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ABSTRACT 

 
 

HIERARCHICAL APPROACH TO SEMI-DISTRIBUTED 

HYDROLOGICAL MODEL CALIBRATION 

 
 
 

Özdemir, Ayfer 

PhD, Department of Geodetic and Geographic Information Technologies 

Supervisor: Assoc. Prof. Dr. Uğur Murat Leloğlu 

Co-Supervisor: Dr. Karim Abbaspour 

 

March 2016, 164 pages 

 

In recent years, water resources were negatively affected from uncontrolled 

agricultural, industrial activities and settlements on river basins. Hydrologists and 

water resource managers have widely used hydrologic models as tools for water 

resources development, water environment preservation, water resources allocation 

and understanding utilization. In order to apply hydrological models successfully in 

practical water resources investigations, careful calibration and uncertainty analysis 

are needed. Hydrological models are validated by comparing the outputs of the models 

to measurements. The deviations of the outputs from the ground truth, the error, can 

be the result of uncertainties of the inputs, uncertainties of the parameters of the model 

and the model itself. When a hydrologic model is calibrated, the parameters of the 

model are fine-tuned within a predefined range to minimize an error metric created 

from error terms. One such hydrological transport model is the Soil and Water 

Assessment Tool (SWAT) which is also integrated into a Geographic Information 

System (GIS) that supports the input of topography, land use, soil type, and other 

digital data. SWAT is a semi-distributed hydrological model that simulates 

hydrological processes at subbasin level by deriving Hydrologic Response Units 

(HRU) by thresholding areas of soil type, land use and management combinations. 

Currently, there are automated calibration methods for SWAT using nonlinear 

optimization such as Levenberg-Macquart or global optimization methods like Genetic 



 

vi 
 

Algorithms. These optimization approaches that try to calibrate very complex models 

have some drawbacks: 1) Since the search space is large and the model is complicated, 

the convergence takes very long time, 2) for the same reasons, probability of finding a 

local optimum is large, 3) final result is too sensitive to the initial estimates of the 

parameters, 4) the sizes of the HRUs, which are the areas over which the parameters 

are assumed to be constant, are left to the user and their relation to the performance of 

calibration/validation is unknown. In this thesis, a hierarchical (coarse-to-fine) 

approach to HRU selection and calibration is investigated. The HRUs are generated 

automatically by a script and the number of HRUs are increased at each level of the 

hierarchy. The calibration results at each level are used as initial values for the next 

level. This way, we obtain not only an increase in the speed and accuracy of the 

calibration, but we also find out the optimum HRU sizes and HRU generation 

parameters. The algorithm developed in this thesis is tested on two basins with 

different properties and the results are promising. 

  

Keywords: SWAT, GIS, semi-distributed hydrological models, calibration, 

optimization, hydrology, water management 

 

 

 

 

  

 

  



 

vii 
 

 

ÖZ 

 
 

YARI DAĞITIK HİDROLOJİK MODEL KALİBRASYONUNA 

HİYERARŞİK YAKLAŞIM 

 
 
 

ÖZDEMİR, Ayfer 

Doktora, Jeodezi ve Coğrafi Bilgi Sistemleri Bölümü 

Tez Yöneticisi: Doç. Dr. Uğur Murat Leloğlu 

Eş Danışman: Dr. Karim Abbaspour 

 

Mart 2016, 164 Sayfa 

 

Son yıllarda, su kaynakları nehir havzaları üzerindeki kontrolsüz tarımsal, endüstriyel 

faaliyetler ve yerleşimlerden olumsuz yönde etkilenmektedir. Hidrologlar ve su 

kaynakları yöneticileri hidrolojik modelleri, su kaynaklarının geliştirilmesi, su 

kaynaklarının korunması, su kaynaklarının tahsisi ve kullanımın anlaşılması için araç 

olarak sık sık kullanmaktadır. Hidrolojik modellerin su kaynaklarının araştırılmasında 

başarılı bir şekilde uygulanması için, dikkatli kalibrasyon ve tahmin belirsizlik analizi 

gereklidir. Hidrolojik modeller, model sonuçları ölçümlerle karşılaştırılarak 

doğrulanır. Sonuçların yer gerçeklerinden sapmaları, yani hata, model girdilerindeki, 

model parametrelerindeki ve modelin kendisindeki belirsizliklerin sonucu olabilir. Bir 

hidrolojik model kalibre edilirken, hata terimlerinden oluşturulan hata metriğini 

minimize etmek için, model parametrelerine daha önce tanımlanmış bir aralıkta ince 

ayar yapılmaktadır. Bu tür bir hidrolojik taşınım modeli, içerisine topoğrafi, arazi 

kullanımı, toprak türü ve diğer sayısal veri girişini destekleyen Coğrafi Bilgi Sistemi 

(CBS) ile tümleşik Toprak ve Su Değerlendirme Aracı’dır (The Soil and Water 

Assessment Tool, SWAT). SWAT, hidrolojik süreçleri, toprak türü, arazi kullanımı ve 

yönetimi kombinasyonlarının alanlarını eşikleyerek Hidrolojik Cevap Birimleri 

(Hydrologic Response Units, HRU) türetmek suretiyle alt-havza düzeyinde simüle 

eden yarı dağıtık bir hidrolojik modeldir. Günümüzde, SWAT için Levenberg-

Macquart gibi doğrusal olmayan optimizasyon veya Genetik Algoritmalar gibi global 
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optimizasyon yöntemleri kullanan otomatik kalibrasyonu yöntemleri vardır. Karmaşık 

modelleri kalibre etmek için kullanılan bu optimizasyon yaklaşımlarının bazı 

dezavantajları vardır: 1) Arama uzayı geniş ve model karmaşık olduğu için yakınsama 

çok uzun zaman alır, 2) aynı nedenle, yerel bir optimum bulma olasılığı yüksektir, 3) 

nihai sonuç parametrelerin başlangıç tahminlerine fazlasıyla hassastır, 4) içerisinde 

parametrelerin sabit kabul edildiği HRU’ların büyüklükleri kullanıcıya bırakılmıştır 

ve bunların kalibrasyon / doğrulama performansı bilinmemektedir. Bu tezde, HRU 

seçimi ve kalibrasyon için hiyerarşik (kabadan inceye) bir yaklaşım incelenmiştir. 

HRU’lar bir komut dosyası tarafından otomatik olarak oluşturulmaktadır ve her 

hiyerarşinin her düzeyinde, HRU’ların sayısı arttırılmaktatır. Her bir düzeyin 

kalibrasyon sonuçları bir sonraki düzey için başlangıç değeri tahminiolarak kullanılır. 

Bu şekilde, sadece hızda ve kalibrasyon doğruluğunda bir artış elde etmekle 

kalmıyoruz, aynı zamanda ve optimum HRU boyutlarını ve HRU oluşturma 

parametrelerini de buluyoruz. Bu tezde geliştirilen algoritma, farklı özelliklere sahip 

iki havzada test edilmiştir ve sonuçlar ümit vericidir. 

  

 

Anahtar kelimeler: SWAT, CBS, yarı-dağıtık hidrolojik modeller, kalibrasyon, 

optimizasyon, hidroloji, su yönetimi,   
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CHAPTER 1 

 
 

INTRODUCTION 

 
 
 

The water framework directive (WFD, 2000/60/EC), created by the European Union, 

indicates new approaches on water management and protection of aquatic environment 

since uncontrolled agricultural, industrial activities and settlements on river basins 

threaten water quality and quantity. The directive points out that integrated water 

resources planning and management at the river basin is important for sustainable 

water management. The suitable management and protection of valuable water 

resources can be succeed by understanding temporal and spatial distribution of water 

on river basins, which includes groundwater recharge and contaminant loadings. Thus, 

to develop and apply mathematical simulation models, which are representations of all 

the important hydrological processes at the suitable scale, may play a major role in 

anticipating short and long-term effects on the aquatic for a successful river basin 

management plan.  

 
Hydrologists and water resource managers have widely applied hydrologic models as 

tools for understanding and reliably estimating human activities that impact on river 

basin systems. Uncertainty analysis and accurate calibration processes are needed for 

successful application of hydrological models in water resources management (Duan 

et al., 1992; Beven and Binley, 1992; Vrugt et al., 2003; Van Griensven et al., 2008; 

Yang et al., 2008). In recent years, many researchers have studied and developed many 

calibration and uncertainty analysis methods in order to improve reliability of model 

prediction and estimation of prediction uncertainty (van Griensven and Meixner, 2006; 

Abbaspour et al., 2007). However, calibration of models is not an easy task because 

there are many uncertainties, namely: input, model structure, parameter and output 

uncertainties (Arnold et al., 2010). If there are too many parameters to be optimized in 

the calibration, the task can become labour-intensive and time-consuming (Balascio et 

al., 1998).Moreover, with increasing complexity of hydrologic models, the complexity 

of calibration also increases (Gupta et al., 1998). 
1 
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In this study, “The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998)”, 

which is a physical hydrologic model and has been popular worldwide for evaluating 

water resources, is used. In accordance with the semi-distributed approach, the 

smallest spatial component of water balance simulation in SWAT is the Hydrological 

Response Unit (HRU). HRU generation in SWAT is based on user defined thresholds 

to be applied to areas of soil, land use and management combinations at subbasin level. 

 
Since the current approach of HRU creation may ignore some combinations important 

for hydrological processes, the model performance may decline. If the number of 

HRUs are increased to avoid that problem, then the computational complexity of the 

calibration will increase. In this study, we present a hierarchical (coarse-to-fine) 

approach to HRU definition that increases model performance and reduces 

computational overhead simultaneously. The performance of the hierarchical 

methodology is demonstrated on two basins with different characteristics: Sarısu-

Eylikler sub-basin and Namazgah Dam Lake in Turkey. 

 
 

1.1. Problem Description  

 
 

Hydrologists and water resource managers use watershed models to realize and control 

negative effects on the river basins, either natural or anthropogenic. SWAT model 

(Arnold et al., 1998) has been applied as hydrologic and water quality model 

worldwide. However, the hydrologic models include parameters the values of which 

cannot be determined directly since the parameters cannot be measured or there can 

be scaling problems. The time consumed for running the hydrologic model is still a 

problem for hydrologic modelers. Calibration of hydrologic models takes a long time, 

especially when they are complicated and large scale.  

Until now, many automated calibration methods for SWAT were developed and used, 

which are based on nonlinear optimization algorithms like Levenberg-Macquart 

(Macquart, 1963) or global optimization methods like Genetic Algorithms (Holland, 

1970), in order to increase calibration performance. However, these optimization 
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approaches that try to calibrate very complex models have some drawbacks: 1) Since 

the search space is large and model is complicated, the convergence takes very long 

time, 2) for the same reasons, probability of getting stuck into a local optimum is large, 

3) final result is too dependent on the initial estimates of the parameters, and 4) the 

sizes of the HRUs, which are the areas over which the parameters are assumed to be 

constant, are left to the user and their relation to the performance of 

calibration/validation is unknown. Furthermore, to evaluate the optimization 

algorithms for the complex models is nearly impossible because running hydrologic 

models is time-intensive. So as to enhance model performance and reduce the 

computational complexity for calibration, a different calibration approach should be 

developed. 

 
 

1.2. Contribution of the thesis 

 
 

The success of a hydrologic model relates to model calibration accuracy (Duan et al., 

1992). The model parameters are adjusted so that the difference between the 

predictions of the model and actual measurements are as small as possible. In this 

study, we used SWAT (Arnold et al., 1998), which is a semi-physically based 

hydrologic model and is very popular. The smallest spatial unit of water balance 

calculation in SWAT is the HRU. HRUs are created in SWAT by applying user 

defined threshold area of soil, land use and management combinations at sub-basin 

level. 

 

Since the sizes of the HRUs are left to the user and their relation to the performance 

of calibration/ validation is unknown, a hierarchical approach to HRU definition was 

developed in order to increase model performance and reduce computational overhead 

simultaneously. Thus, the prediction reliabilities and uncertainty estimations of SWAT 

simulations are improved by developing a tool, which works under MATLAB in order 

to run the SWAT model efficiently and effectively. Input layers for SWAT, which are 

topography, land use, soil type, and other digital data, are supported by Geographic 

Information Systems (GIS). In this study, MATLAB is used to control SWAT 
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remotely in order to apply hierarchical approach for hydrological model calibration. 

By using MATLAB, we can create the HRUs ourselves and hence we can control their 

number and type. Thus, the HRUs are generated automatically by a computer program 

implemented as MATLAB scripts and at each level, the number of HRUs are increased 

systematically. In order to evaluate our hierarchical approach, SUFI-2 optimization 

method is used due to its ability to combine optimization with uncertainty analysis in 

high-dimensional space. Furthermore, SUFI-2 can reach acceptable model calibration 

performance with relatively small iteration number and hence shorter calibration time. 

The HRUs are generated automatically by a script and the number of HRU types are 

doubled at each level. The calibration results at each level will be used for estimating 

initial values for the next level. This way, not only an increase in the speed and success 

of the calibration, but also the optimum HRU sizes and HRU generation parameters 

are reached. The effectiveness of the method is demonstrated on two basins with 

different characteristics. 
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CHAPTER 2 

 
 

LITERATURE REVIEW AND BACKGROUND 

 
 
 

2.1. Literature Review 

 
 
Although the computers’ speed and capacity have improved substantially in the recent 

years, computational complexity for running hydrologic models is a still major 

problem for the modelers especially when the complicated physically based distributed 

hydrologic models are applied. Several studies evaluated the performance of the 

calibration process by applying various algorithms in order to enhance the model 

performance and/or reduce the computational time. For example, Duan et al. (1992) 

developed the shuffled complex evolution algorithm (SCE-UA). The method is a 

consistent and effective method for searching global optimum parameter values of 

hydrologic models. Some researchers have studied effects of input data on the model 

accuracy. For instance, Brown et al. (1993) indicated that the degree of spatial 

dependence within the input variables had effect in the outcomes. DEM grid size 

importantly affects topographic parameters according to study of Zhang and 

Montgomery (1994). The finest resolution DEM (10 m) resulted in better outcomes 

than 30 m and 90 m data. The SCE-UA was compared with other methods, GA and 

SA, for optimization of the tank model by Cooper et al., (1997). The comparison 

between SCE-UA, GA, and multiple random starts using either simplex or quasi-

Newton local searches for parameter optimization of catchment models were studied 

by Kuczera (1997). The differences between multi-start Powell and SCE-UA methods 

for calibrating the Tank model were assessed by Chen et al. (2005). The model 

accuracy and calibration performance have been effected by uncertainties which are 

input, model structure, parameter and output uncertainty.Uncertainties originating 

from model structure were evaluated by choosing distinct reasonable model structures 

within a general hydrological modeling tool by Butts et al. (2004a). They indicated 

that the model constructions are important for modeling approach. In order to 
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determine optimum input parameters based on the global objective criteria, an SCE 

module was directly integrated into the SWAT code by Van Griensven and Bauwens 

(2003, 2005). The effect of DEM mesh size and soil map scale on SWAT runoff, 

sediment, and NO3 predictions were assessed by Chaplot (2005). In that study, various 

map scales (1/25,000; 1/250,000, and 1/500,000 scale) within the SWAT were used 

for simulating runoff, sediment and NO3 load. Although the map scales had few 

differences in runoff, nitrogen as well as sediment loads were greatly affected by the 

scale of the soil. The finest soil information improved the forecast quality for runoff, 

nitrogen and sediment loads for all DEM mesh sizes were improved. Food and 

Agricultural Organization (FAO) soils with the State Soil Geographic Dataset 

(STATSGO) and the Soil Survey Geographic Database (SSURGO) were compared by 

Levick et al. (2004). The comparison was made by using the Kinematic Runoff and 

Erosion Model (KINEROS2). At the end of this study, when the STATSGO soils used, 

runoff were generally higher than with the SSURGO. Furthermore, FAO soils 

generated less runoff than the STATSGO soils in most cases. The difference in data 

resolution caused the variations in runoff and soil properties.  

 
GA and GLUE methods for conducting parameter calibration and uncertainty analysis 

of SWAT were combined by Muleta and Nicklow (2005). Parameter Estimation 

method (PEST) was applied in order to calibrate important hydrologic parameters for 

SWAT applications in South Africa and Northwest Minnesota, respectively, by 

Govender and Everson (2005) and Wang and Melesse (2005). When PEST approach 

was compared between its automatic and manual versions, the automated PEST 

approach leads to less accurate predictions than manual calibration according to Wang 

and Melesse (2005). For easy implementation of calibration algorithms, SWAT-CUP, 

which is a semi-automated calibration and uncertainty software for the SWAT, was 

developed by Abbaspour et al. (2007). It includes a multi-site, semi-automated inverse 

modeling routine (SUFI-2) for calibration and uncertainty analysis. The model 

accuracy and calibration performance have been evaluated by using many different 

methods. According to Moriasi, D. N. et al., 2007, Nash-Sutcliffe efficiency (NSE), 

percent bias (PBIAS), and ratio of the root mean square error to the standard deviation 

of measured data (RSR) are most suitable methods for assessing model accuracy by 

comparing simulated and measured data with graphical techniques. Before calibration 
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process, sensitivity analysis should be performed to find key parameters that have great 

effect on hydrologic cycle. The process is needed for understanding the main processes 

for the element of interest. Most sensitive parameters for hydrology and water quality 

are the physical soil properties such as bulk density, available water capacity or 

hydraulic conductivity, plant specific parameters similar to maximum stomatal 

conductance or maximum leaf area index as well as slope length, slope steepness, and 

curve number (Lenhart et al., and T., 2008). Yang et al. (2008) compared GLUE, 

ParaSol, SUFI-2, and a Bayesian framework implemented using Markov Chain Monte 

Carlo (MCMC) and Importance Sampling (IS) techniques on a SWAT model of the 

Chaohe Basin in China, based on the posterior parameter distributions, performances 

of their best estimates, prediction uncertainty, conceptual bases, computational 

efficiency, and difficulty of implementation. At the end of the study, Bayesian-based 

approaches were found to be the most acceptable since the approach contains 

parameter correlation. However, construction and test of the likelihood function needs 

essential notice. The GA and Bayesian Model Averaging (BMA) were employed for 

calibration and uncertainty analysis at the same time for SWAT by Zhang et al., 

(2008). After several SWAT models were examined with various snow, potential 

evaporation and flow routing methods, the specific model elements of SWAT were 

selected. The GA was applied to calibrate each model using observed stream flow data. 

At the end of the study, BMA was applied in order to combine union prediction and 

supply uncertainty interval estimation. When a single‐objective optimization method 

(GA) and a multi‐objective optimization algorithm (SPEA2) were used on three 

observing areas within the Reynolds Creek Experimental Watershed to calibrate the 

parameters of SWAT by using observed stream flow data (Zhang et al., 2008), GA 

method had better identification of parameter solutions in the calibration process, 

while the SPEA2 method performance in the calibration stage was better than the GA. 

The SUFI-2 algorithm accounting for prediction uncertainty was used for the 

calibration of a hydrologic model of Iran by Faramarzi et al. (2009).  

 
Advantages and disadvantages of the PEST against the GLUE method for calibrating 

SWAT were studied by Ng et al. (2010b). Arnold et al. (2011) mentioned a semi-

automated approach (SUFI-2) comprising sensitivity and uncertainty analysis. It 

provides a decision-making framework. Schuol et al. (2008) applied SWAT on 18 
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countries in West Africa in order to estimate freshwater validity in the West African 

sub-continent. While generating HRUs, dominant land use and soil type within each 

sub-basin were applied due to very large surface area and hence elongated 

computational time required. In that study, SUFI-2 was applied for calibration and 

validation procedure of the model since calibration and uncertainty analysis 

performance of SUFI-2 is good at such computationally extensive models. This is 

because calibration and uncertainty analysis can be executed with relatively small 

number of simulations by SUFI-2. The SWAT model with Variable Source of Area 

(VSA) Hydrology was re-conceptualized (Easton et al., 2008) in order to measure 

overland flow by changing the curve number (CN2) and available water content. This 

approach was named as SWAT-VSA. The SWAT and the SWAT-VSA were 

employed on a sub-watershed in the Cannonsville basin in upstate New York in order 

to see differences between model predictions of incorporated and dispersed effects, 

including surface runoff, shallowly perched water table depth, and stream phosphorus 

loads versus straight estimations. Although the SWAT-VSA and the SWAT predicted 

runoff similarly well, the SWAT-VSA forecasted the dissemination of shallowly 

perched water table depth and dissolved phosphorus export from the watershed better.  

