryption and hash function, respectively [26, 27].

In this thesis, we are going to utilize symmetric key systems and hash functions. Even
though any secure symmetric key system and hash function, which comply the key
length requirements, are compatible to our proposed protocol, AES-256 and SHA3-
256 can be utilized, in which case one would have SymEnck(M) := AES-256k(M)
and H(M) := SHA3-256(M).

2.1.1 Advanced Encryption Standard (AES)

In 1997, the National Institute of Standards and Technology (NIST) started a compe-
tition and Rijndael by Joan Daeman and Vincent Rijmen was selected as the advanced
encryption algorithm (AES). In this algorithm, there are three different key sizes that
are 128, 192, and 256 bits. The algorithm with a 128 bits key has 10 rounds, the one
with a 192 bits key has 12 rounds, and the one with a 256 bits key has 14 rounds. Note
that each round has a round key that is generated by the original key. Moreover, a

7



round gets a 128 bits output, and yields a 128 bits output.

AES consists of four basic steps. These steps are defined as the layers and they are the
basics of the rounds.The layers are the followings:

• The ByteSub Transformation (BS)

• The ShiftRow Transformation (SR)

• The MixColumn Transformation (MC)

• The AddRoundKey Transformation (ARK)

A round of the AES algorithm is given in Figure 2.1. A round of the algorithm starts
with the ByteSub transformation. Then, ShiftRow, MixColumn, and AddRoundKey
transformations are applied.

Figure 2.1: A round of the AES algorithm

Now, we explain the details of transformations. First, we explain how to represent the
inputs. The algorithm takes a 128 bits input, and it is embedded into a 4× 4 matrix of
bytes. It is given in the following matrix: a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

 .
In this matrix, each entry is a byte and totally there are 16 bytes that is equivalent to
128 bits. So, each block of size 128 bits is represented as a 4 × 4 matrix of bytes.
Note that there is a one to one relation between a byte and an element of the finite field
GF (8). In AES algorithm, elements of the matrix are seen as the elements of GF (8)
where the irreducible polynomial of GF (8) that defines the finite field is

x8 + x4 + x3 + x+ 1,

8



and the product of the elements of GF (8) is reduced to this reduction polynomial in
order to multiply these elements.

The ByteSub transformation takes each element of the state matrix and transform to the
another element of the GF (8). The procedure works as follows: First, the entry of the
matrix is converted to an element of GF (8). This is a straightforward process and the
bits of the byte that is converted are considered as the coefficients of the polynomial
that is the representation of the elements of the finite field. Then the inverse of this
element in GF (8) is computed and x8 + x7 + x3 + x2 is added to the result.

In the ShiftRow transformation, the elements of the matrix obtained by applying the
ByteSub transformation are shifted cyclically to the left with the following order: The
first row is not changed. The second row is shifted to the left by one, the third one
is shifted to the right by two, and the third one is shifted to the left by three. This is
shown as follows:

ShiftRow


 a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3


 =

 a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a2,0 a2,1
a3,3 a3,0 a3,1 a3,2

 .
The next transformation is the MixColumn. In this transformation, the current state
matrix that is the output of the ShiftRow transformation is multiplied from left by the
following fixed matrix: 00000010 00000011 00000001 00000001

00000001 00000010 00000011 00000001
00000001 00000001 00000010 00000011
00000011 00000001 00000001 00000010

 .
The next step is to add the round key to the output of the MixColumn. This step is
called the RoundKey addition. In each round, we use a different key that are derived
from the original key. In order to establish the round keys, first we arrange a 4 × 4
matrix of bytes including the original key. This matrix is then enlarged by adding 40
more columns. Let W (0),W (1),W (2),W (3) the columns obtained form the original
key. We obtain the other columns by using the following recursions

W (i) = W (i− 4)⊕W (i− 1)

if i is not 4` for a positive integer `, and

W (i) = W (i− 4)⊕ T (W (i− 1)),

if i is 4` for a positive integer `. Note that T is a transformation. If a, b, c, d are
the columns of the W (i − 1), then T first shifts these to obtain b, c, d, a. Then, these
elements are applied to ByteSub. Let the result be e, f, g, h. Lastly, the round constant
is computed as follows:

r(i) = 00000010(i−4)/4

in GF (28). Then, we obtain

T (W (i− 1)) = (e⊕ r(i), f, g, h).

9



By using this method, we obtain the all new columns.

The encryption starts with ARK. Then, a round of encryption consists of ByteSub (BS),
ShiftRow (SR), MixColumn (MC), AddRoundKey (ARK) in the given order. Note that
in the last round, we apply BS, SR, ARK, i.e., we do not apply MC in the last round.
On the other hand, in order to decrypt the cipher text using AES algorithm, the inverse
of the each transformation is applied to the cipher text in the reverse order. The inverse
of the BS is called InvByteSub (IBS), the inverse of SR is called InvShiftRow (ISR),
the inverse of MC is called InvMixCoulumn (IMC) , and the inverse of ARK is itself.
The decryption begins with ARK, ISR, IBS. Then we apply ARK, IMC, ISR, IBS in
all other rounds. Finally, ARK is applied.

For more details, we refer to [34].

2.1.2 Cryptographic Hash Functions

A cryptographic hash function takes a message of arbitrary length and yields a fixed
length output called message digest. There are three main properties of cryptographic
hash function. The first one is that it must compute the hash of a message fast. The
other property is that it must be one-way function. This means that given a hash value
y, it should be difficult to find a messagemwhose hash value is y. Finally, it must have
the strong collision free property. This means that it must be computationally hard to
find two messages whose hash values are the same.

There are several popular hash functions that are widely used in cryptographic appli-
cations. The well known algorithms are MD5, SHA-1, SHA-2, and SHA-3. Crypto-
graphic hash functions are used in password storage and data integrity check.

2.2 Public Key Encryption and Digital Signature

In public key cryptography, each user has two keys called public and secret. The
public key of the user is known by everybody while the secret key must be kept secret
by the user. Making the public key known should not reveal any information on the
secret key. In order to provide such a relation between these keys, computationally
intractable problems in mathematics are used. Two of such hard problems widely used
in cryptography are integer factorization problem (IFP) and discrete logarithm problem
(DLP). Finding all prime factors of an integer n is called IFP. On the other hand, for a
given cyclic group G, its generator g, and an element h ∈ G, DLP is to find the integer
k such that h = gk in G. The multiplicative group of finite fields and a cyclic subgroup
of the group of elliptic curve points over finite fields are generally used in DLP based
cryptography. Some of the well known public key algorithms based on IFP are RSA
and Paillier. On the other hand, ElGamal encryption algorithm is an example for the
public key cryptography based on DLP.

Public key systems are not as efficient as the symmetric systems. Therefore, public key

10



systems are generally used for encryption of small size messages such as a symmetric
encryption key or a digital signature. Encryption, decryption, generation and verifica-
tion of digital signatures with public key algorithms work as follows: Let A and B two
people who want to communicate. Assume that A wants to send a message M to B.
For encrypting M , A uses the public key of B and encrypts M with the public key of
B. In order to decrypt, B uses his own secret key. On the other hand, for authentica-
tion, A first reckons the hash value of the message, and then encrypts this hash value
with her secret key to construct the digital signature. In order to verify the signature,
B decrypts the signature using A’s public key, and then compare it with the hash value
of the message. If they are equal, the signature is validated. Otherwise, the message
has not been sent by A or it has been altered during the transmission.

RSA algorithm is one of the frequently used public key algorithm in practical applica-
tions. In this system, each user has a public key pair denoted by (n, e) and a private
key d. These parameters are generated as follows: First, two prime numbers p ans q
are generated. It is suggested that in order to provide a secure systems they should be
at least 1024 bits so that the RSA algorithm becomes 2048 bits. First, n is computed
as p · q. Then, an integer e is selected in a such way that the multiplicative inverse of it
modulo (p− 1)(q − 1) exists. This e is one of the other components of the public key
pair. Then, the private key d is computed as

d ≡ e−1 mod (p− 1)(q − 1)

where d is the multiplicaitve inverse of e modulo (p − 1)(q − 1). It should be noted
that (p− 1)(q − 1) is denoted by φ(n) and it is called Euler’s phi function. Moreover,
for e to be invertible, the greatest common divisor of e and φ(n) must be one, i.e., they
are relatively prime to each other.

To encrypt a message m, we use the public key of the receiver. Since public key of the
receiver is known by everybody, we obtain his public key pair. Let it be (n, e). Then,
the cipher text c for a message m is computed as follows:

c ≡ me mod n.

