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ABSTRACT

DESIGN AND ANALYSIS OF RADAR ANTENNA STRUCTURE WITH
OPTIMUM DYNAMIC BEHAVIOR

Sun, Enver
M. S., Department of Mechanical Engineering
Supervisor: Asst. Prof. Dr. Gékhan O. Ozgen

Co-Supervisor: Prof. Dr. Yavuz Yaman

February 2016, 283 pages

With the advance of technology the radar antenna structures are being smaller and
their design alternatives are quite numerous that they can be produced in different
shapes and can be conformed to original structures such as body panel of an aircraft
or car which are composed of light weight thin shell structures. Radar antennas as an
integral part of the air or ground vehicles are subjected to various dynamic loadings
which effects its overall radiation pattern which results overall degradation of
antenna performance, especially at high amplitude resonance conditions due to low

stiffness of host structures.

The passive vibration control, namely surface damping treatment methodology is one
of the measurement technique that can be taken account at the initial design phase of
such integration process which is based on increasing the damping capacity of host
structure by adding viscoelastic materials between contacting surfaces. However
adding high density materials results increase of overall weight. Therefore an

extensive research activity has been carried out in order to design of surface damping



treatment with spacer layer with minimum weight and maximum damping

constraints.

In this study, for simplicity and to verify the design methodology, a four layer
cantilever beam that represents the host structure, was designed, analyzed and tested
for optimum dynamic behavior. Mainly topology and parametric optimization
methods are used in order to find best material layout of uniform spacer and best
slotted configuration of spacer layer that maximize the damping performance of the
design with minimum material condition. Experimental study is also conducted for
layered cantilever beam with developed concept design of slotted configuration

under vibration load to verify the methodology used.
Keywords: Passive vibration control, surface damping treatment, cantilever beam,

spacer, topology optimization, parametric design and optimization, vibration test,

finite element method, modal strain energy, loss factor.
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EN [YI DINAMIK DAVRANISA SAHIP RADAR ANTEN YAPILARININ
TASARIMI VE ANALIZI

Sun, Enver
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yéneticisi: Yrd. Dog. Dr. Gokhan O. Ozgen

Ortak Tez Yoneticisi: Prof. Dr. Yavuz Yaman

Subat 2016, 283 sayfa

Teknolojinin ilerlemesi ile birlikte radar anten yapilar1 giinden giline kii¢iilmekte ve
cok farkli tasarim alternatifleri ile birlikte entegre edilebildikleri ugak veya otomobil
govdesinin dis sekline uygun olarak da iiretilebilmektedirler. Bu tip radar antenlerin
sinyal izdiisiimii, entegre edildikleri yapilarin, diisiik direngenlige sahip olmalar
nedeni ile, dinamik kuvvetlerden direkt olarak etkilenen, hafif, ince kabuk yapida
olmasi sebebiyle 6zellikle yiiksek genlikli yer degistirmeye sebebiyet veren rozanans
durumlarinda etkilenmekte ve bu durum radar antenin performans kaybina sebebiyet

vermektedir.

Yiiksek genlikli bu titresimlerin engellenmesi amaci ile soniimleme oranini artirmaya
yonelik, viskoelastik malzemelerin kullanildigi sinirlandirilmis katmanli titresim
sonlimleme ydntemi, pasif bir titresim yontemi olarak entegrasyona yonelik ve erken
tasarim gelistirme evresinde uygulanabilecek onlemlerden bir tanesidir. Ancak
viskoelastic malzemelerin yiiksek yogunluklu olmalar1 nedeni ile topyekiin tasarim

agirliginda artisa neden olmaktadirlar. Bu sebeple diisiik agirlikli ve yiiksek titresim

vil



soniimleme kapasitesine sahip ara katmanli sinirlandirilmis katmanlarin tasarimina

yonelik genis kapsamli bir arastirma yiiriitiilmiistiir.

Bu calismada, uygulanan tasarim ve analiz yontemlerinin basit¢ce dogrulanabilir bir
model iizerinde gosterilmesi amaci ile, ankastre sinir kosuluna sahip dort katmanl
kiris yapist en iyl dinamik davraniga sahip olacak sekilde tasarlanmis, analiz ve test
edilmistir. Topoloji ve parametrik optimizasyon yontemleri hafif ve maksimum
soniimleme performansi sartlari altinda 6zellikle homojen malzeme dagilimina sahip
aralayic1 katmanm minimum agirlikli malzeme dagilimin bulunmasinda ve kanalli
aralayicinin en iyi geometrik Olgililerinin bulunmasinda kullanilmigtir. Gelistirilen
konsept tasarimlardan kanalli yapidaki aralayici katmanli ankastre kirig titresim
yiikleri altinda test edilerek, kullanilan tasarim ve analiz yonteminin gecerliligi

dogrulanmustir.

Anahtar Kelimeler: Pasif titresim kontrolii, yiizey sOniimleme, ankastre Kkiris,
aralayic1 katman, topoloji optimizasyonu, parametrik tasarim ve optimizasyon,

titresim testi, sonlu elemanlar yontemi, modal gerinim enerjisi, soniimleme faktorii.
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CHAPTER 1

INTRODUCTION

1.1 Radar Antennas

Advances in modern technology together with expanding needs have made possible
various practical applications in communication field either in military and civilian
sector. Especially the wireless technology is one of the growing field that allows us
to send, convey and receive data regardless of location and distances without the
need of cables or any other forms of electrical conductors through the use of a source
of electrical energy, antenna elements and conductive space, which is usually open

atmosphere, altogether forming a communication network.

In military applications one of the application area of wireless communication is,
radio detection and ranging, shortly RADAR which was developed in World War 11
to detect the enemy targets. Through the years the application areas and their
functions have been widened and they have been used for tactical, intelligence,
surveillance, and reconnaissance purposes as well as keeping air routes safe by
tracking air traffic, detecting moving targets such as missiles, vehicles for speed

measurement and even in image generation purposes.



Figure 1-1 Operational principle of a radar system [1]

In radar systems, the generated electromagnetic waves are directed to an object or an
area from which the required information will be collected. This process resembles
the illumination of a region by a light. The waves collide, bounce and scattered back
from the target locations then the antenna elements collects those bounced waves
back again in order to gather desired information from it via signal processing. A
radar system performs this action continuously and simultaneously for stationary or

moving targets [1].

The antenna is the first element in the transmitting or receiving those signals which
are described as travelling electromagnetic waves in space/air. Depending on the
purpose, antennas can work either in transmitter or receiver modes. Basically the
electrical energy is converted into electromagnetic waves and antennas are used to
radiate those waves in the form of a beam that is received by another antenna at
which the electromagnetic waves are then converted into electrical signals after

signal processing [2].

Basic principle of radiation of electromagnetic waves through antennas can be
illustrated as in Figure 1-2. The electrical field is generated in source by simply
creating an unbalanced charge and in transmitter mode the generated signals with

certain amplitude guided to the antenna element and radiated to the free space to the



required direction. Conversely in receiving mode the energy received is transformed
into another wave to be processed to extract the information from it [3]. From this
perspective, antennas have critical role as they provide the fundamental link between

free space and target.

transmitting

7~
T2

receiving

Figure 1-2 Transition between transmission line and antenna [3]
Antenna elements basically focus and transmit the RF energy into a specific direction
and based on their transmitting characteristics the antennas are grouped into two part

[4,5];

e Omnidirectional

e Directional and Semi-Directional

Omnidirectional Antennas:

This type of antenna elements creates a toroidal uniform coverage area around its
axis and its simple form is knows as dipole antenna (Figure 1-3). When intended to
have uniform coverage of RF signals such as the case for the radio broadcasting

applications this type of antennas are selected.

3



Figure 1-3 Omnidirectional, semi directional and sector coverage patterns [5]

Directional and Semi-Directional:

In this type of antennas the radiated energy concentrated into specific direction with
narrower band width, patch and panel like antennas are within this group. Using
more than one antenna the coverage area in certain direction can be increased (Figure

1-3).

1.1.1 Basic Characteristics of an Antenna Element

The performance of antennas is described with various radiation characteristics.

Some of the important basic characteristics of an antenna element are listed below

[6].

Radiation Pattern:

Antennas emit electromagnetic energy in certain modes and the radiation strength
can be different in one direction compared to other direction. Radiation pattern is
visualization of propagated wave which shows in which direction an antenna directs

the energy it radiates. This information can be provided either in the form of polar or
4



rectangular plots. An example of polar graph shows a sample radiation pattern

(Figure 1-4).
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Figure 1-4 Polar plot of radiation pattern [7]

The main lobe shows the maximum radiation direction whereas the side lobes shows
the least energy propagation directions with smaller beams which are usually
radiation in undesired directions in varying intensity which can create various
problems that will be defined in subsequent section. Another side lobe is called back
lobe which is the portion of radiation pattern that is directed opposing the main beam

direction.

Beam width:
Defines the maximum angular range of emitted pattern o (Figure 1-4) in which the

strength of antenna at its half power.



Band width:

Antennas operate over wide frequency ranges and bandwidth defines the effective

operation frequency where its performance is set for.

Directivity and Gain:

Antennas are designed for the specific purpose and mostly intend is to focus its
radiation energy to a particular direction while minimizing in other direction. The
gain is known as the ratio of maximum energy emitted to that particular direction to
the least energy portion in other direction. On the other hand directivity is focusing
action or increase of strength in specific direction. If we consider radiation pattern as
a beam of light coming from out of a torch, focusing action corresponds to narrowing
beam pattern and increasing directivity [8]. Increasing directivity of antenna

elements provides long range capability for the radar antenna.
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1.2 Types of Antennas and Their Application Areas

Using various types of antennas with the help of their radiation characteristics

described above, radars perform various operational functions.

During search or surveillance function, a radar antenna forms the generated radiation
energy into a shape called directive beams or a pattern which illuminates and scans
the wide angular region in short or long range for detection and extraction of
information from targets that may exist on ground or in sky as illustrated in Figure
1-6. During operation radar antenna simply radiates its energy in form of a beam
(Figure 1-3) that focus on over an area or on a target like a light source and scans
repeatedly. If any exists, upon reflection of scattered energy from the objects, radar
antenna picks up those reflections as receiver. In addition to search function some
radars also perform tracking function which requires specially designed antennas i.e.

airborne radar antennas [9].

ROTATOION AXIS

\EDI, ED WAVES

b
TARGET 3 Q

ELECTRONIC STEERING
BEAM

Figure 1-6 Typical application of ground to air and air to ground radar system

(Adapted from [1]).



Radar antennas are installed on various platforms ranging from land vehicles,
submarines, missiles and aircrafts, helicopters and automobiles in various sizes and
shapes to provide essential functions as part of communication, navigation, tracking,

monitoring, electronic warfare and collision avoidance systems [9].

One of the most common antenna type that is conventionally used over automobiles
is the mast antenna. This type of antenna creates uniform radiation pattern around the

car for best performance for car radio (Figure 1-7).

Figure 1-7 The mast antenna used for car radio [10]

Aircrafts also use many types of antennas attached over their body in order to
communicate and route its path based on the information gathered from air traffic
control and also to navigate to the exact location using global positioning system via
creating a link between satellites-ground and aircraft. They can be small enough in
size like blade antennas attached over the skin of a civil aircraft (Figure 1-8) and also

huge enough as part of early warning warfare systems in military aircrafts (Figure

1-9).



Figure 1-8 Blade antenna attached to the skin of an aircraft [11]

Figure 1-9 Radar as Airborne Warning and Control System [12]

The location, size, number and shape of these antennas are selected based on specific
functional requirements and some performance criteria as well as their reliability and

maintainability. Small or big in size, the antennas protruding from the outer mold

10



line of the aircraft involves modifications on the aircraft surface and the ones as
shown in (Figure 1-9) greatly increase the cross section of aircraft resulting an
increased cost, weight and aerodynamic drag with increased fuel consumption. In
case of improper design and integration of antennas some mechanical problems arise
such that due to severe loading environment such as vibration and buffeting
phenomena encountered during flight may cause delamination, cracks and rupture at
the vicinity of the attached zone or on the antenna itself which in turn may also cause
the loss of antenna. Thin blade antennas, especially those attached to the critical zone
of disturbing aerodynamic flow, are more prone to vibrate and rupture under this
kind of excitations [13,14]. In addition, this type of antennas increases the risk of

detection by other radars due to increased vehicle signature [15].

Fortunately with the advances in electronic and production technology have led to
the creation of new form of antenna that extends the application areas with diverse
advantages over classical radar antennas in terms of performance over wide
frequency range, cost, weight, ease of installation, low profile and conformable
which is the key important property enabling of integration electronics on various
curved or planar surfaces which are special type of radiator elements termed as
microstrip patch antenna which can be printed over or embedded into the design

domain.

11



1.2.1 Microstrip Antenna

The microstrip antenna element simply composed of printed metallic conductor over
the dielectric substrate which creates a cavity between another larger ground plane
(Figure 1-10). The basic radiation mechanism of patch antennas relies on generation
of electric field between patch and ground plane at its resonant frequency. When it is
triggered with electrical current, it radiates in some certain modes or in other words

in a different shape of beam of electromagnetic energy perpendicular to its surface.

DIELECTRIC / N
SUBSTRATE %) e _— CIRCULAR MICROSTRIP

T e -~ PATCH ANTENNA

~
" GROUND PLANE

o

\ COAXIAL CONNECTOR

Figure 1-10 The structure of microstrip circular patch antenna (Adapted from [3])

Microstrip patch antenna provides numerous advantages over conventional radar
antennas thanks to its smaller size, light weight, thin profile simpler form as well as
their low cost and ease of production. Their shapes can be changed and they are
suitable for various geometrical configurations. They can be either planar in circular,
rectangular, square, triangular or any other irregular shape [16]. Moreover their
conformability over intended design domain makes them more attractive for various

military and civil industries.

12



Their radiation characteristics can be controlled through incorporation of complex
signal processing algorithms and together with construction of miniature fractal grid
pattern of microstrip patch antenna arrays, which are known as phased array
antennas, their radiation coverage area can be increased. Also making use of their
conformability and new photolithographic production process enables this single
patch antennas printed over any geometrical surface making them best alternative

choice instead of using heavy and bulky traditional antennas (Figure 1-11) [17, 18].

a) Toroidal b) Spherical

c) Cylindrical d) Planar

Figure 1-11 Grid of microstrip patch antennas over design surfaces

(Adapted from [16])
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1.2.2 Phased Array Antennas

In practical applications a single element antenna is unable to meet the gain or highly
directive radiation pattern requirements especially suited for long distance
communication. Therefore a group of single patch radiator antenna elements are
joined together with certain distances in order to form an array with individual phase
shifter (Figure 1-12). The radiation pattern is built creating a time delay between
each single elements radiation pattern such that phase difference occurs providing
necessary target illumination with improved gain and broad angular coverage over
desired direction with additional beam steering capability. Grouping each individual

element in such concept also improves its beam width and performance [19]

Patch Antenna

Surface of Carrier

/ / / / / / Phase Shifter

+

Energy Source

Figure 1-12 Phased array antenna (Adapted from [6])
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The relative distribution of each antenna elements effects the overall performance of
antenna. Change in distance between radiators effects the radiation pattern. When the
space between individual patch increase the beam widths of all major lobes get
narrower and the strength of minor lobes increases which are in undesired directions

(Figure 1-12) [20].

Phased array antenna has many technical advantages: high power efficiency with
increased gain, shaped beam, fast tracking by electric scanning, high stealth
performance. Moreover they can be in various geometrical configurations integrated
on circularly symmetric surfaces, such as cylinders, cones or spheres. If the array
elements distribute on the carrier surface, the shape of the array is the same as the
carrier contour, then the array is a conformal phased array. Conformal phased array

has many advantages compared to planar phased array:

e Low profile, smaller volume,
e No effect to aerodynamic performance of aircrafts, automobiles and high
speed trains

e Wider scanning range [21].

15



1.2.3 Conformal Antennas

The microstrip antenna technology together with phased array concept extends the
application areas of antennas one step further. Due to light weight constructions of
microstrip antennas and most importantly the conformable array form which reduce
the aerodynamic drag together with flexibility of application over diverse surfaces
make them first choice in automotive, high speed train, submarine, aircraft with
“smart skin” concept [22]. Moreover compared to planar antennas their angular
coverage and beam steering range is higher [23]. For example it is possible to have a

coverage of 360° with cylindrical or spherical antenna array.

The smart skin concepts introduce the application of antennas in compact form over
the surface having same shape or within the sandwich structure as an additional layer
(Figure 1-13) [24,25,26] which may contain microstrip patch or array of radiator

elements as an integral part of the structure for electromagnetic applications.

Top LAyer
Adhesive
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Dielectric Spacer
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Bottom Layer

Figure 1-13 Sandwich smart skin (Adapted from [25])

In todays printed manufacturing technology allows production of largely flexible

antenna elements for the future multifunctional smart structures [27]. This
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technology enables the radiator elements to be printed over complex surfaces leading

to more aerodynamically improved structures as well as styling.

Figure 1-14 Flexible conformal antenna [27]

One of the important applications of conformal phased array antenna is automotive
collision avoidance radar or adaptive cruise control technology that can be integrated
to body panels. Using radar sensors integrated over the surface of a car provide
increased traffic safety by continuously scanning the roadway and conformal shape
of antennas reduce aerodynamic drag together with decrease of fuel consumption
[28, 29, 30]. Also some concepts are being developed to use roof of a car as GPS

antenna.
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Figure 1-15 Using radar sensors in the car [31]
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Future submarine designs take the advantages of conformal phased sonar arrays [32]
as well as long range communication with satellites (Figure 1-16) [33,34]. Under sea
environment conformal shape of antenna reduces surface wakes that minimize the

detectability leading a stealth characteristic.

Figure 1-16 Submarine communication in the near future [35]

Civil or military an aircraft has several antennas protruding from its structure and
they are performing in various frequency ranges for different avionic functions such
as navigation, communication, instrument landing systems, electronic counter
measure, radar altimeter, and so on. Some radar antennas also covered with radome
that may even change shape of an air vehicle causing significant air drag and some
structural instabilities [36]. Integration and replacing those protruding bulky types of
radar antennas with patch antennas and embedding them into the aircraft skin has
certainly a potential benefit in cancellation of the disturbing effect on air flow caused
by protruding antenna types (Figure 1-17) as well as considerable weight reduction,

smaller size and minimal cost.
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In combat aircraft application these embedded antennas will give rise to very low
radar cross section or can be completely ‘hidden' to tracking radar. In addition, they
can be used to detect, monitor or even jam other unwanted electromagnetic field

signatures.

Current goal in aviation industry is to embed those protruding antennas into the
aircraft skin by replacing them with microstrip patch antennas. For that purpose
many attends have been carried out for the design of such conformal antenna

structures [37, 38, 39, 40, 41]

TRADITIONAL ANTENNA
ENCLOSED WITH =
RADOME

CONFORMAL PATCH
ANTENNAS & THEIR
RADIATION PATTERN

Figure 1-17 Integration of conformal antennas on skin of aircraft [42]
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1.3 Motivation of the Study

Radar antennas are integrated on various platforms over which they are subjected to
various kinds of harsh static and dynamic environmental loadings at their operational
conditions. Besides, efforts to increase the performance and decrease the cost of
production as well as to reduce fuel consumption, the designers are forced to create
weight efficient solutions which lead to lightweight design of structural components
such as high speed train and automotive body panels, aircraft and helicopter skin,
stringer and frame combination. Hence, this makes those structures weak and much
more prone to be effected under those loading conditions due to reduced thickness
(stiffness) that in turn results the structural instabilities like low and high frequency
structural deformation problems known as vibration. These deformations are at their

highest value especially when the structural resonances are triggered.

When the antenna locations are considered the effects of deformations caused by
static and dynamic loads are numerous. In aircraft or helicopters for example the
whole structure is made up of as a combination of skin, stringer and frame as shown

in (Figure 1-18).

Grid Pattern of Conformal

Antenna Elements Stringers

Figure 1-18 Air vehicle body panel and possible antenna location (Adapted from:

[40])
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Integration of conformal antennas on vehicle platforms lets the choice of antenna
locations such as the skin of the aircraft, helicopter and automobile body panels
which are locally thin and weak compared to other components. In operational
conditions, the aerodynamic fluctuating normal pressure loads cause the panels to
deform. Moreover due to structural resonances excited at distinct frequencies
different dynamic deformations known as mode shapes also occur. As a result of
these flexible deformations the antenna elements are disoriented and the distance
between individual antenna elements, which defines the overall radiation patterns are
changed especially at low frequency oscillations. This in turn causes the distortion of
radiation pattern with reduced gain, increased side lobe levels, which are considered
as waste of energy. This can be illustrated by combining deformed mode shape of
panel geometry, which is obtained by analysis of panel in Hypermesh, with scattered
radiation pattern on top of it using paint shop program (Figure 1-19). The increased
side lobe levels are the main cause of interference of transmitted signals with other
electromagnetic waves in undesired directions as well as increased risk of detection
in military applications and reduced performance, especially for highly directional

antenna elements [43, 44, 45, 46, and 47].

Side Lobes

Undeformed Skin Panel Deformed Skin Panel

Figure 1-19 Distorted radiation pattern during vibration (4dapted from [43])
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Additionally when there is an obstacle such as part of a carrier in the direction of side
lobes, the transmitted signals backscattered creating mutual coupling which results

an alteration of radiation pattern [48].

In practice there are several methods available to suppress the effects of vibration on

antenna performance and the methodologies can be grouped as ;

e Mechanical Suppression,
e Mechanical and Electronic Suppression

e Electronic Suppression

In this field the first study is the one conducted by NATO Research Task Groups [49,
50, 51]. This group shows effects of vibration on antenna pattern and proposes
mechanical and electronic suppression technique which involves using some
measurement sensors, cables located at the vicinity of vibrating antenna elements.
The mechanical sensing devices, namely accelerometers, strain gauges are used to
detect and capture the physical location of antenna instantly during cycling motion
then using electronically controlled piezoelectric patches appropriate resistive motion

is induced simultaneously to stop the vibration.

Another suppression method is electronic compensation using algorithms to correct
the shape of beam pattern and minimize side lobes. Again using some sensors the
mutual positions are dynamically measured then the amplitude and phase shifts are
compensated using appropriate mathematical algorithms electronically with

correction factors [52, 53].

The above two method involves measurement of antenna position in very harsh
dynamic environment simultaneously with instrumentation of heavy, expensive
external attached sensors, cables. This brings also the calibration of each sensor and
lack of reliable signal processing algorithms which may be another possibility of
eITor source.
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Local deformations of conformal antenna structures caused by high or low frequency
vibrations can also be suppressed via following pure mechanical suppression
techniques which are grouped in passive vibration control techniques. In passive
methods, the structural mass and stiffness distribution, which are the key parameters
that defines the dynamic behavior of the structure, are varied in order to get rid of
resonances via shifting the natural frequencies of structure out of disturbing
frequency range. However, increase of stiffness is generally not acceptable due to
associated additional weight. Moreover, in some cases, due to random nature and
wide frequency spectrum range of the loadings there are unavoidable coincidence
with those forcing frequencies. In such cases increase of damping utilizing damping
treatments with viscoelastic materials has considerable effects in lowering high

amplitudes especially at resonance frequencies.

In practice, viscoelastic materials, which are mostly polymers, cannot be used to
build a structure because they are not strong enough to tolerate loads. However, they
can be efficiently added on top of a structure or embedded into. This vibration
control approach (damping treatment) is after adding viscoelastic materials to a
structural system in such a way that maximum possible energy is dissipated to

achieve the highest vibration suppression therefore the minimum distortion.

In this study, the fundamental motivation is to design, improve and apply that passive
damping treatment methodology in suppression of excessive vibration response
encountered in thin vibrating conformal antenna surfaces. For that purpose it is
aimed to design novel passive damping device that utilize viscoelastic material with

maximum damping capacity using parametric design and optimization strategies.
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1.4 Background

The light weight construction and lack of damping in metallic structures lead
structural resonance problems with high amplitudes when a few of natural
frequencies are matched with those of forcing frequencies. These resonances not
only cause the degradation of antenna performance but also cause noise and fatigue
problems due to high amplitude cyclic displacements which result alternating
stresses. This in turn necessitates a vibration control strategy to get rid of or at least
decrease the effects of those unwanted resonances. Introducing damping or in other
words adding energy dissipation mechanism within the structural components is one

of the popular method in control of excessive vibration.

The viscoelastic materials possess inherent property of energy dissipation
characteristic especially when they are subjected to mechanical deformations like
tension, compression, shear or any other combination of these loadings. The energy
exposed within the elastic medium is converted into heat through hysteresis loop.
Therefore when some portion of energy is moved away continuously along with
cyclic deformation, in the form of heat, the cyclic motion dies out gradually or the

resonance peaks are lowered to a certain acceptable value.

To take the advantage of this energy dissipation property of the viscoelastic materials
they are incorporated into designs in order to reduce dynamic response and minimize
induced stress by dynamic loads. The viscoelastic materials used as dampers in
various forms of configurations which are classified under surface damping

treatments as;
e Free Layer Surface Damping Treatment

e (Constrained Layer Surface Damping Treatment

e Improved Constrained Layer With Standoff Layer
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This section provides a draft summary about surface damping treatments then a
review of literature on the study of designing and analysis of passive viscoelastic
constrained layer damping treatment either with or without standoff layer,

specifically applied to vibrating beams and shell like structures.

1.4.1 Surface Damping Treatments

The polymers or rubber like materials inherently dissipate energy through hysteresis
loop. In other words they must be subjected to dynamically varying stress and strains
in order to convert mechanical energy into the heat. Therefore when a layer of
metallic structure deforms in its vibration modes the best place for the attachment of
the damping layer is the highest point of stress and strains within or over the
vibrating structure. Generally speaking, this is the aim of all design strategies being

followed in control of vibration when using viscoelastic materials.

1.4.1.1 Free Layer Damping Treatment

This is the most basic form of application of viscoelastic materials over one or two
free surface of the beam or plate like structures. During flexural bending motion
under vibration, the top or bottom layers are exposed to cyclic direct tensile and
compressive strains, parallel to the surface of the structure and whose values are
directly proportional to the distance from the neutral plane of bending (Figure 1-20).
Those cyclic strains force the flexible layer of viscoelastic material to dissipate
energy in the form of heat and since the strains induced is also proportional to the
distance from neutral plane it is wise to locate the layer away from neutral plane as
far as possible to induce more strains. Moreover the energy dissipation is directly

proportional to the thickness and modulus of viscoelastic layer.
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Figure 1-20 Free layer surface damping treatment

1.4.1.2 Constrained Layer Damping Treatment

Forming a sandwich type structure by placing the flexible layer of viscoelastic
material between two stiff layers, close to neutral plane is another option of damping
treatment because the transverse shear strain is maximum at this neutral surface.
Incorporation of damping layer on this surface cause damping layer to deform in
shear mode which is the basic mechanism of energy dissipation. Moreover compared
to free layer as the structure vibrates, the external stiff layer constrains top free
motion of polymer layer causing high shear deformation within the middle layer due
to cyclic relative motion exists between top and bottom stiff layers during vibration
[54] (Figure 1-21). The study [55] shows the effectiveness of constrained layer over

free layer damping treatment.
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Figure 1-21 Constrained layer damping treatment

In practice, the viscoelastic layer is bonded to a sheet of metal with adhesive which
forms the constraining layer and this combination can be cut into pieces in various
forms depending on the application surface area which can later be applied to the
vibrating structure. Constrained layer damping treatment is applied to a wide range
of structures including aircraft skin (Figure 1-22), automotive body panels (Figure
1-23) with stringers and stiffeners, vehicle engine covers and brake pad insulators

[56].
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Figure 1-22 Application of damping treatment on aircraft fuselage [57]
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DAMPING PATCHES.

Wheel house Damping

Figure 1-23 Application of damping solution in car body [58]
1.4.1.3 Improved Constrained Layer Damping With Spacer Layer

Since the exposed strain within the viscoelastic layer is directly proportional to its
distance from the neutral plane of sandwiched plate or beam under flexural
deformation, the effectiveness of damping can be increased by simply placing the
damping layer away from the neutral plane as much as possible via using a spacer
medium between damping layer and vibrating structure. In this configuration the
spacer layer behaves as strain magnifier, therefore the energy dissipation capacity of

both free and constrained layer damping treatments increases (Figure 1-24).
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Figure 1-24 Use of spacer medium as strain amplifier (a) for unconstrained layer (b)

for constrained layer (Adapted from [59])
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Effectiveness depends on a number of different parameters including material
properties, layer thickness, location, surface coverage and the distribution of dynamic

strain on the host structure [58].

In order to achieve larger loss factor various configurations and a number of practical
applications are explored all of them are simply the shear-dependent configurations
in order to induce larger shear strain into VEM and as a result, to gain higher energy
dissipation characteristic for the whole system. Some of them can be classified as

follows:

e Segmented constraining layer ( Partial coverage)

e Multiple constrained layer treatments and

e (Combination of segmented and multiple constrained layers overlapped over
eachother.

e and Stand-off layer configuration.

The idea behind all configuration is to induce shear motion so the shear strain in the
viscoelastic layer can be increased. Moreover tailoring the design parameters
together with the frequency and temperature dependence of VEM material, a design

can be achieved for wide frequency and temperature range of applications [58].

In the following section the studies carried out by various researchers in order to
improve the damping performance or increase of loss factor of vibrating structures
using constrained layer damping treatment has been reviewed. After extensive
review of literature it is seen that numerous methodologies have been used such as
modal strain energy method, analytical methods and finite element method and
optimization algorithms in order to increase the damping capacity of vibrating host

structures.
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1.5 Literature Review

The pioneering work in design and analysis of constrained layer damping treatment
was first conducted by Kerwin [59], Ross et al. [60], Ungar and Kerwin [61], who
developed a simplified theory to calculate the damping factor of a bar (plate) with
constrained layer damping. With those first studies, it was observed theoretically that
the main mechanism behind the damping was mainly the cause of shear deformation
exists between two stiff layers which implied that as long as the shear deformation at
viscoelastic layer is increased the damping capacity can also be increased. The study
also revealed other factors effecting the performance of such constrained layer
damping system such as; wavelength of bending waves, the thicknesses, different
geometrical configurations of elastic and viscoelastic components and elastic
modulus of individual layers as well as temperature and frequency of loading

environment.

Theoretical background for constrained layer beam with various boundary conditions
is formed by Mead and Markus [62] who developed the theoretical models for the
axial and bending vibrations of sandwich beams with viscoelastic core. Based on
these earlier works, some of the important and similar investigations were carried out
by various researchers using different methodologies together with numerical
techniques aiming to maximize the damping capacity of vibrating simple beam and
shell like structures. The effects of geometrical parameters as well as geometrical
configurations for free, constrained layer and treatment with spacer layer on damping
performance over the vibrating structures were investigated and optimum conditions

were sought by the following studies.
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For the simplest treatment, free layer damping treatment, the maximum loss factor
has been sought as well as for minimum material distribution while keeping the
dynamic response minimum. Lumsdaine et.al. [63] optimized the unconstrained
viscoelastic layer thickness distribution yielding an optimal shape over the beam and
plate type structures that minimize the central displacement of base laminate under
harmonic loading. The height of each viscoelastic element that covers the structure
being analysed was selected as design variable within prescribed lower and upper
limits with overall constant volume constraint. Sequential Quadratic Programming
algorithm was used to find the optimum values of those element height under
objection of minimum peak displacement at first mode.The methodology repeated
for different structures possesing different thicknesses and boundary conditions.
Results showed that compared to uniform coating, optimal distribution with minimal
mass greatly reduces the peak responses in all studied cases. In addition it was noted
that for optimum configuration of damping distribution the results were in close
proximity of each other namely, for the case of constant or frequency dependent

material properties for viscoelastic material

In another study Lumsdaine presents the topology optimization technique for the
maximization of loss factor of first resonance mode of beam. Sequential Quadratic
Programming algorithm was adopted for the study as well as Modal Strain Energy
method [64] which does not necessitate the use of viscoelasticity and require
inclusion of frequency dependent material properties, with this method instead, the
real part of complex modulus is used and the dissipative energy terms are calculated
from undamped real natural mode shapes from which the strain energies are
calculated and used in calculation of loss factor through finite element method.The
calculated modal loss factors were also verified using half-power bandwidth method
upon performing two dimensional, direct frequency response finite element
simulation.The results obtained through the optimization reveals an improvement of

modal loss factor up to 300% [65].
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For free layer damping treatment, Koruk et.al.[66] proposes random search algorithm
based on big bang—big crunch optimization method in order to optimize damping
capacity of simple beam type structure. They combined again the modal strain
energy method with their algorithm and they showed the effectiveness of
methodology conducting a case study using simple cantilever beam. Specifically the
beam was divided into 10 sub-regions in which individual damping layer exist,
whose material properties were assumed to be average, and with allowable maximum
thickness value. As an objection maximum loss factor for the first mode was sought
via varying the thickness values, which are defined as design variable, through
random search algorithm at each sub-region. Their results showed that modal strain
energy method has sufficient accuracy within %4 error. They carried out single and
multi-mode optimization analysis for the cantilever beam yielding minimum of 3.9

times higher modal loss factors compared to uniform treatment.

