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ABSTRACT

NONAUTONOMOUS TRANSCRITICAL AND PITCHFORK BIFURCATIONS
IN IMPULSIVE/HYBRID SYSTEMS

Kashkynbayev, Ardak

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Marat Akhmet

April 2016, 107 pages

The main purpose of this thesis is to study nonautonomous transcritical and pitch-
fork bifurcations in continuous and discontinuous dynamical systems. Two classes of
discontinuity, impulsive differential equations and differential equations with an al-
ternating piecewise constant argument of generalized type, are addressed. Moreover,
the Bernoulli equation in impulsive as well as hybrid systems is introduced. For the
former one, the corresponding jump equation is chosen so that after Bernoulli trans-
formation the original system is reduced to a linear non-homogeneous system. For
the latter, this is achieved by constructing a special type of transformation. Sufficient
conditions are obtained for the existence of bounded solutions of the Bernoulli equa-
tions. Next, it is shown that different types of convergence analysis, such as pullback
and forward remain as a fruitful idea in impulsive and hybrid systems. Furthermore,
bifurcation scenarios are obtained depending on the sign of Lyapunov exponent by
using these convergence analysis. Attraction and transition approaches are used to
study bifurcation patterns in impulsive systems which cannot be solved explicitly. In
other words, qualitative change in the attractor/reppeller pair is observed as a param-
eter goes though bifurcation value. Besides, finite-time analogues of nonautonomous
transcritical and pitchfork bifurcations are investigated in impulsive systems. Illustra-
tive examples with numerical simulations are provided to demonstrate the theoretical
results.
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Keywords: Nonautonomous Bifurcation, Discontinuous Dynamical Systems, Attrac-
tive Solution, Repulsive Solution, Picewise Constant Argument, Impulsive Differen-
tial Equation, Finite-time Dynamics
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ÖZ

İMPALSİF/HİBRİD SİSTEMLERDE OTONOM OLMAYAN TRANSKRİTİK VE
DİRGEN ÇATALLANMA

Kashkynbayev, Ardak

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Marat Akhmet

Nisan 2016 , 107 sayfa

Bu tezin asıl amacı sürekli ve süreksiz dinamik sistemlerde otonom olmayan transk-
ritik ve dirgen çatallanmaların çalışılmasıdır. Bu tezde iki grup süreksizlik ele alın-
mıştır: impalsif diferensiyel denklemler ve değişken genel tipteki parçalı sabit argü-
manlı diferansiyel denklemler. İmpalsif ve hibrit sistemlerde Bernoulli denklemleri
tanımlanmıştır. Bu sistemlerin ilki için, sıçrama denklemi, Bernoulli dönüşümünden
sonra sistem homojen olmayan lineer sisteme dönüşecek şekilde seçilmiştir. İkinci
sistem için bu, özel dönüşüm oluşturarak temin edilmiştir. Bernoulli denklemlerinin
sınırlı çözümlerinin varlığı için yeterli şartlar elde edilmiştir. Geri çekme ve ileri gibi
farklı yakınsaklık kavramlarının impalsif ve hibrit sistemlerde de yararlı olduğu gös-
terilmiştir. Üstelik bu yakınsaklık analizleri sonucu Lyapunov üssün işaretine bağlı
olarak farklı çatallanma elde edilmiştir. Doğrudan çözülemeyen impalsif sistemlerde
çekicilik ve geçiş yaklaşımları kullanılarak çatallanma modelleri çalışılmıştır. Başka
bir ifadeyle, parametre çatallanma değerini geçerken çekici ve itici ikilisinin nitelikli
değişime uğradığı gözlemlenmiştir. Buna ek olarak, otonom olmayan transkritik ve
dirgen çatallanmasının impalsif sistemlerde sonlu zaman benzerleri incelenmiştir. Te-
orik sonuçların doğruluğu sayısal benzetim örnekleriyle gösterilmiştir.

Anahtar Kelimeler: Otonom Olmayan Çatallanma, Süreksiz Dinamik Sistemler, Çe-
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kici Çözüm, İtici Çözüm, Parçalı Sabit Argüman, İmpalsif Diferansyel Denklem,
Sonlu zaman Dinamikleri
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

Generalizations of ordinary differential equations and difference equations as an ab-

stract rule are called dynamical systems. Historically, this terminology was first

used in the book of Birkhoff [42]. Although mathematical modeling of real world

processes by means of differential equations goes back to Newton it has only af-

ter Poincaré and Lyapunov, often accepted as the founders of the theory of dynami-

cal systems, these problems started to be considered from qualitative point of view.

Poincaré premised topological and geometrical approach to analyze the dynamic be-

havior of solutions instead of traditional methods known before [106, 107, 108]. On

the other hand, Lyapunov in his thesis was concerned with asymptotic behavior of

solutions in the neighborhood of a fixed point [91]. Thus, both of the mentioned

scientists have indisputable contributions on the vast developing theory of dynamical

systems as we understand and accept it today.

Poincaré used an originally French word bifurcation to explain the splitting of asymp-

totic behavior in a dynamical system [108]. Since then, bifurcation has been regarded

as the topological change in the qualitative nature of the states as parameter varies

over a specified space. These parameters often regarded as influence of an environ-

ment to a system. In autonomous dynamical systems, the bifurcation theory is well

developed and it is concerned with a qualitative change of an equilibrium point or

a periodic solution as parameter ranges [50, 72, 73, 83, 127]. For instance, a stable

equilibrium persists as stable to small fluctuations in a certain parameter range and as

parameter crosses a critical threshold, called as a bifurcation value, the equilibrium

becomes unstable or even does not exist at all. Another example is existence of a pe-
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riodic solution around an equilibrium point and its disappearance in the vicinity of the

bifurcation value. Hence, bifurcation is by no means exceptional but a typical prop-

erty of dynamical systems such as in biochemical reactions, structural mechanics,

cardiac arrhythmias in malfunctioning hearts and in many other models of biology

[50, 69, 83].

Discontinuous dynamical systems has its origin started with academic work of Krylov

and Bogolyubov [81], Introduction to Nonlinear Mechanics, where the authors stud-

ied a model of a clock. This study suggested that differential equations with pulse

action can be considered for nonlinear mechanics. Later, Pavlidis introduced ter-

minology of impulsive differential equations in his studies [98, 99, 100]. However,

Samoilenko and Perestyuk in [121] developed the theory of impulsive differential

equations in a more systematic way and parallel to the that of theory in ordinary

differential equations. Similar ideas were used in the book of Bainov and Simenov

[37]. The theory of impulsive differential equations at non-fixed moments of impulses

improved significantly after Akhmet introduced the notion of so-called B-topology

[1, 32]. This idea enables to handle more complex systems in a coherent and fruitful

way. To be concrete, systems with impulses at variable moment of time was hard

problem to overcame over decades. There were certain attempts to solve this issue in

the past, however, today it seems that B-topology is an appropriate and suitable tool

to address these kind of problems.

On the other hand, Myshkis in [96] accentuated on delay arguments that have interval

of constancy. Nevertheless, the foundation of the theory of differential equations with

piecewise constant arguments is due to Cooke and Wiener [54, 125]. As a prototype to

interval of constancy Cooke and his coauthors considered greatest integer functions,

i.e. q(t) = [t] type functions. A great step towards a characterization of the theory

was achieved by Akhmet, who emerged parallel developments similar to ordinary dif-

ferential equations [2, 7, 9, 14, 22]. Before Akhmet, reduction to discrete equations

was the main tool to treat differential equations with piecewise constant arguments.

However, this method allows one to solve equations which start at integer values only.

This reason was the main obstacle to make complete qualitative analysis of a solution

such as stability and bifurcation of an equilibrium. Akhmet sailed through this is-

sue by introducing an equivalent integral equations which permit not only to consider
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arbitrary piecewise constant functions as arguments but also to examine qualitative

properties of a solution such as existence and uniqueness of solutions and existence of

periodic and almost periodic solutions [10, 11, 12, 13, 21, 23]. Method of Lyapunov

function and Lyapunov-Razumikhin technique are studied to analyze stability of dif-

ferential equations with piecewise argument of generalized type in papers [15, 19].

In other words, there is no restriction on the distance between the switching moments

of the argument. Moreover, the method proposed by Akhmet is less restrictive since

it does not require additional assumptions to reduce an equation to a discrete system.

Thus, the theory was significantly improved and it becomes possible to handle more

complex problems.

If a mathematical model explicitly involves time-dependent vector field then it is the

main object of nonautonomous dynamical systems to describe its nature. These mod-

els are usually given in terms of evolutionary equations which may be ordinary dif-

ferential, delay or difference equations. We encounter with several limitations if one

assumes that an environment which surrounds system is not variable in time. The

main reason for this is that conditions in real world is often very different from ones

in labs where models are generated. For instance, seasonal effects on different time

scales or changes in nutrient supply should be taken into account when modeling

predator-prey systems. Another example is to analyze possible impacts on a model

after stimulating chemicals or dosing drags. Hence, there are several reasons to con-

sider evolutionary equations with vector fields which explicitly depend on time. Sta-

tistical confirmation of this reason is often obvious since data which is obtained from

a measurement may contain time-dependent parameters. There exist two approaches

to study nonautonomous dynamical systems. The first one is the concept of pro-

cess or two parameter semi-flow, studied by Dafermos and Hale [59, 71]. Another

approach is skew product flows which has its origins in ergodic theory was under

investigation by Sell [123, 124]. In this thesis, we treat process formulation to study

nonautonomous dynamical systems. The classical notion of exponential dichotomy

in a linear nonautonomous differential equations was introduced by Perron [102, 103]

and has been under intensive research in [55, 60, 93, 117, 118, 119, 120]. For a sys-

tematic development of nonautonomous dynamical systems in recent years we refer

to [77, 112].
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1.1 Attraction and Bifurcation

There are strong ties between concepts of attraction and repulsion of an invariant set

and bifurcation. It is possible to predicate the base of attraction on the studies of Lya-

punov [91, 92] while the origin of the bifurcation theory starts with Poincaré [108].

A significant accomplishment in the development of bifurcation theory was achieved

by Andronov and Pontryagin when they regarded so-called structural stability [35].

And, a new highlight was attained after Pliss introduced the center manifold theory

which allows to reduce dimension of a system to a lower one [105]. A rigors applica-

tion of the center manifold theory can be found in the book of Carr [45]. On the other

hand, in the literature we encounter the term attractor in the book of Coddington and

Levinson [51]. The axiom A attractor was presented by Smale in [126]. Ruelle and

Takens introduced strange attractors when they studied the turbulent behavior in flu-

ids [116], where the word strange was used to point out that the limit set has a fractal

structure [66]. However, it was Conley to introduce a local attractor and established a

connection between Morse decompositions and attractor-repeller pairs [53]. It is only

in the last two decades that attraction has been intensively studied in nonautonomous

dynamical systems. There are basically two types of attraction in nonautonomous

systems: forward and pullback. The former one involves a moving invariant set and

deals with attraction in Lyapunov asymptotic stability sense. The latter one involves

fixed invariant set which starts progressively earlier in time. The notion of pullback

attractors were adopted from random dynamical systems [57, 58] and were called as

cocycle attractors in some papers [78, 80]. Apparently, first time in the literature pull-

back attractor was introduced in [76] to emphasize the difference from the forward

attraction. Let us briefly give bifurcation scenarios in one dimensional autonomous

systems and its generalizations to nonautonomous case.

1.1.1 The Transcritical Bifurcation

The normal form of the transcritical bifurcation in one-dimension system is as fol-

lows.

x′ = µ1x− µ2x
2,

4



where µ2 > 0. It is easy to see that x = 0 and x =
µ1

µ2

are the equilibrium points.

As µ1 varies, the stability of the equilibria change. To be precise, whenever µ1 < 0

the origin is stable and the equilibrium point x =
µ1

µ2

is unstable whereas for µ1 > 0

the origin and the equilibrium point x =
µ1

µ2

interchange their roles, i.e. the origin is

unstable and the equilibrium point x =
µ1

µ2

becomes stable (see Figure 1.1 for details).

Therefore, µ1 = 0 regarded as the bifurcation value.

Figure 1.1: The transcritical bifurcation in one-dimensional system.

1.1.2 The Pitchfork Bifurcation

The normal form of the supercritical pitchfork bifurcation is as follows.

x′ = µ1x− µ2x
3,

where µ2 > 0. One can confirm that if µ1 < 0 then x = 0 is the only equilib-

rium point and it is stable. On the other hand, if µ1 > 0 there are three equilibrium

points x = 0, and x = ±
√
µ1

µ2

with the origin no more stable and equilibrium points

x = ±
√
µ1

µ2

are stable. In other words, the trivial solution is repulsive in the open

interval
(
−
√
µ1

µ2

,

√
µ1

µ2

)
for µ1 > 0 and repulsion shrinks to zero as µ1 ↘ 0, on

5



the other hand, the trivial solution becomes attractive for µ1 < 0. Moreover, this triv-

ial attraction undergo qualitative change and become nontrivial as µ1 ↗ 0. Hence,

µ1 = 0 is the bifurcation value (see Figure 1.2 for details).

Figure 1.2: The pitchfork bifurcation in one-dimensional system.

1.1.3 The Saddle-node Bifurcation

The normal form of the saddle-node or as often called a fold bifurcation is as follows.

x′ = µ1 − µ2x
2,

where µ2 > 0. There is no an equilibrium point for µ1 < 0 and two equilibrium

points, x = ±
√
−µ1

µ2

, a stable equilibrium point, x = −
√
−µ1

µ2

, and an unstable

equilibrium point, x =

√
−µ1

µ2

, for µ1 > 0 (see Figure 1.3 for details). Thus, µ1 = 0

is the bifurcation value.

1.2 Nonautonomous Bifurcation

Despite of the fact that above systems are quite simple they have played important

role in the development of the bifurcation theory. However, it may not be appropriate
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Figure 1.3: The saddle-node bifurcation in one-dimensional system.

to follow the same route as in autonomous dynamical systems to construct the bifur-

cation theory for nonautonomous dynamical systems. One of the reasons is that there

may not exist an equilibrium point or a periodic solution of nonautonomous systems.

Hence, most of the time the notion of equilibria is replaced with bounded trajecto-

ries. Another reason is that eigenvalues of a linearized system do not give proper

information about asymptotic behavior of a solution. Thus, in scalar nonautonomous

dynamical systems Lyapunov exponent seem to be an adequate tool to overcome this

issue. From dynamic bifurcation viewpoint there are several approaches extending

this theory to nonautonomous case. The mathematical foundations of nonautonomous

bifurcation theory started with the paper of Langa et al. [86], where the authors pro-

posed to study this theory by means of pullback and forward convergence and consid-

ered the following equations as a nonautonomous counterparts of the pitchfork and

saddle-node bifurcations, respectively.

x′ = µ1x− µ2(t)x3,

and

x′ = µ1 − µ2(t)x2,

where 0 < µ2(t) < µ. Next, Langa et al. in [88] considered nonautonomous tran-

scrirtical and saddle-node bifurcations and obtained sufficient conditions on Taylor
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coefficients of the right hand side. Namely, the authors considered the following

equations.

x′ = λµ1(t)x− µ2(t)x2

and

x′ = λµ1(t)− µ2(t)x2.

In [63, 74] the authors obtained results for nonautnomous saddle-node and transcriti-

cal bifurcations by using method of averaging. Nùñez and Obaya followed skew prod-

uct approach in one-dimensional dynamical systems and studied bifurcation patterns

depending on variation of the number and attraction properties of minimal sets [97].

One another approach is bifurcation of control sets based on Conley index theory

was carried out by Colonius and his coauthors [52]. Finally, there are studies which

describe bifurcation in nonautonomous dynamical systems by means of attractor and

repeller pair. This approach deals with transitions of nonautonomous attractor which

undergo qualitative change and become nontrivial when parameter pass through criti-

cal value [76, 79, 113]. The book of Rasmussen gives enlightening information about

relation of attraction/repulsion and bifurcation concepts in nonautonomous systems

[112].

1.3 The Bernoulli Equations

The origin of the Bernoulli differential equations go far beyond Poincaré and Lya-

punov and apparently was first studied by Jacob Bernoulli in 1695 [41]. Although

these equations have already became a classical subject in the theory of differential

equations it has not been studied, for the best of our knowledge, in the discontinuous

systems yet. One of the main reasons why this subject is attractive is that by means

of the Bernoulli transformation they are reduced to a linear non-homogeneous equa-

tion; and hence can be solved explicitly. Despite its simplicity recent applications in

nonautonomous bifurcation theory showed that a detailed insight into the discontinu-

ous Bernoulli equations is necessary. We develop this simple idea to both impulsive

and hybrid systems and carry out nonautonomous bifurcation analysis as well as an-

alyze bounded solutions of these equations.
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1.4 Principles of Impulsive Differential Equations

There are certain cases when continuous dynamical system fail to meet the needs of

real world problems. Consider, for instance, the population dynamics of some species

after epidemics or harvesting. One would expect a remarkable change in the popu-

lation density of that species. Moreover, it is known fact that there is a very quick

change of momentum when a pendulum of a clock crosses its equilibrium state [34].

In addition to these, we can give as an example a rapid alter in the velocity of an

oscillating string while it is struck by a hammer [81]. If one wants to be a generous, it

is a necessary that in all of the above cases the mathematical models involve disconti-

nuity. One of the most common way to study discontinuity is by means of impulsive

differential equations. Although there are huge amount of literature devoted to impul-

sive differential equations and its applications, ones in [1, 37, 38, 121] are the most

commonly accepted as the fundamental work in this field.

There are two ways to involve discontinuity into a mathematical model. One is at pre-

scribed moments of impulse and another one is at nonprescribed moments of impulse.

Let us start describe with the first case and consider the following system.

x′ = f(t, x),

∆x|t=θk = Jk(x),
(1.1)

where f : R× Rn → Rn, {θk} is a sequence of real numbers with the set of indexes

A which is either finite or infinite, J : A × Rn → Rn, ∆x|t=θk := x(θk+) − x(θk),

and x(θk+) = limt→θ+k
x(t). Let us give details of the system (1.1). When t 6= θk, a

phase portrait of system (1.1) is characterized by differential equation counterpart of

(1.1); it has jump at t = θk and satisfies difference equation counterpart of (1.1), i.e.

x(θk+)− x(θk) = Jk(x(θk)).

The second case is more sophisticated since impulse actions occur at nonprescribed

moments, i.e. we consider systems of the form

x′ = f(t, x),

∆x|t=θk(x) = Jk(x),
(1.2)

where θk(x) are surfaces of discontinuity. One can easily see that impulse time in

(1.2) by its own nature depend on solutions. Consequently, jump moments can be
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very different. Remarkable results concerning system (1.2) can be found in the ac-

complished book of Akhmet [1], where the author shed light on various topics like sta-

bility, periodic solutions of nonlinear systems, differentiability properties of nonau-

tonomous systems and chaos.

In this thesis, however, we will only address systems with pulse action at prescribed

moments. It worth nothing to say that both of the systems described above are nonau-

tonomous and one cannot construct the theory based on autonomous systems. Thus,

let us give a brief information on the theory of impulsive differential equations needed

throughout of this thesis following the books [1, 121].

Let θ = {θk} , i ∈ A ⊆ Z, be a strictly increasing sequence of real numbers and a

time interval I ⊆ R.

Definition 1 [1] A function x : I → Rn is said to be from a class of functions

PC(I, θ) if x is left continuous and x is continuous except at points from θ, where it

has discontinuities of the first kind.

In other words, x ∈ PC(I, θ) implies that the right limit exists and at points from

θ one has x(θ+) = limt→θ+ x(t). Moreover, x is left continuous, i.e. x(θ−) =

limt→θ− x(t) = x(θ).

Definition 2 [1] A function x : I → Rn is said to be from a class of functions

PC1(I, θ) if x ∈ PC(I, θ) and x′ ∈ PC(I, θ), where the left derivative is considered

at points from the set of θ.

Let us state the existence and uniqueness theorems for (1.1). Consider an open con-

nected set O ⊂ Rn, and I be a open interval.

Theorem 1 [1] Let f : I × O → Rn be a continuous and
∏

k O ⊆ O, k ∈ A. Then,

there is a ∆ > 0 such that for any (t0, x0) ∈ I ×O there exists a solution x(t, t0, x0)

of (1.1) on (t0 −∆, t0 + ∆).

We assume the following conditions, which will be useful in the next theorem.
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(A0) The ordinary differential equation counterpart of (1.1) has a solution x(t, t0, x0)

which is unique in any interval of existence;

(A1) Its maximal interval of existence is an open set;

(A2) As t tends to cluster point of the interval any limit point of the set (t, x(t)) is a

boundary point of I ×O.

Theorem 2 [1] If conditions (A0)-(A2) are fulfilled, then each solution of (1.1) has

a maximal interval of existence which satisfy one of the following alternatives:

(i) it is an open interval (a, b) with any cluster point of the set (t, x(t)) as t → a

or t→ b belongs to the boundary of I ×O;

(ii) it is a half-open interval (a, b], where b ∈ θ and any cluster point of the set

(t, x(t)) as t→ a belongs to the boundary of I ×O;

(iii) it is a half-open interval (a, b], where both a, b ∈ θ, the limit x(a+) exists and

it is interior point of O;

(iv) it is an open interval (a, b) with any cluster point of the set (t, x(t)) as t → b

belongs to the boundary of I × O, and the limit x(a+) exists and it is interior

point of O.

In order to have a uniqueness theorem we shall need the following conditions.

(A3) The function f is locally Lipschitzian;

(A4) There is at most one y which satisfy x = y + Jk(y), k ∈ A, for every solution

of (1.1).

Theorem 3 [1] If the conditions (A3) and (A4) are fulfilled, then there exist a unique

solution x(t, t0, x0) of (1.1).

One of the main features of impulsive differential equations is that it is possible to

reduce (1.1) to an equivalent integral equation. This property is crucial in order to see

relation to the theory of ordinary differential equations.
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Theorem 4 [1] A function x ∈ PC(I, θ) with x(t0) = x0 is a solution of (1.1) if and

only if it satisfy the following integral equation.

x(t) =

x0 +
∫ t
t0
f(s, x(s))ds+

∑
t0≤θk<t Jk(x(θk+)), if t0 ≤ t,

x0 +
∫ t
t0
f(s, x(s))ds−

∑
t≤θk<t0 Jk(x(θk+)), if t0 > t.