 
Different model structures in hydrologic models, which are lumped, hydrologic 

response unit (HRUs) or hydrotope, catena, and grid, were used by Arnold et al. (2010) 

in order evaluate differences between these model structures. The lumped models can 

be calibrated like complicated structures, but the effect of upslope management on 

downslope landscape situations cannot be shown. If sub-basins are adequately small, 

the lumped method is efficient. Although soil, land use, and slope heterogeneity are 

preserved by the HRU method, it does not have spatial position. The effect of spatial 

position on management such as plant growth, crop yields and runoff can be simulated 

by the grid representation. Nevertheless, using a small grid size is not feasible for large 

scale river basin modeling. A catena approach simulates the models as discrete units 

while preserving landscape position and allowing riparian and flood plain areas. If 

HRUs are preferred to simulate within each landscape unit, the catena approach may 

be more suitable choice for large scale modeling studies. Lumped, semi-lumped and 

semi-distributed structures of the Sacremento Soil Moisture Accounting model (SAC-

SMA) were compared by Ajami et al. (2004). The calibration results showed that the 
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simulation results were improved from a lumped model structure to a semi-distributed 

model construction when each sub-basins used averaged data which were identical foo 

all sub-basins. However, the simulation results at the outlet and an interior testing point 

were not further improved by using various parameters between sub-basins. 

 
The effects of land use variations in the SWAT were assessed by Baker and Miller 

(2013). They found that there was relationship between surface runoff and 

groundwater recharge. With increases in surface runoff, groundwater recharge 

decreases. 

 
The SWAT model for Europe was calibrated by Abbaspour et al. (2015). They used 

SUFI-2 in SWAT-CUP package for uncertainty analysis, sensitivity and calibration 

process. Large-scale model development includes many difficulties and limitations 

because of restricted and unequally dispersed nitrate data and discharge stations within 

time series lengths, limited knowledge of attributes and management of the reservoirs 

and lack of information about agricultural management operations, and lack of soil 

and groundwater data. As a result, calibration results were affected negatively on some 

places in this large-scale model. 

 
Faramarzi et al. (2015) indicated that proper calibration and uncertainty analysis of 

large scale hydrological model depends correctly setup. While building a hydrological 

model of Alberta, they used different source of data (e.g., MODIS land cover, 

GlobCorine, National Climate Data Center, European Climate Assessment Dataset., 

etc.) of data and evaluated the results. They mention that data discrimination analyses 

prior to calibration is an important step in order to reach better results.  

 
A grid-based form of the SWAT landscape model was developed to improve the 

spatial representation of hydrological and transportation procedure by Rathjens et al., 

2014. As a result of the model construction, the impact of the landscape position on 

surface runoff, subsurface runoff and evapotranspiration could be simulated 

reasonably. Fenicia et al. (2016) studied the distributed hydrological models in order 

to understand discretizing the landscape used for model structures. According to their 
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results, the model results of geology-based HRUs are better than topography-based 

HRUs in capturing the spatial variability of stream flow time series. 

 
 

2.2. Hydrologic Modeling and Calibration 

 
 
Many hydrologic models, which are hydrological transport models, distributed 

hydrological models, composite models etc., have been used in order to understand 

hydrological processes in the world. 

 

Distributed hydrologic models take spatial dependence of meteorological input, soils, 

vegetation and land use into account. Since the distributed hydrological models 

combine spatial variability of these inputs while simulating hydrologic process in the 

watershed basin, the models are frequently applied to produce water management 

strategies. Advantages of these models are that they can better streamflow prediction 

at the basin outlet and predict streamflow at the interior locations where streamflow 

measurements may not be applicable (Koren et al., 2004). Semi-distributed models are 

based on lumped models, which treat the complete basins as a homogeneous whole. 

They model hydrological processes at sub-basins or sub-areas of the basin that are 

considered as homogeneous within themselves. The semi-distributed models can 

estimate the stream flow at the basin outlet and at the interior points more accurately 

than distributed models (Khakbaz et al., 2012).Since semi-distributed models are 

easier to setup and require relatively shorter running times, the semi-distributed SWAT 

model was chosen for this study.  

 

Careful calibration and uncertainty analysis are important for these models so that they 

can be used for guiding water management policies. Calibration of watershed models 

is not an easy process because the models include many uncertainty types, which are 

input, model structure, and parameter and output uncertainties. Input uncertainties are 

caused by imprecise or spatially interpolated measurements of model input like 

elevation data, land use data, rainfall intensity, temperature or initial conditions like 

initial groundwater levels. Some unknown activities and oversimplification of the 
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processes regarded in the model cause uncertainties. Moreover, unknown parameters 

and errors in the data that are utilized for parameter calibration lead to uncertainties in 

the models (Arnold et al., 2010). 

 

Uncertainty analyses of the models can be divided into three main categories: 

 
(i) All uncertainties can be represented by an enhanced parameter uncertainty without 

rigorous statistical assumptions. “Generalized Likelihood Uncertainty Estimation 

(GLUE) (Beven and Binley, 1992)” and “Sequential Uncertainty Fitting (SUFI-2) 

(Abbaspour et al., 2004, 2007)” are some examples. 

 
(ii) An additive error model introducing temporal correlation of the residuals shows 

the impact of input and model structural errors on the output. Autoregressive error 

models can be given as an example for this kind of analyses.  

 
(iii) Input errors and/or model structure errors are represented by developing likelihood 

functions such as a Bayesian framework implemented using Markov Chain Monte 

Carlo (MCMC). 

 
When comparing these methods, the most acceptable ones are the techniques in 

category (iii) due to their ability to handle parameter correlation. However, these 

techniques require more computation time when applied to hydrological models. For 

this reason, practical applications of the first and the second techniques to complex 

hydrological models are important (Yang and et al., 2008). Because of this, in this 

study, a second type method, “Sequential Uncertainty Fitting (SUFI-2)”, was 

preferred. Since one of the aims of this study is to reduce calibration computational 

time, an automatic calibration method was needed. SWAT-CUP is a semi-automated 

computer program for calibration of SWAT models. The program includes GLUE, 

ParaSol, SUFI-2, MCMC, and PSO, which provides sensitivity analysis, calibration, 

validation, and uncertainty analysis of a SWAT model. In order to implement 

hierarchical approach to hydrological model calibration/validation, we selected one of 

the methods. When selecting calibration techniques in hydrological modeling, we 

confront various difficulties. Philosophies and subjective choices of most techniques 

are different with regard to prior parameter distribution. This results in various 
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objective functions for various techniques that are used in hydrological applications. 

Thus, their intercomparison is difficult. Calibration techniques were chosen according 

to ease of application, computational efficiency, accuracy of uncertainty range 

estimation and the model prediction performance. 

 
 

2.1.1 Semi-Automated Calibration Methods 

 
 
To fulfil the requirements of an automatic calibration tool, SWAT-CUP was developed 

for SWAT as an interface. The primary function of the interface is to manage the flow 

of information between the model and a calibration program. The data exchange is 

realized through text files. The interface provides the ability that any 

calibration/uncertainty or sensitivity program can simply be integrated into SWAT. 

The model parameters to be optimized are systematically modified, the model is 

simulated and the needed results (relating to simulated data) are obtained from the 

model output files in the automated model calibration. Particle Swarm Optimization 

(PSO), Sequential Uncertainty Fitting Algorithm (SUFI2), Monte Carlo Markov Chain 

(MCMC), Generalized Likelihood Uncertainty Technique (GLUE) and Parameter 

Solution (ParaSol) are connected to SWAT by the program (Figure 1). Sensitivity 

analysis, calibration, validation, and uncertainty analysis of a SWAT model are 

provided.  
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Figure 1 SWAT-CUP program structure (Abbaspour et al., 2007) 

 
 

2.1.1.1 Particle Swarm Optimization (PSO) 

 
 
Particle swarm optimization (PSO), which is known as a population based on 

stochastic optimization technique, was developed by Eberhart and Kennedy (1995). 

PSO solves a problem by having a population of candidate solutions (called particles). 

These particles are moved in the multi-dimensional search-space depending on a few 

simple formulae. Its local best-known position space effects each particle's movement. 

Other particles try to find better positions while the best-known positions in the search-

space are updated. This is anticipated to move the swarm toward the best solutions. 

Since the particles have memory, they keep part of their previous state. Although the 

same point in the belief space can be shared by particles, their identities are protected. 

Particles’ movement depend on both an initial random velocity and two randomly 

weighted influences which are individuality, the inclination to come back to the 

particle's best previous position, and sociality, the inclination to displace towards the 

neighborhood's best prior position. However, optimization performance depends on 

the choice of PSO parameters.  

Parameters 

New SWAT 

SWAT 

Output 

SWAT_Edit.exe 

SWAT.exe 

SWAT_Extract.exe 

PSO 

 SUFI-2 

 MCMC 

 ParaSol 

 

http://www.engr.iupui.edu/~eberhart
http://www.particleswarm.net/JK/
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2.1.1.2 Monte Carlo Marcov Chain (MCMC) 

 
 
Samples from a random walk that suits to the posterior distribution (Kuczera and 

Parent, 1998) are produced by MCMC. Parameter sets representing the posterior 

distribution in a sequence (Markov Chain) is built as below: 

 
1) In order to determine a first beginning point in the parameter space, a point is 

determined randomly. 

2) By using a symmetrical jump distribution (jump f) in order to add a random 

realization, a candidate for deciding the next point is suggested. The next point of the 

sequence has coordinates: 

 
𝜃𝑘+1𝜑
∗ = 𝜃𝑘 + 𝑟𝑎𝑛𝑑(𝑓𝑗𝑢𝑚𝑝) 

 
3) The candidate points are determined based on the ratio r: 

 

𝑟 =
𝑓𝜃𝑝𝑜𝑠𝑡|𝑌(𝜃𝑘+1

∗ |𝑦𝑚𝑒𝑎𝑛𝑠)

𝑓𝜃𝑝𝑜𝑠𝑡𝜑|𝑌(𝜃𝑘|𝑦𝑚𝑒𝑎𝑠)
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The asymptotic standard deviation of the errors is r, the characteristic correlation time 

is s, the vector of model parameters is 𝜃, the observation and model simulation are 𝑦𝑡𝑖 

and 𝑦𝑡𝑖𝑀(𝜃) at time ti, and g, respectively. 

 
 If r >= 1, then a new point with probability r is used as a candidate. If the point is 

unaccepted, the following point of the sequence is used for deciding. The shuffled 

complex global optimization algorithm supports to calculate the posterior distribution. 

If the chain is initiated at a numerical estimation of the maximum of the posterior 
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distribution, long burn-in periods or even lack of convergence to the posterior 

distribution are avoided (Duan et al., 1992). 

 

 

2.1.2.3 Generalized Likelihood Uncertainty Technique (GLUE) 

 
 
GLUE is “an Importance sampling and regional sensitivity analysis (RSA)” are 

executed by GLUE, which is an uncertainty analysis technique (Hornberger and Spear, 

1981). The technique can handle input uncertainty, structural uncertainty, parameter 

uncertainty and response uncertainty, since it is connected with parameters and 

illustrates all uncertainties and impact of the co-variation of parameter values on model 

performance indirectly (Beven and Freer, 2001). When the model is non-linear and 

there are various sources of error that affect each other to generate the measure bias 

(Gupta et al., 2005), GLUE can be used.  

 
A GLUE analysis is comprised of three steps: 

 
(1) In order to measure generalized likelihood measure, the previous distribution is 

used for determining parameter sets, each parameter set is assessed as ‘‘behavioral’’ 

or ‘‘non-behavioral’’ using the ‘‘likelihood measure’’ with a chosen threshold value. 

 
(2) “Likelihood weight” is calculated from each behavioral parameter  

 

Wi =
L(θj)

∑ L(θk)
N
k−1

 

 

The number of behavioral parameter sets is N. 

 
(3) Quantiles of the cumulative distribution obtained from the weighted behavioral 

parameter sets defines prediction uncertainty. GLUE has used widely the Nash–

Sutcliffe coefficient (NS) as likelihood measure for (e.g., Beven and Freer, 2001; Freer 

et al., 1996). 
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NS =
∑ (yti=1

mn
ti=1 (θ) − yti)

2

∑ (yti
n
ti=1 − y)̅2

 

 

The number of the observed data points is shown as n, the observation and model 

simulation with parameters θ at time ti are represented by yti and ⁡⁡yti=1m (θ), respectively 

and the average value of the observations is Ӯ. 

 
 

2.1.1.4 ParaSol  

 
 
When the global optimization algorithm SCE-UA was modified, It was called as 

ParaSol (Duan et al., 1992) algorithm. The procedure of ParaSol is as below: 

 
(1) The coverage of the parameter space is first improved using the modified SCE-UA 

algorithm. ‘‘good’’ and ‘‘not good’’ simulations in GLUE are determined according 

to a threshold value of the objective function. As a result, good simulations’ parameter 

set is defined as ‘‘good’’ parameter set and vice visa. 

 
(2) Equally weighting all ‘‘good’’ simulations construct prediction uncertainty. 

 
The sum of the squares of the residuals (SSQ) is used by the objective function in 

ParaSol: 

 
                                 SSQ= ∑ (𝑦

𝑛

𝑡𝑖=1 𝑡𝑖

𝑚
(𝜃) − 𝑦𝑡𝑖⁡)

2 

 

NS = 1 =
1

∑ (yti
n
ti=1 − y)̅2

 

 

A fixed value for given observations is⁡∑ (yti
n
ti=1 − y)̅2. In order to enhance the 

comparability with GLUE, NS were used as an objective function in ParaSol.  

 
The χ2 statistics is used for determining the threshold of the objective function. 
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2.1.1.5 SUFI-2 

 
 

SUFI-2 can calculate all sources of uncertainties, which are input, conceptual model, 

parameter and measured data uncertainty. The degree of uncertainty can be accounted 

by a P factor, which is the percentage of measured data bracketed by the 95% 

prediction uncertainty (95PPU). Although the model, which includes all important 

hydrological processes, is constructed very well and input parameters such as 

precipitation and temperature distributions are rightly modeled, the model still 

includes error since its prediction contains uncertainty. The assessment of the strength 

of the uncertainty analysis is made by the percentage of data bracketed by the 

prediction uncertainty. By using Latin hypercube sampling, the 95PPU, which is 

calculated at the 2.5% and 97.5% levels of the cumulative distribution of an output 

variable, is obtained. Five percent of the very bad simulations are disallowed. 

Parameter uncertainty can be calculated by the 95PPU, if the measured variables 

include all forms of uncertainties (e.g., discharge). The R factor is another 

representative measurement for a calibration/uncertainty analysis. It is calculated by 

the average thickness of the 95PPU band divided by the standard deviation of the 

measured data. Hence, SUFI-2 searches the smallest possible uncertainty band. In 

Figure 2, the concept of the SUFI-2 algorithm is illustrated graphically. When a single 

parameter value causes a single model response, the relationship between parameter 

uncertainty and prediction uncertainty is like in Figure 2a. The shaded region in Figure 

2b is observed when the 95PPU causes the uncertainty to spread in a parameter 

(represented by a line). Increase of parameter uncertainty causes an increase in the 

output uncertainty (Figure 2c). As a result of this, at the first step of SUFI-2, it begins 

by presuming a physically meaningful large parameter uncertainty, then the 

uncertainty is reduced by SUFI-2 in steps while the P-factor and the R-factor are 

observed. In each step, while accounting the sensitivity matrix (equivalent to the 

Jacobian), an equivalent of a Hessian matrix, followed by the calculation of covariance 

matrix, 95% confidence intervals of the parameters, and the correlation matrix, 

antecedent parameter ranges are updated (Abbaspour, 2007). Updated parameter 

ranges shrink at each calibration step of SUFI2 (Abbaspour et al., 2004, 2007). The 

model is assessed according to ranges of P-factor and R-factor in SUFI2. The P factor 
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ranges are between 0% and 100%, whereas the R-factor ranges are between zero and 

infinity. If the P-factor is close to unity and the R-factor is close to zero in a simulation, 

then the simulated data match the measured data. These values provide the assessment 

of the strength of our calibration. There is a balance between the P-factor and the R-

factor: if a larger P-factor is obtained, a larger R-factor can be achieved. If acceptable 

values of R factor and P-factor are obtained, the desired parameter ranges are reached. 

The goodness of fit between the measured and observed data is calculated by the R2 

and/or NSE. If parameter ranges are set equal to the maximum physically meaningful 

ranges are set and a 95PPU still cannot be found, calibration of the parameter and the 

model construction must be reviewed (Figure 2d). 

 

 
 

Figure 2 The relation between parameter uncertainty and prediction uncertainty 
(Abbaspour et al., 2007) 

 
 



 

19 
 

2.1.1.5.1 SUFI-2 Procedure 

 
 
SUFI-2 includes all uncertainties, which are the input data (e.g., rainfall), the 

conceptual model, the parameters, and the measured data. SUFI2 uses Latin hypercube 

sampling for producing an independent parameter set (Abbaspour et al., 2007). A 

multivariate uniform distribution in a parameter hypercube defines the parameter 

uncertainty. When the measured variables (e.g. discharge) include all forms of 

uncertainties, the 95PPU, which is produced by the parameter uncertainties, describes 

all uncertainties.  The 95PPU is accounted at the 2.5% and 97.5% levels of cumulative 

distribution of an output variable by using the cumulative distribution of an output 

variable that is got from Latin hypercube sampling (Abbaspour et al., 2007). 

 

SUFI-2 is described as below: 

 
Step 1. An objective function is determined. Since an objective function can be 

formulated in different ways (Legates and McCabe, 1999; Gupta et al., 1998), each 

expression may cause a distinct outcome. The last parameter extents are always 

adopted depending on the type of the objective function. This problem is got over by 

combining different types of functions (e.g., Yapo et al., 1998) like root mean square 

error, absolute difference, logarithm of differences, R2, Chi square, Nash-Sutcliffe to 

provide a “multi-criteria” formulation. Moreover, when a “multi-objective” 

formulation (Duan et al. 2003; Gupta et al., 1998) is used, the non-uniqueness problem 

is reduced since various variables are comprised in the objective function. 

 
Step 2. Minimum and maximum ranges of parameters are determined so as to define 

boundary at the parameter range. These ranges should be physically meaningful. The 

probability density function of all parameters are modelled as uniform distribution 

within the extreme values. Certain parameter ranges should be as large as possible 

since they play a constraining role: 

 
bj: bj, abs_min ≤bj ≤bj,abs_max j = 1.... m,       (1) 

 
The j-th parameter is represented by bj and the number of parameters to be estimated 

is shown as m. 



 

20 
 

Step 3. Sensitivity analysis should be made in order to realize the physical system and 

to obtain knowledge about the impacts of parameters on the system response. 

 

Step 4. To initiate the first iteration of Latin hypercube sampling, initial ranges are 

assigned to the parameters: 

 
 bj: [bj,min ≤bj ≤ bj,max] j = 1, m                (2) 

 

The parameter range selection is based on experience and it is subjective. The 

sensitivity analysis can help to decide selection of suitable ranges.  

 
Step 5. Subsequently, Latin hypercube sampling is implemented with respect to n 

combinations of parameters (McKay et al., 1979). Simulation count should be as large 

as possible (approximately 500-1000) in order to adjust to fine parameter 

combinations.  

 
Step 6. The objective function, g, is evaluated as a first stage in iterating the 

simulations, 

 

  Jij=
Δgi

Δbi
                  i=1,...C2n, , j = 1,..., m     (3) 

 
C2
n represents the number of rows in the sensitivity matrix. In that matrix, whole 

possible combinations of two simulations are shown. The number of columns, number 

of parameters, are shown as j. Then, H, a Hessian matrix, is obtained using the Gauss-

Newton method and ignoring the higher-order derivatives as: 

 
                       H=JTJ                                 (4) 

 

An estimate of the lower bound of the parameter covariance matrix, C, is calculated 

according to the Cramer-Rao theorem (Press et al., 1992): 

 
                     C=Sg

2 (JTJ)-1                                                  (5) 

 

Step 7. At the end of n runs, the variance of the objective function values, Sg2, is found. 

Diagonal elements of C is used for calculating standard deviation and 95% confidence 

interval of a parameter bj (Press et al., 1992): 
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                       Sj=√Cjj                                       (6) 

 

                  B j, lower=bj∗-tv, 0.0025Sj                                                                           (7) 

                  B j, upper = bj
∗ + tv, 0.0025Sj                    (8) 

 

One of the most suitable choice such as parameters which generate the smallest value 

of the objective function is shown as the parameter b, and the degrees of freedom (n – 

m) is represented by v. The evaluation of parameter is provided by the diagonal and 

off-diagonal variables of the covariance matrix: 

 
              rij=

Cij

√Cii⁡√Cjj

                         (9) 

The correlation matrix is represented by r which is quantified based on the change in 

the objective function as a result of a change in parameter i relative to changes in other 

parameter j. The correlation between any two parameters is anticipated to be very 

insignificant since in SUFI-2 sets of parameters hold all parameters constant while 

only one is changed. Averaging the columns of the Jacobian matrix provides parameter 

sensitivities, S as seen as in Step 3. The sensitivities, 

 
                               Sj = bj⁡

1

C2
n∑ |

∆gi

∆bj
|

C2
n

i=1          j=1,....,m,                                (10) 

 

The mean differences in the objective function that is resulting from differences in 

each parameter is estimated while all other parameters are changing. As a result, 

relative sensitivities based on linear approximations are given by [10]. Thus, the 

sensitivity of the objective function to model parameters is quantified. The absolute 

sensitivity of a parameter is described in Step 3. When output variable(s) of interest 

is/are taken by other parameters, the absolute sensitivity of a parameter can change in 

relation to the other parameters that assume different optimized values.  

