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ABSTRACT

HIERARCHICAL APPROACH TO SEMI -DISTRIBUTED
HYDROLOGICAL MODEL CALIBRATION

¥ zdemir, Ayfer
PhD, Department of Geodetic and Geographic Information Technologies
Supervisor: AssocLelPojolfu Dr . Uj ur

Co-Supervisor: Dr. Karim Abbaspour

March2016,164 pages

In recent years, water resources were negatively affected from uncontrolled
agricultural, industrial activities and settlements on river basins. Hydrologists and
water resource managers have widely used hydrologic models as tools for water
resources development, water environment preservation, water resources allocation
and undestanding utilizationIn order to apply hydrological models successfully in
practical water resources investigations, careful calibration aodriainty analysis

are neededdydrological models are validated by comparing the outputs of the models
to meastements. The deviations of the outputs from the ground truth, the error, can
be the result of uncertainties of the inputs, uncertainties of the parameters of the model
and the model itself. When a hydrologic model is calibrated, the parameters of the
modelare finetuned within a predefined range to minimize an error metric created
from error terms. One such hydrological transport modehésSoil and Water
Assessment Tool (SWAT) which is also integrated into a Geogrdpfarmation
System (GIS) thasupports the input of topography, land use, gk and other

digital data. SWAT is a semdistributed hydrological model thasimulates
hydrological processes at subbasin leveldayiving Hydrologic Response Units
(HRU) by thresholding areas of soype, land use anthanagementombinations.
Currently, there are automated calibration methods for SWAihg nonlinear

optimizaion such as Levenbefgacquart or global optimization methods like Genetic
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Algorithms. These optimization approaches that try to calibrate very complex models
have some drawbacks: 1) Sirthesearch space is large ahémodel is complicated,

the convergeretakes very long time, r the same reasons, probabilityfimiding a

local optimum is large, 3final result is too sensitive to the initial estimates of the
parameters, 4hesizes of the HRE which are the areas over which the parameters
are assumed to be constant, are left to the user and their relation to thegqecéoof
calibration/validation is unknown. In this thesis, a hierarchigalarseto-fine)
approach to HRU selection aedlibration isinvestigated. The HRUare generated
automatically by a script and the number of HRAgsincreasd at each level of the
hierarchy The calibration results at each level are usenhitial values for the next
level. This way, we obtain not only an increase in the speed and accuracy of the
calibration, but we also find out the optimum HRU sizes and Hjederation
parameters. The algorithm developed in this thesis is tested on two basins with

different properties and the results are promising.

Keywords: SWAT, GIS, semidistributed hydrological models,calibration,

optimization, hydrology, water managemhe
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Son yéllarda, su kaynaklaré nehir havzal

faaliyetl er ve yerlekimlerden ol umsuz y

kaynak]!| ar e hidyobjik ertodelteii, s @r ik aynak| ar eéneén gel

kaynakh r énén korunmasé, su kaynakl arénén ta
olaraks e kk slelkkanmakt adér. Hidrolojik modeller
bakarél e bir kekilde uygulanmasé i-in, di
gereklidir. Hi dr ol oj i k model | er , mod el sonu-| ¢

dojrul &mé&@mu -1 ar én yap male ahatnpodemmdierindekin

model parametrelerdekive modelin kendisinde belirsizliklerin sonucu olabilirBir
hidrol 0j i k model kalibre edilirken,jihnata t
minimizeetmeki - i n, mo d el parametrelerine daha
ayar yap®&8lumakitradbéirr. hi dr,al-cejriik i hakwa rooo ] m
kull anémgyet dpd yadks a | giriwmi €CojdasielBli ¢ ge

(CBS) Il gopegmkewiek Su Dejdeiné Soih ahd Water Ar ac
Assessment TOoOBWAT).SWAT,hi dr ol oj i k s¢re-leri, topr
yoneti mi kombi nasyonl ar éneén al anl ar éné

(Hydrologic Response Units HRU) t ¢r et rheakv zau rdestzieylien da |
edemnyar é daj ét ek bi.rG¢migdng a IB@AITk i madchel lda we

Macquartg i b i dotmjayaruoptanizasyon veya Genetik Algoritmalar gibi global
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optimizasyon y°ntemleri kul | anaknaromaokngakt i k Kk a
model | er i kalibre uwvrtmpki mi-zans yiéah dyaankell aakné mib &
dezavantralArmnama veaxziadweeveg model kyaarkneankséakmao |l d uj |
-0k uzun zaywaé raerd @imopt@grbuimaol asél éj é y¢ksekti
ni hai pasametrelerib a k | aahngniernef az | aa&wlaa@ t-emr,i s4 nde
parametrel eri n HRW@OW iabrieyndlbrikiu | ¢ dhinlediéjyia bér akel
ve bunl arén kalibrasyon / dojrul ama perform
se-i mi ve kal i br(kasagan mceyep iim ya kpleaekhaemimk Kkt i r
HRUGI ar bir komut dosgako é uk aw madvé al latha doétro ma t
hiyer ar kdignznehg , heHRUOG | artéeenr e enmkbBidremad i zeyin
kali brasyon s anwieltyané b b k ttahmigiddarakkkid jl eern €1 ér .

Bu K e lsdaddcehe@a v e kal i br asndabir atd ®@fde ethekle u

kal méyoruz, vaegy n @ p tziamuam d &hRele HRW 9 utt k B o € ma
parametrelerindebuluyoruz Bute zde gel i kt,farkée abkgbti kimare

i ki havzada test edil miktir ve sonu-1Ilar ¢mit

Anahtar kelimelerSWAT, CBSy a-d & ] aidraokk modeller kalibrasyon,

optimizasyon hi dr ol oji, su y°neti mi,
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CHAPTER 1

INTRODUCTION

The water framework directive (WFER000/60/EQ, created by the European Union,
indicates new approaches on water management and protection of aquatic environment
since uncontrolled agricultural, industrial activities and settlements on river basins
threaten water quality and quantity. The directieents out that integratediater
resourceglanning and management at ttieer basinis important for sustainable
water managemenfThe suitable management and protection of valuable water
resource can be succeed by understanding temporal and sgatidbution of water

on river basins, which includes groundwater recharge and contaminant loddhngs

to develop and appiypathematical simulation models, which egpresentations of all

the important hydrological processes at the suitable scale, maw pejor role in
anticipatng short and longerm effects on thaquaticfor a successful river basin

management plan.

Hydrologists andvaterresource managers have widely applied hydrologic models as
tools for understanding and reliably estimating human activities that impact on river
basin systemgdJncertainty analysiandaccuratecalibration processewe needetbr
successful application dfydrological modedin water resources management (Duan
et al., 1992; Beven and Binley, 1992; Vrugt et al., 2008) Griensven et al., 2008;
Yang et al., 2008)n recent yearsnany researchers have studied and develoety
calibration and uncertain@gnalysis methods order to improve reliability of model
prediction and estimation of prediction uncertaivign Griensven and Meixner, 2006;
Abbaspour et al., 2007However, calibration omodels is not an easy task because
there are many uncertairgienamely: input, model structure, parameter and output
uncertainties (Arnold et al., 2010). If there tye manyparameters to be optimized

the calibration, the task can become labotensive and timeonsuming (Balascio et

al., 1998)Moreover with increasing complexity of hydrologic models, the complexity

of calibration also increaséGupta et al., 1998).



In this study,iThe Soil and Water Assessment Tool (SWAT) (Arnold et al., X¥98)
which is a physical hydrologic model and has been popular worldwide for evaluating
water resources, is used. In accordance with the-deistnibuted approach, the
smallest spatiadomponenbdf water balanceimulationin SWAT is the Hydrological
Respons&nit (HRU). HRU generation in SWAT is based on user defined thresholds

to be applied to areas of soil, land use and management combinations at subbasin level.

Since the current approach of HRU creation may ignore some combinations important

for hydrologal processes, the model performance may decline. If the number of

HRUs are increased to avoid that problem, then the computational complexity of the

calibration will increase. In this study, we present a hierarchical (ctafse)

approach to HRU defiion that increases model performance and reduces

computational overhead simultaneously. The performance of the hierarchical

met hodol ogy i s demonstrated on twe basins w
Eylikler subbasin and Namazgah Dam Lake in Tiyrke

1.1. Problem Description

Hydrologists and water resource managers use watershed toogelizeand control
negative effects on the river basins, either natural or anthropogMa&T model
(Arnold et al.,, 1998) has beempplied as hydrologic andwvater quality model
worldwide. However the hydrologic modslinclude parametershe values of which
cannot bedeterminedirectly since the parameters cannot be measured or there can
be scaling problem&he time consumed for running the hydrologic madestill a
problem for hydrologic modelers. Calibration of hydrologic modalses a long time,

especially when they are complicated and large scale

Until now, many automated calibration methods for SWAT were developed and used,
which are based on non&ar optimizationalgorithms like LevenbergMacquart
(Macquart,1963)or global optimization methods like Genetic Algorith(kklland,

1970) in order to increase calibration performance. Howeversd optimization
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approaches that try to calibrate verymmex models have some drawbacks: 1) Since
thesearch space is large and model is complicated, the convergence takes very long
time, 2)for the same reasons, probabilitygeftting stuck int@ local optimum is large,

3) final result is toodependenbn the initial estimates of the parametessd4) the

sizes of the HRHE which are the areas over which the parameters are assumed to be
constant, are left to the user and their relation to the performance of
calibration/validation is unknownFurthermore, toevaluate the optimization
algorithms for the complex models is nearly impossible because running hydrologic
models is timdantensive. So asto enhancemodel performance andeducethe
computational complexitjor calibration,a different calibration apprad should be

developed.