One of the main auxiliary lemmas in this thesis is the Gronwall-Belman inequality

for piecewise continuous functions. We make use of the following lemma in Chapter

3.

Lemma 1 Assume that y, z ∈ PC(I, θ) with t0, t ∈ I, y(t) ≥ 0, z(t) > 0, αk ≥ 0,

k ∈ A, and c is nonnegative real number. Moreover, the following inequality is

fulfilled.

y(t) ≤ c+

∫ t

t0

z(τ)y(τ)dτ +
∑

t0≤θk<t

αky(θk) for t ≥ t0.

Then, the following inequality holds true.

y(t) ≤ ce
∫ t
t0
z(τ)dτ

∏
t0≤θk<t

(1 + αk) for t ≥ t0.

If, in addition to above, we have that αk < 1, k ∈ A, and the following inequality is

fulfilled.

y(t) ≤ c+

∫ t

t0

z(τ)y(τ)dτ −
∑

t≤θk<t0

αky(θk) for t < t0.

Then, the following inequality holds true.

y(t) ≤ ce
−
∫ t
t0
z(τ)dτ

∏
t≤θk<t0

(1 + αk)
−1 for t < t0.

Up to this point we have given the general description of an impulsive system. In our

thesis, however, we consider impulsive system of the following.

x′ = A(t)x+ f(t, x),

∆x|t=θk = Bkx+ Jk(x),
(1.3)

where entries of A(t) are from PC(R, θ) and Bk, k ∈ A, are n × n real-valued

matrices and Bk satisfy det(I +Bk) 6= 0, f : I ×O → Rn is a piecewise continuous

12



function and Jk : A×O → Rn. Let Φ(t, s) be a fundamental matrix of the following

linear impulsive system.

x′ = A(t)x,

∆x|t=θk = Bkx.
(1.4)

Lemma 2 A function x(t, t0, x0) ∈ PC1(I, θ) is a solution of (1.3) if and only if it

satisfies the following integral equation.

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)f(τ, x(τ))dτ +
∑

t0≤θk<t

Φ(t, θk+)Jk(x(θk)).

Let us denote by i(I) the number of elements of θ in the interval I and consider the

intervals Ih = [t0 − h, t0 + h] and the open set Oh = {x ∈ O : ‖x− x0‖ < H} for

the fixed (t0, x0) ∈ I × O. Moreover, let δ− = i[t0 − h, t0) and δ+ = i[t0, t0 +

h). In order to have the uniqueness of solutions for (1.3) we assume the following

conditions.

(B0) The matrix function A(t) is bounded, i.e. supt∈I ‖A(t)‖ = A0 <∞;

(B1) The function f is Lipschitzian, i.e. there exists positive number Lf such that

‖f(t, x)− f(t, y)‖ ≤ Lf‖x− y‖ for all x, y ∈ O and t ∈ I;

(B2) The function Jk is Lipschitzian, i.e. there exists positive number LJ such that

‖Jk(x)− Jk(y)‖ ≤ LJ‖x− y‖ for all x, y ∈ O and (t, k) ∈ I × A;

(B3) supI×O ‖f(t, x)‖+ supI×A ‖Jk(x)‖ = A1 <∞;

(B4) (A0 + A1)h+ A1 max {δ−, δ+} < H;

(B5) (A0 + Lf )h+ LJ max {δ−, δ+} < 1.

Theorem 5 If conditions (B0)-(B5) are fulfilled, then (1.3) possesses a unique solu-

tion on Ih.

Next, we study one of the main features of (1.3) which is stability.
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Definition 3 [1] The solution x(t) of (1.1) is stable if for any ε > 0, and t0 ∈ I, there

is δ(t0, ε) > 0 such that for any other solution y(t) of (1.1) with ‖x0 − y0‖ < δ(t0, ε)

implies that ‖x(t)− y(t)‖ < ε for all t ≥ t0.

A solution x(t) of (1.1) is said to be asymptotically stable if x(t) is stable and there

is η(t0) such that ‖x(t)− y(t)‖ → 0 as t→∞ whenever ‖x0 − y0‖ < η(t0).

Finally, we consider stability analysis of the trivial solution of (1.3). For this purpose

we assume that f(t, 0) = 0 for all t ∈ I and Jk(0) = 0 for all k ∈ A. From now on

we make use of the following assumption.

(B6) There exist real numbers N > 1 and ξ > 0 such that the fundamental matrix of

(1.4) satisfy ‖Φ(t, s)‖ ≤ Ne−ξ(t−s) for all t ≥ s ≥ t0.

Theorem 6 If (B1)-(B2) and (B6) hold, then the trivial solution of (1.3) is asymptot-

ically stable for the sufficiently small values of Lf and LJ .

1.5 Principles of Differential Equations with Piecewise Constant Argument

One another way to study discontinuity in mathematical models is to consider differ-

ential equations with piecewise constant arguments. The need to study these equa-

tions raised from real world application problems which include but not limited to the

damped as well as undamped loading systems based on a piecewise constant voltage,

population dynamics, neural networks, the Froude pendulum and the Geneva mecha-

nism [2, 4, 16, 17, 18, 39, 40, 68, 94, 95, 128]. Thus, despite the fact that differential

equations with piecewise constant argument is a relatively new subject there is vast

ongoing research in this field. Nevertheless, there are very few literature which treat

this theory in a systematic manner. The book of Akhmet, Nonlinear Hybrid Contin-

uous/Discrete Time Models, though, contains the basics of how this theory should

be constructed. There are two types of arguments function, β and γ, that is under

investigation in [2]. Let us give the description of the system. In [2], it was proposed

to study the following equations with delayed time arguments.

x′(t) = f(t, x(t), x(β(t))), (1.5)
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where x ∈ Rn, t ∈ R, f : R × Rn × Rn → Rn is a continuous real-valued function
and β(t) = θi, i ∈ Z, if θi ≤ t < θi+1, θi is strictly increasing real-valued sequence
such that

∣∣θi∣∣ → ∞ as
∣∣i∣∣ → ∞. The argument function β(t) is illustrated in Figure

1.4. One can see that by choosing θi = i, i ∈ Z, the greatest integer function, [t],

becomes a particular example of the argument function β(t). It should be stressed
out that the sequence θi is not necessarily an integer or a multiple of integer. Hence,
equation (1.5) is an obvious generalization of any differential equations with delayed
piecewise constant argument.

x

t

t

x=t

θθ

θθθ
i-2 i-1 i

i+1 i+2

β(  )=

x

Figure 1.4: The deviated argument function β(t). Clearly, it is of retarded type.

However, in the most adequate real world application problems there may be ad-

vanced arguments as well as retarded arguments. These equations are called as mixed

type. Thus, deviating argument can change its nature during motion. To characterize

these equations let us consider the following system.

x′(t) = f(t, x(t), x(γ(t))), (1.6)

where x ∈ Rn, t ∈ R, f : R×Rn×Rn → Rn is a continuous real-valued function and
γ(t) = ζi, i ∈ Z, if θi ≤ t < θi+1, real-valued sequences θi, ζi are strictly increasing
such that θi ≤ ζi ≤ θi+1 and

∣∣θi∣∣→∞ as
∣∣i∣∣→∞. As it is illustrated in Figure 1.5,

the argument function γ(t) is both retarded and advanced type. To be more concrete,
the equation (1.6) is retarded whenever ζi < t ≤ θi+1, i.e. γ(t) < t, and the equation
(1.6) is advanced whenever θi ≤ t < ζi, i.e. γ(t) > t. Therefore, deviated argument
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γ(t) is more general than argument β(t) and the equation (1.6) is called differential
equations with alternating piecewise constant argument of generalized type. In this
thesis, we deal with the equation of mixed type described above in Chapter 4.

x

t

t

x=t

θθ

θθθ
i-2 i-1 i

i+1 i+2

= γ(  )

x

Figure 1.5: The deviated argument function γ(t). One can see that argument is of
mixed type.

Let us consider the following two equations which are in a maximal correspondence

with this thesis.

u′(t) = A(t)u(t) +B(t)u(γ(t)), (1.7)

and

u′(t) = A(t)u(t) +B(t)u(γ(t)) + g(t), (1.8)

where u ∈ Rn, t ∈ R, A,B : R→ R continuous n×n real-valued matrices,f : R→
Rn continuous function and strictly increasing real-valued sequences θi and ζi, i ∈ Z,

are such that θi ≤ ζi ≤ θi+1 and satisfy γ(t) = ζi for θi ≤ t < θi+1, i ∈ Z. In this

thesis, the solutions of (1.7) and (1.8) are assumed to be continuous. Naturally, the

right-hand sides of the equations (1.7) and (1.8) are discontinuous since the deviated

function γ(t) is discontinuous at the moments t = θi, i ∈ Z. In other words, the

solutions of equations are assumed to be continuous and continuously differentiable

within the intervals [θi, θi+1) for each i ∈ Z.
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Definition 4 [2] A continuous function, u(t), on R is a solution of (1.7) or (1.8) if

the followings are satisfied.

(i) the derivative u′(t) exists at each point t ∈ R except, possibly, the points θi,

i ∈ Z, where the one-sided derivatives exist;

(ii) u(t) satisfies (1.7) and (1.8) on each interval (θi, θi+1) and at the points θi the

right derivative of u(t) fulfills (1.7) or (1.8) for each i ∈ Z.

Let Ψ(t, s) be the fundamental matrix of the following linear system associated with

(1.7) and (1.8).

v′(t) = A(t)v(t).

Next, we introduce a matrix function, Ri(t), i ∈ Z, which will be useful in what

follows [2].

Ri(t) = Ψ(t, ζi) +

∫ t

ζi

Ψ(t, τ)B(τ)dτ.

One would expect to have an initial function or an interval of initial values since we

deal with differential equation with delay argument. However, the following regular-

ity condition allows one to consider the initial value at a single point.

(R) det [Ri(t)] 6= 0 for each fixed i ∈ Z and θi ≤ t ≤ θi+1.

To stress out the details of this idea let us consider the system (1.7) with values (t0, u0)

be given such that θj ≤ t0 ≤ θj+1 for a fixed j ∈ Z and t0 6= ζj. Then, for θj ≤ t ≤
θj+1 the following functional differential equation is satisfied.

u′(t) = A(t)u(t) +B(t)u(ζj).

Issuing from the theory of functional differential equations [67, 70, 82], in order to

construct a solution one need the pair (t0, u0) and (ζj, u(ζj)). However, since the

relation u0 = Rj(t0)u(ζj) and Condition (R) hold, and hence, Rj(t0) is an invertible

matrix, to define a solution it is enough to have u(t0) = u0. Indeed, we attain at the

following theorem.

Theorem 7 [2] For every (t0, u0) ∈ R × Rn there exists a unique solution u(t) =

u(t, t0, u0) of (1.7) such that u(t0) = u0 if and only if the regularity condition (R) is

valid.
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The last theorem emphasizes the similarity between the definition of the initial value

problem of differential equation with piecewise constant argument of generalized type

and that of ordinary differential equations. In particular, it implies that the set of

solutions of (1.7) is n−dimensional linear space. Therefore, there exists fundamental

matrix of (1.7) U(t) = U(t, t0), U(t0, t0) = I, for a fixed t0 such that

U ′(t) = A(t)U(t) +B(t)U(γ(t)).

For a fixed j ∈ Z we assume that, without loss of generality, θj ≤ t0 ≤ ζj, and define

the fundamental matrix for the increasing t and arbitrary k > j is as follows.

U(t) = Rk(t)

(
k∏

l=j+1

R−1
l (θl)Rl−1 (θl)

)
R−1
j (t0),

where θk ≤ t ≤ θk+1. In the same manner, one can confirm that the fundamental

matrix for the increasing t and arbitrary m < j as follows.

U(t) = Rm(t)

(
j−1∏
l=m

R−1
l (θl+1)Rl+1 (θl+1)

)
R−1
j (t0),

where θm ≤ t ≤ θm+1.

It can be verified that U(t, s) = U(t)U−1(s), for all t, s ∈ R. Moreover, a solution of

(1.7) with u(t0) = u0 satisfies, for all t ∈ R, the following equation.

u(t) = U(t, t0)u0.

The uniqueness theorem for (1.8) is presented in the following theorem.

Theorem 8 [2] If the regularity condition (R) holds for (1.8), then there exists a

unique solution u(t, t0, u0), defined on R, of (1.8) with u(t0) = u0 which satisfy the

following equations.

u(t, t0, u0) = U(t, t0)u0 + U(t, t0)

ζj∫
t0

Ψ(t0, τ)g(τ)dτ

+
k−1∑
l=j

U(t, θl+1)

ζl+1∫
ζl

Ψ(θl+1, τ)g(τ)dτ +

t∫
ζk

Ψ(t, τ)g(τ)dτ,
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with θj ≤ t0 ≤ θj+1, t ∈ [θk, θk+1] , k > j and

u(t, t0, u0) = U(t, t0)u0 + U(t, t0)

ζj∫
t0

Ψ(t0, τ)g(τ)dτ

+
k∑
l=j

U(t, θl+1)

ζl+1∫
ζl

Ψ(θl+1, τ)g(τ)dτ +

t∫
ζk

Ψ(t, τ)g(τ)dτ,

with θj ≤ t0 ≤ θj+1, t ∈ [θk, θk+1] , k < j.

To see the above equations in a more compact form let us denote
[̂
a, b
]

=
[
a, b
]

if a ≤ b, and equal to
[
b, a
]
, otherwise for a, b ∈ R. Moreover, let us define the

following piecewise continuous matrix.

Σ(t, s) =


U(θj, t0)Ψ(t0, s), if t ∈

[̂
t0, ζj

]
,

U(t, θl+1)Ψ(θl+1, s), if t ∈
[
ζl, ζl+1

]
,

Ψ(t, s), if t ∈
[̂
ζk, t

]
.

Then, we arrive at the following integral equation for (1.8).

u(t, t0, u0) = U(t, t0)u0 +

t∫
t0

Σ(t, τ)g(τ)dτ, (1.9)

where Σ(t, s) is called the Cauchy matrix and (1.9) is called the Cauchy representa-

tion formula. In this way, one can see the similarities and establish connection with

the theory of ordinary differential equations. The similar results for quasilinear sys-

tem are obtained in [2, 12]. Another approach to construct an integral equation is

studied in [104].

1.6 Organization of the Thesis

The remaining part of this dissertation is organized as follows.

In Chapter 2, we consider nonautonomous transcritical and pitchfork bifurcations

in continuous as well as discontinuous systems. The notions of so-called pullback

attractor and forward attractor are implemented to analyze asymptotic behavior of

systems. In the first part of the chapter, we study pitchfork bifurcation patterns based
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on pullback convergence which depend on the properties of the system in the past.

Conditions which ensure transcritical bifurcation are obtained. In the second part of

the chapter, we not only generalize the results obtained in the first part but we also

attain less restrictive conditions to ensure nonautonomous bifurcation patters. More-

over, we introduce the Bernoulli equations in impulsive systems. The corresponding

jump equation is constructed in special way that the whole system is reduced to a

linear non-homogeneous system under the Bernoulli transformation. Both pullback

and forward asymptotic behavior of the original system is analyzed based on reduced

system. In addition to these, conditions to have bounded solutions for the Bernoulli

equations are achieved. Appropriate numerical simulations which illustrate theoreti-

cal results are provided.

In Chapter 3, we study nonautonomous transcritical and pitchfork bifurcations in im-

pulsive systems which are not explicitly solvable. That is, by any means of substi-

tution it is not possible to obtain a solution. Bifurcation scenarios in this chapter

are attained in terms of qualitative change in the attractor reppeller pair. Besides,

we establish a new results in asymptotic behavior of linearized systems depending

on entire time. In the remaining part of the chapter finite-time analogues of nonau-

tonomous transcritical and pitchfork bifurcations are presented in impulsive systems.

Illustrative examples which support the theoretical results are depicted.

Chapter 4 concerned with nonautonomous transcritical and pitchfork bifurcations in

differential equations with alternating piecewise constant argument. The Bernoulli

equation is presented for the hybrid systems. We construct special type of transfor-

mation so that original nonlinear system is converted to a linear non-homogeneous

system. We premise that bifurcation scenarios depend on the sign of Lyapunov ex-

ponents. Besides, future and past asymptotic properties of bounded solutions are

discussed. Appropriate examples with numerical simulations are given to illustrate

the theoretical results.

Finally, in conclusion part we summarize the results of this thesis and give concluding

remarks. Moreover, we discuss how this theory could be further developed.
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CHAPTER 2

NONAUTONOMOUS TRANSCRITICAL AND PITCHFORK

BIFURCATIONS IN AN IMPULSIVE BERNOULLI

EQUATIONS

2.1 Nonautonomous Transcritical and Pitchfork Bifurcations in Impulsive Sys-

tems

In this chapter we discuss impulsive generalizations of the nonautonomous pitchfork

and transcritical bifurcations. Scalar differential equations with fixed moments of

impulses are considered. By means of certain systems we show that how the idea of

pullback attracting sets remains a fruitful concept in the impulsive systems. Basics of

the theory are provided.

2.1.1 Introduction

Asymptotic behavior of a solution near a fixed point and analysis of bifurcation is of a

great importance in the qualitative theory of differential equations. In autonomous or-

dinary differential equations this theory is well developed. As in the autonomous sys-

tems, nonautonomous bifurcation is understood as a qualitative change in the struc-

ture and stability of the invariant sets of the system. However, to implement this

concept in nonautonomous systems, locally defined notions of attractive and repul-

sive solutions are needed. There are currently qualitative studies which are devoted

to nonautonomous bifurcation theory by treating pullback attractors [43, 44, 75, 77,

80, 86, 88, 112]. In the classical theory of stability one is interested in the asymptotic
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behavior of a solution as t→∞ for a fixed t0, which is called forward attraction. On

the other hand, the theory of pullback attraction deals with the asymptotic behavior of

the solution as t0 → −∞ for a fixed t [36, 43, 46, 49, 56, 57, 58, 80, 85, 87, 89, 122].

These two types of attraction give the same convergence analysis for autonomous dy-

namical systems. The approach of pullback attraction is required for the discussion of

bifurcation analysis in nonautonomous differential equations by defining correspond-

ing types of stability.

Modeling problems in the states of dynamical systems with time-dependent vector

fields leads to nonautonomous problems. Moreover, these models may depend on

some parameters which are accepted as the influence of an environment. In this case,

it is an interesting issue to analyze qualitative changes when these parameters are var-

ied. The main object of nonautonomous bifurcation theory is concerned in describing

these changes. In addition to these, there may be abrupt changes at prescribed times in

the real world evolutionary processes. These progressions are portrayed as impulsive

phenomena [1, 37, 62, 84, 121], which are in no way, shape or form however regular

in modeling in mechanics, electronics, biology, neural networks, medicine, and in so-

cial sciences [1, 4, 20, 31]. Hence, an impulsive differential equation is recognized as

one of the central apparatuses to better comprehend the function of discontinuity in

this present reality issues. Extending nonautonomous bifurcation theory to impulsive

systems is a contemporary problem.

There are qualitative studies on asymptotic behavior of impulsive systems [1, 5, 29,

37, 84, 121]. There are also many studied which deal with bifurcation theory either in

autonomous differential equations [1, 6, 30] or periodic equations with fixed moments

of impulses [61, 64, 65]. However, differential equations with fixed moments of im-

pulses are naturally nonautonomous differential equations. Consequently, one cannot

construct the theory similar to autonomous systems of ordinary differential equa-

tions. Thus, in order to achieve results on fixed moments, it is crucial to extend idea

of pullback attraction to impulsive systems for nonautonomous differential equations.

Although the theory of impulsive differential equations is very developed nowadays,

there are no results concerning analogues in [36, 43, 46, 57, 58, 77, 80, 85, 89, 122].

This appear to be due to the absence of papers concerning concrete systems analyzing

the existence of nonautonomous bifurcations. It is hoped that present chapter fill this
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gap. The main novelty of the current study is to construct nonautonomous bifurca-

tion theory for impulsive systems with appropriate definitions of pullback attracting

sets. This is the very first step towards the bifurcation of nonautonomous differential

equations with impulses.

2.1.2 Preliminaries

In this section, we introduce concepts of attractive and repulsive solutions, which

are used to analyze asymptotic behavior of impulsive nonautonomous systems. This

chapter is concerned with systems of the type

x′ = f(t, x),

∆x|t=θi = Ji(x),
(2.1)

where ∆x|t=θi := x(θi+) − x(θi), x(θi+) = limt→θ+i
x(t). The system (2.1) is

defined on the set Ω = R × Z × G where G ⊆ Rn. θ = {θi} is a nonempty

sequence with the set of indexes Z, set of integers, such that |θi| → ∞ as |i| → ∞.

Let φ(t, t0, x0) be solution of (2.1). In this chapter, we deal with scalar impulsive

differential equations such that φ(t, t0, x0) is non-continuable. Solutions are unique

both forwards and backwards in time.

We say that the function φ : R→ Rn is from the set PC(R, θ), where θ = {θi} is an

infinite set such that |θi| → ∞ as |i| → ∞, if:

• φ is left continuous on R;

• it is continuous everywhere except possibly points of θ where it has disconti-

nuities of the first kind.

One cannot follow the same way in developing the theory for impulsive differential

equations as for autonomous systems because there are certain problems. Namely,

there may not be any equilibrium point at all. That is, it is hard to find a point

x0 which satisfies both f(x0, t) = 0 for all t ∈ R and Ji(x0) = 0 for all i ∈ Z.

Therefore, the notion of equilibrium point is replaced with a bounded solution or a

complete trajectory, which is a particular examples of invariant sets. We investigate
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appearances and disappearances of complete trajectories that are stable and unstable

in the pullback sense.

A time varying family of set A(t) is invariant if x0 ∈ A(t0) implies that φ(t, t0, x0) ∈
A(t). In order to study nonautonomous bifurcation with impulses we should define

corresponding concepts of stability. In this chapter, we use Hausdorff semi-distance

between sets X and Y as d(X, Y ) = supx∈X infy∈Y d(x, y).