In order to decrypt, the receiver uses the following decrption:

m ≡ cd mod n.

In order to use the RSA algorithm in digital signatures, the one who wants to sign
a message uses his own private key. To this end, first he computes the hash value h
of a message m because it is computationally infeasible to use public key algorithm
for long messages. Therefore, the hash value of the message is used rather than the
message. Then, he computes

s ≡ hd mod n

where s is the digital signature of the message. In order to verify the digital signa-
ture, the one who wants to verify the digital signature computes se mod n and checks
whether this is equal to the h or not. If they are equal then the digital signture is
accepted, otherwise it is rejected.

11



One of the important notion in cryptography is the semantic security which enables
deriving an information about some unknown message from the ciphertext of that mes-
sage. Direct use of many cryptosystems do not satisfy semantic security. For example,
RSA encryption maps a certain plaintext to a certain ciphertext. This property reveals
some statistical properties of the ciphertext, and therefore RSA is a semantically in-
secure algorithm. In order to overcome this security issue, randomization techniques
are used in the encryption algorithms. In order to make RSA semantically secure,
Optimal Encryption Padding (OAEP) scheme is used . Moreover, Probabilistic Signa-
ture Scheme (PSS) is employed for RSA digital signature scheme to provide semantic
security. The underlying public key encryption scheme of i-voting systems must be
semantically secure (some well-known algorithms are RSA-OAEP [17], Paillier [28],
and ElGamal [14]).

2.3 Mix-net Protocols

The aim of using mix-net is to shuffle the encrypted votes of k voters by erasing the re-
lation between the votes and the voters and making the votes anonymous. In Estonian
scheme, mix-net is used during double envelope method before sending the encrypted
votes to Vote Counting Server (VCS) from Vote Storage Server (VSS). There are two
types of mix-net protocols, namely decryption mix-net and re-encryption mix-net. The
protocols are begin with an initial encryption E. After, there are several mix phases
mix1, · · · ,mixt applied where t ∈ Z is the number of mix phases which provides
robustness. Every round of mix phases are begin with a secret permutation. In decryp-
tion mix-nets, mix phases are followed by partial decryption whereas in re-encryption
mix-nets, mix phases are followed by re-encryption phases. In re-encryption mix-nets
a final decryption phase is applied.

The protocols are given in detail below:

2.3.1 Decryption Mix-net

Every mixing step of decryption mix-net has a public and private key pair (sk, pk), i.e.,
for every mix step i, mixi has the key pair (ski, pki). Using the key pair, in every step,
input data is decrypted and then secretly permuted. The permuted data is the input of
the next mix step.

The initial encryption E has all the public keys pk1, · · · , pkt of every mix steps. Each
input encrypted by the public key pki, i = t to 1. In other words, if we denote a ballot
by Bi,

Ci = E(Bi) = E(pk1 · · ·E(pkt−1, E(pkt, Bi))).

Note that, decryption mix-net protocol neither verifiable nor robust.

12



2.3.2 Re-encryption Mix-net

A re-ecryption mix-net begins with an initial encryption phase E, then followed by
several mix phases mixi, · · · ,mixt which mix by scrambling, re-encrypting, and a
final decryption D. El-Gamal Encryption has a property that suits re-encryption. So,
in general El-Gamal encryption scheme is used for encryption.

2.3.2.1 El-Gamal Encryption Scheme

Public Key: (p, g, y)
Secret Key: x such that gx = y(modp)
Message to be encrypted: m
Encrypted message: (gr,myr), r ∈R Zq, Q is a large prime dividing p − 1, g is a
generator of the subgroup of elements whose orders divides q and all operations are
done modulo p.

Note that, Re-encryption of an encrypted message (a, b) = (gr,myr) by a random
number s ∈R Zq is (ags, bys) = (gr+s,myr+s). This re-encryption preserves the
message same while encrypted form of the message completely different.

2.3.2.2 El-Gamal Based Re-encryption Mix-net

1. An El-Gamal public-key (p, g, y) is generated in a distributed manner.

2. (a) Encrypt all the ballots B1, · · · , Bk by using the El-Gamal encryption with
the public key (p, g, y), C(i,0) = El −Gamal(p,g,y)(Bi) for i = 1, · · · , k.

(b) Send (C(1,0), · · · , C(k,0)) to bulletin board.

3. For i = 1 to t, re-encrypt each ciphertext (C(1,i−1), · · · , C(k,i−1)) with the step
key pair (pki, ski) and permute the resulting ciphertexts using a secret permuta-
tion.

4. After the last step, decrypt the ciphertexts (C(1,t), · · · , C(k,t)) in a distributed
manner where t achieve robustness.

Achieving Verifaibility and Robustness During the protocol, every mix server prove
that i has done the correct operation. In other words, each mixi i required to prove that

C(j,i) = El −Gamal(Cπ(j),i−1) for j = 1, · · · , n

where π is a permutation and El − Gamal is a El-Gamal encryption with the key
(p, g, y). In Figure 2.2, general mix-net protocol is given [1].

Suppose, a ciphertext C2 = (α2, β2) = (gu,m2y
u) is a re-encryption of a ciphertext

C1 = (α1, β1) = (gt,m2y
t).

13



Figure 2.2: General Mix-net Protocol

Definition 2.1. A tuple (g, y, gr, yr) is a DDH tuple if it is of the form (g, gx, gr, grx)
[25].

Remark 2.1. c2 is a re-encryption of c1 if and only if (g, y, α2

α1
, β2
β1
) is a DDH tuple.

Proof. Consider the tuple where y = gx

(g, y,
α2

α1

,
β2
β1

) = (g, gx, gu−t,
m2

m1

(gx)u−t).

If m2 = m1, then (g, gx, gr, (gx)r) is DDH where r = u− t

For more details, the reader may refer to [8, 9, 23, 3, 30]

2.4 TLS

In order to use the public key cryptography in practical applications, the management
of public keys is essential. To this end, a public key infrastructure (PKI) has been de-
veloped. In this system, certificates and validation operations are conducted. For each
entity or individual, a certification is formed by a certification authority (CA). Certifi-
cates include identity information and the public key, and this information is signed by
CA. One type of certificate is the X.509 that requires each user has a certificate and
Figure 2.3 shows an example of such certificate.

14



Figure 2.3: An example of X.509 certificate

One can easily obtain the public key of an entity or individual by decrypting this signa-
ture using the public key of CA. This system is commonly used in the HTTPS commu-
nication securely using Secure Socket Layer (SSL) and its slight modification Trans-
port Layer Security (TLS). These protocols provide secure communication by encrypt-
ing messages with symmetric algorithms. In order to establish the common key for this
symmetric system, the handshake protocol which employs the public key algorithms
is realized. Therefore we may assume that the communication between VotingApp and
VFS in Estonian system is a secure channel and transmitted data are not known to any
attacker.

2.5 ID Card

In Estonia, every citizen has an ID card with cryptographic abilities to authenticate
and access to the governmental services [6]. In Estonian Scheme, the public and secret

15



keys of the Voters are provided by national ID-cards where the secret key of the Voter
skV is stored in the ID-card and it is assumed that it is not possible to extract the key
from the card. That is why the ID cards are used to authenticate the election server and
to sign the ballots using pkV and skV as well.

2.6 Threshold Key Management

Each of the election specific public and private key pair (pkS, skS) of the Central
Server is generated by independent parties and auditors using m of n threshold cryp-
tography which ensures that at least m of them must cooperate in order to re-generate
the same key again. The secret key of the Central System, skS , is stored in an Hardware
Security Module (HSM) isolated from the internet by an air gap and the election spe-
cific public key, pkS , is made public and embedded in a voting application VotingApp
and a verification application VerifApp.

Similarly, (pkV , skV) denotes a public and private key pair of a user V . Easym =
AsymEncpkV (M) denotes a randomized encryption of a message M using the public
key of the V . Moreover, SignskV (M) denotes the signature of a user V on a message
M using the private key of the V .

At the end of the election, skS must be exterminated since it may cause a privacy
leakage by disclosing the cast votes.

2.7 Double Envelope Voting Method

Double envelope voting methods is one of the simplified methods which also gives at
least the same security level with the traditional envelope method. It is very impor-
tant to design it similar to the traditional method since the public confidence in the
election process should remain strong. That is why in Estonian i-voting, Double En-
velope Scheme is designed to be as close as the traditional scheme which ensures the
anonymity of the votes and eligibility of the voters.