1.2.Contribution of the thesis

The success of a hydrologic modelates tanodelcalibrationaccuracyDuanet al,
1992). The nodel parameters aradjusted so that the difference between the
predictions of the model aratctual measurements are as small as possiblbis
study, we used SWAT (Arnold et al., 1998), which is a s@mysically based
hydrologic modeland is very popularThe smallest spatial unit of water balance
calculation in SWAT is the HRUHRUSs are creted in SWAT by applyinguser
defined threshold area of soil, land use and management combinationsbassub

level

Since the sizes of the HRldre left to the user and their relation to the performance
of calibration/ validation is unknown, a hierarchli approach to HRU definitiowas
developed in order tmcrease model performance and reduce computational overhead
simultaneouslyT hus the predictionreliabilitiesand uncertaintgstimation®of SWAT
simulationsareimproved by developing tool whichworksunder MATLAB in order

to run the SWAT model efficiently and effectivelgput layers for SWATwhich are
topography landuse, soiltype and other digital dajare supported bgeographic

Information System (GIS). In this study MATLAB is usedto control SWAT
3



remotelyin order to apply hierarchical approach for hydrological model calibration.
By using MATLAB, we can create the HRUs ourselves and hence we can control their
number and typé hus,the HRUsaregenerated automatically bycamputer program
implemented as MATLAB scriptnd at each level, the number of HRAsincreased
systematically In order to evaluate our hierarchical approg8bFI2 optimization
methodis useddue toits ability to combineoptimization with uncertainty atysisin
high-dimensional spacé&urthermoreSUFI-2 can reach acceptalbieodelcalibration
performancavith relatively small iteration number and hence shorter calibration time.
The HRUs are generated automatically by a scripttaeachumber of HRUypes are
doubledat each levelThe calibration results at each level will be used for estimating
initial values forthenext level. This way, not only an increase in the speedacabss

of the calibration, but also the optimum HRU sizes and HRU genergdi@meters
arereached.The effectiveness of the method is demonstrated on two basins with

different claracteristics.



CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

2.1 Literature Review

Although the computeéspeed and capacity have improwedhstantiallyn therecent
years computationalcomplexity for running hydrologicmodels isa still major
problem for the modeleespecially when the complicated physically based distributed
hydrologic models ar@pplied Several studies evaluated the performancehef
calibration process by applying various algorithimsorder toenhancethe model
performance ardr reducethe computational timé-or examplePuanet al (1992)
developed e shuffled complex evolution agthm (SCEUA). The methods a
consistent and effective method for searchighgpal optimum parameter values of
hydrologic modelsSomeresearchers hawstudial effects of input data on the model
accuracy. Forinstance Brown et al. (1993) indicated thahe degree of spatial
dependence within the input variables had effect in the outcomes. DEM grid size
importantly affects topographic parameters according to study of Zhang and
Montgomery (1994). The finest resolution DEM (10 rajulted in better outcorae
than30 m and 90m data.The SCEUA was compared with other methods, GA and
SA, for optimization of the tank model by Coopatral, (1997).The comparison
betweenSCEUA, GA, and multiple random starts using either simplex or quasi
Newton local searches for parameter optimization of catchment modelstweied
by Kuczera (1997). The differences between rrsilirt Powell and SGBEA methods
for calibrating the Tankmodel wereassessedy Chenet al (2005). The model
accuracy and calibration performance have leftacted by uncertainties which are
input, model structure, parameter and output uncert@intertaintiesoriginating
from model structure were evaluateglchoosing distinct reasonable model structures
within a general hydrological modeling tool by Butts et al. (200fagy indicated
that the model constructionsare important for modeling approach.In order to
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determine optimum input parameters basedhenglobal objective criterianaSCE
modulewasdirectly integratednto the SWAT code by Van Griensven and Bauwens
(2003, 2005).The effect of DEM mesh size and soil map scale on SWAT runoff,
sediment, and NO@redictionswvere assssed by Chaplot (2003h thatstudy, various

map scales (1/25,000; 1/250,000, and 1/500,000 scale) within the SWAT were used
for simulating runoff, sediment and N@oad. Although the map scales had few
differences in runoff, nitrogen as well as sediment loads were greatly affected by the
scale of the soilThe finest soil informatiommproved the forecast quality for runoff,
nitrogen and sediment loads for all DEMesh sizes were improvedood and
Agricultural Organization (FAO) soils witlthe State Soil GeographiDataset
(STATSGQ andthe Soil Survey Geographidatabas¢ SSURGQ werecompared by
Levick et al. (2004). The comparison was made by using the KineRatioff and
Erosion Model (KINEROS?2). At the end of this study, when the STATSGO soils used,
runoff were generally higher than with ttf8SURGO. Furthermore, FAO soils
generated less runoff than the STATSGO soils in most cases. The difference in data

resoluton caused the variations in runoff and soil properties.

GA and GLUE methods for conducting parameter calibration and uncertaihggiana
of SWAT were combined by Muleta and Nicklow (200®arameter Estimation
method PEST) was applied in order to calibrate important hydrologic parameters for
SWAT applications in South Africa andMorthwest Minnesota, respectively, by
Govender and Everson (2005) and Wang and Melesse (2005). When PEST approach
was compared between its autormadind manual versionshe automated PEST
approach leads to less accurate predictions than manual calibration according to Wang
and Melesse (2005For easy implementation of calibration algorithr88/AT-CUP,
which isa semtautanatedcalibration and unctainty software for the SWATwas
developed by Abbaspour et al. (2007). It includes a rsitfi semiautomated inverse
modeling routine (SUFR) for calibration and uncertainty analysifhe model
accuracy and calibration performance have been evalbgteding many different
methods. According tMoriasi, D. N. et al., 200MlashSuitcliffe efficiency (NSE),
percent bias (PBIAS), and ratio of the root mean square error to the standard deviation
of measured data (RSRje most suitable methods fassessig model accuracy by
comparing simulated and measured data with graphical technBpfese calibration

6



process, sensitivity analysis should be performed to find key pararthetéras/e great

effect on hydrologic cyclél'he process is needed for undandiag the main processes

for the element of interedtlost sensitive parameters for hydrology and water quality
are he physical soil properties such as bulk density, available water capacity or
hydraulic conductivity, plant specific parameters similar n@ximum stomatal
conductance or maximum leaf area index as well as slope length, slope steepness, and
curve number (Lenhart et al.,, and T., 2008xng et al. (2008) compare@dLUE,
ParaSol, SUFR, and a Bayesian framework implemented using Markov Chain Monte
Carlo (MCMC) and Importance Sampling (IS) techniggesaSWAT model ofthe
Chaohe Basin in Chin#ased on the posterior parameter distributions, performances
of their best estimates, prediction uncertainty, conceptual bases, computational
efficiency, and difficulty of implementatiodt the end of the study, Bayesihased
approaches were found to be the most acceptsiblee the approach contains
parameter correlatiotdowever construction and test of the likelihood function needs
essentiahotice The GA and Bayesian Model Averaging (BMA) were employed for
calibration and uncertainty analysis at the same time for SWAT by Zhang et al.,
(2008). After several SWATmodelswere examined withvarious snow, potential
evaporation and flow routing methods, the specific model elements of SVéAd w
selectedThe GA was applied to calibrate each model using observed stream flow data.
At the end ofthe study BMA was applied in ordeto combine union prediction and
supply uncertainty interval estimatiowhen a singlébjective optimization method
(GA) and a multibbjective optimization algorithm (SPEA2) were used on three
observing areawithin the Reynolds Creek Experimental Watedho calibrate the
parameters of SWAT by using observed stream flow data (Zhang 20@8), GA
methodhad better identification of parameter solutions in the calibration process,
while the SPEA2 method performance in tadibrationstagewasbetter than the GA.

The SUF#2 algorithm accounting for prediction uncertainty was u$ed the

calibration of a hydrologic model of Iran by Faramarzi et al. (2009).

Advantages and disadvantages of the PEST against the GLUE method for calibrating
SWAT wee studied by Ng et al. (2010b). Arnold et al. (2011) mentioned a semi
automated approach (SUE) comprisng sensitivity and uncertainty analysis. It
provides a decisiemaking framework. Schuol et al. (2008) applied SWAT on 18
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countries in West Africa ilorder to estimate freshwater validity in the West African
sub-continent. While generating HRUs, dominant land use and soil type within each
subbasin wereapplied due to very large surfacearea andhence elongated
computational timeequired In thatstudy, SUFIF2 was applied for calibration and
validation procedure of the model since calibration and uncertainty analysis
performance of SUF2 is good at such computationally extensive mede&his is
because calibration and uncertainty analysis can be texewith relatively small
number of simulations by SUR. The SWAT model with/ariable Source of Area
(VSA) Hydrology was reconceptualized (Easton et al., 2008) in order to measure
overland flow by changing theurve number@N2) and available water coent. This
approach was named as SWABA. The SWAT and the SWAWVSA were
employed on a sulvatershed in the Cannonsville basin in upstate New York in order
to see differences between model predictions of incorporated and dispersed effects,
including surfae runoff, shallowly perched water table depth, and stream phosphorus
loads versus straight estimations. Although the SW/SRA and the SWAT predicted
runoff similarly well, the SWATVSA forecasted the dissemination of shallowly

perched water table depth asidsolved phosphorus export from the waterdyedter

Different model structures in hydrologic modelghich are lumped, hydrologic
response unit (HRUSs) or hydrotope, catena, andgede used by Arnold et al. (2010)
in orderevaluatedifferencesbetween theemodel structures. The lumped models can
be calibratedike complicated structures, but the effect of upslope management on
downslope landscape situations cannot be shown. Ibasins are adequately small,
the lumped method is efficient. Albugh soil, land use, and slope heterogeneity are
preserved byhe HRU method, itdoes not havepatial position. Theffectof spatial
position on management such as plant growth, crop yields and runoff can be simulated
by the grid representation. Nevegtbss, using a small grid size is not feasible for large
scale river basin modeling. A catena approach simulates the models as discrete units
while preserving landscape position and allowing riparian and flood plain areas. If
HRUs are preferred to simulatgthin each landscape unit, the catena approach may
be more suitableehoicefor large scalanodeling studies. iumped, semiumped and
semtdistributed structures of the Sacremento Soil Moisture Accounting model (SAC
SMA) were compared bfjami et al. (20@). The calibration results showed that the
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simulation results were improved from a lumped model structure to adsenibuted
modelconstructiorwheneach sukbasinsusedaveraged datahich were identical foo
all subbasinsHowever the simulation radts at the outlet and an interior testing point

werenot further improved bwsing various parameters between-babins

The effects of land use variations in the SWW@&re assessed by Baker and Miller
(2013). They found that there was relationship leetw surface runoff and
groundwater recharge. With increases in surface runoff, groundwater recharge

decreasg

The SWAT model for Europe was calibrated by Abbaspour et al. (2015). They used
SUFI2 in SWAT-CUP package for uncertainty analysis, sensitigityl calibration
processlargescalemodel developmenincludes manydifficulties and limitations
because afestricted and unequally dispersed nitrate data and discharge stations within
time series lengths, limited knowledge of attributes and manageifrtbet @servoirs

and lack of information about agricultural management operationdaakaf soil

and groundwater datés a resultcalibration results were affected negatively on some

placesin thislargescalemodel.