 
Step 8. The uncertainties are computed. The 2.5th (XL) and 97.5th (XU) percentiles 

of the cumulative distribution of every simulated point shows the 95% prediction 

uncertainties (95PPU) for all the variable(s) in the objective function. The uncertainty 

measures which is calculated from the percentage of measured data bracketed by the 
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95PPU band evaluates the goodness of fit. The average distances d between the upper 

and the lower 95PPU (or the degree of uncertainty) are obtained as below: 

 
                           dx=

1

k
∑ (Xu1⁡d)l,k
i=1                                                     (11) 

 
The number of observed data points are shown as k. Although the best result is that 

100% of the measurements are bracketed by the 95PPU, and d is close to zero, the 

ideal values will generally not be obtained due to measurement errors and model 

uncertainties. An acceptable measure for d is calculated by the R-factor: 

 

                               R-factor = 
dx

ϑx
                                                      (12) 

The standard deviation of the measured variable X is indicated as ϑx. If a value of less 

than 1, it is a valuable estimation for the R-factor. 

 
Step 9: Since at the first step, there is too big parameter uncertainties, the value of d is 

expected to incline to be large during the first step of SUFI2. As a result, further step 

of the optimization is made with updated parameter ranges computed from: 

 

bj,min
′ = bj,lower

′ −Max(
(bj,lower − bj,min)

2
,
(bj,max − bj,upper)

2
) 

bj,max
′ = bj,upper

′ −Max(
(bj,lower − bj,min)

2
,
(bj,max − bj,upper)

2
) 

 
The updated value is indicated by b'. Parameters of the best simulation are used to 

calculate bj,lower and bj,upper. With new iterations, parameter ranges get narrower and the 

parameters are updated as the center of the range. 

 
 

2.1.1.5.2 Latin Hypercube Sampling 

 
 
Latin hypercube sampling (LHS) was described by McKay in 1979. It is a statistical 

technique used for reducing the number of samples from multidimensional 

distributions. While sampling a function of K variables, the range of each variable is 

separated into evenly feasible intervals (Liebetrau and Doctor, 1987). Secondly, N 



 

23 
 

sample points are located to provide for Latin hypercube requirements. The number of 

divisions must be equal for each variable. The sampling schema does not need more 

samples for more dimensions. There are two important points in Latin Hypercube: 

number of sample points to use and which row and column of the sample point is 

taken. Accept that each of the k components Xj of the vector X is divided into N 

intervals. Indicate these intervals as I1j, I2j … INj for j=1, 2 …k (k is the number of 

parameters). For each parameter Xj the interval is separated so that 

 
1. It divides the range of X in N intervals and 

2. Pij= Prob{ Xj Iij }=1/N i=1,2,…N. 

The set of all Cartesian products generated from the intervals is:  

{In1* In2* … *Ink: nj = 1, 2 …N; j=1,2…k}  

 
A separation P of the parameter-input space into N k cells is obtained by these maps. 

The coordinate vector n = (n1, n2,…, nk) defines the “location” of each cell in P. A 

LHS design of size N includes N cells randomly chosen from P by getting randomly 

one of the N! permutations of the integers {1, 2, …, N} which is written in the first 

column of the nk “design” matrix D. Then, a second permutation is produced and 

written in the second column, etc. The vector of integers in each row of the “design” 

matrix D defines a cell in P. The N cells that are specified by D are the LHS design.  

 

 

2.1.2 Comparison of the GLUE, ParaSol, SUFI-2, MCMC, and PSO Methods for 

Calibration 

 
 
The GLUE, ParaSol, SUFI-2, MCMC, and PSO methods have been studied for 

calibration by many researcher. These methods were compared in Table 1 (Yang and 

et al., 2008). If GLUE is calibrated by using the Nash–Sutcliffe coefficient as objective 

function, the broadest marginal parameter uncertainty intervals of the model 

parameters are observed. Although, GLUE supplies good prediction uncertainty with 

regard to coverage of measurements by the uncertainty bands, it is inefficient to find 

location of the maximum or maxima of the objective due to the global sampling 

procedure. A good estimation to the global maximum of NS can be found by ParaSol 
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optimization technique. However, it results in too narrow prediction uncertainty bands 

since independent and normal distributed errors assumption is not satisfied in reality.  

The prediction uncertainty bands in smallest number of model simulations provides 

that SUFI-2 could reach good prediction uncertainty ranges with regard to a suitable 

coverage of data points. It is significant for models that are computationally difficult. 

Although SUFI-2 has these advantages, the decision of a small sample size clearly 

reduces the parameter space and causes the poorly defined convergence criterion. 

However, since it does not consider parameter correlations, it reduces the ability of 

finding a unique posterior. The MCMC is applied according to “a continuous-time 

autoregressive error model”. Since the global optimization is executed before initiating 

the Markov chain, a good estimation to the maximum of the posterior is achieved by 

the MCMC. There are many advantages in MCMC methodology: the statistical 

assumptions of the error model can be tested, and they can adapt to empirical evidence. 

Moreover, the method provides the user some independence in determination of the 

effect of input and model structure error by additional parameters of the error. The 

construction of the likelihood function and coverage of multi-model distributions are 

difficult since the great number of simulations are needed to obtain a good estimation 

to the posterior.  

 
Permitting for arbitrary likelihood measures/objective functions make GLUE and 

SUFI-2 very flexible. However, the decision of the objective function affects the 

ability of searching the parameter space. The MCMC, whose likelihood function is 

based on testable statistical basis, has no violation of the assumption in the test result. 

The impact of input, model structure and output uncertainty on model output (e.g., 

autoregressive error model) are delineated by the likelihood function, and analyses the 

different sources of uncertainty. However, while using complex hydrological models, 

the computation still takes a long time.  

 
Although GLUE, SUFI-2 and MCMC have different concepts and performance, they 

result in not very different uncertainty bands (Yang and et al., 2008). SUFI-2 is chosen 

for testing our methodology since SUFI-2 associates optimization with uncertainty 

analysis and can handle a large number of parameters. Applying gradient methods can 

end up in local minimum since these methods are very sensitive to the initial values of 

the parameters to be optimized. Furthermore, a reliable estimate of parameter 
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uncertainty is not supplied by gradient methods. Global methods for calibration have 

required too many iterations. SUFI-2 has been developed to get over these problems. 

The beginning (large) uncertainty in the model parameters is gradually decreased until 

certain calibration criteria for prediction uncertainty are met in SUFI-2 method.  
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2.2 SWAT Model and SWAT Calibration 

2.2.1 SWAT Model 

 
 

SWAT has been used for hydrological transport modeling (Figure 3). The main model 

elements are weather, hydrology, soil temperature and properties, plant growth, 

nutrients, pesticides, bacteria and pathogens and land management. The watershed is 

separated into a number of sub-watersheds based on the topography (Figure 4). Each 

sub-watershed is further separated into hydrologic response units (HRUs), which 

comprise similar land use and soil type combinations within the sub-watershed (Figure 

5). Hydrologic process at the sub-catchment level are simulated by SWAT by 

obtaining from hydrological response units (HRUs). The smallest element of SWAT 

is the HRU. Many inputs such as digital elevation model, soil type, land use, and slopes 

effects the size of an HRU. The HRU distribution is defined by user‐defined thresholds 

in the current implementation of SWAT. Although, the size of an HRU changes based 

on user requirements, the typical area of an HRU in SWAT ranges from about 50 to 

500 ha. SWAT simulates hydrological process in two steps: (1) upland flow and 

loadings of sediment, nutrients, bacteria, and pesticides from each HRU are calculated, 

and then HRU‐level loadings to the sub-watershed level are combined proportionally; 

and (2) The upland loadings from each sub-watershed through the channel/stream 

network are routed by the model as seen in Figure 6 (Gassman, 2007).  
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Figure 3 The hydrologic cycle as represented in SWAT 

 

 
 

Figure 4 Representation of sub-basins and streams 
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Figure 5 Distribution of HRUs in a subbasin 

 

 
 

Figure 6 The water management pathways in SWAT (Neitsch et., al., 2011) 
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2.2.2 SWAT Calibration 

 
 

Major components of SWAT input parameters, which are weather, hydrology, soil 

temperature and characteristics, plant growth, nutrients, pesticides, bacteria and 

pathogens, and land management (consumptive use through pumping, return flow, and 

recharge by seepage from surface water bodies, ponds, and tributary channels), must 

be within reasonable uncertainty range. Firstly, the most delicate parameters for 

hydrologic process in the watershed or sub-watershed under question should be found 

out for the calibration and validation process in SWAT. Sensitivity analysis, which is 

the procedure of the deciding the rate of difference in model output with regard to 

differences in parameters, should be applied in order to find key parameters which has 

great impact on the hydrologic process. This step is required for understanding the 

main processes for the element of interest. The calibration process is the second step. 

The prediction uncertainty is reduced by elaborating on finding a better parametric 

model according to local conditions in the calibration step. Model calibration is carried 

out as model prediction are compared with the observed data. The process is continued 

to find acceptable prediction model output according to measured data while changing 

model input parameter values. The flowchart of general calibration for flow, sediment, 

and nutrients is represented in Figure 7 as formulated by Engel et al., 2007. The manual 

calibration steps are as follows: 

(1) The simulation is performed, 

(2) Measured and simulated values are compared, 

(3) It is evaluated whether acceptable outcomes have been achieved, 

(4) If there is no reasonable result, input parameters are adjusted within acceptable 

parameter value ranges depending on expert opinion and 

(5) The process is repeated until it is thought that the best outcomes have been 

obtained. 
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The hydrologic process parameters (evaporation, evapotranspiration, surface/base 

flow ratios, tile flow proportions, plant yield, and biomass) should be controlled during 

the calibration process so as to ensure that the predictions are acceptable for the 

watershed. Transportation processes such as stream flow, sediment and nutrient 

transport should be fine-tuned consecutively since there are relationships between 

components due to shared transport processes (Santhi et al., 2001; Engel et al., 2007).  

 

 

 

Figure 7 Example flowchart of manual calibration in SWAT (Engel et al., 2007; 
Santhi et al., 2001). 

 

When there are many uncertainties in the model and complicated hydrologic models 

are generated, manual calibration can take a long time (Balascio et al., 1998). Many 

semi-automated or automated calibration methods were developed to attack that 

problem. Semi-automatic calibration and uncertainty analysis have been integrated in 
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SWAT2009 (Gassman et al., 2010) through the SWAT-CUP software developed by 

Eawag (2009). SWAT-CUP is an interface that was developed for SWAT. Although 

many semi-automated calibration methods have been developed for SWAT such as 

“generalized likelihood uncertainty estimation (GLUE), shuffled complex evolution 

(SCE), and the Parameter Estimation (PEST)” methods, calibration processes have 

still computational inefficiency since comparison between calibration parameters and 

measured data requires several thousand SWAT simulation for completion.   
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CHAPTER 3 

 

 

HIERARCHICAL APPROACH TO SEMI-DISTRIBUTED 

HYDROLOGICAL MODEL CALIBRATION 

 
 
 
There are at least five different discretization methods which are: “lumped approach 

(Chiew et al., 1993), hydrologic response unit (HRU; Arnold et al., 1998) or hydrotope 

approach (Krysanova et al., 1998), catena approach (Kirby et al., 1998; Lane and 

Nearing, 1989), topographic index approach (Beven and Kirkby, 1979), and complex 

fully distributed approach (Abbott et al., 1986; Bronstert and Plate, 1997)” in 

hydrologic models. The dominant soil, dominant land use and average land slope 

generate HRU in one of the lumped methods. In HRU methodology, firstly, a 

watershed is divided into a number of sub-basins depending on topography. Each sub-

basin is further divided into HRUs. Similar land use and soil type combinations within 

the sub-basin generates HRUs. There is no spatial reference for HRU, and there is no 

flow between HRUs in hydrotope method. Water yield at the watershed outlet is 

calculated while streaming from each HRU is summarized at each sub-basin. The 

watershed is separated into the divide, hillslope, and valley bottom in the catena 

method. The catena approach struggles to force a systematized upscaling from 

topographic location to watershed scale. More detailed downslope routing of surface 

runoff, lateral flow and groundwater can be achieved, and the effect of upslope 

direction on downslope landscape situations can be evaluated within the catena. 

Although catena method has many advantages, the problem of catena is that it is not 

easy to find representative catenas for different regimes.  Moreover, in contrast to 

permitting routing, the catena approach assumes one rather simple slope configuration 

for the whole sub-watershed. Watershed is divided into a grid that has unique soil, land 

use, and slope with watershed-weighted precipitation. The DEM determines stream 

pathway, all water flowing from a cell flows into another cell, from  Although the grid 

representation delivers substantially more spatial detail than the catena delineation, it 

requires too much computational time and memory (Brien, et al., 2013). Differences 
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in hydrologic conditions for various land covers/crops and soils in the model are 

provided by HRUs. Runoff is anticipated independently for each HRU and routed to 

get the total runoff for the watershed. Thus, the accuracy of load predictions is 

increased and physical definition of the water balance gets much better.The HRU 

distribution is divided into two options which are, a single HRU is assigned to each 

sub-watershed or a multiple HRUs are assigned to each sub-watershed. When a single 

HRU per sub-basin is chosen, the dominant land use, soil and slope within each 

watershed determines the HRU, soil type, and slope class. If multiple HRUs are 

preferred, sensitivities are defined for the land use, soil, and slope data that will be 

employed to decide the number and variety of HRUs in each sub-basins. In order to 

eliminate minor land uses in each su-basin, threshold values are used. After the 

thresholds are defined, the remaining area is reallocated proportionately so that 100% 

of the land area in the sub-basin is modeled. For instance, let us suppose we have  a 

sub-basin that has landuse types and areas given in (Table 2). 

 

Table 2 Example of land use for current HRU division 

 

 

 

 

 

 

 

If 25% is defined for the threshold level for land use, HRUs would be generated for 

agricultural land-generic and garrigue. The areas of modeled land uses would be 

changed as below: 

 
agricultural land generic: (39 % ÷ 65%) x 100% = 60% 

Garrigue: (26%÷65%) x 100%=40 

Landuse Area % 

Barren 4.3% 
Slender Wheatgrass 6.6% 
Forest-Deciduous 11.57% 
Forest-Evergreen 0.35% 
Residential-High Density 0.44% 
Agricultural Land-Generic 39% 
Residential 0.26% 
Residential-Low Density 0.09% 
Agricultural Land-Row Crops 0.39% 
Garrigue 26 % 
Pasture 11 % 
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Creation of HRUs depending on threshold area of soil and land use separation leads to 

ignoring some important combinations that may have great impact on hydrological 

process in watershed such as surface runoff. As a result, the model performance 

declines and the calibration takes a long time. In contrast, a large number of HRUs can 

handle a variety of land covers. Using small and comparatively homogeneous HRUs 

decreases the error caused by lumping effects (Geza and McCray, 2008). However, it 

results in a complicated cost function, hence increased probability of sticking into local 

minima. Moreover, the required computation time increases with HRUs non-linearly. 

In this work, we adopt a hierarchic approach, similar to many other optimization 

problems, in order to increase performance and reduce computational complexity 

simultaneously. For hierarchical optimization, we divide each sub-basin into two-

HRUs and optimize with respect to some important parameters that may have 

important effect on hydrological processes in the watershed. Then, each HRU is further 

divided into two. Each child HRU inherits the optimum parameters of the parent HRU 

as its initial values. Thus, we expect to decrease the total calibration time and a solution 

closer to the global minimum of the cost function. To be able to do that, we have 

created a totally different HRU generation algorithm based on some important 

parameters which have great impact in water cycle such as the curve number, the 

available water capacity or the bulk density. By combining default curve number 

default soil hydraulic conductivity and soil classification, HRU types are generated by 

using MATLAB scripts. In order to understand HRU type model performance, SUFI-

2 was chosen as calibration process since SUFI-2 simulation iterations are less than 

other methods while similar NSE and r2 values are produced (Yang et al., 2008). 

According to Nash-Sutcliff objective function, the model performance is controlled. 

Depending on assessment of NS and r2 values, HRU types are increased until reaching 

acceptable results or the steady state (Figure 8). 
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Figure 8 General concept of hierarchical methodology 

 
 

3.1 Full Automatic Version of SUFI-2 

 

 

In order to reduce calibration computational time and to provide easy usage of 

calibration methods, Semi-automatic calibration with uncertainty analysis tools was 

developed by Eawag (2009) and integrated into the SWAT-CUP software program. 

To provide a connection between input/output of calibration programs and the model 

is the primary role of the interface. The file exchange is through formatted text files in 

the interface. The uncertain model parameters are consistently transferred in the 

automated model calibration, the model is run and the needed outcomes (relating to 

measured data) are derived from the model output files. Any calibration/uncertainty or 

sensitivity program can simply be connected to SWAT by using the interface. It 

provides computational efficiency. SUFI-2 in SWAT-CUP uses Latin hypercube with 
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a global search algorithm that describes the behavior an objective function by 

analyzing the Jacobian and Hessian matrices. By using Latin Hypercube, parameters 

cube is generated depending on given parameters range and simulation count. 

Depending on SUFI-2 in SWATCUP working principle, the beginning (large) 

uncertainty in the model parameters is gradually decreased at each iteration until 

constant calibration values for prediction uncertainty are obtained in SUFI-2 

procedure. While comparing SWAT model results by using each parameter range in 

Latin Hypercube, best range of parameters is found at each iteration. If found 

parameter range at the end of the iteration is reasonable, calibration process is finished. 

If the assessment of calibration value does not give satisfactory results, another 

calibration process is initiated by using new parameter range at the end of the last 

iteration. To continue further calibration by using new parameter range at the end of 

iteration is decided by user. Moreover, semi-automatic SUFI-2 is inefficient for 

updating SWAT parameter values. In order to solve these problems, reduce time for 

calibration, minimize user interaction and increase performance of the calibration 

procedure, a software package was produced by developing full automatic calibration 

model in MATLAB. Calibration procedure of SUFI-2 can be performed full 

automatically by this method.  

 

3.1.1 File Structure of SUFI-2 

 
 
The uncertain model parameters are gradually changed in SUFI-2 semi-automated 

model calibration. In the semi-automatic calibration method, the file exchange is 

through text file formats. At the first step of the calibration, input files, namely, 

Par_inf.txt, trk.txt, SUFI-2_swEdit.def, observed_rch.txt, observed.txt and 

var_file_name.txt should be prepared. Par_inf.txt file includes parameters which will 

be optimized the maximum and minimum values of these parameters and also number 

of the parameters and number of simulation counts. trk.txt file behaves as a counter. 

Simulation count number is written in this file. The start which does not contain the 

warm up period and the termination simulation years are located in SUFI-

2_swEdit.def file. observed_rch.txt file includes the name of the variable and the sub-

basin number to be contained in the objective function. There are the number of data 
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points for this variable, first column is a sequential number from beginning and second 

column is variable name and date (format arbitrary), third column is variable value. 

Objective Function is defined in the observed file. All the information for the 

calculation of objective function is in observed_rch.txt. Likewise, the variables, 

which should be contained in the objective function, are listed by the 

Var_file_name.txt.  

 
 

3.1.2 SUFI-2 Running Procedures in SWAT-CUP 

 
 
SUFI-2 calibration methodology has been applied in SWAT-CUP by using many 

system files (exe) in order to easy implementation. First step is that Latin Hypercube 

sampling (LHS) which is a statistical method is applied in SUFI-2 for reduce the 

number of samples from multidimensional distributions. SUFI-2_LH_sample.exe 

provides to run Latin Hypercube sampling. SUFI-2_LH_sample.exe is used for 

producing the parameter cube which is written in par_val.txt file. Each parameter set 

in par_val.txt is placed sequentially into the model by using SUFI-2_make_input.exe. 

While the program uses trk.txt, par_inf.txt, par_val.txt, it generates echo_make_par.txt 

and model_in that is used for finding the best model. By using model_in and BACKUP 

file, which is SWAT model input files in order to update SWAT output files, 

SWAT_Edit.exe program creates new parameter files for running SWAT model. 

While using parameters in model.in, SWAT.exe runs the model so as to produce output 

files of the model. According to results of output files of the model, SUFI-

2_extract_rch.exe creates stream flow values with respect to simulation number 

written in trk.txt. The input files, namely, par_inf.txt, observed.txt, par_val.txt, 

var_file_name.txt, are used for reaching the best simulation. Best parameters and best 

simulation number are found by running SUFI-2_goal_fn.exe. 

 
Finally, SUFI-2_95ppu.exe finds objective functions values by using par_inf.txt, 

observed.txt and var_file_rch.txt. Summary_stat.txt file includes some statistical 

values that are uncertainty values, p-factor and r-factor, and R2, NS, bR2, MSE, and 

SSQR representing the best simulation of the current iteration. The file contains the 

objective function type, best simulation number of the present iteration, and the best 
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value of the objective function for the present run. The best parameters of the current 

iteration and the best simulated values are represented respectively in best_par.txt and 

best_sim.txt. The value of all parameter sets and the objective function are represented 

in the Goal.txt. By using SUFI-2_new_pars.exe, new parameters are generated. They 

are showed in New_Pars.txt file. New parameter ranges in the file can be used for the 

next iteration (Figure 9).  