In the former method,

1. The ballot is put into a blank inner envelope without any identity info.

2. Inner envelope is placed in an outer envelope which has the identity info of the
voter.

3. The envelope is sent to the voter’s polling station.

4. First the eligibility of the voter is checked.

5. If the voter is eligible, the inner and outer envelopes are separated.

6. Then the inner envelope is put into the ballot box.

16



7. The ballot box is shuffled.

8. Anonymous inner envelopes are opened and counted.

Figure 2.4: Double Envelope Vote Generation in Voter Application

On the other hand, double envelope voting scheme requires two key pairs to protect
the vote secrecy and voter privacy. The first key pair is the election’s public-secret
key pair. Public key of the election embedded in the voter application will be used to
encrypt the vote to ensure the security of the vote while election’s secret key is stored
in a secure HSM in the NEC’s VCS. The other key pair is the public-secret keys of
the voter. Public key of the voter will be used to sign the vote to prove the identity of
the voter while the public key of the voter already public and also stored in election
committee’s server.

Double envelope voting method is used during the ballot generation and during the
voter verification. The ballot first encrypted by election’s public key to ensure the
security then signed by voter’s secret key to identify the voter. So, during counting

17



Figure 2.5: Double Envelope Vote Counting in VCS

process, it is easy to find who the voter, even though it is not possible to find what the
vote is as in the double envelope method.

As shown in Figure 2.4 and 2.5, the Double Envelope Voting Method can be expressed
as follows:

1. Voting application encrypts the vote consisting chosen candidate and random
number chosen by the voter by election’s public key.

2. Voting application signs the encrypted vote by voter’s secret key.

3. Signed and encrypted vote sends to the Vote Storage Server (VSS) through VFS.

4. First the eligibility of the voter is checked by public key of the Voter. If the voter
is eligible, only the last vote is used for the rest of the counting process.

5. After signature verification, encrypted vote is stored in VSS anonymously.

6. Anonymous encrypted votes are shuffled by a permutation such as Mixnet Op-
eration [24].

7. Shuffled encrypted anonymous votes are transmitted to VCS using a media such
as DVD.

8. Anonymous encrypted votes decrypted by the election specific secret key.

9. Finally, the votes are counted.

2.8 Quick Response (QR) Codes for Verifiability

QR codes are commonly used for storing all type of data in a small area with a high-
speed reading capacity and error correcting capacity using Reed-Solomon Codes.

QR codes are established by black and white dots namely modules. The number of
modules contained in the QR code decides the data capacity of that code. So, the size
of the QR code must be decided based on the requirement of the data stored. There are

18



several number of different QR code types depending on where it will be used; it is also
called Module Configuration. Reader may refer to the standards defined by ISO/IEC
18004:2015 [37].

2.8.1 QR Code Types.

There are 5 main types of QR codes for different purposes:

Figure 2.6: QR Code of Types 1 and 2. The Figure is taken from [36]

1 QR Code Type 1 and 2: It is the most frequently used QR code type which can
be readable from any direction through position detection patterns located at the
three corners of the code. There are two types with the same appearance shown
in 2.6. The main difference is the capacity of the code they can store.

(a) QR Code Type 1: The original QR code type. The largest version can store
1 to 167 numerals, which is version 14 and has 73 by 73 modules.

(b) QR Code Type 2: It is the improved version of model 1 since the capacity
demand of model 1 is not enough for some cases. There are 40 different
module configurations from the minimum sized version 1 containing 21 by
21 modules to the minimum sized version 40 containing 177 by 177 mod-
ules which is capable of storing 7,089 numerals. Every version contains 4
more modules than previous version, i.e., version 2 contains 25 by 25 mod-
ules. Currently, the term QR code refers to model 2. The standardization
of QR code is defined in ISO/IEC18004.

2 Micro QR Code: Though it does not support the readable from any direction
property, this type requires smaller coding area than QR Code. The main weak-
ness of Micro QR code is it can store at most 35 numerals. The standardization
of Micro QR code is defined in JIS X 0510 and shown in 2.7.

19



Figure 2.7: Micro QR Code. The Figure is taken from [36]

3 iQR Code: This type of code allows to store data smaller than Micro QR code
and larger than QR Code Type 2. iQR codes do not necessarily a square shapes,
it may be in a rectangular shape. In other words, the size of the code can be
arranged up to the size of the free space where it will be placed. A sample of
iQR code is shown in 2.8. The largest size of iQR code can store 40,000 numerals
and has 422 by 422 modules.

4 SQRC: This type of codes looks the same with QR Codes can store secret and
public part separately. Even though the code can only readable by specific types
of scanners, it cannot guarantee the security of the stored data. A sample of SQR
code is shown in 2.9.

5 Frame QR Code: In the center of the code, there is a canvas area in which you
can place every type of shape of graphics that does not interfere the readability
of the code. This type of codes are better to use in promotional tools. A sample
of Frame QR code is shown in 2.10.

2.8.2 Error Correcting Capability

QR Codes have different usage purposes. So, there is an error correction capability
to restore the data even if the code is dirty or damaged. Error correction capability
is the implementation of Reed-Solomon Code to the data which is intended to send
correctly. There are four different error correction levels, namely L, M , Q and H . For
the purpose of the i-voting, it is better to use the lowest error correction level L can
be adjusted to the needed data capacity. In Table 2.1 you can find the error correction
levels for total codewords according to the operating environment.

20



Figure 2.8: iQR Code. The Figure is taken from [36]

Table 2.1: QR Error Correction Capability

level L Approx 7 %
level M Approx 15 %
level Q Approx 25 %
level H Approx 30 %

2.8.3 Deciding the Version of QR Code

It is important to decide the version number of QR code up to the required data ca-
pacity. You can find the steps about how to determine the size of the QR code in the
following:

1. Choose a type of the data to be coded.

2. Choose a data correction level up to the environment the QR code will be used.

3. Find the required size of the data at the intersection of the data correction level
and data type in the table.

As an example of determining the version number of 56 characters is given in Table
2.2.

21



Figure 2.9: SQRC. The Figure is taken from [36]

Figure 2.10: Frame QR Code. The Figure is taken from [36]

22



Table 2.2: Table of QR Code Version Number [36]

Version Modules ECC Level Data bits Numeric Alphanumeric Binary
1 21x21 L 152 41 25 17

M 128 34 20 14
Q 104 27 16 11
H 72 17 10 7

2 25x25 L 272 77 47 32
M 224 63 38 26
Q 176 48 29 20
H 128 34 20 14

...
...

...
...

...
...

...
10 57x57 L 2192 652 395 271

M 1728 513 311 213
Q 1232 364 221 151
H 976 288 174 119

...
...

...
...

...
...

...
40 177x177 L 23648 7089 4296 2953

M 18672 5596 3391 2331
Q 13328 3993 2420 1663
H 10208 3057 1852 1273

23



24



CHAPTER 3

Estonian Internet Voting Protocol and its Security Analysis

Estonian elections begin with announcing the voter lists and candidate lists one and
half weeks before the voting period starts. Voting period is divided into i-voting and
paper ballot periods. I-voting period is seven-day long. During i-voting period, voters
are allowed to vote as many times as they want. In other words, the voters can change
or replace their votes. Before the paper ballot period, multiple votes and the votes of
ineligible voters are excluded from the lists. For the paper ballot period, i-voter lists
are sent to the polling divisions to replace the paper ballots by i-votes. When the voting
period is over, all the votes are tallied and results are announced [11]. You can find the
voting schedule of the elections in Figure 3.1.

Figure 3.1: Election Schedule

3.1 System Architecture and Participating Parties

Estonian i-voting has been distributed to four parties to realize the system, which are
explained briefly in the following subsections:

3.1.1 Voter, Voting Application (VotingApp), and Verification Application (Veri-
fApp)

1. Voter (V): Voters denoted by V are the citizens of Estonia who are allowed to
vote in the elections according to electoral legislation.

2. Voting Application (VotingApp): The applications that Vs use for voting pur-
poses on their PCs via a smart card reader and the application is published by

25



Figure 3.2: General Architecture

National Electoral Committee (NEC). This application can be downloaded be-
fore the elections for the related operating systems with the election specific
public key pkS and TLS certificate to establish a secure connection with the Vote
Forwarding Server VFS. Every V uses her national ID card to identify herself to
the polling commission through this application.

3. Verification Application (VerifApp): VerifApp is to check the cast vote by an
application installed on a smart device having an internet connection and a cam-
era. The details of voting and verification process will be explained in the next
subsection. Note that, although VotingApp is published by election authority,
VerifApp may be published by any person or organization.