2.1.2.1 Attraction and Stability

Asymptotic properties of continuous dynamics and dynamics with discontinuity are

the same. Therefore, we shall use notion of pullback attracting sets without any

change from [36, 43, 46, 49, 56, 57, 58, 78, 80, 85, 87, 89, 112, 122] and references

therein. In autonomous system, to ensure that an invariant set A is attracting it is

enough have the existence of a neighborhood N of A such that

d(φ(t, 0, x0),A)→ 0 as t→∞.

In autonomous system asymptotic behavior of dynamics relies on upon given t − t0
rather than the initial time only. Hence, the idea of attraction for autonomous systems

is identical to the presence of a neighborhood N of A for each fixed t ∈ R,

d(φ(t, t0, x0),A)→ 0 as t0 → −∞ for all x0 ∈ N.

This is the principle thought under the pullback attraction [78, 122]. That is, we are

interested in asymptotic behavior as t0 → −∞ for fixed t, which makes it possible to

analyze time-dependent sets.

Definition 5 [78] An invariant set A(t) is called pullback attracting if for every t ∈ R

lim
t0→−∞

d(φ(t, t0, x0),A(t)) = 0.

Having given meanings of pullback attraction one needs to characterize related ideas

of stability, instability and asymptotic stability in order to investigate asymptotic anal-

ysis in the pullback sense. Next, we start with defining stability in the pullback sense.
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Definition 6 [86] An invariant set A(t) is pullback stable if for every t ∈ R and

ε > 0 there exists a δ(t) > 0 such that for any t0 < t, x0 ∈ N(A(t0), δ(t)) implies

that φ(t, t0, x0) ∈ N(A(t), ε).

An invariant set A(t) is said to be pullback asymptotically stable if it is pullback stable

and pullback attracting. As we are busy with scalar impulsive systems, one can verify

that pullback attraction implies pullback stability for a bounded trajectories. Next, we

state the following lemma which will be useful in what follows.

Lemma 3 Let y(t) be a locally pullback attracting complete trajectory of a scalar

impulsive system. Then, y(t) is also pullback stable.

The proof of this lemma, given by Langa et al. in [88], for continuous case is the

same for impulsive systems. Thus, the last lemma allows us to concentrate on only

pullback attraction properties of a complete trajectory instead of carrying out pullback

stability.

As one would expect pullback instability is characterized through the converse of

pullback stability. That is, an invariant set A(t) is called pullback unstable if it is not

pullback stable, i.e. if there exists a t ∈ R and ε > 0 such that for each δ > 0, there

exists a t0 < t and x0 ∈ N(A(t0), δ) such that d(φ(t, t0, x0),A(t)) > ε. However,

the notion of unstable set, which Crauel defined for the random dynamical systems,

seems to be more natural instrument in discontinuous dynamics point of view.

Definition 7 [56] The unstable set, UA(t), of an invariant set A(t) is defined as

UA(t) = {u : lim
t→−∞

d(φ(t, t0, u),A(t)) = 0}.

We say that A(t) is asymptotically unstable if the relation UA(t) 6= A(t) is fulfilled for

some t.

If A(t) is invariant then one can see that A(t) ⊂ UA(t) is satisfied. Thus, from the

last definition we have that A(t) is strict subset of UA(t). In the sequel, we need the

following result.

Proposition 9 [86] If A(t) is asymptotically unstable then it is also locally pullback

unstable and cannot be locally pullback attracting.
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This result proven by Langa et al. in [86] is valid for impulsive systems. Thus, we

omit the proof and refer to [86]. Note that the idea of the asymptotic instability is

a definition of time-reversed forward attraction. Alternatively, it is conceivable to

define instability as a time-reversed version of pullback attraction.

Definition 8 [88] An invariant set A(t) is pullback repelling if it is pullback attract-

ing for time-reversed system, i.e., if for every t ∈ R and every x0 ∈ Rn,

lim
t0→∞

d(φ(t, t0, x0),A(t)) = 0.

2.1.3 The Pitchfork Bifurcation

In this section, we consider the following system

x′ = p(t)x− q(t)x3, (2.2a)

∆x|t=θi = −x+
x√

ci + dix2
, (2.2b)

where p, q ∈ PC(R, θ). Assume that there exist constants A,B,C and D such that

|p(t)| < A <∞ and 0 < ci ≤ C <∞, (2.3)

and

0 < b0 ≤ q(t) < B <∞ and 0 < di ≤ D <∞, (2.4)

for i ∈ Z and t ∈ R. We suppose that there exist positive numbers θ and θ such that

θ ≤ θi+1 − θi ≤ θ. (2.5)

Moreover, there exists the limit

lim
t−s→∞

2
∫ t
s
p(u)du−

∑
s≤θi<t ln ci

t− s
= γ. (2.6)

By means of substitution y =
1

x2
, the system (2.2) is converted to the impulsive linear

non-homogeneous system

ẏ = −2p(t)y + 2qt),

∆y|t=θi = (ci − 1)y + di.
(2.7)
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In what follows, we discuss the system (2.7) to analyze the system (2.2). Since ci 6= 0,

the transition matrix of the associated homogeneous part of (2.7) is, [1, 37, 121],

Y (t, s) = e−2
∫ t
s p(u)du

∏
s≤θi<t

ci = e−
2
∫ t
s p(u)du−

∑
s≤θi<t ln ci

t−s (t−s), t ≥ s. (2.8)

Lemma 4 If α > γ > β > 0, then there exist positive numbers M and m such that

me−α(t−s) ≤ Y (t, s) ≤Me−β(t−s), t ≥ s. (2.9)

Proof. By relation (2.6), there exists T such that if t− s ≥ T, then

β <
2
∫ t
s
p(u)du−

∑
s≤θi<t ln ci

t− s
< α.

Consequently, by means of (2.3) and (2.5), it is true that

M = sup
0≤t−s≤T

e−2
∫ t
s p(u)du

∏
s≤θi<t

ci

and

m = inf
0≤t−s≤T

e−2
∫ t
s p(u)du

∏
s≤θi<t

ci.

Hence,

me−α(t−s) ≤ Y (t, s) = e−2
∫ T
s p(u)du+

∑
s≤θi<T

ln cie−2
∫ t
T p(u)du+

∑
T≤θi<t

ln ci

≤Me−β(t−s),

for t ≥ s. The lemma is proved. �

Theorem 10 Assume that (2.3), (2.4) and (2.6) hold for the system (2.2). Then, for

γ < 0 the trivial solution is globally asymptotically pullback stable, and for γ > 0

the trivial solution is asymptotically unstable and complete trajectories ±ν(t, γ) are

locally asymptotically pullback stable and satisfy the following relation.

ν2(t, γ) =
1

2
∫ t
−∞ Y (t, s)q(s)ds+

∑
θi<t

Y (t, θi+)di
.
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Proof. By substitution y =
1

x2
, we see that the solution of the system (2.2) satisfy the

following equation, [1, 37, 121],

y(t, t0, y0) = Y (t, t0)y0 + 2
∫ t
t0
Y (t, s)q(s)ds+

∑
t0≤θi<t Y (t, θi+)di. (2.10)

By means of (2.6), one can see that asymptotic behavior of y(t, t0, y0) depends on the

sign of γ.

Consider the case γ < 0. From (2.10) it follows that y(t, t0, y0) → ∞ as t0 → −∞.
Thus, x(t, t0, x0) → 0 both as t0 → −∞ and as t → ∞. Hence, all solutions are

attracted both forwards and pullback to the trivial solution.

If γ > 0, then from (2.10) it follows that y(t, t0, y0)→ 0 as t→∞ implying that all

solutions are unbounded as t→∞. However, as t0 → −∞ we have

limt0→−∞ y(t, t0, y0) = 2
∫ t
−∞ Y (t, s)q(s)ds+

∑
θi<t

Y (t, θi+)di. (2.11)

The last equation reply that

lim
t0→−∞

x2(t, t0, x0) = ν2(t, γ) =
1

2
∫ t
−∞ Y (t, s)q(s)ds+

∑
θi<t

Y (t, θi+)di
(2.12)

where s, θi ∈ (−∞, t]. By means of (2.5) and Lemma 4, one can show that

0 <
2mb0

α
< 2

∫ t

−∞
Y (t, s)q(s)ds+

∑
θi<t

Y (t, θi+)di

<
2BM

β
+DM

∑
θi<t

e−β(t−θi)

≤ 2BM

β
+DM

∞∑
i=0

e−iβθ

=
2BM

β
+DM

1

1− eβθ
<∞.

(2.13)

Thus, ν2(t, γ) is bounded both from above and from below. To see that ν(t, γ) is a

complete trajectory, it would be enough to check that η(t) =
1

ν2(t, γ)
satisfies (2.7).

Indeed,

η̇ = −4p(t)

∫ t

−∞
Y (t, s)q(s)ds+ 2Y (t, t)q(t)− 2p(t)

∑
θi<t

Y (t, θi+)di

= −2p(t)

{
2

∫ t

−∞
Y (t, s)q(s)ds+

∑
θi<t

Y (t, θi+)di

}
+ 2q(t)

= −2p(t)η + 2q(t).

(2.14)
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To show that η(t) satisfies the equation jumps, we note for fixed j it is true that

Y (θj+, s)− Y (θj, s) = (cj − 1)Y (θj, s); so that Y (θj+, s) = cjY (θj, s). Then,

∆η(t)|t=θj = η(θj+)− η(θj)

= 2

∫ θj+

−∞
Y (θj+, s)q(s)ds+

∑
θi<θj+

Y (θj+, θj+)dj

−2
∫ θj
−∞ Y (θj, s)q(s)ds−

∑
θi<θj

Y (θj, θj+)dj

= 2cj

∫ θj

−∞
Y (θj, s)q(s)ds− 2

∫ θj

−∞
Y (θj, s)q(s)ds+ dj

+
∑
θi<θj

cjY (θj, θj+)dj −
∑
θi<θj

Y (θj, θj+)dj

= (cj − 1)

2

∫ θj

−∞
Y (θj, s)q(s)ds+

∑
θi<θj

Y (θj, θj+)dj

+ dj

= (cj − 1)η(θj) + dj.

(2.15)

The above analysis show that ν(t, γ) is pullback attracting. Thus, Lemma 3 implies

that ν(t, γ) is pullback stable. Moreover, for γ > 0 all trajectories with x0 > 0 are

pullback attracted to ν(t, γ) and all trajectories with x0 < 0 are pullback attracted to

−ν(t, γ) as it is illustrated in Figure 2.1. By means of (2.10), it follows that

x2(t, t0, x0) =
1

y(t, t0, y0)
=

1

Y (t, t0)x−2
0 + 2

∫ t
t0
Y (t, s)q(s)ds+

∑
t0≤θi<t Y (t, θi+)di

=
1

Y (t, t0)(x−2
0 − ν−2(t0)) + 2

∫ t
−∞ Y (t, s)q(s)ds+

∑
θi<t

Y (t, θi+)di
.

(2.16)

If |x0| < ν(t0) so that x−2 − ν−2(t0) > 0, then x(t) converge to 0 as t → −∞
implying that the origin is asymptotically unstable. This finalizes the proof of the

theorem. �

Remark 1 In the similar manner, it can be easily shown that the results of Theorem

10 hold for the following system.

x′ = p(t)x− q(t)x3,

∆x|t=θi = −x− x√
ci+dix2

.

Example 1 Let p(t) ≡ a, ci ≡ c, and θi = ih for the system (2.2) with h > 0. That
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Figure 2.1: Asymptotic behavior of the system (2.2).

is,

x′ = ax− q(t)x3,

∆x|t=ih = −x+ x√
c+dix2

.
(2.17)

Then γ = 2a− 1
h

ln c. By means of y = 1
x2

, the system (2.17) is reduced to the linear

impulsive system

ẏ = −2ay + 2q(t),

∆y|t=ih = (c− 1)y + di.
(2.18)

Asymptotic behavior of (2.18) depends on the sign of 2a − 1
h

ln c = γ, and results

of Theorem 10 are true for the system (2.17). If, in particular, c = 1 and di = 0,

then there is no equation of jumps in the system (2.17). Moreover, γ = 2a so that

asymptotic behavior of (2.18) depends on the sign of a. Thus, results of Theorem 10

are generalization of the results obtained in the studies of Langa et al. in [86] and

Caraballo and Langa in [43].
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2.1.4 The Transcritical Bifurcation

Consider the impulsive system

x′ = p(t)x− q(t)x2, (2.19a)

∆x|t=θi = −x+
x

ci + dix
, (2.19b)

where ci > 0, di ∈ R, i ∈ Z, p, q ∈ PC(R, θ). Differently from the previous section,

we do not impose any condition on the function p. However, as in the previous sec-

tion, we suppose that there exist positive numbers θ and θ such that θ ≤ θi+1−θi ≤ θ,

and there exists the limit

lim
t−s→∞

∫ t
s
p(u)du−

∑
s≤θi<t ln ci

t− s
= γ. (2.20)

The function q and the numbers di are asymptotically positive as t→ −∞ and θi →
−∞, respectively. In other words, there exist constants b and d such that

q(t) ≥ b > 0 for all t ≤ T−, and di ≥ d > 0 for all θi ≤ T−. (2.21)

By means of substitution x =
1

y
, the system (2.19) is reduced to the following impul-

sive linear non-homogeneous differential equation.

ẏ = −p(t)y + q(t),

∆y|t=θi = (ci − 1)y + di.
(2.22)

The transition matrix of the associated homogeneous part of the system (2.22) is, [1],

Y (t, s) = e−
∫ t
s p(u)du

∏
s≤θi<t

ci = e−
∫ t
s p(u)du−

∑
s≤θi<t ln ci

t−s )(t−s), t ≥ s. (2.23)

Assume that there exists a γ0 > 0 such that

0 < mγ ≤ xγ(t) =
1∫ t

−∞ Y (t, s)q(s)ds+
∑

θi<t
Y (t, θi+)di

≤Mγ (2.24)

for all t ∈ R, i ∈ Z, 0 < γ < γ0, and

lim inf
t0→−∞

Y (t, t0)∫ t
t0
Y (t, s)q(s)ds+

∑
t0≤θi<t Y (t, θi+)di

≥ mγ > 0 (2.25)

for all −γ0 < γ < 0.
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Theorem 11 Assume that the above conditions hold for equation (2.19). Then, for

−γ0 < γ < 0 the origin is locally pullback attracting in R; and for 0 < γ <

γ0 the origin is asymptotically unstable and the trajectory xγ(t) is locally pullback

attracting.

Proof. By introducing transformation x =
1

y
for equation (2.19), we see that the

solution of the impulsive system (2.22) satisfy the following equation, [1, 37, 121],

y(t, t0, y0) = Y (t, t0)y0 +

∫ t

t0

Y (t, s)q(s)ds+
∑

t0≤θi<t

Y (t, θi+)di. (2.26)

Transforming backwards we have

x(t, t0, x0) =
1

Y (t, t0)x−1
0 +

∫ t
t0
Y (t, s)q(s)ds+

∑
t0≤θi<t Y (t, θi+)di

. (2.27)

By means of (2.20), one can see that asymptotic behavior of (2.27) depends on the

sign of γ.

Consider the case γ < 0. From equation (2.27) and relation (2.20), it follows that

x(t, t0, x0) → 0 as t0 → −∞ for any x0 6= 0 as long as x(ξ, t0, x0) exists for all

ξ ∈ [t0, t].

For x0 > 0, it is sufficient to show that

Y (ξ, t0)x−1
0 +

∫ ξ

t0

Y (ξ, s)q(s)ds+
∑

t0≤θi<ξ

Y (ξ, θi+)di > 0 (2.28)

for ξ ∈ [t0, t]. By means of (2.21), inequality (2.28) is satisfied provided that

Y (ξ, t0)x−1
0 +

∫ ξ

T−
Y (ξ, s)q(s)ds+

∑
T−≤θi<ξ

Y (ξ, θi+)di > 0 (2.29)

for ξ ∈ [T−, t]. Because of assumption (2.20), for t0 small enough Y (ξ, t0) is bounded

below on (−∞, T−]. Thus, (2.28) is satisfied if

x0 <
inft0≤T− Y (ξ, t0)

supξ∈[T−,t]

∣∣ ∫ ξ
T−
Y (ξ, s)q(s)ds+

∑
T−≤θi<ξ Y (ξ, θi+)di

∣∣ . (2.30)

For x0 < 0 the argument requires condition (2.25), which implies that there exists a

µt such that
Y (ξ, t0)∫ ξ

t0
Y (ξ, s)q(s)ds+

∑
t0≤θi<ξ Y (ξ, θi+)di

≥ mγ

2
(2.31)
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for all t0 ≤ µt. Now, it is sufficient to show that

Y (ξ, t0)x−1
0 +

∫ ξ

t0

Y (ξ, s)q(s)ds+
∑

t0≤θi<ξ

Y (ξ, θi+)di < 0 (2.32)

for ξ ∈ [t0, t]. Denote I(t0, ξ) =
∫ ξ
t0
Y (ξ, s)q(s)ds+

∑
t0≤θi<ξ Y (ξ, θi+)di.

If I(t0, ξ) < 0, then (2.32) is satisfied. If I(t0, ξ) > 0, then we require

|x0| <
Y (ξ, t0)∫ ξ

t0
Y (ξ, s)q(s)ds+

∑
t0≤θi<ξ Y (ξ, θi+)di

,

which has the right-hand side of this expression is bounded below by mγ
2

using (2.31).

Therefore, for each t there exists a µt such that if t0 ≤ µt and |x0| is sufficiently small,

the solution exists on [t0, t] and, hence, the origin is locally pullback attracting.

Consider the case when γ > 0. If x0 > 0, then as t0 → −∞ (2.27) implies that

lim
t0→−∞

x(t, t0, x0) = xγ(t) =
1∫ t

−∞ Y (t, s)q(s)ds+
∑

θi<t
Y (t, θi+)di

(2.33)

as long as solution exists in the interval [t0, t] . To ensure the existence, it is sufficient

to have

Y (ξ, t0)x−1
0 +

∫ ξ

t0

Y (ξ, s)q(s)ds+
∑

t0≤θi<ξ

Y (ξ, θi+)di > 0 (2.34)

for ξ ∈ [t0, t]. Let us show that (2.34) holds if we require x0 < (1 + ωt)xγ(t0) for

some ωt > 0. Indeed,

Y (ξ, t0)x−1
0 +

∫ ξ

t0

Y (ξ, s)q(s)ds+
∑

t0≤θi<ξ

Y (ξ, θi+)di

>
1

1 + ωt

{∫ t0

−∞
Y (ξ, s)q(s)ds+

∑
θi<t0

Y (ξ, θi+)di

}
+

∫ ξ

t0

Y (ξ, s)q(s)ds+
∑

t0≤θi<ξ

Y (ξ, θi+)di

=

∫ ξ

−∞
Y (ξ, s)q(s)ds+

∑
θi<ξ

Y (ξ, θi+)di

− ωt
1 + ωt

{∫ t0

−∞
Y (ξ, s)q(s)ds+

∑
θi<t0

Y (ξ, θi+)di

}
> 0

(2.35)

for all t0 ≤ ξ ≤ t. By (2.21), it suffices to show that last expression holds for

ξ ∈ [T−, t]. Choosing δ(t) = ωtmγ it follows that xγ(t) is locally pullback attracting.
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Assumption (2.24) implies that 0 <
∫ t
−∞ Y (t, s)q(s)ds +

∑
θi<t

Y (t, θi+)di < ∞.
Therefore, from equation (2.27) and relation (2.20), it follows that x(t, t0, x0) → 0

as t→ −∞, which implies that the origin is asymptotically unstable.

If x0 < 0, then in order to solution x(ξ, t0, x0) not to blow up in a finite time we need

Y (ξ, t0)x−1
0 +

∫ ξ

t0

Y (ξ, s)q(s)ds+
∑

t0≤θi<ξ

Y (ξ, θi+)di < 0,

for all ξ ∈
[
t0, t
]
. The last relation is satisfied if I(ξ, t0) =

∫ ξ
t0
Y (ξ, s)q(s)ds +∑

t0≤θi<ξ Y (ξ, θi+)di < 0. If I(ξ, t0) > 0 we choose

∣∣x0

∣∣ < Y (ξ, t0)∫ ξ
t0
Y (ξ, s)q(s)ds+

∑
t0≤θi<ξ Y (ξ, θi+)di

,

which is bounded from below as it was proven in the case γ < 0.

This finalizes the proof of the theorem. �

Next, we want to formulate an impulsive extension of the system (2.19), which is

related to the forward attraction. We assume that the function q(t) and the numbers

di are asymptotically positive as t → ∞ and θi → ∞, respectively, and the balance

condition (2.24) is valid. That is,

q(t) ≥ b > 0 for all t ≥ T+, and di ≥ d > 0 for all θi ≥ T+. (2.36)

0 < mγ ≤ xγ(t) =
1∫ t

−∞ Y (t, s)q(s)ds+
∑

θi<t
Y (t, θi+)di

≤Mγ (2.37)

for all t ∈ R, 0 < γ < γ0.

Theorem 12 Assume above conditions hold for equation (2.19). Then, for −γ0 <

γ < 0 the origin is locally forward attracting, and for 0 < γ < γ0 the trajectory

xγ(t) is locally forward attracting. In addition, if

0 < mγ ≤ xγ(t) =
1∫∞

t
Y (t, s)q(s)ds+

∑
θi<t

Y (t, θi+)di
≤Mγ (2.38)

for all t ∈ R, γ < 0, then for−γ0 < γ < 0 the trajectory xγ(t) is both asymptotically

unstable and locally pullback repelling.
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Proof. If γ < 0, the origin is locally forward attracting when x0 is sufficiently small,

since condition (2.36) implies that

inf
t≥t0

{∫ t

t0

Y (t, s)q(s)ds+
∑

t0≤θi<t

Y (t, θi+)di

}
> −∞. (2.39)

If γ > 0, the trajectory xγ(t) is locally forward attracting, which easily follows from

the following relation.(
1

x(t)
− 1

xγ(t)

)
= Y (t, t0)

(
1

x0

− 1

xγ(t0)

)
. (2.40)

Therefore,

|x(t)− xγ(t)| =
xγ(t)x(t)

xγ(t0)x0

e

(
−

∫ t
t0
p(u)du+

∑
t0≤θi<t ln ci

t−t0

)
(t−t0)

|x0 − xγ(t0)|. (2.41)

Using the balance condition (2.37) with x0 > 0 implies that

x(t) =
1

Y (t, t0)x−1
0 +

∫ t
t0
Y (t, s)q(s)ds+

∑
t0≤θi<t Y (t, θi+)di

≤Mγ

∫ t
−∞ Y (t, s)q(s)ds+

∑
θi<t

Y (t, θi+)di

Y (t, t0)x−1
0 +

∫ t
t0
Y (t, s)q(s)ds+

∑
t0≤θi<t Y (t, θi+)di

= Mγ

Y (t, t0)x−1
γ (t0) +

∫ t
t0
Y (t, s)q(s)ds+

∑
t0≤θi<t Y (t, θi+)di

Y (t, t0)x−1
0 +

∫ t
t0
Y (t, s)q(s)ds+

∑
t0≤θi<t Y (t, θi+)di

.