Faramarzi et al. (2015) indicated thmbpercalibration and uncertainty analys$

large scale hydrological model depends corresgtyp While building a hydrological
model of Alberta, they used differesburce of data (g., MODIS land covey
GlobCaine, National Climate Data Center, European Climate Assessment Dataset.,
etc.)of data and evaluateheresults. They meéion that data discrimination analyses

prior to calibration is an important step in order to reach better results.

A grid-basedform of the SWAT landscape model was developed to improve the
spatialrepresentationf hydrological and transportation procedure by Rathjens et al.,
2014. As a result of the modebnstruction theimpactof the landscape position on
surface runoff, subsurfa runoff and evapotranspiration could be simulated
reasonably. Fenicia et al. (201€udied the distributed hydrological models in order

to understand disetizing the landscapgsed for model structures. According to their
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results, the model results of geolelggsed HRUs are better than topographged
HRUSsin capturing the spatial variability stream flowtime series.

2.2. Hydrologic Modeling and Calibration

Many hydrologic modelswhich are hydrological transport modeldistributed
hydrological models, composite models ghave been used in order to understand
hydrological processin the world.

Distributedhydrologicmodels takespatial dependeeof meteorological inputsoils,
vegetation and land usato account Since the distributed hydrological models
combine spatial variability aheseinputs whilesimulatinghydrologic process in the
watershed basirthe models ardrequentlyappliedto produce water management
strategies Advantages of treemodels are that they céretterstreamflow prediction

at the basin outlet and predict streamflow at the interior locations where streamflow
measurements may not be applicgBleren et al., 2004 5emtdistributed models are
based on lumped modela/hich treat the complete basins as a homogeneous whole.
They model hydrological processest subbasinsor subareas of the basithat are
consideredas homogeneous within themselv@he semidistributed models can
estimate thestream flow at the basin outlet and at the interior pomise accurately
than distributed models (Khakbaz et al., 203R)ce semdistributed models are
easerto setup and requinelativelyshorterunningtimes, thesemidistributedSWAT

modelwaschosen for this study.

Carefulcalibration and uncertainty analysis are important for these modilatsbey
can be usetbr guidingwater management poigs Calibration of watershed models
IS not aneasy process because the models include macsrtaintytypes which are
input, model structurend parameteand output uncertaintiemput uncertaintieare
caused by imprecise or spatially interpolated measurements of modellikgut
elevation data, land use data, rainfall intensity, temperatuinitial conditions like

initial groundwaer levels Some unknown activities and oversimplification of the
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processes regarded in the model cause uncertaimiii@sover,unknown parameters
anderrors in the datthatare uilized for parameter calibratiolead touncertainties in
the models (Arnold et al., 2010).

Uncertainty analyss of the models can lakvidedinto three maircategories:

(i) All uncertainties can be represented by an enhanced parameter uncertainty without
rigorous statistical assumptiondGeneralized Likelihood Uncertainty Estimation
(GLUE) (Beven and Binley, 199@)and fiSequential Uncertainty Fitting (SUR)
(Abbaspour et al., 2004, 20@4re some examples

(i) An additive error model introducing temal correlation of the residuathows
the impactof input and model structural errors on the outpuitoregressive error

modelscan be givermsan example for tils kind ofanalyses

(i) Input errors and/or model structure esmmerepresentetly developing likelihood
functions such as a Bayesian framework implemented using Ma&kain Monte
Carlo (MCMC).

When comparing these methods, the masteptableones arethe techniques in
category (iii) due totheir ability to handleparameter correlation. However, these
techniques require more computation tiwieen applied tdydrological models. For

this reason, practical applications of the first and the second techniques to complex
hydrological models are important (Yang and et 2008).Becauseof this, in this
study, a second type methodSequential Uncertainty Fitting (SUR)O, was
preferred.Since one of the aims of this study is to reduce calibration computational
time, anautomatic calibration method was needed. SW@UP s a semiautomagd
computer program for calibration of SWAT models. The program includes GLUE,
ParaSolSUFF2, MCMC, and PSO, which provides sensitivity analysis, calibration,
validation, and uncertainty analysis of a SWAT model. In order to implement
hierarchical approach to hydrological model calibration/validation, we selected one of
the methodsWhen selecting calibration techniques in hydrological modeling, we
confront various difficulties. Philosophies and subjective choices of most techniques

are dfferent with regard toprior parameter distribution. Thigesults invarious
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objective functions forvarioustechniqueghatare used in hydrological applications.
Thus, her intercomparisons difficult. Calibration techniques were chosecarding
to ea® of application, computational efficiencyaccuracy ofuncertainty range

estimationand the model predictigmerformance.

2.1.1SemiAutomated Calibration Method s

To fulfil the requirements adinautomatic calibration tool, SWATUP was developed
for SWAT as an interface. Thrimaryfunction oftheinterface is tananagehe flow
of informationbetween thenodel anda calibration program. Théataexchange is
realized through text fils. The inteface provides the ability thatany
calibration/uncertainty or sensitivity program csimply be integratedinto SWAT.
The model parametet® be optimizedare systematicallynodified the model is
simulatedand the neederksults(relatingto simulateddata) areobtainedfrom the
model output files in the automated model calibratarticle Swarm Optimization
(PSO), Sequential Uncertainty Fitting Algorithm (SUFI2), Monte Carlo Markov Chain
(MCMC), Generalized Likelihood Uncertainty TechnigueLUE) ard Parameter
Solution ParaSql are connectetb SWAT by the program(Figure J. Sensitivity
analysis, calibration, validation, and uncertainty analysis of a SWAT Iraree

provided
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Figurel SWAT-CUP program structur@bbaspour et al., 2007)

2.1.11 Particle Swarm OptimizationRSO)

Particle swarm optimization (PSQwhich is known as a population based
stochastic optimization technigueas developed bfzberhartand Kennedy(1995).
PSO solves a problem Iwaving a ppulation of candidate solutions (called particles).
These particles are moved in timelti-dimensionalsearchspacedepending ora few
simple formulaelts local besknown position spaceffects eaclparticle's movement
Other particlesry tofind better positions while the belshown positions in the search
space are updated. This is anticipated to move the swarm toward the best solutions.
Since theparticles hag memory, they keep part of their previous state. Althatgh
same point ithebeliefspacecan be shared Ipartides, theirdentiiesareprotected
Particle® movement depend on both an initial random velocity and two randomly
weighted influencesvhich are individuality, the inclinatiomo come backto the
particle's best prewus podion, and sociality, theclinationto displacetowards the
neighborhood's begtrior position. However,optimization performancedepends on

the choice of PSO parameters.
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2.1.1.2Monte Carlo Marcov Chain MCMC)

Samples from a random walkat suits tothe posterior distribution (Kuczera and
Parent, 1998pre produced by MCMCParameter sets representing the posterior

distributionin a sequence (Markov Chain) is built as below:

1) In order to determine a first beginning point in the parameter spgoangis
determinedandomly

2) By using a symmetrical jump distributiqqump 9 in order to add a random
realization, a candidate for deciding the next point is suggetesextpoint of the
sequencéascoordinates

= — {6t

3) Thecandidate pointare determinetdasedn the ratia:

I Sl
0, —w
Qs (Y
—-A @D - L —
n
b = Qwn - 8 —

The asymptotic standard deviation of #rrorgs r, the characteristic correlation time
is s the vector of model parametéss—the observation and model simulatianew

andw — attime t, and g respectively.

If r >= 1,then a new point with probability r issedas acandidatelf the point is
unacceptegdthe following point of the sequences used for decidingThe shuffled
complex global optimization algorithsupports to calculate the posterior distribution.

If the chain ignitiated at a numericakestimationof the maximum of the posterior

14



distribution long burnin periodsor even lack of convergence to thposterior
distribution are avoidefDuan et al., 1992).

2.1.2.3Generalized Likelihood Uncertainty Techniqu&LUE)

GLUE is fian Importance sampling and regional sensitivity analysis (RS
executedy GLUE, whichis an uncertainty analysis technique (Hornberger and Spear,
1981).The technique cahandleinput uncertainty, structural uncertainty, parameter
uncertainty and response uncertaingince it is connected with paramegeand
illustrates alluncertaintiegand impact of the cwariation of parameter values on model
performance indirectly (Beven and Freer, 2001). When the model #rmeam and
there are various sourcef errorthataffect each other tgenerate the measuo&as
(Gupta et al., 2005), GLUEanbe used.

A GLUE analysiss comprisedf three steps:

(1) In order to measure generalized likelihood meagheeprevious distributioms
used for determiningarameter sets, each parameter sas$esseds6 6 be havi or al
or Obdenhoanv iusingtahl ed 66 6 | i k e | i h ocboderthrestenld valuee 6 6 wii

( 2 Dikelihoodwei ght 06 i s calcul ated from each be

The number of behavioral parameter sefs.

(3) Quantiles of thecumulative distributiorobtainedfrom the weighted behavioral
parameter setdgefines prediction uncertaintysLUE has used widelyhie Nasl
Sutcliffe coefficient (NSaslikelihood measure for (e.g., Beven and Freer, 2001; Freer
et al., 1996).
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The numberof the observed data poinits shown a:, the observation and model
simulation wit hjameepresentedti and U d ( drispdctivetye  t

and the average value thie observabnsis”™ .