3.1.2 Central System

Central system has three main parts that are forwarding, storing and counting phases
under the responsibility of NEC.

1. Vote Forwarding Server (VFS): It is the only server in the Central System that is
accessible by outside applications. The V accesses the VFS to authenticate, gets
the required data for voting and verification stages, receives the signed votes etc.
In other words, it is the communication channel of the Central System with the
Vs. VoterAPP and VFS authenticates via secure TLS connection.

2. Vote Storage Server (VSS): After voting and verification process, the votes, voter
identity and all related info about the votes are stored in the storage server after
checking the eligibility of the votes and voters. In other words, VSS is the storage

26



of the votes during the voting period of the election. At the end of the period, it
removes double votes and cancels ineligible voters. After that, votes are prepared
for the counting server.

3. Vote Counting Server (VCS): It is an offline server of the Central System. Elec-
tion specific skS are stored in this server by a HSM to provide security to the
keys and counting phase. Since it is the only server which has the skS , it is
separated from the VFS and VSS by an air gap. Therefore, the votes are trans-
ferred to VCS by a DVD after removing digital signatures from the votes, i.e.,
anonymized votes are transfered to VCS on a media. In this way the relation
between the voters and votes are eliminated.

3.1.3 Privacy Preserving Auditing Mechanism

There is an auditing mechanism in which all the processes and results of the election
can be checked by an independent committee while the privacy of the voters are pre-
served. Since it is out of scope of this thesis, the issue will not be mentioned here. The
reader can find the details in [19].

3.1.4 Key management

The election specific keys are generated by m of n threshold key management as ex-
plained in 2.6. Besides, a voter V keys are managed by national ID cards 2.5. Details
can be found in [6].

3.2 Estonian I-Voting Protocol

For simplicity of describing the voting protocol, we divide it into voting and verifica-
tion phases which are explained in detail below.

3.2.1 Voting Stage:

The voting phase begins by VotingApp authenticating the VFS via a TLS connection.
A voter V receives the related candidate list CL = {c1, · · · , cm} where ci’s are candi-
dates’ unique identity values andm denotes the number of candidates. Next, V chooses
a candidate c ∈ CL to cast the vote. VotingApp generates a signed and encrypted vote
SignEncVote = SignskV (Easym) where Easym = AsymEncpkS(c, r) and r ∈ {0, 1}k
is a random number, k ∈ N. Next, VotingApp sends SignEncVote to VFS, and then
receives a vote reference voteref which is a receipt to be used in the verification phase.

1. A voter V: Authenticates to VFS through VotingApp using a national ID Card.

27



Figure 3.3: Voting stage of the Estonian i-voting protocol

2. VFS: Sends CL = {c1, . . . , cm} to VotingApp where m is the number of candi-
dates.

3. V: Chooses c from CL

4. VotingApp:

(a) Generates a random number r.
(b) Encrypts c and r by pkS , Easym = AsymEncpkS(c, r).

(c) Signs Easym by skV , i.e. SignEncVote = SignskV (Easym) .
(d) Sends SignEncVote to VFS.

5. VFS:

(a) Stores SignEncVote.
(b) Generates voteref.
(c) Sends voteref to VotingApp.

3.2.2 Verification Stage:

Note that the verification stage is optional and only ensures whether the vote has been
correctly stored in VFS. It is also important to note that for security purposes, VerifApp
and VotingApp should not be installed on the same device. Additionally, it should be
noted that VerifApp scans the QR code by camera instead of obtaining it via an internet
connection.

During the verification phase, VerifApp receives r and voteref from VotingApp, request
the related data from VFS by the voteref, and computes the vote. Finally, VerifApp
shows the recorded vote on the screen. If the voter confirms the correctness of the cast
vote then the voting procedure ends successfully, otherwise, V puts an alarm.

1. (a) VotingApp: Generates a QR code including r and voteref and show on the
screen.

(b) VerifApp: Scans QR code by camera.

28



Figure 3.4: Verification stage of the Estonian i-voting protocol

2. VerifApp: Sends voteref to VFS.

3. VFS: Sends Easym and CL to VerifApp.

4. VerifApp:

(a) Computes Ej
asym = AsymEncpkS(cj, r) for all j = 1, · · · ,m.

(b) Finds k such that Easym
?
= Ek

asym for some k ∈ {1, · · · ,m}.
(c) Shows ck on the screen.

5. Voter V: Checks ck
?
= c.

(a) If ck = c, the vote is received and stored correctly to VFS.
(b) Else, V puts an alarm (which basically shows that malware is present).

In the next section, we will show that there is a practical and realistic attack that may
become a real issue.

3.3 Security Analysis of Estonian I-voting System

A security analysis of the current i-voting system of Estonia is discussed in detail in
[20, 31]. Estonian i-voting security model assumes that either VotingApp or the device
that runs VotingApp is malicious. We note that the assumptions VerifApp and VFS col-
lude maliciously or VerifApp and VotingApp collude maliciously are not realistic since
the duty of VerifApp is to independently check the correctness of VFS and VotingApp.
Furthermore, as noted in [5], limited number of corrupted voters’ devices are accepted
as a reasonable risk.

The main attack scenarios are about ballot integrity, the reliability of the voting system,
and coercion resistance.

29



• Manipulation Attacks. Manipulation attacks are consist of modifications to
a vote without the knowledge of the V . These attacks can be performed by
changing the vote to either a predetermined or a random candidate.

Student’s Attack. In Estonia’s 2011 parliamentary elections, the Student’s Attack
exposed that neither ballot integrity and secrecy in the election was guaranteed
[18]. The attack is based on installing a malware to the device that runs Votin-
gApp. This malware is designed so that it undermines VotingApp and while the
vote is being cast, it silently diverts or cancels the intended vote. At first, this at-
tack was not considered as a thread (see [18, 31]), but then, a verification phase
is integrated into the system [20]. In the papers [18, 31], it is also mentioned
that there is still a manipulation attack risk if both VotingApp and VerifApp are
malicious and work in a coordinated manner. In contrast, it is also stated that it
is very hard to install malicious applications to different devices and if the attack
realized in large scale, it can be detected easily. In both papers, it is concluded
that, there is no known realistic manipulation attack risk to Estonian i-voting
system.

Ghost Click Attack. A malicious software that runs on the same device as Votin-
gApp can obtain the PIN code of the ID card during the voting process. When
the ID card is reinserted, the malware may re-vote silently without being de-
tected [31]. Although this is an interesting attack,it is not included in the scope
of this thesis.

• Reliability Issues. By decreasing voters’ confidence in the i-voting system, an
election can be held questionable without there being any violation to vote se-
crecy. Therefore, an effective verification mechanism must be set up to prevent
such attacks [5]. In fact, fairness and the secrecy of the elections should be satis-
fied, that is in any paper based or electronic voting scheme, the election’s partial
or total results would not be revealed before the tallying process.

• Coercion Attacks. An i-voting system must prevent a voter from being able to
prove to a coercer how he voted. Therefore, the system should provide receipt-
freeness or coercion resistance. Allowing vote updates (i.e., re-voting) is
the countermeasure to prevent such attacks. In the counting phase of Estonian
i-voting scheme, the last vote is accepted as the voter’s intention. Even if a voter
is enforced to vote a specific candidate, coercer cannot be sure about whether
re-voting has been done after or not. This makes vote buying and coercion in-
efficient since coercer can never be sure about whether voter re-vote again or
not.

3.4 A New Potential Privacy Issue with the Estonian Verification Mechanism

Beside the above-mentioned attacks, we would like to emphasize that there is a po-
tential privacy weakness about the verification mechanism. Even though adding a
verification mechanism to the system in 2011 solved Student’s attack risk, it may yield
an unforeseen privacy weaknesses. In this thesis, we are focusing a new privacy issue

30



in which sniffing random number and encrypted vote data during verification phase is
easy and instantly the cast-vote may be deduced.

Privacy measures are different than coercion measures. For coercion or vote buying,
the coercer directly communicates the V and she knows who the coercer is and also
aware of the coercion. But for the privacy issues, an attacker can get the data and de-
duce the chosen candidate while V does not perceive herself attacked. Another prob-
lem is that, coerced Voters may re-vote before the i-voting phases ended or in paper
ballot phase. Despite that, choice of the candidate is up to V’s own will and once it
is revealed, there is no way to obscure it. Moreover, sniffing cast-votes wide range
gives idea about the election results, this contradicts the secrecy of the election results
property explained in Section 1. Additionally, for passive listening, it is enough to get
data using any other malicious application installed on the device. Therefore, Estonian
i-voting system needs additional countermeasures against privacy leakage especially
for VerifApp. Considering all possible attack scenarios, Estonian Election System ful-
fills sufficient security level. In contrast, there are still some privacy weaknesses in the
system which is explained in Section 3.