(2.42)

Condition (2.36) guarantees that for t sufficiently large the integral and the sum in the

numerator and denominator are positive. So, from the last expression it follows that

lim sup
t→∞

x(t) ≤Mγmax

{
1,

x0

xγ(t0)

}
.

Therefore, any solution with x0 > 0 is bounded as t → ∞. Hence, from (2.41) it

follows that xγ(t) is forward attracting as long as solutions do not blow up in a finite

time. Next, we show that solution exists for x0 < (1 + ωt0)xγ(t0).

Y (t, t0)x−1
0 +

∫ t

t0

Y (t, s)q(s)ds+
∑

t0≤θi<t

Y (t, θi+)di

>
1

1 + ωt0

{∫ t0

−∞
Y (t, s)q(s)ds+

∑
θi<t0

Y (t, θi+)di

}
+

∫ t

t0

Y (t, s)q(s)ds+
∑

t0≤θi<t

Y (t, θi+)di

=

∫ t

−∞
Y (t, s)q(s)ds+

∑
θi<t

Y (t, θi)di

− ωt0
1 + ωt0

{∫ t0

−∞
Y (t, s)q(s)ds+

∑
θi<t0

Y (t, θi+)di

}
.

(2.43)
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The last expression is positive for sufficiently small ωt0 because of the assumption

(2.36). Therefore, xγ(t) is locally forward attracting.

Under the final assumption (2.38), the results follow by making the transformations

γ 7→ −γ, x 7→ −x, θ 7→ −θ and t 7→ −t.

This finalizes the proof. �

Example 2 Let p(t) ≡ a, ci ≡ c, and θi = ih for the system (2.19) with h > 0. That

is,

x′ = ax− q(t)x2,

∆x|t=ih = −x+ x
c+dix

.
(2.44)

Then γ = a− 1
h

ln c. By means of y = 1
x
, the system (2.17) is converted to the linear

impulsive system

ẏ = −ay + q(t),

∆y|t=ih = (c− 1)y + di.
(2.45)

Asymptotic behavior of (2.45) depends on the sign of γ, and results of Theorem 11

and Theorem 12 are true for the system (2.44). If c = 1 and di = 0, then γ = a and

there is no equation of jumps in the system (2.44).

2.2 An Impulsive Bernoulli Equations: The Transcritical and The Pitchfork

Bifurcations

In this section, we study existence of the bounded solutions and asymptotic behavior

of an impulsive Bernoulli equation. Moreover, we generalize nonautonomous pitch-

fork and transcritical bifurcation scenarios are investigated in the previous section.

Illustrative examples with numerical simulations are given to support our theoretical

results.

2.2.1 Introduction and Preliminaries

The Bernoulli equations constitute an important class of nonlinear differential equa-

tions. In this section we shall introduce a new type of impulsive equations. We
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say that an impulsive equation is of the Bernoulli type if it is reducible to an equa-

tion, which is linear and non-homogeneous in both its components, differential and

impulsive. Thus, it is essentially nonlinear not only in its differential equation, but

impulsive part also. It is important to note that the equation, which is under discus-

sion in this section, is obtained not by a simple adding of an impulsive expression to

the differential Bernoulli equation. Moreover, to the best of our knowledge, there is

no study which deal with a discontinuous Bernoulli equations at all.

It is only in the recent decades, there has been intensive developments on time-

dependent differential equations. Local theory of dynamical systems is concerned

with asymptotic behavior of a fixed point or a periodic solution. However, in nonau-

tonomous dynamical systems it is usually hard to find a fixed point or a periodic

solution. Indeed, in many case they fail even to exist. Therefore, the notion of fixed

points are generically endure as bounded solutions in the theory of time varying dy-

namical systems. There are abstract formulation of a nonautonomous dynamical sys-

tems as new concept of nonautonomous attractors which are called pullback attractors

[46, 47, 77, 89, 112, 122]. We investigate appearances and disappearances of bounded

solutions that are stable and unstable in the pullback and forward sense. In particular,

it was possible to study bifurcation analysis in nonautonomous systems with pull-

back attractors [43, 75, 86, 88]. In previous section, we have studied nonautonomous

transcritical and pitchfork bifurcations in impulsive systems. In the present section,

we introduce a new and the most general impulsive Bernoulli equation, and discuss

bifurcation analysis of these equations. The main equation under investigation is the

following impulsive system,

x′ = p(t)x− q(t)xn,
∆x|t=θi = −x+ x

(ci+dixn−1)
1

n−1
,

(2.46)

where the functions p, q : R→ R are continuous, the sequence of real numbers {θi},
i ∈ N, is such that there exist two real numbers θ and θ satisfying θ ≤ θi+1 − θi ≤
θ, ∆x|t=θi := x(θi+) − x(θi) and x(θi+) = limt→θ+i

x(t). The system (2.46) is

nonlinear not only in its differential equation part but in its impulsive part also. It

consists of the Bernoulli equation and nonlinear impulsive one such that under the

Bernoulli transformation, y = x1−n, it is reduced to the following linear impulsive
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nonhomogenous equation,

ẏ = (1− n)p(t)y + (n− 1)q(t),

∆y|t=θi = (ci − 1)y + di.

This is the reason why we call (2.46) to be the impulsive Bernoulli equation. More-

over, the results obtained for the system (2.46) are also interpreted for the following

continuous Bernoulli equation,

x′ = p(t)x− q(t)xn, (2.47)

where the functions p, q : R → R are continuous. Thus, a new results are accom-

plished for (2.47). Let x(t, t0, x0) be solution of (2.46) or (2.47). In this section,

we deal with scalar differential equations such that x(t, t0, x0) is continuable on R.

Solutions are unique both forwards and backwards in time. In the previous section

we have considered the system (2.46) for n = 2 and n = 3. However, we did not

state forward asymptotic analysis for the case n = 3. In this section, we state re-

sults for forward and pullback asymptotic analysis and n is allowed to be an arbi-

trary natural number. Moreover, we obtain conditions for (2.46) and (2.47) to have

nontrivial bounded solutions on R. Pullback asymptotic analysis of eq. (2.47) with

p(t) = const. and n = 3 has been carried out by Caraballo & Langa in [43] and Langa

et al. in [86]. In [88], the authors considered (2.47) for n = 2 and p(t) = λa(t),

where different bifurcation analysis are studied depending on the sign of the λ. In

this section, we want to emphasize that we obtain different bifurcation scenarios for

(2.46) which depend on γ = lim sup
t−s→∞

∫ t
s (1−n)p(u)du+

∑
s≤θi≤t

ln ci

t−s and for (2.47) depend

on γ = lim sup
t−s→∞

∫ t
s (1−n)p(u)du

t−s . Thus, the discontinuous system (2.46) satisfies the bi-

furcation conditions for the wider class of functions p(t) than for continuous system

(2.47). In other words, the bifurcation is cost by change of the exponents of a solution.

This approach is premised for the first time in the literature in our papers [24, 26]. We

continue with this idea in the present section and significantly improve the results ob-

tained in the previous section. A theory of nonautonomous bifurcations in a Banach

space is treated in terms of exponential dichotomy in a series of remarkable papers

[109, 110, 111].
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2.2.2 Bounded Solutions

In this section, we study the existence of a bounded solution of (2.46). It is easy to see

that x = 0 is the trivial bounded solution of (2.46). In what follows, we are interested

in the solutions which are bounded and different from zero. For this purpose, we shall

need the following conditions.

(C1) There exist positive real numbers m and M such that 0 < m ≤ q(t) ≤ M for

all t ∈ R;

(C2) There exists positive real number L such that 0 ≤ di ≤ L for all i ∈ Z.

By means of the transformation y = x1−n, (2.46) is reduced to the following linear

impulsive system,

ẏ = (1− n)p(t)y + (n− 1)q(t),

∆y|t=θi = (ci − 1)y + di.
(2.48)

Let Ψ(t, s) be the fundamental matrix of (2.48). One can find that

Ψ(t, s) = e
∫ t
s (1−n)p(u)du

∏
s≤θi≤t

ci = e
∫ t
s (1−n)p(u)du+

∑
s≤θi≤t

ln ci .

Denote γ = lim sup
t−s→∞

∫ t
s (1−n)p(u)du+

∑
s≤θi≤t

ln ci

t−s . One can guarantee that there exist two

positive numbers k and K such that

keγ(t−s) ≤ ||Ψ(t, s)|| ≤ Keγ(t−s), s ≤ t. (2.49)

Lemma 5 If (C1)-(C2) are satisfied, then (2.46) admits a nontrivial bounded solu-

tions x̃(t) on R which satisfy the following equations

x̃n−1(t) =
1∫ t

−∞Ψ(t, s)(n− 1)q(s)ds+
∑

θi<t
Ψ(t, θi+)di

, if γ < 0,

x̃n−1(t) = − 1∫∞
t

Ψ(t, s)(n− 1)q(s)ds−
∑

t≤θi<∞Ψ(t, θi+)di
, if γ > 0.

Proof. Consider γ < 0. It suffices to show that ỹ(t) =
∫ t
−∞Ψ(t, s)(n − 1)q(s)ds +∑

θi<t
Ψ(t, θi+)di is a bounded solution of (2.48). Let us verify that ỹ(t) satisfies
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(2.48).

˙̃y(t) = (1− n)p(t)

∫ t

−∞
Ψ(t, s)(n− 1)q(s)ds

+ (n− 1)Ψ(t, t)q(t) + (1− n)p(t)
∑
θi<t

Ψ(t, θi+)di

= (1− n)p(t)

{∫ t

−∞
Ψ(t, s)(n− 1)q(s)ds+

∑
θi<t

Ψ(t, θi+)di

}
+ (n− 1)q(t)

= (1− n)p(t)ỹ(t) + (n− 1)q(t).

To show that ỹ(t) satisfies the equation jumps, we note for fixed j it is true that

Ψ(θj+, s)−Ψ(θj, s) = (cj − 1)Ψ(θj, s). Thus, Ψ(θj+, s) = cjΨ(θj, s).

∆ỹ(t)|t=θj = ỹ(θj+)− ỹ(θj)

=

∫ θj+

−∞
Ψ(θj+, s)(n− 1)q(s)ds+

∑
θi<θj+

Ψ(θj+, θj+)dj

−
∫ θj

−∞
Ψ(θj, s)(n− 1)q(s)ds−

∑
θi<θj

Ψ(θj, θj+)dj

= cj

∫ θj

−∞
Ψ(θj, s)(n− 1)q(s)ds−

∫ θj

−∞
Ψ(θj, s)(n− 1)q(s)ds+ dj

+
∑
θi<θj

cjΨ(θj, θj+)dj −
∑
θi<θj

Ψ(θj, θj+)dj

= (cj − 1)


∫ θj

−∞
Ψ(θj, s)(n− 1)q(s)ds+

∑
θi<θj

Ψ(θj, θj+)dj

+ dj

= (cj − 1)ỹ(θj) + dj.

Next, we show that ỹ(t) is bounded and separated from zero.

0 <
mk(n− 1)

−γ
≤ ||ỹ(t)|| ≤ MK(n− 1)

−γ
+ LK

∑
θi<t

eγ(t−θi)

≤ MK(n− 1)

−γ
+ LK

∞∑
i=0

eiγθ = K

(
M(n− 1)

−γ
+

L

1− eγθ

)
<∞.

Now consider γ > 0. Similarly, it suffices to show that ỹ(t) = −
∫∞
t

Ψ(t, s)(n −
1)q(s)ds −

∑
t≤θi<∞Ψ(t, θi+)di is a bounded solution of (2.48). Let us verify that
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ỹ(t) satisfies (2.48).

˙̃y(t) = −(1− n)p(t)

∫ ∞
t

Ψ(t, s)(n− 1)q(s)ds+ (n− 1)Ψ(t, t)q(t)

− (1− n)p(t)
∑

t≤θi<∞

Ψ(t, θi+)di

= (1− n)p(t)

{
−
∫ ∞
t

Ψ(t, s)(n− 1)q(s)ds−
∑

t≤θi<∞

Ψ(t, θi+)di

}
+ (n− 1)q(t)

= (1− n)p(t)ỹ(t) + (n− 1)q(t).

To show that ỹ(t) satisfies the equation of jumps, we note for fixed j, it is true that

Ψ(θj+, s)−Ψ(θj, s) = (cj − 1)Ψ(θj, s). Thus, Ψ(θj+, s) = cjΨ(θj, s).

∆ỹ(t)|t=θj = ỹ(θj+)− ỹ(θj)

= −
∫ ∞
θj+

Ψ(θj+, s)(n− 1)q(s)ds−
∑
θj+≤θi

Ψ(θj+, θj+)dj

+

∫ ∞
θj

Ψ(θj, s)(n− 1)q(s)ds+
∑
θj≤θi

Ψ(θj, θj+)dj

= −cj
∫ ∞
θj

Ψ(θj, s)(n− 1)q(s)ds+

∫ ∞
θj

Ψ(θj, s)(n− 1)q(s)ds+ dj

−
∑
θj≤θi

cjΨ(θj, θj+)dj +
∑
θj≤θi

Ψ(θj, θj+)dj

= (cj − 1)

−
∫ ∞
θj

Ψ(θj, s)(n− 1)q(s)ds−
∑
θj≤θi

Ψ(θj, θj+)dj

+ dj

= (cj − 1)ỹ(θj) + dj.

Next, we show that ỹ(t) is bounded and separated from zero.

0 <
mk(n− 1)

γ
≤ ||ỹ(t)|| ≤ MK(n− 1)

γ
+ LK

∑
t≤θi

eγ(t−θi)

≤ MK(n− 1)

γ
+ LK

∞∑
i=0

e−iγθ = K

(
M(n− 1)

γ
+

L

1− eγθ

)
<∞.

Therefore, ỹ(t) is bounded and by (C1) it is separated from zero. The lemma is

proved. �

Finally, let us show that ỹ(t) is a unique solution of (2.48). Assume on the contrary,

that there exists bounded solution y1(t) different from ỹ(t). Then, w0(t) =: ỹ(t) −
y1(t) is a bounded solution of the following linear impulsive system

ẇ = (1− n)p(t)y,

∆w|t=θi = (ci − 1)w.
(2.50)
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But (2.50) admits only the trivial solution bounded on R. Therefore, ỹ(t) = y1(t) and

it implies that all bounded solutions which is different from zero have to satisfy the

following equations,

x̃1−n(t) =
∫ t
−∞Ψ(t, s)(n− 1)q(s)ds+

∑
θi<t

Ψ(t, θi+)di, if γ < 0,

x̃1−n(t) = −
∫∞
t

Ψ(t, s)(n− 1)q(s)ds−
∑

t≤θi<∞Ψ(t, θi+)di, if γ > 0.

Thus, one can see that if n is even then, there is unique nontrivial bounded solution.

If n is odd then, there are two nontrivial bounded solutions. In what follows, we have

different bifurcation scenarios depending on the parity of n. In the next sections we

deal with pitchfork and transcritical bifurcations respectively.

2.2.3 The Pitchfork Bifurcation

Consider (2.46) for n = 2m+ 1. That is,

x′ = p(t)x− q(t)x2m+1,

∆x|t=θi = −x+ x

(ci+dix2m)
1

2m
,

(2.51)

where p, q ∈ PC(R, θ), m ∈ N and ci, di ∈ R+ for all i ∈ Z.

Theorem 13 Suppose that (C1)-(C2) are fulfilled for (2.51). Then, for γ > 0 the

trivial solution is asymptotically pullback and forward stable whereas the nontrivial

bounded solutions x̃(t) are asymptotically unstable, and for γ < 0 the trivial solution

is asymptotically unstable and the nontrivial bounded solutions are asymptotically

pullback and forward stable.

Proof. One can find that the solution of (2.51) satisfy the following equation, [1, 84,

121],

x2m(t, t0, x0) =
1

Ψ(t, t0)x−2m
0 + 2

t∫
t0

Ψ(t, s)mq(s)ds+
∑

t0≤θi<t
Ψ(t, θi+)di

. (2.52)

In the previous section we have shown that (2.51) admits the trivial solution and two

bounded solutions which satisfy the following equations
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x̃(t) =


±

(
1

2
∫ t
−∞Ψ(t, s)mq(s)ds+

∑
θi<t

Ψ(t, θi+)di

) 1
2m

, if γ < 0

±

(
− 1

2
∫∞
t

Ψ(t, s)mq(s)ds+
∑

t≤θi<∞Ψ(t, θi+)di

) 1
2m

, if γ > 0

.

One can see that asymptotic behavior of (2.51) depends on γ. We start with the case

γ > 0. From (2.52) it follows that x2m(t, t0, x0)→ 0 as t0 → −∞ as well as t→∞.

So, x(t, t0, x0) → 0 as t0 → −∞ and as t → ∞, replying that all solutions are

attracted both forwards and pullback to the point {0}.

To show that the nontrivial bounded solutions x̃(t) are asymptotically unstable notice

that

x−2m(t)− x̃−2m(t) = Ψ(t, t0)
(
x−2m

0 − x̃−2m(t0)
)
. (2.53)

From the last expression it follows that x(t) converges to x̃(t) as t→ −∞ whenever

‖x0‖ < ‖x̃(t0)‖.

If γ < 0, we notice that the expression (2.53) holds. Thus, one can see that x(t)

converges to x̃(t) both forward and pullback whenever ‖x0‖ < ‖x̃(t0)‖. To show that

the origin is asymptotically unstable we rewrite the expression (2.53) as follows.

x2m(t) =
1

Ψ(t, t0)
(
x−2m

0 − x̃−2m(t0)
)

+ x̃−2m(t)
,

which implies that x(t) converges to 0 as t → −∞ whenever ‖x0‖ < ‖x̃(t0)‖. The

theorem is proved. �

Remark 2 In the similar manner, it can be easily shown that the results of Theorem

13 hold for the following system.

x′ = p(t)x− q(t)x2m+1,

∆x|t=θi = −x− x

(ci+dix2m)
1

2m
.

We obtain the similar results for the following equation.

x′ = p(t)x− q(t)x2m+1, (2.54)

where p, q are continuous functions. For this particular case we have that γ =

lim sup
t−s→∞

∫ t
s (1−n)p(u)du

t−s . If (C1) satisfied, one can show that the nontrivial bounded so-
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lutions satisfy the following equations,

x̃(t) =


±

(
1

2
∫ t
−∞Ψ(t, s)mq(s)ds

) 1
2m

, if γ < 0

±
(
− 1

2
∫∞
t

Ψ(t, s)mq(s)ds

) 1
2m

, if γ > 0

.

Theorem 14 Suppose that (C1) is fulfilled for (2.54). Then, for γ > 0 the trivial so-

lution is asymptotically pullback and forward stable whereas the nontrivial bounded

solutions x̃(t) are asymptotically unstable, and for γ < 0 the trivial solution is asymp-

totically unstable and the nontrivial bounded solutions are asymptotically pullback

and forward stable.

We omit the proof since it is the similar to that of Theorem 13.

2.2.4 The Transcritical Bifurcation

In this section we consider (2.46) for n = 2m. That is,

x′ = p(t)x− q(t)x2m,

∆x|t=θi = −x+ x

(ci+dix2m−1)
1

2m−1
,

(2.55)

where ci, di ∈ R+, i ∈ Z, p, q ∈ PC(R, θ).

Theorem 15 Suppose that (C1)-(C2) are fulfilled for (2.55). Then, for γ > 0 the

trivial solution is asymptotically forward and pullback stable, and for γ < 0 the trivial

solution is asymptotically unstable and the nontrivial bounded solution is forward and

pullback stable.

Proof. One can find that the solution of (2.55) satisfy the following equation, [1, 84,

121],

x2m−1(t, t0, x0) =

1

Ψ(t, t0)x−2m+1
0 +

t∫
t0

Ψ(t, s)(2m− 1)q(s)ds+
∑

t0≤θi<t
Ψ(t, θi+)di

. (2.56)

44



In previous section we have shown that (2.55) admits the trivial solution and the non-

trivial bounded solution which satisfy the following equations

x̃(t) =



(
1∫ t

−∞Ψ(t, s)(2m− 1)q(s)ds+
∑

θi<t
Ψ(t, θi+)di

) 1
2m−1

, if γ < 0(
− 1∫∞

t
Ψ(t, s)(2m− 1)q(s)ds+

∑
t≤θi<∞Ψ(t, θi+)di

) 1
2m−1

, if γ > 0

.

As in the previous section, it is clear that asymptotic behavior of (2.55) depends on

the sign of γ. Consider the case γ > 0. From the equation (2.56) it follows that

x(t, t0, x0) → 0 as t0 → −∞ and as t → ∞ as long as x(ξ, t0, x0) exists for all

ξ ∈ [t0, t]. If x0 > 0, observe that

Ψ(ξ, t0)x−2m+1
0 +

∫ ξ

t0

Ψ(ξ, s)(2m− 1)q(s)ds+
∑

t0≤θi<ξ

Ψ(ξ, θi+)di > 0,

for ξ ∈ [t0, t]. Thus, x(ξ, t0, x0) exists for all ξ ∈ [t0, t] and does not blow up as

t0 → −∞ and as t→∞.

If x0 < 0, to ensure the existence of the solution x(ξ, t0, x0) it is sufficient to show

that

Ψ(ξ, t0)x−2m+1
0 +

∫ ξ

t0

Ψ(ξ, s)(2m− 1)q(s)ds+
∑

t0≤θi<ξ

Ψ(ξ, θi+)di < 0,

for ξ ∈ [t0, t]. Since
∫ ξ
t0

Ψ(ξ, s)(2m − 1)q(s)ds +
∑

t0≤θi<ξ Ψ(ξ, θi+)di > 0, we

require

|x0| <

(
Ψ(ξ, t0)∫ ξ

t0
Ψ(ξ, s)(2m− 1)q(s)ds+

∑
t0≤θi<ξ Ψ(ξ, θi+)di

) 1
2m−1

.