Since the damping treatment requires addition of extra material to the host structure,
the weight is another concern in design strategy. To minimize the material
consumption therefore the weight of vibrating structure, while maintaining
maximum damping for the particular modes, topology optimization technique
utilized by various researchers. The topology optimization method gives the optimal
material distribution or layout of treatment (Figure 1-25) under material consumption
and dynamic response constraints with an objection of maximum loss factor. The
density of material is used as design parameter and at maximum strain energy
locations the density value of 1 indicates existence of material while value of 0
indicates empty regions. With this methodology there is no need to fully treat the

structures for maximum damping.
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Figure 1-25 Distribution of damping material after topology optimization (adapted
from [67])

Kang et. al. [67] have demonstrated that the optimum layout of treatment over the
vibrating plate obtained using topology optimization technique gives higher damping
performance yielding a reduced vibration response. In their analysis damping
material distribution obtained for the cantilever plate that was subjected to unit
harmonic force at its tip. A similar approach used in SIMP method was proposed
using artificial damping material model in order to define design variables as density
of elements which are defined as design domain. The objective was selected as the
minimization of sum of squares of displacement amplitudes at loading point. Their
investigation included the effects of loading frequency and damping coefficients
defined as Rayleigh damping coefficients which combines the efect of stiffness and
damping matrices. the results showed that for increase in loading frequency yields
much more complex layouts. Moreover the damping coefficients have significant

effect in distribution of damping material over the design surface

Fang and Zheng [68] proposed an improved sensitivity analysis method as part of
topology optimization methodology. In their study cantilever and fixed plate covered
with constrained layer damping treatment were considered as case studies and the
material distribution was optimized under broadband harmonic loading condition via

minimizing the square of displacement of target point at resonance frequency under
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material volume constraint. They emphasize the importance of improved sensitivity
analysis by showing improved optimum material distribution and higher reduction in
response compared to traditional sensitivity analysis. Also the study shows the fact

that applied boundary condition effects the optimized material layout dramatically.

Chia et. al. [69] propose another design strategy in order to efficiently cover
vibrating structures with constrained layer damping treatment. The study use
different sets of cellular automata algorithms used to cover aluminum plate for
known optimum coverage and compare their results in which different coverage
shapes and areas of damping distribution exist especially for those bending and
torsional modes. Also a curved composite plate was selected as one of case study to

find its optimal coverage with constrained layer damping treatment

Apart from free layer damping optimization studies some others concerning
constrained layer damping treatment has been studied by various researchers yielding
extensive configurations that maximize the damping capacity of vibrating structure.
In order to increase the shear strain therefore the energy dissipation within
viscoelastic layer, D.J.Mead [70] proposed cutting constraining layer at certain
distances. It was shown by Parfitt et al. [70] that during flexural deformation, the

local shear strains were successfully increased around those cuts (Figure 1-26).
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Figure 1-26 Segmented single and multiple constraining layer damping treatment:

(adapted from [70]).

Nokes and Nelson [71] provided one of weight efficient and maximum damping
solution by completely diving damping layers into patches. In their theoretical and
experimental study it was shown that instead of covering whole beam, spreading
damping patches, with stiff viscoelastic layer and certain dimension, over the beam

was adequate for maximizing damping capacity (Figure 1-27).
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Figure 1-27 Partial damping patches over beam with main parameters (adapted from

[71]).
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Plunkett et.al. [72] performed and optimization study to find the effective length for
those distributed damping patches which are X and Y parameters in (Figure 1-27).
They investigated performance of symmetrically arranged segmented damping
treatment theoretically by assuming sinusoidal deformation pattern over the
cantilever beam structure and compared their final results with experiments. They
also investigated interaction of multiple damping layers (Figure 1-26) for optimum
configuration. Their results shows that there is an optimum lentgth of patches which

provides maximum damping.

A similar study was conducted by Trompette et.al.[73]. They showed that the
dissipated strain energy therefore the damping capacity can be increased via
application of cuts in constraining layer. In their study, the shear stress distribution
within the viscoelastic medium was changed by simply adding a single cut over both
constraining layer and viscoelastic layer. They investigated influence of this single
cut location on loss factor. For that purpose they sought the best position for that cut
and the optimum coverage area to maximize the first modal loss factor. The cut
position was varied along the dimension of the beam and loss factors were calculated
using modal strain energy method. Genetic Algorithm was used to find the best cut
position for target modes using the cut position as the design variable According to
their results, extracted from a simple cantilever beam model, with an optimal
coverage area and best location of cut the modal loss factor for the first modes can be

increased

Marchelin et. al. [74] performed new strategy using Genetic algorithm to find the
best number, location and thickness of constrained layer damping patches over the
beam which is modeled via finite element method. The undamped mode shapes were
used to calculate energy dissipation ratio namely loss factor for its maximum value at
first mode. Results were compared with loss factors obtained by experimental modal
test for free-free beam structure. Their study shows that the patches are cumulated

around middle of the beam at which the shear strain energy is high due to the flexure.
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Kung and Singh [75] theoretically investigated partial damping treatment and
followed a parametric design strategy.The study proposes an analytical energy based
approach for analyzing harmonic response of beams with multiple constrained-layer
viscoelastic patches.Several damping configurations such as damping patches with
cutouts together with boundary condition effects for the cantilever beam are
investigated .The result of study shows that for fixed end boundary condition both
the natural frequency and loss factor are higher due to additional constraint added
that increase the shear deformation within viscoelastic layer. Moreover study reveals
that the loss factor is sensitive to cutout size and location. For the shorter cuts the
loss factor has higher values compared to larger cutout size that yields monotonic

decrease of loss factor.

Zheng et.al.[76] studied the vibration response of partially covered simply supported
beam is minimized through parametric and optimization study.The passive
constrained layer damping patch was attached to the center of the beam and the
governing equations of motion was derived using energy approach with the
geometrical and material parameters of partially covered beam as a whole system.
The most critical design parameter was extracted through sensitivity analysis as well
as the optimum location, length and core shear modulus of the patch by employing
Genetic Algorithm search method for the minimal vibration energy of the whole
system in appropriate frequency range, taking into acount the multiple resonant
modes. The results showed that the most crucial parameters were the location, length
and the core shear modulus compared to core and constraining layer thickness and
also with a shorter coverage length, reduction of resonant response was higher
compared to longer patches which was shown to be one of the advantages for the

weight critical applications

Lepoittevin et.al.[77] incorporates several cuts over the constrained and constraining
layer in order to increase the shear strain at vicinity of cuts which is termed as “edge
effect” and investigates the effects of those cuts on damping performance of 2D

modelled vibrating cantilever beam. Optimization algorithm based on deterministic
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mathematical programming, Nelder-Mead simplex method, together with modal
strain energy method were used to find the optimal location and number of those cuts
that maximize the modal loss factor. According to the results obtained reveales that
for the single cut positioned at the highest radius of flexural curvature has much
more effect on the loss factor. Additionaly there is a certain number of those cuts that
yields maximum loss factor. Results also proves that via addition of cuts at certain
position and numbers, up to 92% increase of loss factor is achievable. Another
conclusion given is that the difference is minimial for simultanous damping
optimization of multi-mode case with certain weights and single mode optimization

run seperately

Zheng et.al [78] compared various optimization methodologies each other by simply
evaluating the damping performance of partially treated simply supported beam.
After building the analytical formulation the best patch layout was sought which
minimize the transverse displacement and material consumption by using sub-
problem approximation method, the first-order method, sequential quadratic
programming (SQP) and genetic algorithm (GA). It was proved that genetic
algorithm was best solution method out of four. The design variables are selected as

number of patches as well as length and location of each individul patches.

In the following studies the finite element method also successfully applied in
conjuction with modal strain energy method in order to find the value of best design
parameters for the optimum damping treatment. Morever different finite element
modelling techniques are used such as 2D and 3D. Also in those studies the
viscoelastic material properties are simply used as constant with respect to frequency

of loading environment.

In reference [79] the damping performance of constrained layer damping treatment
was investigated via performing parametric design and analysis procedure. The
thickness of viscoelastic layer was selected as design variable for the cantilever beam

model. The analysis was carried out for two different viscoelastic material. For finite
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element analysis CHEXA solid element are used for VEM layer. The modal loss
factor was obtained by Modal Strain Energy Method. The results showed that the
performance of PCLD treatment is mainly affected by thickness of VEM material.

Shepard et al. [80] combined single layer finite element model that has the shear and
extensional damping capability as well as frequency dependent material property
with Genetic Algorithm to find the best geometrical parameters, namely the
thicknesses for the sandwich damped beam. The thickness of viscoelastic core and
constraining layer were selected as design parameters and were varied between
prescribed upper and lower limits to extract the best option that minimize the
dynamic response, specifically sum of squares of peak response of the beam,
especially for the first three mode while targeting either simultaneously or
individually. The results show that objection of minimum response for the multi-
mode case gives deficient results compared to single mode objection. Moreover the
study reveals that the optimal damping configuration which is lower in weight has

higher performance in reducing vibration amplitudes.

Veley and Rao [81] applied a new finite element modelling technique for the
constrained layer damping applications that increases numerical modeling efficiency.
Based on the proposed model, the effect of viscoelastic layer and constraining layer
thicknesses together with location of treatment on loss factor was studied. The
analysis carried out for beams and plates was revealed that the curvature of the
vibrating structure defines the best location at which the strain energy is maximum
and this location was mode dependent. Also it was found that both the constraining
and viscoelastic layer thicknesses were selected as two parameters that maximize the
loss factor of the treated structure for lower modes. Addition to this result it was
noted that increase in viscoelastic layer thickness has negative effect on higher
modes. Moreover the parametric study was carried out for unconstrained and
constrained layer damping treatment to find out the best location of single and

multiple partial patch of damping treatment that maximizes the loss factor in
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vibrating structure. The results show that as the patches moves away from the root of

cantilever, where the strains are high, the first modal loss factor decreases

Subramanian et.al [82] proposes a methodology of damping optimization based on
finite element and modal strain energy method in finding the best size and location
for the damping material over the vibrating automobile body panels through an
iterative design cycle. The methodology used identifes the high strain energy regions
over the design domain upon performing a modal analysis technique and optimize
the applied damping treatment in terms of area, size and thickness under
manufacturing constraints aiming to minimize acoustic noise radiation due to
vibration. They shows the effectiveness of the methodlogy over panels by comparing
analysis results for treated case and non-treated baseline model with experimental
test conducted using laser vibrometer. Their results showes 16 % noise reduction

over the baseline without treatment .

Maoit et. al. [83] studied the optimization of composite sandwich beam with
viscoelastic core embedded inside aiming to maximize damping capability of
sandwich beam type structure that has also sufficient stiffness under static loading
.The design variables choosen for that purpose are total number of layers, their
orientations and thickness as well as the position of viscoelastic layer.The analysis
was carried out under stiffness and mass increase constraints. While having sufficient
stiffness under 3-point loading, the modal strain energies were calculated using
modal strain energy method and used in linear search algorithm developed to

maximize the loss factor of hybrid beam

Wang et.al [84] propose evolutionary structural optimization methodology in
conjunction with finite element method and modal strain energy method to find best
constrained layer damping distribution over clamped plate. Starting form full
coverage of plate the optimal distribution of constrained layer damping was found
via deletion of unnecessary elements which are defined as design variables under

maximum allowable volume ratio. The first and second modal loss factors were
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maximized within single mode optimization strategy. Then multi-mode optimization
study carried out assigning some certain weight factors for each mode. The results
showed improved modal loss factors as well as it was clearly revealed that single and

multi-mode optimization yields different material topologies over the plate.

Serabatir et.al [85] propose a methodology using finite element method with random
search technique, namely, Genetic Algorithm to find the optimum distribution of
damping layer. In their method the finite element model of cantilever beam is
developed with controlled number of sub regions. Using Genetic algorithm, at each
region existence of element of viscoelastic layer with parameterized thickness and
location value is represented with particular coding called “Chromosome” which
possess a special representation of design variables in the form of numerical strings

that can be of either 1 or 0 for each element.

Based on calculated vibration modes and modal damping ratios algorithm changes
the design parameters by selecting among the best population of design variables
until global optimum that represents the maximum damping condition is reached.
Specifically the algorithm assigns 1 or O for the element that represents the
viscoelastic layer. Upon convergence yields the optimal distribution of damping
layer in discrete form. Their result verifies that the optimal damping locations are
those regions where possess high strain energy. Also study suggests that local and

thicker coating of damping layer is much more effective way of treatment.

Optimum distribution of viscoelastic and elastic materials within vibrating structures
by topology optimization has also been studied by many researchers. Boucher et. al
[86] performed analytical and numerical design methodologies in order to increase
deformation pattern of viscoelastic material that is embedded into honeycomb
structure under static and dynamic loading together with an optimum material
distribution and minimal weight. For that purpose they performed topology
optimization under various in-plane static loadings and extracted the architecture of

filled viscoelastic material with minimum volume fraction by minimizing
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compliance of full and partially filled 2D unit honeycomb cell geometry under the
fact that for linear analysis maximum strain location is same for static and dynamic
cases. In addition for this static analysis constant viscoelastic material properties
were utilized which is also independent of maximum strain location.They obtained
improved damping capacity up to %45 via partial filling. It was also noted that
improvement in damping was dependent on cell geometry and mode of deformation
of the unit cell. This study also shows the applicability of static analysis method in

damping maximization purpose via topology optimization.

Agnese and Scarpa [87] constructed bi-phasic 2D composite unit cell geometry at
micro-mechanical level to be used in forming macro-scale structure by periodic
multiplication and compares the performance of inclusion of matrix material, which
is responsible of energy dissipation, for different volume fraction ratios in two
different shape namely, star and cylindrical, in terms of damping capacity for
honeycomb structure. Study shows that for minimum fiber fraction star shaped

matrix material provides higher damping capacity.

Pai [88] in his master thesis carried out parametric study combined with topology
optimization in two dimension aiming to find best elastic and viscoelastic material
distribution for maximum loss factor. The simply supported and cantilever beam
under static loading taken as case study. Specifically the finite element simulation
technique was linked with optimization algorithm, which uses an SQP. The sandwich
beam was modeled using 2D plane stress elements some of which are assigned as
design space, namely constraining and viscoelastic layer whose densities and elastic
modulus values were varied between lower and upper bounds. The objective function
was selected as maximization of loss factor calculated using modal strain energy
method through finite element simulation. The effect of boundary condition applied
as fixed or free for the cantilever beam was also studied. The whole process was
repeated for different material fraction values and base beam thickness as well as for
each boundary condition. The study reveals some design alternatives that were

extracted through the interpretation of optimized material distribution which were
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also tested in another study of author [89]. Results shows tendency of distribution,
for the the stiff material, at upper portion of the design domain forming a column like
topology over viscoelastic layer. The results also show up to %1250 improvement of
loss factor by simply optimizing the material distribution over the vibrating medium

using topology optimization.

Kim et. al. [90] showed the effectiveness of topology optimization over two other
approaches namely, mode shape and strain energy distribution method. In their study
damping material distribution was found using all three methods for the quarter and
semi cylindrical shell structure under fixed-fixed boundary condition to achieve

maximum modal loss factor under limited damping material volume.

The design variable was selected as density of material which represents the overall
distribution of design domain using rational approximation for material properties
whose values were updated using optimality criteria. Qualitative analysis determines

that topology optimization offers up to % 61.14 better damping performance.

Rong et. al.[91] proposed a new topology optimization model which suppress the
localized modes of vibrating structures which originates from low stiffness regions
during optimizatation of material distribution.The 2D material distribution was
obtained under random vibraiton load and response constraints for limited material

volume fraction.

Lei et.al. [92] employed topology optimization method to reduce the sound radiation
of thin plate. In their study the optimal distribution of passive constrained layer
damping patches over the surface of thin plate was found by assigning density of
damping material as design variable using SIMP method. This is one of the method
in which the existence of elements over the surface defined as numerical 1 which
means damping material should apply for that element location, conversely the
assigned numerical value of 0 represents a void case that is the deletion of element

for that location. The objective of optimization was selected as minimization of
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square of normal velocity of each finite element node. They obtained the optimal
patch distribution over the square aluminum plate for different volume fraction
ratios. Results shows that application of damping treatment over the critical points of

a design area can greatly reduce the overall sound radiation.

Chen and Liu [93] extracted different microstructural configuration using topology
optimization method in order to obtain an improved damping properties out of new
topology of damping layer. First the optimum shear storage modulus of the
viscoelastic material that maximizes the loss factor for the first three modes was

found via parametric study of a cantilever beam.

This optimum shear property was used in design of 2D viscoelastic layer using SIMP
method that yields best topological pattern of the damping layer. The optimization
was carried out for the 2D periodic unit cell from which the overall structural pattern
was assumed to be built. The density of the elements and volume fraction of
viscoelastic material were selected as design variable and constraint respectively.
The resulting different microstructures were used in modelling of constrained layer
treated cantilever beam. Vibration response curves showed that optimum
microstructure of damping layer enhances the modal loss factors as well as reducing
the resonant response level as the compliance (flexibility) of the whole structure

increases.

Al Ajmi [94] tried to achive optimum cellular material topology in two dimensions
that gives both distribution of material and target shear modulus level that maximize
the damping capacity of composite structures using homogenization and topology
optimization strategies. In his study microstructure of design space out of mixture of
elastic and viscoelastic material combination were found in two dimension and
showed performance of extracted topologies by conducting experiments over beam
type structure. In addition he made performance comparisons of traditional design
method, modal strain approach, and proposed homogenization approach. He

concluded that topologies found using modal strain energy and proposed method
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maximized the damping capacity significantly over the full coverage but
homogenization method yielded much improved results in terms of material

consumption.

Up now from the extensive literature review it is inferred that the damping can be
increased by increasing shear strain energy of the viscoelastic layer that is
incorporated over or into vibrating structures. Moreover changing geometrical
configurations, location, dimensional parameters, microstructural and layout
topologies of elastic and viscoelastic materials has been shown to be possible to
increase the damping capacity of vibrating beam or shell like structures using various

analytical and systematic numerical techniques by inspected studies.

In addition to those methodologies by inclusion of spacer layer between vibrating
structure and viscoelastic layer inherently increases the strain energy of the damping
layer by increasing the distance from the neutral plane [60]. During flexural motion
increase of radius of curvature directly expose higher shear deformation within the
viscoelastic layer compared to traditional free and constrained layer damping

treatments (Figure 1-28).

Viscoelastic layer

Spacer

Figure 1-28 Increase of radius of curvature with spacer layer (Paintwork)
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In literature there is a few number of studies concerning the design and analysis of
spacer layer. Whitter’s [95] arched truss one of the earliest design example for this
type of damping treatment. The viscoelastic layer is trapped between two curved
section with certain distance from the neutral plane of vibrating beam or plate. This
configuration is effective especially in low frequency oscillations by inducing shear

by the relative motion of upper and lower arches.

N :
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Figure 1-29 Spaced viscoelastic layer (Adapted from [95])

Patel et.al [96] proposes a new structural damping configuration to increase the
effectiveness of damping material which consists of a series of rows of vertically
oriented platelets with continuous strips of damping material sandwiched between
them. Adjacent rows of platelets may overlap each other to enhance the deformation
of the damping material. The damping mechanism behind the proposed design is that
during flexural deformation the attached vertical plates tend to separate from each
other which in turn results the shear deformation in viscoelastic medium among

them.
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Figure 1-30 Vertically oriented plates as spacer (Adapted from [96])

For the maximum damping capacity the ideal spacer layer is the one that possesses
high shear resistance as well as minimum bending stiffness [97] which implies there
is an optimum dimensional characteristic for the spacer geometry. The geometric
configuration has been considered by Painter [98] for constrained layer damping
treatment is another example which possesses low flexural stiffness due to opening

gaps as shown in Figure 1-31.

Figure 1-31 Hat section spacer with open gaps (Adapted from [98])
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For the designing and analysis of damping treatment with stand-off layer numerous
analytical, experimental and numerical studies have also been carried out for
maximization of damping by various researchers. Fallugi et.al [99] performed an
experimental approach using commercial slotted spacer geometries to investigate the
effectiveness of this type of configuration over the plates and airplane wings. Rogers
and Parin [100,101] conducted a parametric study using analytical technique to
extract the relationship between basic geometrical parameters of layers and material
modulus values of simply supported plate for maximum damping. Moreover they
conducted sensitivity analysis to find the dominant parameter and concluded that for
maximum damping the height of spacer layer should be increased to a practical
value. The effectiveness of damping treatment with stand-off layer has been shown
with their extensive test campaign by applying their damping designs on pressurized
fuselage skin, airplane outer wing skin in order to reduce the negative effects of
resonances during flight. Their quantitative analysis results also showed that due to
decrease of amplitude of vibration with integrated damping treatment with stand-off
layer the stress levels were decreased therefore the fatigue life of skin structure was
improved 34 times. More recently in order to predict the dynamic response of such
spaced layer damping treatment Yellin et.al [102] proposed a new analytical model
for fully and uniformly treated beam using Euler-Bernoulli beam theory. They
showed the capability of newly developed model in prediction of the dynamic
response by performing numerical examples and comparing three configurations of
cantilever beam, namely, untreated, conventional constrained layer and with stand-
off layer damping treatment. The ideal spacer layer condition was also sought by
assigning different shear stiffness values for the spacer layer. They also concluded
that in order to have the highest damping capacity the spacer layer should have high
stiffness in shear and low bending stiffness. Vuure et.al [103] tried to incorporate low
weight fabric panels as spacer layer to investigate this ideal condition and proposed
injection of foam into fabric panel cores to tailor or increase the shear stiffness of
layer. Moreover as a spacer layer position in four layer system they showed that
using spacer layer as a third layer from down to top can yield %10 higher damping

compared to conventional spaced layer damping treatment. For the same purpose
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Huang et.al [104] used low weight microcellular foam type structure as spacer layer.
They noted that by tailoring the micro-mechanical properties of cellular foams it is
possible to have high shear and low bending stiffness. With their experimental study
conducted with cantilever treated beam it was shown that foam type spacer layer can
increase the damping by %80 with %3 additional weight. Yellin et.al [105] extended
the previous analytical study [102] by conducting experiments on cantilever beams
using viscoelastic spacer layer that has sufficient shear stiffness and inherent
damping property to increase the overall damping performance. It is also emphasized
that geometric and material manipulations can greatly increase the damping. In
another and recent study of Yellin et.al [106] contributes in development of
analytical model for the slotted stand-off layer using their previous analytical
methodology. In their study the governing equation of motion of the four layer unit
cell geometry, which is the building block of slotted configuration, composed of void
and spacer material derived and used to predict overall system damping performance
by assuming a beam structure composed of periodic unit cells. In addition to
theoretical study in [107] they investigated the effect of number of slots within
spacer geometry numerically and experimentally for the beams having prescribed
constant spacer height as 2.55 mm, slot widths as 1.59 mm, 3.35 mm and 7.54 mm
and number of slots as 19, 9 and 5. The results of all, having the same mass were
compared to beam with solid uniform spacer with same total mass. In this study
however the final comparison results between those cases were not reported
quantitatively other than giving frequency response plots. Pavanasam [108] in his
master thesis sought best parameters in order to minimize RMS vibration response
with noise reduction goal by conducting parametric study using certain number of
prescribed stand-off heights and different viscoelastic and constraining layer
thicknesses by MSE method with constant viscoelastic material properties. The study
finds best choice for stand-off height out of a known certain dimensions. It was

reported that the resulting greatest damping factor value was 0.39.
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Chaudry and Baz [109] developed a finite element model as an extension of study
carried out by Yellin [106]. They performed numerical and experimental studies to

validate their models with certain slotted dimensions for the spacer layer.

1.5.1 Summary of Literature Review

From the extensive literature review it is inferred that dynamic analysis and design of
damping treatments with viscoelastic materials requires calculations of complex
mode shapes and iterations which is time consuming due to frequency dependent
mechanical properties of such polymeric materials [110]. As an alternative to this
method, it is seen that the Modal Strain Energy Method proposed by Johnson and
Kienholz [64] has been extensively used. Compared to other methods this method
utilizes undamped real mode shapes from which the dissipative strain energies within
viscoelastic layer is extracted and the loss factors are calculated for each mode as the
ratio of dissipated energy and total strain energies of all individual components. For
this purpose the Finite Element Method greatly helps in determination of mode
shapes and extraction of strain energies of all components that forms the damping
treatment system, at each mode. Since this method uses the undamped real modes, it
does not require the use of frequency dependent material properties, instead, use of
constant average material properties are well enough for design and optimization

purposes to get rough estimate of initial design parameters [66].

In addition to parametric studies by MSE method, topology optimization technique
one of the effective method used to find the material distribution for both maximum
damping and minimum material consumption for minimal weight. These conditions
are the main concern for the automotive and aerospace industry. Moreover for
maximum damping it is also referred from the studies that geometrical configuration
greatly affects the damping capacity of vibrating structures. Therefore most of the
studies sought the optimum parameters, mostly dimensions, and layout of either free
or constrained layer damping treatments over simple beams and plates especially for

the first three modes since they are most critical ones in terms of high amplitudes and
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stress values that cause structural problems. The common aim for those studies was
either to increase the strain energy of damping treatment inherently or locate them to

the most effective regions that induce high strain energy within the treatment.

Apart from traditional free and constrained layer damping treatments, the ones that
use stand-off layer is another effective method that inherently increase the shear
strain within the viscoelastic layer which is located at the top of this kind of spacer
which is used as strain magnifier as it increase the curvature radii of flexural
deformation that induce higher shear deformation. It is noted in literature that this
kind of application has advantages over conventional treatments. For this layer to be
more and more effective it has also been noted that it should have high shear
resistance together with low bending stiffness. One of the configurations of this type
of spacer layer is reported as the one having slotted stand-off layer which has also
weight efficient since some portion of material is removed and it contains gaps

within its domain.

It may be inferred from the literature review that insight into the variation of spacer
layer configurations has not been clearly and systematically defined. It seems quite
possible to seek the best slotted configuration and geometrical parameters with a
more systematic approach other than methodologies followed by initial guesses, trial
and error for the geometric parameters of this type of damping treatment [107].
However based on knowledge extracted from the earlier studies it is quite possible to
create parametric design strategy for maximum damping as well as minimum weight
condition by combining Modal Strain Energy Method and Finite Element Method as
calculation methods while using Global Response Surface Method, Genetic
Algorithm as an optimization algorithms. In purpose of parameter optimization of
stand-off layer, the study of Koruk et.al [66] and Yellin et.al [107] can be adopted
such that the spacer layer can be divided into certain sub regions that forms slotted
configuration and the dimensions of those configuration can easily be found between
lower and upper bounds via one click parametric design strategy instead of trial and

error procedure yielding more quantitative results. For this purpose the HyperStudy®
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software that controls all simulation process by combining different CAE platforms

and mathematical optimization algorithms can be of best choice.

Moreover theoretical works and parametric studies on PCLD treatments for vibration
and noise suppression really assist design decision. On the other hand, studies based
on the topology optimization are very few, particularly, to the author's best
knowledge, extensive research reveals that none of the studies concerns topology
optimization of spacer layer for maximum damping and minimum weight condition
other than slotted configuration. Again from the literature the following studies can
be adopted in using topology optimization method for finding best material
distribution of spacer layer. Boucher et. al [86] which use 2D topology optimization
method under static loading for honeycomb unit cells to find best viscoelastic
material distribution to be embedded into honeyccombs. Also the study of Pai [88]
who sought 2D material distribution for conventional three layer constrained layer
damping treatment using topology optimization method. Kim et. al. [90] shows the
effectiveness of topology optimization compared to modal strain energy method.
Rong et. al.[91] finds 2D material distribution under dynamic loads. Chen and Liu
[93], Al Ajmi [94], Huang et. al. [111] finds 2D microstructural distribution of elastic
and viscoelastic mediums for constrained layer damping treatments. It is also quite
possible defining spacer layer as design space and find the material distribution in 2D
(Figure 1-32) under assumed static flexural deformation [72] to investigate the
performance of final design in terms of damping capacity. Moreover as followed in
Yellins study [107] the periodic unit cells of topologically optimized stand-off layer
can be used as building block of a treated beam. Once having the optimized
configurations both numerical and experimental validation can be performed by

production of final design.
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Figure 1-32 Topology optimization of spacer layer (Produced by Optistruct™)

1.5.2 Objective and Scope of The Thesis

The purpose of this study is to gain theoretical and practical knowledge about design
and analysis of sandwich type structures with viscoelastic materials. More
specifically the focus of this study is damping improvement of structures with stand-
off layer or spacer geometry between flexible viscoelastic layer and vibrating
structure using parametric and topology optimization methodologies which is in the
end to get a design that may be used for vibration suppression of conformal radar

antennas attached over vibrating thin shell structures.

Two different optimization methodology is going to be used namely as topology and
parameter optimization methods. The aim with the use of method of topology
optimization is to get the best optimal material distribution of spacer layer with
minimal weight that will yield maximum damping loss factor for the first three
modes of vibrating structure by combining the methodologies used by previous
researchers. As a second design approach, parametric optimization method with
which it is also aimed to develop robust, flexible design methodology by extending
the work conducted by others to reach quantitative results specifically in design of

stand-off layer.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Introduction

Thin shell like elastic structures whose thickness dimensions are much less than the
other dimensions tend to vibrate more easily in the direction of surface normal. The
pattern of this out of plane motion is sinusoidal in shape and they are called mode
shapes of vibration or structural waves. These waves can be of transverse,
longitudinal and bending form and are result of energy imparted to the medium and
they can be characterized as the relative displacement with respect to the rest position
of structure and with their direction, speed etc. These waves have the ability of
carrying energy from one point to another and they occur at some fixed frequencies
which are also called natural frequency of vibration or resonance frequencies. In
other words, the energy imparted to the structures travels in the form of elastic waves
at certain frequencies and one special case exists when the forcing frequency
coincides with those structural natural frequencies, this coincidence is termed as the
resonance at which the amplitude of those waves that is the displacement in normal
direction, tends to be large. Such kind of structural deformations have many
drawbacks which were explained in previous chapter such as deviation of antenna
pattern due to change of distance between antenna patches over the surface,
disturbing sound radiation due to coupling of structural waves with free surrounding
air waves, fatigue due to cyclic stress generated at deformed zones (Figure 2-1) etc

[112].
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Figure 2-1 Vibration of thin panel like structure (Adapted from [113])

The vibration of structures can be grouped in two categories [113] such that when a
harmonic external force continously disturb the medium, the structure is said to be
under forced vibration and since the disturbing energy continously imparted to
structure the elastic waves formed are also continously propagated over the domain
varying sinusoidally at the same frequency of oscillation with a spatial period of A,

described as wavelength.

The response asociated under forced vibration is termed as a combination of transient
response and steady-state response, the latter is completely dominated by the
excitation frequency and it prevails until the force is removed. When the excitation
force is removed and the structure is left to vibrate freely, the structure vibrates at its
one or combination of certain modes but with a decaying response over time until it
is completely motionless. The reason for such decaying free response is the inherent
energy dissipation mechanism involved during vibrating motion such as friction
caused by surrounding air or interaction of mechanical components with eachother.
The phenomena called damping which is the energy dissipation and one of the

important parameter in vibration control measurements.
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Structures subjected to dynamic loads, generally show structural damping values
which are capable of reducing oscillations amplitude.In aerospace field, low
structural damping or high oscillations amplitude, may impact negatively on
structural stability and emitted noise as well as the performance of attached antenna
elements over the vibrating surface as explained previous chapter. By increasing
damping it is possible to obtain a considerable noise and vibration reduction.For this
purpose the most popular form of increase of damping is to embed viscoelastic layer
into structural components. Before going into details of viscoelastic materials and
their damping characteristic, it is aimed to give insight into how the damping
parameter effects the dynamic behviour of the complex structure by considering
dynamic behaviour of the simplest dynamic model, that is, single degree of freedom

system.

Dynamic behaviour of structures as well as effects of the parameter involved in
calculation of response of complex structures can easily be explained/visualized by
considering the dynamic response of single degree of freedom system under

harmonic excitation.

E,sin (wt) I

m |

Figure 2-2 Single degree of freedom system under harmonic load (Adapted from

[113])
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The dynamc response calculation of single degree of freedom system in theoretical

form given as follows [113].
mx + cx + kx = F, si {wt) (2-1)
F(t) = F,sifwt) (2-2)

Where F, represents the amplitude the applied load and w is frequency of applied

load or deriving frequency (rad/s).

The solution of this equation of motion composed of two solution as an homogenous
which is transient part and a particular solution which is referred as steady state
response. For the linear systems the output response is proportional to the input
forcing, that is, the sinusoidal input will produce a sinusoidal output of the same
frequency which corresponds the the particular solution of the problem and area

given as follows [113];
x,(t) = Xsin (wt — 6) (2-3)
xp (t) = e 26nt(Asin(wyt) — Bcos (wyt)) (2-4)
Where X is the steady state amplitude and 6 is the phase shift at steady state. The
coefficients A and B are the constants found by initial condition of the system such

as initial applied displacement and velocity of mass m.

~ E,/k
SO —mw?)? + (cw/k)?

(2-5)
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This equation can be rewritten as follows;

k 1
XF =
0 2 2-6
1G] + el -
taKd) = _20(w/wn) 2-7)
- 1- (w/wn)z

Here in these equations;

w, = +/k/m is the natural frequency of the undamped system when (c=0),

Wy = Wy (1 — {?) is the natural frequency of the damped system,

¢ = = isthe damping ratio of the system and ¢, = 2Vkm.