3.4.1 Privacy Attacks

Recall that VerifApp is integrated into the i-voting system to be resistant against Stu-
dent’s Attack. VerifApp can be freely developed by a NEC, by an open source com-
munity or even by one able to write her own verification software. In contrast, most
citizens cannot develop or control the trustability of VerifApp even it is downloaded
from a known source. It is not realistic to assume that VerifApp is honest. The Es-
tonian i-voting system is designed in this manner and VerifApp explicitly outputs the
voters’ intention in plain form.

Even if VerifApp itself were to work properly, any malicious application running on the
same device may sneak into the processes in an attempt to monitor inputs and outputs.
Therefore, it would be sufficient to have any privileged application running on the same
device [16, 22, 35, 38, 7, 2, 13, 15]. As soon as an adversary manages to install such
a privileged application, the only thing that needs to be done is to grab a screen shot
of the device while VerifApp displays the output to V . After that, the cast vote will
also be known by the adversary. Furthermore, since IMEI numbers and other private
information (e.g, contacts, phone number, location, emails, photos) can be obtained
by a malicious application loaded on the verification device, an adversary can obtain
V’s identity. Hence, privacy of V can be easily compromised. We highlight that this
privacy issue may lead to coercion or vote buying (e.g., an adversary can force voters
to install a malicious application on their smart devices for later check the their actual
votes).

On the one hand, when considered on the individual level, this attack causes privacy
leakage. On the other hand, when applied over a wide range, this attack may also
promise the reliability and, more importantly, the secrecy of the elections. Because, as
explained in [11], in any election the results would not be exposed before the count-
ing process has been partially or totally completed. Therefore, the possibility of a

31



corrupted verification device must be included in the design criteria of the Estonian
i-voting system, the current Estonian i-voting system requires additional countermea-
sures to guard against this privacy leakage.

3.5 Complete Set of Attack Scenarios

In Table 3.1, we show the complete list of possible scenarios in the case of malicious
parties with possible countermeasures. More concretely, we analyze the scenarios as
follows:

• Malicious VFS. In this case, there is a full privacy leakage where VFS may
leak all stored information as a result of potential Insider Attacks [31]. As a
countermeasure, auditing mechanisms with independent auditors can verify the
computations of VFS [19].

• Malicious VotingApp and its adversarial environment. During the preparation
of signed encrypted vote, a malicious VotingApp can change the voter’s intention
c ∈ CL by c∗ where c 6= c∗ and then sends encrypted form of c∗ instead of c.
During the verification, VerifApp will reveal that the ballot does not reflect the
voter’s own will as intended and puts an alarm. V re-votes again from another
device.

• Malicious VerifApp and its adversarial environment: It is possible to sniff
data from a smart device using any malicious application installed on the device
[16, 22, 35, 38, 7, 2, 13, 15]. Leaking verified votes from the smart devices gives
an opportunity to get some idea about the election results before the election
ended. This attack violates one of the important limitation secrecy of election
results of the Estonian i-voting system. Another attack is that using a device’s
IMEI number allows one to match the vote with V . In other words, the link
between the vote and V is revealed. The attack disrupts the privacy of V which
is one of the main limitation of the Estonian i-voting system. Note that, when
the voter’s intention revealed, there is no way to recover.

32



Table 3.1: Possible Attacks and Countermeasures for Different Malicious Scenarios

If Malicious Potential Attacks Countermeasures
VFS Privacy Leakage Privacy Preserving Auditing

Insider Attack Privacy Preserving Auditing
Manipulation Attack VerifApp

VotingApp Reputation Attack VerifApp
Ghost Click Attack No Countermeasure

VerifApp Reputation Attack Re-voting
Coercion Solved in this thesis
Privacy Attack Solved in this thesis

VFS and VotingApp Manipulation Attack Privacy Preserving Auditing
VerifApp and VotingApp Manipulation Attack Assumption
VerifApp and VFS Full privacy Leakage Assumption

33



34



CHAPTER 4

Our Proposed Verification System

Our security model extends the Estonian scheme and eliminates the need to trust the
verification device on which the VerifApp runs. Namely, an adversary may also obtain
any information that the VerifApp gathers from the network or its outputs. More for-
mally, the probability of correctly guessing the voter’s intention should be the same
as the conditional probability of guessing the voter’s intention correctly given in Veri-
fApp’s inputs and outputs. We stress that this additional assumption makes the Estonian
i-voting scheme vulnerable because VerifApp outputs the voter’s intention explicitly. In
order to overcome this vulnerability, a cost efficient solution will be to output a mask-
ing value for each candidate and to let voters check these results with their own eyes
and decide whether to confirm the vote or not only possible by utilizing VotingApp and
VerifApp together.

The aim of the verification mechanism update is to solve the trustability problem of
verification mechanism. Therefore, we assume that VotingApp, VFS, and VerifApp may
be malicious one by one. On the other hand, the assumptions that VerifApp and VFS
are malicious and that collude and VerifApp and VotingApp are malicious and collude
are not realistic since the duty of VerifApp is to check the correctness of VFS and
VotingApp for each vote cast. Accepting the collusion means that using the VerifApp
is meaningless in the system. Additionally, assuming that VotingApp and VFS are
malicious but do not simultaneously collude is not different than the assumption that
VotingApp and VFS are malicious one by one, which is already considered.

4.1 Warmup: Verification Mechanism with Fake Votes

In the protocol given here has an importance to understand the idea of getting rid of
privacy leakage. In the Estonian protocol, random number, r, used during ballot cre-
ation in VotingApp and is also sent to VerifApp for verification. It yields a privacy
weakness since an attacker sniffing VerifApp may get r and other parameters Easym
and CL to learn the voter intention. This weakness, also mentioned in Section 3.3,
can be tackled by masking r by sending some additional fake random numbers with
it. More concretely, these fake random numbers are sent to anonymously render the
actual vote against a malicious VerifApp. In order to do that, at the end of the voting
stage of Estonian protocol, VFS generates and sends m different random numbers to

35



the VotingApp. VotingApp permutes all these random numbers, including voter’s ran-
dom number, at a predetermined place to mask the random number and sends to the
VerifApp. In verification stage, VerifApp will receive m verified encrypted fake votes
generated in VFS by using the fake random numbers and randomly selected candidates
from the list CL where only one of them is the real vote. After required computations,
the VerifApp shows candidates in a different order on verification device’s screen. The
V checks only the predetermined place of the real vote manually and will not take the
others into consideration. In this way, VerifApp does not learn the real cast-vote. By
the use of fake votes in verification phase, protocol overcomes the privacy leakage.

The cost of this new verification mechanism is m2 +m public key encryption which
takes considerably more than the current Estonian system. There are some ways to
make the verification phase more efficient, such as using less fake votes, or Elliptic
Curve Cryptography algorithms can be considered as the encryption algorithm to de-
crease the complexity and time requirement of the system to applicable levels. Since
this is just a warm-up scheme, we will not mention about such efficiency tricks. As a
result, this system overcomes a serious privacy leakage by increasing complexity of the
verification phase since privacy is one of the main concerns of reliability of an election
system.

We are now ready to present our electronic voting protocol.

4.1.1 Voting Stage:

Figure 4.1: Voting Stage

1. A Voter V: Authenticate to VFS through VotingApp using an ID Card.

2. VFS: Send CL = {c1, · · · , cm} where m is the number of candidates.

3. V: Choose c from CL.

4. VotingApp:

(a) Generate a random number r.
(b) Encrypt c and r by election specific public key pkS , Easym = EncpkS(r, c).
(c) Sign Easym by V’s private key skV , V = SignskV (Easym).
(d) Send V to the VFS.

36



5. VFS

6. (a) Store V .
(b) Generate Vote Reference voteref.
(c) Generate m random numbers r1, · · · , rm.
(d) Send voteref and r1, · · · , rm to VotingApp.

4.1.2 Verification Stage:

Figure 4.2: Verification Stage

1. V: Choose a number 1 ≤ α ≤ m+ 1.

2. VotingApp:

(a) Permute P{r, r1, · · · , rm} s.t. Pα = r.
(b) Generate a QR code QR(rj1 , · · · , rjm+1 , voteref).

3. VerifApp:

(a) Scan the QR code.
(b) Send voteref to the VFS.