However, we need to show that right-hand side of the last inequality is bounded from

below. One can find that

Ψ(ξ, t0)∫ ξ
t0

Ψ(ξ, s)(2m− 1)q(s)ds+
∑

t0≤θi<ξ Ψ(ξ, θi+)di

=
1

−x̃−2m+1(t0) + Ψ−1(ξ, t0)x̃−2m+1(t)
.

It is easy to see that the last expression is bounded from below since x̃(t) is bounded

and Ψ−1(ξ, t0) is bounded for small enough t0 or for large enough ξ.
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Finally, we consider the case γ < 0. To show that the trivial solution is asymptotically

unstable notice that

x2m−1(t) =
1

Ψ(t, t0)
(
x−2m+1

0 − x̃−2m+1(t0)
)

+ x̃−2m+1(t)
. (2.57)

From the last expression it follows that x(t) converges to 0 as t → −∞ for all 0 <

x0 < x̃(t0).

It remains to show that x̃(t) is forward and pullback stable. If x0 > 0, then it is clear

that

Ψ(ξ, t0)x−2m+1
0 +

∫ ξ

t0

Ψ(ξ, s)(2m− 1)q(s)ds+
∑

t0≤θi<ξ

Ψ(ξ, θi+)di > 0,

for ξ ∈ [t0, t]. Thus, the solution x(ξ, t0, x0) exists for all ξ ∈ [t0, t] and (2.57) implies

that x̃(t) is forward and pullback stable for all 0 < x0 < x̃(t0).

If x0 < 0, then to ensure the existence of the solution x(ξ, t0, x0) it is sufficient to

show that

Ψ(ξ, t0)x−2m+1
0 +

∫ ξ

t0

Ψ(ξ, s)(2m− 1)q(s)ds+
∑

t0≤θi<ξ

Ψ(ξ, θi+)di < 0,

for ξ ∈ [t0, t]. Since
∫ ξ
t0

Ψ(ξ, s)(2m − 1)q(s)ds +
∑

t0≤θi<ξ Ψ(ξ, θi+)di > 0, we

require

|x0| <

(
Ψ(ξ, t0)∫ ξ

t0
Ψ(ξ, s)(2m− 1)q(s)ds+

∑
t0≤θi<ξ Ψ(ξ, θi+)di

) 1
2m−1

.

The right-hand side of the last inequality is bounded from below because the follow-

ing relations is holds.

Ψ(ξ, t0)∫ ξ
t0

Ψ(ξ, s)(2m− 1)q(s)ds+
∑

t0≤θi<ξ Ψ(ξ, θi+)di

=
1

−x̃−2m+1(t0) + Ψ−1(ξ, t0)x̃−2m+1(t)
.

The theorem is proved. �

Remark 3 In the previous section, we have considered (2.55) form = 1 and required

asymptotic positivity for q(t) and di instead of the conditions (C1)-(C2). Namely, we

assumed that there exist positive constants q̄ and d̄ such that q(t) ≥ q̄ for all t ≤ T,
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and di ≥ d̄ for all θi ≤ T. Moreover, to ensure the existence of solution we required

the balance conditions. That is to say we assumed that there exists γ0 > 0 such that

0 < m < x̃(t) < M, for all 0 < γ < γ0, and

lim inf
t0→−∞

Ψ(t,t0)∫ t
t0

Ψ(t,s)(2m−1)q(s)ds+
∑
t0≤θi<t

Ψ(t,θi+)di
≥ m > 0 for all −γ0 < γ < 0 hold.

However, in the present section we show that the conditions (C1)-(C2) are enough to

ensure the existence of the solution.

Finally, we state the similar results for the following equation.

x′ = p(t)x− q(t)x2m, (2.58)

where p, q are continuous functions. For this particular case we have that γ =

lim sup
t−s→∞

∫ t
s (1−n)p(u)du

t−s . If (C1) satisfied, one can show that the nontrivial bounded so-

lutions satisfy the following equations,

x̃(t) =



(
1∫ t

−∞Ψ(t, s)(2m− 1)q(s)ds

) 1
2m−1

, if γ < 0(
− 1∫∞

t
Ψ(t, s)(2m− 1)q(s)ds

) 1
2m−1

, if γ > 0

.

Theorem 16 Suppose that (C1) is fulfilled for (2.58). Then, for γ > 0 the trivial

solution is asymptotically forward and pullback stable, and for γ < 0 the trivial

solution is asymptotically unstable and the nontrivial bounded solution is forward

and pullback stable.

We omit the proof since it is the similar to that of Theorem 15.

2.2.5 Illustrative Examples

In this section, to illustrate theoretical results of Theorem 13 we consider two exam-

ples.

Example 3 Let us consider the following system,

x′ = (6 + 2.5 sin(t2))x− (18 + 3.5 cos(1 + t2

5
))x7,

∆x|t=i = −x+ x(
i2

i2+3
+ 10x6

1+i2

) 1
6
,

(2.59)
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where p(t) = 6 + 2.5 sin(t2), q(t) = 18 + 3.5 cos(1 + t2

5
), θi = i, i ∈ N, ci = i2

i2+3
,

di = 10
1+i2

and n = 7. We check that all conditions of Theorem 13 are satisfied with

m = 14.5, M = 21.5 and L = 5. However, we do not verify all consequences

of Theorem 13. One can see that γ = lim sup
t−s→∞

∫ t
s (−36−15 sin(u2))du+

∑
s≤i≤t ln i2

i2+3

t−s < 0.

Thus, Theorem 13 guarantees that (2.59) has nontrivial bounded solutions which

satisfy equations x̃(t) = ±

 1

6
t∫
∞

Ψ(t,s)(18+3.5 cos(1+ s2

5
))ds+

∑
s≤i<ξ Ψ(ξ,i+) 10

1+i2

 1
6

, where

Ψ(t, s) = e
−6

t∫
s

(6+2.5 sin(s2))ds ∏
s≤i≤t

i2

i2+3
. Figure 2.2 reveals that all solutions start-

ing near the origin diverge from the origin and converge to the nontrivial bounded

solutions ±x̃(t). Therefore, the origin is asymptotically unstable and the bounded

solutions are forward and pullback stable as expressed in the numerical simulations.

Moreover, from the simulations it is seen that the nontrivial bounded solution satisfy

the inequality 0.6 ≤ ||x̃(t)|| ≤ 1.

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x

Figure 2.2: Asymptotic behavior of (2.59) for t ∈ [0, 15]. In the figure, the green
color corresponds to the solution with initial value x0 = −0.2, the blue color corre-
sponds to the solution with initial value x0 = 0.1 and the red color corresponds to
the solution with initial value x0 = 0.4. One can see that all solutions which start in
the neighborhood of the origin diverge from the origin and converge to the nontrivial
bounded solutions ±x̃(t), which cannot seen through the simulations.

Example 4 We consider the following system,
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x′ = −(1.01 + sin(5 + t3

5
))x− (0.21 + 0.2 cos(1 + t2

5
))x7,

∆x|t=i = −x+ x(
i2+3

i2
+ 10x6

1+i2

) 1
6
,

(2.60)

where p(t) = −1.01− sin(5 + t3

5
), q(t) = 0.21 + 0.2 cos(1 + t2

5
), θi = i, i ∈ N, ci =

i2+3
i2
, di = 10

1+i2
and n = 7. We check that all conditions of Theorem 13 are satisfied

with m = 0.01, M = 0.41 and L = 5. However, we do not verify all consequences of

Theorem 13. Note that for this example γ = lim sup
t−s→∞

t∫
s

(6.06+6 sin(5+u3

5
))du+

∑
s≤i≤t

ln i2+3

i2

t−s >

0. Figure 2.3 reveals that all solutions starting near the origin eventually converge

to the origin. Thus, the origin is forward and pullback stable as expressed in the

numerical simulation.

0 5 10 15
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0.1
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0.4

0.5
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Figure 2.3: Asymptotic behavior of (2.60) for t ∈ [0, 15]. In the figure, the green
color corresponds to the solution with initial value x0 = −0.2, the blue color corre-
sponds to the solution with initial value x0 = 0.1 and the red color corresponds to the
solution with initial value x0 = 0.4. One can see that all solutions which start in the
neighborhood of the origin eventually converge to the origin.

2.3 Discussion

The pitchfork and the transcritical bifurcations are considered for nonautonomous

impulsive differential equations. Explicitly solvable models with the specific equa-
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tions of jumps have been considered. This allowed us to categorize one-dimensional

bifurcations in impulsive systems.

This theory could be developed in many ways. One can consider impulsive ana-

logues for the pitchfork bifurcation and corresponding impulsive analogue for the

transcritical bifurcation without finding explicit solution similarly to that done in

[112]. Nonautonomous saddle-node bifurcation remains unconsidered even for one-

dimensional impulsive systems. Finally, general theory of bifurcation in higher-

dimensional systems with impulses has to developed.

In the present section, it is the first time the impulsive Bernoulli equation has been

studied. It is clearly seen that in the second part of the chapter we have obtained

results that are more general than those in the first section. This chapter provides new

sufficient conditions guaranteeing the existence of the nontrivial bounded solutions.

Moreover, both forward and pullback asymptotic behavior of the trivial and the non-

trivial bounded solutions are studied. Different nonautonomous bifurcation scenarios

depending on the asymptotic behavior of these solutions are obtained.
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CHAPTER 3

NONAUTONOMOUS TRANSCRITICAL AND PITCHFORK

BIFURCATIONS IN SCALAR NON-SOLVABLE IMPULSIVE

DIFFERENTIAL EQUATIONS

3.1 Nonautonomous Transcritical and Pitchfork Bifurcations in Impulsive Sys-

tems

In this section, we consider impulsive analogues of nonautonomous transcritical and

pitchfork bifurcations in the systems which cannot be solved explicitly. We extend

the theorem on asymptotic properties of the quasilinear impulsive systems which was

considered by Samoilenko and Perestyuk [121] to the entire time.

3.1.1 Introduction

In the previous chapter we studied nonautonomous bifurcations which are solvable

by means of Bernoulli transformation. In particular, the concept of the pullback and

forward attracting sets was used to analyze nonautonomous bifurcations which de-

pend on the properties of the system in the past and future respectively. However,

most of nonlinear discontinuous models are not of a Bernoulli type. In this chapter,

we are concerned with the most general type of equations, which are naturally cannot

be solved. Thus, we cannot expect to find a bounded or a periodic solution as in the

previous chapter. Instead, we deal with asymptotic behavior of an equilibrium point.

Thus, we need different approach than one in the previous chapter in order to describe

bifurcation analysis.

51



As it was observed in pitchfork bifurcation in one-dimensional case in Introduction

part of the thesis, a system undergo bifurcation if a particular solution of a differ-

ential equation gain or loss attractivity when parameter varies. Therefore, there is a

strong relation between notions of attractiveness/repulsiveness of a solution and bi-

furcation theory. In this chapter we implement this idea to study various bifurcation

scenarios and focus on systems with discontinuity. There are qualitative studies on

asymptotic properties of the quasilinear impulsive systems of differential equations

[1, 5, 29, 37, 84, 121]. In Chapter 2, we studied impulsive extensions of the nonau-

tonomous pitchfork and transcritical bifurcation in the systems which are explicitly

solvable models. The main novelty of this chapter is to study analogues of nonau-

tonomous pitchfork and transcritical bifurcations in scalar impulsive systems which

depend on properties of the system on entire time, i.e. past and future time. More-

over, we extend the results on stability of quasilinear systems based on first order

approximation obtained by Samoilenko and Perestyuk [121] to entire time.

3.1.2 Preliminaries

We denote by R the set of all real numbers, Z the set of integers and write R−k :=

[−∞, k) and R+
k := [k,∞) for a given k ∈ R. In this section we introduce concepts

of attractive and repulsive solutions, which are used to analyze asymptotic behavior

of impulsive systems. This section is concerned with systems of the type

x′ = f(t, x),

∆x|t=θi = Ji(x),
(3.1)

where ∆x|t=θi := x(θi+)−x(θi), x(θi+) = limt→θ+i
x(t). The system (3.1) is defined

on the set Ω = I×A×G where G ⊆ Rn, I is the interval of the form I = R, I = R−k
or I = R+

k , respectively. θ is a nonempty sequence with the set of indexes A such

that |θi| → ∞ as |i| → ∞. Let φ(t, t0, x0) be solution of (3.1) which is continuable

and unique on I .

Denote PC(R, θ) space of piecewise left continuous functions with discontinuity of

the first kind at points in θ. In this chapter, the Euclidean norm || · || and Hausdorff

semi-distance between nonempty set X and Y as d(X, Y ) = supx∈X infy∈Y d(x, y)

are used. For arbitrary ε-neighborhood of some point x0 ∈ Rn we write Bε(x0) =
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{x ∈ Rn : ||x − x0|| < ε} and for arbitrary nonempty set X ⊂ Rn we define

φ(t, t0, X) :=
⋃
x0∈X φ(t, t0, x0). A graph of function g : A → B is defined as

graphg = {(a, b) ∈ A×B : g(a) = b}.

A setN ⊂ I ×Rn is called nanautonomous set if the setN (t) := {x ∈ Rn : (t, x) ∈
N}, called as t−fibers, is not empty for all t ∈ I . N is said to be compact if all

t−fibers are compact andN is said to be invariant if it satisfies φ(t, t0,N (t0)) = N (t)

for all t, t0 ∈ I .

Asymptotic properties of discontinuous dynamics and continuous one are the same.

In what follows, we use definitions of attractivity and repulsivity without any changes

form [112, 113].

Definition 9 [112, 113] Let ψ : R→ Rn be a solution of the system (3.1).

• A compact and invariant nonautonomous set G is all-time attractor if there

exists an ε > 0 such that

lim
t→∞

sup
t0∈R

d(φ(t+ t0, t0, Bε(G (t0))),G (t+ t0)) = 0.

All-time attraction radius of G , denoted by A±G , is the supremum of all positive

ε which satisfy the above relation;

• If graphψ is an all-time attractor then ψ(t) is called all-time attractive;

• A compact and invariant nonautonomous set H is all-time repeller if there

exists an ε > 0 such that

lim
t→∞

sup
t0∈R

d(φ(t0 − t, t0, Bε(H (t0))),H (t0 − t)) = 0.

All-time repulsion radius of H , denoted byR±H , is the supremum of all positive

ε which satisfy the above relation;

• If graphψ is an all-time repeller then ψ is called all-time repulsive.

In Chapter 2 we studied nonautonomous bifurcation patterns in the pullback and for-

ward sense. In what follows to examine asymptotic analysis of the systems that de-

pend in the past we define past attractivity and repulsivity. One can confirm that a

past attractor is a local pullback attractor, defined in the previous chapter [48].
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Definition 10 [112, 113] Let ψ : R−k → Rn be a solution of the system (3.1).

• A compact and invariant nonautonomous set G is past attractor if there exists

an ε > 0 such that

lim
t→∞

d(φ(t0, t0 − t, Bε(G (t0 − t))),G (t0)) = 0 for all t0 ∈ R−k .

The past attraction radius of G , denoted byA−G , is the supremum of all positive

ε which satisfy the above relation;

• If graphψ a past attractor then ψ(t) is called past attractive;

• A compact and invariant nonautonomous set H is past repeller if there exists

an ε > 0 such that

lim
t→∞

d(φ(t0 − t, t0, Bε(H (t0))),H (t0 − t)) = 0 for all t0 ∈ R−k .

Past repulsion radius of H , denoted by R−H , is the supremum of all positive ε

such that there exists a k̂ ∈ R−k with

lim
t→∞

d(φ(t0 − t, t0, Bε(H (t0))),H (t0 − t)) = 0 for all t0 ≤ k̂;

• If graphψ is a past repeller then ψ(t) is called past repulsive.

Definition 11 [112, 113] Let ψ : R+
k → Rn be a solution of the system (3.1).

• A compact and invariant nonautonomous set G is future attractor if there exists

an ε > 0 such that

lim
t→∞

d(φ(t+ t0, t0, Bε(G (t0))),G (t+ t0)) = 0 for all t0 ∈ R+
k .

Future attraction radius of G , denoted byA+
G , is the supremum of all positive ε

such that there exists a k̂ ∈ R+
k with

lim
t→∞

d(φ(t+ t0, t0, Bε(G (t0))),G (t+ t0)) = 0 for all t0 ≥ k̂;

• If graphψ is a future attractor then ψ(t) is called future attractive;

54



• A compact and invariant nonautonomous set H is called future repeller if there

exists an ε > 0 with

lim
t→∞

d(φ(t0, t0 + t, Bε(H (t+ t0))),H (t0)) = 0 for all t0 ∈ R+
k .

Future repulsion radius of H , denoted byR+
H , is the supremum of all positive

ε with the above relation;

• If graphψ is a future repeller then ψ(t) is called future repulsive.

From definitions given above it follows that if a solution is future attractive then it is

uniformly asymptotically stable. Moreover, every all-time attractor/repeller is both a

past attractor/repeller and a future attractor/repeller.

3.1.3 Attraction and Repulsion in a Quasilinear Impulsive Systems

By means of definitions given above we analyze attraction and repulsion in quasi-

linear systems which is important in the stability analysis of solutions of nonlinear

impulsive systems with fixed moments of impulses. We consider the system with

interval I of the form R, R−k or R+
k , respectively, and let

x′ = A(t)x+ F (t, x),

∆x|t=θi = Bix+ Ii(x),
(3.2)

where A ∈ PC(I, θ), matrices Bi satisfy det(Bi + I) 6= 0, F : I × G → Rn and

I : A × G → Rn. An infinite sequence θi satisfies |θi| → ∞ as |i| → ∞. It is

assumed that there exist positive constants θ and θ such that θ ≤ θi+1 − θi ≤ θ.

Denote φ(t, t0, x0) as the solution of (3.2) and Ψ(t, s) as the fundamental matrix of

the following system

x′ = A(t)x,

∆x|t=θi = Bix.
(3.3)

Theorem 17 If there exist α < 0, K ≥ 1 and δ > 0 such that

||Ψ(t, s)|| ≤ Keα(t−s) for all t ≥ s,
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and the functions F (t, x) and Ii(x) are Lipschitzian, i.e. there exists a positive number

l such that

||F (t, x)|| ≤ l||x||, ||Ii(x)|| ≤ l||x|| (3.4)

for all t ∈ I, i ∈ A and ||x|| < h, h > 0. Then,

||φ(t, t0, x0)|| ≤ δe(α+Kl+ 1
θ

ln(1+Kl))(t−t0) for all t, t0 ∈ I with t ≥ t0,

i.e. for sufficiently small values of l, the origin is all-time attractive.

Proof. An equivalent integral equation of the system (3.2) can be written as [1, 121]:

φ(t, t0, x0) = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, s)F (s, φ(s, t0, x0))ds

+
∑

t0≤θi<t

Ψ(t, θi)Ii(φ(θi, t0, x0))

for all t ≥ t0. By using inequalities in (3.4) we get

||φ(t, t0, x0)|| ≤ Keα(t−t0)||x0||+
∫ t

t0

Keα(t−s)l||φ(s, t0, x0)||ds

+
∑

t0≤θi<t

Keα(t−θi)l||φ(θi, t0, x0)||

for all t ≥ t0 is fulfilled. The last expression can be rewritten as

e−αt||φ(t, t0, x0)|| ≤ Ke−αt0 ||x0||+
∫ t

t0

Kle−αs||φ(s, t0, x0)||ds

+
∑

t0≤θi<t

Kle−αθi ||φ(θi, t0, x0)||

for all t ≥ t0. Hence, by Gronwall-Bellman lemma for piecewise continuous func-

tions ([1, 121]) it follows that

||φ(t, t0, x0)|| ≤ Ke(α+Kl)(t−t0)(1 +Kl)i[t0,t)||x0|| for all t ≥ t0. (3.5)

By means of of the inequality θi+1 − θi ≥ θ one can see that

||φ(t, t0, x0)|| ≤ Ke(α+Kl+ 1
θ

ln(1+Kl))(t−t0)||x0|| for all t ≥ t0.

If l is small egough that

α +Kl +
1

θ
ln(1 +Kl) < 0 for α < 0,

then the required result follows by choosing δ = Kh. �
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Theorem 18 If there exist α > 0, K ≥ 1 and δ > 0 such that

||Ψ(t, s)|| ≤ Keα(t−s) for all t ≤ s,

and the functions F (t, x) and Ii(x) are Lipschitzian, i.e. there exists a positive number

l such that

||F (t, x)|| ≤ l||x||, ||Ii(x)|| ≤ l||x|| (3.6)

for all t ∈ I, i ∈ A and ||x|| < h, h > 0. Then,

||φ(t, t0, x0)|| ≤ δe(α−Kl+ 1
θ

ln(1−Kl))(t−t0) for all t, t0 ∈ I with t ≤ t0,

i.e., for sufficiently small values of l, the origin is all-time repulsive.