Cc

Also for the linear system, the total solution can also be regarded as the sum of
independent individual solutions therefore the total response of the system becomes

[113];
X(t) = e~$“nt(Asin(wyt) — Becos (wyt) + Xsin(wt — 0) (2-8)

One of the important conclusion that can be derived from the above equation is that
larger the time, t, smaller the free response and the forced response, which dominates
the total response of the system. Another important phenomena for the dynamic
behaviour of the structures that can be drawn from this simple system is that when
the forcing frequency approaches to the undamped natural frequency of the system,
that is, when w =~ w,, the response of the system, lets say the displacement, tends to

be very large which is called resonance condition and represents the unstable
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condition for the system under consideration and this result unwanted noise and

deflections which need to be suppressed.

The solution of this dynamic equation has been programmed and solved for the
particular initial conditions in MATLAB® [114] and the results will be given in time
domain for the case at which the forcing frequency close to the natural frequency and
for the other case at which both forcing and natural frequencies exactly matches
eachother. In Figure 2-3 the response of the dynamic system was plotted for the
condition that the forcing frequency very close the natural frequency of the total
system, that is w = 0.8w,. The resulting response called beat phenomena which
generally results before and after resonance condition and can be regarded as early
warning of advancing resonance. In the same plot the influence of damping
parameter is also given and it can be noticed that as we increase the damping

parameter, the resulting amplitudes are less for total and each of individual solutions.
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Figure 2-3 Variance of displacement response of simple 1 DOF system w = 0.8w,

(a) Total Response (Beat Phenomena). (b) Free Response (Transient), (c) Steady —

State Response (Forcing Frequency)
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Figure 2-4 Variance of displacement response of simple 1 DOF system: w = w,
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(a) Total Response (Resonance Phenomena), (b) Free Response (Transient),

(c) Steady-State Response (Forcing Frequency)
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The most critical condition occurs when the forcing frequency exactly matches with
natural frequency of the system, that is, w = w,. The amplitude of total vibration
response tends to be very large with time (Figure 2-4-a). The influence of damping
can also be seen from each individual response solutions (Figure 2-4-b,c). Again as
we increase the damping parameter the amplitude of responses get lower and lower.
The same result can also be visualized in frequency domain. The time domain
solution has an equivalent frequency domain representation, which is much more
useful in design of structures, for linear dynamic system and for the particular
resonance frequency it is shown in (Figure 2-5). From such frequency response plots
one can easily see that in case of lack of damping, that is, { = 0, the displacement
response is maximum at resonance frequency and as we increase damping factor
the amplitude is lowered. Inversely, from such frequency response plot one can
identify resonance frequency at which the peaks occur together with damping
parameter involved in system response by considering the peak response and half
power bandwidth points in frequency response function. Because the peak region is

fully damping controlled. The details will be given in following pages.

UNDAMPED vs DAMPED Frequency Response Function

agnitude Displacement [m]

Frequency [Hz]
Figure 2-5 Displacement response of simple 1 DOF system in frequency domain

when w = w,,.[114]
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2.2 Damping

As previously explained the damping greatly reduces the vibration response
amplitudes. The mechanism behind the damping phenomena is simply the dissipation
of excess energy imparted into the vibrating structure in terms of heat which in turn
lessens the total mechanical energy within the vibrating system. Damping occur in
many different ways in vibrating structures either in the form of friction due to
relative motion exists during vibration between individual components of an
assembly contacting each other at joints and this mechanism known as structural
damping. The dissipation of energy can also be accomplished by utilizing drag force
generated within a fluid like medium known as viscous damping. In this study we
will focus on another damping mechanism that is due to the inherent material
property which relies on the internal heat generation under cyclic deformation that is
material (internal) damping. Material damping results from internal interaction of
microstructures within body and mechanical energy is dissipated during cyclic
deformation in elastic range in all engineering materials. This mechanism of energy
dissipation is explained as the interaction of stress and strain, occurring (Figure 2-1)
due to internal forces under cyclic loading, as the hysteresis loop (Figure 2-6).All the

mechanisms involved in vibration damping are simply the energy loss mechanisms.

Stress R K
o e /
# !
O;um I ,’
e ! ,8// .
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/’ :
. 1
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Epax Strain £

Area = Damping Capacity
per Unit Volume

Figure 2-6 internal energy loss mechanism: hysteresis loop (Adapted from [113])
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The energy dissipation per unit volume of the material, per stress cycle, is given by

the area of the hysteresis loop. This is termed specific energy D,
(2-9)
D= ff) ode

In an engineering system, a structure should stay stable and undamaged despite of
the internal and external vibrations. The stability of a system depends on its damping
ability, which can be affected by design. Damping is defined as the energy
dissipation of a system in vibration and it can be presented by various parameters,
one of which is the loss factor. Loss factor n characterize the energy dissipation of
treated vibrating structures and is defined as the ratio of specific damping capacity D,
which is average energy dissipated, per radian of the damping cycle [113, 61] to the

total amount of energy stored per cycle.

AU 1 Energy dissipated per cycle

= 21U ax ~ 27 Maximum energy stored per cycle (2-10)

Where AU is the energy loss per cycle and Uy, 4, is the total stored reversible energy
of the system. Parameters AU and U,,,, can be measured through the area and the

shape of the hysteresis loop.

For the metallic structures the energy dissipation rate is so small. For aluminum
alloys for example the average loss factor is measured to be around 0.00197,
0.00079, and 0.00057 for mode I, II, and III, respectively. This leads the researchers
on finding new material and design configurations that maximize the damping
capacity of structures [115,116,117].The polymeric based viscoelastic materials are
good candidates in this manner. Because they have large and inherent energy
dissipation capacity therefore the high loss factor, especially when they are subjected
to the cyclic shear deformation and this makes them attractive in vibration control

applications [56, 59].
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2.3 Viscoelastic Materials

In order to avoid large dynamic amplification during vibration the structures should
be able to dissipate energy. This means that the material either should have high
internal damping or composed of high loss mechanism that makes viscoelastic

materials unique choice for passive vibration control.

Viscoelastic materials are mainly polymeric and due to their low stiffness property
they cannot be used as structural load carrying members however their composition
of randomly arranged large molecular chains, which are known as amorphous
polymers, interact and deform easily under load, causing large energy dissipation due
to high internal friction among chains compared to metals. In other words they have
large area of hysteresis loop under cyclic stress which results high energy loss
mechanism. Moreover depending on the operational conditions, the bonds between
uncross-linked polymeric molecules can be strong, moderate or weak. Degradation
of bonds allows slippage of each molecules with each other which results large
deformation capability. Therefore the viscoelastic materials exhibit both elastic and

viscous behaviour which means they can both store and dissipate energy [118].
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2.3.1 Effects of Temperature and Frequency

The environmental operational condition strongly affects the dynamic behavior and
dissipation characteristic of the viscoelastic materials. The mechanical properties
such as modulus and energy dissipation characteristic vary with temperature and
frequency of loading due to the change of strength of intermolecular connections.
Three different phase of composition takes place for different temperature and

frequency of loading as shown in (Figure 2-7)
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Figure 2-7 Variation of Modulus and Loss Factor (Adapted from [119]

The bonds between molecules of polymers are strong in cold environment which
results a stiff and less energy dissipation characteristic which is also dominating from
low frequency to high frequency of oscillations at constant temperature. This state of
material is called glassy phase due to increased stiffness. As we increase the
temperature the strength of bonds between molecular polymeric networks degrades

gradually resulting less stiff, soft structure but with an increase of energy dissipation
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characteristic at the state of material called transition phase. Further increase of
temperature results decreasing both stiffness and loss mechanism at the state called
rubbery phase which is also dominating at low frequency of oscillations at constant
temperature. In terms of damping performance the viscoelastic materials exhibit

higher damping capacity at their transition phase.
2.3.2 Linear Dynamic Response and Energy Dissipation

When a purely elastic material is submitted to oscillatory stress o, the measured
strain € occurs in phase. In a viscoelastic material however, strain lags behind stress.
Consider a bar of viscoelastic material is subjected to time varying harmonic tension
or shear load of maximum value of Fo at which the maximum stress and strain were
o, and €, respectively. When a viscoelastic material is subjected to an alternating
stress, it is observed that the strain associated with given stress is not in phase with

each other [120].

F(t)E

a(tl=o, sinl wt+8)

- \-'_:"' ' e(t)=¢, sin wt
N ]
F(t) § ot

Moving Layer | wl

[ Stationary or Movable J

Figure 2-8 Linear dynamic response of viscoelastic material under loading (Adapted

from [121])
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o(t) = % = g,si {wt + ) (2-11)

e(t) = e, sin(wt) (2-12)
g = g, cos(6) sin(wt) + g,sin(8)sin(wt + w/2) (2-13)

in which the first term of stress equation is in phase while the second term is out of
phase with a phase angle /2. A usual way to characterize the material is then to
define a complex Young’s modulus E* after rewriting (2-13) in complex form and

dividing it by strain (2-12) yields;

o = g, cos(6) sin(wt) + ig,sin(d)sin(wt) (2-14)
o O-O . O-O .
Complex Modulus = — = —cod6) +i—sid) (2-15)
€ € €o

and knowing the fact that the modulus is frequency dependent the complex young

modulus can be written as;
E'(w) = E'(w) + iE'(w) (2-16)

where E’ is the elastic or storage modulus and E” is loss modulus, and the ratio of

loss modulus over storage modulus is called loss factor and defined as;

14

tan(d) = i,— =n(w) (2-17)

7 =

E*(w) = E(w)(1 + in(w)) (2-18)
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The same is true for shear modulus. Assuming that the Poisson ratio of the

viscoelastic materials is constant in frequency, the complex shear modulus yields

G*(w) = G' (@) + iG" (0) = G(w)(1 + in(w)) (2-19)

Where G’ = G shear modulus, G"the shear loss modulus, and 1 the loss factor
defined as;

G"(w)
G'(w)

n(w) = (2-20)

2.3.2.1 Energy Storage and Dissipation

Dissipation of energy by means of viscoelastic materials is essentially due to
hysteresis effect takes place within the molecular structure under cyclic loading. The
storage and dissipative characteristic, as an enclosed area in hysteresis loop (Figure
2-6), in more theoretical form is given in [120]; as follows

Let the harmonic loading be as follows;

o=o0,sifwt) , €=¢,si{wt—27) (2-21)

The stored energy is found by simply integrating the stress-strain loop over the

quarter cycle as [120];;
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/2w
= WE, 0, J [codwt) si wt) coIF)
0

+ sin?(wt)si 6)]dt (2-22)

cod6) msiKd)
2 + 4 |

= €,0,
For 6=0
€o
f ode = €,0, (2-23)
0

This is known as recoverable stored energy. The second term represents the
dissipated energy and for =0 it vanishes since all energy is recovered. The above

equation can be rewritten in terms of storage modulus such that [120];;

o, E'e,
E'=—codd) ,0, = 2-24
Therefore the storage energy is;
€o 1
W, = j ode = EE'EOZ (2-25)
0

73



We can also find the dissipated energy by integrating stress-strain loop over full
cycle since the dissipated energy is equal to the area of enclosed hysteresis loop.

Taking the one quarter of full cycle yields [120];;

1 21/ W
= Zweoaoj [codwt) si Hwt) codF)
0 (2-26)
+ sin?(wt)si 6)]dt
= Zeoaortsi 1{6)
Recalling E"' from
(2-15) the dissipated energy is;
T
Wy, =—-E"¢,? (2-27)

4

From the definition the ratio of dissipated energy in one cycle to the total energy

stored in medium is loss factor and is yielded as;

s m _
W= > tar(d) (2-28)

The phase angle between stress and strain creates hysteresis effect that can be related

to damping which is termed as loss tangent and it is a measure of internal friction or

material damping under cyclic motion.
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2.4 Analysis of Viscoelastic Damping Treatment

Design of damping treatment requires prediction of dynamic behavior of treated
structure accurately. In literature there are well documented approaches to simulate
the dynamic response of the structures. In this part of the study some of the
methodologies, either analytical or numerical approaches, used in damping

prediction of complex structures will be explained.

The simplest analytical method developed for the analysis of damping treatment has
been proposed by Ross, Ungar, Kerwin known as RKU Method which was also
shown to be well correlated with experiments conducted for constrained and
unconstrained damping treatments [60]. The methodology based on estimation of
complex flexural bending stiffness which depends on material and geometrical
properties of individual layers and the wavelength of vibration. The method is also

applicable for various classical boundary conditions.

Another method proposed by Johnson and Kienholtz [64] based on the modal
analysis of treated structure from which the undamped modes shapes are used to
extract the dissipated energy in terms of modal strain energies for each layers at each
mode. Since the undamped modes are used in calculation of dissipated energies the
constant material properties can be utilized as an advantage of this method compared
to method requires use of frequency dependent complex modulus for the viscoelastic
material, which is not practical for the huge structural problems since it requires time
consuming iterative solution [110].Instead the Modal Strain Energy method (MSE)
calculates the average damping factor and it is valuable method to find optimum

design in practically short time.

Among all methods the Direct Frequency Response Analysis (DFRA) is another
method used in conjunction with finite element method (FEM) and utilize frequency
dependent material properties of viscoelastic material. The solution of this

methodology yields the frequency response functions of treated structure for any
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location over the design from which one can extract the damping factors for each

modes accurately upon using Half Power Bandwidth Method.

2.4.1 RKU Method

This method was developed in the early of 1969 by Ross etal. [60] and is
experimentally proved for use in design applications. It is the simplest method of
analysis for the damping performance of the treated beam and shell like structures.
Since the methodology is based on finding the flexural stiffness of vibrating, let’s
say, beam like structure, it is important first to consider transverse vibration of beam

before going into details of this methodology.

2.4.1.1 Transverse Vibration of Simple Beam

The analytical model of transverse vibration of beam like structures is given in many
textbooks [122] and will be explained here in order to understand the RKU method.
Below the governing equation of motion for the transverse vibration of continuum
beam is given and solved under the cantilever boundary condition for the first 10

modes of the beam.

_ aQ
V2=Q 11— s
Vi Q+axdx

Figure 2-9 Deflected shape of vibrating beam (Adapted from [122])
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Neglecting rotary inertia and shear of infinitesimal element, taking moment with

respect to center yields;

Q = 9M/dx (2-29)

And summing forces in the y direction yields;

aQ dy
_x — - 2-30
i dx = pAdx 52 (2-30)
Hence
0’M 0%y
_ _ 2-31
axz PP @31)

For uniform cross section of beam the bending rigidity EI is constant [122], so

0%y 0°M oty

= —El—2 and — = —El— 2-32

M= —El—— and —— = —El=— (2-32)
d*y  (pA\d%y

X (B2 2-33

i + (1) = (239

This equation is the general equation of motion for the transverse vibration of a
uniform beam. Moreover when a beam performs one of its normal modes during
vibration, the deflection at any point of the beam also varies harmonically with time,

therefore it can be written;

y = X(B; sin(wt) + B,cos(wt) (2-34)

where X is a function of x which defines the beam shape of the normal mode of

vibration. Hence;
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0*X _ (pA\ .
— (== = 2-35
ox* (EI) WX =X ( )

where

B = (ﬁ) w? (2-36)

And the general solution to the beam equation finally yields as follows [122]);
X = C; cos h(Bx) + Cysinh(fx) + C3 cos(Bx) + Cysin(Bx) (2-37)

In this final equation the coefficients C; to C4 are determined from the applid

boundary condition for two ends of the beam.

: < -
Fixed-Free Uniform Beam Ih
/ ) . ’
ElLp.A Free End b
FixedEnd =~

Figure 2-10 Fixed-free beam (Adapted from [122])

Considering the transverse vibration of fixed-free thin uniform cross section beam

with length of L, the boundary condition for this beam can be written as follows;
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B.C1: y(0) =0

dy
B.C 2: 0(0)=0 t — =0
(0) a dxl@x
0%y
B.C3: M(L)ZO at Elﬁl@le,
a3y
B.C4: V(L)ZO at EI ﬁl@XZL

) < €y sinh(5x) + € cosh ()
—C3p sin(Bx) + Cyfcos(fBx)
dzd)i(zx) = C1p* cosHPx) + C;B* si nl(px)
~C3B? cos(Bx) —C,? si ni{x)
d:,igx) = C;B%sini{Bx) + C,B? cosHPx)

+C3p? si Bx) —C4B*cos(Bx)

After substitution of the boundary conditions ;

C1+C3:0
C2+C4_=0
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(2.37b)

(2.37 ¢)

(2.37 d)

(2.37 ¢)

(2.37 )

(237 g)
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C; cosiBL) + C, si nfBL) —CscoyBL) — C,sifBL) =0 (2.371)

C; si nBL) + C, cosHPL) +C3si L) — C,cosBL) =0 (2.37 i)

Eleminating C;andC; from (2-37) and (2-37) by substitution of (2-37) yields;

[cosHBL) + coyBL)]C5 + [si n{BL) + si {BL)]C, =0 (2.37 iii)

[si nBL) — si {BL)]C3 + [cosHBL) + co(BL)]C, =0 (2.37 iv)

Rearring above equations in matrix form;

cosHPBL) + cos(BL) sinKPL) +sifBL)][C3] _ [0
sini{BL) —si{BL) cosHPL) + COS(BL)] [Cﬂ B [ ] (2.37v)
The solution of above equation yields the shape function of
cosBL)cosHBL) =1 (2.37 vi)

Recalling beam equation (2-36); the natural frequency of cantilever beam thus can be

written as;

EI
w; = B2 o (2-38)

The first 10 roots of shape function (2.37 vi) for the cantilever (fixed-free) beam is

found to be as given in Table 2-1 [123];
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Table 2-1 Roots of shape function for the cantilever (fixed-free) beam [123]

Order Ist 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

BiL 1.875 4.694 7.855 10996 14.137 17.28 2042 23.56 26.70 29.85

To relate the frequency at which attenuation begins, the frequency—wavelength

relationship for transverse waves propagating through a beam is given as;
2t ., |EI
= (—)? [— 2-39

Where I, E, A, and p are the physical parameters of the beam layer and A is the
wavelength of vibration. One can easily conclude from the derived frequency
formula for the simple beam that increase of frequency results shorter wavelength of
vibration. The flexural rigidity EI in this formula is calculated using RKU equations

for the treated beams using the analytical formula given below [60]

For the three layer constrained layer damping treatment the complex flexural rigidity

EI* is approximated as follows [60];

DEFORMED SHAPE OF TREATED BEAM
_——Constrpayer——

——— BaseBeam_

— & ——

Figure 2-11 Flexural rigidity of treated layered beam
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H H H H,? (Hyy — D
EI*=E11—;+E* 2+E31—;—E* 2(31 )

212 212 \1 + g *
+E H; + E*;Hy(Hyy — D)?*+E3H3(Hz, — D)? (2-40)
E*,H, Hs, — D
- ( > (Hzy — D)+E3H3(H3q — D)) ( T+g *)
where
E*Hy (H —h)+g(5* HyHyy + E*HyHyy)
D= 2tz (21 — = 2Hp 4 2Hp 34 (2.40a)
E,H,+E,H,/2+ g(E;H; + E*;H, + E; H3)
H,+H
Hyy = % + H, (2.40b)
H,+H
Hy = —( - > 2) (2.40¢)
i (2.40d)
g k= .
E3 HyH3(B)%/ Cy
............ CONSTRAININGIAYER .. ... ... B8* | | H _

VISCOFLASTIC LAYER

Figure 2-12 Topology optimization of spacer layer (Adapted from [60])

Where g * is shear parameter and C,, is the correction factor for the considered

boundary condition given (Table 2-2).
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Table 2-2 Correction factor for shear parameter for specific boundary condition [124]

Boundary Conditions Correction Factor
Mode 1 Mode 2+
Pinned-Pinned 1 1
Clamped-Clamped 1.4 1
Clamped-Pinned 1 1
Clamped-Free 0.9 1
Free-Free 1 1

The loss factor associated with damping treatment is finally found as the ratio of

imaginary part and real part of complex rigidity as follows;

imag(ET™)

= — 2-41

1 real (EI*) ( )
The solution of RKU equation is iterative since the complex modulus E* has

frequency dependency as explained before.
The latter methodologies requires the use of finite element method (FEM) therefore

this numerical procedure will be explained for the 2D plain strain case since in this

study the design of vibrating structure considered in 2D.
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2.4.2 2D Finite Element Method

The strain energy distribution should also be represented by the finite elements for
the loss factor calculation using Modal Strain Energy Method. The 2D plane shell
elements, namely, QUADA4 can also be used in order to extract strain energy through
stress-strain field. The theoretical formulation together with deformation pattern of
plain strain element, for the stress-strain calculations using nodal displacement field
is given in (Figure 2-14). The general two dimensional state of strain for an
infinitesimal element is direct function of nodal displacement in x and y only and this

can be represented by rectangular QUAD4 element. [126]

VANWA

Linear Quadratic

P

Figure 2-13 2D finite elements [126]
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Figure 2-14 2D state of strain [127]

In 2D assumption the deformation takes place only in x-y plane .Theoretically the

plain strain modeling strategy is defined by the following formulations [127].

ou v Ju dv
& = a y €y = a_y y Yoy = @‘Fa (2'42)
_aw_o _ _6w+8u_0_ _8W+6v 943
2T, 70 Ve T 5y T, T 'y”_ay 0z (2-43)

From equations, one can see that &, is a function of x, &, is a function of y and yy,, is

a function of both x and y and the stress relations are given as [127];

\%
oy = —V[Sx + m(ﬁx + &y)]

E %
O'y = H—v[é‘y + m(&'x + Sy)]
E (2-44)
Txy = myxy = nyy

and

o, = v(o, + ay)
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For plain strain condition the thickness direction is taken as unity under the condition
that either load, if exist, acts perpendicular to the plane of model and it is equally
distributed along each cross section which is same in z direction. Moreover under the
load or deformation, the displacement in z direction, w = 0 and the Poisson’s effect
is so small that g, = 0 based on the linear small deformation theory. For the case of
analysis of constrained layer damping in 2D, the plain strain modeling assumption is
therefore applicable for simple cantilever beam since we are interested only in
flexural small deformations, which create shear deformation within the viscoelastic
layer, omitting out of plane or torsional modes during its dynamic or static motion.
The associated error analysis for the plain strain assumption compared to 3D as well

as analytical solution is given in Chapter 3.

The stresses are also given in matrix form as;

O-X Sx
o, ¢=1[DI{ ¢ (2-45)
Txy Vxy
Where for plain strain condition, elastic property matrix, D is;
E 1-v v 0
[D] v 1-v 0 (2-46)

A+ -2v) . 0. 05—

E is elastic modulus of isotropic material and v is Poisson’s ratio. Then the strain

energy of an element can be found using the stress-strain law as follows;

<
|
IS
|™
W
~

(2-47)

N | =
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In 2D plain strain case [127];

U:l_[ c'edV
2 Vv

T

| o, &,

—1[ o, b {e, bay (2-48)
2 !
Txy yxy

B %J‘V (Gxgx + O-ygy +T’W}/"—V)dV

In order to compute the strain energy of elements we need to know the displacement
at each nodal point. The finite element method is used to compute those nodal
displacements under loading at each element by solving a set of linear functions
arranged in the form of equation of (2-49).The forcing column vector, F is related
with displacement vector, u through the global stiffness matrix, K which is built by
assembling all individual element’s stiffness matrix, k. The finite element
formulation to calculate unknown displacements through -calculating element

stiffness matrix is given as follows [128];

F=Ku (2-49)
where F is forcing either in the form of nodal load vector (fx ) or surface traction (Sy)
as depicted in (Figure 2-15), k is stiffness matrix and u is nodal unknown

displacement vector.

Figure 2-15 2D plane elements under load [128]
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Strain —Displacement Relation:

| ™
Il
|
=

Stress-Strain Law:

o=D¢g =Dou

(2-50)

(2-51)

The displacement terms from (Figure 2-14) are approximated within the 2D finite

elements using the shape functions N; as [128];

u (XaY) ~ NI(XaY)ul + Nz(an)uz +N3(XaY)u3 +N4(X,Y)u4
v (XaY) ~ NI(XaY) Vl + N2(X9Y) V2 + N3(X9Y) V3 +N4(XaY) V4

The same expression can be written in matrix form as [128];

u(x,y) N, 0 N, 0 N;
u= =
Tlvixyy) 0 N, 0 N, O

And in more compact form as;

=
[

|z

=9
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Then the approximated strain distribution in terms of displacement is [128];

o Uy ON(XyY) u + Ny(xy) - Ns(xy) - ONLxy)

* ox ox ox ? ox ’ ox N
ov ON ON ON ON
g, = xy) N y) v, + 2(X,) v, + 3(X.Y) v, + Jx.Y) V. (2-5%)
y oy y oy y
ou ov ON ON
v, = &y, vy Ny, &Y
oy ox oy ox
The same expression can be written in matrix form as [128];
Ex
g = 8)/ =
4 Xy
Wl (2-56)
Vi
ON,(%,Y) 0 ON,(x,Y) 0 ON,(x,Y) 0 ON,(%,) 0 ",
ox ox ox Oox
ON,(%,y) ON,(%,Y) ON,(x,Y) ON,(X,Y) || V2
—ny] 0 R RN 0 st 0 —ant]
oy oy Oy oy u,
ON,(x%,y) ON,(x%y)  ONy(xy)  ON,(%y)  ONy(%y)  ONy(%,y) ON,(Y)  ONJXGY) |1y,
oy ox oy ox oy ox oy ox la
B v,
In short form as;
e=Bd (2-57)

Now we have three approximations from which the element stiffness matrix can be

derived for single 2D plane strain element as follows [128];
k=[ B'DBaV (2-58)

Once the element stiffness matrix is found, the global stiffness matrix can easily built

and used in finding unknown displacement using equation (2-49).
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In dynamic case the governing equations are given, for 2D plane case, as follows

[110].

00y, 0Ty, = 0%u
ax oy Par

(2-59)
0Ty N doy, 0%v

ax oy Par

Where u and v are the displacements in the x and y-direction, respectively, as

shown in Figure 2-14.

Assuming that every layer is isotropic, so the stress-strain relation can be written as

[110];

Oxx Ci1 Gz 0 [éxx
[ayy] = [Cu Cz O ] [eyy] (2-60)
Txy O 0 666 yxy
The above square matrix is complex due to complex shear and elastic modulus of

viscoelastic layer. Using the strain displacement relations given in (2-42) and (2-43)

together with equation (2-59), the equation (2-60) takes the following form [110];

0 c 6u+C ov +6 c u+C v,  0%u
ax( 15 120)/) ay( 66ay 666x)_pat2 o)
0 c 6u+C ov +6 c u+C v, 0%
ax( 66ay 66ax) ay( 125 zzay)—Patz

The equation of motion that is derived using the solution given in [129] more

explicitly in familiar matrix form and it is given as [110];

[low 181] {::}+ ﬁli IIS;] {y)=0 (2-62)
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MX + K*x =0

. . . . . e
The displacement terms are approximated using interpolation functions ¢° (x,y)

element by element using finite element method yields [110];

n
un S b e
i=1

n
y = Z a®; ¢, (x,y)
i=1

(2-63)

The [M] is the mass matrix which represents mass of each element while the [Ki]

represents the stiffness matrix and it is also complex. Both terms are calculated by

integration over the domain of finite element as given below [110].

M;j = f pty; pjdxdy
_Qe

Kll..:f t(Con—J 4 . L2 Ndyxd
ij e (Ciq 9x Ox + Ces 3y ay) xay

09; 09, 09; 09,

12— g2l — _riZr
K L] K Ji Let(clz ax ay +C66 ay ay)dxdy

dp; 0@, 0Q; 0Q;
22, Zrtzry i
K=y jﬂet(C% % Ox + Cy, 3y ay)dxaly
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2.4.2.1 Modal Strain Energy Method

MSE method is energy formulation and one of the practical method proposed by
Johnson and Kienholz [64] that utilize the undamped mode shapes of vibrating
structure to extract the strain energy which is dissipated by the viscoelastic layer. The
loss factors are calculated for each mode as the ratio of dissipated energy and total
strain energies of all individual components. For this purpose the Finite Element
Method greatly helps in determination of mode shapes and extraction of strain
energies of all components that forms the damping treatment system, at each mode.
Since this method uses the undamped real modes, it does not require the use of
frequency dependent material properties, instead, use of constant average material
properties are well enough for design and optimization purposes to get rough

estimate of initial and optimum design parameters.

In this method classical modal analysis is performed using average constant material
properties. The damping of the structure is approximated as the ratio of sum of
product of loss factors for each of the layers over to total strain energies associated

for each mode as follows [93].

n
Yic1MixUix

Utotal,k

n
Utotark = z Uik
i=1

_ (771,1U1,1) + (772,1U2,1) + (773,1U3,1)
Ujp+Uz1+Us; (2-65)

_ (711,2 U1,2) + (772,2U2,2) + (773,2 U3,2)
Ui+ Uzz +Us)

_ (771,3 U1,3) + (772,3U2,3) + (713,3 U3,3)
Uiz +Uy3 + Us;s

Nk =

N1

Uy

3
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Where 1; i 1s the material loss factor of the layer 1 at mode k, U;y is the modal strain

energy of the layer i at mode k. Uggq k15 the total modal strain energy at mode k.
An alternative and potentially more accurate method to calculate the modal loss
factor is the Half-Power Bandwidth approach which requires the computation of
frequency response functions [130].Therefore direct frequency response analysis best
choice for this purpose and one of the method utilized in this study.

2.4.2.2 Direct Frequency Response Method

In direct frequency response analysis, structural response is computed at discrete
excitation frequencies by solving a set of coupled matrix equations using complex

algebra under harmonic loading. The damped forced vibration equation of motion

with harmonic excitation given in [131].

[M]{x} + [BI{x} + [K*]{x} = {P(w)}e/** (2-66)

Where;

[M] : Global Mass Matrix

[B] : Global Damper Matrix

[K*] : Global Structural Stiffness Matrix with Complex Terms

{P(w)}: Loading Vector

w: Angular loading frequency

93



The response of the system under harmonic loading is assumed to be same as loading
such that for linear system if the forcing function is harmonic, the response is also

harmonic as stated below [131];

{x} = {X(w)}es®! (2-67)

where {X(w)} is complex displacement vector. Taking the first and second
derivatives of above equation
(x} = jw {X(w)}e/*t
jo iX(w) | (2-68)
() = —0*(X(w))et

Substitution of above terms into equation of motion the following is obtained [131].;

M@ + o[BI + RIK @)l = (P)el

This simplifies as below [131];

([K" — 0?M] + joBD{X(0)} = {P(w)} (2-70)
This expression represents a general system of equations with complex coefficients if
damping is included which is the energy dissipation characteristics of the system.
The ratio of output displacement to the input force is termed as Receptance and it

represents the transfer function of the system. In matrix form it can be stated as

follows [114];

[a] = [[K* — w*M] + joB]™? (2-71)
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The damping in direct frequency response analysis is incorporated in several ways,
the damping matrix [B] represents viscous damping generated by damper elements

and is composed of two forms as [131].

B = [B] + [B?] (2-72)

[B1] represents the viscous terms added via CVISC and CDAMPi Bulk Data cards
used in Optistruct® solver, that is, via damping element properties. [B?] is another
input matrix via DMIG Bulk Data card if the model contains discrete damper
elements. Another method is to use uniform Global Structural Damping Coefficient,
G through PARAM, G Bulk data card. On the other hand the frequency dependent
viscoelastic material stiffness and damping properties can also be embedded into the
solution of equation of motion through MATF1 card in which the TABLED:i tabular
entries for each of stiffness and damping properties form the complex stiffness

matrix as follows [131];

K* = [K'] (1+j6) + [K*] +j[K*] (2-73)

[K'] is the stiffness matrix for elastic structural elements. If there were no
viscoelastic components and all components had same damping properties it would
be quite appropriate to use only uniform structural damping parameter, G, however
inclusion of viscoelastic layer, whose material properties are frequency dependent,
makes the analysis complicated. [K?] is stiffness terms added via direct matrix input
via DMIG card. The last term [K*] created via multiplication of individual element

stiffness matrices with input GE, that is, viscoelastic element damping [131].
In this study both elastic, [K!] , viscoelastic components, [K*] , are used utilizing the

advantage of inserting the viscoelastic frequency dependent material properties as

tabular functions of TR(f) and TI(f) such that [131];
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K* = [K'](1+j6) + {TR(f) + TI(f)} [K*] (2-74)

where TR(f) and TI(f) is real and imaginary part of complex modulus, that is G’
and G", respectively. Since the elastic components such as structural Aluminum
have quite low damping capacity [115] the G terms are taken as almost zero. In
Hypermesh environment the viscoelastic material properties can be incorporated
through use of TABLEDi entries together with MATF1 Isotropic Frequency
Dependent Material card [132].