Parameters and their 

range 

SUFI2_LH_sample.exe

SWAT_Edit.exe New SWAT 

parameter files

LH parameter 
cube

SWAT.exe

SWAT model results

SUFI2_extract_rch.exe

Model output

SUFI2_goal_fn.exe Best simulation

SUFI2_95ppu.exe

SUFI2_new_pars.exe

calibration results

New parameter  

range  

 
Figure 9 Sequence of program execution of SUFI-2 in SWAT-CUP (Abbaspour et 

al., 2007) 
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3.1.3 Developed SUFI-2 Algorithm on MATLAB 

 
 
At the first step, in order to start calibration process, parameters and parameter ranges 

should be defined. Parameters that are expected to have great impact on hydrological 

processes in the watershed and their ranges were determined by using a script. 

Although the user can change these, calibration process can be completed in one step 

by defining simulation count in our system. With respect to simulation count, SUFI-2 

is run once. So as to assess calibration result, Nash-Sutcliffe coefficient of 

effectiveness (NSE) (Nash and Sutcliffe, 1970) was selected to be objective function 

since NSE function represents not only the relationship between simulated and 

observed discharge but also the evaluation of amount of water. In each iteration, 

objective function value is evaluated automatically and according to the value, 

calibration procedures is performed automatically. At the end of each iteration, new 

parameter ranges are obtained and the ranges are used in SUFI-2 automatically. Until 

the largest NSE value is reached, SUFI-2 calibration process is repeated without any 

user interaction. Using graphical interface, calibration process can be monitored. 

When the best calibration value is obtained, calibration process is finished 

automatically, and backup file, which includes SWAT model results used for 

calibration process, is updated without any user interaction. Thus, depending on the 

user demand, the backup file can be used for further calibration process (Figure 10). 
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Figure 10 Developed SUFI-2 algorithm on MATLAB 
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3.2 Soil Database for SWAT 

 
 
Physical and chemical properties of soil can be represented in SWAT as a soil 

database. Physical characteristics of the soil are texture, length of soil layer from 

surface to bottom, moist bulk density, available water capacity of the soil layer, 

saturated hydraulic conductivity, soil erodibility (K) factor etc. Chemical 

characteristics of soil are used to establish primary values of chemicals present in the 

soil. Physical properties for each soil type is an important because the displacement 

water and air via the profile are governed by these properties. Furthermore, they have 

great effect on the hydrological processes within the HRU.  

 
SWAT soil data type is different from Turkey so many properties of soil class in the 

area were obtained from (Ardas, S., and Creutberg, D., 1997). Required data for 

SWAT are listed as follow containing interpretations (Neitsch et al., 2002a): 

 
SNAM        : Name of soil  

HYDGRP       : Hydrologic class of soil (A, B, C or D) 

A : A high transmission water capability of the soils even when 

completely moistened. It includes mainly sands or gravel, 

they are deep and unconscionable drained.  

B : Moderate transmission water capability when the soils are   

from end to end moistened. It includes partially coarse 

textures.  

C  : Slow infiltration capability (high runoff potential) when 

completely moistened.  

D  : Very slow transmission water capabilities (high runoff 

potential) when completely moistened. It includes mainly 

clay soils that have high swelling potential. There can be a 

high persistent water table.  
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SOL_ZMX  : The maximum root depth of soil profile (mm). If no value 

is assigned, the model presumes the roots can enhance from 

the beginning to the end of the complete depth of the soil 

profile.  

ANION_EXCL : Fraction of porosity (void space) from which anions are left 

out. When soil minerals are negatively loaded at normal pH 

and the net interaction with anions like sulfate is resilience 

from particle surfaces. This recoil is called as negative 

adsorption or anion exclusion. The model set ANION_EXCL 

= 0.50 is given when there is no data for ANION_EXCL. 

SOL_CRK : A fraction of the total soil volume which means probable or 

maximum crack volume of the soil profile (if there is no data 

about SOL_CRK, no value can be entered in the database). 

TEXTURE       : Texture of soil layer.  

SOL_Z (layer number (layer #)) : Soil layer extent from surface to bottom (mm).  

SOL_BD (layer #) : moist bulk density (Mg/m3 or g/cm3). The ratio of the mass 

of solid particles to the total volume of the soil is showed by 

the soil bulk density. Mean values for distinct soil types were 

assigned in the model based on literature. 

SOL_AWC (layer #) : Available water capacity of the soil layer (mm H2O/mm 

soil). It is measured from taking out the fraction of water 

store at persistent wilting point from that store at field 

capacity. It is also known as the plant available water. Mean 

values for distinct soil types were assigned in the model by 

using literature. 

SOL_K (layer #) : Saturated hydraulic conductivity (mm/hr). According to soil 

texture, mean values for distinct soil types were assigned in 

the model by using Guidelines for Soil Description, 2005.  

SOL_CBN (layer #)       : Organic carbon content (% soil weight).  
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CLAY (layer #)       : Clay content (% soil weight).  

SILT (layer #)       : Silt content (% soil weight).  

SAND (layer #)       : Sand content (% soil weight).  

ROCK (layer #)              : Rock fragment content (% total weight).        

USLE_K (layer #)        : USLE equation soil erodibility (K) factor  

 
 

3.2.1 Soil Texture Classification through the Watershed 

 
 
The Ministry of Food, Agriculture and Livestock has classified soils in Turkey based 

on depth, salinity, slope and drainage properties of them.  According to Ardas, S., and 

Creutberg, D., 1997, soils textures are determined by using depth and slope 

information of the soils (Table 3).   

 
Table 3 Depth of Class Reference Ranges 

 
Depth Classification  Depth (cm) 
Lithosol  < 5  
Very shallow  0 – 20  
shallow 20 – 50  
Moderately deep 50 – 90  
deeper 90 – 150  

 
 

Compositions of sand, silt and clay contents as a percentage for various soil textures 

in literature are shown in Figure 11. The compositions of % Clay, %Sand and % Silt, 

are given in (Table 4) 
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Figure 11 Soil triangle (Ley et al., 1994) 

 
Table 4 The relationship between texture class and ranges of clay, sand and silt 

 
Texture Sand (%)  Clay (%)  Silt (%)  

coarse 80  10  10  

Moderately coarse 60  20  20  

moderately 40  30  30  

fine 20  40  40  
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3.2.2 Definition of USLE_K FACTOR 

 
 
Rainfall and runoff frequently cause erosion. It is accounted with the Modified 

Universal Soil Loss Equation (MUSLE) (Williams, 1975). Wischmeier and Smith 

(1965, 1978) developed MUSLE, which is a revised form of the Universal Soil Loss 

Equation (USLE). Average annual gross erosion as a function of rainfall energy is 

anticipated by USLE. Soil erodibility depends on soil properties (Neitsch et al., 

2002b). USLE_K factors used in SWAT were established with respect to the soil 

textures (Table 5). The value of USLE_K is between 0.1 and 0. A value of < 0.02 

shows a soil of low erodibility; 0.02 - 0.04 shows moderate erodibility; and > 0.04 

shows high erodibility. When silt content of soil type increases, it can become more 

erodible regardless of whether there is a comparable reduction in the sand or clay 

fraction (Rosewell, 1993). 

 

Table 5 USLE_K Values with respect to soil texture. Source: Rosewell, 1993. 

 
Texture Symbol  Suggested 

K factor 
Texture Symbol  Suggested 

K factor 
Sand  S 0.015 Clay Loam CL 0.030 
Clayey Sand CLS 0.025 Silty Clay Loam SCL 0.040 
Loamy Sand  LS 0.020 Fine Sandy Clay FSC 0.025 
Sandy Loam SL 0.030 Sandy Clay SC 0.017 
Fine Sandy 
Loam 

FSL 0.035 Silty Clay SiC 0.025 

Sandy Clay 
Loam 

SCL 0.025 Light Clay LC 0.025 

Loam L 0.040 Light Medium 
Clay 

LMC 0.018 

Loam, Fine 
Sandy 

LFS 0.050 Medium Clay MC 0.015 

Silt Loam SL 0.055 Heavy Clay HC 0.012 
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3.2.3 Definition of SOL_BD (Soil Bulk Density) 

 
 
SOL_BD values utilized in SWAT were got from Guides for Editing Soil Properties, 

(2005) due to inadequacy data. According to soil textures, SOL_BD values are shown 

in Table 6. SOL_BD values were assigned in the model based on fine (C-SC-SiC), 

medium (SiL-CL-SCL-SiCL) and coarse (L-SL-LS-S) texture groups.  

 

Table 6 SOL_BD Values with respect soil textures (Mg/m3) Source: Guidelines for 
Soil Description, 2005. 

 

Texture Symbol  
 

Suggested SOL_BD Texture Symbol  Suggested SOL_BD 

Range Avg. Range Avg. 
Sand  S 1.60 - 1.70 1.65 Clayey 

Loam 
CL 1.40 - 1.50 1.45 

Loamy Sand LS 1.55 - 1.65 1.60 Silty Clay 
Loam 

SiCL 1.45 - 1.55 1.50 

Sandy Loam SL 1.50 - 1.60 1.55 Sandy 
Clay 

SC 1.35 - 1.45 1.40 

Silty Loam SiL 1.45 - 1.55 1.50 Silty Clay SiC 1.40 - 1.50 1.45 
Sandy Clay 
Loam 

SCL 1.45 - 1.55 1.50 Clay C 1.25– 1.45 1.35 

Loam L 1.45 - 1.55 1.50 
 
 

3.2.4 Definition of SOL_AWC (Soil Available Water Capacity) 

 
 
Available soil capacity values utilized in SWAT were got from Ley et al., 1994 since 

there is no data. SOL_AWC values are given in Table 7 with respect to soil texture. 

SOL_AWC values were assigned in the model with respect to fine (C-SC-SiC), 

medium (SiL-CL-SCL-SiCL) and coarse (L-SL-LS-S) texture groups. While setting 

the SOL_AWC in the model, average values of them were used. 

 
 
 
 
 



 

48 
 

Table 7 SOL_AWC Values with respect to soil textures (mm H2O/mm soil) Source: 
Guidelines for Soil Description, 2005. 

 
Texture Symbol  

 
Suggested SOL_AWC Texture Symbol  Suggested 

SOL_AWC 
Range Avg. Range Avg. 

Sand  S 0.06-0.08 0.07 Clayey 
Loam 

CL 0.15-0.19 0.17 

Loamy Sand LS 0.09-0.11 0.10 Silty Clay 
Loam 

SiCL 0.18-0.20 0.19 

Sandy Loam SL 0.12-0.14 0.13 Sandy Clay SC 0.16-0.21 0.19 
Silty Loam SiL 0.20-0.22 0.21 Silty Clay SiC 0.11-0.13 0.12 
Sandy Clay 
Loam 

SCL 0.16-0.18 0.17 Clay C 0.09-0.11 0.10 

Loam L 0.17-0.19 0.18 
 
 

3.2.5 Definition of SOL_K (Soil Hydraulic Conductivity) 

 
 
Saturated hydraulic conductivity values utilized in SWAT were taken from Guidelines 

for Soil Description, 2005 (Table 8). SOL_K values were decided in the model based 

on fine (C-SC-SiC), medium (SiL-CL-SCL-SiCL) and coarse (L-SL-LS-S) texture 

groups. 
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Table 8 SOL_K values depending on soil textures (mm/h) (Guidelines for Soil 

Description, 2005) 

 
Texture Symbol  

 
Suggested SOL_K Texture Symbol  Suggested 

SOL_K 
Range Avg. Range Avg. 

Sand  S 152.40-
508.10 

330.25 Clayey 
Loam 

CL 5.10-
15.20 

10.15 

Loamy Sand LS 152.40-
508.10 

330.25 Silty 
Clay 
Loam 

SiCL 5.10-
15.20 

10.15 

Sandy Loam SL 50.80-
152.40 

101.60 Sandy 
Clay 

SC 1.50-
5.10 

3.3 

Silty Loam SiL 15.20-
50.80 

33.00 Silty 
Clay 

SiC 1.50-
5.10 

3.3 

Sandy Clay 
Loam 

SCL 5.10-
15.20 

10.15 Clay C 1.50-
5.10 

3.3 

Loam L 15.20-
50.80 

33.00 
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CHAPTER 4 

 
 

RESULTS 

 
 
 

4.1. Case Study: Sarısu-Eylikler River, Konya, Turkey 

 
Sarısu-Eylikler stream basin is located between 37.47°-38.15° latitudes and 31.73°-

32.47° longitudes in Konya Closed Basin, Turkey. The area of the Sarısu-Eylikler 

basin is 1040 km2 and the average total annual flow of Sarısu-Eylikler Stream was 68 

million m3 between 1992 and 2010 (Figure 12).  

 
The drinking water to Beysehir district and around is supplied by Beysehir Lake Basin. 

Industrialization, agricultural activities and irrigation, fishing, erosion, waste disposal, 

tourism, soil and sand extraction, storage affect the basin negatively. Since the most 

significant river to recharge Beysehir Lake is Sarısu, the proposed methodology 

applied on this basin. 



 

 52

 

Figure 12 Study Area 
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4.1.1. SWAT Input Layers 

 
 

The SWAT elements are weather, hydrology, soil temperature and properties, plant 

growth, nutrients, pesticides, bacteria and pathogens and land management. The input 

layers are digital elevation model, soils, land use, and slopes. 

 
 

4.1.1.1 Delineation of Watershed 

 
 

The Digital Elevation Model (DEM) was used to define sub-basins by Automatic 

Delineation Tool of SWAT. Thus, watersheds were segmented into several 

"hydrologically" related to sub-basins for use in watershed modeling with SWAT 

(Winchell et al., 2013). The Automatic Delineation Tool creates watershed by using 

ArcGIS and Spatial Analyst extension function.  

 

The DEM was generated from 1:25 000 scale topographic maps (Figure 13). The DEM 

properties are given in Table 9. 
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Figure 13 Digital Elevation Model of Sarısu-Eylikler Basin 

 
Table 9 DEM Properties 

 
Metadata parameter Value 

Projection Universal Transverse Mercator (UTM) 

False Northing 500000 

False Easting 0.000000 

Central Meridian 33 

Scale Factor 0.9996 

Reference Latitude 0.000000 

Geographic Coordination System WGS_1984_36 N 

Column/Row count 4156/3915 

Cell size (X/Y) (m/m) 10/10 

Bits per pixel 32 
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In order to produce sub-basins of the watershed from the DEM, many operations were 

applied on the DEM by using ArcSWAT software program. Firstly, when the 

preprocessing of the DEM was completed; minimum, maximum, and suggested sub-

watershed areas were calculated in hectares as 2.771, 554.232 and 11.085, 

respectively. Secondly, streams and outlets were defined by SWAT. One outlet was 

added manually. The outlet was close to Sarısu-Eylikler stream gauging station in the 

watershed. This choice enables us to compare the results of models and observation 

data. At the end of watershed delineation, we acquired seven sub-basins (Figure 14) 

and SWAT calculated minimum, maximum, mean and standard deviation of elevation 

values, which were 1123 m, 2337 m, 1420 m and 195 m, respectively. 

 

 
 

Figure 14 Sub-basins of Sarısu-Eylikler Stream 
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4.1.1.2 Soil Class Layer 

 
 
Soil textures in land use map (Scale: 1/25,000) was obtained from the Ministry of 

Food, Agriculture and Livestock, whose data is classified according to major soils 

groups (Table 10). 

 
 

Table 10 Major Soils Group in the area 

 
Soil Classification Explanation 

A Alluvial 
B Brown Soils 
C Chestnut Soils 
D Reddish-Chestnut soils 
F Reddish-Brown soils 
K Kolluvial 
M Brown Forest Soils 
N Limeless Brown Forest Soils 
U Limeless Brown Soils 

 

The soil map used in SWAT is given in Figure 15. Soil class distribution in the area is 

observed from Figure 16. There are mostly D and N group of soil, reddish-Chestnut 

soils and limeless Brown Forest Soils, in the area. Properties of the soils were entered 

in SWAT soil user database according to Guidelines for Soil Description, 2005; 

Rosewell, 1993; Ardas, S., and Creutberg, D., 1997 (Table 11).  
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Figure 15 Soil map of the Sarısu-Eylikler stream basin. 

 

 
 

Figure 16 Soil type histogram representation of the study area. 
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4.1.1.3 Land use/Land cover Layer 

 
 

Soil characteristics and vegetation cover affect water movement. The soil and land use 

maps are essential for creating the HRUs. Land use layer was created in the framework 

of a Ministry of Forestry and Water Affairs project, namely, Beysehir Lake Basin 

Protection Plan and Special Provisions. Land use/land cover data was clipped and 

reprojected by using the ArcSWAT project database. (Figure 17).  

 

 
 

Figure 17 Land use map of the Sarısu-Eylikler Stream 
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Land use/land cover map resolution is 10x10 m. There are 14 land use/land cover 

classes in the study area (Table 12). The most dominant type of land use is Agricultural 

Land-Close Grown, which covers %36.55 of the watershed area (Figure 18). Other 

dominant land use/land cover areas are garrigue and pasture.  

 
Table 12 Land use/ land cover distribution in the study area 

 

Land use type Symbol % Area 

Eragrostis Teff TEFF 2.79 

Barren BARR 4.13 

Septic Area SEPT 0.013 

Forest-Deciduous FRSD 7.03 

Forest-Evergreen FRSE 1.02 

Residential-High Density URHD 0.09 

Residential-Med/Low Density URML 0.092 

Agricultural Land-Close-grown AGRC 36.55 

Industrial UIDU 0.026 

Residential URBN 0.23 

Residential-Low Density URLD 0.039 

Agricultural Land-Row Crops AGRR 1.42 

Garrigue GRAR 25.14 

Pasture PAST 21.42 

 

 



 

61 
 

 

 
Figure 18 Land use/land cover type histogram representation of the study area. 

 
 

4.1.1.4 Slope Layer 

 
 
Slope characterization depends on the DEM specified in the watersheds delineation 

(Figure 19). Number of slope classes was two and the units for the classes were in 

percent (%). Slope classes in the area were given in Table 13.  

 
Table 13 Slope class distribution in the Sarısu-Eylikler basin 

 
Slope Area [ha]                      %Watershed Area 
0-2 5765.96 5.55 

>2  98150.43 94.45 
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Figure 19 Land slope in the Sarısu-Eylikler basin. 
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4.2 The SWAT Model Results of Sarısu-Eylikler Basin by Using The Current 

Method for HRU Creation 

 

 
Using the current HRU creation method, the model’s results were compared depending 

on total HRU number in seven sub-basins. While using dominant land use/land soil 

and slope combination approach, we obtained seven HRUs in total. The initial model 

run had r2=0.32, NS = 0.43 and improved to r2 = 0.53, NS = 0.52 after the calibration. 

When we increased the total number of HRUs to 14 by using 25%/25%/50% threshold 

values for land use/soil/slope combination, the initial model run had r2=0.34, NS=-10 

and improved to r2=0.35, NS = 0.32 after the calibration. When 20%/20%/60% 

threshold values for land use/soil/slope combination were used, the total number of 

HRUs was 21. The initial model run had r2=0.34, NS = -2.69 and improved to r2=0.36, 

NS = 0.32 after the calibration. 

 
 

4.3 HRU Division based on CN2 parameter 

 
 
If the rate of flow of water to the ground surface exceeds the rate of infiltration, surface 

runoff occurs since the soil is fully saturated with water. If a dry soil begins to be filled 

with water, the infiltration capability is usually very high. If the soil becomes wetter, 

infiltration rate will decrease. Surface runoff starts when all surface depression have 

filled and application rate is higher than the infiltration rate. In order to estimate 

surface runoff, two methods, which are SCS curve number procedure (SCS, 1972) and 

the Green & Ampt infiltration method (1911), are provided in SWAT. The amount of 

runoff is estimated as a function of land use and soil types according to the SCS runoff 

equation, which is an empirical model (Figure 20).  

 
The SCS curve number equation is (SCS, 1972): 

𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦 − 𝐼𝑎)

2

(𝑅𝑑𝑎𝑦 − 𝐼𝑎 + 𝑆)
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In this equation, the accumulated runoff or rainfall excess (mm H2O) is represented by 

Qsurf, the rainfall depth for the day (mm H2O) is shown as Rday, the initial abstractions, 

which is surface storage, is shown by Ia  that contains interception and infiltration prior 

to runoff (mm H2O), and the retention parameter (mm H2O) is indicated by S. The 

retention parameter diversify spatially because of change in soils, land use, 

management and slope and temporally due to transfer in soil water content. The 

retention parameter is defined as:  

 

𝑆 = 25.4(
1000

𝐶𝑁
− 10) 

The curve number for the day is indicated by CN. The initial abstraction, Ia is 

commonly approximated as 0.2S 

 

𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦 − 0.2𝑆)

2

(𝑅𝑑𝑎𝑦 + 0.8𝑆)
 

 
Runoff will only happen when Rday> Ia.  