2.1.1.4 ParaSol

When the global optimization algorithm SGHEA was modified,It was called as

ParaSo[Duan et al., 19923lgorithm.The procedure of ParaSol is as below

(1) The coverage of the parameter spadestimprovedusingthe modified SCEJA

algorithm.6 6 good 66 and 0 6 nmMGLUEaE daetedntnedsdordingl at i on s
to a threshold value of the objective functiés a result, good simulatisd par amet er
set is defined aandvwcéygsaododd parameter set

(2J)Equal I 'y wei ght i latignsanstruct prédgtmmo whdedainty.i mu

The sum of the squares of the residuals (SiSQised by the objective function in

ParaSal

SSQ O — @

A fixed value for givenobservationsis B U U . In order toenhancethe

comparability with GLUENS were used as ajective functiorin ParaSal

The & statisticsis used for determining the tisteold of the objective function
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2.11.5 SUFI2

SUFL2 can calculatall sources of uncertaintigghich are input, conceptual model,
parameter and measured data uncertairtg.degree of uncertainty can be accounted

by a P factor which is the percentage of measured data bracketed by the 95%
prediction uncertainty (95PPUAIthough the mode| which includesall important
hydrological processesis constructed very welbnd input parameterssuch as
precipitation and temperature distributions argghtly modeled the modelstill
includeserror since itpredictioncontairs uncertainty The assessment of the strength

of the uncertainty analysis is made by the percentage of data bracketed by the
prediction uncertaintyBy using Latin hypercube samplindhet 95PPU) which is
calculated at the 2.5% and 97.5% levels of the cumulative distribution of an output
variable is obtained. Five percentof the very bad simulationare disallowed.
Parameter uncertainty can be calculated by the 95HRbe measured variables
include all forms of uncertaintie¢e.g., discharge).The R factoris another
representative measurement for a calibration/uncertainty analysis. It is calculated by
the average thickness of the 95PPU band divided by the standard deviation of the
measured dat Hence, SUFRR searchsthe smallest possible uncertainty bai.
Figure 2 the concept of the SUR algorithm is illustrated graphicallWwhena single
parameter value causes a single model resptimseaelationship between parameter
uncertainty angrediction uncertaintis like in Figure 2aThe shaded region Figure

2b is observed whenhe 95PPU causethe uncertaintyto spreadin a parameter
(representedby a line) Increase of parameter uncertainty caumesicreasen the

output uncertaintyFigure 2¢. As a result of this, at the first step®tfJFF2, it begins

by presuming a physically meaningfuhrge parameteruncertainty, thenthe
uncertainty is reduced b$UFLI2 in steps whilethe Rfactor and the Ractor are
observed.In each stepwhile accounting the sensitivity matrix (equivalentthz
Jacobian), an equivalent of a Hessian matrix, followed by the calculation of covariance
matrix, 95% confidence intervals of the parameters, and the correlation matrix,
antecedenparameter ranges angpdated(Abbaspour, 2007). Updated parameter
rangesshrink at each calibration step of SUR&bbaspour et al., 2004, 2007Mhe

model is assessed according to rangesfatt®r and Rfactorin SUFI2 The P factor
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rangesarebetween @ and 100%whereaghe R-factor rangesirebetweerzeroand
infinity. If theP-factoris close taunity andtheR-factoris closeto zeroin a simulation,
then thesimulated datanatchthemeasured datdhese values provide the assessment
of the strength of our calibratiofhereis abalance betweetine P-factor andthe R-
factor. if a larger Pfactor is obtained, a largerfactor can be achieved. If acceptable
values of R factor and-factor areobtainedthe desired parameter ranges are reached.
The goodness of fibetween the measured and observed idatalculated by the R
and/orNSE If parameterangesareset equal tahe maximum physically meaningful
rangesare seanda 95PPUWstill cannot be found;alibration ofthe parameter and the

modelconstructiormust be reiewed (Figure 24.

a

b

C
e —— _ _d_ )

Figure2 Therelationbetween parameter uncertainty and prediction uncertainty
(Abbaspour et al., 2007)
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2.1.1.5.1SUF}2 Procedure

SUFI2 includes all uncertainties which are the input datge.g., rainfall), the
conceptual modetheparameters, artitemeasured dat&UFI2 uses atin hypercube
samplingfor producingan independent parameter set (Abbaspour et al., 2007)
multivariate uniform distribution in a parameter hypercuefines theparameter
uncertainty. When the measured variables (e.g. discharge) include all forms of
uncertainties, the 95PRWhich is produced by the parameter uncertaintlescribes

all uncertainties.The 95PPU is accounted at the 2.5% and 97.5% levels of ativeul
distribution of an output variable by using the cumulative digtiobuof an output

variablethatis gotfrom Latin hypercube sampling (Abbaspour et al., 2007).

SUFI-2 isdescribedas below:

Step 1.An objective function is determined. Since an objective functiam be
formulatedin different ways (Legates and McCabe, 1999; Gupta et al., 1998), each
expressionmay cause alistinct outcome The last parameter extents are always
adopted depending on the type of the objective function. This problem is got over by
combining different types of functions (e.g., Yapo et al., 1988)root mean square

error, absolute difference, logarithm of effiéncesR?, Chi square, NasButcliffe to
provide -cai fienui a0 formul ati on-obMecebvebo
formulation (Duan et al. 2003; Gupta et al., 1998) is used, th@migneness problem

is reduced sinceariousvariables areomprisedn the objective function

Step 2. Minimum and maximum ranges of parameters are determined stefingo
boundary at the parameter rang@ese ranges should beygically meaningfulThe
probability density function of albarameters arenodelled asuniform distribuion
within the extremevalues.Certain parameter ranges should be as large as possible

since they play a constraining role
b:b,abs _ miCmabOmay=1...m, (1)

Thej-th parameteis represented by and the number gfarameters to be estimated

is shown as m
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Step 3.Sensitivity analysis should be made in orderdalizethe physical system and
to obtainknowledgeabout thampactsof parameters on the system response.

Step 4.To initiate the first iteration of Latiimypercube samplingnitial ranges are

assigned to the parameters:

by: [bj,mino bo i =1, m (2)

The parameter range selection is based on experience and it is subjective. The

sensitivity analysis can help to decide selectiosuitable ranges

Step 5.SubsequentlylLatin hypercube sampling is implemented with respect to n
combinations oparametes (McKay et al., 1979)Simulation count should be Esge
as possible (approximately 5Q000) in order to adjust to fine paranrete

combinations.

Step 6. The objective function, g, evaluatedas a first sige in iterating the

simulations,

JijZ— i=1,..# ,,j=1,...m 3)

# representshie number of rows in the sensitivity matrika that matrix,whole
possible combinations of two simulaticea® shownThe number of columnaumber
of parametersareshown ag. Then,H, a Hessian matrixs obtainedusingthe Gauss

Newton method andjnoring the higheorder derivatives as:
H=J"J 4)

An estimate of the lower bound of the parameter covariance nagrig calculated

according to the Cramérao theorem (Press et al., 1992)
C=S¢ (J)* ()

Step 7 At the end of n runghe variance of the objective function valu®@g’, is found
Diagonal elements of {S used forcalculatingstandard deviation and 95% confidence
interval of a parametdy; (Press et al., 1992)
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A

S= #EE (6)

B j, lower=A -ty, 0.0025s;j (7)

A
B j, upper=A + tv, 0.00255; (8)

One of themost suitable choice such as parameters which generate the smallest value
of the objective function is shown tee parameter,kand the degrees of freedomi (n
m) is represented by.Whe evaluation oparameters provided by theliagonal and

off-diagonalvariablesof the covariance matrix
lj=— (9)

The correlation matrixs represented by r whidk quantified based ctme change in

the objective function as a result of a change in parameter i relative to changes in other
parameter jThe correlation between any two parameteranscipatedto bevery
insignificantsincein SUFI2 sets of parameters hold all parametamsstant while

only one ichanged. Averagintine columns of the Jacobian mafprovides parameter
sensitivities, S as seen as3tep3. The sensitivities,

3EAEB z— i=1,....m (10)

The mean differences the objective functiorthat isresulting fromdifferencesin
each parametes estimatedwhile all other parameters are changidg a result
relative sensitivities based on lineapproximationsare given by[10]. Thus,the
sensitivity of the objective function to model parameterguiantified The absolute
sendivity of a parameters described in Step. 3Vhen output variab(g) of interest
is/are taken bypther parametershe dosolute sensitivity od parameter can change in

relation to theother parameters that assudikéerent optimized values.

Step 8.The uncertainties areomputed The 2.5th (XL) and 97.5th (XU) percentiles
of the cumulative distribution of every simulatpdint shows the95% prediction
uncertainties (95PPU) for all the variable(s) in the objective funclioa uncertainty

measireswhich iscalculated from the percentage of measured data bracketed by the
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95PPU banevaluates thgoodness of fitThe averag distanced between the upper
and the lower 95PPU (or the degree of uncertainty) are obtained as below

&=—B 8 OAIlh (11)

The number of observed data poiate shown ak. Although te bestesultis that
100% of the measurements are bracketed by the 95PPU, and d is close tioezero
ideal values will generally not bebtaineddue to measurement errors and model

uncertainties. A acceptableneasurdor dis calculated by the factor.

R-factor =— (12)

The standard deviation of the measured variabiXdicated ag . If a value of less

thanl, it is avaluableestimationfor the Rfactor.

Step 9:Since at the fitsstep,there is too biggarameter uncertaintigthe value of ds
expected tancline to be large during the firstep of SUFI2As a result, furthestep

of the optimizatioris madewith updatedparameter ranges computed from:

- - - Aj Ar . Aj A

A, A - Agt AN Al i
C R

- - - Aj Ay _Aj Ar

Ap Ap -A@ h h } h h
C C

The updated value is indicated by Parameters of the best simulatiane used to
calculatebjowerand Rupper With new iterationsparameter ranges get narrower and the

parameters are updated as the center of the range.