Upon completion of direct frequency response analysis the frequency response
function, i.e. receptance, can be generated as outputs from which the damping factors
can be extracted via using Half Power Bandwith Method.This method is one of the
well known and accepted one in extracting the loss factors from measured or
calculated FRF curves obtained either from experimental or numerical studies
respectively especially at or close to resonance peaks [133]. The following section

gives the methodology in finding loss factor near resonance region.
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2.4.2.2.1 Half Power Bandwidth Method

From previous theoretical study of single degree of freedom system we conclude that
the peak locations in frequency response functions are damped controlled regions
and therefore the damping parameters can easily be extracted by simply using half
power bandwidth method which requires the detection of value of each peaks as well
as the corresponding natural frequencies together with half power bandwidth points

on frequency axis as depicted in (Figure 2-16) [120]

I

AJ

Magnitude | H(w)|

wi

Frequency (w)

Figure 2-16 Extraction of damping factor from resonance peak (Adapted from[120])

According to the methodology, the half power bandwidth points are found by simply

dividing peak value of response to 1/+/2 and find the intersection points at resulting
amplitude level on curve which gives the lower and upper bound of frequency band
on frequency axis. Upon detection of all numerical values, the loss factor is related

with those parameters as follows;

n=—"t—==2 (2-75)
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For this purpose a special MATLAB code has been written to accomplish this task
such that the code finds the peaks of FRF plots and detects half-power bandwidth
points from which it calculates the loss factors. The flowchart for this task is shown
in (Figure 2-17). The frequency response functions were exported out of
Hypergraph® into MATLAB environment at which the specially coded routine, for
detection of resonance frequencies as well as calculation of damping factors, has

been utilized.

e

MATLAB
EXTRACT LOSS FACTORS
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FROM FRF CURVES
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/ / | -DIRECT FREQUENCY

U \_/ \  RESPONSEANALYSiS |

[ .
o = G

n:=0.1

l"|2=1.U

Figure 2-17 Extraction of loss factor from direct frequency response functions
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In this study the research activity is composed of three parts and they are given in
subsequent chapters. In the first part, one of the numerical method namely topology
optimization technique has been utilized in order to find best material distribution of
stand-off layer with minimal weight using different modelling technique and
objective function as well as constraints. Then the overall damping performance of
the resulting topologies has been investigated and compared to each other in terms of
total weight and damping loss factors extracted from frequency response functions
using Half Power Bandwidth method upon performing direct frequency response
analysis which computes the harmonic forced response of each candidate design.In
the second part, another numerical method which is parametric design strategy
together with known optimization algorithms have been used to find best optimum
geometrical and material parameters that maximize the loss factor for the first three
modes since the first modes dominate the overall structural dynamic response.The
Modal Strain Energy (MSE) has been used in conjuction with Finite Element Method
to calculate the loss factors. Moreover to see the effects of extracted geometries from
numerical studies in higher modes, the frequency of interest has been selected such a
way that it covers the first 10 modes of the vibrating structure. Throughout the
numerical studies cantilever boundary condition has been used for layered beam
structure since it is easy to model, simulate and also create in experimental study
conducted at the third and last part of the research in order to validate the design
procedure that has been followed. Also, the objective of experiment has been
primarly to qualify the design, manufactured based on numerical results that were

achieved in the second part of the study.
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CHAPTER 3

DESIGN AND ANALYSIS OF VIBRATING BEAM FOR OPTIMUM
DYNAMIC BEHAVIOUR

3.1 Introduction

Inclusion of spacer layer in purpose of vibration attenuation through strain energy
maximization leads to the increase of weight of total structure which is a
disadvantage for the weight critical applications such as automotive and aerospace
applications. Therefore there is always compromise between weight and damping
performance of the weight critical vibrating structures. This is in turn results to seek
feasible design alternatives for the damping treatment with stand-off layer. However
the design of damping layer treatment an iterative process to find best geometrical
configuration with minimum weight together with maximum damping performance
among several parameters such as thickness, material properties, layout of damping
layer etc. Fortunately there are mathematical design strategies that manage such
numerous design parameters efficiently and they can be followed to investigate the
effectiveness in optimization of spacer layer for maximum damping and minimum

weight constraints.

In recent years with advance of computer technology it is quite possible to use
mathematical optimization algorithms effectively to seek best options among those
parameters within minutes. Moreover the numerical simulation techniques such as
Finite Element Method (FEM) enables the designers to model the real physical
problem in computer environment by utilizing commercial software tools virtually
under a set of boundary and loading conditions. In this method the design domain

virtually created through CAD software and divided into mathematically formulated
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number of smaller domains which are called “finite elements” connected by “nodes”
which forms grid like 2D for plane or shell type structures or 3D for volumetric
mathematical model which is later solved by numerical approaches. The result of
finite element analysis solutions are extracted at nodes and can be of any type like
displacement, velocity and acceleration for dynamic problems while can be of
temperature for thermal analysis. The accuracy of latter method in prediction of real
physical behavior directly related to the modeling assumptions and boundary and

loading conditions [129].

Improving design that satisfies certain functional requirements necessitates
determination and evaluation of many possible designs; this also requires time
consuming, exhausting trial-and-error stages among several design possibilities.
Incorporation of optimization algorithms with computers enables the automated
search for finding the best design parameters based on the requirements imposed into

the solution.

Specifically the optimization methods utilize the numerical search techniques which
are performed within a range of certain design parameter values starting from an
initial design that is being improved through the selection of design candidates
created out of bounded design space. The search continuous until all constraints and
given objection is satisfied. Combining FEM with optimization methods greatly
improves the practical application of such kind of search algorithms within selected
design domains and enables the flexibility of evaluation of several design
possibilities in a short time. The design is continuously altered based on constraints
and assigned design parameters seeking the best target solution that satisfies the

objectives.

The simulation models are built by linking finite element model and optimization
algorithms. The finite element model functionally represents the parameterized
numerical model of physical problem containing geometric, material and boundary

condition information. The design engineer is capable of defining several design
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parameters, constraints, responses and target objective out of this model that affects

the response of structure in hand (Figure 3-1) [134].

FINITE ELEMENT MODEL

OPTIMIZATION ALGORITHM SIMULATION MODEL

Figure 3-1 Optimizaton cycle (Adapted from: [135])

3.2 Structural Optimization

In computational mechanics structural optimization aims to increase the structural
performance of mechanical systems and their sub components in a systematic way
following an effective and reliable path. Especially the weight concerns, performance
and reliability requirements as well as competition in automotive and aerospace
industry urgently needs such type of optimization methodology in order to

manufacture weight efficient and functionally increased performance of products.
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Structural optimization starts with conceptual design and modeling phase at which
the boundary of the system is defined. At this stage creativity, material selection, size
and location of structural members play an important role in final response of the
structure. In analysis and evaluation stage the numerical finite element model is
developed in order to calculate the response of components simulating the
operational conditions. This process usually followed by automated modifications to
tune the response such as displacement, stress etc. The aim is to keep the response of
the structure at a certain acceptable levels, minimize or maximize with certain
constraints [136]. At another stage the process continues with formulation of the

problem.

A general structural optimization problem utilizes mathematical algorithms to solve

the following form of standard formulation [134]:
minimize or maximize f(x,y) with respect to x and y
S.0. behavioral constraints ony

subject to design constraints on x (3-1)
equilibrium constraints

In a more general form;
maximize or minimize f(x)
such that gix)=0,j=1,....,n
he(x)=0,j=1,....,n
k J (3-2)
XiL < Xj < XiU

X = (Xq,Xp,X3,X4, e-+,Xp)
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Where x represents a vector of design variables with components x;,i = 1,2, ..., n,

the g;(x) and hy(x) are the constraints and can be equality or inequality form. x;"

and x;V are the lower and upper bounds of design variables x;.

Objective of structural optimization problem most generally are minimizing over all
mass or volume of the components, production cost as well as stress distribution, also
maximizing stiffness etc. In general terms the aim is to find optimum geometrical

configuration ensuring manufacturability of structure for the specific problem [136].

3.2.1 Design Variables:

The improving of structural performance under given constraints necessitates the
change of structure to seek best solution for the specific task. For the structural
design process such changes are accomplished by selecting and assigning the
building block of main design parameters as design variable within optimization
algorithm. Design variables can be of geometric sizes of a structural member such as
its length, height, width, thickness, area and even a nodal coordinate of finite element

mesh or material properties like modulus, density etc.

Also they can take continuous or discrete forms. Continuous variables can be varied
between prescribed lower and upper bound and can be of any numerical value within
that bounds while discrete forms i.e. material modulus values, can take only specific
values as per predefined material choices because of existing material source. In
practice because of its easiness compared to discrete form solution, the continuous
design variables are preferred and can be tailored upon optimization calculation to a
nearest best practical discrete value. Mostly the parameters that affect the response

much are the key design variables that derive the design process.
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3.2.2 Constraints:

Design process generally contains some limitations such as limited material volume
for minimum weight concern and mostly the design variables are subjected to those
constraints. Minimum or zero displacement constraints due to limited sway space in
dynamic problem. The selection of minimum standard structural beam cross section
under static loading condition requires also the variation of height, width, thickness
within certain range. For the same problem, the maximum allowable stress value
over the cross section can also be chosen as constraint in order to guarantee the final
stress level below that threshold value. Therefore constraints should impose
physically possible design space otherwise the area of cross section would be chosen
as minimum as possible which may not be practically manufacture or would possess
high local stress value over the impractical final section .Quantities that are usually
used as constraints are stress, strain, displacement, frequency, acceleration, volume
etc. Those are can also be defined as objective function such as minimum

displacement, minimum frequency objections.

3.2.3 Responses:

The responses are generally the output of simulation stage and are tracked
throughout the calculations and checked whether they satisfy the objective function.
From the structural point of view, response can be of structural displacement, stress,

strain or reaction force, compliance etc..

3.2.4 Objective Function:

In general a mathematical formulation the represents the overall response of the
structure under consideration and that can be minimized and maximized in order to

improve the structural performance based on the values of design variables. The

weight of a structural component, displacement or stress of a specific location within
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design domain, modal frequencies basic responses in objection function that can be

minimized or maximized [136]

Today, the decision on how a new design should look like is mostly based on a
benchmark design or on previous designs. The decision-making is based on the
experience of those involved in the design process. However, preliminary design
tools such as topology optimization can be introduced to enhance the process. The
concept can be based on results of a computational optimization rather than guessing

by using topology

3.2.5 Topology Optimization

Topology optimization is one of the popular technique used in structural design
process at the early phase of product development stage. The method generates the
best material distribution under prescribed boundary and loading conditions as
depicted in Figure 3-2. The term best can be in terms of weight or in terms of
stiffness or some other criteria such as minimum vibration frequency for dynamic
problems or maximum load carrying capacity for buckling criteria. Thus one can
define number of measurable parameters as structural performance criteria while

determining the final topology of design.

The finite element mesh of the evenly distributed uniform material within the design
domain is used as link in creation of final distribution of design by considering the
element density values as continuous design variable (Figure 3-2). The design
domain divided into number of regions as design and non-design domain. Only the
elements belongs to design domain or domains are considered as design variable.
Other regions are kept as constant distribution. Upon completion of topology
optimization the new path of material distribution is obtained while removing some
portion of whole design based on the design objective. Therefore the methodology
helps to figure out the layout of final design with best, in terms of functional

requirements, such as maximum load carrying capacity or maximum lowest natural
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frequency with minimum material distribution without performing time consuming

trial-and-error procedures.

Moment
\ Non Design

Node

&

p ¢ E[—'(pl‘.‘]
3 Element

Boundary Condition

Figure 3-2 Simulation model for topology optimization (Adapted from: [136])

3.2.5.1 Density Method (SIMP)

As previously mentioned the aim is to distribute material as efficient as possible
within selected design space. For this purpose several methodologies are developed.
Among them the SIMP (Solid Isotropic Microstructures with Penalization) proposed
by Bendsege [137] is very popular method in which stiffness of material is directly
proportional to the pseudo density of material. The density value is continuously
varied as design variable between 0 and 1 representing the void and solid material
respectively. For 2D models the density is also represented as the thickness of the

shell elements [132]. In this method the objective is usually to minimize the
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compliance of the structure considering load cases, material volume fraction

constraints.

SIMP is a density-stiffness interpolation scheme of density method which forms the
non-linear relation between modulus of elasticity and relative density of each
individual finite element (Figure 3-2) by penalizing the intermediate density values

of individual finite elements to force their density value to be either 1 or 0.

According to the SIMP model, the finite element elasticity matrix E, is expressed in
terms of the element volumetric material density p,,0 < p, <1 in a power p, p =

1as [134]

Ee(pe) = pepEe* (3-3)

where E," is the elasticity matrix of a corresponding element with the fully solid
elastic material the structure is to be made of. The power p in (3-3), which is termed
the penalization power, is introduced with a view to yield distinctive “0-1” designs,
and is normally assigned values increasing from 1 to 3 during the optimization
process. Such values of p have the desired effect of penalizing intermediate densities
Pe, 0 < pe. <1 since the element material volume is proportional to p,, while the

interpolation (3-3) implies that the element stiffness is less than proportional

By analogy with (3-3), for a vibrating structure the finite element stiffness and mass

matrix may be expressed as [138]

Ke(pe) = pepKe*

N (3-4)
Me(pe) = pequ

where K,” and M," represents the element stiffness and mass matrix corresponding

to fully solid material, and the power g, > 1.
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The global stiffness matrix K and mass matrix M for the finite element based
structural response analyses behind the optimization, can now be calculated by the

following summations [138].

Ne
K= z peP K"
e=1

Ne (3-5)
M= z peq Me*
e=1

Using SIMP method the typical topology optimization formulation can therefore be
stated as follows [132];

find: x = {p1,p2, P3) -+ - PNe}

Pmin void

Pi =
1 solid
i=123,...Ne
( ) (3-6)
while Min or Max : f(x)
Under ste V=YNv,<v

where V is the total volume of simulation model achieved by summing all individual
element volumes V;’s. V* is the maximum allowable total limit of final design
domain. The objective function f(x) can be regarded as total compliance or first
natural frequency of vibrating beam. Ne is the total number of elements in design

space.
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In Figure 3-3 the distribution of material within prescribed design domain is
illustrated as elastic modulus versus density values for the isotropic 2D rectangular
domain. The black areas indicate the total initial uniform elastic domain where the
density value is 1 which represents the existence of material. On the other hand as
the density value approaches to the value of 0, which corresponds to the removal of
elastic material, based on the volumetric constraints and objective function the
material from the design domain is removed yielding a truss like structure as final
design. Here the density of each elements, which are the building block of the
structural domain, are considered as design variable and varied between 0 and 1. The
aim of structural topology optimization is to find the best possible material
distribution over the design domain that is necessary for the functional target
performance value defined via objection function. From the Figure 3-3 one can also

see the effect of penalty factor in variation of elastic modulus.
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Figure 3-3 Material interpolation within design domain [137]
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The result of topology optimization is a rough layout of final design with its inner
and outer boundaries of optimum material distribution. Therefore it needs to be
reinterpreted by the designer to approach final material distribution which is much
more practical to produce. The process consists of several steps and will be explained

in the following sections.

3.2.5.2 Methodology

In design, analysis and optimization procedures, defining rough estimate of design
and formulation of physical problem is first essential two steps. For this purpose after
having the CAD design, the finite element method, which divides the design domain
into structural mesh, is used for the pre-processing part of the optimization
procedure. The Hyperworks suit 13.0 from Altair Engineering gives an extensive
opportunity for the engineers to model, analyze and optimize the structural
components using Hypermesh as pre-processor, Optistruct as solver and Hyperview

as post-processing platforms [132].

Mainly the optimization methodology requires four different phase of design steps to
be performed step by step as shown in Figure 3-4. In phase [ the geometry of
problem is transformed into finite element mesh on which the boundary conditions
and loads are applied from which the specific load cases are created. Then the
material properties are assigned to each corresponding portion of design domains are
also identified and base analysis step which will be used by the optimization
algorithm is defined. For example if the frequency of the component is concerned,
then the modal analysis step to extract those frequencies of interest should be
defined. After performing base analysis, in phase II the total design domain divided
into design and non-design spaces explicitly. At this phase the target finite elements
are selected as design elements out of global structural mesh. Generally the boundary
of the global mesh is considered as non-design space. The setup of optimization is
also takes place at this phase; the responses, constraints and objective function are

defined such that the design space elements are selected as design variable, and the
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material property of each element within that space, namely the pseudo-density
values, are calculated through SIMP method by Optistruct [ 132] based on constraints

and objective.

Prepare CAD Model
(CATIA)

—_—
"

Meshing & Application of B.C's
& Assign of Material

(Hypermesh)

Runing of Analysis-(Optistruct)
(Static-Modal.. etc.)

Creating Design Variable, Response Constraints & Objective

=

OS5Smooth-
Extraction of CAD Geometry-
{Interpretation)

L Optimization-Optistruct J

Analysis of Final CAD Model
& Results

Figure 3-4 Topology Optimization Steps

Phase III includes visualization of calculated topology of design space. The density
of each element is plotted giving rough estimate of final design as voids or solid
material. Since the topology results are rough, generally the result of topology
optimization results needs to be interpreted by the designer based on the experience.
In phase IV some tuning process takes place such that the boundary of final design
shape is obtained through some modifications and interpretations. OSsmooth

function in Hypermesh interface enables an automatic 2D or 3D surface or solid
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generation to be modified at this phase, from finite elements that represents the

calculated topology of the structure.

An example of 2D topology optimization of cantilever beam type structure has been
analyzed and shown in Figure 3-5 to summarize the above mentioned phases. The
beam is modeled as 2D plane structure and imported into Hypermesh environment at
which the total domain divided into finite element mesh (phase ) as well as two sub
groups namely, design space and non-design space are defined respectively (phase
1]). In order to show effect of selection of different design space two different portion
of beam selected as design space. As a load case static analysis step is defined under
a tip load over the beam (phase II). The truss like material distribution is found
through global compliance minimization setup under volume fraction constraint with
which maximum allowable volume is defined (phase III). This step can be
interpreted as weight minimization under load. After having rough topology
OSsmooth functionality of Hypermesh is used to extract final geometry based on

designer’s interpretation (phase IV).
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Figure 3-5 Topology Optimization Process

Since the topology optimization gives the effective load path together with optimum
material distribution along this path, the compliance minimization strategy for 2D

honeycomp cell filled with viscoelastic material is successfully applied by Boucher
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et. al [86] in order to find the minimal material distribution of viscoelastic domain
that is subjected to highest strain energy, along extracted topologies under static in
plane loads that mimics the deformation pattern of unit cell under vibration. The
solution gives the optimum viscoelastic material topology within unit honeycomp

cell in order to increase vibration attenuation capacity of honeycomp panels.

Inclusion of spacer layer in purpose of vibration attenuation through strain energy
maximization leads to the increase of weight of total structure which is a
disadvantage for the weight critical applications such as automotive and aerospace
applications. Therefore there is always compromise between weight and damping
performance of the weight critical vibrating structures. This is in turn results to seek

feasible design alternatives for the damping treatment with stand-off layer.

The next sections contain the detailed analysis steps for the optimization of stand-off
layer carried out in this study. Two optimization strategies have been investigated by
analyzing simple cantilever layered beam type structure since its modeling quite easy
and its dynamic behavior can easily be analyzed. First, the topology optimization
method has been utilized in order to find best material distribution under assumed
sinusoidal distributed static loading that force the beam structure to deform in its
assumed modes. The first mode shape is quite achievable via this methodology.
Moreover the assumed unit cell geometry was also modeled with certain length and
the extracted unit cell topology was used as building block of whole beam that is
composed of repeated unit cells. The unit cell is a representative volume of material
for the periodic construction of whole beam and the concept is used in this study
based on the fact that the response of 2D periodic whole structure can be
characterized by unit cell which is known as Bloch Theorem [139].The material
layout of unit cell found by topology optimization and upon creation of composite
periodic structure effects the frequency response characteristics such a way that
response can be reduced in specific frequency ranges [140]. This construction
methodology has also special characteristic advantages especially at some frequency

ranges of loading, when the corresponding wavelength of the vibration matches with
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unit cell length. The associated transverse waves at the corresponding frequency
ranges creates amplified local deformation zones, in other words, local resonance
[141] at each unit cell such that the attached viscoelastic material can undergo large
deformation, such that the energy dissipation due to high strain, expected to be also
magnified at mid or high frequencies [142] at which the attenuation zones exists in

the frequency response functions.

The topology optimization for the design volume was carried out using constant
material properties for the viscoelastic layer and upon extracting the candidate
topologies for the final design, the performance of extracted topologies in terms of
damping and weight was later inquired by incorporating frequency dependent
material properties for the viscoelastic layer through direct frequency response
analysis using Optistruct® as solver and Hypermesh® as pre-processor from Altair

Engineering Inc.

In the second method, the cantilever beam has been modeled parametrically using
CATIAVS5-R22® environment as design tool such that the thickness and material
properties of stand-off layer were defined as design variables in HyperStudy®
environment. Generation of layered cantilever beam and its finite element model as
well as modal analysis steps were performed automatically through macros and
utilizing capability of well recognized HyperStudy® software again from Altair
Engineering Inc. Modal Strain Energy Method was used together with finite element
method to calculate modal loss factors via extracting strain energy distribution of
each individual layers such that the loss factors are linked numerically with the
geometrical and material parameters of stand-off layer. This methodology enables
the designer to link the final numerical values of loss factors for the first three modes
with the geometrical and material parameters of design in hand. Performing DOE
(Design of Experiment) studies and utilizing build-in optimization algorithms within
HyperStudy® the best geometrical parameters for maximum damping for the

cantilever beam were found.
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3.2.5.3 Finite Element Modeling

The finite element method was used as the base of two optimization methodologies
that has been followed throughout the thesis study. The modeling strategy is common
for both of the optimization studies. Therefore it will be explained in this section

before giving details and results of two methods.

The 2D finite element modeling strategy has been followed in order to create
analysis models This assumption is efficient in terms of modeling and analysis cost
since the number of elements are drastically reduced. Specifically the plain strain
condition is simulated assuming the section of beam represents the dynamic behavior
of cantilever beam (Figure 3-6).For topology optimization method 2D assumption is
applicable for finding distribution of material within stand-off layer using PSHELL

element cards [132].
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Figure 3-6 2D Finite element modeling
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Numerical 2D and 3D as well as analytical (RKU) solutions for the modal analysis of
cantilever three layer beam were performed for the first 10 modes. In 2D modeling
Quad4 elements are used under the plain strain condition while in 3D case the
elements were selected to be 3D HEXS8. Moreover RKU equations are used for the
same geometrical and constant material parameters for all three layers and modeling
approach (Table 3-1). Analytical solution was performed in MATLAB® by
calculating equal flexural rigidity of layered beam via using RKU equations for
fixed-free boundary condition. The resulting stiffness value was used in frequency
equation given in Chapter 2 to calculate approximate value of natural frequencies of
layered beam together with the corresponding mode shapes for the first ten modes
(Figure 3-9).The results for mode shapes and corresponding natural frequencies are

compared to each other (Table 3-2).

Table 3-1 Material and Geometrical Properties Three Layer Treated Beam

Properties Base Beam Damping Constraining
Layer Layer Layer
(Aluminum) (Dyad-601)  (Aluminum)

Length [mm] 250 250 250
Thickness [mm] 1.6 1.27 0.5
Material Young Modulus 70000 50 70000
[MPa](Constant)

Poisson’s Ratio (v) 0.3 0.49 0.3
Density (kg/m®) 2770 1040 2770

It was seen from the modal analysis that 2D modeling approach captures the flexural
mode shapes quite well while the order of each mode may have difference compared
to 3D modeling results. For example the 3™ mode shape in 2D model corresponds to
the 4™ mode shape extracted by 3D modeling. Also the 2D model only captures the
flexural mode shapes except other modes, i.e. torsional, and this is acceptable for our

design considerations since the viscoelastic damping dominantly amplified by shear
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deformation due to the flexural motion of vibrating structure and the motivation was

to reduce flexural response of the structure.
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Table 3-2 Comparison of Modal Analysis Results

2D QUAD4
Mode Number  Plain Strain 3D HEXS Analytical Abs. Prct.
(2D;3D;RKU)  FEM FEM RKU Err. (%)
2D 3D RKU

(1;1;1) 43.11 41.44 41.70 - 4.04 338
(2;2;2) 218.56 211.93 218.58 - 3.13 0.01
(3;4;3) 516.40 502.40 500.49 - 279 3.8
(4;7:4) 880.44 857.55 845.08 - 2,67 4.18
(5;8;5) 1321.63 1286.89 1260.80 - 270 4382
(6;10;6) 1845.17 1795.68 1755.60 - 276 5.10
(7;13;7) 2457.86 2390.68 2334.90 - 281 527
(8;16;8) 3162.52 3074.17 3001.90 - 287 535
(9;18;9) 3960.95 3838.58 3758.60 - 319 538
(10;23;10) 4753.74 4544.04 4606.30 - 461 320
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The natural frequencies for the same three layer beam calculated using three
modeling approach were in quite well agreement with each other with a percentage
error of 2D model was maximum %>5.38 that was considered to be small enough.

Therefore 2D plain strain condition was used throughout the study.

The base beam corresponding to vibrating antenna element, the stand-off layer,
viscoelastic layer and constraining layers were all modeled using linear QUAD4 iso-
parametric 4-noded shell type finite elements. QUAD4 shell elements are defined by
4-nodes with two degrees of freedom at each node, namely, translations in nodal —x
and —y directions (Figure 3-6). The number of finite element used in modeling quite
affects the accuracy of the analysis results. Also topology optimization requires

sufficient numbers of elements to finely distribute material within design space.

Bearing in mind this fact together with analysis run cost sufficient number of
elements in modeling such that two elements through the thinnest viscoelastic layer

thickness were used.

The geometric and material properties of 2D plane shell elements, namely, QUADA4,
were assigned using PSHELL property cards together with MAT1 material cards
which have the following formats given in Table 3-3. MAT1 card is used to define
isotropic constant material properties for the elements within individual layers.
PSHELL card also is used for defining section properties of each layer, such as
material (MID1), thickness (T) etc. The plain strain case is also set in this card by
assigning MID2= -1 at 5" column while setting MID3 as blank at 7" column of this
card [143]. For topology optimization the TO is set to 0 which is the minimum base

thickness.
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Table 3-3 Material and Geometric Cards in Hypermesh [143]

(1) (2) (3) (4) (5) (6) (7 (8l (9) (10}

MAT1 MID E G NU RHO A TREF GE
ST sC ss
(1) (2) ) (4) (5) (8 (7l (8) (9 (10)
PSHELL | PID MID1 T MIDZ | 12I/T3 | MID3 TSIT NSM
z1 zz MID4 TO ZOFFS

Upon completion of topology and parametric optimization studies, the performance
of designs is investigated by incorporating the frequency dependent material
properties for the viscoelastic material. For this purpose Direct Frequency Response
Analysis has been performed. In this type analysis method isotropic frequency
dependent material properties are assigned to viscoelastic elements using MATFI
card which uses tabulated form of material properties with respect to frequency, as
Modulus of Elasticity E(f),Shear Modulus, G(f) and damping factor GE(f) as
TABLEDI entries which are shown T(E),T(G) and T(GE) in Table 3-4 in column 3th

4™ and 9" respectively.

Table 3-4 Isotropic Frequency Dependent Material Property Card [143]

(1) (2) (3 (4) (5) (6) (7) (8) (9] (10]

MATF1 MID T(E) T(G) TN T(RHD) T(A) T{GE)

T(5T) T(5C) T(55)
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The material for the viscoelastic layer is selected as DYAD-601 Souncoat® from the
Soundcoat company located at USA [144],. The frequency dependent material

properties at 23 C (room temperature) is given in Figure 3-11.
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Modulus
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Frequency [Hz]

Figure 3-11 DYAD-601 Frequency dependent material properties [144]

Optimization studies started from an initial design model that has certain constant
material and geometric properties. Design model of a long four layered beam model
has been created using CATIAVS-R22® and finite element model is created in
Hypermesh® using the initial constant material parameters and geometric properties

for the topology optimization are given in Table 3-5.
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Table 3-5 Material and Geometric Properties of Individual Layers

Base Beam Stand-off Damping Constraining
Properties Layer Layer Layer Layer
(Aluminum) (ABS-P430) (Dyad-601) (Aluminum)

Elastic Modulus, E (GPa) 70 2.2 - 70
Shear Modulus, G (GPa) - - 0.05(%) -
Density,p (kg/m?) 2770 1040 1120 2770
Poisson’s Ratio, v 03 0.38 0.49 0.3
Loss Factor, n 0.001 0.08 0.8 0.001
Length [mm)] 250 250 250 250
Thickness [mm] 1.6 10 1.27 0.5

(*)  Modulus value is choosen, from material data plot (Figure 3-11), to correspond fundamental frequency of reference

layered beam, w, = 137 Hz.

For the stand-off layer the ABS P430 type material was selected since complex
topologies can easily be manufactured using rapid prototyping technology from 2D
to 3D [145]. Since the topology optimization requires sufficient design space, a 10

mm stand-off height was selected to be as base reference analysis model.

3.2.6 Topology Optimization of Stand-off Layer

In this part of the study it is aimed to investigate the effectiveness of topology
optimization method in finding the best material distribution for the stand-off layer
with minimum weight as well as with maximum damping capacity via adapting the
study of Boucher et.al [86].The reference study uses minimization of compliance for
the topology optimization of 2D viscoelastic medium. Here in this study the stand-off
layer was selected as design space to be optimized under assumed flexural sinusoidal
static load to mimic deformation pattern as is the case in reference [72] under
vibration. Upon finding the material distribution for the stand-off layer the damping
performance of cantilever four layer treated beam will be investigated using
frequency dependent material properties for the viscoelastic layer. The beam
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represents the structure over which the antenna elements are thought to be attached
and our aim is to minimize weight of damping treatment with stand-off layer while

increasing the damping capacity of it.

In classical topology optimization minimizing the compliance while constraining the
material volume can be solved using the density method, assuming linear elasticity.

This methodology can simply be stated mathematically as follows [136]

mi nC(p) = F'u(p)
p
pla=V
s.t.

Pmin = 0.01 < pe < pmax =1 (3-7)

e=1,....,n
where n is the number of element within design domain and p = [pq, Py, ... pn]” is
design variable vector which contains individual element densities to be varied
between 0 and 1. a is the vector of element areas. Also F is loading vector. Recalling
element nodal displacement formulation of each individual element, the global

displacement vector u can also be stated as follows [132];
u(p) = K~'(p)F (3-8)
And compliance minimization under load takes the final form of [132];

mi nC(p) = F'K~*(p)F (3-9)

Above equation reflects that under constant static force compliance is inversely
proportional with stiffness of the structure that is minimizing compliance is simply
means the increase of stiffness of the structure. Increase of stiffness has positive

effect in decreasing the vibration amplitude [119] and also weight reduction is
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another advantage through any combination of constraints in compliance

minimization problems [146].

Multiple load cases such as static and modal analysis steps can also be combined in
topology optimization enabling the modification of frequency of structure. For this
purpose compliance index and weighted compliance responses are used. The
combined compliance index is a method to consider multiple frequencies and static
subcases (loadsteps, load cases) combined in a classical topology optimization. The

index is formulated as follows [132]:

LWl A

SZZW-C--I-NORM
L™l Zm

(3-10)

This is a global response that is defined for the whole structure. The normalization
factor, NORM, is used for normalizing the contributions of compliances and

eigenvalues. The quantity NORM is typically computed using the formula [132]:
NF = CraxAmin (3-11)

The weighted compliance method considers multiple static loads. In this method
different weight factors are assigned for each of static load cases according to
dominant characteristic of loading. The weighted compliance is formulated as

follows [132];

Cy = ZWi C,=1/2 Z W wTf; (3-12)

In the following sections some practical applications of topology optimization
methodology are given by either minimizing compliance responses with material
volume and displacement constraints or by maximizing the first modal frequency. It

is aimed to investigate effectiveness of topology optimization in finding best layout
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of stand-off layer that maximize the damping capacity of simple cantilever beam
structure with minimum overall mass by comparing damping performance of
resulting topologies through direct frequency response analysis in which the
frequency dependent material properties are used. The Half Power Bandwidth
Method is used to extract the damping factors of first three modes of the beam using
a MATLAB code that has been developed in order to calculate corresponding
damping factors automatically from frequency response functions in evaluation of
damping performances (Figure 3-12). Moreover a uniform stand-off layer that has
equivalent weight with new topology is recreated with reduced thickness and
compared with original base model to quantify the increase of damping. In order to
investigate the effect of height of the stand-off layer; the extracted same topologies,
for each case study, are rescaled to reduced thickness values and their damping

performances are also reported.

The displacement frequency response functions (Receptence) were generated upon
performing direct frequency response analysis from the tip of simple cantilever
beam, namely from tip of base beam whose vibration to be suppressed, as shown in
(Figure 3-12) by exciting beam with harmonic unit force (1N) from same location in
the frequency range of SHz to 14 kHz in order to evaluate the damping performance

of design alternatives.

Fixed Base
Node g .1--:_-| , Displacement
fatyTi &/ U Response [mm]

Unit Harmoanic U
Force [N]

Figure 3-12 Generation of frequency response function
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3.2.6.1 Case Study I:

In first case study a 250 mm long four layered treated cantilever beam model in 2D is
modeled using QUAD4 shell elements in Hypermesh® finite element software
environment using material and geometrical data given in Table 3-5. One end of the
beam is restrained in all degrees of freedom to a one single node that represents the
cantilever boundary condition using RBE2 rigid elements. The static in-plane
sinusoidal flexural distributed load is applied at top row of the nodes to induce
deformation that mimics the vibration deformation as well to induce shear
deformation within the viscoelastic layer as shown in (Figure 3-13).The motivation
behind this methodology is to find material distribution with minimum weight that
will yield the induced state of deformation therefore the high strain energy within
damping layer during its vibration motion with less bending rigidity while having
higher shear stiffness in stand-off layer which are the properties of ideal stand-off
layer [107]. The less bending rigidity can be achieved due to removal of material
taking into account the induced load path in static load case, which was also selected
to be in the form of sinus load that induce state of shear within damping layer for
maximum damping, under volume constraints and lastly higher stiffness due to

maximization of frequency at modal analysis step at this optimization case study.