4. VFS:

(a) Match rji and ci, Encrypt Ei,j
asym = EncpkS(ci, rji) for i = 1, · · · ,m.

(b) Send CL, Easym and Ei,j
asym, i = 1, · · · ,m to the VerifApp.

5. VerifApp:

37



(a) Compute Ei,j
asym = EncpkS(ci, rj) where i, j = 1, · · · ,m.

(b) Generate a list Out s.t.,

i. Check Ei,j
asym

?
= Ek

asym for some k ∈ [1,m+ 1]

ii. If Ei,j
asym = Ek

asym, Outk = ck.
iii. Show Out on screen.

6. V:

(a) If Outα = c, the vote is verified
(b) Else, put an alarm (which basically shows that malware is present).

Note that, this solution has costly public key operations which cannot be used on
resource-constrained mobile devices. In the next section we propose another mech-
anism which significantly reduces the verification cost from m2 +m asymmetric en-
cryption to only m asymmetric and m symmetric encryptions, in other words, it only
requires m symmetric decryptions in addition to the mentioned Estonian i-voting sys-
tem in Section 3.

4.2 Our Main Proposal: Verification Mechanism with Additional Symmetric
Encryptions

We are now ready to describe our proposal. The actual flow of the protocol is similar to
the Estonian i-voting system. However, to make the verification phase resistant against
the attacks described above, we introduce a new t-bits random verification parameter
q ∈ {0, 1}t that will only be known to VotingApp and VFS1.

The V chooses q as a verification parameter and securely sends it to VFS during the
voting phase. Furthermore, during the verification phase, VFS computes H(Easym)
and uses it as a symmetric key to transmit Esym = SymEncH(Easym)(q) to VerifApp.
VerifApp will perform a number of decryptions depending on the number of candidates
in order to find the correct encryption key. Hence, it outputs a list Q = {q1, · · · , qm}
of possible verification parameters with the corresponding candidates. Finally, the
V will manually check the output list on the VerifApp’s screen with her own eyes to
learn the given q on the position of the chosen candidate during the voting phase. The
verification phase ends successfully if q exists and its index is the same as the index
of the candidate chosen by the V in the list CL. More formally, VerifApp obtains
r and voteref from VotingApp and CL and Esym = SymEncH(Easym)(q) from VFS
where Easym = AsymEncpkS(c, r). Based on this information, VerifApp computes
qi = SymDecH(Ei

asym)(Esym) for all ci ∈ CL where Ei
asym = AsymEncpkS(ci, r).

Here, the trick is to encrypt q with the hash of the encrypted vote as the symmetric
key (i.e., H(Easym)). In the verification phase, VerifApp tries all candidates in order to

1 The length of t depends on the hash function, and 256 bit can be used because of AES256 encryption
algorithm.

38



generate the possible keys (hash of the possible encrypted votes). In order to complete
the verification successfully, the index of the chosen candidate and the index of q in
Q should match. Otherwise, either an alarm would be raised, or the voting procedure
should be re-started, or the verification phase should be run in another device. It should
be noted that manually finding the correct verification parameter with eyes is an im-
portant security measure so as not to reveal a voter’s intention to VerifApp. Otherwise,
if the chosen candidate is displayed in plain form as in the Estonian i-voting scheme,
adversaries may obtain a proof of their vote which may lead vote buying or coercion
problems.

The voting and verification phases explained in detail below.

4.2.1 Voting Stage:

Figure 4.3: The voting phase of the proposed protocol

1. A voter V: Authenticates to VFS through VotingApp using a national ID Card.

2. VFS: Sends CL = {c1, . . . , cm} to VotingApp where m is the number of candi-
dates.

3. V: Chooses c from CL and a t-bits random verification parameter q ∈ {0, 1}t.

4. VotingApp:

(a) Generates a random number r ∈ {0, 1}k.
(b) Encrypts c and r by pkS , Easym = AsymEncpkS(c, r).

(c) Signs Easym by skV , SignEncVote = SignskV (Easym) .

(d) Sends SignEncVote and q to VFS2.

5. VFS:

(a) Stores SignEncVote and q.
(b) Generates voteref.
(c) Sends voteref to the V for verification phase.

2 We note that q can also be signed by the voter to ensure its source and correctness.

39



4.2.2 Verification Stage:

Figure 4.4: The Verification phase of the proposed protocol

1. (a) VotingApp: Generates a QR code including r and voteref and show on the
screen.

(b) VerifApp: Scans the QR code by the camera.

2. VerifApp: Sends voteref to VFS.

3. VFS:

(a) Computes H(Easym).

(b) Encrypts Esym = SymEncH(Easym)(q).

(c) Sends the ordered m-tuple CL and Esym.

4. VerifApp:

(a) For each cj ∈ CL, j = 1, · · · ,m, computes;

i. Ej
asym = AsymEncpkS(cj, r).

ii. The hash value H(Ej
asym).

iii. qj = SymDecH(Ej
asym)(Esym).

(b) Shows the ordered m-tuple Q = {q1, · · · , qm} on the screen.

5. V: Finds the indices of q ?
= qα ∈ Q = {q1, · · · , qm} and c ?

= cβ ∈ {c1, · · · , cm},
where α, β ∈ {1, · · · ,m}.

(a) Checks α ?
= β.

(b) If α = β, the vote is received and stored correctly in VFS.

(c) Else, the V puts an alarm (which basically shows that malware is present).

40



4.3 Security Analysis of Our Verification Mechanism

Now we are ready to prove the correctness and security of our mechanism.

Theorem 4.1 (Correctness). The verification phase of the proposed protocol ensures
both the properties recorded-as-cast (the vote is stored in VFS) and cast-as-intended
(the vote reflects the intention of the voter).

Proof. During the verification phase, the VerifApp first obtains r and voteref from
VotingApp. Note that, it is trivial to obtain the encrypted voteEasym from the SignEncVote =
SignskV (Easym). Next, VerifApp requests the relevant data according to the voteref
from VFS. VFS responds with the ordered m-tuple candidate list CL = {c1, · · · , cm}
and Esym = SymEncH(Easym)(q). Now suppose that the V votes for the candidate
cβ ∈ CL. Then, VerifApp completes the verification phase by computing Ei

asym =
AsymEncpkS(ci, r) for each ci ∈ CL and outputs the list Q = {q1, · · · , qm} where
qi = SymDecH(Ei

asym)(Esym).

Finally, the V searches for q (which was on the screen of the voter computer) on the
verification device and finds the index β ∈ {1, · · · ,m} where qβ = q. Note that
because of the encryption scheme this index is unique with very high probability. The
decryption of Esym will only result q = qβ at the index of cβ .

Therefore, this scheme guarantees that the ballot reflects the intention of the V (i.e., it
has been cast-as-intended) and is correctly stored in VFS (i.e., it has been recorded-as-
cast).

Theorem 4.2 (Privacy against malicious VotingApp and its adversarial environment).
Our verification mechanism described in Section 4.2 is secure against malicious Votin-
gApp or adversarial environment of VotingApp.

Proof. Suppose VotingApp or its adversarial environment cheat and try to send the vote
for another predefined candidate. However, the V can easily detect this adversarial
action via VerifApp. Therefore, the verification stage is ended with an alarm and the
V re-votes from another VotingApp.

Suppose a malicious VotingApp tries to find the appropriate parameters to mock the
VerifApp by finding a value r∗ for the candidate c∗ 6= c ∈ CL satisfying

AsymEncpkS(c
∗, r∗) = AsymEncpkS(c, r) = Easym.

For the verification, VerifApp will compute the value q = SymDecH(Easym)(Esym) and
gets the same verification parameter q which is in the position of the chosen candidate
c. Therefore, the V will not realize that her vote is cast to another candidate c∗. The
computational cost of finding r∗ for certain c, r and c∗ such that AsymEncpkS(c

∗, r∗) =

AsymEncpkS(c, r) = Easym is at most 2k encryptions where k denotes the length of
r (which is infeasible since k >> 80). Alternatively, an attacker may guess r∗ with
probability of 1

2k
which is negligible.

41



Table 4.1: Computational Costs.

Theorem 4.3 (Privacy against malicious VerifApp and its adversarial environment).
Our verification mechanism described in Section 4.2 is secure against malicious Ver-
ifApp or adversarial environment of the VerifApp and does not leak any information
about the V and her intention.