Proof. An equivalent integral equation of the system (3.2) can be written as [1, 121]:

φ(t, t0, x0) = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, s)F (s, φ(s, t0, x0))ds

−
∑

t≤θi<t0

Ψ(t, θi)Ii(φ(θi, t0, x0))

for all t ≤ t0. By using inequalities in (3.4) we get

||φ(t, t0, x0)|| ≤ Keα(t−t0)||x0||+
∫ t

t0

Keα(t−s)l||φ(s, t0, x0)||ds

+
∑

t≤θi<t0

Keα(t−θi)l||φ(θi, t0, x0)||

for all t ≤ t0 is fulfilled. The last expression can be rewritten as

e−αt||φ(t, t0, x0)|| ≤ Ke−αt0||x0||+
∫ t

t0

Kle−αs||φ(s, t0, x0)||ds

+
∑

t≤θi<t0

Kle−αθi ||φ(θi, t0, x0)||

for all t ≤ t0. Gronwall-Bellman lemma for piecewise continuous functions ([1, 121])

can be applied since l can be chosen such that Kl < 1. Thus,

||φ(t, t0, x0)|| ≤ Ke(α−Kl)(t−t0)(1−Kl)−i[t,t0)||x0|| for all t ≤ t0. (3.7)

By means of of the inequality θi+1 − θi ≥ θ one can see that

||φ(t, t0, x0)|| ≤ Ke(α−Kl+ 1
θ

ln(1−Kl))(t−t0)||x0|| for all t ≤ t0.
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If l is small enough that

α−Kl +
1

θ
ln(1−Kl) > 0 for α > 0,

then the required results follow if we choose δ = Kh since ||x0|| < h. �

3.1.4 The Transcritical Bifurcation

In this section we study impulsive analogue of the nonautonomous transcritical bifur-

cation. Let x− < 0 < x+ and µ− < µ+ be real numbers and I be interval of the form

R, R−k or R+
k , respectively. Consider the system

x′ = p(t, µ)x+ q(t, µ)x2 + r(t, x, µ),

∆x|t=θi = ci(µ)x+ di(µ)x2 + ei(x, µ),
(3.8)

with piecewise continuous functions p : I × (µ−, µ+) → R, q : I × (µ−, µ+) → R

and r : I × (x−, x+)× (µ−, µ+)→ R satisfying r(t, 0, µ) = 0. c : A× (µ−, µ+)→
R, d : A× (µ−, µ+)→ R and e : A× (x−, x+)× (µ−, µ+)→ R with ci(µ) 6= −1 and

ei(0, µ) = 0. An infinite sequence θi satisfies |θi| → ∞ as |i| → ∞. It is assumed

that there exist positive constants θ and θ such that θ ≤ θi+1 − θi ≤ θ. Let Ψµ(t, s)

be the fundamental matrix of the following linear system.

x′ = p(t, µ)x,

∆x|t=θi = ci(µ)x.
(3.9)

Assume that there exist µ0 ∈ (µ−, µ+) such that are two functions α1, α2 : (µ−, µ+)→
R which are either both monotone increasing or both monotone decreasing satisfying

limµ→µ0 α1(µ) = limµ→µ0 α2(µ) = 0 and K ≥ 1 such that

‖Ψµ(t, s)‖ ≤ Keα1(µ)(t−s) for all µ ∈ (µ−, µ+) and t, s ∈ I with t ≥ s,

‖Ψµ(t, s)‖ ≤ Keα2(µ)(t−s) for all µ ∈ (µ−, µ+) and t, s ∈ I with t ≤ s.

The functions q and di satisfy one of the following conditions.

0 < lim inf
µ→µ0

inf
t∈I

q(t, µ) ≤ lim sup
µ→µ0

sup
t∈I

q(t, µ) <∞,

0 < lim inf
µ→µ0

inf
i∈A

di(µ) ≤ lim sup
µ→µ0

sup
i∈A

di(µ) <∞
(3.10)
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or

−∞ < lim inf
µ→µ0

inf
t∈I

q(t, µ) ≤ lim sup
µ→µ0

sup
t∈I

q(t, µ) < 0,

−∞ < lim inf
µ→µ0

inf
i∈A

di(µ) ≤ lim sup
µ→µ0

sup
i∈A

di(µ) < 0.
(3.11)

The functions r and ei satisfy the following conditions.

lim
x→0

sup
µ∈(µ0−|x|,µ0+|x|)

sup
t∈I

|r(t, x, µ)|
|x|2

= 0,

lim
x→0

sup
µ∈(µ0−|x|,µ0+|x|)

sup
i∈A

|ei(x, µ)|
|x|2

= 0
(3.12)

and there exists sufficiently small l > 0 such that

|r(t, x, µ)| < l|x|, |ei(x, µ)| < l|x|, (3.13)

for all µ ∈ (µ−, µ+), t ∈ I, i ∈ A and x ∈ (x−, x+).

Theorem 19 Assume that above conditions hold for the system (3.8). Then there exist

µ̂− < 0 < µ̂+ such that

• If the functions α1 and α2 are monotone increasing, the origin is all-time at-

tractive for µ ∈ (µ̂−, µ0) and all-time repulsive for µ ∈ (µ0, µ̂+). The following

relations hold true.

lim
µ→µ−0

Aµ0 = 0 and lim
µ→µ+0

Rµ
0 = 0; (3.14)

• If the functions α1 and α2 are monotone decreasing, the origin is all-time repul-

sive for µ ∈ (µ̂−, µ0) and all-time attractive for µ ∈ (µ0, µ̂+). The following

relations hold true.

lim
µ→µ+0

Aµ0 = 0 and lim
µ→µ−0

Rµ
0 = 0; (3.15)

Hence, in both of the above cases the system (3.8) possesses an all-time bifurcation.

Proof. Let φµ be the general solution of the system (3.8). We may consider the case

(3.10) since the functions α1 and α2 are monotone increasing. Choose µ̂− < µ0 < µ̂+

such that

0 < inf
µ∈(µ̂−,µ̂+),t∈I

q(t, µ) ≤ sup
µ∈(µ̂−,µ̂+),t∈I

q(t, µ) <∞,

0 < inf
µ∈(µ̂−,µ̂+),i∈A

di(µ) ≤ sup
µ∈(µ̂−,µ̂+),i∈A

di(µ) <∞.
(3.16)
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By means of (3.13) and (3.16) one can see that Theorem 17 and Theorem 18 can be

applied. Thus, we get attraction and repulsion of the origin as it was required to show

in the theorem. It remains to show that relations (3.14) and (3.15) hold. Let us assume

on the contrary that γ = lim supµ→µ−0 A
µ
0 > 0. By means of (3.12) and (3.16) one can

show that there exist µ̃ ∈ (µ̂−, µ0), x0 ∈ (0, γ) and J ∈ (0, x0
4K

) such that

q(t, µ)x2 + r(t, x, µ) > J and di(µ)x2 + ei(x, µ) > J (3.17)

for all t ∈ I, i ∈ A, µ ∈ (µ̃−, µ0) and x0 ∈
[
x0

2K2 , x0

]
. Next, fix µ̂ ∈ (µ̃−, µ0) such

that Aµ̂0 > x0 and α2(µ̂) ≥ α := −2KJ
x0

> −1
2

so that φµ̂(t, t0, x0) is attracted to

the origin. Set ψ(t) = φµ̂(t, t0, x0). Then, there exists τ ∈ I, τ > t0, such that

ψ(τ) ≤ x0
2K2 . We choose minimal τ which satisfy this property. In other words,

ψ(τ) > x0
2K2 for all t ∈ [t0, τ). Moreover, choose t1 ∈ [t0, τ) such that

ψ(t1) =
x0

2K
and ψ(t) ∈

( x0

2K2
, x0

]
for all t ∈ [t1, τ).

We write integral equation of the system (3.8) at t = τ for fixed µ̂ which start at point

t1.

ψ(τ) = Ψµ̂(τ, t1)ψ(t1) +

∫ τ

t1

Ψµ̂(τ, s)
(
b(s, µ̂)(ψ(s))2 + r(s, ψ(s), µ̂)

)
ds

+
∑

t1≤θi<τ

Ψµ̂(τ, θi)
(
di(µ̂)(ψ(θi))

2 + ei(ψ(θi), µ̂)
)

>
x0

2K2
eα(τ−t1) +

J

K

∫ τ

t1

eα(τ−s)ds

= eα(τ−t1)

(
x0

2K2
+

J

Kα

)
− J

Kα
=

x0

2K2

which is a contradiction and we arrive at limµ→µ−0
Aµ0 = 0. In the similar fashion,

one can show that limµ→µ+0
Rµ

0 = 0. We omit the proof of the second part since it be

verified in the similar manner. This finalizes the proof theorem. �

3.1.5 The Pitchfork Bifurcation

In this section we study impulsive analogue of the nonautonomous pitchfork bifurca-

tion. Let x− < 0 < x+ and µ− < µ+ be real numbers and I be interval of the form

R, R−k or R+
k , respectively. Consider the system

x′ = p(t, µ)x+ q(t, µ)x3 + r(t, x, µ),

∆x|t=θi = ci(µ)x+ di(µ)x3 + ei(x, µ),
(3.18)
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with piecewise continuous functions p : I × (µ−, µ+) → R, q : I × (µ−, µ+) → R

and r : I × (x−, x+)× (µ−, µ+)→ R satisfying r(t, 0, µ) = 0. c : A× (µ−, µ+)→
R, d : A× (µ−, µ+)→ R and e : A× (x−, x+)× (µ−, µ+)→ R with ci(µ) 6= −1 and

ei(0, µ) = 0. An infinite sequence θi satisfies |θi| → ∞ as |i| → ∞. It is assumed

that there exist positive constants θ and θ such that θ ≤ θi+1 − θi ≤ θ. Let Ψµ(t, s)

be the fundamental matrix of the following linear system.

x′ = p(t, µ)x,

∆x|t=θi = ci(µ)x.
(3.19)

Assume that there exist µ0 ∈ (µ−, µ+) such that are two functions α1, α2 : (µ−, µ+)→
R which are either both monotone increasing or both monotone decreasing satisfying

limµ→µ0 α1(µ) = limµ→µ0 α2(µ) = 0 and K ≥ 1 such that

‖Ψµ(t, s)‖ ≤ Keα1(µ)(t−s) for all µ ∈ (µ−, µ+) and t, s ∈ I with t ≥ s,

‖Ψµ(t, s)‖ ≤ Keα2(µ)(t−s) for all µ ∈ (µ−, µ+) and t, s ∈ I with t ≤ s.

The functions q and di satisfy one of the following conditions.

0 < lim inf
µ→µ0

inf
t∈I

q(t, µ) ≤ lim sup
µ→µ0

sup
t∈I

q(t, µ) <∞,

0 < lim inf
µ→µ0

inf
i∈A

di(µ) ≤ lim sup
µ→µ0

sup
i∈A

di(µ) <∞
(3.20)

or

−∞ < lim inf
µ→µ0

inf
t∈I

q(t, µ) ≤ lim sup
µ→µ0

sup
t∈I

q(t, µ) < 0,

−∞ < lim inf
µ→µ0

inf
i∈A

di(µ) ≤ lim sup
µ→µ0

sup
i∈A

di(µ) < 0.
(3.21)

The functions r and ri satisfy the following conditions.

lim
x→0

sup
µ∈(µ0−x2,µ0+x2)

sup
t∈I

|r(t, x, µ)|
|x|3

= 0,

lim
x→0

sup
µ∈(µ0−x2,µ0+x2)

sup
i∈A

|ei(x, µ)|
|x|3

= 0
(3.22)

and there exists sufficiently small l > 0 such that

|r(t, x, µ)| < l|x|, |ei(x, µ)| < l|x|, (3.23)

for all µ ∈ (µ−, µ+), t ∈ I, i ∈ A and x ∈ (x−, x+).
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Theorem 20 Assume that above conditions hold for the system (3.18). Then there

exist µ̂− < 0 < µ̂+ such that

• If the functions α1 and α2 are monotone increasing, the origin is all-time at-

tractive for µ ∈ (µ̂−, µ0) and all-time repulsive for µ ∈ (µ0, µ̂+). The following

relations hold true.

lim
µ→µ−0

Aµ0 = 0 and lim
µ→µ+0

Rµ
0 = 0;

• If the functions α1 and α2 are monotone decreasing, the origin is all-time repul-

sive for µ ∈ (µ̂−, µ0) and all-time attractive for µ ∈ (µ0, µ̂+). The following

relations hold true.

lim
µ→µ+0

Aµ0 = 0 and lim
µ→µ−0

Rµ
0 = 0;

Hence, in both of the above cases the system (3.18) possesses an all-time bifurcation.

The proof of the theorem is similar to that of Theorem 19.

3.2 Finite-Time Nonautonomous Bifurcations in Impulsive Systems

The purpose of this section is to investigate nonautonomous bifurcation in impulsive

differential equations in the finite-time interval. The impulsive finite-time analogues

of transcritical and pitchfork bifurcation are provided. An illustrative example is

given with numerical simulations which supports theoretical results.

3.2.1 Introduction

There are qualitative papers devoted to nonautonomous bifurcation theory in continu-

ous dynamical systems studied in the last twenty years [75, 77, 86, 88, 112, 113, 114].

In considering application problems which arise in the real world such as ocean or at-

mosphere dynamics [101], transport problems in fluid or any model in biological ap-

plications [33, 115] one come across with finite dynamics. There are several reasons

why bounded set dynamics is of a great importance. The first and the most simple
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reason is that data obtained from measurements and observations is often given in a

compact time interval. Another reason may be the interest in transient behavior of

solutions regardless of time interval in which differential equation is defined. There-

fore, there is increasing interest in the behavior of the system on bounded time interval

coming from application point of view.

The main novelty of this section is to provide suitable and efficient concepts of

finite-time bifurcation in the context of nonautonomous differential equations with

impulses.

3.2.2 Preliminaries

We denote by R the set of all real numbers, Z the set of integers. In this section we

introduce concepts of attractive and repulsive solutions, which are used to analyze

asymptotic behavior of impulsive nonautonomous systems. This section is concerned

with systems of the type

x′ = f(t, x),

∆x|t=θi = Ji(x),
(3.24)

where ∆x|t=θi := x(θi+) − x(θi), x(θi+) = limt→θ+i
x(t). The system (3.24) is

defined on the set Ω = I × A × G where G ⊆ Rn, I ⊂ R is a finite compact

time interval which contains only a finite number of impulse points θi with the set

of indexes A. Let φ(t, t0, x0) be general solution of (3.24) which is unique and non-

continuable.

Asymptotic properties of continuous dynamics and dynamics with discontinuous are

the same. In what follows we use definitions of attractivity and repulsivity without

any changes form [112, 114].

Definition 12 [112, 114] Let t0 ∈ I and T > 0 is such that t0 + T ∈ I .

• A compact and invariant nonautonomous set G is called (t0, T )− attractor if

lim sup
ε→0+

1

ε
d(φ(t0 + T, t0, Bε(G (t0))),G (t0 + T )) < 1;
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• A solution ψ : [t0, t0 + T ] → Rn of (3.24) is called (t0, T ) − attractive if

graphψ is a (t0, T )− attractor.

• A compact and invariant nonautonomous set H is called (t0, T )− repeller if

lim sup
ε→0+

1

ε
d(φ(t0 + T, t0, Bε(H (t0 + T ))),H (t0)) < 1.

• A solution ψ : [t0, t0 + T ] → Rn of (3.24) is called (t0, T ) − repulsive if

graphψ is a (t0, T )− repeller.

The (t0, T )− attractor and (t0, T )− repeller satisfy the duality principle, i.e. under

time reversal their roles are changed.

Example 5 Let I := [t0, t0 + T ] be an interval containing a finite number of impulse

points θi such that t0 ≤ θ1 < θ2 < ... < θm ≤ t0 + T for some t0 ∈ R, T > 0 and

m ∈ N. Consider the system

x′ = a(t)x,

∆x|t=θi = bix,
(3.25)

with piecewise continuous function a : I → R and there exist constants b, B ∈ R

such that −1 < b ≤ bi ≤ B. Let Ψ : I × I → Rn be the transition matrix of the

system (3.24).

If t0 < θ1, then a(t) is continuous on [t0, θ1] since a(t) ∈ PC(R, θ). So, we have

that Ψ(θ1, t0) = e
∫ θ1
t0

a(s)ds. At t = θ1 solution makes a jump and we have that

x(θ1+) = (1 + b1)x(θ1). Next, a(t) is continuous on (θ1, θ2] implies that Ψ(θ2, θ1) =

e
∫ θ2
θ1

a(s)ds(1 + b1). Proceeding in this way one can show that

Ψ(t0 + T, t0) = Ψ(θ1, t0)Ψ(θ2, θ1) · · ·Ψ(t0 + T, θm) = e
∫ t0+T
t0

a(s)ds
m∏
i=1

(1 + bi)

since 1 + bi is nonsingular matrix and commutes with any other matrix because 1 +

bi > 0.

If t0 = θ1, then the solution starts with a jump and we have that x(θ1+) = (1 +

b1)x(θ1). Next, a(t) is continuous on (θ1, θ2] implies that Ψ(θ2, θ1) = e
∫ θ2
θ1

a(s)ds(1 +

b1). Discussing in the way one can show that

Ψ(t0 + T, t0) = Ψ(θ2, θ1) · · ·Ψ(t0 + T, θm) = e
∫ t0+T
t0

a(s)ds
m∏
i=1

(1 + bi).
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We want to point out that the basics of linear impulsive systems are fruitfully discussed

in the books [1, 37, 121]. As a result, we have that

Ψ(t0 + T, t0) = e
∫ t0+T
t0

a(s)ds∏m
i=1(1 + bi) ≤ e

∫ t0+T
t0

a(s)ds
m∏
i=1

(1 +B)

= e
∫ t0+T
t0

a(s)ds+m ln(1+B).

Therefore, any invariant and compact nonautonomous set is a (t0, T )− attractor if∫ t0+T

t0

a(s)ds+m ln(1 +B) < 0.

By the same way one can say that any invariant and compact nonautonomous set is a

(t0, T )− repeller if
∫ t0+T

t0
a(s)ds+m ln(1 + b) > 0.

Definition 13 [112, 114] The radius of (t0, T )−attraction of a (t0, T )−attractorA
is defined by

A(t0,T )
G := sup{ε > 0 : d(φ(t0 + T, t0, Bε̂(G (t0))),G (t0 + T )) < ε̂ for all ε̂ ∈ (0, ε)},

and the radius of (t0, T )− repulsion of a (t0, T )− repellerR is defined by

R(t0,T )
H := sup{ε > 0 : d(φ(t0 + T, t0, Bε̂(H (t0 + T ))),H (t0)) < ε̂ for all ε̂ ∈

(0, ε)}.

In Example 5 every invariant and compact set S ⊂ [t0, t0 + T ] × R of the system

(3.25) is

• (t0, T )− attractor with A(t0,T )
S =∞ if

∫ t0+T

t0
a(s)ds+m ln(1 +B) < 0,

• (t0, T )− repeller withR(t0,T )
S =∞ if

∫ t0+T

t0
a(s)ds+m ln(1 + b) > 0.

Definition 14 [112, 114] We consider the impulsive system (3.24), which depends on

a parameter µ. The system (3.24) possesses a supercritical (t0, T ) − bifurcation

at µ0, µ0 ∈ (µ−, µ+), if there exist a µ̂ > µ0 and a piecewise continuous function

ψ : [t0, t0 + T ]× (µ0, µ̂)→ Rn such that one of the following alternatives hold.

• ψ(·, µ) is a (t0, T )−attractive solution of the system (3.24) for all µ ∈ (µ0, µ̂),

and

lim
µ→µ+0

A(t0,T )
ψ(·,µ) = 0.
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• ψ(·, µ) is a (t0, T )−repulsive solution of the system (3.24) for all µ ∈ (µ0, µ̂),

and

lim
µ→µ+0

R(t0,T )
ψ(·,µ) = 0.

If in the above definition the limit µ → µ+
0 is replaced with µ → µ−0 then we have

subcritical (t0, T )− bifurcation.

3.2.3 Attraction and Repulsion in a Quasilinear Impulsive System

In this section we study linear non-homogeneous impulsive systems in finite-time

with definitions provided in the previous section. We show that these definition re-

main as a fruitful concept in the stability analysis of solutions of nonlinear systems

with fixed moments of impulses. Let us consider the impulsive system in a compact

interval I := [t0, t0 + T ] with m impulse points θi for some t0 ∈ R, T > 0 and

m ∈ N,

x′ = A(t)x+ F (t, x),

∆x|t=θi = Bix+ Ji(x),
(3.26)

where A ∈ PC(I, θ), matrices Bi satisfy det(Bi + I) 6= 0, F : I × G → Rn and

J : A×G→ Rn. Denote φ(t, t0, x0) as the solution of (3.26) and Ψ : I × I → Rn×n

as the transition matrix of the following linear system

x′ = A(t)x,

∆x|t=θi = Bix.
(3.27)

Define M+ := sup {||Ψ(t, s)|| : t0 ≤ s ≤ t ≤ t0 + T} and

M− := sup {||Ψ(t, s)|| : t0 ≤ t ≤ s ≤ t0 + T} . Assume that the following condi-

tions hold for the system (3.26):

(C1) ||Ψ(t0 + T, t0)|| < 1;

(C2) The functions F (t, x) and Ji(x) are Lipschitzian i.e., there exist positive num-

ber l such that ||F (t, x)|| ≤ l||x||, ||Ji(x)|| ≤ l||x|| for all t ∈ I, i ∈ A and

||x|| < h, h > 0.

Then one has the following theorem.
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Theorem 21 The origin is (t0, T )-attractive for sufficiently small values of l, i.e.,

||φ(t0 + T, t0, x0)|| ≤ δeM+T l+m ln(1+M+l)+ln ||Ψ(t0+T,t0)||.

Now consider the following condition

(C3) ||Ψ(t0, t0 + T )|| < 1.

Theorem 22 Assume that conditions (C2) and (C3) are true for the system (3.26),

then the origin is (t0, T )-repulsive for sufficiently small values of l, i.e.,

||φ(t0, t0 + T, x0)|| ≤ δeM−T l+m ln(1+M−l)+ln ||Ψ(t0,t0+T )||.