. BOUNDARY CONDITION
(CANTILEVER } SINUSOIDAL FLEXURAL LOAD

V' RBE!Rigd Elements

AN \ STAND-OFF LAYER (DESIGN SPACE) []l\
= = Ll

VIBRATING BASEBE_-\M/ CONSTRAINING I.M'I':f__,....-) m

| I

VISCOELASTIC LAYER

Figure 3-13 Finite element model of cantilever beam
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Static and modal analysis steps are performed prior to the optimization step as base
analysis. In optimization step, the property card of stand-off layer is selected as
design domain using DESVAR cards in Optistruct. Then the compliance index
response card DESRP1 card that will be used as objective function was created. This
first response uses previous static analysis together with modal analysis steps
simultaneously to take the frequency of the structure into account. Each of frequency
and static load cases are equally weighted as wy = 1; ws = 1, respectively at this
step. For constraining the material volume to be used in final optimized layout, the
VOLFRAC response was also created using same card. This card represents the
upper bounds of material volume fraction compared to original volume of total

design. Therefore in this case the maximum value of 0.30 was set for this response.

Finally as an objective function minimize option was selected for the first response
of the topology optimization, namely compliance index which will take account both
static and modal analysis steps. The original and resulting treated beam is shown in
the following Figure 3-14. The elements that has pseudo density value of 1 (red in
color) were left while the ones that have 0 (blue in color) values were all deleted
from the original design space. One can see the periodic nature of stand-off layer
due to periodic sinus load as well as the shape that is yielded for maximum natural

frequency, that is, in other words for high shear stiffness.

Design Space

Figure 3-14 Layout of original (top) and optimized stand-off layer (bottom) upon

minimizing compliance index
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Table 3-6 Comparison of Original and Optimized Beam

Uniform Optimized
Spacer Mass [TON] 5.200e-06 0.7824e-06 (%15)
Total Mass [TON] 9.841e-06 3.103e-06 (%30)
Modal Frequency (1%) [Hz] 137.34 Hz 148.19 Hz
Static Tip Displacement [mm)] 11.3 mm 7.16 mm

In Table 3-6 comparison of static and modal analysis results of beam with uniform
and optimized stand-off layer is given. Upon optimization the static tip displacement
is reduced while the first natural frequency is shifted to higher level as expected.
Also the total mass of the beam structure is reduced as being approximately %30 of
total initial structure as was set in VOLFRAC card. As previously explained the
result of topology optimization cannot be used directly since it needs to be refined to
get final design space. In Hypermesh Smooth functionality was used to extract the
surface geometry from the topology of stand-off layer. Then it was exported to the
CATIAV5-R22 environment to tune the shape of voids and solids portions. This
stage completely depends on the designer interpretation. The final geometry of the
stand-off layer was recreated considering solid elements (p=1) periodically
distributed as the solution implies. And this configuration was given as shown in
(Figure 3-15) as well as its 3D geometry via extruding in perpendicular direction of
the paper. The 3D geometry is given for demonstration purpose only to show how
generated 2D topologies could be used in producing real 3D products with less

weight.
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Figure 3-15 Refined 2D geometry of stand-off layer after topology optimization and

3D generation of final treated beam.

This tuned final 2D geometry was then used to investigate the dynamic behavior of
cantilever beam in terms of damping capacity. It is already known that increase of
modal strain energy in viscoelastic layer greatly increase the damping capacity.
Regarding to increase of damping capacity, the modal analysis has been performed to
visualize the deformation pattern within viscoelastic layer by simply extracting strain
energy distribution. Modal analysis results (Figure 3-16) show that irregular
deformation patterns exist at top portion of the beam, where the viscoelastic layer
located. This irregularity creates induced shear deformation within the viscoelastic
layer during vibration and as the frequency of vibration increase this irregularities

shows themselves more along the entire beam.
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Figure 3-16 Mode shapes of cantilever beam with optimized stand-off (Case I)
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Figure 3-17 Strain energy distribution of partially covered stand-off layer
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The increase of strain energies within viscoelastic layer can also be seen more easily

from plots given below (Figure 3-18 to Figure 3-20) for the first three modes due to

the new stand-off configuration. In the following plots the smooth line (red)

represents the strain energy values for each element positioned above uniform stand-

off layer while randomly distributed line (blue) shows the strain energy values for the

same elements above optimized new configuration. It is clear that new configuration

induce higher shear strain within the viscoelastic layer compared to uniform one.

Moreover the new stand-off configuration possesses less weight than original

uniform case.
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Figure 3-18 Increased Strain Energies within VEM layer along beam.
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Figure 3-19 Increased Strain Energies within VEM layer along beam.
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Figure 3-20 Strain energies within viscoelastic layer along beam.

(Red: Uniform Stand-off, Blue: Optimized Stand-off)

Up to now the constant material properties are used for the viscoelastic layer since
the topology optimization method used as concept design generation. Fortunately it
is obvious from above results that new stand-off configuration induce higher shear
strain which in turn the final geometry has higher modal loss factors. Now in order to
quantify the damping performance of the new configuration accurately, frequency
dependent material properties are incorporated into direct frequency response
analysis with which we can able to extract damping factors using Half Power
Bandwidth Method from frequency response functions. The following Figure 3-21
and Figure 3-22 shows the frequency response functions, namely receptance plots, of
original beam with uniform and optimized stand-off layer for the first 10 modes
respectively. The peaks represent the displacement response of tip of the base beam
at resonance frequencies at each mode. The loss factors as well as frequencies were
detected via using specially written MATLAB® code and all were attached on curve

for each of those peaks.
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Figure 3-22 Frequency response function of beam with optimized stand-off layer

(H=10 mm)

139



The new stand-off layer configuration has less weight compared to uniform layer.
Therefore in order to compare the performance of this newly generated layer with
layer that has equivalent mass, a new uniform layer is modeled with less thickness
but same weight. The following Figure 3-23 shows the frequency response function

of beam with equally weighted uniform stand-off layer.

Displacement Frequency Response (Point FRF of Equivalent Weight of 1st Topology with H=3.52 mm Uniform Spacer)

Magnitude [mm/N]

Frequency [Hz] .
Figure 3-23 Frequency response function of beam with equally weighted uniform

stand-off layer (H=3.52 mm)

The following Figure 3-24 shows overall comparison of frequency response
functions for fully treated original uniform (dashed fade black), optimized (dark
black) and equal weight (blue) uniform stand-off layer.
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Figure 3-24 Frequency response functions of original uniform (dashed fade black),

optimized (dark black) and equal weight (blue) uniform stand-off layer.

One can see from Figure 3-24 that the new topology of stand-off layer has lower
amplitude compared to original beam structure with uniform and equally weighted
uniform stand-off layer. However upon 4 kHz there are visible high amplitudes in
response function while weight equivalent thinner uniform layer has stable dynamic
characteristic. However it is quite visible from response function that thinner layer
has higher response amplitude especially in lower frequencies but they are gradually
diminished at higher frequencies. The shape of response curve tends to be broader

due to increased damping.
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From the literature it is known that addition of cuts into viscoelastic layer as well as
partial coverage further increases damping capacity. Such modification was also
incorporated into new layout of stand-off layer as depicted in Figure 3-25. The
viscoelastic layer is also covered partially. It is expected to increase the shear strain

at the vicinity of the cuts within stand-off layer.

Figure 3-25 Addition of cuts into new layout of stand-off layer (partial coverage)

The following Figure 3-26 shows the frequency response function of beam with

optimized stand-off layer with cuts.
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Figure 3-26 Frequency response function of beam with partially treated optimized

stand-off layer
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The comparison of all above cases is given in the following Figure 3-27, it is seen
that new topology of stand-off layer with cuts has improved the damping capacity of
beam especially at lower frequencies with shallower and broader response curve.
However upon 4 kHz there are visible high amplitudes with narrow peaks in

response function for the thick spacer with new layout of spacer.
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Figure 3-27 Overall comparison of frequency response functions

(H=10 mm & H=3.52 mm)

The numerical results are given for each of the cases considered previously in the
following Table 3-7. The results include comparison in terms of total weight
percentage, frequency and loss factors for the first ten modes. The damping
performance of optimized fully and partially treated beam compared to uniform case
which is considered to be reference configuration. Minimizing compliance index
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results %38.34 mass reduction as well as damping improvement %101.68 for the
first mode, %97.1 for the second mode, %84.76 for the third mode for fully treated
case and the relative improvement is until 7" mode. Additionally for the partial case
with same topology, %41.2 mass reduction as well as dampin improvement of
%132.96 for the first mode, %139.13 for the second mode, %132.38 for the third
mode compared to reference model with 10 mm uniform stand-off layer, was
achieved. The improvement is continous until 7" mode for the partial treatment. The

first mode is shifted to a higher value while all others were lowered.

Table 3-7 Summary of the optimization results (CASE I-H=10mm)

(CASE I-H=10mm)

1st Topology Relative Damping Performance w.r.t. Uniform Stand-Off Layer

Frequency f[Hz] Loss Factor n=2¢
e < <%z
Optimized Uniform Optimized Optimized
Mode # Uniform Optimized Partial Full Coverage Full Coverage Partial Coverage
Prct [%] Full Coverage Full Coverage Coverage Weight=100% Weight=61.66% Weight=58.80%
1++ 146.00 163.00 159.00 0.018 0.036 0.042
~ 1 101.68% 1 132.96%
2++ 833.00 737.00 679.00 0.014 0.027 0.033

4 97.10% 4+ 139.13%

3++  2082.00 1578.00 1431.00 0.011 0.019 0.024
4 8476%  fr 132.38%

4++  3589.00 2374.00 2130.00 0.009 0.016 0.021
4 8427% 4+ 132.58%

5++  5216.00 3116.00 2785.00 0.008 0.014 0018
&4 77.78% 4 122.22%

6++  6905.00 3755.00 3376.00 0.007 0.013 0.017
i 4 7297% 4+ 122.97%

7+ 8609.00 3883.00 4377.00 0.007 0.003 0.024
I -51.47% 4y 245.59%

8+ 10338.00 4688.00 4636.00 0.006 0.028 0.005
4 35484% 4 -12.90%

9~ 12057.00 4980.00 5555.00 0.006 0.004 0.004
B 4 -3333% O -29.82%
10--  13775.00 5891.00 6166.00 0.005 0.003 0.003

- 3§ -4423% & -38.46%
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From Figure 3-23 one can see that the reduced uniform thickness for the stand-off
layer yields almost higher modal loss factor for the first three mode and even higher
beyond the 3™ mode.Therefore in the following case the same topology is scaled
down to a lower thickness value of 3.52 mm stand-off height and pattern of new
layout was covered along the beam (Figure 3-28) and the same analyzes were also

repeated for this new thickness value.The results were also reported in the following

pages.
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Figure 3-28 Thickness reduction of new layout (Topology I) of stand-off layer

The following Figure 3-29 shows the frequency response function for the same

topology with reduced thickness.

Displacement Frequency Response (Point FRF of 1st Topology with H=3.52 mm Spacer)
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Figure 3-29 Frequency response function of beam with optimized stand-off layer

with reduced thickness.
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Like in the previous case, the cuts were added into stand-off layer with reduced
thickness as depicted in Figure 3-30. The coverage of viscoelastic layer was done

partially using the area left over the stand-off layer.

Figure 3-30 Addition of cuts into stand-off layer (partial coverage) (H=3.52mm)

; Displacement Frequency Response (Point FRF of 1st Topology with H=3.52 mm Spacer- Partial Coverage)
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Figure 3-31 Frequency response function of beam with partially treated optimized

stand-off layer with reduced thickness (Topology I).

Comparison of frequency response functions for the beam with optimized and
uniform stand-off layer with a thickness value of 3.52 mm is given in the following
(Figure 3-32). Scaling the stand-off layer down to a reduced thickness value results
further damping improvement compared to thicker spacer layer. The damping

capacity was increased and the frequency of the structure lowered since the thinner
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structure has lower bending rigidity. The overall comparison of results of first case

study is given in (Figure 3-32).The thicker stand-off layer has lower response value

for the first three modes at slightly higher frequencies. However the thinner stand-off

layer

with same topology has higher damping capacity in all modes with higher

amplitudes at low frequencies. Additionally although the response amplitude is

higher at lower frequencies one can see gradual decrease in amplitude with broader

peak values.
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Figure 3-32 Overall comparison of frequency response functions (H=3.52 mm) &

(H=10 mm)
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The numerical results are summarized in the following Table 3-8 for new thickness
value of stand-off layer (H=3.52 mm) with same topology as in the previous case.
The results include comparison in terms of weight, frequency and loss factors for the
first ten modes. Minimizing the thickness of stand-off layer compared to H=10 mm
stand-off layer, results further %39.27 decrease in weight for the uniform cases. The
same topology with lower thickness value increase damping by %9.92 for the first
mode,%13.94 for the second mode, %4.55 for the third mode compared to H=3.52
mm unfirom case.Also for this case, upon 3™ mode there is no achieved relative
improvement. The reduction of weight by optimization compared to thin uniform
case is %21.43. One can notice that relative percentage increase in damping and
decrease in mass via optimization is decreased as the thickness of stand—off layer is
reduced. Moreover the improvement for the particular case for the thinner partially
treated optimized layout is %113.31 for the first mode, %105.98 for the second mode
and %78.79 for the third mode. The relative improvement is continous until 6 mode

for partially treated stand-off with decreasing percentage.
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Table 3-8 Summary of the optimization results (CASE I-H=3.52 mm)

(CASE I-H=3.52mm)

1st Topology Relative Damping Performance w.r.t. Uniform Stand-Off Layer

Frequency f[Hz]

Loss Factor n=2¢

H=3.52
v <o T o <
Uniform Optimized Uniform Optimized Optimized
Mode # Full Optimized Partial Full Coverage Full Coverage Partial Coverage
Prct [%] Coverage Full Coverage Coverage Weight=100% Weight=78.57% Weight=72.18%
1++ 84.00 94.00 95.00 0.035 0.039 0.075
- 4 9.92% 1+ 11331%
24+ 508.00 518.00 503.00 0.025 0.029 0.052
- 4 13.94% 4+ 105.98%
3 1353.00 1258.00 1201.00 0.020 0.021 0.035
- 4 4.55% 4 78.79%
4-+ 2476.00 2115.00 1989.00 0.018 0.017 0.030
- 4 -3.87% 4 63.54%
5-+ 3798.00 3031.00 2828.00 0.017 0.015 0.025
- 4 -10.06% 4 49.11%
6-+ 5253.00 3977.00 3701.00 0.016 0.014 0.022
- 4 -15.53% 4 34.78%
7-- 6794.00 4950.00 4584.00 0.015 0.012 0.010
- 4 -19.61% 4 -33.99%
8-+ 8396.00 5949.00 5522.00 0.015 0.011 0.016
- I -22.07% 4 13.10%
9-+ 10039.00 6976.00 6483.00 0.014 0.011 0.014
- I -23.91% 4 3.62%
10-- 11719.00 8042.00 7469.00 0.013 0.010 0.013
- 4 -23.44% & -1.56%
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As a summary, if we compare the results obtained for both thickness value of stand-
off layers, namely, H=10 mm and H=3.52 mm, the following (Figure 3-33)
summarizes the result obtained in terms of frequency response curves. Compared to
thicker uniform stand-off layer the thinner partially treated stand-off with optimized
configuration has better damping performance in all modes.However the response
amplitude is relatively higher.
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Figure 3-33 Overall comparison of frequency response functions (H=3.52 mm-

partially treated) & (H=10 mm-uniform fully treated)

The numerical results are summarized in the following Table 3-9. The thinner
uniformly treated beam has relatively high damping capacity compared to thicker
configurations and the relative damping improvement is increasing continuously with
increasing frequency. Moreover the partial configuration further increase the value of
loss factor in all modes compared to uniform cases. This relative increase was
expected to be due to increased flexibility that generates relative motion between
layers and due to high local strain concentrations, exist within viscoelastic layer upon
cutting spacer layer. However in terms of response amplitude, the thicker layer has

advantage comparatively.
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Table 3-9 Results of Optimization for H=10mm and H=3.52 mm Stand-off Layer

(CASE I-H=10 vs H=3.52mm)

1st Topology Relative Damping Performance

Loss Factor n=2¢

H=10
$ ~C Optimized Optimized Partial
H_—o2 (H=10mm) (H=10mm)
Uniform- Optimized Uniform- Uni\;sorm Univfsorm Uniform- Optimized Uniform-Eq.Weight
Mode # Full Coverage Full Coverage Full Coverage (H=3.52 ) (H=3.52 ) Full Coverage Full Coverage Full Coverage
Prct [%] Weight=100% Weight=61.66% Weight=61.66% ' T22MM \eight=100% Weight=78.57%  Weight=72.18%
1+++ 0.018 0.036 0.042 0.035 0.039 0.075
4 227% @ 18.13% @ 9721% 1 7.48% 4 80.58%
2+++ 0.014 0.027 0.033 0.025 0.029 0.052
8.37% 31.47% 81.88% 5.15% 56.67%
@ % %« @ @
3+++ 0.011 0.019 0.024 0.020 0.021 0.035
4 -2.02% @ 2323% 4 88.57% 4 6.70% 4 45.08%
4+++ 0.009 0.016 0.021 0.018 0.017 0.030
-9.39% 14.36% 103.37% 6.10% 43.00%
4 % %« @ @
S+++ 0.008 0.014 0.018 0.017 0.015 0.025
- . 0 .. 0 B 0 . 0 B 0
& -14.79% @+ 6.51% £ 108.64% {r 5.56% 4 40.00%
6+++ 0.007 0.013 0.017 0.016 0.014 0.022
& -20.50% @ 248% ©117.57% 1 6.25% 4 31.52%
T++- 0.007 0.003 0.024 0.015 0.012 0.010
4 -78.43% @ 53.59% £ 125.00% 4 272.73% & -57.02%
8+-+ 0.006 0.028 0.005 0.015 0.011 0.016
B 0 = . 0 B 0 - . 0 . 0
4 94.48% &4 -62.76% {+133.87% I -59.93% 4+ 203.70%
O+++ 0.006 0.004 0.004 0.014 0.011 0.014
4 -72.46% 4 -71.01% 4 142.11% 4 176.32% 4+ 257.50%
10+++ 0.005 0.003 0.003 0.013 0.010 0.013

4 -7734% & -75.00%  4-146.15% 4r 237.93% 4 293.75%

In the middle of Table 3-9 the relative numerical comparison has also been given
between thick spacer with new topology and uniform spacer of equal weight. For the
full coverage case the damping improvement is only in the order of 2.27% at 1%
mode and 8.37% at 2"! mode, while for the partial case up to 7™ mode there exist
relative improvement in the order of 18.13% at 1% mode, 31.47% at 2" mode and

23.23% at 3" mode, 14.36% at 4™ mode etc.
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3.2.6.2 Case Study II:

In this section different modeling and optimization strategy will be followed. As a
second case study the modelling approach proposed by Yellin [107] will be adapted
such that the periodic unit cells of topologically optimized stand-off layer can be

used as building block of a treated beam.

Previously, at the introductory part the advantage of this methodology was explained
as a method of creation of periodically arranged unit cells that inturn results either
amplitude reduction due to suppression of propagating waves or locally resonating
attenuation zones due to increased deformation of viscoelastic layer [138,139,140].
For this purpose again a small segment of the beam as, 1/10 of the 250 mm treated

beam was considered.

The unit cell exposed to a deformation state statically, that mimics the state of
deformation, during cyclic motion by applying sinusoidal load with assumed shear
force that is also generated during relative motion.The simply supported boundary
condition is applied over the lower left corner of unit cell such that the motion both
in —x and —y direction is restrained while the motion of right bottom corner is
restrained in —y direction only. This boundary condition mimics the vibration
deformation of treated beam under sinusoidal distributed load as shown in Figure
3-34. Moreover, for this case, a distributed shear loading is also assumed applied at
the interface nodes between viscoelastic and stand-off layer. This shear load
represents the shear load due to shear stress exists during flexural motion.Then the
material layout of of this unit cell was found by optimizing the volume of stand-off

layer as design space.
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Figure 3-34 Deformation pattern of the unit cell of treated beam with stand-off layer

under assumed load cases.

Two static analysis steps are performed prior to the optimization step as base
analysis. In optimization step, the property card of stand-off layer is selected as
design domain using DESVAR cards in Optistruct. In this case the weighted
compliance response card DESRP1 that will be used as objective function was
created. In this formulation the two or more static subcases are simultaneously
considered during optimization process according to their weights which represents
effects of each individual load. The ideal stand-off layer is the one that has infinite
shear stiffness while minimum bending stiffness [107]. Therefore the weight
parameter for shear load kept maximum relative to the flexural load such that the
terms assigned were  wgox = 0.5; Wspeqr = 1, respectively. For constraining the
material volume to be used in final optimized layout, the VOLFRAC response was
also created using same card. This card represents the upper bounds of material
volume fraction compared to original volume of total design. Therefore in this case
the maximum value of 0.30 was set for this response. Upon minimization of

weighted compliance the topology extracted for the unit cell is given in Figure 3-35.
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The whole treated beam is then recreated by assuming it to be formed from repeated

cells as shown in Figure 3-35.
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Figure 3-35 Topology optimization result for the treated unit cell (up)-treated beam

with periodic units cells (down)

The modal analysis has been performed to visualize the deformation pattern within
viscoelastic layer. The following Figure 3-36 and Figure 3-37 shows the mode
shapes of cantilever beam created via building repeated optimized unit cell topology.
From the deformation state of each cells one can notice that the viscoelastic layer
exposed again to irregular deformation pattern and as a result the shear deformation
.The irregularity increases for the higher modes because of extracted shape of unit
cell and the movement of base vibrating beam. Moreover the local resonances within
each unit cell also takes place which cause frequency band gaps in frequency

response functions.
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Figure 3-36 Mode shapes of cantilever beam with optimized stand-off (Case II)
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Figure 3-37 Mode shapes of cantilever beam with optimized stand-off (Case II) in
the range of 8kHz-12kHz

The following Figure 3-38 shows the frequency response function of whole beam

with optimized stand-off layer built with unit cells.
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Displacement Frequency Response (Point FRF of Layered Beam wath H=10 mm Spacer Layout of Topology I-Full Coverage)
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Figure 3-38 Frequency response function of treated beam with stand-off layer with

topology of unit cell.

In order to compare the performance of this newly generated stand-off layer with
layer that has equivalent mass, a new uniform layer is modeled with less thickness
(H=3.45 mm) but same weight. The following Figure 3-39 shows the frequency

response function of beam with equally weighted uniform stand-off layer.
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Figure 3-39 Frequency response function of uniform stand-off layer with equivalent

mass.
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As we followed in previous case study, some cuts were incorporated into new stand-
off geometry in suitable locations (Figure 3-40) in order to increase bending

flexibility more and local strain energies at the vicinity of the cuts.
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Figure 3-40 Addition of cuts into stand-off layer with unit cell topology.

The viscoelastic layer also partially covered to the stand-off layer and its frequency

response function is given Figure 3-41.
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Figure 3-41 Frequency response function of partially treated beam with optimized

stand-off layer.
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The following Figure 3-42 shows overall comparison of frequency response

functions for fully treated original uniform (dashed gray--), fully treated spacer with

new topology (black-), partially treated spacer with new topology (orange-) and

uniform spacer of equal weight (dashed red--).
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Figure 3-42 Overall comparison of frequency response functions

One can see from Figure 3-42 that the new layout of fully and partially treated thick

spacer with new topology has lower amplitude with broader peaks and with overall

reduced weight compared to reference beam structure with uniform spacer. However

due to reduction of bending rigidity after removal of material from spacer, the

frequency of new beam has shifted to the left as in previous case. However upon 10

kHz there exist responses with higher amplitudes with thick partial configuration.
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However it is quite visible from response function that thinner layer has again higher
response amplitude especially in lower frequencies but they are gradually diminished
at higher frequencies. The shape of response curve tends to be broader due to

increased damping

In terms of damping performance the numerical results are given for each of the case
considered previously in the following Table 3-10.The results include comparison in
terms of total weight percentage, frequency and loss factors for the first ten
modes.The damping performance of optimized fully and partially treated beam
compared to uniform case as considered to be reference configuration. Minimizing
weighted compliance results  %36.76 mass reduction as well as damping
improvement %31.28 for the first mode, %39.13 for the second mode, %21.90 for
the third mode for fully treated case and the relative improvement is until 4™ mode.
Additionally for the partial case with same topology, %41.1 mass reduction as well
as damping improvement of %153.07 for the first mode, %167.39 for the second
mode, %152.38 for the third mode compared to reference model with 10 mm
uniform stand-off layer, was achieved. The improvement is continous for all modes

with gradual decrease in percentage for the partial treatment.
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Table 3-10 Summary of the optimization results (CASE II-H=10mm)

(CASE II-H=10mm)

2nd Topology Relative Damping Performance w.r.t. Uniform Stand-Off Layer

Frequency f[Hz] Loss Factor n=2¢
H=10
Sagpa y 75 PN
Uniform Optimized Optimized
Mode # Uniform Optimized Optimized Full Coverage Full Coverage Partial Coverage
Prct [%] Full Coverage Full Coverage Partial Coverage Weight=100% Weight=63.24% Weight=58.90%
I+ 146.00 168.00 160.00 0.018 0.024 0.045
_ 4+ 31.28% 4+ 153.07%
2++ 833.00 808.00 690.00 0.014 0.019 0.037

@ 39.13% @4 167.39%
3+ 2082.00 1793.00 1477.00 0.011 0.013 0.027
£+ 2190% @ 152.38%
44+ 3589.00 2791.00 2240.00 0.009 0.010 0.022
@+ 1461% 4 14831%
5+ 5216.00 3733.00 2973.00 0.008 0.008 0.019
4 -123% 4 129.63%
6+  6905.00 4707.00 3715.00 0.007 0.007 0.016
& -135% 4 11351%
7+ 8609.00 5487.00 4387.00 0.007 0.006 0.013
4 -588% @4 97.06%
8-+ 1033800  6191.00 5034.00 0.006 0.006 0.012
0 -484% 4 85.48%

9+  12057.00  6813.00 5658.00 0.006 0.006 0.010
) £+ 000% @4 77.19%
10+ 1377500 7365.00 6209.00 0.005 0.006 0.010

- £ 23.08% & 96.15%
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If we compare the loss factor values for the thinner stand-off layer with thicker one
for the uniform case, one can notice the thinner stand-off layer yields higher loss
factor values for all three modes. Therefore, in order to investigate the thickness
reduction with new cell topology, the whole beam was recreated using scaled unit

cell topology as shown in Figure 3-43.

- = Periodic Construction

Figure 3-43 Rebuilding of treated beam with scaled unit cell topology

With reduced thickness value, the direct frequency response analysis was repeated
and the frequency response functions are generated as shown in Figure 3-44 to

Figure 3-45.

Displacement Frequency Response (Point FRF of 2nd Topology with H=3 45 mm Spacer)
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Figure 3-44 Frequency response function of scaled stand-off layer with same unit

cell topology
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Figure 3-45 Frequency response function of scaled stand-off layer with partially

covered same unit cell topology

Comparing all above cases in one plot shows the effectiveness of new topology with
reduced thickness in terms of damping (Figure 3-46). The results show that the
thicker optimized stand-off layer has advantage of reduced vibration amplitude at
lower frequencies. However the thinner stand-off layer with partial treatment has
improved damping performance together with reduced vibration amplitudes at higher
frequencies. While the damping capacity was increased, the frequency of the

structure was lowered because of reduced bending rigidity of the thinner structure.
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Figure 3-46 Overall comparison of frequency response functions

The following Table 3-11 summarizes the results numerically. The modal loss
factors and frequency of resonances as well as loss factors are tabulated for the first
ten modes of each configuration for thinner stand-off layer with periodic unit cell
topology. For this new topology minimizing the thickness of stand-off layer
compared to H=10 mm stand-off layer, results further %52.51 decrease in mass for
the uniform cases. However the relative damping increase only exists for partially
treated configuration, except for the 2™ mode for full coverage with 4.82% relative
improvement only. Compared to uniform case the partial configuration has %101.98
for the 1% mode, %95.58 for the 2" mode, %71.43 for the 3™ mode compared to
H=3.45 mm unfirom case.The relative improvment is for all ten modes with gradual

decrease in percentage value.
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Table 3-11 Summary of the optimization results (CASE II-H=3.45 mm)

(CASE TI-H=3.45mm)

2nd Topology Relative Damping Performance w.r.t. Uniform Stand-Off Layer

Frequency f[Hz] Loss Factor n=2¢
H=3.45
—— < =
Uniform Optimized Uniform Optimized Optimized
Mode # Full Optimized Partial Full Coverage Full Coverage Partial Coverage
Prct [%] Coverage Full Coverage Coverage  Weight=100% Weight=79.70% Weight=74.44%
1-+ 85.00 94.00 93.00 0.035 0.034 0.071
- 4 -5.10% 14+ 101.98%
2++ 514.00 524.00 501.00 0.025 0.026 0.049
- 14 4.82% 4+ 95.58%
3-+ 1367.00 1290.00 1211.00 0.020 0.019 0.034
- 4 -2.04% 4+ 71.43%
4-+ 2500.00 2195.00 2030.00 0.018 0.016 0.028
- I -10.06% 4F 56.98%
5-+ 3830.00 3175.00 2908.00 0.017 0.014 0.024
- I -15.66% 4 46.39%
6-+ 5293.00 4195.00 3823.00 0.016 0.012 0.021
- 4 -2152%  4F 35.44%
1-+ 6840.00 5250.00 4779.00 0.015 0.011 0.019
- 4 -2533%  4F 24.67%
8-+ 8445.00 6335.00 5767.00 0.014 0.010 0.017
- I -2887% 4F 16.90%
9-+ 8445.00 7456.00 6797.00 0.014 0.009 0.015
- 4 -31.11% 4 8.89%
10-+ 10092.00 8616.00 7870.00 0.012 0.009 0.013

- I 3145% 4 5.65%
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As summary if we compare the results obtained for both thickness value of stand-off
layers, namely, H=10 mm and H=3.45 mm, the following (Figure 3-47) summarizes
the result obtained in terms of frequency response characteristic. Compared to
thicker uniform stand-off layer, the thinner partially treated stand-off with optimized
configuration has better damping performance in all modes with slight increase in

response amplitude.

——H=3.45 mm Spacer (Topo Il Partial Coverage)

s «+ H=10 mm Spacer (Uniform)

:
]
¥

"
0.0001 *

0.00001 T T T T T T d
1] 2000 4000 6000 3000 10000 12000 14000

Frequency [Hz]

Figure 3-47 Overall comparison of frequency response functions (H=3.45 mm-

partially treated) & (H=10 mm-uniform fully treated)

The numerical results are summarized in the following Table 3-12. The relative
percentages are calculated by comparing corresponding individual configuration, that
is, the uniform, optimized and partial cases were all compared to each other for thick
and thin stand-off layer. Based on the numerical results the thinner uniform
configuration has higher relative increase in damping with increasing relative
percentage value. However the overall damping capacity is highest at thinner

partially covered stand-off with same topology of unit cell in all modes of vibration.
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Table 3-12 Results of Optimization for H=10mm and H=3.45 mm Stand-off Layer

(CASE 1I-H=10 vs H=3.45mm)

2nd Topology Relative Damping Performance

Loss Factor n=2(

H=10 H=3.45

\,H,‘ Optimized Optimized Partial S :*'4*[

o (" cping ptimize ptimized Partia o~
@H / N\ /7 0y (H=10mm) (H=10mm) :T/H E/4EERNN fd Y

Uniform- Optimized Uniform- 3 ,st 3 ,st Uniform- Optimized Uniform-Eq.Weight
Mode # Full Coverage Full Coverage Full Coverage (H_;Ls::m) (H-;:l;rr:m) Full Coverage Full Coverage Full Coverage
Prct [%] Weight=100% Weight=63.24% Weight=58.90% ' _' Weight=100% Weight=79.70%  Weight=74.44%

1+++ 0.018 0.024 0.045 0.035 0.034 0.071
- - - 4-33.43% 4 28.33% 14 97.21% 4 42.55% 4 57.40%

2+++ 0.014 0.019 0.037 0.025 0.026 0.049
- - - 1-22.89% 4+ 48.19% 1{F 80.43% 4F 3594% 4+  31.98%

3+++ 0.011 0.013 0.027 0.020 0.019 0.034
- - - 4-34.69% 4 35.20% 1F86.67% 4+ 50.00% 4+ 26.79%

4+ 0.009 0.010 0.022 0.018 0.016 0.028
- - - 43-43.02% 4 23.46% {r101.12% 4+ 57.84% 4+ 27.15%

S+++ 0.008 0.008 0.019 0.017 0.014 0.024
- - - 4-51.81% 4 12.05% {3104.94% 4+ 75.00% 4+ 30.65%

6+++ 0.007 0.007 0.016 0.016 0.012 0.021
- - - 1-53.80% 4+ 0.00% {F113.51% 4 69.86% 4+ 35.44%

T+++ 0.007 0.006 0.013 0.015 0.011 0.019
- - - 1-57.33% &b -10.67% {r120.59% 4 75.00% 4+ 39.55%

8+++ 0.006 0.006 0.012 0.014 0.010 0.017
- - - 4-58.45% 4 -19.01% {4129.03% 4+ 71.19% 4+ 44.35%

O+++ 0.006 0.006 0.010 0.014 0.009 0.015
- - - 4-57.78% & -25.19% {r136.84% 4r 63.16% 4+ 45.54%

10+++ 0.005 0.006 0.010 0.012 0.009 0.013
- - - 4-4839% & -17.74% {r138.46% 4+ 32.81% 4+ 28.43%

In the middle of Table 3-12 the relative numerical comparison has also been given

between thick spacer with new topology and uniform spacer of equal weight. For the

full coverage case no improvement was achieved in terms of damping while for the

partial case up to 6™ mode there exist relative improvement in the order of 28.33% at
1 mode, 48.19% at 2" mode and 35.20% at 3" mode, 23.46% at 4™ mode and 12.05

% at 5™ mode.
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3.2.6.3 Case Study III:

In this section same modelling and optimization strategy will be followed as it was
the case in previous case study. The same unit cell geometry of 1/10 of the 250 mm
treated beam is considered again under different boundary condition as well as
different objective and constraints. The pinned boundary condition is applied over
each corner of unit cell such that the motion both in —x and —y direction is restrained.
This boundary condition mimics the vibration deformation of treated beam under

sinusoidal distributed load only as shown in Figure 3-48.