 

 

 
Figure 20 Relation between runoff and rainfall in SCS curve number method (SCS 

1986). 
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Since the SCS curve number is related to the soil’s permeability, land use and initial 

soil water situations, CN2 was chosen for dividing HRU types. A threshold on CN2 

found from LU/Soil tables is used to divide a sub-basin into two-HRUs. This 

guaranties that the two-HRUs are more or less uniform within itself with respect to 

CN. Then, each HRU is further divided into two-HRUs (Table 14). 

 
Table 14 HRU division according to CN2 

 
Landuse Symbol HYRD CN2 HRU 2 HRU 4 HRU 8 HRU 18 

barren BARR D 94 

>70 

80<CN<94 

>84 

94 

Agricultural Land-Row Crops AGRR D 89 89 

barren BARR B 86 86 

Agricultural Land-Close-grown AGRC D 84 84 

Forest-Deciduous FRSD D 83 
<84 

83 

Grarigue GRAR D 80 80 

Residential URBN D 79 

73<CN<80 

>79 79 

Industrial UIDU D 79 

Septic Area SEPT D 79 

Residential-High Density URHD D 79 

Residential-Med/Low Density URML D 79 

Residential-Low Density URLD D 79 

Agricultural Land-Row Crops AGRR B 78 

<79 

78 

Forest-Evergreen FRSE D 77 77 

Agricultural Land-Close-grown AGRC B 73 73 

          

pasture PAST B 69 

<70 

61<CN<70 

>66 

69 

Agricultural Land-Row Crops AGRR A 67 67 

Forest-Deciduous FRSD B 66 66 

Eragrostis Teff TEFF A 62 

<66 61,5 
Agricultural Land-Close-grown AGRC A 62 

Grarigue GRAR B 61 

Grarigue GRAR B 61 

Residential-Low Density URLD B 59 

39<CN<61 

>55 
59 

Residential-High Density URHD B 59 

Residential-Med/Low Density URML B 59 

Residential-Low Density URLD B 59 

Forest-Evergreen FRSE B 55 55 

pasture PAST A 49 
<55 

49 

Grarigue GRAR A 39 39 
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After creating HRU types according to the CN2 parameter, two, four, eight and 

eighteen HRU types were obtained at different levels (Figure 21). Each level’s 

performance in SWAT were obtained and compared. 

 

2 HRU types 4 HRU types

8 HRU types 18 HRU types

 
 

Figure 21 Distribution of HRU types according to CN2 in the basin at each level 

 
Firstly, the model was run with each HRU type set by using MATLAB scripts, then 

model outputs were compared before calibration. Uncalibrated models is beneficial to 

assess the variations in model predictions because the variations that may occur during 

comparison are masked by calibration. Moreover, the uncalibrated model results can 

represent the performance of each data set that is used for predicting flow. It would 

point the labor needed for calibration when using each data set. When the results of 
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the model as a function of the HRU level were compared, it is observed that the model 

result has improved from two-HRU type to eighteen-HRU type. The r2 values from 

two-HRU types to eighteen-HRU types are 0.13, 0.17, 0.18 and 0.20, respectively 

(Figure 22, Figure 23, Figure 24 and Figure 25). 
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Figure 22 Model results of two-HRU types based on CN2 parameter 

 

 

 
Figure 23 Model results of four-HRU types based on CN2 parameter 
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Figure 24 Model results of eight-HRU types based on CN2 parameter 

 

 

Figure 25 Model results of eighteen-HRU types based on CN2 parameter 
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When results at different levels of HRU detail are evaluated, four-HRU and eight-

HRU types have similar results. If we increase HRU types to eighteen-HRUs, we 

obtain r2=0.20 with respect to two-HRU case, r2=0.13. It should be noted that all HRU 

types have the same peak from year 2000 to 2008. In order to see performance of 

calibration for each HRU, we calibrated them individually. For calibration, sixteen 

most important parameters which have greatest impact on hydrology (Table 15) were 

chosen. A Fast and Full Automatic Calibration Tool, which was developed in 

MATLAB based on SUFI-2 methodology, was used in order to perform one full the 

calibration from beginning to end without any user interaction. By using 250 

simulation count, the models at each HRU level were calibrated. The goodness of fit 

of calibration was evaluated by NSE. The model efficiency as a fraction of the 

measured stream flow variance reproduced by the model is determined. NSE function 

was preferred since it represents not only the relationship simulated and observed 

discharge but also the amount of water. If NSE value is close to unity, the estimation 

of the stream flow by the model is best. When NSE>=0.75, it is a perfect 

approximation, and an NSE value between 0.75 and 0.36 is considered to be adequate 

(Motovilov et al., 1999). When the RMSE value is close to zero, the estimation is best. 

While increasing HRU detail level, we reached better results, from two-HRU to 

eighteen-HRU types calibration performance ranged from r2=0.43 to r2=0.58 (Figure 

26, Figure 27, Figure 28, Figure 29). NS values were between 0.35 and 0.50. When 

comparing calibration performance of HRU levels, we reached best calibration values 

according to p-factor, NS and r2 at eighteen-HRUs (Table 16). 
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Table 15 Calibration parameters and their ranges 

 
PARAMETERS MIN VALUE MAX VALUE 
CN2 -0.2 0.2 
SOL_AWC -0.2 0.1 
SOL_K -0.8 0.8 
SOL_BD -0.5 0.6 
GWQMN 0 25 
GW_REVAP -0.1 0 
REVAPMN 0 500 
ALPHA_BF 0 1 
GW_DELAY 30 450 
ESCO 0.8 1 
SFTMP -20 20 
SMTMP -20 20 
SMFMX 0 20 
SMFMN 0 20 
TIMP 0 1 
SURLAG 0.05 24 

                   

 

 
 

Figure 26 Calibration results of two-HRU types 
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Figure 27 Calibration results of four-HRU types 

 

 

 
Figure 28 Calibration results of eight-HRU types 
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Figure 29 Calibration results of eighteen-HRU types 

 

 
Table 16 Calibration results of HRU levels that are created based on the CN2 

parameter 

 
METHOD CN2 

Variable 
p-
factor 

r-
factor R2 NS bR2 PBIAS Mean(sim) StdDev(sim) 

2 HRUs TYPE 0,52 1,15 0,43 0,35 0,24 19,50 
2.16 
(1.74) 

2.10 
(1.81) 

4 HRUs TYPE 0,75 1,50 0,48 0,45 0,29 10,50 
2.16 
(1.94) 

2.10 
(1.79) 

8 HRUs TYPE 0,71 1,71 0,48 0,44 0,28 10,00 
2.16 
(1.95) 

2.10 
(1.78) 

18 HRUs 
TYPE 0,93 2,85 0,58 0,50 0,35 27,30 

2.16 
(1.57) 

2.10 
(1.67) 
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4.4 HRU Creation based on SOL_K 

 
 
The physical characteristics of the soil have an important impact on hydrological cycle. 

Especially, soil hydrologic group (A, B, C, D), available water capacity of the soil 

layer, moist bulk density and saturated hydraulic conductivity have great effect on the 

cycling of water within the HRU since the movement of water and air through the 

profile within an HRU are managed by these properties. These physical parameters are 

explained below. 

 
According to the U.S Natural Resource Conservation Service (NRSC), soils are 

divided into four hydrologic groups with respect to infiltration capacity. Soil properties 

effect runoff potential, which is the rate of infiltration for a bare soil after prolonged 

wetting without freezing. Soils that have the same runoff capacity under similar 

meteorological and cover conditions are defined in same hydrologic group. Runoff 

potential depends on water table depth, saturated hydraulic conductivity, and layer 

depth. Available water capacity of the soil (mm H2O/mm soil) is computed by taking 

out the fraction of water store at persistent wilting point from that store at field 

capacity. Saturated hydraulic conductivity (mm/hr), Ksat represents the ratio of soil 

water flow rate to the hydraulic gradient, and is a measure of how easily the water 

flows inside the soil.  The ratio of the mass of solid particles to the total volume of the 

soil shows the soil bulk density. When the mass of the soil is the oven dry weight and 

total volume of the soil is measured when soil is at near field capacity, soil bulk density 

can be measured. Bulk density values are between 1.1 and 1.9 Mg/ m3. 

 
When soils physical properties that have important effect on hydrologic process were 

evaluated, soils hydraulic conductivity (SOL_K) was chosen for creating HRU types. 

At the first step of the SOL_K HRU creation method similar to CN2 HRU creation, 

HRUs were separated in two-HRU types according to soil hydraulic conductivity 

values of the soils. Each HRU types were further divided into two-HRUs). If soil bulk 

density, available water capacity and soil hydraulic conductivity values are examined, 

similar soil hydraulic conductivity values have similar bulk density and hydraulic 

conductivity values. Moreover, soils types that have the same soil properties are in the 
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same hydrologic group. At the first step of HRU division, SOL_K=10.15 was chosen 

for the threshold value based on soil types in the study area in order to separate soil 

types with respect to its infiltration capacity.         
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Table 17 HRU division based on SOL_K parameter 

SNAM HYDGRP TEXTURE SOL_BD SOL_AWC SOL_K  2 HRU 4 HRU 18 HRU 
D D CLAY  1,35 0,1 3,3 

K<=10.15 

K=3.3 

D 
C D CLAY 1,35 0,1 3,3 C 

F D 

CLAY 
LOAM-
CLAY 1,35 0,1 3,3 F 

KBIR D CLAY 1,35 0,1 3,3 KBIR 
B D CLAY 1,35 0,1 3,3 B 
B D CLAY 1,35 0,1 3,3 B 

KALTI D 
CLAY 
LOAM 1,45 0,17 10,15 

K=10.15 

KALTI 

M D 
CLAY 
LOAM 1,45 0,17 10,15 M 

M D 
CLAY 
LOAM 1,45 0,17 10,15 M 

ABIR D 

SILTY 
CLAY 
LOAM 1,5 0,19 10,15 ABIR 

UONBES D 
CLAY 
LOAM 1,45 0,17 10,15 UONBES 

NO D 
CLAY 
LOAM 1,45 0,17 10,15 NO 

N B LOAM 1,5 0,18 33 

K>10.15 

33 

N 

MIKI B 
SILTY 
LOAM 1,5 0,21 33 MIKI 

UONIKI B LOAM 1,5 0,18 33 UONIKI 

KYEDI A 
SANDY 
LOAM 1,55 0,13 101,6 101,5 KYEDI 

AUC A 
SANDY 
LOAM 1,55 0,13 101,6 AUC 

CK D UWB 2,5 0,01 180 K>180 
180 CK 

YR D VAR 1,5 0,1 500 500 YR 
 

 
Bare rocks and urban areas are accepted as one HRU since the size of these areas are 

very small. HRUs were divided based on the soil hydraulic conductivity until eighteen 

types are reached (Figure 30). 
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2 HRU types

4 HRU types

18 HRU types

 

Figure 30 HRU types based on SOL_K parameter division 
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When each HRU type’s model results were evaluated, unfortunately, almost same 

results were obtained. The results of HRU types which were generated with respect to 

soil hydraulic conductivity are under our expectations (Table 18). The r2 values ranged 

from 0.12 to 0.19 (Figure 31, Figure 32, Figure 33). Each HRU level was calibrated 

individually in order to understand calibration performance for each HRU level. 

Calibration results of HRU types from two-HRU types to four-HRUs ranged from 

r2=0.43 to 0.44 (Figure 34, Figure 35, Figure 36, Figure 37), and HRUs which included 

all soil types had r2=0.36 (Figure 38). Although two-HRU and four-HRU type models 

based on soil hydraulic conductivity values have approximately the same calibration 

results, the calibration performance of HRUs created depending on all soil types 

decline.  
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Table 18 Calibration results of HRU types which are divided according to SOL_K 
parameter 

 
METHOD SOL_K 

Variable 
p-
factor r-factor R2 NS bR2 MSE PBIAS RSR 

Mean 
(sim) 

StdDev 
(sim) 

2 HRU TYPE 
(SM=250)  0,74 1,41 0,43 0,43 0,19 2,50 -2,20 0,76 

2.16 
(2.21) 

2.10 
(1.41) 

4 HRUs TYPE 
(SM=250) 0,84 2,37 0,44 0,35 0,27 2,80 16,90 0,80 

2.16 
(1.80) 

2.10 
(1.91) 

4 HRUs 
TYPE(use 
initials) 
(SM=250) 0,87 2,95 0,34 0,20 0,19 3,50 -1,00 0,90 

2.16 
(2.19) 

2.10 
(2.00) 

4 HRUs 
TYPE(use 
initials) 
(SM=500) 0,96 4,22 0,34 0,30 0,16 3,10 -1,10 0,84 

2.16 
(2.19) 

2.10 
(1.67) 

ALL soil 
types 0,85 2,56 0,36 

-
0,04 0,24 4,60 

-
31,70 1,02 

2.16 
(2.85) 

2.10 
(2.38) 

ALL soil 
types(use 
initials) 
(SM=250) 0,72 3,48 0,37 0,19 0,23 3,50 -4,30 0,90 

2.16 
(2.26) 

2.10 
(2.14) 

ALL soil 
types(use 
initials) 
(SM=500) 0,86 3,90 0,34 0,22 0,18 3,40 14,70 0,88 

2.16 
(1.85) 

2.10 
(1.88) 

ALL soil 
types(use 
initials) 
(SM=750) 0,82 3,11 0,32 0,26 0,15 3,30 5,90 0,86 

2.16 
(2.04) 

2.10 
(1.73) 
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Figure 31 Model results of two-HRU types based on SOL_K parameter 

 

 
 

Figure 32 Model results of four-HRU types based on SOL_K parameter 
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Figure 33 Model results of all HRU types based on SOL_K parameter 

 

 
 

Figure 34 Calibration results of two-HRU types model. 
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Figure 35 Calibration steps of two-HRU based on SOL_K parameter 

 

 
 

Figure 36 Calibration results of four-HRU types model (based on SOL_K) 
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Figure 37 Calibration steps of four-HRU types based on SOL_K parameter 

 

 
 

Figure 38 All HRU types model calibration results (based on SOL_K) 
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In order to increase the performance of the model and decrease the computational time 

for calibration procedure, the calibrated parameter values of two-HRU types were 

assigned as initial values to four-HRU types. The four-HRU types did not give us good 

model accuracy: r2=0.23 (Figure 39). The model was improved to r2=0.34, NS=0.20 

after the calibration by using 250 simulation count (Figure 40 and Figure 41). Although 

the calibration model results of two-HRU types gave us NS=0.43, r2=0.43 values, 

when HRU types were divided further and the calibrated parameter values of two-

HRUs were used as initials to four-HRUs, the model performance declined. However, 

when the simulation count was increased to 500, similar calibration results with four-

HRU without including initials were obtained (NS=0.34, r2=0.30). 

 

 
 

Figure 39 Model results of four-HRU types (calibrated parameters values of two-
HRU types used as an initials for four-HRUs) 
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Figure 40 Calibration results of 4-HRU types model (initial value of 4 HRUs 
obtained from calibrated 2-HRU types model parameters) 

 

 
 

Figure 41 Calibration steps of four-HRU types model (initial value of 4 HRUs 
obtained from calibrated two-HRU types model parameters) 
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When calibrated parameters values of two-HRU types model used as an initials for all 

soils HRU types, the model was improved to r 2 =0.32, NS=0.26 after the calibration 

by using 750 simulation count (Figure 42). 

      

 
 

Figure 42 Calibration result of all soil HRU types model based on SOL_K 
classification (initial value of four HRUs obtained from calibrated two HRU types 

model parameters) 
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or the bulk density, combination of curve number and soil hydraulic conductivity and 

slope classification were used for generating HRU types. According to soil hydrologic 

group and land use/land cover type, CN2 value are determined (Figure 43). Threshold 

values for the combination parameters was chosen depending on study area properties. 

According to the area characteristics, at the first step of HRU division, HRUs were 

divided into two-HRUs which are the combination of the low infiltration capacity of 

soils and the high surface runoff characteristic of land use/land cover, and the high 

infiltration capacity of soils and surface runoff characteristics of land use/land cover. 

 

 

 
Figure 43 HRU division methodology for Sarısu-Eylikler Stream Basin 
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4.5.1 Two-HRU Types which were Created BAsed on Slope, CN2 and SOL_K 

parameters results  

 
 
Firstly, according to combination of curve number, soil hydraulic parameters and two 

slope classifications, HRUs were divided on two types (Figure 44, Figure 45, Figure 

46). The model performance was r2=0.32 with total 13 HRUs number when the model 

was run depending on two-HRU types (Figure 47). 

  

 
 

Figure 44 Two-HRU types division based on SOL_K, CN2 and slope parameters 

 

 if (curv_no>70) && (sol_k<=10.15) && (slope_class>0.10) 

 hru_image(ii, jj) = 1; 

else 

 hru_image(ii, jj) = 2;  

end 
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Figure 45 The flowchart of two-HRU types generation. 

 

 
 

Figure 46 The slope classification of the study area 
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Figure 47 Model results of two-HRU types (based on soil hydraulic conductivity, 
CN2 and slope classification) 

 
At the first step of the calibration, the two-HRU model was calibrated by using 100 

simulation counts. Since the model accuracy of the model was not good (NS=0.45, 

r2=0.45) at the end of that step, while increasing simulation count from 250 to 750, 

calibrated model results were assessed (Table 19). If the model was calibrated by using 

250 simulation count, r2 =0.53 and NS =0.52 values were obtained (Figure 48). 
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Table 19 Two-HRU types model calibration results depending on simulation count 

METHOD CN2+SOL_K+SLOPE 

Variable p-factor r-factor R2 NS bR2 PBIAS 
Mean 
(sim) 

StdDev 
(sim) 

2 HRUs TYPE 
(SM=100) 0,71 1,16 0,45 0,45 0,19 1,40 2.16(2.13) 2.10(1.30) 

2 HRUs TYPE 
(SM=250) 0,65 0,99 0,53 0,52 0,33 -0,30 2.16(2.17) 2.10(1.75) 

2 HRUs TYPE 
(SM=500) 0,68 1,27 0,50 0,49 0,29 3,80 2.16(2.08) 2.10(1.70) 

2 HRUs TYPE 
(SM=750) 0,36 0,61 0,49 0,44 0,30 -15,20 2.16(2.49) 2.10(1.83) 

 

 

 
 

Figure 48 Two-HRU types model calibration results (SM=250), which are generated 
by CN2+SOL_K+Slope. 

 
 

4.5.2 Four-HRU Types which were created with respect to Slope, CN2 and 

SOL_K parameters results  

 
 
Each child of two-HRU level was further divided into two-HRUs, at the end of the 

division we obtained four-HRU types with a total of 16 HRUs (Figure 49, Figure 50). 

The MATLAB script is given below. Four-HRU types model without including 

calibrated values of two-HRUs was calibrated by using 250, 500 and 750 simulation 

counts (Table 20) in order to reach acceptable accuracy of the model. When the results 

of simulation counts were assessed, 500 simulation counts gave us better results. Initial 
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results of the model run was r2 =0.41, NS=0.11 (Figure 51) and improved to r2= 0.51, 

NS = 0.51 after the calibration (Figure 52). 

 
Table 20 Four-HRU types model calibration results depending on simulation count 

 
METHOD CN2+SOL_K+SLOPE 

Variable p-factor r-factor R2 NS bR2 PBIAS Mean(sim) StdDev(sim) 

4 HRUs TYPE 
(SM=250) 0.84 1.20 0.48 0.48 0.25 -0.2 2.16(2.17) 2.10(1.57) 

4 HRUs TYPE 
(SM=500) 0.95 2.47 0.51 0.51 0.24 6.5 2.16(2.02) 2.10(1.52) 

4 HRUs TYPE 
(SM=750) 0.75 0.99 0.51 0.48 0.25 18.7 2.16(1.76) 2.10(1.44) 

 
 

 

Figure 49 Four-HRU types division depending on SOL_K, CN2 and Slope 

 

if (curv_no>70) && (sol_k<=10.15)  
if(curv_no<=94&&curv_no>=80)&&(sol_k>=3.3&&sol_k<=10.15)&&(slope_class>=0.13)  

            hru_image(ii, jj) = 1; 
elseif(curv_no<80&&curv_no>=73)&&(slope_class>=0.10&&slope_class<0.13) 

             hru_image(ii,jj)=2; 
              end 
else          

if(curv_no<70&&curv_no>=61)&&(sol_k==33)&&(slope_class>=0.5&& slope_class>0.10) 
   hru_image(ii,jj)=3; 
  else 

hru_image(ii,jj)=4; 
end 

end               
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Figure 50  The flowchart of four-HRU types generation. 