Proof. An equivalent integral equation of the system (3.26) can be written as [1, 121]:

φ(t, t0, x0) = Ψ(t, t0)x0 +

∫ t

t0

Ψ(t, s)F (s, φ(s, t0, x0))ds

+
∑

t0≤θi<t

Ψ(t, θi)Ii(φ(θi, t0, x0)

for all t ∈ I . Therefore, we get

||φ(t, t0, x0)|| ≤ ||Ψ(t, t0)||||x0|| + M+l

∫ t

t0

||φ(s, t0, x0)||ds

+ M+l
∑

t0≤θi<t

||φ(θi, t0, x0)||

for all t ∈ I is fulfilled. Hence, by Gronwall-Bellman lemma for piecewise continu-

ous functions [1, 121] it follows that

||φ(t0 + T, t0, x0)|| ≤ ||Ψ(t0 + T, t0)||eM+lT (1 +M+l)
i[t0,t0+T )||x0||

≤ ||x0||eln ||Ψ(t0+T,t0)||+M+lT+m ln(1+M+l)

where i[t0, t0 +T ) is the number of elements of the sequence θi in the interval [t0, t0 +

T ). Since in this section i[t0, t0 +T ) = m, one can see that the required result follows

by choosing δ = Kh for l small enough that ln ||Ψ(t0 + T, t0)||+M+lT +m ln(1 +

M+l) < 0. We skip the prove of Theorem 22 since it can be proven analogously. �

3.2.4 Bifurcation Analysis

In this section we state and prove finite-time nonautonomous transcritical and pitch-

fork bifurcation results for impulsive systems. In what follows, the auxiliary theorems

obtained in the previous section for higher dimensions will be used in the scalar case.
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3.2.4.1 The Transcritical Bifurcation

In this subsection we study impulsive analogue of the nonautonomous transcritical

bifurcation in finite-time. Let x− < 0 < x+ and µ− < µ+ be real numbers and let

I := [t0, t0 + T ] with m impulse points θi. Consider the system

x′ = p(t, µ)x+ q(t, µ)x2 + r(t, x, µ),

∆x|t=θi = ai(µ)x+ bi(µ)x2 + ci(x, µ),
(3.28)

with piecewise continuous functions p : I × (µ−, µ+) → R, q : I × (µ−, µ+) → R

and r : I × (x−, x+)× (µ−, µ+)→ R satisfying r(t, 0, µ) = 0. a : A× (µ−, µ+)→
R, b : A× (µ−, µ+)→ R and c : A× (x−, x+)× (µ−, µ+)→ R with ai(µ) 6= −1 and

ci(0, µ) = 0. Let Ψµ(t, s) be the fundamental matrix of the associated homogeneous

part of the system

x′ = p(t, µ)x,

∆x|t=θi = ai(µ)x.
(3.29)

Assume that there exists µ0 ∈ (µ−, µ+) such that the following conditions hold.

(T1) Ψµ(t0 + T, t0) < 1 for all µ ∈ (µ−, µ0) and Ψµ(t0 + T, t0) > 1 for all µ ∈
(µ0, µ+);

or

(T1*) Ψµ(t0 + T, t0) > 1 for all µ ∈ (µ−, µ0) and Ψµ(t0 + T, t0) < 1 for all µ ∈
(µ0, µ+).

The functions q and bi satisfy one of the following conditions.

(T2) lim infµ→µ0 inft∈I q(t, µ) > 0 and lim infµ→µ0 infi∈A bi(µ) > 0;

or

(T2*) lim supµ→µ0 supt∈I q(t, µ) < 0 and lim supµ→µ0 supi∈A bi(µ) < 0.

The functions r and ci satisfy the following conditions.

(T3) limx→0 supµ∈(µ0−|x|,µ0+|x|) supt∈I
|r(t,x,µ)|
|x|2 = 0;
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(T4) limx→0 supµ∈(µ0−|x|,µ0+|x|) supi∈A
|ci(x,µ)|
|x|2 = 0;

(T5) There exists sufficiently small l > 0 such that |r(t, x, µ)| < l|x|,
|ci(x, µ)| < l|x| for all µ ∈ (µ−, µ+), t ∈ I, i ∈ A and x ∈ (x−, x+).

Theorem 23 Assume that above conditions hold for the system (3.28). Then there

exist µ̂− < 0 < µ̂+ such that if (T1) is satisfied, then the origin is (t0, T )−attractive
for µ ∈ (µ̂−, µ0) and (t0, T ) − repulsive for µ ∈ (µ0, µ̂+). The following relations

hold true.

lim
µ→µ−0

Aµ0 = 0 and lim
µ→µ+0

Rµ
0 = 0. (3.30)

In case (T1*) is satisfied, the origin is (t0, T ) − repulsive for µ ∈ (µ̂−, µ0) and

(t0, T )− attractive for µ ∈ (µ0, µ̂+). The following relations hold true.

lim
µ→µ+0

Aµ0 = 0 and lim
µ→µ−0

Rµ
0 = 0. (3.31)

Hence, in both of the above cases the system (3.28) possesses a (t0, T )−bifurcation.

Proof. We give the first part of the proof since second part can be proven in the similar

manner. That is, (T1) is assumed. Let φµ be the general solution of the system (3.28).

We may consider the case (T2). Choose µ̂− < µ0 < µ̂+ such that

0 < infµ∈(µ̂−,µ̂+),t∈I q(t, µ) and 0 < infµ∈(µ̂−,µ̂+),i∈A bi(µ). (3.32)

By means of (T4) and (3.32) one can see that Theorem 21 and Theorem 22 can be

applied. Thus, we get attractivity and repulsivity of the origin as it was required to

show in the theorem. Set

K := inf {Ψµ(t, s) : t, s ∈ I, µ ∈ (µ̂−, µ0)} ∈ (0, 1).

In order to show relations (3.30) and (3.31) hold we assume to the contrary that

γ = lim sup
µ→µ−0

Aµ0 > 0.

By means of (T3) and (3.32) one can show that there exist µ̃ ∈ (µ̂−, µ0), x0 ∈ (0, Kγ)

and L > 0 such that

q(t, µ)x2 + r(t, x, µ) > J and bi(µ)x2 + ci(x, µ) > J (3.33)
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for all t ∈ I, i ∈ A, µ ∈ (µ̃−, µ0) and x0 ∈
[
Kx0,

x0
K

]
. Next, fix µ̂ ∈ (µ̃−, µ0) such

that Aµ̂0 > x0 and

Ψµ(t0 + T, t0) ≥ 1− KJT

x0

. (3.34)

Denote ψ(t) = φµ̂(t, t0, x0). Since Aµ̂0 > x0, we have

ψ(t0 + T ) < x0. (3.35)

Moreover, from the definition of K and by means of (3.33), we get

ψ(t0 + T ) ≥ Kx0 for all t ∈ [0, T ]. (3.36)

There are two cases to be considered.

Case 1. There exist a τ ∈ (0, T ] such that

ψ(t0 + τ) =
x0

K
.

We take maximal τ which satisfy this relation. By means of (3.35), one can see that

ψ(t0 + T ) ≤ x0
K

for all t ∈ [τ, T ]. Next, we consider the integral equation of the

system (3.28) at t0 + T for fixed µ̂ which start at point t = t0 + τ .

ψ(t0 + T ) = Ψµ̂(t0 + T, t0 + τ)
x0

K

+

∫ t0+T

t0+τ

Ψµ̂(t0 + T, s)
(
q(s, µ̂)(ψ(s))2 + r(s, ψ(s), µ̂)

)
ds

+
∑

t0+τ≤θi<t0+T

Ψµ̂(t0 + T, θi)
(
bi(µ̂)(ψ(θi))

2 + ci(ψ(θi), µ̂)
)

≥ x0 +KJ(T − τ) +
∑

t0+τ≤θi<t0+T

KJ

> x0.

This is contraction for (3.35).

Case 2. For all t ∈ (0, T ], we have

ψ(t0 + τ) <
x0

K
.
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Next, from the integral equation of the system (3.28) at t = t0 + T for fixed µ̂ which

start at point t0 we have

ψ(t0 + T ) = Ψµ̂(t0 + T, t0 + τ)x0

+

∫ t0+T

t0

Ψµ̂(t0 + T, s)
(
q(s, µ̂)(ψ(s))2 + r(s, ψ(s), µ̂)

)
ds

+
∑

t0≤θi<t0+T

Ψµ̂(t0 + T, θi)
(
bi(µ̂)(ψ(θi))

2 + ci(ψ(θi), µ̂)
)

≥
(

1− KJT

x0

)
x0 +KJT +KJm

> x0

where the last inequality follows by means of (3.33) and (3.34). We again arrive

at contradiction for (3.35). Hence, we have that limµ→µ−0
Aµ0 = 0. One can show

following the similar route that limµ→µ+0
Rµ

0 = 0 and considering the condition (T2*).

This finalizes the proof of the theorem. �

3.2.4.2 The Pitchfork Bifurcation

In this subsection we study impulsive analogue of the nonautonomous pitchfork bi-

furcation. Let x− < 0 < x+ and µ− < µ+ be real numbers and let I := [t0, t0 + T ]

with m impulse points θi. Consider the system

x′ = p(t, µ)x+ q(t, µ)x3 + r(t, x, µ),

∆x|t=θi = ai(µ)x+ bi(µ)x3 + ci(x, µ),
(3.37)

with piecewise continuous functions p : I × (µ−, µ+) → R, q : I × (µ−, µ+) → R

and r : I × (x−, x+)× (µ−, µ+)→ R satisfying r(t, 0, µ) = 0. a : A× (µ−, µ+)→
R, b : A × (µ−, µ+) → R and c : A × (x−, x+) × (µ−, µ+) → R with ai(µ) 6= −1

and ci(0, µ) = 0. Let Ψµ(t, s) be the fundamental matrix of the linear system

x′ = p(t, µ)x,

∆x|t=θi = ai(µ)x.

Assume that there exists µ0 ∈ (µ−, µ+) such that following conditions hold.

(P1) Ψµ(t0 + T, t0) < 1 for all µ ∈ (µ−, µ0) and Ψµ(t0 + T, t0) > 1 for all µ ∈
(µ0, µ+);

or
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(P1*) Ψµ(t0 + T, t0) > 1 for all µ ∈ (µ−, µ0) and Ψµ(t0 + T, t0) < 1 for all µ ∈
(µ0, µ+).

The functions q and bi satisfy one of the following conditions.

(P2) lim infµ→µ0 inft∈I q(t, µ) > 0 and lim infµ→µ0 infi∈A bi(µ) > 0;

or

(P2*) lim supµ→µ0 supt∈I q(t, µ) < 0 and lim supµ→µ0 supi∈A bi(µ) < 0.

The functions r and ci satisfy the following conditions.

(P3) limx→0 supµ∈(µ0−x2,µ0+x2) supt∈I
|r(t,x,µ)|
|x|3 = 0;

(P4) limx→0 supµ∈(µ0−x2,µ0+x2) supi∈A
|ci(x,µ)|
|x|3 = 0;

(P5) There exists sufficiently small l > 0 such that |r(t, x, µ)| < l|x|,
|ci(x, µ)| < l|x| for all µ ∈ (µ−, µ+), t ∈ I, i ∈ A and x ∈ (x−, x+).

Theorem 24 Assume that above conditions hold for the system (3.37). Then there

exist µ̂− < 0 < µ̂+ such that if the conditions (P1) and (P2) are satisfied, then the

origin is (t0, T ) − attractive for µ ∈ (µ̂−, µ0) and (t0, T ) − repulsive for µ ∈
(µ0, µ̂+). Moreover, it is true that limµ→µ−0

Aµ0 = 0.

If the conditions (P1) and (P2*) are satisfied, then the origin is (t0, T ) − repulsive
for µ ∈ (µ̂−, µ0) and (t0, T ) − attractive for µ ∈ (µ0, µ̂+). Moreover, it is true that

limµ→µ+0
Rµ

0 = 0.

If the conditions (P1*) and (P2) are satisfied, the origin is (t0, T ) − attractive for

µ ∈ (µ̂−, µ0) and (t0, T ) − repulsive for µ ∈ (µ0, µ̂+). Moreover, it is true that

limµ→µ+0
Aµ0 = 0.

In case the conditions (P1*) and (P2*) hold, the origin is (t0, T ) − repulsive for

µ ∈ (µ̂−, µ0) and (t0, T ) − attractive for µ ∈ (µ0, µ̂+). Moreover, it is true that

limµ→µ−0
Rµ

0 = 0. Hence, in all of the above cases the system (3.37) possesses a

(t0, T )− bifurcation

The proof of the theorem is similar to that of Theorem 23.
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3.2.5 An Example

In this section, we give an example illustrating our theoretical results by means of

simulations. Consider the following system with I := [0, 10] and impulse moments

θi = i, 1 ≤ i ≤ 9.

x′ =
(

6µ+ 5
2
µ sin( t

3

4
)
)
x−

(
4µ+ 7

2
µ sin( t

5

3
) + 2

)
x2 +

(
µ+ 1

2
µ cos2(t3)

)
x3,

∆x|t=i = (1.5iµ+ 5µ)x− (2iµ+ 5µ+ 3)x2 + iµx3,

where we have taken p(t, µ) = 6µ+2.5µ sin(t3/4), q(t, µ) = 4µ+3.5µ sin(t5/3)+2,

r(t, x, µ) = (µ+ 0.5µ cos2(t3))x3 ai(µ) = 1.5iµ + 5µ, bi(µ) = 2iµ + 5µ + 3 and
di(x, µ) = iµx3. One can verify that this system satisfies the conditions of Theorem
23. Simulation results support our theoretical discussion and reveal that all solutions
starting in the neighborhood of the origin converge to the origin if µ < 0, whereas
for µ > 0 all solutions starting in the neighborhood of the origin diverge from the
origin.

0 2 4 6 8 10
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0.4
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x
(t

)

Figure 3.1: Asymptotic behavior of the solution for µ = −0.1, where blue color
represents the solution corresponding to x0 = 0.4; red color represents the solution
corresponding to x0 = 0.1; and green color represents the solution corresponding to
x0 = −0.2.
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Figure 3.2: Asymptotic behavior of the solution for µ = −0.05, where blue color
represents the solution corresponding to x0 = 0.4; red color represents the solution
corresponding to x0 = 0.1; and green color represents the solution corresponding to
x0 = −0.2.
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Figure 3.3: Asymptotic behavior of the solution for µ = 0.05, where blue color
represents the solution corresponding to x0 = 0.4; red color represents the solution
corresponding to x0 = 0.1; and green color represents the solution corresponding to
x0 = 0.2.
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Figure 3.4: Asymptotic behavior of the solution for µ = 0.1, where blue color rep-
resents the solution corresponding to x0 = 0.4; red color represents the solution cor-
responding to x0 = 0.1; and green color represents the solution corresponding to
x0 = 0.2.

From the simulation results, it is seen that limµ→0− Aµ0 = 0 since solutions in Figure

3.2 converge more rapidly to the origin than those in Figure 3.1; and limµ→0+Rµ
0 = 0

since solutions in Figure 3.4 diverge more rapidly from the origin than those in Figure

3.3. Thus, the origin is (0, 10)−attractive for µ ∈ (−0.1, 0) and (0, 10)−repulsive
for µ ∈ (0, 0.1). We conclude that this example possesses (0, 10)− transcritical

bifurcation.

3.3 Discussion

In this chapter, it is the first time nonautonomous transcritical and pitchfork bifurca-

tions are studied for the most general impulsive systems with fixed time. Bifurcation

patterns are obtained through loss of attraction and gain of repulsion. Furthermore,

we discussed finite-time bifurcation scenarios in the scalar discontinuous systems

which are applicable for the real world problems. We show that attractive and repul-

sive solutions play a great role in the theory of bifurcations. Numerical simulations
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suggest us that, as in Chapter 2, asymptotic behavior of the bounded solutions should

also be examined for these type of equations. Finally, we note that this theory can be

extended for higher dimensional systems.
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CHAPTER 4

NONAUTONOMOUS TRANSCRITICAL AND PITCHFORK

BIFURCATIONS IN BERNOULLI EQUATIONS WITH

PIECEWISE CONSTANT ARGUMENT OF GENERALIZED

TYPE

In this chapter, we study existence of the bounded solutions and asymptotic behav-

ior of the Bernoulli equations with piecewise constant argument. Nonautonomous

pitchfork and transcritical bifurcation scenarios are investigated. An example with

numerical simulation is given to illustrate our results.

4.1 Introduction and Preliminaries

Cooke, Shah and Wiener were pioneers to initiate the theory of differential equa-

tions with piecewise constant argument [54, 125]. Since then, these equations have

been under intensive investigations. The main idea of differential equation with piece-

wise constant argument is representing a hybrid of continuous and discrete dynamical

systems and combining the properties of both the differential and difference equa-

tions. The concept of differential equations with piecewise constant argument has

been generalized by introducing arbitrary piecewise constant functions as arguments

in [2, 7, 8, 14].

The Bernoulli equations are important class of nonlinear systems in the classical the-

ory of differential equation. Even though these equations have nonlinearities in con-

tinuous case it is possible to obtain the exact solution by certain transformations. In
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Chapter 2, we investigated the Bernoulli equations with impulses. To the best of our

knowledge, there is no study which deal with the Bernoulli equations with piecewise

constant argument.

It is only in the recent decades, there has been intensive developments on time-

dependent differential equations. Local theory of dynamical systems is concerned

with asymptotic behavior of an equilibrium or a periodic solution. However, in

nonautonomous dynamical systems it is usually hard to find an equilibrium point

or a periodic solution. Indeed, in many case they fail even to exist. Therefore, equi-

libria generically persist as bounded solutions in the theory of time varying dynam-

ical systems. There are abstract formulation of a nonautonomous dynamical sys-

tems as new concept of nonautonomous attractors which are called pullback attractors

[46, 47, 77, 89, 112, 122]. We investigate appearances and disappearances of bounded

solutions that are stable and unstable in the pullback and forward sense. In particular,

it was possible to study bifurcation analysis in nonautonomous systems with pull-

back attractors [43, 75, 86, 88]. In Chapter 2, we have defined an impulsive Bernoulli

equation and studied nonautonomous transcritical and pitchfork bifurcations analysis

depending on Lyapunov exponents [24, 26, 27, 28]. In the current chapter we continue

with scalar systems in hybrid dynamics and obtain results depending on the sign of

these exponents. A theory of nonautonomous bifurcations in Banach space is treated

in terms of exponential dichotomy in series of remarkable papers [109, 110, 111].

Let Z, N and R be the sets of all integers, natural and real numbers, respectively. Fix

two real-valued sequences θi, ζi, i ∈ Z, such that θi < θi+1, θi ≤ ζi ≤ θi+1 for all

i ∈ Z,
∣∣θi∣∣ → ∞ as

∣∣i∣∣ → ∞. The main subject under investigation in this chapter

is the following Bernoulli equation with piecewise constant argument of generalized

type.

x′(t) = p(t)x(t)− q(t)xn(t)xn(γ(t)), (4.1)

where x ∈ R, t ∈ R, γ(t) = ζi , if t ∈
[
θi, θi+1

)
, i ∈ Z, the functions p, q : R→ R are

continuous. Let φ(t, γ(t), t0, x0) be a solution of (4.1). In this chapter, we treat only

scalar differential equations such that φ(t, γ(t), t0, x0) is continuable on R. Solutions

are unique both forwards and backwards in time.

In this chapter, we consider differential equation with both retarded and advanced
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piecewise constant argument of generalized type. That is, the argument function,

γ(t), is of a mixed type. The nonlinear term of the equation (4.1) is taken so that

after substitution y(t) + y(γ(t)) = 2x1−n(t)x−n(γ(t)) the system (4.1) is converted

to a linear nonhomogeneous system. The main novelty of this chapter is that the

Bernoulli equation with piecewise constant argument (4.1) is considered for the first

time in the literature. The remaining part of this chapter is organized as follows. In

Section 4.2, we study bounded solutions of the Bernoulli equation (4.1). In Section

4.3 and Section 4.4, the pitchfork and the transcritical bifurcations are investigated

respectively along with asymptotic properties of the bounded solutions.

In order to study nonautonomous bifurcation with piecewise constant argument we

should define corresponding concepts of stability. In this chapter, we use Hausdorff

semi-distance between sets X and Y as d(X, Y ) = sup
x∈X

inf
y∈Y

d(x, y).

4.1.1 Attraction and Stability

Asymptotic properties of continuous dynamics and hybrid dynamics are the same.

Therefore, we shall use notion of pullback attracting sets without any change from

[36, 43, 46, 49, 56, 57, 58, 78, 80, 87, 89, 112, 122].

Definition 15 [78] An invariant set A(t) is called pullback attracting if for every

t ∈ R

lim
t0→−∞

d(φ(t, t0, x0),A(t)) = 0.

Having given meanings of pullback attraction one needs to characterize related ideas

of stability, instability and asymptotic stability in order to investigate asymptotic anal-

ysis in the pullback sense. Next, we start with defining stability in the pullback sense.

Definition 16 [86] An invariant set A(t) is pullback stable if for every t ∈ R and

ε > 0 there exists a δ(t) > 0 such that for any t0 < t, x0 ∈ N(A(t0), δ(t)) implies

that φ(t, t0, x0) ∈ N(A(t), ε).
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An invariant set A(t) is said to be pullback asymptotically stable if it is pullback stable

and pullback attracting. As we are busy with scalar impulsive systems, one can verify

that pullback attraction implies pullback stability for a bounded trajectories. Next, we

state the following lemma which will be useful in what follows.

Lemma 6 Let y(t) be a locally pullback attracting complete trajectory of a scalar

impulsive system. Then, y(t) is also pullback stable.

The proof of this lemma, given by Langa et al. in [88], for continuous case is the

same for impulsive systems. Thus, the last lemma allows us to concentrate on only

pullback attraction properties of a complete trajectory instead of carrying out pullback

stability.

As one would expect pullback instability is characterized through the converse of

pullback stability. That is, an invariant set A(t) is called pullback unstable if it is not

pullback stable, i.e. if there exists a t ∈ R and ε > 0 such that for each δ > 0, there

exists a t0 < t and x0 ∈ N(A(t0), δ) such that d(φ(t, t0, x0),A(t)) > ε. However,

the notion of unstable set, which Crauel defined for the random dynamical systems,

seems to be more natural instrument in discontinuous dynamics point of view.

Definition 17 [56] The unstable set, UA(t), of an invariant set A(t) is defined as

UA(t) = {u : lim
t→−∞

d(φ(t, t0, u),A(t)) = 0}.

We say that A(t) is asymptotically unstable if the relation UA(t) 6= A(t) is fulfilled for

some t.

If A(t) is invariant then one can see that A(t) ⊂ UA(t) is satisfied. Thus, from the

last definition we have that A(t) is strict subset of UA(t). In the sequel, we need the

following result.

Proposition 25 [86] If A(t) is asymptotically unstable then it is also locally pullback

unstable and cannot be locally pullback attracting.

This result proven by Langa et al. in [86] is valid for impulsive systems. Thus, we

omit the proof and refer to [86]. Note that the idea of the asymptotic instability is
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a definition of time-reversed forward attraction. Alternatively, it is conceivable to

define instability as a time-reversed version of pullback attraction.

Definition 18 [88] An invariant set A(t) is pullback repelling if it is pullback attract-

ing for time-reversed system, i.e., if for every t ∈ R and every x0 ∈ Rn,

lim
t0→∞

d(φ(t, t0, x0),A(t)) = 0.