Pinned BC's Pinned BC's

Pinned BC's Pinned BC's

Figure 3-48 Deformation pattern and new topology of the unit cell of treated beam

with stand-off layer under assumed load cases.

Static analysis step is performed prior to the optimization step as base analysis under
flexural sinusoidal load and pinned boundary condition applied to all vertices of unit
cell. In optimization step, the property card of stand-off layer is selected as design

domain using DESVAR cards in Optistruct. Then, instead of selecting the
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compliance response this time, the three displacement responses were created using
DESRP1 cards. Two of the displacement responses were defined to be used as
constraints. One of them represents the displacement of top middle node in y
direction, u,+, the other two were selected as two right and left top vertices of stand-
off layer, such that the right one represents the displacement in positive —x
direction, u,+ and the left one represents the displacement in negative —x direction,
u,- as depicted in Figure 3-48. Based on the fact that the ideal spacer layer has
infinite shear stiffness while having lower bending rigidity [107], the two
displacement value that are in lateral direction, u,+ and u,- were selected as
constraints with small value of deformation to induce higher stiffness value in lateral
direction. The other displacement response in positive —y direction was selected as
objective function such that its value was maximized under reduced volume
constraint. This condition in fact creates a material removal that lessens the bending
rigidity of unit cell, in other words increase the overall unit cell flexibility while
having increased shear stiffness due to the restrained shear motion of stand-off
medium at the interface along the beam, which in turn results the deformation of
viscoelastic layer during flexural modes of beam, due to its low shear modulus

compared to top constraining layer and bottom stand-off layer material.

For constraining the material volume to be used in final optimized layout, the
VOLFRAC response was also created. This response represents the upper bounds of
material volume fraction to be used in final design concept compared to original
volume of total design. Therefore in this case the maximum value of 0.30 was set for

this response.

The extracted topology was modified such that the only upper portion was left to
support viscoelastic layer (Figure 3-48). After arranging each cell periodically modal
analysis has been performed with beam as a whole to visualize the deformation
pattern within viscoelastic layer with this new topology. Based on the modal shapes
calculated, the increase in deformation within viscoelastic layer is visible. Especially

at higher modes while beam has less deformation response the upper portion of
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stand-off layer has irregular deformation patterns that is expected to induce shear

deformation within viscoelastic layer (Figure 3-50, Figure 3-51).

Figure 3-49 First ten mode shapes of treated cantilever beam with optimized stand-

off (Case III)
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Figure 3-50 Mode shapes of treated cantilever beam at higher modes with optimized

stand-off (Case III)
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Figure 3-51 Continued

The following Figure 3-52 shows the frequency response function of fully treated
beam with optimized stand-off layer for the first ten modes. One can easily see the
obvious attenuation zone between 5 kHz and 7.5 kHz and reduction of vibration
amplitude beyond this attenuation zone. Moreover the loss factor also higher for the

first ten modes compared to beam with uniform fully treated stand-off layer.

Displacement Frequency Response (Point FRF of 3rd Topology with H=10 mm Spacer)
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Frequency [Hz]
Figure 3-52 Frequency response function of fully treated beam with optimized unit

cell topology (Topology I1I)

Partial coverage with additional cuts in stand-off layer further increase the damping
capacity as well as extending the attenuation zone as to be 4 kHz and 7.5 kHz with
slight increase in amplitudes beyond which the response amplitude was lowered

compared to full treatment.
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Displacement Frequency Response (Point FRF of 3rd Topology with H=10 mm Spacer-Parfial Coverage)
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Figure 3-53 Frequency response function of treated beam with optimized unit cell

topology with added cuts.

In order to compare the performance of stand-off layer with new unit cell topology
with the uniform stand-off layer that has equal weight a new stand-off layer was
created with reduced thickness value of H=2.64 mm. The frequency response

function of latter uniform case is given in Figure 3-54.
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4 |
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Figure 3-54 Frequency response function of beam with equally weighted uniform
stand-off layer (Case III)
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All above results are compared in one plot as shown in Figure 3-55. The thinner

uniform case has higher amplitude in lower frequencies than at higher frequencies

without having an attenuation zone while the thicker full coverage optimized case

has lower amplitude in lower frequencies than original uniform base model. Also

there exists an attenuation zones for both fully and partially covered thick optimized

cases making the amplitudes obviously lower especially at higher frequencies with

considerably less weight.
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Figure 3-55 Overall comparison of frequency response functions (Case III)
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The numerical results for the comparison of above all results are also tabulated in.
For the thick layer the results include comparison in terms of weight, frequency and
loss factors for the first ten modes. Maximizing displacement in —y direction while
constraining the lateral deflection results an optimized layout of stand-off layer
which also results %41.84 mass reduction as well as damping improvement %153.21
for the 1st mode, %90.52 for the 2nd mode, %61.20 for the 3rd mode and this
improvement also reported not less than the %33 for higher modes for fully treated
optimized stand-off layer compared to base analysis model with H=10 mm uniform
stand-off layer. Additionally relative mass reduction of %45.21 was achieved with
partial treatment of same topology and damping improvement is higher in percentage
for the same topology for the first ten modes and this relative improvement is
numerically %180.1 for the 1st mode, %120.33 for the 2nd mode, %91.54 for the 3rd
mode, %72.1 for the 4th mode, %48.33 for the 5th mode with decreasing trend
beyond fifth mode.
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Table 3-13 Summary of the optimization results (CASE III-H=10mm)

(CASE ITI-H=10mm)

3rd Topology Relative Damping Performance w.r.t. Uniform Stand-Off Layer

Frequency f[Hz] Loss Factor n=2(
H=10
B S i [ ) R—
unitorm Optimized Optimized
Mode # Uniform Optimized Optimized Full Coverage Full Coverage Partial Coverage
Prct [%] Full Coverage Full Coverage Partial Coverage Weight=100% Weight=58.16% Weight=54.79%
1++ 146.00 151.00 146.00 0.018 0.045 0.050
) {r 153.21% 4} 180.10%
24+ 833.00 582.00 549.00 0.014 0.026 0.030

£ 90.52% 4@ 12033%
3+ 2082.00 1190.00 1102.00 0.011 0.017 0.020

@ 6120% @+ 91.54%
4++  3589.00 1770.00 1620.00 0.009 0.013 0.015

@ 4975% @& 72.10%
S+t 5217.00 2369.00 2146.00 0.008 0.011 0.012
£ 38.44% 4§+ 4833%
6+t  6905.00 2971.00 2679.00 0.007 0.010 0.010
£ 33.03% 4§+ 3L67%
7+t 8609.00 3588.00 3216.00 0.007 0.009 0.008
£ 3297% ¢ 2115%
8++  10339.00  4204.00 3750.00 0.006 0.009 0.007
£ 38.09% 4@ 15.61%

9++  12059.00  4781.00 4260.00 0.006 0.009 0.007
) @ 5422% @+ 1436%
10++  13776.00  5226.00 4630.00 0.005 0.011 0.007

- £ 11242% £ 33.96%
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In order to investigate the thickness effect of same topology, the scaled model of
stand-off layer is recreated as shown in (Figure 3-56) with a thickness value of 2.64

mm that is the same thickness with uniform case with equivalent mass of optimized

base model.

H=10 mm

H=2.64 mm 3 \(L

Periodic Construction

Figure 3-56 Treated beam with scaled model of stand-off layer

The frequency response function of treated beam with reduced thickness value of
stand-off layer is given in Figure 3-57.0ne can notice from this figure that for higher

modes of vibration the curve becomes broader and shallower for this topology of

stand-off layer.

Displacement Frequency Response (Point FRF of 3rd Topology with H=2 64 mm Spacer)

Magnitude [mmi/N]

Freque::ri;y [Hz]
Figure 3-57 Frequency response function of treated beam with reduced thickness

value of stand-off layer

177



Another frequency response function is given in Figure 3-58 for partially treated
stand-off layer after addition of cuts between repeated unit cells which gives a little
bit more flexibility together with slight increase in loss factors because of increased

shear deformation at the vicinity of those cuts.
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Figure 3-58 Frequency response function of partially treated beam with optimized

stand-off layer with cuts

All above results are compared in one plot as shown in Figure 3-59. In this plot one
can see that compared to base analysis model the thinner configuration has higher
amplitude at lower frequencies while having considerable reduction in amplitude in
higher modes of vibration with stand-off layer possessing unit cell topology.
Although the thinner configuration has higher amplitude, the relative damping
capacity is higher especially for partial thinner configuration. The reduction in
amplitude however is further beyond first few modes. Numerically, beyond 5 kHz

the amplitude compared to thick uniform case almost diminished.
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Figure 3-59 Overall comparison of frequency response functions for thinner stand-

off layer with same topology (Case III).

The numerical results are summarized in the following Table 3-14 for new thickness
value of stand-off layer (H=2.64 mm) with same topology as in the previous case.
The results include comparison in terms of weight, frequency and loss factors for the
first ten modes. Minimizing the thickness of stand-off layer compared to H=10 mm
stand-off layer, results further %43.84 decrease in mass for the thin uniform case.
However compared to thin uniform stand-off layer for both full and partial treatment,
the same topology increases damping for the first two modes only and it is relatively
by %17.15 for the 1% mode, %19.20 for the 2" mode. For the partial case it is
relatively by %24.15 for the 1% mode, %46.59 for the 2" mode beyond which the
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uniform case has higher damping capacity. The reduction of mass by optimization is
%21.95. One can notice that the relative percentage increase in damping and
decrease in mass via optimization is decreased as the thickness of stand—off layer is

reduced.

Table 3-14 Summary of the optimization results (CASE III-H=2.64 mm)

(CASE I1I-H=2.64mm)

3rd Topology Relative Dampmg Performance w.r.t. Uniform Stand- Off Layer

Frequency f[Hz] Loss Factor n=2¢
H=2.64
Unitorm Optimized Unitorm Optimized Optimized

Mode # Full Optimized Partial Full Coverage Full Coverage Partial Coverage
Prct[%] Coverage Full Coverage Coverage Weight=100%  Weight=79.67% Weight=78.05%

I++ 76.00 80.00 79.00 0.041 0.049 0.051

- 4 17.15% 1 24.15%
2++ 464.00 405.00 388.00 0.028 0.033 0.035

- £ 1920% @+ 25.00%
3= 1243.00 936.00 883.00 0.022 0.021 0.022
- $ 323% §  -092%
4-- 2295.00 1523.00 1424.00 0.020 0.016 0.016
- 34 -1900% §  -18.00%
5= 3550.00 2159.00 2015.00 0.019 0.013 0.013
- 4 3016% & -30.69%
6--  4948.00 2840.00 2655.00 0.018 0.011 0.011
- 4 3833% I -39.44%
7= 6445.00 3577.00 3356.00 0.017 0.010 0.009
- 4 4419% § -4535%
8- 8013.00 4376.00 4123.00 0.017 0.009 0.008
- J -4848%  J  -49.09%

9= 9633.00 5245.00 4965.00 0.016 0.008 0.008
- $ -5032% b -51.59%
10-- 1129800  6186.00 5882.00 0.015 0.007 0.007
- 4 51.01% b -51.68%
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As a summary if we compare the results obtained for both thickness value of stand-
off layers, with H=10 mm and H=2.64 mm, the following Figure 3-60 summarizes
the result obtained in terms of frequency response characteristic.Compared to thicker
uniform stand-off layer, although the amplitudes in lower frequencies higher
compared to thicker case, the thinner partially treated stand-off with optimized
configuration has better damping performance for the first ten modes as well as
obvious considerable amplitude reduction in higher modes.
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Figure 3-60 Overall comparison of frequency response functions (H=2.64 mm-

partially treated) & (H=10 mm-uniform fully treated)

Numerical results associated with damping capacity of thin and thick stand-off layer
for the new layout of spacer layer was compared in the following Table 3-15. Results
show relative increase in damping in all configuration of thin stand-off layer
compared to same but thicker layout of spacer.The thin uniform, full and partial
treatment cases have higher relative increase in all ten modes among which the
uniform thin case has larger capacity of daming. When we consider the over all
damping performance however, the thin partially treated configuration has higher

loss factors compared to thick uniform spacer layer configuration.
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Table 3-15 Results of Optimization for H=10mm and H=2.64 mm Stand-off Layer

{CASE IMI-H=10 vs H=2.64mm)

3rd Topology Reltive Damping Performance

Loss Factor n=2§

H=10 H=2.64
I Optimized  Optimized Partial
i" {H=10mm) (H=10mm) $"
uUnitorm- Optimized Uniform- —" ) A Unitorm- Optimized Uniform-Eq.Weight

Uniform Uniform

Mode # Full Coverage  Full Coverage Full Coverage
5 . B®  (H=2.64mm)  (H=2.64mm)

Pret (%] Weight=100% Weight=58.16% Weight=54.79%

Full Coverage Full Coverage Full Coverage
Weight=100%  Weight=79.67% Weight=78.05%

14+ 0.018 0.043 0.050 0.041 0.049 0.051
f£918% @ 2077% @ 131.92% @ 730% @ 2.80%
D+ 0.014 0.026 0.030 0.028 0.033 0.035

$-507% @4 978% £ 100.70%  fr 2557% @ 13.86%
34+ 0.011 0.017 0.020 0.022 0.021 0.022
$-2166% & -691%  fr 10577% @ 2353% fr  6.44%
44+ 0.009 0.013 0015 0.020 0016 0.016
33.00% -23.00% 123.51% 20.90% 6.49%

& ¥ 1 1 1
S+ 0.008 0.011 0012 0.019 0013 0.013
$-4074% & -3651%  fr 13361% @ 1786% fr  9.17%
6+++ 0.007 0.010 0.010 0.018 0011 0.011
4556% -46.11% 144.34% 13.27% 12.37%

& ¥ 1 1 1
T4+ 0.007 0.009 0.008 0.017 0.010 0.009

$-4767% B -5233%  fr 15412% @ 667% @+ 1463%

84+ 0.006 0.009 0.007 0.017 0.009 0.008
0-4788% b -5636% 4 16494% & -116% 4+ 1667%
94+ 0.006 0.009 0.007 0.016 0.008 0.008
$-4331% & -5796%  fr 17205% & -1236% @+ 15.15%

10++ 0.005 0.011 0.007 0.015 0.007 0.007
4-2550% & -53.02% 1+ 185.15% 4 -3423% 4 2.86%

In the middle of Table 3-15 the relative numerical comparison has also been given
between thick spacer with new topology and uniform spacer of equal weight. For the
full coverage case the damping improvement is only at 1% mode and it is in the order
of 9.18%, for the partial case however it is only at 1* and 2"! mode and numerically

1s 20.77% and 9.78% respectively.
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3.2.6.4 Case Study IV:

In this last section of topology optimization another different optimization strategy
has been investigated using different objective function. The same cantilever beam
model given in first case study was used here under same in-plane sinusoidal flexural
load that force the beam to deform statically as one of its lowest fundamental mode,
that is, its first bending mode as well as inducing shear motion between layers
(Figure 3-61). It was aimed for the stand-off layer to get such a material distribution
after optimization that induce same static deformation pattern during its first mode of
vibration within viscoelastic layer so that the higher damping could be achieved in
lower frequencies due to induced state of shear within damping layer for maximum

damping.

v Design Domain (Stand-of Laver)

Shear Motion

Figure 3-61 State of deformation under sinusoidal static load

(Exaggerated deformation)

In order to investigate this possibility, first, a static analysis has been performed to
extract tip deflection, u,+, of the beam (Figure 3-62) which was in the order of 7.5
mm. Then the pre-stressed modal analysis step was created in order to extract natural
frequencies under static distributed sinusoidal load. Therefore the frequency
optimization procedure could be followed by maximizing the first modal frequency

of cantilever beam, which amounts to the increased shear stiffness [147] for stand-off
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layer, to reduce vibration amplitude of the beam since at higher modes the relative
amplitudes are lowered. At the same time the VOLFRAC, and static displacement
response cards have been created as constraints such that it is expected to increase
stiffness while having flexibility of deformation due to reduction of material in
design space. Maximum bound of VOLFRAC response was set to 0.3. As the
material is removed the deflection will be increased at the tip of the beam due to
decreased flexural rigidity, therefore to limit the deflection in order not to get
unfeasible solution, another constraint is used for the limitation of tip deflection
assumed to be as maximum of 10 mm compared to first nominal value of 7.5 mm

obtained after static analysis step.

SINUSOTDAL FLEXURAL LOAD

T - — =

¥

pu .

VIBRATING BASE ai,m/

& = A

Figure 3-62 Finite element model of cantilever beam under sinusoidal loading

The resulting topology and refined geometry of stand-off layer after maximizing
the first natural frequency under given constraints of treated beam is given in Figure

3-63.The cross-shape geometry has been extracted through interpretation of resulting

topology.

Figure 3-63 Resulting topology and refined geometry of stand-off layer
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Based on the mode shapes calculated, the increase in deformation within viscoelastic
layer is visible. Especially at higher modes while beam has less deformation response
the upper portion of stand-off layer has irregular deformation patterns that is
expected to induce shear deformation within viscoelastic layer (Figure 3-64,

Figure 3-65).
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Figure 3-64 Mode shapes of treated beam with optimized stand-off layer (Case IV)
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Figure 3-65 Mode shapes of treated beam with optimized stand-off layer at higher
modes (Case 1V)
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The following Figure 3-66 and Figure 3-67 show the frequency response of fully and
partially treated beam with new topology of stand-off layer .

Displacement Frequency Response (Point FRF of 4th Topology with H=10 mm Spacer)

Magnitude [mm/N]

o i i | |
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Frequency [Hz]
Figure 3-66 Frequency response function of treated beam with optimized stand-off

layer.
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Figure 3-67 Frequency response function of partially treated beam with optimized
stand-off layer
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It is obvious from the frequency response plots that the attenuation zones exists in
both fully and partially treated beams. The starting frequency is around 4 kHz and
the reduction of amplitude show itself after 7" mode between 4.5 kHz and 12.5 kHz.

In order to compare the performance new topology of stand-off layer with the
uniform stand-off layer that has equal weight, a new stand-off layer was created with
reduced thickness value of H=3.79 mm. The frequency response function of latter

uniform case is given in Figure 3-68.

Displacement Frequency Response (Point FRF of Equivalent Weight of 4th Topology with H=3.79 mm Uniform Spacer)

Magnitude [mm/N]

G G 1l

Frequency [Hz]

Figure 3-68 Frequency response function of equally weighted treated beam with

uniform stand-off layer

All above results are compared in one plot as shown in Figure 3-69. In this plot one
can see that compared to base analysis model with H=10 mm stand-off, the
optimized stand-off layer with new layout of spacer has slight amplitude reduction
starting from lowest modes and this reduction is obvious between 4.5 kHz and 12.5
kHz which can be considered as anti-resonance region with large frequency band
beyond which the amplitudes are high again. As was the case in previous cases, it

was again concluded that the thinner uniform stand-off layer has higher response
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amplitude but greater damping capacity in lower frequency range compared to

thicker one and its response curve getting broader for higher modes.
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Figure 3-69 Overall comparison of frequency response functions (Case IV)

In terms of damping capacity the numerical results are summarized in the following
Table 3-16. The results include comparisons in terms of weight, frequency and loss
factors for the first ten modes. The optimized layout of stand-off layer results %35.84
mass reduction as well as damping improvement by %35.57 for the 1% mode, %43.25
for the 2" mode, %31.80 for the 3™ mode and this improvement was also reported to
be continous compared to base analysis model with H=10 mm uniform stand-off
layer. The relative mass reduction is %41.1 and damping improvement is higher in

percentage for the partial treatment of same topology for which the relative damping
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improvement is %89.35 for the 1°' mode, %70.88 for the 2" mode, %56.46 for the 3™

mode. For higher modes due to attenuation zones diminished peaks exists which

makes calculation of damping factors not applicable.

Table 3-16 Summary of the optimization results (CASE IV-H=10mm)

(CASE IV-H=10mm)

4th Topology Relative Damping Performance w.r.t. Uniform Stand-Off Layer

Frequency f[Hz] Loss Factor n=2(
H=10
iH __42:.%_
Uniform Optimized Optimized
Mode # Uniform Optimized Optimized Full Coverage Full Coverage  Partial Coverage
Prct [%] Full Coverage Full Coverage Partial Coverage Weight=100% Weight=64.16% Weight=58.90%
I++ 146.00 166.00 169.00 0.018 0.024 0.034
} {r 3557% 1+ 89.35%
2++ 833.00 770.00 766.00 0.014 0.020 0.024
} 1+ 43.25% 1+ 70.88%
3++ 2082.00 1682.00 1658.00 0.011 0.014 0.017
} 1 31.80% 1+ 56.46%
4++ 3589.00 2594.00 2536.00 0.009 0.012 0.014
} 1+ 29.64% 1+ 56.46%
S++ 5217.00 3489.00 3390.00 0.008 0.010 0.012
} 1+ 24.84% 1+ 48.33%
6+- 6905.00 4320.00 3970.00 0.007 0.009 0.002
} {r 24.88% & -79.64%
7++ 8609.00 4551.00 4179.00 0.007 0.012 0.009
} 1+ 8L.72% 1+ 31.49%
8++ 10339.00 5137.00 4477.00 0.006 0.027 0.012
} {r 335.15% 4 94.29%
9++ 12059.00 5942.00 4948.00 0.006 0.034 0.053
- 1{r 489.14% 4} 820.10%
10++ 13776.00 6637.00 5679.00 0.005 NA 4 0.046
- - 782.23%
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From numerical and graphical results shows that thinner stand-off layer has greater
damping capacity than thicker one. Therefore in order to quantify the performance of
new topology with thinner case, the same topology of stand-off layer was scaled to
H=3.79 mm which is the thickness of equally weighted stand-off layer with
optimized topology of stand-off layer with H=10 mm.

~="
5

sivissiei ee i

Periodic Construction

Figure 3-70 Treated beam with scaled model of optimized stand-off layer

The frequency response function of fully treated beam with reduced thickness value

of stand-off layer is given in Figure 3-71.

Displacement Frequency Response (Point FRF of 4th Topology with H=3.79 mm Spacer)
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Figure 3-71 Frequency response function of treated beam with reduced thickness

value of stand-off layer
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The frequency response function is given for partially treated beam in Figure 3-72
together with its equally weighted counterpart with a corresponding thickness value
of H=1.523 mm. The frequency response plot of this latter treated beam with uniform

stand-off layer is given in Figure 3-73

Displacement Frequency Response (Point FRF of 4th Topalogy with H=3.79 mm Spacer- Partial Coverage)

Magnitude [mm/N]

Frequ;;;y [Hz]
Figure 3-72 Frequency response function of partially treated beam with optimized

stand-off layer with cuts (Case IV)

Magnitude [mm/N]

Frequéncy [Hz]

Figure 3-73 Frequency response function of treated beam with uniform equally

weighted stand-off layer (Case IV H=1.523 mm)
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Comparing all above results for this case study yields the following plot given in

Figure 3-74. For this new topology minimizing the thickness of stand-off layer

compared to H=10 mm stand-off layer, results further %36.76 decrease in mass for

the uniform cases. Based on the results achieved for this topology, the thinner

(H=3.79 mm) partially treated case (red dashed line) has lower response amplitude

even at low frequencies with its natural frequencies were shifted to the left compared

to thicker uniform stand-off layer. Further reduction in thickness however increase

response amplitude (Figure 3-74).
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Figure 3-74 Overall comparison of frequency response functions
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For the thinner case partially treated beam also has advantage with higher damping
capacity in all modes by %145.63 for the 1% mode, %106.33 for the 2™ mode and %
73.94 for the third mode while with fully treated case no relative improvement was
achieved except for the first two modes by 7.5% for the first mode and 6.33% for the

second mode as given in Table 3-17.

Table 3-17 Summary of the optimization results (CASE IV-H=3.79 mm)

(CASE IV-H=3.79mm)

4th Topology Relative Damping Performance w.r.t. Uniform Stand-Off Layer

Frequency f[Hz] Loss Factor n=2¢
H=3.79
= — = T o)
Tu \_jk r; i 3R lqvf
N . . v ~ N B ,_)/\\“H
Uniform Optimized Uniform Optimized Optimized
Mode # Full Optimized Partial Full Coverage Full Coverage Partial Coverage
Prct[%] Coverage  Full Coverage Coverage Weight=100%  Weight=81.59% Weight=74.01%
1+ 89.00 103.00 104.00 0.032 0.034 0.079
- 4 7.50% 1 145.63%
2++ 535.00 558.00 557.00 0.024 0.025 0.049

- £ 633% @ 10633%

3+ 1417.00 1341.00 1332.00 0.019 0.018 0.033
- &4 -691% 4@+ 73.94%
4+ 2580.00 2237.00 2213.00 0.017 0.014 0.027
- &$ -1579% 4@ 5731%
5+ 3928.00 3189.00 3149.00 0.020 0.012 0.023
- &4 3922% 4+ 13.24%
6+ 5423.00 4170.00 4114.00 0.015 0.011 0.020
- $ 2733% @ 34.00%
7+ 6987.00 5178.00 5109.00 0.014 0.010 0.018
- & -3099% @+ 24.65%
8+ 8606.00 6215.00 6136.00 0.014 0.009 0.016
- & 3407% @+ 15.56%

9+  10261.00  7288.00 7202.00 0.013 0.008 0.014
- &4 3672% 4@+ 8.59%
10-+  11963.00  8401.00 8311.00 0.011 0.007 0.012

- J -3211% 4 12.84%
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As a summary if we compare the results obtained for both thickness value of stand-
off layers, with H=10 mm and H=3.79 mm, the following (Figure 3-74) summarizes
the result obtained in terms of frequency response characteristic.Compared to thicker
uniform stand-off layer, the thinner partially treated stand-off with optimized
configuration has better damping performance in all modes with slight increase in

amplitude.

s« +s H=10 mm Spacer (Uniform)
= H=3.79 mm Spacer (Topo IV Partial Coverage)

0.0001 -

0.00001 T T T T T T 1
[} 2000 4000 6000 8000 10000 12000 14000
Frequency [Hz]

Figure 3-75 Overall comparison of frequency response functions (H=3.79 mm-

partially treated) & (H=10 mm-uniform fully treated)

The following Table 3-18 summarizes relative improvement numerically in terms of
damping capacity for both cases. The results show obvious relative increase in
damping for the thinner configurations compared to thicker configuratons. Among
the thinner configuration the damping capacity considerably increases for the first
three modes with minimum weight among all configurations. The relative percantage
increase in damping compared to corresponding counterpart configuration is

%132.54 for the 1 mode, %108.09 for the 2"¢ mode and % 98.18 for the 3 mode.
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Table 3-18 Results of Optimization for H=10mm and H=3.79 mm Stand-off Layer

(CASE IV-H=10 vs H=3.79mm)

4th Topology Relative Damping Performance

Loss Factor n=2{

H=10 H=3.79
R Optimized  Optimized Partial H_
E" {H=10mm) {H=10mm) E
7 e ‘vs Vs g
Uniform- Optimized Uniform- Unlferin Unifarm Uniform- Optimized Uniform-Eq.Weight
Mode #  Full Coverage  Full Coverage Full Coverage (H=3.79 mm) (H=3.79 mm) Full Coverage Full Coverage Full Coverage
Pret [%]  Weight=100% Weight=64.16% Weight=58.90% Weight=100%  Weight=8159%  Weight=74.01%
I+t 0.018 0.024 0.034 0.032 0.034 0.079
- o - ] - (] - (] - (]
24.38% 5.62% 79.26% 42.15% 132.54%
2+++ 0.014 0.020 0.024 0.024 0.025 0.049
- o -U. ] - (] - (] - (]
16.88% 0.84% 72.34% 27.92% 108.09%
3+++ 0.011 0.014 0.017 0.019 0.018 0.033
. o - - ] - (] - (] - (]
26.06% 12.23% 78.27% 25.90% 98.18%
4+++ 0.009 0.012 0.014 0.017 0.014 0.027
- o - - ] - (] - (] - (]
32.16% 18.13% 91.10% 24.14% 92.14%
S+++ 0.008 0.010 0.012 0.020 0.012 0.023
- o - - ] - (] - (] - (]
50.49% 41.18% 152.15% 22.77% 92.50%
6+++ 0.007 0.009 0.002 0.015 0.011 0.020
- o - - ] - (] B (] . (]
38.67% 90.00% 103.62% 18.48% 1240.00%
T+++ 0.007 0.012 0.009 0.014 0.010 0.018
- o - - ] - (] - - (] - (]
13.38% 37.32% 109.80% 20.33% 98.88%
8+-+ 0.006 0.027 0.012 0.014 0.009 0.016
- o - - ] - (] - - (] - (]
100.74% 10.37% 116.77% 67.16% 28.93%
9+-- 0.006 0.034 0.053 0.013 0.008 0.014
- o - ] - (] - - (] - - (]
165.63% 314.84% 121.79% 76.18% 73.82%
10+-- 0.005 NA 0.046 0.011 0.007 0.012
- ] - (] - - (]
322.94% 108.60% 73.32%
The following Table 3-19 and Table 3- summarizes the relative damping

improvement that was achieved by reduction of thickness of uniform stand-off layer

compared to reference treated beam with thicker uniform stand-off layer, numerically

for the first ten modes of vibrating cantilever beam. Comparison was made in terms

of weight and relative percentage increase in loss factors for the first ten modes.
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Table 3-19 Relative Damping Performance of Fully Treated Uniform Thinner Stand-

off Layers
H=10 mm Uniform Full Coverage H=3.79 mm Uniform Full Coverage
(Total Weight=4.38E-06 TON) (Total Weight=2.77E-06 TON)
Loss Factor Relative Loss Factor
Reference Mode # %] Weight Reduction Mode # Improvement
[%] [%]
1 B o.01s -36.76% 1 78.92%
2 B 0.014 2 71.94%
3 B 0.011 3 79.09%
4 e 0.009 4 91.94%
5 e 0.008 5 141.40%
6 - 0.007 6 103.09%
7 m 0.007 7 109.38%
8 = 0.006 8 117.90%
9 B 0.006 9 124.93%
10 B 0.005 10 111.48%
H=3.52 mm Uniform Full Coverage H=3.45 mm Uniform Full Coverage
(Total Weight=2.66E-06 TON) (Total Weight=2.66E-06 TON)
Weight Reduction Relative Loss Factor ) ) Relative Loss Factor
[%] Mode # Improvement Weight Reduction Mode # Improvement
[%] [%] [%]
-39.27% 1 [ 87.38% -39.27% 1 [ 97.26%
2 | 77.90% 2 | 80.17%
3 I 84.96% 3 I 86.75%
a B 98.81% s P 100.67%
5 ] 102.88% 5 I 105.54%
6 [} 111.51% 6 P 113.76%
7 [ 11859% 7 B 121.09%
8 B 127.87% s 130.60%
9 [ 135.65% 9 | 138.56%
10 Y 127.63% w [ 139.75%

197



Table 3-19 Continued

H=2.64 mm Uniform Full Coverage H=1.53 mm Uniform Full Coverage
(Total Weight=2.46E-06 TON) (Total Weight=2.18E-06 TON)
Weight[;e]d“ﬁ“" Mode # Relaltri::rtl);: rsnefimr We igm[f,;f]d"cﬁ"" Mode # Remlﬁn:;nz;; f..i:cm
-43.84% 1 I 13;.‘20% -50.23% 1 I 18;.1]5%
2 | 100.35% 2 | 137.70%
3 | 106.98% 3 | 142.59%
4 I 124.33% s | 165.17%
5 I 133.06% 5 I 179.42%
6 I 143.58% s | 216.81%
7 [ 153.87% 7 I 213.37%
8 I 166.61% s 233.26%
9 [ 177.32% s B 250.51%
10 I 189.06% 0w B 270.73%

Based on the tabulated results as we decrease the thickness the relative damping
capacity was increased that is reported to be relatively maximum for the case of
H=1.523 mm for maximum relative percentage weight reduction of %50.23.
However from the frequency response plots it was obvious that the thinner stand-off
configuration yields higher response amplitude with lower natural frequency due to
reduced bending rigidity. Another results is that the damping capacity has an
increasing trend towards to higher modes for all configurations which is expected
because of higher ripple is induced as well as increased relative motion within the
viscoelastic layer that increase the shear deformation as the main cause of energy

dissipation which results higher loss factor.