 

 
 

Figure 51 Four-HRU types model results without including initial values which are 
calibrated model parameters of two HRU types 
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Figure 52 Four-HRU types calibration model results (simulation count =500) 

 
The four-HRU type model was run with the calibrated parameters of the two-HRU 

types model and obtained r2=0.53, NS=0.31 (Figure 53). When calibration 

performances were compared by using 100, 250, 500, 750, 1000 and 1250 simulation 

counts, the simulation 500 count gave the best model accuracy (Table 21). The model 

was improved to r2=0.59 and NS=0.57 (Figure 54) after the calibration. 
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Figure 53 Four-HRU types model results by using calibrated parameters values of 

two-HRUs as initial values 

 
Table 21 Four-HRU types model calibration results depending on simulation count 

METHOD 
CN2+SOL_K+SLOPE 

(using calibrated parameters of 4 HRUs as initial for 8 HRU) 

Variable p-factor r-factor R2 NS bR2 PBIAS Mean(sim) StdDev(sim) 

4 HRUs TYPE 
(SM=100) 0.89 2.06 0.53 0.50 0.3238 -14.3 2.16(2.47) 2.10(1.74) 

4 HRUs TYPE 
(SM=250) 0.96 2.41 0.54 0.53 0.3113 0.4 2.16(2.15) 2.10(1.67) 

4 HRUs TYPE 
(SM=500) 0.72 1.32 0.59 0.57 0.4101 -4.1 2.16(2.25) 2.10(1.90) 

4 HRUs TYPE 
(SM=750) 0.82 1.79 0.57 0.56 0.3378 9.2 2.16(1.97) 2.10(1.64) 

4 HRUs TYPE 
(SM=1000) 0.84 2.08 0.59 0.58 0.3687 5.6 2.16(2.04) 2.10(1.71) 

4 HRUs TYPE 
(SM=1250) 0.96 2.37 0.56 0.55 0.3098 8.4 2.16(1.98) 2.10(1.55) 
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Figure 54 Four-HRUs calibration model results (simulation count =500) calibrated 

two HRU types model parameters used as an initials for four HRUs 

 

In order to verify the four-HRU types model which includes initials, firstly the model 

was run for 1998-2010 years. After calibration of the model for this period (Figure 55), 

the model was verified with calibrated parameters between 1992 and 1994 years. 

According to the results, the model performance is r2=0.6045 for this period (Figure 

56).  
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Figure 55 Calibration performance of the model between 1998 and 2010 years 

 

 
 
 

Figure 56  Four-HRU types model performance after verification 
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4.5.3 Eight-HRU Types which were created with respect to Slope, CN2 and 

SOL_K parameters results  

 
 
In order to find an optimum HRU number, the HRUs in the four-HRU types model 

was further divided into two-HRUs resulting in the eight-HRU types model (Figure 

57). The accuracy of the eight-HRU type model was initially r2=0.21, NS=-0.21 

(Figure 58). In order see the calibration performance of the model which does not 

include any initials, the model was calibrated by using 250, 500, 750 and 1000 

simulation counts (Table 22). Best calibration result was given by 500 simulation 

count. The model was calibrated to produce r2=0.56 and NS=0.51 (Figure 59). 

Introducing the parameters of the calibrated parameters of the four-HRU model into 

the eight-HRU model, the initial run produced r2 = 0.24, NS = -0.10 (Figure 60). If 

eight-HRU types model that includes initials was calibrated by applying 250, 500, 750 

and 1000 simulation count (Table 23), 750 simulation count gave better calibration 

results. It produced r2=0.53, NS=0.52 and (Figure 61). 

 

 

 
Figure 57 Eight-HRU types division depending on SOL_K, CN2 and slope 

classification 
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Figure 58 Model results eight-HRU types which are produced by combining CN2, 

SOL_K and slope classification. 

 
Table 22 8 HRU types model calibration results depending on simulation count 

 
METHOD CN2+SOL_K+SLOPE 

Variable p-factor r-factor R2 NS bR2 PBIAS Mean(sim) StdDev(sim) 

8 HRUs TYPE 
(SM=250) 0,72 1,38 0,56 0,51 0,41 9,40 2.16(1.96) 2.10(2.03) 

8 HRUs TYPE 
(SM=500) 0,91 2,03 0,55 0,54 0,29 8,60 2.16(1.98) 2.10(1.49) 

8 HRUs TYPE 
(SM=750) 0,77 1,10 0,60 0,54 0,33 22,10 2.16(1.69) 2.10(1.52) 

8 HRUs TYPE 
(SM=1000) 0,87 1,86 0,54 0,49 0,31 22,50 2.16(1.68) 2.10(1.64) 
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Figure 59 Calibration results of 8 HRU types model that are produced by combining 
CN2, SOL_K and slope classification 

 

 

 
Figure 60 Model results of 8 HRU types which are produced by combining CN2, 

Sol_K and slope classification (calibrated parameters values of 4 HRU types model 
as initials for 8 HRUs). 
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Table 23 8 HRU types model calibration results which include calibrated parameter 
values of 4 HRUs depending on simulation count 

 

METHOD 
CN2+SOL_K+SLOPE 

(using calibrated parameters of 4 HRUs as initial for 8 HRU) 

Variable p-factor r-factor R2 NS bR2 PBIAS Mean(sim) StdDev(sim) 

8 HRUs TYPE 
(SM=250) 0,78 1,07 0,51 0,45 0,28 23,60 2.16(1.65) 2.10(1.62) 

8 HRUs TYPE 
(SM=500) 0,85 1,92 0,52 0,51 0,28 8,40 2.16(1.98) 2.10(1.57) 

8 HRUs TYPE 
(SM=750) 0,90 1,79 0,53 0,52 0,26 -2,00 2.16(2.21) 2.10(1.44) 

8 HRUs TYPE 
(SM=1000) 0,77 1,49 0,56 0,53 0,38 11,00 2.16(1.93) 2.10(1.88) 

 

 

 
 

Figure 61 Calibration results of 8 HRU types model which are produced by 
combining CN2, SOL_K and slope classification (calibrated parameters values of 4 

HRUs type model as initials for 8 HRUs).  
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4.6 2. Case Study: Namazgah Dam Basin, Kocaeli, TURKEY 

 
 
Namazgah Dam Basin is located at 40055'-41004 'north latitude and 30000'- 30025' in 

Kandıra and Izmit District boundaries. The dam was constructed on Namazgah river 

in the Marmara Region. The area of the basin is 100,64 km2. The dam was built in 

order to provide irrigation, drinking and usage water demand of tourist settlements on 

the Black Sea coast and the town center Kandıra, Derince, the villages and towns of 

İzmit and Körfez district (Figure 62). 
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Figure 62 2. Case Study Area   
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4.6.1. SWAT Input Layers 

 
 

Input layers of SWAT for Namazgah Dam Basin are digital elevation model, soils, 

land use, and slopes. 

 
 

4.6.1.1 Delineation of Watershed 

 
 

The Digital Elevation Model of Namazgah Dam Basin is given in (Figure 63). DEM 

was produced from 1:25 000 scale topographic maps. The DEM properties were given 

in Table 24.  

 



 

105 
 

 
 
Figure 63 Digital Elevation Model of Namazgah Dam Basin  
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Table 24 DEM Characteristics of Namazgah Dam Basin 

 
Metadata parameter Value 

Projection Universal Transverse Mercator 
(UTM) 

False Northing 500000 

False Easting 0.000000 

Central Meridian 27 

Scale Factor 0.9996 

Reference Latitude 0.000000 

Geographic Coordination System WGS_1984_35 N 

Column/Row count 323/ 524 

Cell size (X/Y) (m/m) 30/30 

Bits per pixel 32 

 

In order to produce sub-basins of the watershed from DEM, many operations were 

applied on DEM. Firstly, when the preprocessing of DEM was completed; minimum, 

maximum, and suggested sub-watershed areas in hectares were calculated as 52, 10340 

and 1000, respectively. Secondly, streams and outlets were defined by SWAT. One 

outlet was added manually. The outlet was close to Namazgah stream gauging station 

in the watershed. This choice enables us to compare between the results of models and 

observation data. At the end of watershed delineation, we acquired five sub-basins 

(Figure 64), and SWAT calculated minimum, maximum, mean and standard deviation 

elevation values which were 40, 350, 165.437 and 53.72, respectively. 
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Figure 64 Sub-basins of Namazgah Dam Basin 
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4.6.1.2 Soil Class Layer 

 
 
The soil map of the study area (Scale: 1/25,000) was supplied by a Kocaeli 

Metropolitan Municipality project. Soil data is classified according to major soils 

groups (Table 25).  

 
Table 25 Major Soils Group in Namazgah Dam Basin. 

 
 

 

 

The soil map used in SWAT is given in Figure 65. Soil class distribution in the area 

was observed from Figure 66. There are mostly N and R group of soils, Limeless 

brown forest soils and Rendzina Soils, in the area. Properties of the soil were entered 

in SWAT soil user database (Table 26). 

Soil Classification Explanation 

R Rendzina 

N Limeless brown forest soil 

K Colluvial soils 

YR Kolluvial 

A Alluvial 
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Figure 65 Soil Map of Namazgah Dam Basin. 
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Figure 66 Soil type histogram representation of the study area. 

 
Table 26 User soil database in SWAT for Namazgah Dam Basin 

 

 
 
 

4.6.1.3 Land use/Land cover Layer 

 
 
Land use layer was obtained from the framework of a Ministry of Forestry and Water 

Affairs project. Land use/land cover data was clipped and reprojected by using the 

ArcSWAT project database. (Figure 67). Land use/land cover map resolution is 30/30 

meters. There are eight land use/land cover class in the study area (Table 27). The most 

dominant type of land use is Agricultural area, which covers %67.31 of watershed area 

( 

Figure 68).Other dominant land use/land cover area is Broad-leaved forest.  
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SNAM NLAYERS HYDGRP SOL_ZMX ANION_EXCL SOL_CRK TEXTURE SOL_Z1 SOL_BD1 SOL_AWC1 SOL_K1 SOL_CBN1CLAY1 SILT1 SAND1

R 2 C 500 0.5 0.5 CLAY 200 1.45 0.17 10.15 3.07 39 51 10

N 2 D 900 0.5 0.5 SANDY/CLAY LOAM 500 1.4 0.19 3.3 0.21 40 10 60

YR 1 D 152 0.5 0.5 VAR 152 1.5 0.1 500 2.97 15 30 55

K 1 D 900 0.5 0.5 CLAY 900 1.35 0.1 3.3 2.97 40 40 20

YR 1 D 152 0.5 0.5 VAR 152 1.5 0.1 500 2.97 15 30 55

YR 1 D 152 0.5 0.5 VAR 152 1.5 0.1 500 2.97 15 30 55

A 1 D 900 0.5 0.5 SILTY CLAY LOAM 900 1.5 0.19 10.15 0.48 40 40 20
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Figure 67 Land use/Land cover Map of Namazgah Dam Basin 
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Table 27 Land use/ land cover distribution in Namazgah Dam Basin 

 
Land use/Land cover 

Type Symbol (% )Water shed Area 

pasture PAST 2.19 
agriculture/natural plants CRWO 1.10 

Broad-leaved forest FODB 24.90 
Mixed forest FOMI 0.37 

Transitional woodland-
shrub MIGS 3.71 
Water WATR 0.40 

Agricultural land rows AGRR 67.31 
Vineyard GRAP 0.02 

 

 

Figure 68 Land use/land cover type histogram representation of Namazgah Dam 

Basin. 
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4.6.1.4 Slope Layer 

 
 

Slope characterization is based upon the DEM defined in the watersheds delineation ( 

Figure 69). 

 

 
 

Figure 69 Slope Map of Namazgah Dam Basin 
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4.6.1.5 Meteorological Data 

 
 

SWAT needs some important daily meteorological data such as minimum and 

maximum temperatures, precipitation, solar radiation, wind speed and relative 

humidity data. Meteorological data used in Namazgah Stream was obtained from 

NCEP/CFSR (The National Centers for Environmental Prediction/Climate Forecast 

System Reanalysis) data. It is available along with in situ measurements from several 

ground stations. Reanalysis data is used since in situ data has continuity problems. One 

meteorological station which was near the study area was used. Weather data obtained 

from global meteorological stations in the area was between 1979 and 2010 years. In 

order to assign meteorological data in the model, the data files were prepared in *txt 

format. Long-term monthly averages of data is used in SWAT. When there is the 

missing observation data and the input data, lack of data is accomplished by statistical 

parameters produced from these long term daily data (Table 27). 

 

The needed data for the weather generator are: 

• Mean daily maximum air temperature for month (oC) 

• Mean daily minimum air temperature for month (oC) 

• Standard deviation for daily maximum air temperatures in month (oC) 

• Standard deviation for daily minimum air temperature in month (oC) 

• Mean total monthly precipitation (mm H2O) 

• Standard deviation for daily precipitation in month (mm H2O/day). 

• Skewness coefficient for daily precipitation in month. 

• Probability of a wet day following a dry day in the month. 

• Probability of a wet day following a wet day in the month. 

• Mean number of days of precipitation in month. 

• Mean daily solar radiation for month (MJ/m2/day). 

• Mean daily dew point temperature in month (ºC). 

• Mean daily wind speed in month (m/s). 

 

 

 

http://rda.ucar.edu/pub/cfsr.html
http://rda.ucar.edu/pub/cfsr.html
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Table 28 Statistical Values of Meteorological Data 

 

 
 

 

4.6.2 SWAT Model Results of Namazgah Dam Basin by using the current 

methodology for HRU division SWAT  

 

 

According to the current methodology for generating HRU in SWAT, the total number 

of 5, 12 and 17 HRUs in five subbasins were compared. While using dominant land 

use/land soil and slope combination approach, we obtained five HRUs in total. The 

initial model run of five-HRU had r2=0.3784, NS=-1.37 and improved to r2=0.69, 

NS=0.56 after the calibration. When the total number of HRUs was increased to 12 by 

using 20%/20%/60% threshold values for land use/soil/slope combination, the initial 

model run had r2=0.37, NS=-1.34 and improved to r2=0.70, NS = 0.58 after the 

calibration. When 10%/10%/80% threshold values for land use/soil/slope combination 

were used, the total number of HRUs was 17. The initial model run had r2=0.39, NS=-

1.33and improved to r2=0.68, NS = 0.57 after calibration. 

 

 

4.6.3 HRUs division depending on CN2 parameter 

 
 
Since the CN2 curve number is a function of the soil’s permeability, land use and 

antecedent soil water conditions, CN2 was chosen for dividing HRU types (Table 29). 

A threshold on CN2 found from LU/Soil tables is used to divide a sub-basin into two-

OBJECTID STATION TMPMX1 TMPMX2 TMPMX3 TMPMX4 TMPMX5 TMPMX6 TMPMX7 TMPMX8 TMPMX9 TMPMX10 TMPMX11 TMPMX12

1 p411300wgn 8.367723 8.79184 11.76964 16.93165 21.90777 26.50012 28.33543 28.42928 24.98051 19.96796 14.51822 10.0235

WLATITUDE 41.058 TMPMN1 TMPMN2 TMPMN3 TMPMN4 TMPMN5 TMPMN6 TMPMN7 TMPMN8 TMPMN9 TMPMN10 TMPMN11 TMPMN12

WLONGITUDE 30 2.587635 2.218753 3.767604 6.613638 9.922231 13.95265 16.14762 16.72022 14.12415 11.38944 7.446173 4.462481

WELEV 152 TMPSTDMX1 TMPSTDMX2 TMPSTDMX3 TMPSTDMX4 TMPSTDMX5 TMPSTDMX6 TMPSTDMX7 TMPSTDMX8 TMPSTDMX9 TMPSTDMX10 TMPSTDMX11 TMPSTDMX12

RAIN_YRS 36 4.216229 4.981779 5.501248 5.277781 4.51159 3.626094 3.065076 3.127362 3.899444 5.076766 4.968755 4.170317

TMPSTDMN1 TMPSTDMN2 TMPSTDMN3 TMPSTDMN4 TMPSTDMN5 TMPSTDMN6 TMPSTDMN7 TMPSTDMN8 TMPSTDMN9 TMPSTDMN10TMPSTDMN11 TMPSTDMN12

3.324241 3.779735 3.649838 3.650179 3.736305 2.924531 2.537765 2.469851 2.89719 3.206943 3.632773 3.392279

WNDAV1 WNDAV2 WNDAV3 WNDAV4 WNDAV5 WNDAV6 WNDAV7 WNDAV8 WNDAV9 WNDAV10 WNDAV11 WNDAV12

3.762871 3.835361 3.694384 3.347005 3.340656 3.558232 3.84006 3.810617 3.512196 3.430532 3.356773 3.816047

PCPMM1 PCPMM2 PCPMM3 PCPMM4 PCPMM5 PCPMM6 PCPMM7 PCPMM8 PCPMM9 PCPMM10 PCPMM11 PCPMM12

115.2356 98.47276 90.12451 59.59363 47.78748 37.68852 38.54046 43.42759 54.08229 98.47534 100.7484 117.1558

PCPSTD1 PCPSTD2 PCPSTD3 PCPSTD4 PCPSTD5 PCPSTD6 PCPSTD7 PCPSTD8 PCPSTD9 PCPSTD10 PCPSTD11 PCPSTD12

5.655748 5.419052 5.164611 4.040562 3.447406 3.548194 3.869533 4.684351 4.62458 6.848008 5.95314 6.141749

PCPSKW1 PCPSKW2 PCPSKW3 PCPSKW4 PCPSKW5 PCPSKW6 PCPSKW7 PCPSKW8 PCPSKW9 PCPSKW10 PCPSKW11 PCPSKW12

2.711104 2.806436 2.951064 3.899492 3.528167 5.276297 4.660065 4.754622 4.319499 3.621555 2.783552 2.822944

PR_W1_1 PR_W1_2 PR_W1_3 PR_W1_4 PR_W1_5 PR_W1_6 PR_W1_7 PR_W1_8 PR_W1_9 PR_W1_10 PR_W1_11 PR_W1_12

0.5405405 0.4744898 0.4801444 0.4194444 0.3279022 0.2491909 0.1912145 0.1970706 0.2819615 0.3791349 0.3506097 0.4887892

PR_W2_1 PR_W2_2 PR_W2_3 PR_W2_4 PR_W2_5 PR_W2_6 PR_W2_7 PR_W2_8 PR_W2_9 PR_W2_10 PR_W2_11 PR_W2_12

0.8747203 0.8769793 0.8474374 0.7763889 0.75 0.6406927 0.5730994 0.5568863 0.6784969 0.7817919 0.8490305 0.8700234

PCPD1 PCPD2 PCPD3 PCPD4 PCPD5 PCPD6 PCPD7 PCPD8 PCPD9 PCPD10 PCPD11 PCPD12

24.83333 22.80556 23.30556 20 17.33333 12.83333 9.5 9.542857 13.68571 19.77143 20.62857 24.4

SOLARAV1 SOLARAV2 SOLARAV3 SOLARAV4 SOLARAV5 SOLARAV6 SOLARAV7 SOLARAV8 SOLARAV9 SOLARAV10 SOLARAV11 SOLARAV12

5.596886 8.691776 13.6443 19.59435 24.46763 27.86041 28.09176 24.91563 18.74233 11.3068 7.071417 4.733597

DEWPT1 DEWPT2 DEWPT3 DEWPT4 DEWPT5 DEWPT6 DEWPT7 DEWPT8 DEWPT9 DEWPT10 DEWPT11 DEWPT12

0.8385895 0.8308618 0.7833003 0.7241173 0.6934124 0.6401212 0.6620137 0.6772357 0.6884864 0.7394965 0.777979 0.8245591
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HRUs. This guaranties that the two-HRUs are more or less uniform within itself with 

respect to CN. Then, each HRU is further divided into two-HRUs (Figure 70, Figure 

71). In contrast to combination of CN2, soil hydraulic conductivity in order to create 

HRUs, HRU generation with respect to just CN2 give us better model results. 

 
Table 29 HRUs division based on CN2 parameter on Namazgah Dam basin 

 

 
 

 
 

 

Landuse Symbol HYRD CN2 HRU 2 HRU 4 HRU 8

Water WATR CN2A 92

Water WATR CN2B 92

Water WATR CN2C 92

Water WATR CN2D 92

Agricultural Land-Row Crops AGRR CN2D 89

Agricultural Land-Row Crops AGRR CN2C 85

Pasture PAST CN2D 84

CROPLAND/WOODLAND MOSAIC CRWO CN2D 83

DECIDUOUS BROADLEAF FOREST FODB CN2D 83

Vineyard GRAP CN2D 83

MIXED GRASSLAND/SHRUBLAND MIGS CN2D 82

Pasture PAST CN2C 79

MIXED FOREST FOMI CN2D 79

CROPLAND/WOODLAND MOSAIC CRWO CN2C 78

Agricultural Land-Row Crops AGRR CN2B 78

DECIDUOUS BROADLEAF FOREST FODB CN2C 77

Vineyard GRAP CN2C 77

MIXED GRASSLAND/SHRUBLAND MIGS CN2C 76,5

MIXED FOREST FOMI CN2C 73

Pasture PAST CN2B 69

CROPLAND/WOODLAND MOSAIC CRWO CN2B 68,5

Agricultural Land-Row Crops AGRR CN2A 67

DECIDUOUS BROADLEAF FOREST FODB CN2B 66

Vineyard GRAP CN2B 66

MIXED GRASSLAND/SHRUBLAND MIGS CN2B 65

MIXED FOREST FOMI CN2B 60

CROPLAND/WOODLAND MOSAIC CRWO CN2A 51,5

Pasture PAST CN2A 49

DECIDUOUS BROADLEAF FOREST FODB CN2A 45

Vineyard GRAP CN2A 45

MIXED GRASSLAND/SHRUBLAND MIGS CN2A 44

MIXED FOREST FOMI CN2A 36

CN2>79

CN2<79

CN2>85

CN2<85

CN2=92

85<CN2<92

82<CN2<85

CN2=79

CN2>65

CN<65

CN2>73

65<CN2<73

CN2>49

CN2<45
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Figure 70 HRU division methodology for Namazgah Dam Basin 
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Figure 71 HRU type division based on CN2 on Namazgah Dam Basin. 
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4.6.3.1 Two-HRU Types which were created with respect to CN2 parameter 

results  

 
 
Two-HRU type model was created in each of five subbasins resulting in eight HRUs. 