Proof. For the verification phase, VerifApp receives the parameters voteref, r, CL =
{c1, · · · , cm} and C. Additionally, it computes the lists Q = {q1, · · · , qm} and
{E1

asym, · · · , Em
asym} where m is the number of candidates. It can be easily checked

if the received parameters or the computed values reveal any information about the
V’s intention. Therefore, an attacker sniffing VerifApp can only learn whether a voter
already has checked her vote.

Note that VerifApp never learns which qj is the correct q since the V checks the index
of verification parameter, which reveals the intention of the V , by her own eyes from
the ordered list Q. Therefore, an attacker sniffing VerifApp should guess the correct
q with probability of 1

m
which is no more than guessing the candidate randomly. So,

VerifApp leaks no information about the choice of the V .

Theorem 4.4 (Privacy against malicious VFS). Our verification mechanism described
in Section 4.2 is secure against a malicious VFS.

Proof. Our proposed verification mechanism uses the same voting phase with the Es-
tonian i-voting system. The only difference is our mechanism is to the random verifi-
cation parameter q which gives no information about the vote. Therefore, the proof of
the security of malicious VFS is exactly the same with the Estonian scheme which is
explained in [5].

4.4 Complexity Analysis

In Table 4.1, the complexity analysis of the proposed verification mechanism is tab-
ulated. The cost of ridding the privacy leakage in the verification phase using sym-
metric key cryptography requires almost the same cost as the current Estonian i-voting
scheme, specifically 1 extra symmetric encryption for VFS and m extra symmetric
encryptions for VerifApp.

42



Table 4.2: Shortened verification parameter on the screen on of the voter computer.

Table 4.3: Original and shortened verification values.

4.4.1 Usability and Optimization Improvement for the Verification q

The size of q is important due to security concerns. On the other hand, during the veri-
fication stage, the decryptions qj of Esym = SymEncH(Easym)(q) for each j = 1, . . . ,m

are listed in Q = {q1, · · · , qm} where each qi denotes a t-bits number. A voter has to
confirm the original q in Q with her own eyes.

In the large scale, finding the index of q in the verification device screen may be im-
practical. Instead of searching the value q itself, it is also possible to build a mechanism
that sufficiently supports comparing only a predefined subset of bit positions of q and
q1, · · · , qm. In this way, a voter can easily compare the q on VotingApp to the qj’s
on VerifApp. More concretely, the protocol will run as defined in Section 4.2, but
both VotingApp and VerifApp will only display the values depending on the ` < t of
different predefined positions pi ∈R {1, · · · , t} for i = 1 . . . ` of q and q1, · · · , qm.

As an illustration, we present a sample shortening operation in Table 4.2 for the param-
eter q =‘ThEParameterWillBelongToremember’. Let ` = 4 and the position numbers
are chosen as 8-bits words at the positions p1, p2, p3 and p4 respectively 2, 19, 21 and
30. Then, shortened value ’hlnb’ is shown on the screen instead of q itself. In Table
4.3, step 5 of verification phase is presented as an example which shows the values on
VerifApp screen where ci is the i-th candidate and qi is the related verification value for
i = 1, · · · ,m.

43



44



CHAPTER 5

Conclusion

Internet voting schemes are evolving and being used practically which aim to guarantee
at least the same security level offered by classical paper ballot voting systems. After
the 2011 elections in Estonia, a verification phase was integrated into the Estonian
system to check whether the vote has been correctly recorded. However, this phase
eventually displays the cast vote in a plain form which may cause a privacy weakness
and compromise the secrecy of the election results. The designers of the Estonian
scheme overlooked the fact that the device running VerifApp may also be compromised.
Thus, there is no difference between trusting a device running VotingApp and trusting a
device running VerifApp. Moreover, the Estonian system has a weakness that VerifApp
may leak voter’s identity and intention if the verification device is malicious.

In this thesis, we have proposed a new verification mechanism that does not disclose
any information about a voter’s intention, if it is used by corrupted verification de-
vices. Hence, our proposed verification system is strong against the aforementioned
privacy weaknesses. Additionally, the system is strong against the people see verifi-
cation device’s screen, i.e. they cannot figure out the chosen candidate in the election
with high probability then guessing it randomly. The proposed verification mechanism
prevent the system from estimating election results even if some corrupted verification
devices are used. Initially, we proposed a warm-up system that is strong against pri-
vacy leakage though it requires more time and more computation power. At the same
time warm-up system can be considered as a system to understand the underlying idea
of the proposed system. The second proposed system, on the other hand, provides a
much more efficient system by decreasing the computation time and power consump-
tion.This system yields a remarkably more efficient way to reach better security level.

In Table 5.1, possible attacks and countermeasures for different malicious scenarios
for our updated verification mechanism are presented. As it is seen from the table,
the proposed systems are the countermeasures for the coercion and the privacy attack
when the VerifApp is malicious.

45



Table 5.1: Possible Attacks and Countermeasures for Different Malicious Scenarios
for Our Updated Verification Mechanism

If Malicious Potential Attacks Countermeasures
VFS Privacy Leakage Privacy Preserving Auditing

Insider Attack Privacy Preserving Auditing
Manipulation Attack VerifApp

VotingApp Reputation Attack VerifApp
Ghost Click Attack Future Work

VerifApp Reputation Attack Re-voting
Coercion Updated VerifApp

(proposed in this thesis)
Privacy Attack Updated VerifApp

(proposed in this thesis)
VFS and VotingApp Manipulation Attack Privacy Preserving Auditing
VerifApp and VotingApp Manipulation Attack Assumption
VerifApp and VFS Full privacy Leakage Assumption

As a future work, investigating a mechanism that resists the Ghost Click Attack and
does not rely on additional post-channel communication would be very interesting.

46



REFERENCES

[1] Mix network, 19 April 2016, https://en.wikipedia.org/wiki/Mix_
network#/media/File:Decryption_mix_net.png.

[2] Iphone and android apps breach privacy, Octo-
ber 2013, http://online.wsj.com/article/
SB10001424052748704694004576020083703574602.html.

[3] B. Adida, Lecture 17: Introduction to electronic voting, 19 April 2016, http:
//courses.csail.mit.edu/6.897/spring04/L17.pdf.

[4] K. M. R. Alam and S. Tamura, Electronic voting - scopes and limitations, pp.
525–529, IEEE, 2012, ISBN 978-1-4673-1153-3.

[5] A. Ansper, A. Buldas, A. Jurgenson, M. Oruaas, J. Priisalu, K. Raiend, A. Vel-
dre, J. Willemson, and K. Virunurm, E-voting concept security: Analysis and
measures.

[6] E. C. Authority, Id-card, http://www.id.ee/index.php?id=30470.

[7] O. Bach, Mobile malware threats in 2015: Fraudsters are still two steps ahead,
13 April 2016, https://securityintelligence.com/mobile-malware-threats-in-2015-
fraudsters-are-still-two-steps-ahead/.

[8] D. Boneh and P. Golle, Almost entirely correct mixing with applications to vot-
ing, in Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, CCS 2002, Washington, DC, USA, November 18-22, 2002, pp.
68–77, 2002.

[9] D. Chaum and T. P. Pedersen, Wallet databases with observers, in Advances in
Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 16-20, 1992, Proceedings, pp. 89–105,
1992.

[10] E. I. V. Committee, Using id-card and mobil-id, https://www.valimised.
ee/eng/kkk.

[11] E. N. E. Committee, 2010 e-voting system. general overview-2010, Jan-
uary 2016, http://vvk.ee/public/dok/General_Description_
E-Voting_2010.pdf.

[12] N. E. Committee, Statistics about internet voting in Estonia, 20 April 2016,
http://www.vvk.ee/voting-methods-in-estonia/engindex/
statistics.

47

https://en.wikipedia.org/wiki/Mix_network#/media/File:Decryption_mix_net.png
https://en.wikipedia.org/wiki/Mix_network#/media/File:Decryption_mix_net.png
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://online.wsj.com/article/SB10001424052748704694004576020083703574602.html
http://courses.csail.mit.edu/6.897/spring04/L17.pdf
http://courses.csail.mit.edu/6.897/spring04/L17.pdf
http://www.id.ee/index.php?id=30470
https://www.valimised.ee/eng/kkk
https://www.valimised.ee/eng/kkk
http://vvk.ee/public/dok/General_Description_E-Voting_2010.pdf
http://vvk.ee/public/dok/General_Description_E-Voting_2010.pdf
http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics
http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics


[13] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, Pios: Detecting privacy leaks in
ios applications, in Proceedings of the Network and Distributed System Security
Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th Febru-
ary 2011, 2011.

[14] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, in IEEE, 4-31, pp. 469–472, Transactions on Information Theory.,
1985.