2.1.1.5.2 Latin Hypercube Sampling

Latin hypercubesampling (LHS) was described by McKay in 1979sla statistical
techniqgue used for reduag the number of samples from multidimensional
distributions. While sampling a function of K variables, the range of each variable is

separated into evenly feasible intervals (Liebetrau and Doctor, 1987). Secondly, N
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sample pointsire located to provide for Latin hypercube requirements. The number of

divisions must be equal for each variable. The sampling schema does not need more

samples for more dimensions. There &we important points in Latin Hypercube
number of sample point® use and which row and column of the sample point is

taken.Acceptthat each of the k components of the vector X is divided into N

intervals. Indicate these intervals ag 12é I|jfNor j =1, 2 ék (k is
parameters). For each parame{gthe interval is separated so that

1. It dividesthe range of X in N intervaland

2.R=Prob{Xl;} =1/ N i =1, 2, éN

The set of all Cartesian products generated from the intervals is:

{1 nl* I n2*1é 2lénNk=1,n2 é k }

A separation P ahe parameteinput space into N k cells is obtained bgshmaps.

The coordinate vector n =4nrp, é k) definesh e fAl ocati ondAof eac
LHS design of size N includes N cells randomly chosen from &elbiingrandomly
oneoftheNper mut ati ons of the integers {1, 2
column ofthepidesi gno matri x D. Then, a secon
written in the second column, etc. The v

matrix D defines &ell in P. The N cellshatarespecified by Darethe LHS design.

2.1.2 Comparison othe GLUE, ParaSol, SUFI2, MCMC, and PSOM ethods for

Calibration

The GLUE, ParaSol, SUR, MCMC, and PSO methods have been studied for
calibration by manyesearcher. These methods were compared in TgMarlg and
et al., 2008 If GLUE is calibraedby using theNash Sutcliffe coefficientas objective
function the broadest marginal parameter uncertainty intervals of the model
parametersre observed. Altough, GLUE supplies good prediction uncertainty with
regard to coverage of measurements by the uncertainty baisdsefficient to find
location ofthe maximum or maxima of the objectideie tothe global sampling
procedureA goodestimationto the dobal maximum of N&an be found byaraSol
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optimization technique. However résults intoo narrow prediction uncertainty bands
sinceindependent and normal distributed errassumption isiot satisfied in reality
The prediction uncertainty bands smallest number of model simulatiopsovides
that SUFI2 could reach good prediction uncertainty rangéh regard to a suitable
coverage of data point# is significantfor models that areomputationally difficud.
Although SUFI2 has these advantg) the decision of a small sample size clearly
reducesthe parameter space aoduseshe poorly defined convergence criterion
However, since it does not consider parameterelations it reduceshe ability of
finding a unique posterioThe MCMC is applied according tdia continuougime
autoregressive error mo@eSince the global optimization is executed befioitéating
the Markov chain, a googlstimationto the maximum of the posteri@ achieved by
the MCMC There are many advantages inCMC methodology the statistical
assumptions of the error moaealn be teste@dnd theycan adapt to empiricalvidence.
Moreover,the method provides the user some independiendetermination of the
effect ofinput and model structure errby additional pameters of the erroihe
construction of the likelihood function and coverage of rmlbidel distributions are
difficult sincethe greanumberof simulationsareneeded tmbtaina goodestimation

to the posterior.

Permitting for arbitrary likelihoodmeasures/objective functiomeake GLUE and
SUFL2 very flexible However,the decision of the objectiviinction affectsthe
ability of searching the parameter spathe MCMC, whoselikelihood function is
based on testable statistical bak&sno violaion of the assumption in the test result.
The impact of input, model structure and output ulatety on model output (e.g.,
autoregressive error model)e delineated by the likelihood functij@nd analyses the
different sources of uncertainty. Howewvehile using complex hydrological models,

the computation still takes a long time.

Although GLUE, SUFI2 and MCMChavedifferent concepts angerformancethey
result in not very differenincertainty bands (Yang and et al., 2008). SPPHE chosen
for testing our methodology since SUFlassociates optimization with uncertainty
analysis and canmandlea large number of parameters. Applying gradient metbads
end up inocal minimum sinceéhese methods are very sensitive toithigal values of

the parametergdo be optimized Furthermore, a reliable estimate of parameter
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uncertaintyis not suppliedy gradient methods. Global methods for calibration have
required too many iterations. SUEIhas been developed to get over these problems.
Thebeginning(large) uncertainty in the model parametergraduallydecreasedntil

certain calibration criteria for prediction uncertainty aretin SUFIF2 method
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Tablel Comparisorof uncertaintyanalysis techniques for a SWAT application to the Chaohe Basin in China (Yang et al., 2008).

Criterion GLUE ParaSol SUFI-2 MCMC
Parameter correlation Yes Yes Yes yes
Parameteuncertaintydescribes All sources of Parameter All sources of Parameter uncertainty
uncertainty uncertainty uncertairly only uncertainty only
Source of prediction Parameter Parameter Parameter the

uncertainty

uncertainty

uncertainty

uncertainty

autoregressive error
modeldescribes
Parameter uncertainty +
all other uncertainties

Theoretical basis

a. Normalization of
generalized
likelihood measure
b. Primitive random
sampling strategy

a. Least squares
(probability
theory)

b. SCEUA based
sampling strategy

a.Generalized
objective function
b. Latin hypercube
sampling;limited by
samplhg intervals

a. Likelihood function
(Probability theory)
. MCMC beginningfrom
optimal parameter set
based on SCEA

O

Difficulty of implement Very easy Easy Easy More complicated
R2 for calibration 0.80 0.82 0.81 0.78
R2 for validation 0.84 0.85 0.81 0.81
Number of runs 10,000 7500 1500 + 1500 5000 + 20,000 + 20,000




2.2 SWAT Model and SWAT Calibration

2.2.1 SWATModel

SWAT has been used for hydrological transport moddligure3). The main model
elements areweather, hydrology, soil temperature and properties, phaoivth,
nutrients, pesticides, bacteria and pathogens and land managéneewniatershed is
separatedhto a number of sulwvatersheds tsed on theéopography(Figure4). Each
subwatershed is furtheseparatednto hydrologic response units (HRUSs), which
comprise similar land use and soil type combinations within thevatrshedFigure
5). Hydrologic processat the sukcatchment levelare simulated by SWAThy
obtaining fromhydrological response units (HRU3he smalleselement of SWAT
is the HRU Many inputs such afigital elevation model, saiype, land use, and slopes
effects the size of an HRO'he HRU distributions defined byuse#lefined thresholds
in the current implementatiasf SWAT. Although the size of an HRU changbased
on user requirements, the typieaktaof an HRU h SWAT ranges from about 50 to
500 ha.SWAT simulates kdrological process in two steps: (1) uplatholv and
loadings of sediment, nutrients, bacteria, and pesticides from eaclai¢R#dlculated
and therHRUZevelloadings to the sutvatershed levedre combinegbroportionally
and (2) The upland loadings from each swhtershed through the channeksim

networkare routed by the modat seen ifrigure 6(Gassman, 2007).
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Figure3 The hydrologic cycle as represented in SWAT

Figure4 Representation afubbasins andtreams
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Figure5 Distribution ofHRUs in a subbasin

Figure6 The water management pathways in SWAEi(sch et., al., 2011)
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2.2.2 SWAT Calibration

Major componers of SWAT input parameteyshich are weather, hydrology, soil
temperature ancatharacteristics plant growth, nutrients, pesticides, bacteria and
pathogens, and land management (consumptive use through pumping, return flow, and
recharge by seepage from surface water bodies, pamdistilautary channelsjnust

be within reasonable uncertainty range. Firstly, the nde$itate parameters for
hydrologic process ithewatershed or sutvatershedinder question should beund

outfor the calibration and validation process in SWAT. S analysis which is

the procedureof the deciding the rate afifferencein model output with regard to
differencesn parametersshould be applied in order to find key parameters which has
great impact on the hydrologic processisT$tepis requied for understanding the

main processes for the element of interest. The calibration process is the second step.
The prediction uncertainty is redutby elaboratingon finding a better parameic

model according to local conditions in the calibration el calibration is carried

out asmodel predictiorare comparedith theobserved data. The processontinued

to find acceptable prediction model output according to measured data whiggntha
model input parameter valudheflowchartof general calibratiofor flow, sediment,

and nutrients is representedHigure? as formulated bingel et al., 2007. The manual
calibration stepare as follows

(1) Thesimulation isperformed,
(2) Measuredhnd simulated valuesre compared
(3) It is evaluatedvhether acceptable outcomes have been achieved

(4) If there is no reasonable result, input parameters are edijughin acceptable
parameter value ranges depending on expert opinion and

(5) The process is repeated until it is thought that the best outcomes have been

obtained
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The hydrologic process pararaet gvaporation, evapotranspiratioayurface/base

flow ratios, tile flow proportions, plant yield, and biomass) should be controlled during
the calibration process so as dosure that the predictionsare acceptable for the
watershed.Transportationprocessessuch as tseam flow, sediment and nutrient
transport should béne-tuned consecutively since therare relationships between
components due to shared transport processes (Santhi et al., 2001; Engel et al., 2007).

Separate surface runoff (SR) and
bascflow (BF) from total flow

(TF) for measured daily flow

| Run SWAT :
surface il (S “nteri
¢

LEGEND

otal Flow (TF) Cnten:
Adjust
e d(%)<15 s d: Percent difference
e K206 _®—. * SOLAWC between measured and
o Evs>05 s Esco simulated average daily

values.

R’: Coefficient of
determination

Ey.s: Nash-Sutcliffe
efficiency coefficient

CN: SCS curve number for

Run SWAT

Sediment (SED) Criteri Adiust moisture condition 11
2y et SOL_AWC: available soil
* d(%)<20 o USLE_P water content
* k206 o USLE_C ESCO: Evaporation
® Exs205 e SPCON., compensation factor
o CH EROD USLE_P: USLE practice
factor
@ USLE_C: USLE cover
S AT factor
RUROWAL SPCON: linear coefficient
N »nt (Mineral P. Organic P, for within channel
Soluble N Organic N) Criteria A _ sediment routing
. o Initial concentration CH_EROD: chanac)
Rtk 20 of nutrients in soils srodibility factor
* R206 " \'I’I‘R(%U NPERCO: nitrogen
o Eys>05 p 2 percolation coefficient
* PPERCO PPERCO: phosphorus

* PHOSKD percolation coefficient
PHOSKD: phosphorus soil
Calibration complete partitioming coethicient

Figure7 Exampleflowchart of manual calibration iIBWAT (Engel et al., 2007;
Santhi et al., 2001).