The initial run had r2=0.37, NS=-1.47 (Figure 72). In order to increase model accuracy, 

the fastly calibrated SUFI-2 model was applied on the model by using 16 important 

parameters (Table 30). When 250 simulation count and 500 simulation counts were 

applied on the model for the calibration process (Table 31), 500 simulation count gave 

us better calibration results. The model improved to r2=0.71, NS=0.71 after the 

calibration (Figure 73). 

 

 
 

Figure 72 Model results of two-HRU types of Namazgah Dam Basin. 

 
 
 
 
 

0

5

10

15

20

25

30

1
9

9
1

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
7

1
9

9
8

1
9

9
9

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
7

d
is

ch
ar

ge
 m

3
/s

year 

Model results of 2-HRU types 

OBSERVED

SIMULATED

R² = 0,3706

0

5

10

15

20

25

0 5 10 15 20 25 30

si
m

u
la

te
d

observed

Model results of 2-HRUs types 



 

120 
 

Table 30 Calibration parameters and their range 

 
PARAMETERS MIN 

VALUE 

MAX 

VALUE 

Definition Process/ 

Layer 

CN2 -0.2 0.2 Initial SCS runoff 
curve number 

Surface 
runoff 

SURLAG 0.05 24 Surface runoff lag 
time. 

SOL_AWC -0.2 0.1 Available water 
capacity of the soil 

layer 

 

Soil 
SOL_K -0.8 0.8 Saturated hydraulic 

conductivity (mm/hr) 
SOL_BD -0.5 0.6 Moist bulk density 

(Mg/m3 or g/cm3) 
GWQMN 0 25 Threshold depth of 

water in the shallow 
aquifer required for 
return flow to occur 

(mm H2O) 

 

 

Baseflow 
GW_REVAP -0.1 0 Groundwater “revap” 

coefficient 
REVAPMN 0 500 Threshold depth of 

water in the shallow 
aquifer for “revap” or 
percolation to the deep 
aquifer to occur (mm 

H2O) 
ALPHA_BF 0 1 Baseflow alpha factor 

(days) 
GW_DELAY 30 450 Groundwater delay 

time (days) 
ESCO 0.8 1 Soil evaporation 

compensation factor. 
SFTMP -20 20 Snowfall temperature 

(oС) 
 

Snow SMTMP -20 20 Snowmelt base 
temperature (oС) 

SMFMX 0 20 Melt factor for snow 
on June 21 (mm 

H2O/oC-day) 
SMFMN 0 20 Melt factor for snow 

on December 21 (mm 
H2O/oC-day) 

TIMP 0 1 Snow pack 
temperature lag factor. 
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Table 31 Calibration results of 2 HRU types depending on simulation counts. 

 
METOD CN2 

Variable p-factor r-factor R2 NS bR2 PBIAS Mean(sim) StdDev(sim) 

2 HRUs TYPE 
(SM=250) 0,25 1,08 0,51 0,14 0,4336 54,80 1.90(2.95) 2.98(3.59) 

2 HRUs TYPE 
(SM=500) 0,82 3,48 0,72 0,71 0,5713 -3,80 1.90(1.97) 2.98(2.80) 

 
 

 
 

Figure 73 Model calibration results of two-HRU types which were divided according 
to CN2 values. 

 
 

4.6.3.2 Four-HRU types which were created with respect to CN2 parameter results 

  
 
In the later stage, we produced a four-HRUs model with initial results r2=0.43, NS=-

0.79 (Figure 74). 250 and 500 simulation count was applied on the model in order to 

see performance of the calibration during calibration (Table 32). The model improved 

to r2=0.74 and NS=0.74 after the calibration if 500 simulation count was used (Figure 

75).  
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Figure 74 Model results of four-HRU types on Namazgah Dam Basin 

 
 

Table 32 Calibration results of four-HRU types depending on simulation counts. 

 

METOD CN2 

Variable p-factor r-factor R2 NS bR2 PBIAS Mean(sim) StdDev(sim) 

4 HRUs TYPE 
(SM=250) 0,81 1,97 0,72 0,71 0,57 7,70 1.90(1.76) 2.98(2.81) 

4 HRUs TYPE 
(SM=500) 0,66 1,67 0,74 0,74 0,58 3,80 1.90(1.83) 2.98(2.72) 

4 HRUs TYPE 
(SM=250) 
 int HRU 0,79 2,14 0,74 0,73 0,54 16,60 1.90(1.59) 2.98(2.58) 
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Figure 75 Calibration results of four-HRU types model on Namazgah Dam Basin 
(SM=500) 

 
When the four-HRU type model was used with the calibrated parameters of the two-

HRU type model, the model accuracy was r2=0.59, NS=0.10 and improved to r2=0.74 

and NS=0.73 after calibration (Figure 76). 

 

 
 

Figure 76 Model calibration results of four-HRU types (include initials) 
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4.6.3.2 Eight-HRU types which were created with respect to CN2 parameter results  

 
 

In order to find optimum HRU numbers, eight-HRU type model was created. The 

model accuracy of eight-HRU types was initially r2=46, NS= -0.14 (Figure 77). When 

the eight-HRU type model was calibrated by applying 100, 250, 500 and 1000 

simulation count in order to decide which simulation count gave better the model 

accuracy (Table 33), 500 simulation count was gave best calibration results. Thus, the 

model improved to r2=73 and NS=72 after the calibration (Figure 78). 

 

Table 33 Calibration results of eight-HRU types model depending on simulation 

counts. 

 

METOD CN2 

Variable p-factor r-factor R2 NS bR2 PBIAS Mean(sim) StdDev(sim) 

8 HRUs TYPE 
(SM=100) 0,68 1,72 0,68 0,67 0,4929 14,30 1.90(1.63) 2.98(2.59) 

8 HRUs TYPE 
(SM=250) 0,76 1,59 0,67 0,66 0,489 4,50 1.90(1.82) 2.98(2.65) 

8 HRUs TYPE 
(SM=500) 0,8 1,88 0,73 0,72 0,5138 17,50 1.90(1.57) 2.98(2.45) 

8 HRUs TYPE 
(SM=1000) 0,75 2,06 0,74 0,73 0,4944 9,10 1.90(1.73) 2.98(2.31) 
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Figure 77 Model results of eight-HRU types on Namazgah Dam Basin 

 
 

 
 

Figure 78 Calibration results of eight-HRU types model which are produced by 
division of CN2 (calibrated parameter values of 4 HRUs type model as initials for 8 

HRUs).
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CHAPTER 5 

 

 

SUMMARY AND DISCUSSION 

 

 
 
As the current HRU methodology in SWAT is based on user-defined thresholds of soil 

land use, and slope classification combinations, it may result in ignoring some 

important combinations, which may have great impact on hydrological process in a 

watershed. As a result, the model performance declines and calibration takes a long 

time. The error caused by lumping effects (Geza and McCray, 2008) is reduced by 

using small and relatively uniform HRUs, but it makes calibration more difficult and 

increases required computation time. In this work, we adopt a hierarchical approach, 

similar to many other optimization problems in order to increase performance and 

reduce computational complexity simultaneously. For hierarchical optimization, each 

sub-basin is divided into two-HRUs and optimize with respect to some important 

hydrological processes parameters. Then, each HRU is further divided into two. Each 

child HRU inherits the optimum parameters of the parent HRU as its initial values. 

Thus, we expect to decrease the total calibration time and increase the performance of 

the model.  

 
Hierarchical approach to hydrological model was applied on two different test areas in 

Turkey with different hydrologic, topographic, hydrogeologic conditions. Although 

the maximum elevation in the Sarısu-Eylikler Basin is 2400 m, in Namazgah Dam 

Basin the maximum elevation is 320 m. There are 17 different soil types in Sarısu-

Eylikler Basin. The most dominant soil types in the basin is Reddish-Chestnut and 

Limeless Brown soils. There are mostly agricultural, grarigue and pasture area in the 

basin. When assessed the area properties, the area represents heterogeneous properties. 

The characteristics of the area effects the choice of the HRU generation method. When 

SOL_K and CN2 parameters were chosen independently for division HRU types, the 

model performance was not so good. Since these parameters individually couldn’t 

represent all hydrological processes in the watershed area, combination of these 

parameters which are CN2, SOL_K and slope classification was preferred.    
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Namazgah Dam Basin has more homogeneous properties than Sarısu-Eylikler Basin. 

The most dominant soil type is limeless brown forest soil, which has approximately 

%60 of the watershed area. There are two dominant land cover in the basin which are 

agricultural land and broad-leaved forest area, the areas of land cover are % 67.31 and 

%24.90, respectively. There are many karstic areas in Namazgah Dam Basin where 

groundwater is recharged from surface water (Altuntas et al., 2015). Since topography 

of the basin is distinct from Sarısu-Eylikler basin, the area of Namazgah Dam basin is 

smaller than Sarısu-Eylikler basin, moreover, Namazgah Dam basin shows 

homogenous characteristics, one important parameter for generating HRU types, CN2, 

can represent all hydrological processes in the watershed area.When four-HRU were 

separated further into two-HRU types in Sarısu-Eylikler Basin, total number of HRUs 

in the model did not increase much, and further division caused many gaps in the 

model. In other words, when eight-HRU types were generated, some combinations for 

producing HRU types were not in the most sub-basins. Although the model 

performance was getting worse, model calibration performance was getting better. 

This results show that the optimum division of HRU types should be four-HRUs for 

Sarısu-Eylikler Basin. With increasing complexity of the model, the uncertainties 

increase. Thus, more HRU types cause more uncertainties in the model (Table 34). 

 
When CN2 division approach is tested in Namazgah Dam Basin, the model gives us 

better r2 values from two-HRU to four-HRU. However, calibration results of two-HRU 

and four-HRU are approximately same. If we use calibrated parameter values of two-

HRU for four-HRU as an initials, our model is getting better and computational time 

for calibration declines. If four-HRUs were divided into two children, model 

performance and calibration effort for eight-HRU were similar to four-HRUs since the 

total number of HRUs in the basin during generation of eight-HRU types didn’t 

increase much. In other words, although the total HRU number of four-HRU type is 

13, the total HRU number of eight-HRU types is 14. Thus, we stopped HRU division 

further because optimum HRU type division was eight (Table 35). 

 

In the current HRU methodology, while trying to reach from simple to complex model 

with increasing HRU number, we got relatively same model results and calibration 
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performance. If we compare our HRU generation approach with the current 

methodology, Hierarchic HRU methodology gives us better model and calibration 

performance. When we need much more detailed hydrological models, especially for 

applying water management policy in the watershed, Hierarchical approach for HRU 

division gives us better model performance and easy calibration processes. It should 

be considered that before applying the methodology, the basin should be understood 

correctly with respect to its physical properties. 
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Table 34 Summary of results for Sarısu-Eylikler Basin. 

 
Method Total # of 

HRUs 

Initial Model  

R2, NS,PBIAS 

After 

Calibration 

R2, NS, PBIAS 

ArcSWAT  

(Dominant land 
use/slope/soil) 

7 0.33, -10, -164.669 0.36, 0.24, -27.5 

ArcSWAT  

(25%/25%/50% threshold 
value for land use/soil/slope) 

14 0.34, -10, -163.088 0.35, 0.32, -16.9 

ArcSWAT 

(20%/20%/60% threshold 
value for land use/soil/slope) 

21 0.34, -2.69, -161.168 0.36, 0.32, -42.5 

CN2KS, 

2 HRU types 

13 0.32, -0.16, -2.07 0.50, 0.49, 3.8 

CN2KS  

4 HRU types 

16 0.41, 0.11, 6.47 0.51, 0.51, 6.5 

CN2KS 

4 HRU types, initials from 2 
HRU  

16 0.53, 0.31, -4.14 0.59, 0.57, -4.1 

CN2KS 

8 HRU types,  

18 0.21, -0.21, 9.36 0.56, 0.51, 8.6 

CN2KS 

8 HRU types, initials from 4 
HRU  

18 0.24, -0.10, -1.99 0.53, 0.52,-2.0 
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Table 35 Summary of results for Namazgah Dam Basin. 

 
Method Total # 

of HRUs 

Initial Model  

R2, NS, PBIAS 

After 

Calibration 

R2, NS, PBIAS 

ArcSWAT  
(Dominant land use/slope/soil) 

5 0.3784, -1.37, 39.22 0.69, 0.56, 32.1 

ArcSWAT  
(20%/20%/60% threshold value 
for land use/soil/slope) 

12 0.3755, -1.34, 38.47 0.70, 0.58, 30.9 

ArcSWAT  
(10%/10%/80% threshold value 
for land use/soil/slope) 

17 0.39, -1.33, 38.96 0.68, 0.57, 26.09 

CN2, 
2 HRU types 

13 0.37, -1.47, -200.7 0.71, 0.71, -3.76 

CN2  
4 HRU types 

13 0.43,-0.79, -167.35 0.73, 0.72, 7.7 

CN2  
4 HRU types, initials 2 HRU 

13 0.59, 0.10, -103.25 0.74, 0.73, 16.6 

CN2  
8HRU types 

14 0.46,-0.14,-156.41 0.73, 0.72, 17.5 
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CHAPTER 6  

 
 

CONCLUSION 

 
 
 
Hierarchical HRU approach to hydrological model calibration was developed in order 

to increase model performance and reduce computational complexity simultaneously. 

Although the first method for the approach is combination of parameters, second 

method for producing HRU types is one parameter division. The performance of the 

hierarchical methodology is shown on two basins: Sarısu-Eylikler Basin and 

Namazgah Dam Lake in Turkey. According to these methodologies, we have the 

following conclusions;  

1- Combination of CN2, soil hydraulic conductivity and slope classification was 

chosen for first HRU generation method since these parameters may have great impact 

on hydrological processes in the watershed. 

2- CN2 parameter was preferred for dividing HRU types. 

3- First approach for generation HRU types gives better results in Sarısu-Eylikler 

Basin in contrast to the second method,  

4- The model performance in the Basin improved from two to four-HRU types. 

Although, the model performance of the eight-HRU type did not improve the results, 

the computational time for calibration was reduced.  

5- By using the second approach of hierarchical optimization, we reached better results 

on Namazgah Dam Basin. From the two-HRU type to the four-HRU type, the model 

performance increased and the computational complexity decreased. 

6- The hydrological behavior is different in each study areas. Although surface runoff 

in Namazgah Dam Basin has mainly affected from land use variations, soil type, land 

use and topography are mainly affected hydrological processes in Sarısu-Eylikler 

Basin.



 

 

7-Each methodology for HRU generation gives us better results than the current HRU 

generation approach in SWAT. 

8-Hierarchical approach to HRU generation is suitable for heterogeneous and large 

scale basins. When this approach is applied on small scale and homogeneous areas, 

one parameter should be preferred for hierarchical HRU generation method. 

At the end of this study, developed methodology for generation HRU division in 

hydrological models can improve model accuracy and decrease computational 

complexity for calibration. Moreover, the results shows that further model complexity 

does not give more accurate model results. While using better available data, more 

accurate model prediction and smaller uncertainties can be reached by using the 

methodology. In the future, the proposed methodology should be applied on other 

semi-distributed models except from the SWAT model. In order to measure 

performance of the methodology, different optimization approach should be used.   
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APPENDICES 

 
 

 
A: Full Automatic version of SUFI 2 

 
 
 
START Function  

clear all,  
clc 
  
cd('C:\Hru_5_calibration_HRU4_initial'); 
  
% number of possible parameters in SWAT 
  
count=input('simulationCount: '); 
 parametreAraligi=1:3; 
 hesapla2(parametreAraligi,count); 
          
 fid=fopen('.\SUFI-2.OUT\summary_stat.txt', 'r'); 
 bestgoal=textscan(fid, '%*s %*s %*s %*s %*s %*s %f'); 
         r2=bestgoal{1,1}; 
         fclose(fid); 
 saveas (figure(1),'ilktur.jpg') 
 if r2<1; 
                  parametreAraligi=4:10; 
                  hesapla2(parametreAraligi,count); 
                  saveas (figure(1),'ikincitur.jpg') 
 end 
         if r2<1; 
                  parametreAraligi=11:16;  
              hesapla2(parametreAraligi,count);  
              saveas (figure(1),'ucuncutur.jpg') 
 end  
 

 

Main Function 

function hesapla3(parametreAraligi,count) 
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 npar = 17; 
 par(1).name='r__CN2.mgt'; 
 par(1).min=-0.4; 
 par(1).max=0.2; 
 par(2).name='r__SOL_AWC().sol'; 
 par(2).min=-0.3; 
 par(2).max=0.1; 
 par(3).name='r__SOL_K().sol'; 
 par(3).min=-0.8; 
 par(3).max=0.8; 
 par(4).name='r__SOL_BD().sol'; 
 par(4).min=-0.5; 
 par(4).max=0.6; 
 par(5).name='a__GWQMN.gw'; 
 par(5).min=0; 
 par(5).max=25; 
 par(6).name='a__GW_REVAP.gw'; 
 par(6).min=-0.1; 
 par(6).max=0; 
 par(7).name='v__REVAPMN.gw'; 
 par(7).min=0; 
 par(7).max=500; 
 par(8).name='v__ALPHA_BF.gw'; 
 par(8).min=0; 
 par(8).max=1; 
 par(9).name='v__GW_DELAY.gw'; 
 par(9).min=30; 
 par(9).max=450; 
 par(10).name='v__ESCO.hru'; 
 par(10).min=0.8; 
 par(10).max=1; 
 par(11).name='v__SFTMP.bsn'; 
 par(11).min=-20; 
 par(11).max=20; 
 par(12).name='v__SMTMP.bsn'; 
 par(12).min=-20; 
 par(12).max=20; 
 par(13).name='v__SMFMX.bsn'; 
 par(13).min=0; 
 par(13).max=20; 
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 par(14).name='v__SMFMN.bsn'; 
 par(14).min=0; 
 par(14).max=20; 
 par(15).name='v__TIMP.bsn'; 
 par(15).min=0; 
 par(15).max=1; 
 par(16).name='v__SURLAG.bsn'; 
 par(16).min=0.05; 
 par(16).max=24; 
  
 for ix=1:npar 
 par(ix).opt=false; 
 end 
  
 minArrayElement=min(parametreAraligi); 
 maxArrayElement=max(parametreAraligi); 
  
 for paramIndex=minArrayElement:maxArrayElement 
 par(paramIndex).opt=true; 
 end 
  
 % run SWAT once 
  
 p = SUFI-2_func1(par, count); 
  
 % find initial NSR 
 fid=fopen('.\SUFI-2.OUT\summary_stat.txt', 'r'); 
 cd('C:\Calibration_HRU_8_SOL_SLP_CN'); 
 fid=fopen('.\SUFI-2.OUT\summary_stat.txt', 'r'); 
 bestgoal=textscan(fid, '%*s %*s %*s %*s %*s %*s %f'); 
 NSR=bestgoal{1,1}; 
 PBIAS=textscan(fid, '%*s %*s %*s %*s %*s %*s %*s %*s %f'); 
 PBIAS1=PBIAS{1,1}; 
 HATA=PBIAS1(2,1); 
 fclose(fid); 
  
 old_NSR=NSR; 
 new_NSR=1; 
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 old_HATA=HATA; 
 new_HATA=0; 
  
 cmap = rand(20, 3); 
 figure(1) 
 clf 
 subplot(3, 1, 1) 
 hold on 
 subplot(3, 1, 2) 
 hold on 
 subplot(3, 1, 3) 
 hold on 
  
 countloop = 0; 
 while (new_NSR > old_NSR+ 0.001) || (countloop < 15)  
         % prepare par_inf.txt 
         if exist ('.\SUFI-2.OUT\new_pars.txt', 'file') 
        fid1=importdata('.\SUFI-2.OUT\new_pars.txt'); 
        num_params=size(fid1.textdata,1)-2;  
        fileID=fopen('SUFI-2.IN/par_inf.txt','w'); 
        fprintf(fileID,'%d %s \r\n',num_params, ' : Number of Parameters (the program only reads the 

first 4 parameters or any number indicated here'); 
        fprintf(fileID,'%d %s \r\n', count, ': number of simulations'); 
        fprintf(fileID,'\r\n'); 
        minv=fid1.data(:,1); 
        maxv=fid1.data(:,2); 
        for param_no = 1:num_params 
                  fprintf(fileID,'%s %6.2f %6.2f \r\n', fid1.textdata{param_no+2}, minv(param_no), 

maxv(param_no)); 
        end 
        fclose(fileID); 
        system( 'ayfer.bat', '-echo') 
         else 
              fprintf('Dosya içerigi bos'); 
              break 
         end 
               
        figure(1) 
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        subplot(3, 1, 1) 
        plot(countloop, NSR, '*'); 
        title('NSR'), xlabel('Iteration number'), ylabel('NSR Value'); 
        subplot(3, 1, 2) 
        plot(countloop, HATA, '*'); 
        title('PBIAS'), xlabel('Iteration number'), ylabel('PBIAS Value') 
        subplot(3, 1, 3) 
        title('Parameter Range'), xlabel('Iteration number'), ylabel('Parameter Range') 
  
        for ix=1:num_params 
              line([countloop+0.01*ix countloop+0.01*ix], [minv(ix) maxv(ix)], 'Color', cmap(ix, :)) 
        end 
  
        countloop = countloop + 1; 
  