4.2 Bounded Solutions

In this section, we study existence of a bounded solution of (4.1). It is easy to see that

x = 0 is a bounded solution of (4.1). We are interested in nonzero bounded solutions.

For this purpose, we shall need the following conditions.

(C1) There exist positive numbers m and M such that 0 < m ≤ q(t) ≤ M for all

t ∈ R;

(C2) There exist positive numbers θ and θ such that θ ≤ θi+1 − θi ≤ θ.

By means of the substitution y(t) + y(γ(t)) = 2x1−n(t)x−n(γ(t)) the system (4.1) is

reduced to the following non-homogeneous linear system

y′(t) = (1− n)p(t)y(t) + (1− n)p(t)y(γ(t)) + 2(n− 1)q(t). (4.2)

One can see that Ψ(t, s) = e
∫ t
s (1−n)p(u)du is the fundamental solution of the following

linear system

z′(t) = (1− n)p(t)z(t).

In what follows, we introduce a function Ri(t), i ∈ Z, [2, 14],

Ri(t) = Ψ(t, ζi) +

t∫
ζi

Ψ(t, s)(1− n)p(s)ds = 2e
∫ t
ζi

(1−n)p(u)du − 1.

We shall need the following modified regularity condition.

(C3) For every fixed i ∈ Z, Ri(t) > 0, ∀t ∈
[
θi, θi+1

]
.
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Let Y (t, s) be the fundamental matrix of the following linear system

y′(t) = (1− n)p(t)y(t) + (1− n)p(t)y(γ(t)). (4.3)

Assume that θi < t0 < ζi for a fixed i ∈ Z. One can confirm that [2, 8, 14],

Y (t, t0) = Rj(t)

(
i+1∏
k=j

R−1
k (θk)Rk−1(θk)

)
R−1
i (t0),

for t ∈
[
θj, θj+1

]
and arbitrary j > i.

Denote α = lim sup
t−s→∞

ln ‖Y (t, s)‖
t− s

. One can guarantee that there exist two positive

numbers k and K such that

keα(t−s) ≤ ‖Y (t, s)‖ ≤ Keα(t−s), s ≤ t. (4.4)

In what follows, it will be useful to define the following piecewise continuous matrix.

Σ(t, s) =


Y (θi, t0)Ψ(t0, s), if t ∈ ˆ[

t0, ζi
]
,

Y (t, θk+1)Ψ(θk+1, s), if t ∈
[
ζk, ζk+1

]
,

Ψ(t, s), if t ∈ ˆ[ζj, t],
(4.5)

where t0 ∈
[
θi, θi+1

]
, t ∈

[
θj, θj+1

]
, i < j, ˆ[a, b] =

[
a, b
]

if a ≤ b, and equal to[
b, a
]
, otherwise for a, b ∈ R.

Lemma 7 If (C1)-(C3) are satisfied, then (4.1) possesses nonzero bounded solutions

x̃(t) on R which satisfy the following equations

x̃n−1(t) =



2

(
ζj∫
−∞

Σ(ζj, s)2(n− 1)q(s)ds

) n
2n−1

t∫
−∞

Σ(t, s)2(n− 1)q(s)ds+
ζj∫
−∞

Σ(ζj, s)2(n− 1)q(s)ds

, if α < 0,

−
2

(
∞∫
ζj

Σ(ζj, s)2(n− 1)q(s)ds

) n
2n−1

∞∫
t

Σ(t, s)2(n− 1)q(s)ds+
∞∫
ζj

Σ(ζj, s)2(n− 1)q(s)ds

, if α > 0,

where t ∈
[
θj, θj+1

]
.
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Proof. Consider α < 0. First of all, let us show that

ỹ(t) =

∫ t

−∞
Σ(t, s)2(n− 1)q(s)ds

=

k=j∑
−∞

Y (t, θk)

∫ ζk

ζk−1

Ψ(θk, s)2(n− 1)q(s)ds+

∫ t

ζj

Ψ(t, s)2(1− n)q(s)ds

is a bounded solution of (4.2) for t ∈
[
θj, θj+1

]
. Indeed,

ỹ′(t) =

k=j∑
−∞

[
2(1− n)p(t)Y (t, θk)

+ 2(1− n)p(t)Y (γ(t), θk)
] ζk∫
ζk−1

Ψ(θk, s)2(n− 1)q(s)ds

+

t∫
ζj

2(1− n)p(t)Ψ(t, s)2(1− n)q(s)ds+ Ψ(t, t)2(n− 1)q(t)

= 2(1− n)p(t)ỹ(t) + 2(1− n)p(t)ỹ(γ(t)) + 2(n− 1)q(t).

Thus, ỹ(t) satisfies (4.2). It is easy to see that ỹ(t) is continuous in any interval(
θi, θi+1

)
, i ∈ Z. We show that ỹ(t) is also continuous at points θi. Fix any i ∈ Z.

ỹ(θi+) =
∑k=j
−∞ Y (θi, θk)

ζk∫
ζk−1

Ψ(θk, s)2(n− 1)q(s)ds

+

θi∫
ζj

Ψ(θi, s)2(1− n)q(s)ds

= ỹ(θi−)

Next, we show that ỹ(t) is bounded and separated from zero. One can confirm ex-

istence of positive numbers h and H such that h ≤ ‖Ψ(t, s)‖ ≤ H for all t, s ∈[
θi, θi+1

]
, i ∈ Z. Thus, we have that,

0 <
2θmhk(n− 1)

1− e−αθ
+ 2θmh(n− 1) ≤ ||ỹ(t)||

≤ 4θMKH(n− 1)

1− e−αθ
+ 4θMH(n− 1) <∞,

for t ∈
[
θj, θj+1

]
. On the other hand, by (C1) and (C3) one can verify that ỹ(t) > 0,

i.e. ỹ(t) is separated from zero.

Finally, one can see that y(t) + y(γ(t)) = 2x1−n(t)x−n(γ(t)) implies

x(γ(t)) = y
1

2n−1 (γ(t)). Thus, the result follows from (C2) and the relation xn−1(t) =

2y
n

2n−1 (γ(t))

y(t) + y(γ(t))
.

83



We omit the proof of the case α > 0, since it can be obtained in the similar manner.

This finalizes the proof of lemma. �

Corollary 1 If (C1)-(C3) are satisfied, then (4.1) possesses nonzero bounded on R

solutions x(t) which satisfy the following equations

xn−1(t) =



2

Y (ζi,t0)x−2m
0 +

ζj∫
t0

Σ(ζj ,s)2(n−1)q(s)ds

 n
2n−1

t∫
−∞

Σ(t,s)2(n−1)q(s)ds+Y (ζi,t0)x−2m
0 +

ζj∫
t0

Σ(ζj ,s)2(n−1)q(s)ds

, if α < 0,

2

Y (ζi,t0)x−2m
0 +

ζj∫
t0

Σ(ζj ,s)2(n−1)q(s)ds

 n
2n−1

−
∞∫
t

Σ(t,s)2(n−1)q(s)ds+Y (ζi,t0)x−2m
0 +

ζj∫
t0

Σ(ζj ,s)2(n−1)q(s)ds

, if α > 0,

where t ∈
[
θj, θj+1

]
.

In what follows, we have different bifurcation scenarios depending on the parity of n.

In the next sections we deal with pitchfork and transcritical bifurcations respectively.

4.3 The Pitchfork Bifurcation

Consider (4.1) for n = 2m+ 1. That is,

x′(t) = p(t)x(t)− q(t)x2m+1(t)x2m+1(γ(t)). (4.6)

Theorem 26 Suppose that (C1)-(C3) are fulfilled for (4.6). Then, for α > 0 the triv-

ial solution is asymptotically stable whereas the nonzero bounded solutions x(t) are

asymptotically unstable, and for α < 0 the trivial solution is asymptotically unstable

and the nonzero bounded solutions x(t) stable and x̃(t) are asymptotically pullback

stable.

Proof. One can verify that the solution of (4.6) satisfy the following equation, [2, 8,

14],

x2m(t, t0, x0) =
2

(
Y (ζi,t0)x−2m

0 +
ζi∫
t0

Σ(ζi,s)4mq(s)ds

) 2m+1
4m+1

Y (t,t0)x−2m
0 +

t∫
t0

Σ(t,s)4mq(s)ds+Y (ζi,t0)x−2m
0 +

ζi∫
t0

Σ(ζi,s)4mq(s)ds

. (4.7)
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In the previous section, we have shown that (4.6) admits the trivial solution and

bounded solutions x̃(t) and x(t). Asymptotic behavior of (4.1) depends on the sign

of α. We start with the case α > 0. One can confirm the following equation.

x2m(t, t0, x0) =
2(ỹ(ζi)+Y (ζi,t0)(x−2m

0 −ỹ(t0)))
2m+1
4m+1

ỹ(t)+ỹ(ζi)+Y (t,t0)(x−2m
0 −ỹ(t0))+Y (ζi,t0)(x−2m

0 −ỹ(t0))
. (4.8)

From (4.8) it follows that x2m(t, t0, x0) → 0 as t → ∞. So, x(t, t0, x0) → 0 as

t → ∞, replying that all solutions are attracted forwards to the point {0}. On the

other hand, x(t) converges to x(t) as t → −∞ whenever ||x0|| < ||ỹ(t0)|| 1
2m . Thus,

the nonzero bounded solutions x(t) are asymptotically unstable.

If α < 0, we notice that the expression (4.8) holds. Thus, one can see that x(t)

converges to x̃(t) as t0 → −∞ and to x(t) as t → ∞ whenever ||x0|| < ||ỹ(t0)|| 1
2m .

Thus, x̃(t) is asymptotically pullback stable whereas x̃(t) forward stable. Moreover,

x2m(t, t0, x0)→ 0 as t→ −∞ whenever ||x0|| < ||ỹ(t0)|| 1
2m . Therefore, the origin is

asymptotically unstable. The theorem is proved. �

4.4 The Transcritical Bifurcation

In this section we consider (4.1) for n = 2m. That is,

x′(t) = p(t)x(t)− q(t)x2m(t)x2m(γ(t)). (4.9)

Theorem 27 Suppose that (C1)-(C3) are fulfilled for (4.9). Then, for α > 0 the trivial

solution is asymptotically stable, and for α < 0 the trivial solution is asymptotically

unstable and the nonzero bounded solution x(t) is forward stable and x̃(t) pullback

stable.

Proof. One can show that the solution of (4.9) satisfy the following equation, [2, 8,

14],

x2m−1(t, t0, x0) =

2

(
Y (ζi,t0)x−2m+1

0 +
ζi∫
t0

Σ(ζi,s)2(2m−1)q(s)ds

) 2m
4m−1

Y (t,t0)x−2m+1
0 +

t∫
t0

Σ(t,s)2(2m−1)q(s)ds+Y (ζi,t0)x−2m+1
0 +

ζi∫
t0

Σ(ζi,s)2(2m−1)q(s)ds

.
(4.10)
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In Section 4.2 we have shown that (4.9) admits the trivial solution and the nonzero

bounded solutions x̃(t) and x(t). As in Section 4.3, it is clear that asymptotic behavior

of (4.9) depends on α. Consider the case α > 0. From the equation (4.10) it follows

that x(t, t0, x0) → 0 as t → ∞ as long as x(τ, t0, x0) exists for all τ ∈ [t0, t]. If

x0 > 0, observe that

Y (t, t0)x−2m+1
0 +

t∫
t0

Σ(t, s)2(2m− 1)q(s)ds+ Y (ζi, t0)x−2m+1
0

+
ζi∫
t0

Σ(ζi, s)2(2m− 1)q(s)ds > 0,

for τ ∈ [t0, t]. Thus, x(τ, t0, x0) exists for all τ ∈ [t0, t] and does not blow up as

t→∞.

If x0 < 0, to ensure the existence of the solution x(τ, t0, x0) it is sufficient to show

that

Y (τ, t0)x−2m+1
0 +

τ∫
t0

Σ(τ, s)2(2m− 1)q(s)ds < 0,

for τ ∈ [t0, t]. Since
τ∫
t0

Σ(τ, s)2(2m− 1)q(s)ds > 0, we require

|x0| <

 Y (τ, t0)
τ∫
t0

Σ(τ, s)2(2m− 1)q(s)ds


1

2m−1

.

However, one needs to show that right-hand side of the last inequality is bounded

from below. One can find that

Y (τ,t0)
τ∫
t0

Σ(τ,s)2(2m−1)q(s)ds
=

1
ζi∫
t0

Ψ(τ,s)2(n−1)q(s)ds+
k=j∑
k=i

Y (t0,θk)
ζk∫

ζk−1

Ψ(θk,s)2(n−1)q(s)ds+Y −(τ,t0)
τ∫
ζj

Ψ(τ,s)2(1−n)q(s)ds

,
(4.11)

for θj ≤ τ ≤ θj+1. It is easy to see that the last expression is bounded from below

since Y −1(τ, t0) is bounded for a large enough τ .

Finally, we consider the case α < 0. To show that the trivial solution is asymptotically

unstable notice that

x2m−1(t, t0, x0) =
2(ỹ(ζi)+Y (ζi,t0)(x−2m+1

0 −ỹ(t0)))
2m

4m−1

ỹ(t)+ỹ(ζi)+Y (t,t0)(x−2m+1
0 −ỹ(t0))+Y (ζi,t0)(x−2m+1

0 −ỹ(t0))
. (4.12)
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From the last expression it follows that x(t) converges to 0 as t → −∞ for all 0 <

x0 < ỹ
1

2m−1 (t0).

It remains to show that x(t) is forward and x̃(t) pullback stable. If x0 > 0, then it is

clear that

Y (τ, t0)x−2m+1
0 +

τ∫
t0

Σ(τ, s)2(2m− 1)q(s)ds > 0,

for τ ∈ [t0, t]. Thus, the solution x(τ, t0, x0) exists for all τ ∈ [t0, t] and the (4.12)

implies that x(t) is forward and x̃(t) pullback stable for all 0 < x0 < ỹ
1

2m−1 (t0).

If x0 < 0, then to ensure the existence of the solution x(τ, t0, x0) it is sufficient to

show that

Y (τ, t0)x−2m+1
0 +

τ∫
t0

Σ(τ, s)2(2m− 1)q(s)ds < 0,

for τ ∈ [t0, t]. Since
τ∫
t0

Σ(τ, s)2(2m− 1)q(s)ds > 0, we require

|x0| <

 Y (τ, t0)
τ∫
t0

Σ(τ, s)2(2m− 1)q(s)ds


1

2m−1

.

The right-hand side of the last inequality is bounded from below because (4.11) holds.

The theorem is proved.

4.5 Illustrative Examples

In this section, to illustrate theoretical results of Theorem 27 we consider two exam-

ples.

Example 1. Let us consider the following system.

x′(t) = (1.1 + sin(5 + t3/5))x(t)− (4 + 2.5 tanh(t/2))x4(t)x4(γ(t)), (4.13)

where we have taken p(t) = 1.1 + sin(5 + t3/5), q(t) = 4 + 2.5 tanh(t/2), θk =
k−1

2
, k ∈ Z, ζk = k−1

2
and n = 4. One can guarantee that α > 0 and the conditions

of Theorem 27 are satisfied with m = 1.5, M = 6.5 and θ = θ = 1/2. Theorem
27 guarantees that (4.13) has nonzero bounded solutions x̃(t) and x(t). Figure 4.1
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reveals that all solutions starting near the origin diverge from the origin and converge
to the nonzero bounded solutions. Therefore, the origin is asymptotically unstable
and the bounded solutions are stable as expressed in the numerical simulations.

Figure 4.1: Asymptotic behavior of (4.13) for t ∈ [0, 8]. In the figure, the black color
corresponds to the solution with initial value x0 = 0.1; the red color corresponds
to the solution with initial value x0 = 0.15 and the blue color corresponds to the
solution with initial value x0 = 0.2. One can see that all solutions which start in
the neighborhood of the origin diverge from the origin and converge to the nontrivial
bounded solutions x(t).

Example 2. We consider the following system.

x′(t) = −(1.1 + sin(5 + t3/5))x(t)− (4 + 2.5 tanh(t/2))x4(t)x4(γ(t)), (4.14)

where for this example we have taken p(t) = −1.1 − sin(5 + t3/5), q(t) = 4 +

2.5 tanh(t/2), θk = k−1
2
, k ∈ Z, ζk = k−1

2
and n = 4. One can guarantee that

α < 0 and the conditions of Theorem 27 are satisfied with m = 1.5, M = 6.5 and
θ = θ = 1/2. We present in figure 4.2 the solution of (4.14) with initial values x0 =

−0.15, 0.1 and x0 = 0.2. Numerical simulations support our theoretical discussion
and reveal that all solutions starting near the origin converge to the origin.
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Figure 4.2: Asymptotic behavior of (4.14) for t ∈ [0, 8]. In the figure, the black color
corresponds to the solution with initial value x0 = 0.1; the red color corresponds
to the solution with initial value x0 = −0.15 and the blue color corresponds to the
solution with initial value x0 = 0.2.

4.6 Discussion

In the present chapter, it is the first time the Bernoulli equations with piecewise con-

stant argument of generalized type has been studied. This chapter provides new

sufficient conditions guaranteeing the existence and the separation from zero of the

nonzero bounded solutions. Moreover, both forward and pullback asymptotic be-

havior of the trivial and the nonzero bounded solutions and different nonautonomous

bifurcation scenarios are obtained.
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CHAPTER 5

CONCLUSION

This thesis is devoted to nonautonomous bifurcations in impulsive differential equa-

tions as well as differential equations with alternating piecewise constant argument

of generalized type. Moreover, we study bifurcation patterns in continuous Bernoulli

equations. For the first time in this thesis we show that different concepts of attraction

and repulsion such as pullback and forward attraction/repulsion remain as a fruitful

idea in impulsive and hybrid systems. We investigate asymptotic behavior of a so-

lution in terms of different convergence analysis and explore different bifurcation

scenarios depending on these analysis. In particular, throughout the thesis, we study

nonautonomous transcritical and pitchfork bifurcations in continuous, impulsive and

hybrid systems. Furthermore, we introduce the Bernoulli equations, well-known in

continuous differential equations, in impulsive and hybrid systems. The results men-

tioned in [24, 25, 26, 27, 28] constitute the main part of this thesis.

Chapter 2 deals with nonautonomous transcritical and pitchfork bifurcations in con-

tinuous as well as discontinuous system. We implement the definitions of pullback

attractor and forward attractor to study asymptotic behavior of systems. In the be-

ginning of the chapter, we study pitchfork bifurcation scenarios based on pullback

convergence which depend on the properties of the system in the past. Sufficient

conditions to have transcritical bifurcation are obtained. In the remaining part of the

chapter, we generalize the results obtained in the first part as well as attain less restric-

tive conditions to ensure nonautonomous bifurcation patters. Besides, the Bernoulli

equations in impulsive systems were introduced for the first time in the literature.

The jump equation of the Bernoulli system is chosen in special manner so that the
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whole system is converted to a linear non-homogeneous system under the Bernoulli

transformation. We carry out pullback as well as forward asymptotic behavior of the

original system to analyze. Moreover, conditions to have bounded solutions for the

Bernoulli equations are achieved. Illustration of theoretical results attained through

numerical simulations.

In Chapter 3, we study nonautonomous transcritical and pitchfork bifurcations in at-

traction and transition sense. Bifurcation patterns in systems which are not explicitly

solvable are under investigation. In other words, we consider impulsive systems for

which it is not possible to obtain an explicit solution by any means of transforma-

tion. We observe qualitative change in the attractor reppeller pair. Namely, the trivial

attractor/repuller become nontrivial one as parameter varies. In addition to these,

finite-time analogues of nonautonomous transcritical and pitchfork bifurcations are

presented. Moreover, a new results concerning asymptotic behavior of linearized sys-

tems depending on entire time are obtained. The theoretical results obtained in this

chapter strengthened by means of simulation results.

Chapter 4 concerned with nonautonomous transcritical and pitchfork bifurcations in

differential equations with alternating piecewise constant argument. We carry out

analysis based on the book of Akhmet [2] where equivalent integral equations we

introduced. The Bernoulli equation is presented for the hybrid systems. We con-

struct special type of transformation so that original nonlinear system is converted to

a linear non-homogeneous system. We premise that bifurcation scenarios depend on

the sign of Lyapunov exponents. Besides of this results, future and past asymptotic

properties of bounded solutions are discussed. Appropriate examples with numerical

simulations are given to illustrate the theoretical results.

This study suggests many aspects in which bifurcation theory in nonautonomous dy-

namical systems could be further developed.

• The saddle-node bifurcation remains as an open problem in impulsive and hy-

brid systems even for one-dimensional systems. One may follow either studies

carried out in [63] or in [88] to give definitions of the fold bifurcation in dis-

continuous systems.
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• There are many interesting problems in higher dimensional systems regarding

the theory of nonautonomous bifurcation studied in this thesis. Currently, there

is no study devoted to this subject. Series of studies carried out in [109, 110,

111] which deal with nonautonomous bifurcation in Banach space might be one

of the directions to follow. Attractive topics of the bifurcation theory such as

center manifold or normal forms should be treated.

• Structural stability played a big role in the formulation of the bifurcation theory

in autonomous systems [35]. However, for nonautonomous dynamical systems

it has no proper generalization even in continuous case.

• Issuing from the numerical simulations one can see that results of Chapter 3

can be further developed. In particular, existence and pullback and forward

convergence of bounded solutions should be considered.

• Application of theories established in this thesis to mathematical biology such

as population dynamics, neural networks, epidemiology models and tumor mod-

els are subjects to be addressed. Moreover, other real world problems as in

[3, 4, 90] need to be mentioned.

• Nonautonomous bifurcation patterns based on the skew product flows approach

is another interesting direction to follow.

• There is no systematic study which addresses nonautonomous Hopf bifurcation

theory. Appearance and disappearance of periodic solutions as parameter varies

could be interesting issue to study.

• In autonomous dynamical systems, the concept of bifurcation and chaos are

related topics [3]. Relatively simple models played an great role in the study

of chaotic systems. For instance, there are strong ties between period doubling

bifurcation and chaos. It remains as a fruitful subject to investigate relations

between nonautonomous bifurcation theory and chaos.
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