[15] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth,
Taintdroid: An information-flow tracking system for realtime privacy monitor-
ing on smartphones, in 9th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada,
Proceedings, pp. 393–407, 2010.

[16] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, A survey of mobile
malware in the wild, in Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM ’11, pp. 3–14, ACM, New
York, NY, USA, 2011.

[17] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, RSA-OAEP is secure under
the RSA assumption, in Advances in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara, California, USA, August
19-23, 2001, Proceedings, pp. 260–274, 2001.

[18] S. Heiberg, P. Laud, and J. Willemson, The application of i-voting for Estonian
parliamentary elections of 2011, in A. Kiayias and H. Lipmaa, editors, 3rd Inter-
national Conference on E-voting and Identity, Tallinn, Sep 29th-30th, 2011, vol-
ume 7187 of Lecture Notes in Computer Science, Springer-Verlag, 2012, ISBN
978-3-642-32746-9.

[19] S. Heiberg, A. Parsovs, and J. Willemson, Log analysis of Estonian internet vot-
ing 2013-2015., IACR Cryptology ePrint Archive, 2015, p. 1211, 2015.

[20] S. Heiberg and J. Willemson, Verifiable internet voting in Estonia, in 6th Interna-
tional Conference on Electronic Voting: Verifying the Vote, EVOTE 2014, Lochau
/ Bregenz, Austria, October 29-31, 2014, pp. 1–8, 2014.

[21] ICTA-Information and C. T. Authority, Ceir-central equipment identity regis-
ter, 19 April 2016, http://www.mcks.gov.tr/en/KonuDetay.php?
BKey=47.

[22] A. K. Jain and D. Shanbhag, Addressing security and privacy risks in mobile
applications, IT Professional, 14(5), pp. 28–33, Sept 2012.

[23] M. Jakobsson, A. Juels, and R. L. Rivest, Making mix nets robust for electronic
voting by randomized partial checking, IACR Cryptology ePrint Archive, 2002,
p. 25, 2002.

[24] M. Jakobsson, A. Juels, and R. L. Rivest, Making mix nets robust for electronic
voting by randomized partial checking, in Proceedings of the 11th USENIX Secu-
rity Symposium, pp. 339–353, USENIX Association, Berkeley, CA, USA, 2002,
ISBN 1-931971-00-5.

48

http://www.mcks.gov.tr/en/KonuDetay.php?BKey=47
http://www.mcks.gov.tr/en/KonuDetay.php?BKey=47


[25] M. Matsui, Advances in Cryptology - ASIACRYPT 2009: 15th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Tokyo, Japan, December 6-10, 2009, Proceedings, LNCS sublibrary: Security
and cryptology, Springer, 2009, ISBN 9783642103650.

[26] National Institute of Standards and Technology, FIPS 197: Advanced Encryption
Standard (AES), Federal Information Processing Standards Publication Series,
2001.

[27] National Institute of Standards and Technology, FIPS 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions, Federal Information
Processing Standards Publication Series, 2015.

[28] P. Paillier and D. Pointcheval, Efficient public-key cryptosystems provably secure
against active adversaries, in K.-Y. Lam, E. Okamoto, and C. Xing, editors, Ad-
vances in Cryptology - Proceedings of ASIACRYPT ’99, volume 1716 of LNCS,
pp. 165–179, Springer, Singapore, 1999.

[29] S. Popoveniuc, J. Kelsey, A. Regenscheid, and P. Vora, Performance requirements
for end-to-end verifiable elections, in Proceedings of the 2010 International Con-
ference on Electronic Voting Technology/Workshop on Trustworthy Elections,
EVT/WOTE’10, pp. 1–16, USENIX Association, Berkeley, CA, USA, 2010.

[30] R. Rivest, Lecture 18: Mix-net voting systems, 19 April 2016, http://
courses.csail.mit.edu/6.897/spring04/L18.pdf.

[31] D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti, M. MacAlpine,
and J. A. Halderman, Security analysis of the Estonian internet voting system, in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’14, pp. 703–715, ACM, 2014, ISBN 978-1-4503-2957-6.

[32] I. S. G. Stenerud and C. Bull, When reality comes knocking Norwegian experi-
ences with verifiable electronic voting., in Electronic Voting, volume 205 of LNI,
pp. 21–33, GI, 2012, 1617-5468.

[33] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda, Evolution,
detection and analysis of malware for smart devices, IEEE Communications Sur-
veys and Tutorials, 16(2), pp. 961–987, 2014.

[34] W. Trappe and L. C. Washington, Introduction to Cryptography with Coding The-
ory (2Nd Edition), Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2005, ISBN
0131862391.

[35] B. Uscilowski, Security response- mobile adware and malware analy-
sis, October 2013, http://www.symantec.com/content/en/
us/enterprise/media/security_response/whitepapers/
madware_and_malware_analysis.pdf.

[36] D. Wave, Types of qr codes, http://www.qrcode.com/en/index.html
(Accessed on: 30 April 2016).

49

http://courses.csail.mit.edu/6.897/spring04/L18.pdf
http://courses.csail.mit.edu/6.897/spring04/L18.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/madware_and_malware_analysis.pdf
http://www.qrcode.com/en/index.html


[37] D. Wave, Qr code standard iso/iec 18004:2015, 2000, http://www.iso.
org/iso/catalogue_detail.htm?csnumber=62021 (Accessed on:
30 April 2016).

[38] H. Zhu, H. Xiong, Y. Ge, and E. Chen, Mobile app recommendations with se-
curity and privacy awareness, in Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’14, pp.
951–960, ACM, 2014, ISBN 978-1-4503-2956-9.

50

http://www.iso.org/iso/catalogue_detail.htm?csnumber=62021
http://www.iso.org/iso/catalogue_detail.htm?csnumber=62021


CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Muş, Köksal
Nationality: Turkish
Date and Place of Birth: 09 September 1982, İstanbul
Marital Status: Married
Phone: +90 505 249 0759

EDUCATION

Degree Institution Year of Graduation
M.S. Department of Cryptography, 2009

Institute Of Applied Mathematics, METU
B.S. Department Of Mathematics, 2004

Yildiz Technical University, İstanbul
High School Beylerbeyi Haci Sabanci High School, İstanbul 1999

PROFESSIONAL EXPERIENCE

Year Place Enrollment
2006-2011 Mathematics Department, METU Research Assistant
2013-2015 METU Cryptography Department, Senior Researcher

Institute of Applied Mathematics

PUBLICATIONS

K. Muş, M.S. Kiraz, M. Cenk, İ. Sertkaya, A Potential Privacy Leakage in the Estonian
Voting Verification Mechanism, Submitted.

A. Doganaksoy, B. Ege, K. Mus, Extended Results for Independence and Sensitivity of
NIST Randomness Tests, 3rd National Cryptology Symposium, Ankara,Turkey, 2008.

51


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTERS
	Introduction
	Previous Work
	Contributions
	Organization

	Preliminaries
	Symmetric Key Encryption and Hash Functions
	Advanced Encryption Standard (AES)
	Cryptographic Hash Functions

	Public Key Encryption and Digital Signature
	Mix-net Protocols
	Decryption Mix-net
	Re-encryption Mix-net
	El-Gamal Encryption Scheme
	El-Gamal Based Re-encryption Mix-net
	Achieving Verifaibility and Robustness



	TLS 
	ID Card 
	Threshold Key Management
	Double Envelope Voting Method
	Quick Response (QR) Codes for Verifiability
	QR Code Types.
	Error Correcting Capability
	Deciding the Version of QR Code


	Estonian Internet Voting Protocol and its Security Analysis
	System Architecture and Participating Parties
	Voter, Voting Application (VotingApp), and Verification Application (VerifApp)
	Central System
	Privacy Preserving Auditing Mechanism
	Key management

	Estonian I-Voting Protocol
	Voting Stage:
	Verification Stage:

	Security Analysis of Estonian I-voting System
	A New Potential Privacy Issue with the Estonian Verification Mechanism
	Privacy Attacks

	Complete Set of Attack Scenarios

	Our Proposed Verification System
	Warmup: Verification Mechanism with Fake Votes
	Voting Stage:
	Verification Stage:

	Our Main Proposal: Verification Mechanism with Additional Symmetric Encryptions
	Voting Stage:
	Verification Stage:

	Security Analysis of Our Verification Mechanism
	Complexity Analysis
	Usability and Optimization Improvement for the Verification q


	Conclusion
	REFERENCES
	CURRICULUM VITAE