When there are many uncertainties in the model and ecetgdihydrologic models
are generatednanual calibration can take a long tiffBalascio et al., 1998). Many
semiautomated orautomated calibration methods were developed to attack that

problem.Semiautomatic calibration and uncertainty analysis have beegratedn
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SWAT2009 (Gassman et al., 20i@yjoughthe SWATCUP software dveloped by
Eawag (2009). SWATCUP is an interface that was developed for SWAIthough

many semtautamatedcalibrationmethodshave been developed for SWAT such as
figeneralized likelihood uncertainty estimation (GLUE), shuffled complex evolution
(SCE),and the Parameter Estimation (PE&Methods,calibration processes have
still computational inefficiency since comparison between calibration parameters and

measured data requires several thousand SWAT simulation for completion.
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CHAPTER 3

HIERARCHICAL APPROACH TO SEMI-DISTRIBUTED
HYDROLOGICAL MODEL CALIBRATION

There are at least five different discretization methods whichilar®aped approach
(Chiew et &, 1993, hydrologic response unit (HRU; Arnold et al., 1998) or hydrotope
approach (Krysanova et al., 1998), catena approach (Kirby et al., 1998; Lane and
Nearing, 1989), topographic index approach (Beven and Kirkby, 1979), and complex
fully distributed approach(Abbott et al., 1986; Bronstert and Plate, 199i)
hydrologic modelsThe dominant soil, dominant land use and average land slope
generate HRU inone of the lumped methal In HRU methodology, firstly, a
watershed is divided into a number of shdsinsdepending on topography. Each sub
basin is further divided into HRUSIimilar land use and soil type combinations within
the subbasingenerates HRUS here is no spatial reference for HRU, and there is no
flow between HRUs in hydrotope method. Water yield at the watershed outlet is
calculated whilestreamingfrom each HRU is sumarizedat each sulbbasin. The
watersheds separatednto the divide, hilllope, and valley bottom in the catena
method. The catena approach struggles to foreyséematizedupscaling from
topographidocationto watershed scale. More detailed downslope routing of surface
runoff, lateral flow and groundwater can behieved andthe effect of upslope
direction on downslope landscap®tuationscan beevaluatedwithin the catena.
Although catena method has many advantapesproblem of catena is thiais not

easy to findrepresentative catendar different regimes Moreover, in contrast to
permiting routing, the catena approaatsumes one rather simple slagmfiguration

for thewholesubwatershedwatersheds divided into a gridhathas unique soil, land

use, and slope with watershegighted precipitabn. The DEM determinestream
pathway, all waterflowing from a cell flowsinto anothercell, from Although the grid
representatiodelivers substantiallynore spatial detathan the catena delineation, it

requires too much computational time and men{8nen, et al., 2013)Differences
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in hydrologic conditions fowvariousland covers/crops and soils in the moded
provided by HRUsRunoff is anticipated independently for each HRU andeadto

get the total runoff for the watershed. Thus, the accuracy of poadictionsis
increased and physicdefinition of the water balance getsuch lketter.The HRU
distribution is divided into two options which are, a single HRU is assigmedch
subwatershed or anultiple HRUs are assigned to each-sudtershed. When a single
HRU per sukbasin is chosen, the dominant land use, soil and slope within each
watershed determines the HRU, soil type, and slope class. If multiple HRUs are
preferred, sensitivies are defined for the land use, soil, and slope data that will be
employedto decidethe number andariety of HRUs in eaclsubbasins In order to
eliminate minor land uses in each-lsasin, threshold valseare used. After the
thresholds are definetheremainingarea is reallocategproportionatelyso that 100%

of the land area in the sddasin is modeled-or instancelet us suppose we hava

subbasin thathaslanduse types and areas giverfTiable?2).

Table2 Example of landise for current HRU division

Landuse Area %
Barren 4.3%
SlendeWheatgrass 6.6%
ForestDeciduous 11.57%
ForestEvergreen 0.35%
ResidentialHigh Density 0.44%
Agricultural LandGeneric 3%
Residential 0.26%
ResidentialLow Density 0.09%
Agricultural LandRow Crops | 0.39%
Garrigue 26 %
Pasture 11%

If 25% is defined forthe threshold level for land usdRUs would begenerated for
agricultural landgeneric andgarrigue The areas of modeled land uses would be

changed as below:

agricultural land generic30% 06 65 %) 680 100 % =

Garrigue (266 6 5 %) x 100%=40
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Creation of HRUs depending on threshold area of soil and land use separation leads to
ignoring some important combinatiotizat may have great impact on hydrological
process in watershed such as surface rumdfa result, the nael performance
declines adthecalibration takes a long time. In contrast, a large number of HRUs can
handle a variety of land covers. Using small anthparativelynhomogeneousiRUs
decreasethe error caused by lumping effe¢@eza and McCray, 2008jlowever,it
results in a cmplicated cost function, hence increased probability of sticking into local
minima. Moreoverthe required computation time increases with HRUs liraarly.

In this work, we adopt a hierarchic approastmilar to many other optimization
problems in order to increase performance and reduce computational complexity
simultaneously. For hierarchical optimization, we divide eachbsgdn intotwo-

HRUs and optimize with respect to sonmaportant parametersthat may have
important effect on hydrological pcesses in the watershdthen, each HRU is further
divided into two. Each child HRU inherits the optimum parameters of the parent HRU
as its initial values. Thus, we expect to decrease the total calibration time and a solution
closer to the global minimuraf the cost function. To be able to do that, we have
created a totally different HRU generation algorithm based on some important
parameters which have great impact in water cgaleh ashe curve number, the
available water capacity or the bulk densBy combining default curve number
default soil hydraulic conductivity and soil classification, HRU types are generated by
using MATLAB scripts. In order to understand HRU type model performance,-SUFI
2 was chosen as calibration process sBIO&2 simuldion iterations are less than
other methods while similar NBSand ¢ valuesare producedYang et al., 2008).
According to Nas#sutcliff objective function, the model performance is controlled.
Depending on assessment of NS endilues HRU types are ineased until reaching

acceptable results or the steady stiigure8).
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Figure8 General concept of hierarchical methodology

3.1 Full Automatic Version of SUFI-2

In order to reduce calibration computationamhe andto provide easy usage of
calibration methods, Senraiutomatic calibratiornwith uncertainty analysis toolwas
developed by Eawag (200@hdintegrated intahe SWAT-CUP software program.
To providea connectiorbetweennput/output of calibration pgramsand the model
is the primary role of the interfac€&he file exchange is through formattedt filesin
the interface.The uncertain model parameters aansistentlytransferred n the
automated model calibration, the model is amu the neededutcomegqrelatingto
measured data) are derived from the model output Alleg calibration/uncertainty or
sensitivity program can simply beonnectedto SWAT by using the interfacelt

provides computational efficiency. SUElin SWAT-CUP uses Latin hypercube with
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a global search algorithm that describes the behavior an objective function by
analyzing the Jacobian and Hessian matrices. By using Latin Hypereubmegters

cube is generated depending on given parameters range and simulation count.
Depending on SUF2 in SWATCUP working principlethe beginning (large)
uncertainty in the model parameters is gradually decreased at each iteration until
constant calibration values for prediction uncertainty arebtained in SUFF2
procedureWhile comparing SWAT model results by using each parameter range in
Latin Hypercube, best range of parameterdound at each iteration. If found
parameter range at the erfdlzeiteration is reasonable, calibration process is finished.

If the assessment of calibration value does give satisfactory results, another
calibration processs initiated by using new parameter range at the end of the last
iteration To continue @irther calibration by using new parameter range at the end of
iteration is decided by useMoreover, semautomatic SUFP is inefficient for
updating SWAT parameter values. In order to solve these problems, reduce time for
calibraton, minimize user intaction and increase performance of the calibration
procedure, a software packagas producethy developing full automatic calibration
model in MATLAB. Calibration procedre of SUF2 can be performed full
automaticallyby this method

3.1.1File Structure of SUFI-2

The uncertain model parameters are gradually changed in-BEéihiautomated
model calibration. In the sermautomatic calibration method, the file exchange is
through text file formats. At the first step tie calibration, input fils, namely,
Par_inf.txt, trk.txt, SUFF2_swEdit.def, observed_rch.txt, observed.tdand
var_file_name.txt should be prepar@avr_inf.txt file includes parameters which will
be optimizedhe maximum and minimum values of geparameters and also number
of the parameters amdimber ofsimulation courd. trk.txt file behaves as a counter.
Simulation count number is written in this filéhe startwhich does not contain the
warm up periodand the termination simulation yearsare located inSUFI-
2_swEdit.defile. observed_rch.txtfile includes the name of the variable and the sub

basin number to be contained in the objective function. There are the number of data
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points for this variable, first column is a sequential number from beginning and second
column isvariable name and date (format arbitrary), third column is variable value.
Objective Function is defined in the observed file. All the information for the
calculation of objective function is inbserved rch.txt Likewise, the variables
which should be contained in the objective function are listed by the

Var_file_name.txt.

3.1.2SUFI-2 Running Procedures in SWAT-CUP

SUFL2 calibration methodology has been applied in SW@JP by using many
system files (exe) in order to easy implementation. First step is that Latin Hypercube
sampling (LHS) which is a statistical methodaigpliedin SUFF2 for reduce the
number of samps from multidimensional distributions. SUEILH_sample.exe
provides to run Latin Hypercube sampling. S2FLH_sample.exe is used for
producingthe parameter cubehich is written in par_val.txt file. Each parameset

in par_val.txt is placed sequedlty into the model by using SUFZ_make_input.exe.
While the program uses trk.txt, par_inf.txt, par_val.txt, it generates echo_make_par.txt
and model_irthatis used for findinghebest model. By using model_in and BACKUP

file, which is SWAT model inpufiiles in order to update SWAT output files,
SWAT _Edit.exe program creates new parameter files for running SWAT model.
While using parameters in model.in, SWAT.exe runs the model so as to produce output
files of the model. According to results of outputesdl of the model, SUFI
2_extract_rch.exe creates stream flow values with respect to simulation number
written in trk.txt. The input files namely, par_inf.txt, observed.txt, par_val.txt,
var_file_name.txtareused for reachinthebest simulationBest paameters and best

simulation number are found by running StFigoal_fn.exe.