Another overall conclusion can be drawn by comparing the relative damping
performances of all extracted topologies for the stand-off layer. The main conclusion

was that the partial treatment resulted higher damping capacity. Therefore in the
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following Table 3-20 the corresponding configurations are compared by reporting
relative percentage increase in damping with respect to uniform reference thicker

stand-off with the height of H=10 mm.

Table 3-20 Summary of Relative Damping Improvement w.r.t. Thick Uniform
Stand-off Layer (H=10mm)

TOPOLOGY I H=3.52 mm Partial Coverage TOPOLOGY II H=3.45 mm Partial Coverage
< P
20N
Wlght Reduction Mode # Reh;'.:;nif: :1-:.:““ Weight Reduction ~ Mode # Rﬂalta::i:es;e};:cm
(%] [%] [%] [%]
-56.16% 1 I 320.67% -54.79% 1 | 298.32%
2 I 274.64% 2 | 252.90%
3 B 237.14% 3 | 220.00%
4 B 232.58% 4 I 215.73%
5 Pzii11% 5 | 200.00%
6 Pi93.24% 6 I 189.19%
7 I 4853% 7 I 175.00%
8 Pi6a.52% 8 | 167.7a%
9 I 150.88% 9 | 157.89%
10 B 14231% 10 | 151.92%

TOPOLOGY IV H=3.79 mm Partial Coverage

2C

Relative Loss Factor Relative Loss Factor

Weighl[:j:]wmmn Mode # Imgwovemeat | Weight Reduction  Mode # Improvement
[%] [%] [%)]

-56.16% 1 | 187.94% -53.20% 1 | 340.31%
2 [ 150.87% 2 | 255.58%

3 I 103.87% 3 B 210.07%

4 I 83.28% a [ 200.62%

5 I 61.92% 5 I 185.53%

6 I 47.96% 6 I 172.85%

7 | 38.88% 7 I 161.51%

8 | 3a.88% g | 150.49%

9 | 31.69% E | 140.86%

10 F 37.79% 10 | 135.39%
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It was obvious from the frequency response plots that the response at the lowest
resonance modes of vibrating structures dominates the overall dynamic response of
the structure in terms of high amplitude. Therefore controlling the fundamental mode
of vibration, that is, damping of the lowest response is much more essential. From
this point of view one can see from the tabulated results (Table 3-20) that first case
topology has better damping capacity in first three mode of vibration with highest
mass reduction. The second candidate was found to be fourth topology with its

relative higher damping performance at 1% mode of vibration.
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3.2.7 Parametric Optimization

3.2.7.1 Introduction

In previous optimization method the topology optimization has been followed in
which the density of each element in design space was considered as continuous
design variables which were also related to the material within the design domain.
Using the topology optimization several design concept with different material
topologies were extracted and investigated in terms of damping performance as well
as weight reduction. It was observed from the results that the thickness of stand-off
layer was one of the important design parameter that yields higher damping capacity.
As also found from the previous numerical results, contrary to fact that increase of
stand-off height to increase the strain within the viscoelastic layer does not always

increase the damping capacity and there is an optimum value for this parameter [54].

In this part of the thesis study another design optimization strategy, which is
parametric design optimization, will be followed such that design parameter such as
height of stand-off layer will be defined as discrete design variable to find its
optimum value. Moreover the elasticity modulus will also be selected as design
parameter in order to investigate the effect of material type together with its best

choice for the best damping performance.

For this purpose, as in the previous case studies a 2D four layered cantilever beam
model was studied The system loss factors were related with geometrical and
material parameters of finite element model of vibrating beam in plain strain case

(Figure 3-76).
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Viscoelastic Layer
Constraining Layer

Stand-off Layer
T /

— H:Height of Stand-off Layer

/" E: Elastic Modulus of Stand-off Layer
Vibrating Base Beam

Figure 3-76 2D Finite element (shaded) model of cantilever vibrating beam

3.2.7.2 Development of Methodology

As one of the design methodology the parametric optimization technique has been
followed and the proposed design cycle is given in (Figure 3-77). In this design cycle
the modal strain energy method (MSE) proposed by Johnson and Kienholz [64] in
conjunction with finite element method has been utilized. Basically the objective is
to develop a systematic design approach that considers multiple design alternatives in
a more robust way. The loss factors were extracted analytically using Modal Strain
Energy Method by requesting the modal strain energies of all individual layers using
finite element method which was also parametrically changed. Linking those
geometrical and material parameters that were used in finite element with those loss
factors found from mentioned method, the effects of each parameters can easily be
analyzed. Moreover using well known optimization algorithms that use those

parameters as design variable, the best optimum ones can also be easily determined.
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Figure 3-77 Parametric design cycle

The design process mentioned in this section was built in HyperStudy® environment
that is one of the efficient platform enables design engineers to conduct design of
experiment studies as well as discrete design parameter optimization using embedded
algorithms such as Genetic Algorithm, Global Response Surface Method [148] etc
by controlling all prescribed parameters. Moreover different design and analysis

softwares can also be linked together to build faster and flexible design process by

eliminating time consuming trial and error procedures in a

(Figure 3-77).

The design and analysis cycle that is depicted in Figure 3-

extended form in Figure 3-78.
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Figure 3-78 Parametric design and optimization cycle

The design strategy was started by generation of 2D four layered treated beam model
with stand-off layer using CATIAV5-R22® design environment. As shown in Figure
3-79, the geometric parameters, which are the thickness values were all selected as
design parameter. Those parameters were also controlled by HyperStudy® with a

MACRO.catvbs file that has been recorded during generation of 2D design with

those parameters.
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Figure 3-79 Parametric design of 2D treated beam in CATIA®

After automatic generation of beam model using automatically generated geometric
parameters between predefined lower and upper bounds, it was imported into
Hypermesh® environment in which the automatic generation of finite element model
has also been performed with its prescribed boundary condition, mesh size and
analysis type that is in our case, the fixed-free, 0. mm and modal analysis,
respectively, by execution of MODEL.tcl file using hmbatch.exe. Material properties
of finite element model was controlled by HyperStudy® also at this step. Again,
automatically generated modulus of elasticity data between predefined lower and
upper bounds was assigned for the element material property MAT1 card. All above
steps were controlled by HyperStudy® using Model.tpl file as shown in Figure 3-80.

Language="VESCRIET"

Sub -CATMain ()}

Set partDocumentl = CATIA RActiveDocument

Set -partl -=-partDocumentl.Part

Set -parameters]l = partl . Parameters

Set -lengthl ‘= -parametersl.Item|"BaseBeamlength")
lengthl Value -=-250.000000

partl _Update -

Set -parametersZ = partl.Parameters

Set -lengthZ -=-parametersZ  Item|"BaseBeamHeight")

lengthZ Value-=--1.60000
lengthl.Valuse = {templex on){BaseBeamHeight, 8#5.5f){templex off
partl _Update -
*setvalue mats -id=Z -STATUS=1-1=62 00 -
*setvalus mats id=2 STATUS=1 l={templex con}{E core, B84.2f){templex off)}

Figure 3-80 Content of HyperStudy Model.tpl file
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Upon modification of all geometric and material parameter with Model.tpl file an
analysis file with an extension of .fem was generated to be run via Optistruct. The
modal analysis has been performed using .fem file by invoking Optistruct.bat file.
The modal strain energies were requested by ESE (ALL)=ALL command within
analysis run file (.fem) for all elements within the treated beam design. At this step
the challenge was to select elements within each layer, base beam layer, stand-off
layer, viscoelastic layer and constraining layer respectively. Because at each design
iteration the since the geometry of the design updated the number of elements within
that boundary were also changing. Therefore a templex code was written that select
corresponding elements ID’s within each component of finite element model of
treated beam which were later used to extract strain energies of each component from
Model.res file using a translator, hmresdmp.exe, which translates HyperMesh binary
results (.res) into ASCII file format. It was then possible to get required strain
energies for each component automatically using element ID’s. Once the strain
energy values for each element were extracted the sum of total strain energies were
computed within HyperStudy® layer by layer for the first ten modes. Moreover the
modal frequencies, mass and volume information were also extracted as well as
analytical calculation of loss factors based on the output modal strain energies as

shown in Figure 3-81.

(B Defe responses

B3 Addt Respores
Lsbel sernams Expremon

1 @ BaceBrarmESES Mol surniv 1)

5 W BaseBeamESESModeS

t & BaseBearmESEQModel

CE

Figure 3-81 Extraction of strain energies and modal loss factors within HyperStudy®
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Throughout the design process constant material properties were used for the
viscoelastic layer since modal strain energy method utilizes the undamped mode
shapes of the treated beam [64]. Corresponding loss factor values are used for each
of modal frequency values. The values of loss factor were read from Figure 3-11 by
considering each modal frequency of treated beam. The other material properties

were selected to be same as given in Table 3-5.
3.2.7.3 Verification of Methodology

In order to verify the results of above methodology a three layer symmetric sandwich
cantilever (Figure 3-82) beam model that has also been used by several other
investigators [113, 114, 115] was used in comparison. It is particularly well
characterized and suited for use in comparison with loss factors obtained by MSE
and other approximate methods used by other investigators. Loss factors for the first
three modes of the damped sandwich cantilever beam having the same material and
geometrical properties were determined with FEA using proposed 2D design cycle
(Figure 3-78). Calculated loss factors for the first three modes of the cantilever beam

were compared to results obtained by other investigators.

Unit Harmonic Base
Enforced Displiement

Aluminum Sheet

Response
Displacement)

Aluminum Sheet

Middle Viscoelastic Core

Figure 3-82 3D Finite element model of cantilever beam with viscoelastic core

The material and geometrical properties of cantilever sandwich beam that were used

in analysis are given in the following Table 3-21.
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Table 3-21 Material properties of sandwich beam [114]

Aluminum Viscoelastic Core
Thickness [mm)] 1.524 0.127
Young’s Modulus [Mpa] 69000 2.1
Poisson’s Ratio 0.3 0.499
Loss Factor 0.0001 1.0
Density [kg/m®] 2800 970

shows the comparison of results obtained with desing cycle with those of already
published results for the cantilever beam shown in (Figure 3-82). In analysis the loss
factor and material properties of viscoelastic layer has been choosen as constant. The
beam is modelled in 2D with given dimensions and material properties. In order to
compare the 2D analysis results, another 3D finite element model has been built and
direct frequency response analysis was performed (Figure 3-82). The loss factors are
calculated from the frequency responde function plots using half power bandwidth
method after performin direct frequency response analysis. For this purpose a special
MATLAB code has been written to accomplish this task such that the code finds the
peaks of FRF plots and detects half-power bandwidth points from which it calculates
the loss factors (Figure 2-17).
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Table 3-22 Comparison of the loss factor results!

n:=0.1 Model Comparison
Loss Factor Frequency (Hz)
Plain 3D Choet.al. Soni & Plain 3D Choet.al. Soni&
Strain FEM PLWPT  Bogner  Strain FEM PLWPT Bogner
2DFEM  Direct ™ 3DFEM 2D Direct ™ 3D
MSE Freq. ) FEM Freq. FEM
) Resp. MSE Resp. )
@) * @)
Model 0.0296 0.0320 0.02799 0.02817 66.10 65 64.28 64.2
Prct Err% - 7.50% 5.75% 5.08% - 1.69% 2.83% 2.96%
Modell 0.0244 0.0250 0.02426 0.02425 306.33 300 297.48 297
PrctErr% - 2.40% 0.58% 0.62% - 2.11% 2.97% 3.14%
Modelll 0.0155 0.0160 0.01546 0.01534 770.88 754 747.98 747.2
PrctErr% - 3.13% 0.26% 1.04% - 2.24% 3.06% 3.17%
n.=0.3
Model 0.0873 0.0821 0.08127 0.08175 66.10 65 64.62 64.7
Prct Err% - 6.33% 7.42% 6.79% - 1.69% 2.29% 2.16%
Modell 0.0717 0.0714 0.07227 0.07203 306.33 301 297.80 2908
PrctErr% - 0.42% 0.79% 0.46% - 1.77% 2.86% 2.80%
Modelll 0.0448 0.0458 0.04635 0.04593 770.88 756 748.06 748.2
PrctErr% - 2.18% 3.34% 2.46% - 1.97% 3.05% 3.03%
n:=1.0
Loss Factor Frequency (Hz)
Plain 3D Soni &  Analytical Plain 3D Soni &  Analytical

Strain FEM Bogner  6th Order Strain FEM  Bogner  6th Order
2DFEM  Direct 3DFEM Theory 2D  Direct 3DFEM Theory

MSE Freq. ) Q)] FEM  Freq. ) Q)]
(@) Resp. MSE Resp.
) ® ®
Model 0.2892 0.2014 0.2019 0.2022 66.10 68 67.4 67.4
Prct Err% - 43.59% 43.24% 43.03% - 2.79% 1.93% 1.93%
Modell 0.2371 0.2009 0.2180 0.2177 306.33 310 307 302.8
Prct Err% - 18.02% 8.76% 8.91% - 1.18% 0.22% 1.17%
Modelll 0.1472 0.1403 0.1500 0.1502 770.88 769 762 748.6
Prct Err% - 4.92% 1.87% 2.00% - 0.24% 1.17% 2.98%

' (") Present Study

(®) Cho KD, Han JH, Lee 1. Vibration and damping analysis of laminated plates with fully and partially covered damping
layers. J. Reinf. Plast Compos 2000; 19:1176-200.

(°) N.L. Soni, F.K. Bogner, (1982), Finite element vibration analysis of damped Structures, American Institute of Aeronautics
and Astronautics Journal 20(5),700-707

4 D. K. RAO, (1978) ,Frequency and loss factors of sandwich beams under various boundary conditions, Journal of
Mechanical Engineering Science 20, 271-282.
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As summarized in Table 3-22, analyzes were performed for three different loss factor
values for the viscoelastic layer, 0.1, 0.3 and 1.0 for the same geometrical
configuration, respectively. The error associated with loss factors that were found by
2D methodology for the lowest loss factor case, 0.1, is maximum 7.5% for the first
mode, 2.4% for the second mode, 3.13 for the third mode. For the average loss
factor, 0.3, the results are; maximum 7.42% for the first mode, 0.79% for the second
mode, 3.34 for the third mode. And for the maximum loss factor case, 1.0, the results
are; maximum 43.59% for the first mode, 18.02% for the second mode, 4.92% for
the third mode. From the results we can conclude that as the loss factor of
viscoelastic layer was increased the error achieved was also gets higher meaning that
2D modal strain method can only be used confidentially for the viscoelastic materials
that has low loss factor values. On the other hand regardless of value of loss factor
for the viscoelastic layer, 3D finite element method yields always closer results either
to value of other researchers or analytical results. In addition to loss factor
comparison the frequency deviation from others was %3.17 which is quite

acceptable.

The comparison of 2D plain strain results with others shows that the design cycle can
be used with enough confidence for design purpose especially for viscoelastic
materials that possesses low loss factor values. Although the error is high for the high
loss factor materials, in literature review section it was noted that the MSE method
was proved to be efficient to find out relative effectiveness of design alternatives or
various design configurations. Therefore the design cycle is used to find the effect of
the geometrical parameters as well as material properties of each layer. For this
purpose the height and Young’s Modulus of stand-off layer were selected as design
variable. Several other parameters can also be selected as design variable as long as
they can be controlled in automatic modelling and analysis procedure as shown in
Figure 3-83.All design variables were defined within a prescribed lower and upper
bounds among which the geometry and material properties were selected for any

single design alternative during iterations conducted by search algorithms.
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iJ¢ Define design variables  |ES] Detals || Distributions | €2, Link Variables

€3 Add Design Variable Remove Design Variable

Active Label Varname Lower Bound Initial Upper Bound Comment Categary
[1 & 15000000 ... 200.00000 ... 300.00000 ... . Controlled  +
|2 ] 1.2000000 ... 16000000 .. 3.0000000 .. « Controlled  »
;3 & 3.0000000 ... 5.0000000 .. 15000000 ... o Controlled =
4 [{ 01000000 ... 01270000 ... 1.0000000 ... .. Controlled w
5 & 01000000 ... 01000000 ... 1.0000000 ... w. Controlled v
:s & 50000000 ... 62.000000 ... 3000.0000 ... o Controlled  +
'7 & 0.3000000 ... 03700000 .. 0.4300000 ... ... Controlled =
:s & 138e-00 ... 154e-00 .. 160e09 .. ... Controlled =
s & 01000000 ... 05000000 ... 1.0000000 ... o Controlled  +
510 ] 0.0700000 ... 00800000 ... 0.0900000 ... « Controlled  »

Figure 3-83 Definition of geometrical and material parameters as discrete design

variables.

3.2.7.3.1 Case Study I

As expected and realized from the previous case studies, it is obvious that there is an
optimum spacer height for any given configuration of layered composite beam that
maximize the loss factors at each of ten modes. Also the elastic modulus of spacer
layer has effect on the value of loss factors. To extract the effect of both, for a fixed
geometrical and material properties for other layers the dimension of stand-off height
and value of Young’s Modulus of stand-off layer were randomly altered between
lower and upper bounds conducting design of experiment numerically for the
cantilever sandwich beam model shown in Figure 3-84 . Design of experiment study
conducted in HyperStudy® was an intelligent procedure that creates sets of solution

out of assigned parameters that characterize the effect of each design variable.

{we

Figure 3-84 Cantilever sandwich beam model and its design variables (E> & H»)
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The following plots, Figure 3-85 to Figure 3-88 show the loss factor variation with

respect to mode numbers for each of predefined thickness values for the stand—off

layer which were varied from 1.5 mm to 4 mm, additionally for each of thickness

values, effect of different Young’s Modulus values have also been reported

graphically.
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Figure 3-86 Variation of loss factor value for different modulus value for the first ten

modes (H=2 mm)-E,=500-2200 MPa

02500 4

02000

Loss Factor
2

g

00500

0.0000

== H2=2.5 mm E=2200 MPa
fue2s —— H2=2.5 mm E=1100 MPa
== H2=2.5 mm E=900 MPa

== H2=25mm E=700 MPa
++ee H2=25 mm E=500 MPa
== H2=25mm E=200 MPa

H2=2.5 mm E=100 MPa

..
- J

= .
- .--

2 4 6 8 10 1
Mode Number

Figure 3-87 Variation of loss factor value for different modulus value for the first ten

modes (H=2.5 mm) -Eq,=500-1100 MPa
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The common conclusion that can be drawn from the above graphs is that the highest
modal loss factor was achievable at the 2™ mode of cantilever beam regardless of
thickness value of stand-off layer. Moreover the elastic modulus of stand-off layer
greatly effects the value of loss factor which has also an optimum value for highest

loss factor that is around E, =~ 500 — 2200 MPa.

For target modulus value, Eo=2200 MPa the thickness variation can be extended as
shown in Figure 3-89. It can be seen from the plots that there is also an optimum
range of height value for stand-off layer for maximum damping capacity and it is
around H, =~ 2.5 — 3 mm and the highest loss factor show itself at the 2"¢ mode. For
an optimum modulus value as we increase the thickness beyond 2.5-3 mm the
damping performance is decreased. This conclusion quite well agree with the
previous results that were achieved for the topology optimization section of this
chapter such that the thinner topology of stand-off layer had highest value of
damping. However that should also be noted that the thicker the stand-off layer

higher the reduction in response amplitude.

H2=1.5mm-2.5 mm

H2=1.5mm
).130X H2=4 mm et 17=2 mm
o= H?=2.5mm

=tem2=4 mm
==} ]2=7 mm
e F1)=8 mm
=t HI=0 mm
== 7=16 mm
= H2=05mm

Loss Factor

=
L

00500

Mode Number

Figure 3-89 Effect of spacer height and elastic modulus on loss factor
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In the following pages the loss factor variation with respect to stand-off height for
the first ten modes was reported. From the graphs one can easily see that each mode
has its maximum value around 2.5 mm-3 mm. Beyond the 3™ mode for the certain
thickness values there exists sudden drop in loss factor due to longitudinal mode of
vibration at which the shear deformation within viscoelastic layer almost diminish
because each layer elongate and contract without relative motion between them. This
also shows the fact that the main mechanism of damping is due to the shear
deformation. Also this drop completely related with boundary condition, that is in

our case fixed-free which allows such mode of vibration.
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Figure 3-90 Effect of spacer height and elastic modulus on loss factor at 1% mode
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Figure 3-91 Effect of spacer height and elastic modulus on loss factor at 2"¢ mode
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Figure 3-92 Effect of spacer height and elastic modulus on loss factor at 3 mode
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Figure 3-93 Effect of spacer height and elastic modulus on loss factor at 4™ mode
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Figure 3-94 Effect of spacer height and elastic modulus on loss factor at 5" mode
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Figure 3-95 Effect of spacer height and elastic modulus on loss factor at 6™ mode
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Figure 3-96 Effect of spacer height and elastic modulus on loss factor at 7" mode
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Figure 3-97 Effect of spacer height and elastic modulus on loss factor at 8 mode
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Figure 3-99 Effect of spacer height and elastic modulus on loss factor at 10™ mode

The graphical results show the effect of both Young’s Modulus and height of stand-
off layer over the loss factor for the first ten modes. For the first mode of cantilever

beam one can notice that the maximum loss factor for given configuration exists

around H>=2.5-3 mm with E;=500-2200 MPa.

In order to extract the effect of modulus explicitly the loss factor variations were
plotted with respect to elastic modulus data in Figure 3-100 to Figure 3-109. For
almost all modes of vibration it was seen that for constant stand-off height there is an

optimum modulus value for the stand-off material. For the first three modes for
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H>=2.5-4 mm the E;=500 MPa value yields a maximum peak for loss factor beyond
which the loss factor decreases. At higher modes H>=1.5-2.5 mm yields maximum
loss factor for almost all values of elastic modulus value beyond E>=500 MPa if we
neglect the slight gradual drop in loss factors. However for thicker stand-off layers
this decrease much more dominant. Also there exists sudden drop in loss factor at
some certain modulus and mode values due to longitudinal mode of vibration at
which the shear deformation within viscoelastic layer almost diminish because each

layer elongate and contract without relative motion between them.
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The above all results suggest that for increase in all modal loss factor for the first
three modes, the height of stand-off layer should be around H2=2.5 mm which
implies increase of stand-off height further from a certain value is unnecessary in
terms of damping capacity. Moreover the modulus of stand-off material, in other
words the stiffness, greatly effects the results especially at first mode which has an

optimum peak value beyond which the loss factor decreases dramatically for the

fixed-free boundary condition.
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3.2.7.3.2 Case Study 11

In this case study a new automatized parameter study was performed using the
previously mentioned design cycle. The study of Koruk et.al [66] and Yellin et.al
[107] was adapted such that the stand-off layer which is our design domain was
divided into certain number of separate design domains which forms the slotted
configuration of stand-off layer which was created as a combination of some design
parameters in CATIAV5-R22 environment as shown in

Figure 3-110. The first design parameter was selected to be as the height of the
stand-off layer as was the case in previous study. In this case additional design
parameters were created in order to find the best dimensions of slotted configuration
through the use of optimization algorithms embedded in HyperStudy® environment
with a more systematic method instead of following trial and error procedure. For
this purpose the spacer domain divided into 21 cells. Each cell was thought to be like
a window opening whose width controlled with a parameter value of cut-extrude
option, used in Generative Shape Design Module in CATIAV5-R22, to remove the
material from the design domain which in the ends creates the slots in stand-off layer
and the remaining portion as columns. The width of those cuts assigned into a
parameter p;, i=1 to 21, as shown in

Figure 3-110. The value of each parameter was selected between 1 and 10 as lower
and upper bounds respectively (Figure 3-112). As those parameters were changed by
the optimization algorithms, the new model, based on new design parameters, pi‘s,
automatically updated within CATIA using the newly created MACRO.catvbs and
was sent to directly to the analysis environment using the same approach used in

previous case study (Figure 3-78).
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J*  Define design varisbles Detals | [N Distrbutions | &5, Link Variables 0
€3 Add Design Variable ) Remove Design Variable
Active Label Varname Lower Bound Initial Upper Bound
1 @ H2 m_1_Spacerter. | 2.0000000 o 25400000 o 20.000000
3 pl m_1_pl 1.0000000 10000000 o 10.000000
3 @ p2 m_1_p2 1.0000000 - 1.0000000 - 10.000000
4 [H p3 m_1_p3 1.0000000 - 1.0000000 - 10.000000
5 [H pd m_1_p4 1.0000000 10000000 oo 10.000000
c & p5 m_1_p5 1.0000000 - 1.0000000 - 10.000000
7 = ph m_1_ph 1.0000000 - 1.0000000 - 10.000000
g @ g7 m_1 p7 1.0000000 10000000 oo 10.000000
'iz @ p2l m_1_p21 1.0000000 o 10000000 we 7.0000000 /

Figure 3-112 Design variables in parameter optimization of slotted configuration
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After defining the values of all design variables between certain ranges as shown in
the Figure 3-112, the objective function was defined in a number of ways. At first,
the four objective functions were created and selected as to be the maximization of
loss factors for all first three modes of the treated beam since these modes dominates
the overall dynamic response. Additionally another objection was defined to
minimize the total volume of finite element model under cantilever boundary

condition (Figure 3-113).

4 Objectives LE constraints ﬁﬁ Unused Responses

B Add Objective Remove Cbjective
| Active Label Viarname Type Apply On
1 ¥ Maximize Loss Factor @ Model ohj 1 Maximize w Loss Factor @Model(r 18) -
r | Maximize Loss Factor @ Mode Tl Maximize v Loss Factor @Mode I (r19) -
31 éMaximize Loss Factor @ Mode I Maximize w Loss Factor @Mode I (r_20) -
4 ¥ MinimizeVolume obj 4 Minimize » TOTAL VOLUME {r_14) -

Figure 3-113 Objective functions definitions in optimization

Based on the objective and constraint functions HyperStudy® enables engineers to
select different kinds of built-in optimization algorithms. In our case since multiple
objective functions were created among which two of them were ready to be selected
as depicted in Figure 3-114. The Global Response Surface Method (GRSM), which
is one of the special optimization algorithms, developed by Altair Engineering Inc.
was selected as it provides either single or multi objective optimization. The defaults

settings were used throughout calculations.
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GRSM method simply creates hundreds of sample design alternatives out of given
design by changing the design variables which are related with response of the

system (Figure 3-115).The method then fits a response surface on which it finds the

Spedifications

Mode Label
1 Adaptive Response Surface Method
2 @ Global Response Surface Method
3 Sequential Quadratic Programming
4 Method of Feasible Directions
5 Genetic Algorithm
g Multi-Objective Genetic Algorithm
7 Sequential Optimization and Reliability Assessment
8 ARSM based SORA
9 Single Loop Approach
10 &) Kopt

Figure 3-114 Built-in optimization algorithms

optimum [148].
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i L i
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Details

Orly single-obj...
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Only single-oby...

Only single-obj..
Only single-oby...
Only single-obj...
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Figure 3-115 Evaluation history of optimization method.
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Based on the GRSM method the optimal parameters of slotted configuration of
stand-off layer were extracted, among hundreds of sample designs, as to be the
values given in Table 3-23. Compared to design of experiment study conducted in
previous case study, the optimal height of the stand-off layer was found to be as
H=2.51 mm which is quite in agreement with the optimum value which was found to
be around H=2.5-3mm. For the highest damping the best slot dimensions are also
extracted, in other words, best location and length of the viscoelastic patches that
should be attached over the spacer layer (Figure 3-116). Those locations are known
to be the area where the highest strain energy is cumulated during flexural motion

(Figure 3-117).

Table 3-23 Optimum values of parameters for the slotted configuration (GRSM)

H2 pt p2 p3 p4d pb pb pf p8  p9 pi0 pi1 pi12 pi13 pl4 pi15 pi16 pl7 p18 p19 p20 p21
2.518.738.139.272979.503.15 7.20 2.91 6.09 1.22 8.59 2.452.25 3.99 7.72 8.77 8.74 8.41 §.87 2.86 2.04

Figure 3-116 Optimized slotted configuration of stand-off layer (H=2.513 mm)
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Figure 3-117 Mode shapes of treated cantilever beam with optimized slotted stand-

off layer (H>=2.513 mm)

Based on the mode shapes extracted, the material distribution obtained was

cumulated at the regions where high strain energy is induced (Figure 3-117).

Recalling the use of approximate constant material properties for the viscoelastic
layer, in order to assess the damping performance of this optimized slotted
configuration, direct frequency response analysis with the frequency dependent
material properties was performed. Point frequency displacement responses for
different thickness values were extracted for the stand-off layer to see the effect of
geometrical parameters and compare the damping performance of optimized slotted

configuration with respect to those uniform stand-off layers with H=10 mm, H=4
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mm and H=2.51 mm together with H=1.32 mm uniform spacer of equivalent weight

respectively.

fn=13775Hz
%1110 =:0.0051919

Magnitude [mm/N]

10 . |
0 2000 2000 6000

Frequency [Hz]

Figure 3-118 Displacement response of treated beam with uniform stand-off (H=10

mm).

ith H=4 mm Uniform Spacer)

Magnitude [mm/N]

2000 1000 5000 8000 10000 12000 14000

Frequency [Hz] I

Figure 3-119 Displacement response of treated beam with uniform stand-off (H=4

mm).
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Displacement Frequency Response (Point FRF of Equivalent Weight of Slotted Spacer with H=1.32 mm Uniform Spacer)

Magnitude [mm/N]

|
0 2000 4000 6000 8000 10000 12000 14000
Frequency [Hz]

Figure 3-120 Displacement response of treated beam with uniform stand-off (H=1.32

mm).

Displacement Frequency Response (Point FRF of Optimized Slotted Spacer with H=2 513 mm-Full Coverage)
B = EE|

Magnitude [mm/N]

0 2000 4000 5000 8000 10000 12000
Frequency [Hz]

Figure 3-121 Displacement response of treated beam with optimized slotted stand-off
(H=2.513 mm -Full Coverage).
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Displacement Frequency Response (Point FRF of Layered Beam with Optmized Slofted Spacer H=2 513 mm -Partial Coverage)

il e0H
4 =0 023568

s : e
FeiE i _Zn'?eéﬂa‘i%%% 5

Magnitude [mm/N]

N VFrequency [Hz] )

Figure 3-122 Displacement response of treated beam with optimized slotted stand-off

(H=2.513 mm -Partial Coverage).

The overall comparison of frequency response functions of all treated beams with
different height and configuration of stand-off layer that were considered above can
be given in a single plot as shown in Figure 3-123. Again for the thinner
configuration, the displacement response amplitude is relatively higher while the
damping capacity is also higher. One can see also from the frequency response
function that the optimized slotted configuration has higher damping capacity and
lower response amplitude compared to H>=4 mm and its counterpart H>=1.32 mm

with same weight.
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=== H=10 mm Uniform Spacer

100 | === H=2.513 mm Optimized Slotted Spacer (Partial Coverage)
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Figure 3-123 Overall comparison of treated beams with uniform and optimized

stand-off.

Additionally, the partial treatment of optimized slotted configuration has
considerable lowered response amplitude beyond 10 kHz although there are two peak

regions with higher displacement amplitude between 7 kHz and 10 kHz.