        % read r2 
        fid=fopen('.\SUFI-2.OUT\summary_stat.txt', 'r'); 
        bestgoal=textscan(fid, '%*s %*s %*s %*s %*s %*s %f'); 
        NSR=bestgoal{1,1}; 
        PBIAS=textscan(fid, '%*s %*s %*s %*s %*s %*s %*s %*s %f'); 
        PBIAS1=PBIAS{1,1}; 
        HATA=PBIAS1(2,1); 
        fclose(fid); 
         
        old_HATA=new_HATA; 
        new_HATA=HATA; 
         
        old_NSR=new_NSR; 
        new_NSR=NSR; 
         
        if new_NSR<old_NSR; 
                  continue 
        elseif new_NSR >old_NSR || new_NSR ==old_NSR; 
                  break 
        end 
         
 end 
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 UpdateBackUp; 
  
 subplot(3, 1, 1) 
  
 hold off 
  
 subplot(3, 1, 2) 
  
 hold off 
  
 subplot(3, 1, 3) 
  
 hold off 
  
end 
 

SUFI-2_func1 Function  

 

function p = SUFI-2_func1(prm, simulationCount) 
  
%For each simulation, generate swat model output files 
p = prm; 
nprm = size(prm,2); 
num_params = 0; 
for ix=1:nprm 
 if prm(ix).opt 
         num_params = num_params + 1; 
         min_values(num_params) = prm(ix).min; 
         max_values(num_params) = prm(ix).max; 
         params{num_params} = prm(ix).name; 
 end 
end 
fileID=fopen('SUFI-2.IN/par_inf.txt', 'w'); 
  
fprintf(fileID,'%d %s \r\n', num_params, ' : Number of Parameters (the program only reads the first 4 

parameters or any number indicated here'); 
fprintf(fileID,'%d %s \r\n', simulationCount, ': number of simulations'); 
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fprintf(fileID,'\r\n'); 
  
for param_no = 1:num_params 
  
 fprintf(fileID,'%s %6.2f %6.2f \r\n', char(params(param_no)), min_values(param_no), 

max_values(param_no)); 
end 
  
fclose(fileID); 
  
%generate def file 
DEF_ID=fopen('.\SUFI-2_swEdit.def', 'w'); 
starting=1; 
fprintf(fileID,'%d %s \r\n', starting, ' : starting simulation number'); 
fprintf(fileID,'%d %s \r\n', simulationCount, ' : ending simulation number'); 
fprintf(fileID,'\r\n'); 
fclose(DEF_ID); 
  
% call latin hypercube 
% it uses par_inf.txt, trk.txt 
fprintf('Running the latin hypercube executable SUFI-2_LH_sample.exe\n'); 
answer_fid = fopen('ayfer_1.txt', 'w'); 
fprintf(answer_fid, 'Y\r\n'); 
system( 'SUFI-2_LH_sample.exe < ayfer_1.txt', '-echo'); 
fclose(answer_fid); 
system('del ayfer_1.txt', '-echo'); 
fprintf('Latin hypercube executable run completed\n'); 
  
 %call SUFI-2_make_input 
 %It uses trk.txt, par_inf.txt, par_val.txt 
 %system('SUFI-2_make_input.exe'); 
 %Output files in ECHO\\echo_make_par_txt 
 %Ouput files model.in 
  
 %call SUFI-2_execute.exe 
 %It uses SUFI-2_extract_*.def, outout.*, SUFI-2.IN\var_file_*.txt, SUFI-2.IN\trk.txt, SUFI-

2.IN\observed*.txt 
 system('start /w SUFI-2_execute.exe') 
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system('start /w SUFI-2_extract_rch.exe') 
  
%call SUFI-2_goal_fn.exe 
system('start /w SUFI-2_goal_fn.exe')  
%Output files ar Echo\echo_goal_fn.txt, SUFI-2.OUT\*.*, SUFI-2.OUT\\goal.txt, SUFI-

2.OUT\\best_sim.txt, 
%SUFI-2.OUT\\best_par.txt, SUFI-2.OUT\\beh_pars.txt, SUFI-2.OUT\\best_sim_nr.txt 
  
system('start /w SUFI-2_95ppu.exe') 
%It uses SUFI-2.IN\par_inf.txt, files listed in var_file_rch.txt, SUFI-2.IN\observed.txt, SUFI-

2.IN\\var_file_rch.txt 
%output files of its are Echo\echo_95ppu.txt, SUFI-2.OUT\95ppu.txt, SUFI-

2.OUT\\summary_stat.txt, 
%SUFI-2.OUT\best_sim.txt, SUFI-2.OUT\\best_par.txt 
  
%call SUFI-2_new_pars.exe 
 system('start /w SUFI-2_new_pars.exe') 
%it uses SUFI-2.IN\observed.txt, SUFI-2.OUT\\goal.txt, SUFI-2.OUT\\best_par.txt 
%Output files of its are Echo\new_pars_all.txt, SUFI-2.OUT\new_pars.txt 
%call SUFI-2_95ppu.exe 
end 
 

 

UpdateBackUp Function 

function UpdateBackUp 
  
system('copy *.pnd Backup /Y'); 
system('copy *.rte Backup /Y'); 
system('copy *.sub Backup /Y'); 
system('copy *.swq Backup /Y'); 
system('copy *.wgn Backup /Y'); 
system('copy *.wus Backup /Y'); 
system('copy *.chm Backup /Y'); 
system('copy *.gw Backup /Y'); 
system('copy *.hru Backup /Y'); 
system('copy *.mgt Backup /Y'); 
system('copy *.sdr Backup /Y'); 
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system('copy *.sep Backup /Y'); 
system('copy *.sol Backup /Y'); 
system('copy *.dat Backup /Y'); 
system('copy *.fig Backup /Y'); 
system('copy *.fin Backup /Y'); 
system('copy *.hmd Backup /Y'); 
system('copy *.pst Backup /Y'); 
system('copy *.out Backup /Y'); 
system('copy *.pcp Backup /Y'); 
system('copy *.qst Backup /Y'); 
system('copy *.rch Backup /Y'); 
system('copy *.rsv Backup /Y'); 
system('copy *.sed Backup /Y'); 
system('copy *.slr Backup /Y'); 
system('copy *.std Backup /Y'); 
system('copy *.swr Backup /Y'); 
system('copy *.Tmp Backup /Y'); 
system('copy *.wql Backup /Y'); 
system('copy *.wwq Backup /Y'); 
system('copy *.ini Backup /Y'); 
end 
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B: 4-HRU TYPES based on combinations of SOL_K, CN2 and Slope 

classification 
 
 
 
AVERAGE=2.14, R2=0.15            

if (curv_no>70) && (sol_k<=10.15) && (slope_class>0.10) 

                    if (curv_no<=94&& 

curv_no>=80)&&(slope_class>0.20)&& 

                        hru_image(ii, jj) = 1; 

                    elseif (curv_no<80&& 

curv_no>=73)&&(slope_class>0.10 && slope_class<0.20) 

                        hru_image(ii,jj)=2; 

                    end 

                else    

                    if (curv_no<70&& curv_no>=61)&&(slope_class>0.05 

&& slope_class<0.10) 

                        hru_image(ii,jj)=3; 

                    else 

                        hru_image(ii,jj)=4; 

                    end 

                end    

 

AVERAGE=2.06, R2=0.15            

                if (curv_no>70) && (sol_k<=10.15) && 

(slope_class>0.10) 

                    if (curv_no<=94 && 

curv_no>=80)&&(slope_class>0.20)&&(sol_k==3.3) 

                        hru_image(ii, jj) = 1; 

                    elseif (curv_no<80 && 

curv_no>=73)&&(slope_class>0.10 && slope_class<0.20)&&(sol_k==10.15) 

                        hru_image(ii,jj)=2; 

                    end 

                else    

                    if (curv_no<70&& curv_no>=61)&&(slope_class>0.05 

&& slope_class<0.10) 

                        hru_image(ii,jj)=3; 

                    else 

                        hru_image(ii,jj)=4; 

                    end 

                end    

 

AVERAGE=0.74, R2=0.31            

 

                if (curv_no>70) && (sol_k<=10.15) && 

(slope_class>0.10) 

                    if (curv_no<=94 && 

curv_no>=80)&&(slope_class>0.20)&&(sol_k==3.3) 

                        hru_image(ii, jj) = 1; 

                    elseif (curv_no<80 && 

curv_no>=73)&&(slope_class>0.10 && slope_class<0.20)&&(sol_k==10.15) 

                        hru_image(ii,jj)=2; 

                    end 

                else    

                    if (curv_no<70&& curv_no>=61)&&(slope_class>0.05 

&& slope_class<0.10)&&(sol_k==33) 

                        hru_image(ii,jj)=3; 
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                    else 

                        hru_image(ii,jj)=4; 

                    end 

                end                         

          

 

AVERAGE=0.93, R2=0.28            

 

if (curv_no>70) && (sol_k<=10.15) && (slope_class>0.10) 

                    if (curv_no<=94 && curv_no>=80)&&(sol_k==10.15) 

                        hru_image(ii, jj) = 1; 

                    elseif (curv_no<80 && curv_no>=73) 

                        hru_image(ii,jj)=2; 

                    end 

                else    

                    if (curv_no<70&& curv_no>=61)&&(sol_k==33) 

                        hru_image(ii,jj)=3; 

                    else 

                        hru_image(ii,jj)=4; 

                    end 

                end          

 

AVERAGE=1.24, R2=0.28            

                if (curv_no>70) && (sol_k<=10.15) && 

(slope_class>0.10) 

                    if (curv_no<=94 && curv_no>=80)&&(sol_k>=3.3 && 

sol_k<=10.15) 

                        hru_image(ii, jj) = 1; 

                    elseif (curv_no<80 && curv_no>=73) 

                        hru_image(ii,jj)=2; 

                    end 

                else    

                    if (curv_no<70&& curv_no>=61)&&(sol_k==33) 

                        hru_image(ii,jj)=3; 

                    else 

                        hru_image(ii,jj)=4; 

                    end 

                end  

 

AVERAGE=0.84, R2=0.32            

 

                if (curv_no>70) && (sol_k<=10.15) && 

(slope_class>0.10) 

                    if (curv_no<=94 && curv_no>=80)&&(sol_k>=3.3 && 

sol_k<=10.15)&&(slope_class>=0.13)  

                        hru_image(ii, jj) = 1; 

                    elseif (curv_no<80 && curv_no>=73) 

                        hru_image(ii,jj)=2; 

                    end 

                else    

                    if (curv_no<70&& 

curv_no>=61)&&(sol_k==33)&&(slope_class>=0.5 && slope_class>=0.10) 

                        hru_image(ii,jj)=3; 

                    else 

                        hru_image(ii,jj)=4; 

                    end 

                end     



 

 

 

C: 4-HRU TYPES based on combinations of SOL_K, CN2 and Slope 

classification 

 
 
 

AVERAGE=1.10, R2=0.41           

                if (curv_no>70) && (sol_k<=10.15)  

                    if (curv_no<=94 && curv_no>=80)&&(sol_k>=3.3 && 

sol_k<=10.15)&&(slope_class>=0.13)  

                        hru_image(ii, jj) = 1; 

                    elseif (curv_no<80 && 

curv_no>=73)&&(slope_class>=0.10 && slope_class<0.13) 

                        hru_image(ii,jj)=2; 

                    end 

                else    

                    if (curv_no<70&& 

curv_no>=61)&&(sol_k==33)&&(slope_class>=0.5 && slope_class>0.10) 

                        hru_image(ii,jj)=3; 

                    else 

                        hru_image(ii,jj)=4; 

                    end 

                end                 

AVERAGE=5.74, R2=0.15   

          

 if  (curv_no>70)&&(sol_k<=10.15) 
                    if (curv_no<=94 && curv_no>=80)&&(sol_k>=3.3 && 

sol_k<=10.15)&&(slope_class>=0.13); 
                        if (curv_no >84) 
                           hru_image(ii, jj) = 1; 
                        else 
                            hru_image(ii, jj) = 2; 
                        end 
                    elseif(curv_no<80 && 

curv_no>=73)&&(slope_class>=0.10 && slope_class<0.13); 
                        if  curv_no>=79  
                            hru_image(ii, jj)=3; 
                        elseif curv_no<79 
                            hru_image(ii,jj)=4; 
                        end 
                    end 
                else 
                        if (curv_no<70&& 

curv_no>=61)&&(sol_k==33)&&(slope_class>=0.5 && slope_class>0.10); 
                            if (curv_no>66) 
                            hru_image(ii,jj)=5; 
                            else  
                            hru_image(ii,jj)=6; 
                            end 
                        elseif( curv_no<61 && curv_no>=39) 
                            if curv_no>55 
                            hru_image(ii,jj)=7; 
                            else 
                            hru_image(ii,jj)=8; 
                            end 
                        end 
                endAVERAGE=0.26, R2=0.14            
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                if (curv_no>70) && 

(sol_k<=10.15)&&(slope_class>=0.15)  
                    if (curv_no<=94 && curv_no>=80) 
                        if(curv_no> 84)&&(slope_class>=0.25) 
                        hru_image(ii, jj) = 1; 
                        else 
                        hru_image(ii, jj) = 2; 
                        end                            
                    elseif (curv_no<80 && 

curv_no>=73)&&(slope_class>=0.15)&&(slope_class<0.25) 
                        if (curv_no>=79) 
                        hru_image(ii,jj)=3; 
                        elseif curv_no<79 
                        hru_image(ii, jj)=4; 
                        end 
                    end 
                else    
                    if (curv_no<70&& 

curv_no>=61)&&(slope_class>=0.10 && slope_class<0.15)&&(sol_k>=3.3) 
                        if (curv_no>66) 
                        hru_image(ii,jj)=5; 
                        else 
                        hru_image(ii, jj)=6; 
                        end 
                    elseif (curv_no<61 && 

curv_no>=39)&&(slope_class<0.10) 
                        if curv_no>55 
                        hru_image(ii,jj)=7; 
                        else 
                        hru_image(ii,jj)=8; 
                        end 

                         
                    end 
                end 
 

AVERAGE=0.28, R2=0.16            

if (curv_no>70) && (sol_k<=10.15)&&(slope_class>=0.15)  
                    if (curv_no<=94 && 

curv_no>=80)&&(slope_class>=0.25) 
                        if(curv_no> 84) 
                        hru_image(ii, jj) = 1; 
                        else 
                        hru_image(ii, jj) = 2; 
                        end                            
                    elseif (curv_no<80 && 

curv_no>=73)&&(slope_class>=0.15)&&(slope_class<0.25) 
                        if (curv_no>=79) 
                        hru_image(ii,jj)=3; 
                        elseif curv_no<79 
                        hru_image(ii, jj)=4; 
                        end 
                    end 
                else    
                    if (curv_no<70&& 

curv_no>=61)&&(slope_class>=0.10 && slope_class<0.15)&&(sol_k>=3.3) 
                        if (curv_no>66) 
                        hru_image(ii,jj)=5; 
                        else 
                        hru_image(ii, jj)=6; 
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                        end 
                    elseif (curv_no<61 && 

curv_no>=39)&&(slope_class<0.10) 
                        if curv_no>55 
                        hru_image(ii,jj)=7; 
                        else 
                        hru_image(ii,jj)=8; 
                        end 

                         
                    end 
                end  

 

AVERAGE=0.30, R2=0.18             

 
if (curv_no>70) && (sol_k<=10.15)&&(slope_class>=0.15)  
                    if (curv_no<=94 && 

curv_no>=80)&&(slope_class>=0.25)&&(sol_k==10.15) 
                        if(curv_no> 84) 
                        hru_image(ii, jj) = 1; 
                        else 
                        hru_image(ii, jj) = 2; 
                        end                            
                    elseif (curv_no<80 && 

curv_no>=73)&&(slope_class>=0.15)&&(slope_class<0.25)&&(sol_k==3.3) 
                        if (curv_no>=79) 
                        hru_image(ii,jj)=3; 
                        elseif curv_no<79 
                        hru_image(ii, jj)=4; 
                        end 
                    end 
                else    
                    if (curv_no<70&& 

curv_no>=61)&&(slope_class>=0.10 && slope_class<0.15)&&(sol_k>=33) 
                        if (curv_no>66) 
                        hru_image(ii,jj)=5; 
                        else 
                        hru_image(ii, jj)=6; 
                        end 
                    elseif (curv_no<61 && 

curv_no>=39)&&(slope_class<0.10) 
                        if curv_no>55 
                        hru_image(ii,jj)=7; 
                        else 
                        hru_image(ii,jj)=8; 
                        end 

                         
                    end 
                end    

 
AVERAGE=0.30, R2=0.18             

                if (curv_no>70) && 

(sol_k<=10.15)&&(slope_class>=0.15)  
                    if (curv_no<=94 && 

curv_no>=80)&&(slope_class>=0.25)&&(sol_k==10.15) 
                        if(curv_no> 84) 
                        hru_image(ii, jj) = 1; 
                        else 
                        hru_image(ii, jj) = 2; 
                        end                            
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                    elseif (curv_no<80 && 

curv_no>=73)&&(slope_class>=0.15)&&(slope_class<0.25)&&(sol_k==3.3) 
                        if (curv_no>=79) 
                        hru_image(ii,jj)=3; 
                        elseif curv_no<79 
                        hru_image(ii, jj)=4; 
                        end 
                    end 
                else    
                    if (curv_no<70&& 

curv_no>=61)&&(slope_class>=0.10 && slope_class<0.15) 
                        if (curv_no>66) 
                        hru_image(ii,jj)=5; 
                        else 
                        hru_image(ii, jj)=6; 
                        end 
                    elseif (curv_no<61 && 

curv_no>=39)&&(slope_class<0.10) 
                        if curv_no>55 
                        hru_image(ii,jj)=7; 
                        else 
                        hru_image(ii,jj)=8; 
                        end 

                         
                    end 
                end   

 

AVERAGE=9.36, R2=0.25             

  
                if (curv_no>70) && 

(sol_k<=10.15)&&(slope_class>=0.15)  
                    if (curv_no<=94 && 

curv_no>=80)&&(slope_class>=0.25)&&(sol_k==3.3) 
                        if(curv_no> 84) 
                        hru_image(ii, jj) = 1; 
                        else 
                        hru_image(ii, jj) = 2; 
                        end                            
                    elseif (curv_no<80 && 

curv_no>=73)&&(slope_class>=0.15)&&(slope_class<0.25)&&(sol_k==10.15

) 
                        if (curv_no>=79) 
                        hru_image(ii,jj)=3; 
                        elseif curv_no<79 
                        hru_image(ii, jj)=4; 
                        end 
                    end 
                else    
                    if (curv_no<70&& 

curv_no>=61)&&(slope_class>=0.10 && slope_class<0.15) 

                        if (curv_no>66) 
                        hru_image(ii,jj)=5; 
                        else 
                        hru_image(ii, jj)=6; 
                        end 
                    elseif (curv_no<61 && 

curv_no>=39)&&(slope_class<0.10) 
                        if curv_no>55 
                        hru_image(ii,jj)=7; 
                        else 
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                        hru_image(ii,jj)=8; 
                        end 

                         
                    end 
                end  

 

 

AVERAGE=1.10, R2=0.23             

 

if (curv_no>70) && (sol_k<=10.15)&&(slope_class>=0.15)  
                    if (curv_no<=94 && 

curv_no>=80)&&(slope_class>=0.25)&&(sol_k==3.3) 
                        if(curv_no> 84) 
                        hru_image(ii, jj) = 1; 
                        else 
                        hru_image(ii, jj) = 2; 
                        end                            
                    elseif (curv_no<80 && 

curv_no>=73)&&(slope_class>=0.15)&&(slope_class<0.25)&&(sol_k==10.15

) 
                        if (curv_no>=79) 
                        hru_image(ii,jj)=3; 
                        elseif curv_no<79 
                        hru_image(ii, jj)=4; 
                        end 
                    end 
                else    
                    if (curv_no<70&& 

curv_no>=61)&&(slope_class>=0.10 && slope_class<0.15)&&(sol_k>33) 
                        if (curv_no>66) 
                        hru_image(ii,jj)=5; 
                        else 
                        hru_image(ii, jj)=6; 
                        end 
                    elseif (curv_no<61 && 

curv_no>=39)&&(slope_class<0.10) 
                        if curv_no>55 
                        hru_image(ii,jj)=7; 
                        else 
                        hru_image(ii,jj)=8; 
                        end 

                         
                    end 
                end   
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