Finally, SUFI2_95ppu.exe finds objective functions valugg using par_inf.txt,

observed.txt and var_file_rch.txBummary_stat.txt file includes some statistical

valuesthatare uncertainty values;factor and +factor, and R2, NS, bR2, MSE, and

SSQR representing the best simulation of the current iteratlmnfile containshe

objective function type, best simulation number of phesentteration, and the best
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value ofthe objective function for thpresentun. The best parameters of the current
iteration and the best simulated values are represented respectbhasy ipar.txtand
best_sim.txt.The value of all parameter satsdthe objective function are represented
in theGoal.txt. By using SUH2_new_pars.ex@éew parameters are generaf€dey
are showed ilNew_Pars.txtfile. New parameter ranges in the file can be disethe
next iteration Figure9).

Parameters and their

range

v

< SUR2_LH_sample.exe >

LH parameter
cube
e .
SWAT_Hdit.exe

New SWAT

parameter files

@7

A J

SWAT model results

SUR2_extract_rch.exe
A4

i Model output 1

SJHZ_goal_fnﬂ » Best simulation

y

SUA 279&@—> calibration results

New  parameter

G

SUR2_new_pars.exe
range

Figure9 Sequence of program executioniF2 in SWAT-CUP (Abbaspour et
al., 2007)
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3.1.3DevelopedSUFI-2 Algorithm on MATLAB

At the first step, irorder to start calibration process, parameters and parametes range
should be defined?arametershat are expected to have great impact on hydrological
processes in the watershadd their range were determined by using script.
Although the user can ahge these, calibration process can be completed in one step
by defining simulation count in our system. With respect to simulation c8Ul2

IS run once. So as to assess calibration result, -Sastliffe coefficient of
effectivenesgNSE) (Nash and 8cliffe, 1970) wasselectedo be objective function
since NSE function represents not only the relationshgiweensimulated and
observed discharge but also the evaluation of amount of waterach iteration,
objective function value is evaluated automaticalyd according to the value,
calibration procedures gerformedautomatically. At the end of each iteration, new
parameter ranges are obtained and the sargeised inSUFI-2 automaically. Until

the largest NSE value is reach&)FI2 calibration process is repeated without any
user interactionUsing graphical interface, calibration process can be monitored.
When the best calibration value is obtained, calibration process is efinish
automatically, and backup filewhich includes SWAT model results used for
calibration processs updated without any user interaction. Thus, depending on the
user demand, the backup file can be usedurther calibration procesEigure10).
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Start

Set simulation
count

Choose
parameters

Run SUFI2 SWAT
optimization

Evaluate accuracy

Satisfactory?

Update Backup
file

Satisfactory? no

Figure10 DevelopedSUFI-2 algorithmon MATLAB
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3.2 Soil Database for SWAT

Physical and chemical propertieg soil can be represented in SWAT as a soil
databasePhysical characteristics of the soil are textleagth of soil layer from
surfaceto bottom, moist bulk density, available water capacity of the soil layer,
saturded hydraulic conductivity, soil erodibility (K) factor etcChemical
characteristics adoil are used to establighimary valuef chemicals present in the
soil. Physical properties for each soil type is an important becauskstilacement
water and aivia the profile are governed by these properties. Furthermorehthwey

great effecbn thehydrological processes withthe HRU.

SWAT soil data type is different from Turkey so many properties of soil class in the
area were obtained from (Ardas, S., and Creutberg, D., 1997). Required data for

SWAT are listed as followontaininginterpretationgNeitschet al, 2002a):

SNAM : Name of sil
HYDGRP : Hydrologic class ofail (A, B, C or D)
A : A high transmission water capability of the sal&n when

completelymoistened. ltincludesmainly sands or gravel
they are deep anghconscionabldrained.

B : Moderatetransmissiorwater capabilitywhenthe soils are
from end toend moistened. It includes partially coarse

textures.

C . Slow infiltration capability (high runoff potential) when
completely moisteed

D : Very slow transmission watecapabilities (high runoff
potential) when completely moistenedit includes mainly
clay soilsthathavehigh swelling potentialThere can be a

high persistentvater table
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SOL_ZMX

ANION_EXCL

SOL_CRK

TEXTURE

: The maximum root depth of soil profile (mm). If malue
is assigned, the model presumes the rootsenhancdrom
the beginning to the end diie completedepth of the soil

profile.

: Fraction of porosity (void space) from which anions dite le
out. Whensoil minerals are negativelpadedat normal pH
and the net interaction with aniohike sulfateis resilience
from particle surfaces. This recoil is called as negative
adsorption or anion exclusiofihe model set ANION_EXCL

= 0.50is given when there is no data f&MNION_EXCL.

: A fraction of the total soil volumehich means probable
maximum crack volume of the soil profilé there is no data
about SOL_CRKno valuecan be entered in the database

: Texture of sdilayer.

SOL_Z (ayer numberléyer #) : Soil layerextentfrom surfaceto bottom (mm).

SOL_BD (layer #)

SOL_AWC (layer #)

SOL_K (layer #)

SOL_CBN (layer #)

: moist bulk density (Mg/rhor g/cn?). The ratio of the mass
of solid particles to the total volume of the s@ilshowed by
thesoil bulk densityMeanvalues fordistinctsoil typeswere

assignedn the modebased otiterature

. Available water capacity of the soil layer (mm@®imm
soil). It is measured from taking odihe fraction of water
store at persisteh wilting point from that store at field
capacity.lt is also known as the plant available waldean
values fordistinct soil typeswereassignedn the modeby

using literature

: Saturated hydraulic conductivity (mm/hr). According to soill
texture,meanvalues for dstinctsoil typeswere assigned in
the model by usin@uidelinesfor Soil Description 2005.

: Organic carbon content (% soil weight).
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CLAY (layer #) : Clay content (% soil weight).

SILT (layer #) : Silt content (% soil weight).

SAND (layer #) : Sand content (% soil weight).

ROCK (layer #) : Rock fragment content (% total weight).
USLE_K (layer #) : USLE equation soil erodibility (K) factor

3.2.1 Soil Texture Classificatiorthrough the Watershed

The Ministry of Food, Agriculture and Livestock has classified soils in Turkey based
ondepth, salinity, slope and drainage propertiehei According to Ardas, S., and
Creutberg, D., 1997, sailtextures are determinedy lusing depth and slope

information of the soilsTable3).

Table3 Depth of Class Reference Ranges

Depth Classification Depth (cm)
Lithosol <5

Very shallow 071 20
shallow 207 50
Moderately deep 507 90
deeper 907 150

Compositions of sand, silt and clagntents as a percentaige varioussoil textures
in literatureareshownin Figurell. Thecompositionsof % Clay, %Sand and % Silt,

aregiven in(Table4)
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*. / Clay Loam

Loam "
/Silt Loam

Percentage af $and

Figurell Soil triangle (Ley et al., 1994)

Table4 Therelationship between texture class and ranges of clay, sand and silt

Texture Sand (%) | Clay (%) Silt (%)
coarse 80 10 10
Moderately coarse| 60 20 20
moderately 40 30 30
fine 20 40 40
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3.2.2Definition of USLE_K FACTOR

Rainfall and runoff frequently cause erosion. Itaiscountedwith the Modified
Universal Soil Loss Equation (MUSLE) (Williams, 1975). Wischmeier and Smith
(1965, 1978) developed MUSI &hich is a revisedorm of the Universal Soil Loss
Equation (LELE). Average annual gross erosion as a function of rainfall energy is
anticipated by USLE. Soierodibility depends on soil properties (Neitseh al,
2002b). USLE_K factors used in SWAT were established with respect to the soil
textures Table5). The value of USLE_K is between 0.1 andAOvalue of < 0.02
shows a soil of low erodibility; 0.020.04 shows moderate erodibility; and > 0.04
shows high erodibility. When silt content &dil type increasest can become more
erodibleregardlesof whether thee is acomparable reduion in the sand or clay
fraction (Rosewell, 1993).

Table5 USLE_K Values with respect to soil textuBnurce: Rosewell, 1993.

Texture Symbol | Suggested Texture Symbol | Suggested
K factor K factor

Sand S 0.015 Clay Loam CL 0.030

Clayey Sand | CLS 0.025 Silty Clay Loam| SCL 0.040

Loamy Sand | LS 0.020 Fine Sandy Clay FSC 0.025

Sandy Loam | SL 0.030 Sandy Clay SC 0.017

Fine Sandy | FSL 0.035 Silty Clay SiC 0.025

Loam

Sandy Clay | SCL 0.025 Light Clay LC 0.025

Loam

Loam L 0.040 Light Medium| LMC 0.018

Clay

Loam, Fine LFS 0.050 Medium Clay | MC 0.015

Sandy

Silt Loam SL 0.055 Heavy Clay HC 0.012
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3.2.3 Ddinition of SOL_BD (Soil Bulk Density)

SOL_BD valuesitilized in SWAT weregot from Guides for Editing Soil Propees,
(2005 due to inadequaayata. According to soil textures, SOL_BD valaesshown
in Table6. SOL_BD values werassigned in the model based fore (CG-SGSIC),
medium (Si-CL-SCL-SiCL) and coarse {SL-LS-S) texture groups

Table6 SOL_BD Values with respect soil textures (Mg/ns®urce Guidelines for
Soil Description, 2005.

Texture Symbol | Suggested SOL_BD | Texture Symbol | Suggested SOL_BL
Range Avg. Range Avg.