The Table 3-24 summarizes the numerical values for the relative damping
improvement with respect to uniform case. According to the results, the optimized
slotted has relatively higher damping only between 2" and 4™ mode while partial
treated configuration has relatively much higher damping capacity at first 5 modes

compared to uniform thin stand-off layer (H=2.513 mm).
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Table 3-24 Relative damping performance of optimized slotted stand-off layer

(Slotted Stand- off Optimization-H=2.513 mm) Global Response Surface Method
Relative Damping Performance w.r.t. Uniform Stand-Off Layer

Frequency f[Hz| Loss Factor n=2C
H=2.513
| |
TIT 1T 1 [ — i E— i —
Uniform Optimized Optimized

Mode # Uniform Optimized Optimized Full Coverage Full Coverage Partial Coverage
Prct [%] Full Coverage Full Coverage Partial Coverage Weight=100% Weight=87.87% Weight=69.03%
1-+ 75.00 78.00 78.00 0.041 0.041 0.071

- & -097% 4 7239%
24+ 453.00 432.00 398.00 0.028 0.033 0.053
- @+ 1565% 4+ 86.74%
34+ 1217.00 1098.00 991.00 0.022 0.025 0.032
- £ 1040% 4 43.29%
4+ 2252.00 1971.00 1769.00 0.020 0.021 0.024
- @+ 1.02% 4 1573%
5.4 3489.00 2830.00 2459.00 0.019 0.019 0.021
- & -209% 4 827%
6-- 4870.00 3899.00 3352.00 0.018 0.017 0.018
- & -626% & -0.85%
7-- 6352.00 4950.00 4168.00 0.018 0.016 0.016
- & -1075% & -9.62%
8- 7907.00 6033.00 4896.00 0.017 0.014 0.013
- 4 -1926% & -22.79%
9-- 9516.00 6981.00 5828.00 0.016 0.013 0.013
- $ -1935% & -20.58%
10-- 11172.00  7951.00 6444.00 0.015 0.012 0.012

- 4 -1986% & -23.73%
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In order to compare the efficiency of optimization algorithms available within
HyperStudy® the search for the optimum parameters has been repeated for different
optimization algorithms, Genetic Algorithm (GA) and Multi Objective Genetic
Algorithm (MOGA) respectively. Genetic algorithm provides single objective
function which was selected as to be the maximization of loss factor for the first
mode of cantilever beam without any other constraints or objection since the first
mode has highest response amplitude that dominates the overall vibration response of
the vibrating beam hence cause inherent structural weakness. Therefore the first

mode loss factor was maximized (Table 3-25)

Table 3-25 Optimum values for slotted configuration: Genetic Algorithm (GA)

) Add Objective Remoye Objective

Active Label ‘arname Type Apply On Evaluate From
1| aximize ESE @ Mdoel bj Maximize w Loss Factor @ModeI(r18) w SOLVER -
Maximize ESE @ Mdoell Maximize w Loss Factor @Modell (r19) w SOLVER -
3 [ Maximize ESE @ Mdoe Il Maximize w Loss Factor @Mode Il (r 20 ) w SOLVER -
4 F MinimizeVolume Minimize » TOTALVOLUME (r14) + SOLVER -

H2 p1 p2 p3 p4d p5 p6 pT7 p8  p9 pi0 p11 p12 p13 pi4 pl5 pl6 pi7 pi18 pl19 p20 p21
3.12 2.90 6.89 8.80 9.35 1.04 6.89 10.00 1.159.561.23 1.13 998 1.25 2.72 1.69 9.33 1.53 3.77 1.79 9.91 5.09

Based on the mode shapes extracted, the material distribution obtained was

cumulated at the regions where high strain energy is induced (Figure 3-124).
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Figure 3-124 Mode shapes of treated cantilever beam with optimized slotted stand-

off layer (H2=3.12 mm)

To extract the modal loss factors for all ten modes the frequency response analysis
was performed for the partial treatment. As shown in Figure 3-125, the frequency
response amplitudes are higher at lower modes compared to results of GRSM
(H=2.513 mm). However the GA results (H=3.12 mm) such configuration that it
yields an extended anti-resonance region between 6.2 kHz and 12 kHz suppressing
corresponding modes at this range while GRSM yielded two higher peaks at same
location but beyond 12 kHz GRSM results improved amplitude reduction.
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——H=3.12 mm (GA) Uniform Spacer (Full Coverage)
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Figure 3-125 Comparison of results of optimization algorithms: GRSM vs GA

The numerical results for the relative damping capacity compared to its uniform case
is given in Table 3-26. According to the results, the optimized slotted has relatively
higher damping only between 2" and 7™ mode which shows extended but lower
performance compared to GRSM result, while partial treated configuration has
relatively much higher damping capacity at first 4 modes, which are also numerically

lower than GRSM result, compared to uniform thin stand-off layer (H=3.12 mm).
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Table 3-26 Relative damping performance of optimized slotted stand-off layer (GA)

(Slotted Stand-off Optimization-H=3.12 mm) Genetic Algorithm
Reltive Damping Pertormance w.r.t. Uniform Stand-Off Layer

Frequency f[Hz] Loss Factor n=2¢
T T I I
ST — ow—w A |
Uniform Optimized Optimized
Mode # Uniform Optimized Optimized Full Coverage Full Coverage Partial Coverage
Prct [%] Full Coverage Full Coverage Partial Coverage Weight=100% Weight=77.09% Weight=71.01%
-+ 81.00 83.00 84.00 0.039 0.038 0.063

- 34 211% 4 6321%
24+ 492.00 468.00 452.00 0.026 0.029 0.042
- @+ 1352% 4 6023%
34+ 1313.00 1182.00 1119.00 0.021 0.023 0.026
- £+ 1080% 4 2537%
44+ 2411.00 2033.00 1872.00 0.019 0.020 0.021
- 4+ 814% 4 1230%
S5+ 3707.00 3021.00 2732.00 0.018 0.018 0.017
- @ 143% & -511%
6+ 5140.00 3803.00 3372.00 0.017 0.020 0.020
- £ 2071% 4 18.56%
T+ 6662.00 4865.00 4247.00 0.016 0.029 0.049
- @+ 7983% 4 210.69%
8-- 8248.00 5916.00 5332.00 0.015 0.015 0.014
- 3 -064% I -9.93%
9-- 9879.00 7267.00 6299.00 0.014 0.014 0.011
- £+ 000% & -2361%
10 + 1154900  7642.00 12185.00 0.014 NA 0.011

- NA 4 -1556%
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As a final optimization technique, multi objective optimization the MOGA was
selected as the base search algorithm with which the maximum loss factor for the
first mode together with minimal volume objectives were selected. The extracted
results for the geometrical parameters of slotted stand-off layer are given in Table

3-27 with totally different geometrical values compared to previous configuration.

Table 3-27 Optimum values for slotted configuration: Multi Objective Genetic

Algorithm (MOGA)

EJ Add Objective Remove Objective

_ Active Label Varname Type Apply On
1] Maximize ESE @ Mdoel ohj 1 Maximize + Loss Factor @Model{r 18) -
l 2 [ Maximize ESE @ Mdoell obj 2 Maximize w Loss Factor @Mode I (r19) -
3 [ Maximize ESE @ Mdoe II ohj_3 Maximize w Loss Factor @Mode I (r_20) -
4 [ MinirmizeVolume ohj 4 Minimize w TOTAL VOLUME (r_14) -

H?2 pl p?2 p3 p4 pS p6 pf p8 p9 pi10 pi11 p12 p13 p14 pi1S pi16 pl7 p18 p19 p20 p21
2639.861.74 1.335.18 7.70 1.68 4.59 1.82 8.11 2.195.459.47 2.26 9.84 6.70 8.47 2.50 1.21 9.94 9.98 6.25

The frequency response results are given in Figure 3-126. The overall results are
compared to uniform stand-off layer with H=10 mm as well as previous optimized
slotted configurations. According to the results, the damping performance achieved,
for the partial treatment, by the slotted configuration is higher with the results of
GRSM method compared to other methods. On the other hand the Genetic Algorithm
(GA) also yields the better result than the Multi Objective Genetic Algorithm
(MOGA).
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Figure 3-126 Comparison of results of optimization algorithms: GRSM-GA-MOGA

The numerical results associated with final MOGA search algorithm for the relative
damping capacity compared to its uniform case is given in Table 3-28. According to
the results, the optimized slotted has slightly higher damping until 7" mode which is
almost same with uniform counterpart with less weight. Also partial treatment shows
relatively higher damping but with lower increase compared to GRSM and GA

results.
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Table 3-28 Relative damping performance of optimized slotted stand-off layer
(MOGA)

14+ 76.00 79.00 83.00 0.041 0.041 0.057
- £ 008% 4 37.55%
24+ 464.00 454.00 457.00 0.028 0.030 0.038
- @ 706% @ 36.00%
3++ 1243.00 1135.00 1106.00 0.022 0.023 0.026
- @ 675% @ 19.63%
4+ 2295.00 1882.00 1728.00 0.020 0.022 0.024
- £ 9.19% 4 1971%
5++ 3550.00 2684.00 2410.00 0.019 0.021 0.022
- 4 912% 4 1548%
6++ 4948.00 3612.00 3256.00 0.018 0.019 0.019
- @ 541% @ 7.07%
7-- 6445.00 4795.00 4241.00 0.017 0.017 0.015
- 4 268% & -1137%
8-- 8013.00 5750.00 5256.00 0.017 0.016 0.014
- &4 563% & -1833%
9-- 9634.00 7163.00 6474.00 0.016 0.015 0.012
- & -7.64% b -25.98%
10++  11299.00  7824.00 7193.00 0.015 0.023 0.030

- £ 5235% 4 97.59%

As a summary of the previous results, the overall damping performance of each final
configurations, which were extracted by different optimization algorithms, compared
to thick uniform reference stand-off layer with corresponding relative percentage
damping increase and relative percentage weight reduction is given in Table
3-29.The numerical results shows improvement achieved in damping with slotted

configuration obtained by GRSM especially at first modes.
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Table 3-29 Relative damping performance of optimized slotted stand-off layers with

respect to thick uniform spacer (H=10 mm)

(GRSM) (GA)
H=2.513 mm Partial Coverage H=3.12 mm Partial Coverage
weig"'[};:]d""“““ Mode # Rehlﬁn‘:;dvo:::zcm Weight Reduction Mode # Rehlt:;nf:):::;:mr
(%] (%] [%o]
I 6128w 1 57.60% 1 [ 2529%
2 2 L 20077%
3 301 143.60%
4 s | 13468%
5 s | 106.42%
6 6 | 168.77%
7 7 1 629.85%
8 8 | 118.38%
o [ 123.53% o | 90.60%
10 s 1w | usaw

(MOGA)
H=2.64 mm Partial Coverage

Weight Reduction Relative Loss Factor

%] Mode # Irrpr;;:m nt
-60.23% 1 - 218.75%
2 . 173.41%
3 . 146.54%
4 ' 167.09%
5 . 169.46%
6 l 161.99%
7 I 126.05%
8 l 116.77%
9 [ 102.73%

10

&
=X
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3.3 Comparison of Optimization Results

Up to now we have been considered two main optimization methodology namely,
topology optimization and parametric optimization for the design of vibrating
structures for optimum dynamic behavior in terms of damping performance as well
as amplitude reduction. Below, the frequency response functions (Receptance) of
each of the best candidate designs were given for the sake of comparison of their
vibration characteristics (Figure 3-128). It can be concluded from the results that
stand-off layer with the topology of first case study with a 3.52 mm height gives
higher damped response which is slightly greater than another configuration which is
optimized slotted stand-off layer with a height of 2.513 mm. Moreover the first
topology has considerable amplitude reduction in higher modes. In terms of response
amplitude however especially at lower resonance frequencies the thicker optimized

stand-off layer has better performance with less damping capacity and same weight.

= == H=10 mm Uniform Spacer

——H=2.513 mm Optimized (GRSM) Slotted Spacer (Partial Coverage)
100 === H=3.52 mm Optimized (Topo I) Spacer (Partial Coverage)

——H=3.52 mm Optimized Slotted Spacer (GRSM) (Partial Coverage)
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o
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2 “ "

g

:

0.00001 +

Frequency [Hz]

Figure 3-127 Frequency response function comparison of best candidate designs.
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Figure 3-128 Continued
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Table 3-30 Overall comparison of optimized designs in terms of damping

TOPOLOGY I

H=3.52 mm Partial Coverage

<=5

S
Bud o

(GRSM)
H=3.52 mm Partial Coverage

A1

(GRSM)
H=2.513 mm Partial Coverage

11

Relative Loss Factor

Relative Loss Factor

Relative Loss Factor

Weight Reduction \\ 1y Improvement Weight Reduction: 7 de#  Tmprovement: T oRmReduetion o, ey mravensent
'%' [%] L [%] P [%]
-56.16% 1 [ 3720.67% -51.94% 1 .71% -61.28% 1 298.86%
2 I 274.64% 2 IE777% 2 [Pags.0a%
3 I 237.14% 3 [Fi36.00% 3 [ 201.54%
4 [ 232.58% 4 [ 109.38% 4 I 163.74%
5 I 2i1.11% s [ 102.42% 5 [ 158.33%
6 B 193.2a% 6 B 93.06% 6 B 148.41%
7 | 48.53% 7 B 73.20% 7 B 136.39%
s N 164.52% g8 | 4593% 8 | 11035%
s | 150.88% 9 B 58.83% 9 F 123.53%
10 B 142.31% 10 B 60.94% 10 I 125.82%

The numerical results for the relative percentage damping improvement as well as

weight reduction with respect to reference thick uniform stand-off layer were

tabulated for the first ten modes in Table 3-30. For the sake of comparison of

parametric results with topology optimization results, the optimized slotted design
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response was generated for the same thickness value of first topology optimization,
that is for H=3.52 mm. One can see from the tabulated result that for the same
thickness value, topology optimization has yielded better material distribution which
results higher damping capacity for almost all modes with considerable higher
weight reduction compared to optimized slotted configuration. The relative
percentage increase in loss factor for the first mode is %320.67 for the topologically
optimized stand-off with %56.16 weight reduction while it was %224.71 for the
optimized slotted configuration with %51.94 weight reduction. However, the thinner
slotted design has better damping performance compared to same slotted

configuration which makes it second candidate for design.

In order to see the damped response of best candidate design in vibration reduction
purpose the result of optimized solution was compared with the bare beam response
(Figure 3-129). One can easily see the considerable amount of vibration response
reduction with optimized topology of stand-off layer with minimum thickness, in
other words with less weight. The damping improvement for the first mode was
reported as %102.87 at the first mode, %600.29 at the second mode and %1501.81 at

the third mode which are the lowest dominating responses.
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Figure 3-129 Frequency response function of bare and treated beam with optimum

stand-off layer
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Frequency Response Function: Point FRF Bare Beam (H=1.6 mm) vs Treated Beam with Optimized Stand-Off Layer (H=3.52 mm Topology I)
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Figure 3-130 (Continued)

The response of best candidate designs for the optimum dynamic response were
plotted and compared in the following Figure 3-131 and Figure 3-133 with both bare
base beam and layered beam with thick uniform case as reference models. One can
see from the response curves the thick uniform beam has comparatively lower
response amplitude but with less damping capacity whereas the thin optimized
candidate designs for spacer layer induce higher damping capacity with slight
amplitude increase especially at lower modes. The relative increase in response
amplitude gradually decreases and at higher frequencies there exists dramatic

reduction of amplitude with optimum thin layers.
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Figure 3-131 Frequency response function of bare and treated beam with optimum

design candidates for stand-off layer
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Figure 3-133 Frequency response function of bare and treated beam with optimum

stand-off layer

As a general result of the numerical design process of this study the Figure 3-133
summarizes the optimum dynamic response of candidate designs. From the response
curve one can see that 3.52 mm partially covered spacer with layout of optimized
topology of first case study gives best response amplitude as well as maximum

damping capacity with minimum weight.
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CHAPTER 4

VIBRATION TEST FOR VALIDATION

4.1 Experimental Study

Up to now the design process has been carried out using numerical approach.
Additionally the experimental studies play an important role either to verification of
approach used or final qualification of developed products. In this section of thesis
study it is aimed to conduct a vibration experiment in order to verify the
methodology used and to extract the damping performance of optimized slotted
stand-off layer as shown in Figure 4-1. For this purpose the samples of treated beam
structures were produced adhering to numerical models. The viscoelastic material
used was selected to be one provided from Soundcoat® Company, which is DYAD
601 with a thickness of 1.27 mm. As a constraining layer a 0.5 mm thick 2024-T3
aluminum samples were used. On the other hand for the stand-off layer ABS plastic
(ABS P430) was used since it has quite suitable modulus of elasticity for use in
practical application for the maximum damping performance based on the results
achieved in first case study of parametric optimization. Moreover, the ABS plastic
has another advantage ensuring to be used in 3D printing technology. Finally for
vibrating beam a 1.6 mm thick 2024-T3 aluminum sheet was selected with overall
dimensions of 250 mm x 45 mm. Upon production of each sample, a sine-sweep
vibration test has been conducted under unit harmonic base excitation of treated
beam fixed to a fixture that is also attached to the shaker table in environmental

conditions laboratory.
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Figure 4-1 3D view of treated beam with optimized configuration of slotted stand-off

layer

The vibration response of each samples were measured using instrumentation
available in laboratory such as accelerometers, cables and data acquisition system
together with shaker table from LDS® Company. Upon measuring the tip response of
treated beams under fixed-free boundary condition, the frequency response functions
are extracted which will be later on used in order to calculate loss factors using Half
Power Bandwidth Method. The following sections explain the steps followed in
details.
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4.1.1 Production of Test Samples

The metallic test specimens for vibrating base beam and constraining layer were
prepared in prescribed dimensions (250mm x 45mm) by cutting them from

aluminum sheets that were also later machined altogether to tune the dimensions of

each to exact values as shown in Figure 4-2.

Figure 4-2 Cutting and machining of aluminum sheets

For the stand-off layer with optimized slotted configuration ABS-P430 polymeric
material was used and its production was completely accomplished by using 3D
printing technology which is one of the additive manufacturing method used
worldwide in production of complex 3D parts extracted from topology optimization.
In this method the 3D part is divided into sections in certain dimensions from bottom
to top using software then the source material is melted pixel by pixel over the 2D
surface that represents the 2D section of 3D part. At each section the process is
continuously repeated until the whole model is generated from bottom to top.
Prototype of any complex geometry that is represented in CAD environment digitally
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can easily be produced with additive material layer by layer instead of using cutting,
machining etc [3D print]. For this process a special machine, Fortus 250mc, was
used and two samples of optimized slotted stand-off layer was manufactured from
2D layout of optimized slotted stand-off layer using 3D printing technology (Figure
4-3). The production time for each of sample (250 mm x 45 mm) was recorded to be

4 hour.

3D PRINTING

| 7

OPTIMIZED SLOTTED
STAND-OFF LAYER

Figure 4-3 3D prototypes of optimized slotted stand-off layer

In order to be used in performance comparisons 3 more uniform stand-off layers
were also manufactured. Upon manufacturing of metallic base and constraining
layers together with polymeric stand-off layers the final step left was the assembling
of all layers into single treated beam. For the slotted configuration either full or
partial coverage was applied over the surface of the printed layers carefully. The

viscoelastic sheet, DYAD 601-Soundcoat®, was cut into dimensions adhering to
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width of each single column that was given in Table 3-23.Then a special adhesive,

Loctite 401® from Henkel Inc. was used to glue the layers altogether (Figure 4-4).

Figure 4-4 Assemblage of each individual layers to form treated beams

After assembling all the layers together the samples were ready to be tested as shown

in Figure 4-5.
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Figure 4-5 Manufactured treated beam samples: (a) 10 mm uniform, (b) 4 mm
uniform, (¢) 1.32 mm uniform,(d) 2.513 mm slotted-full coverage, (¢) 2.513 mm

slotted partially covered stand-off layer.

4.1.2 Vibration Test

As well as verifying the analytical or numerical predictions for their dynamic
behavior of structural parts, the vibration test is also conducted for assessing the
performance of products qualitatively by replicating the dynamic environment
encountered in physical operational conditions in order to see whether the design
under test meets the design requirements. In a vibration test a design under test is
simply attached to the stiff fixture that is also fixed to the shaker table which is
excited electromechanically by means of signal generator. The excitation signal can
be of sine, random, or shock input in a deterministic shape of square, triangular

pulses.

In order to assess the damping performance of treated beams that was previously
manufactured, the swept sine vibration test was conducted in order to identify the
natural frequencies of treated beam as well as loss factors from frequency response

functions generated based on measurement throughout the vibration test. During such
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kind of test, one of the important considerations that should be taken into account is
that the fixture should be free of resonance especially at the frequency range of test
in order not to amplify the test input due to resonance of fixture itself that may
results erroneous measurements. For this purpose the fixture used was designed
accordingly and checked its resonance frequencies via modal analysis as a pretest
analysis step as shown in (Figure 4-6). The finite element model of the test fixture
was built with same material and boundary conditions applied during fixation of
fixture over shaker table. According to results, the first mode of test fixture was
found to be around 1958 Hz and the second mode was around 2609 Hz which are
sufficiently higher values above the interested frequency range which was up to
1400Hz for the thickest treated beam under fixed-free boundary condition which was

also determined by pretest trials.
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Figure 4-6 Modal analysis of test fixture: 1t Mode: 1958 Hz (Up), 2™ Mode: 2609
Hz (Down)
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After design and analysis of test fixture the model was also manufactured by
aluminum blocks that were screwed to each other. Later on the treated beams
clamped from one end of the beams to the fixture via using plate and bolts creating a
cantilever beam condition. The test fixture also fixed to surface of the shaker table
via bolts. The beam is shown mounted to the shaker table as in Figure 4-7 . This
configuration is used to perform vibration tests in the Z-direction, as it was done in

numerical direct frequency response analysis.

Another important consideration during test is instrumentation consists of sensors
such as accelerometers to measure response level and control the input level.
Particularly the control accelerometer was used to monitor and control the input
vibration level delivered correctly to the shaker table while the tip sensor attached to
the treated beam was used to measure the acceleration response of beam from which

the frequency response functions are generated.

CLAMPED B.C.

TREATED BEAM

ACCELEROMETER
{Conirol)

ACCEFLERONMFETER
(Measurement)

SHAKER TABLE~
+Z DIRECTION

Figure 4-7 Treated beam attached to the shaker in fixed-free boundary condition
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For the response measurement PCB type miniature mono-axial accelerometer from
Piezotronics Inc. with a sensitivity of 9.215mV/g was used. It was securely glued to

the tip of the beam using special wax provided by manufacturer.

One of the popular test technique used for identification of natural frequencies and
damping factors through extracting the frequency response function is swept sine test
which is also known as modal survey vibration test. During test an enforced unit
harmonic acceleration load is applied to the test structure by sweeping a lower bound
of frequency to the upper bound. During test the responses are measured using
suitable accelerometer in required direction. In our case a unit 1g sinusoidal
harmonic acceleration load was applied at a rate of 1 octave/min in the frequency
range of 10 Hz to 2000Hz in +Z direction which is the limit range of shaker table,
perpendicular to the surface of shaker table as shown in Figure 4-7.The sweep rate

indicates how fast the frequency of loading was changed during survey.

.

- DATA ACQUISITION
M (SOFTWARE)

DATA ACQUISITION
SYSTEM

Figure 4-8 Data acquisition system used in vibration test
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Data acquisition system forms the backbone of the vibration test such that it drives
the shaker table with specified value of harmonic loading, controls it and provides
measurement and recording of responses simultaneously. It consist of sensors,
cables, signal conditioners, an input/output board and a specifically developed
software ensuring data processing in real time as shown in Figure 4-8.Throughout the
test the acceleration response was measured using mono-axial miniature
accelerometer in +Z direction and recorded simultaneously. A high-pass filter was
applied to the response accelerometer at 5 Hz. After processing of each data samples

the frequency response functions were generated.

The frequency response plots were also generated for enforced unit base acceleration
excitation in order to have comparable results with shaker test to be conducted for
this configuration. This time, a 1g unit harmonic base acceleration was applied to the
fixed point of cantilever beam and the response was selected to be as acceleration at
the tip point of cantilever beam (Figure 4-9).This simulation resembles the vibration

test conducted on shaker table.

Acceleration
. Response {f

L
. RBEZ
TanTawil; |

Rx=Ry=Rz=0 h I

Unit Harmonic
Loading[ 1g]

Figure 4-9 Generation of frequency response function
In the following section the test results are summarized both in graphical and
numerical form. The frequency response function of each beam sample was reported

from which the loss factor values for the first three modes were extracted using Half

Power Bandwidth Method accordingly.
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4.2 Results and Comparisons

Upon completion of vibration test which took approximately 9 min for each of
samples, the frequency response functions were automatically generated by the data
acquisition system. They are combined into one single graph for the sake of easy
comparison as shown in Figure 4-10. According to results shown the experimental
results showed a good agreement in terms of damping performance as predicted via
numerical approach. However the frequency of resonances were found to be quite
different compared to numerical results. As predicted in first case study the 4 mm
fully covered uniform stand-off layer has better damping performance compared to
thicker counterpart (H=10 mm). Also the H=2.513 mm optimized fully covered
slotted stand-off layer provided higher damping together with lower total weight, in
only first mode compared to H=4 mm stand-off contrary to the results achieved
numerically Moreover the optimized stand-off with partially treated case provided
higher damping performance even compared to its equally weighted counterpart as

predicted numerically (Figure 4-12).

100

= = =4mmFullCoverage (b)

10

* 10mmFullCoverage-(a)

2 .513mm Optimized Slotted
FullCoverage (d)
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Coverage (e)

Magnitude (Acceleration G)

0.1 : : : : === 1.32 mm Equivalent Weight
Full Covearge (c)

=== 1g Unit Harmonic Loading

0.01

10 100 1000
Frequency [Hz]

Figure 4-10 Vibration test results: Frequency response functions of each sample
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Figure 4-12 (Continued)

The result obtained from experimental study also verifies the numerical response
functions given in Figure 4-12-(c). From graphical result one can see that the relative
responses show same trend, that is, the acceleration response of optimized slotted
configuration is lower than thicker uniform stand-off layer in both numerical and
experimental studies which verifies the effectiveness of optimized slotted stand-off

layer.

The Figure 4-13 summarizes the variation of loss factor values given in Table 4-1
and Table 4-2 which were obtained from numerical and experimental frequency
response functions. It is obvious from results that the maximum loss factor was
achieved with the optimized slotted configuration with a thickness of H>=2.513mm
in both cases and the experimental results are higher in all three modes compared to
numerical results which were obtained analyzing geometry created based on
approximate numerical model, that is, Modal Strain Energy (MSE) method.
Therefore the numerical results already contains some errors. However it is verified
by experimental results that the methodology quite useful in predicting the best
candidate design in terms of damping even if the numerical results contains some

erTor.
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Figure 4-13 Comparison of numerical and experimental results

1.32
Eqv.
Weight
Uniform
0.0550
0.0341
0.0264
0.181
0.336
0.367

Table 4-1 Loss factors and frequency results for optimized beam with slotted stand-

off (Numerical Results)
Stand-off Height [mm] Coverage Configuration ni 2 3

10.0 Full Uniform 0.0178 0.0138 0.0106
0 Full Uniform 0.0313 0.0233 0.0184
7513 Full Optimized Slotted ~ 0-0409 0.0327  0.0245
2513 Partial Optimized Slotted 0-0712  0.0528  0.0318
Full Uniform 0.0550 0.0341  0.0264

1.32 (Eq.Weight)
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Table 4-2 Relative comparison of damping performances of tested beams

Stand-off Height [mm] Coverage Configuration nl n2 n3
10.0 Full Uniform 0.138 0.191  0.175
4.0 Full Uniform 0.180 0314  0.386
2.513 Full Optimized Slotted  0.221  0.287  0.310
2.513 Partial Optimized Slotted 0.310 0.467  0.481
Uniform
1.32 Full (Eq.Weight) 0.181 0336 0.367

The numerical results for the loss factors for the first three modes of the beams were
tabulated in Table 4-1.Compared to thicker one the H=4 mm stand-off layer has
30.43% higher damping capacity in first mode, 64.40% in second mode and 120.57%
in third mode together with 35.43% mass reduction relatively. In case of optimized
slotted configuration with H=2.513 mm the damping performance was further
increased such that 22.78% in first mode, 8.60% in second mode and 19.69%
increase in third mode respectively in full coverage case with a 33.80% further
reduction in mass. When we consider the partial coverage case for the same
optimized slotted stand-off, a 9.88% further mass reduction was achieved in addition
to the further increase in values of loss factors as 40.27% in first mode, 62.72% in
second mode and 55.16% in third mode. Moreover comparing the results of
optimized case with partial treatment to the results of equally weighted uniform
stand-off which has height of H=1.32 mm also yields 21.01% total mass reduction
as well as 71.27% damping improvement in first mode, 38.99% in second mode and
31.06% in third mode. The overall relative damping performance increase compared
to initial thicker base analysis model was noted as 124.64% in the first mode
144.50% in second mode, 174.86% in third mode with an overall relative mass

reduction value of 61.48%.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Mechanical design process starts with a need and continues with solution of
fundamental engineering problems that can be of static strength or dynamic vibration
problem in nature and mostly followed by an objection or design goal to be achieved.
Achieving an engineering design goal requires extensive research and development
stage based on design requirements. The process continues with planning, selection
of material, conceptual design with engineering judgement and from basic to
advanced analysis stages and finally followed by the production of prototype to be
tested to reveal whether it satisfies functional or operational requirements and if not
the an iteration should be followed until the requirements are satisfied. Therefore the
design process is an iterative and time consuming inherently. Fortunately there are
many developed engineering tools such as mathematical approaches and softwares to
maximize the efficiency in product development as well as obtaining best candidate

design solution.

In the present work extensive research and development activity has been followed
in order to solve vibration problem encountered in radar antenna structures that are
assumed to be attached to thin shell, panel like structures. Specifically aim was to
minimize the vibration displacement amplitude which cause the scattering of radar
beam, interference of signals etc. For the solution of this kind of problem it was
aimed to increase the damping capacity of the base structure which was assumed to

be exposed harmonic loadings, therefore the peak amplitude of response function.

First extensive literature survey has been conducted on one of the passive vibration

isolation technique, namely, surface damping treatments. Its theoretical background
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and analysis techniques were all reviewed in detail with related published data. Then
it was decided to focus on surface damping treatments with spacer layer which was
found to be one of the effective method in increasing damping of vibrating thin shell,
panel like structures. Based on the research it was revealed that there were little or no
systematic approach had been conducted in design and analysis of layered beam with
spacer layer and it was decided to investigate optimization methodologies on
advancement of damping while reducing weight for the passive surface damping

treatment with stand-off layer.

Apart from traditional methodology the systematic approach in design and analysis
of surface damping treatment has been followed as much as possible in order to
enhance the damping performance of vibrating structures such that numerical
approach, namely topology optimization and automated parametric study have been
used in order to find best material distribution for the spacer layer as well as to
investigate effect of different overall design parameters such as material and
dimensions and lastly to overcome time consuming trial and error process. The
developed systematic approach has also been validated based on the published data
and proved to be useful with less effort in finding the best optimum design based on
maximum damping and minimum weight requirements, the Ilatter is being

indispensable for weight critical applications.

In this study the research activity is composed of three parts. In the first part, one of
the numerical method namely topology optimization technique has been utilized in
order to find best material distribution of stand-off layer with minimal weight using
different modelling technique and objective function as well as constraints. Then the
overall damping performance of the resulting topologies has been investigated and
compared to each other in terms of total weight and damping loss factors extracted
from frequency response functions using Half Power Bandwidth method upon
performing direct frequency response analysis which computes the harmonic forced
response of each candidate design.In the second part, another numerical method

which is parametric design strategy together with known optimization algorithms
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have been used to find best optimum geometrical and material parameters that
maximize the loss factor for the first three modes since the first modes dominate the
overall structural dynamic response. The Modal Strain Energy (MSE) has been used
in conjuction with Finite Element Method to calculate the loss factors. Moreover to
see the effects of extracted geometries from numerical studies in higher modes, the
frequency of interest has been selected such a way that it covers the first 10 modes of
the vibrating structure. Throughout the numerical studies cantilever boundary
condition has been used for layered beam structure since it is easy to model, simulate
and manufacture to be used in experimental study that was conducted at the third and
last part of the research, in order to validate the design procedure that has been
followed. Also, the objective of experiment has been primarly to qualify the design,
manufactured based on numerical results that were achieved in the second part of

the study.

It was revealed from this study that;

e The numerical approaches such as topology optimization and search
algorithms together with finite element technique are effective methods to
find the best material distribution within spacer layer and geometrical
parameters which will in the end give rise in damping of structures with
minimum material consumption with less effort without any trial and error

procedures.

e [t was concluded from the response curves that for the passive surface
damping treatment with stand-off layer there is a trade-off between stiffness
and damping such that increase of stiffness, in other words increase of height
of spacer, results less damping capacity within the vibrating structure. The
reason for this is the restricted relative motion due to increased rigidity
(rigidity is proportional to cube of height of spacer) which also results
increase of structural weight. Instead as mentioned in previous study
[106,107] in order to decrease weight and increase damping there must be

265



sufficient flexibility of whole treated structure that will in turn results relative
motion between layers which induce shear strain within viscoelastic layer
which was also known to be basic mechanism of energy dissipation with
compliant viscoelastic materials through hysteresis effect. This results also
means that there must be an optimum height and material for the spacer layer
and from the results we concluded that thinner layer with optimum layout of
spacer gives higher damping capacity. The result of topology optimization
revealed that 3.52 mm height with optimized layout of first case study
comparatively yielded best damping capacity. This also reveals that material
distribution of spacer layer greatly effects the damping performance of the

vibrating structure with constrained layer damping treatment.

In order to investigate the optimum height of spacer layer, a systematic
design cycle, which was based on a combined use of analytical and numerical
method that was known to be MSE (Modal Strain Energy Method), also
verified based on the published results in literature, revealed that the optimum
height of uniform spacer layer lies between 2.5-3 mm which is almost
consistent height with the result of first case study conducted in topology
optimization step. Moreover the material for the spacer layer should have
sufficient rigidity for maximum damping [106] and this study reveals that the
modulus of spacer layer between 500-2200 MPa yields best results at least in
cantilever beam condition that was the specific boundary condition applied.
Also it was found that the maximum damping for the cantilever boundary

condition exist in the 2" mode of vibration.

The systematic approach has been used in order to find best number of slots
and its dimensions for the slotted spacer layer eliminating trial and error in
finding best geometrical parameters. In finding those results GRSM (Global
Response Surface Method) yielded comparatively best results among other
search algorithms such as GA (Genetic Algorithm) and MOGA (Multi
Objective Optimization Algorithm)
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An experimental study also conducted for the evaluation of the performance
of optimized slotted configuration of spacer layer. The results only verified
that the numerical approach based on MSE method can only be used in
prediction of best design alternative. Although two approach converged to the
same configuration the numerical results obtained suggest that the predictions
made by numerical method are quite lower than the experimental results. This
may be due to use of approximate constant material properties in numerical
approach as well as errors associated with finite element modelling technique.
But final configuration obtained numerically gives same trends with
experiments with the overall relative damping performance increase
compared to initial thicker base analysis model was noted as 124.64% in the
first mode 144.50% in second mode, 174.86% in third mode with an overall

relative mass reduction value of 61.48%.

It was quantitatively seen that loss factor is greatly affected by the material

layout of the spacer layer.
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