Sand S 1.60-1.70 1.65 | Clayey CL 1.40-1.50 | 1.45
Loam

LoamySand | LS 1.55-1.65 1.60 | Silty Clay | SiCL 1.45-155 | 150
Loam

Sandy Loam | SL 1.50- 1.60 1.55 | Sandy SC 1.35-1.45 | 1.40
Clay

Silty Loam SiL 1.45-1.55 1.50 | Silty Clay | SiC 1.40-1.50 | 1.45

Sandy Clay | SCL 1.45-1.55 1.50 | Clay C 125 1.45 |1.35

Loam

Loam L 1.45-1.55 1.50

3.2.4 Ddinition of SOL_AWC (Soil Available Water Capacity)

Available soil capacity valuedilized in SWAT weregotfrom Ley et al., 1994&ince
there is no data. SOL_AWC values are giveifable 7 with respect to soil texture.
SOL_AWC valueswere assigned in the model with respectfite (C-SCSIC),
medium (Sil-=CL-SCL-SiCL) and coarse @SL-LS-S) texture groupsWhile setting
the SOL AWC in themodel, average values of them wased.
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Table7 SOL_AWC Values with respect to soil textures (maOHnm soil)Source:
Guidelines for Soil Description, 2005.

Texture Symbol | Suggested SOL_AWC| Texture Symbol | Suggested
SOL_AWC
Range Avg. Range Avg.
Sand S 0.06-0.08 0.07 Clayey CL 0.150.19 | 0.17
Loam
Loamy Sand| LS 0.090.11 0.10 Silty Clay | SiCL 0.180.20 | 0.19
Loam
Sandy Loam| SL 0.120.14 0.13 Sandy Clay| SC 0.160.21 | 0.19
Silty Loam | SiL 0.20:0.22 0.21 Silty Clay | SiC 0.11-0.13 | 0.12
Sandy Clay | SCL 0.160.18 0.17 Clay C 0.090.11 | 0.10
Loam
Loam L 0.17-0.19 0.18

3.2.5 Ddinition of SOL_K (Soil Hydraulic Conductivity)

Saturated hydraulic conductivity valuadlimed in SWAT weretakenfrom Guidelines
for Soil Description2005(Table8). SOL_K valuesvere decided in the model based
on fine (G-SCGSIC), medium (SikCL-SCL-SICL) and coarse {SL-LS-S) texture
groups.
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Table8 SOL_Kvaluesdepending osoil textures (mm/hjGuidelines for Soill
Description, 2005)

Texture Symbol | Suggested SOL_K| Texture | Symbol | Suggested
SOL K
Range | Avg. Range| Avg.
Sand S 152.40 | 330.25 |Clayey | CL 5.1 |10.15
508.10 Loam 15.20
Loamy Sand | LS 152.40 | 330.25 | Silty SiCL 5.1 |10.15
508.10 Clay 15.20
Loam
Sandy Loam | SL 50.80 |101.60 |Sandy |SC 150 |33
152.40 Clay 5.10
Silty Loam SiL 15.26 | 33.00 Silty SiC 150 |33
50.80 Clay 5.10
Sandy Clay | SCL 5.10 10.15 Clay C 150 |33
Loam 15.20 5.10
Loam L 15.26 | 33.00
50.80
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CHAPTER 4

RESULTS

4.1. Case Study Sarssu-Eylikler River, Konya, Turkey

Sar-Eglui kl er stream basi-218.i1s5A olcattietdu doeest w
3 2 . brgifudes in Konya Closed Basifiurkey. The area of th8 a r-Eykkier

basin is 1040 kidand the average total annual flow®f r-Eybkier Stream was 68

million m® between 1992 and 201Bigure12).

The drinking water to Beysehir district aacbunds supplied byBeysehir Lake Basin
Industrialization, agricultural activities and irrigation, fishing, ernsigaste disposal,
tourism, soil and sand extraction, storage affect the basin negatively. Since the most
significant river to recharge Beysehir Lakes S dhe @rejmsed methodology

applied on this basin.
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Figurel2 Study Area



4.1.1. SWAT Input Layers

The SWAT elementsare weather, hydrology, soil temperature and properties, plant
growth, nutrients, pesticides, bacteria andipgéens and land managemértie input

layersare digitalelevation model, soils, land use, and slopes.

4.1.1.1 Delineation of Watershed

The Digital Elevation Model (DEM) was used tiefine subbasins by Autmatic

Delineation Tool of SWAT. Thus, watershedsvere segmented into several
"hydrologically”" relatedto subbasinsfor use in watershed modeling with SWAT
(Winchell et al., 2013). ThAutomatic Delineation Tootreatesvatershed by using

ArcGIS and Spatial Analyst extension function.

TheDEM was generated from 1:25 000 scale topographic niagsrél3). The DEM

propertiesaregiven inTable9.

53



Digital Elevation Model of Sarisu-Eylikler Basin N
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Legend
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— River

32
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Figurel3 Digital Elevation Model ofS a r-Eybkier Basin

Table9 DEM Properties

Metadata parameter

Value

Projection Universal Transverse Mercator (UTN
False Northing 500000
False Easting 0.000000
Central Meridian 33
Scale Factor 0.9996
Reference Latitude 0.000000

Geographic Coordination System

WGS_1984 36 N

Column/Row count 4156/3915
Cell size (X/Y)(m/m) 10/10
Bits per pixel 32
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In order to produce sdbasins of the watershed frahme DEM, many operations were
applied onthe DEM by using ArcSWAT software progranfirstly, when the
preprocessing ahe DEM was completed; minimum, maximum, and suggested sub
watershed arsawere calculatedin hectares as2.771, 554232 and 1185,
respectively. Secondly, streams and outletsendefined by SWAT. One outlet was
added manually. The outletasc | o0 s e 4{EylikleEstrea®m gauging station in the
watershed. Thighoice enables u® compare the results of models and observation
data. At the end of watershed delineation, we aedevensubbasirs (Figure14)

and SWAT calculated minimum, maximum, mean and starakanationof elevation
values which were 1123n, 2337m, 1420m and 195m, respectively.

Subbasin
i
. -
.
i
. -
B -
.
D Basin

@ Linking stream added Outlet

@ Manually added Outlet
Reach

0 4 8 16 24 32
- S aeeess—— e Kilometers

Figurel4 Subbasirs of S a r-Eykkier Stream
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4.1.1.2 Soil Class Layer

Solil textures in landisemap (Scale: 1/25,000) was obtained from khieaistry of

Food, Agriculture and Livestockvhose data is classifieatcording to major soils

groups Tablel0).
Table10 Major Soils Group in the area
Soil Classification Explanation
Alluvial
Brown Soils

Chestnut Soils
ReddishChestnut soils
ReddishBrown soils

Kolluvial
Brown Forest Soils
Limeless Brown Forest Soils
Limeless Brown Soils

cCIZIZ|X|ITMO0O|m >

The soil map uskin SWATIs given inFigure 15 Soil class distribution in thereais
observed frontigure 16 There are mostly D and N group of soil, reddidestnut
soils and limeless Brown Forest Soils, in the area. Properties of theveodentered
in SWAT soil user database according Gaidelines for Soil Description, 2005;
Rosewell, 1993Ardas, S., and Creutberg, D., 199able 11).
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Figurel5 Soil map oftheS a r-EybBkier streambasin
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Figure16 Soil type histogramepresentation of the study area.
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Table11 User soil database in SWAT for the study area

NAM |LAYERS |HYDGR |[SOL_ |ANIO_ |SOL_|TEXTURE SOL_Z |SOL_BD |SOL_AWC |SOL_K |SOL_|CLAY |SILT |SAND
ZMX EXCL |[CRK CBN
D 5 D 1200 |0.5 0.5 CLAY LOAM - |50 1.45 0.17 10.15 0.67 |40 26 34
CLAY
N 2 B 200 0.5 0.5 LOAM 50 15 0.18 33 055 |14 38 48
NO 2 D 550 0.5 0.5 CLAY LOAM 200 1.45 0.17 10.15 0.21 |31 27 42
CK 1 D 1524 0.5 0.5 uwB 1524 2.5 0.01 180 0 5 25 70
C 3 D 700 0.5 0.5 CLAY 50 1.35 0.1 3.3 1.76 |58 19 23
F 4 D 750 0.5 0.5 CLAY LOAM - |50 1.45 0.17 10.15 0.67 |40 26 34
CLAY
K1 3 D 1200 0.5 0.5 CLAY 350 1.35 0.1 3.3 2.97 |40 40 20
YR 1 D 152.4 105 0.5 |VAR 1524 |15 0.1 500 0 15 30 55
M 1 D 150 0.5 0.5 CLAY LOAM 150 1.45 0.17 10.15 1.05 |28 32 40
K7/8 |2 A 1200 0.5 0.5 SANDY LOAM | 750 1.55 0.13 101.6 0.29 |20 20 60
Al 1 D 900 0.5 0.5 SILTY CLAY | 900 15 0.19 10.15 0.48 |40 40 20
LOAM
M 1 D 150 0.5 0.5 CLAY LOAM 150 1.45 0.17 10.15 1.05 |28 32 40
uis 1 D 200 0.5 0.5 CLAY LOAM | 200 1.45 0.17 10.15 055 |31 27 42
B 1 D 550 0.5 0.5 CLAY 50 1.35 0.1 3.3 0.77 |44 28 28
K6 1 D 350 0.5 0.5 CLAY LOAM 350 1.45 0.17 10.15 0.86 |30 30 40
B 1 D 550 0.5 0.5 CLAY 50 1.35 0.1 3.3 0.77 |44 28 28
M2 1 B 750 0.5 0.5 SILTY LOAM | 750 15 0.21 33 043 |17 52 31
A3 1 A 900 0.5 0.5 SANDY LOAM | 900 1.55 0.13 101.6 0.48 |20 20 60
Uiz 1 B 150 0.5 0.5 LOAM 150 1.5 0.18 33 0.55 |14 38 48




4.11.3 Land use/Land cover Layer

Soil characteristics and vegetation coaféect water movement. The soil and |laune

maps are essential foreating theHRUs. Landuse layer wasreated irthe framework
of a Ministry of Forestry and Water Affairs projeciamely, Beysehir Lake Basin
Protection Plan and Special Provisiohand use/land cover dataas clipped and
repojectedby usingthe ArcSWAT project databasgigurel?).

Figurel7 Landuse map of th& a r-Eybkler Stream



























































































































































































































































































































