
PERCEPTUAL AUDIO SOURCE CULLING FOR VIRTUAL
ENVIRONMENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

ALI CAN METAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MODELLING AND SIMULATION

MARCH 2016

Approval of the thesis:

PERCEPTUAL AUDIO SOURCE CULLING FOR VIRTUAL
ENVIRONMENTS

submitted by ALI CAN METAN in partial fulfillment of the requirements
for the degree of Master of Science in Modelling and Simulation De-
partment, Middle East Technical University by,

Prof. Dr. Nazife Baykal
Dean, Graduate School of Informatics

Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu
Head of Department, Modelling and Simulation

Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu
Supervisor, Modelling and Simulation, METU

Examining Committee Members:

Prof. Dr. Yasemin Yardımcı Çetin
Infomational Systems, METU

Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu
Modelling and Simulation Department, METU

Assoc. Prof. Dr. Ahmet Oğuz Akyüz
Computer Engineering Department, METU

Assist. Prof. Dr. Tolga İnan
Electrical and Electronics Engineering Department, TEDU

Assoc. Prof. Dr. Alptekin Temizel
Modelling and Simulation Department, METU

Date:

I hereby declare that all information in this document has been ob-
tained and presented in accordance with academic rules and ethical
conduct. I also declare that, as required by these rules and conduct,
I have fully cited and referenced all material and results that are not
original to this work.

Name, Last Name: ALI CAN METAN

Signature :

v

ABSTRACT

PERCEPTUAL AUDIO SOURCE CULLING FOR VIRTUAL
ENVIRONMENTS

, Ali Can Metan

M.S., Department of Modelling and Simulation

Supervisor : Assoc. Prof. Dr. Hüseyin Hacıhabiboğlu

March 2016, 59 pages

Game engines and virtual environment software that are in use today, use vari-
ous techniques to synthesize spatial audio. One such technique, is through the
use of head related transfer functions, in conjunction with artificial reverbera-
tors. For any virtual environment, synthesizing large amounts of spatial audio
through these methodologies, will impose a performance penalty for the underly-
ing hardware. The aim of this study is to develop a methodology that improves
overall performance by culling inaudible and perceptually less prominent sound
sources to be rendered in order to avoid performance implications. Through
the use of distance attenuation and auditory masking, minimal decrease in per-
ceived sound quality was intended to be achieved. The algorithm proposed in
this paper is benchmarked and compared with the existing approaches to this
problem. Subjective evaluation of the audio quality is also provided with the
MUSHRA tests.

Keywords: audio source culling, perceptual audio optimization

vi

ÖZ

SANAL ORTAMLAR İÇİN ALGISAL SES KAYNAĞI KESİMİ

, Ali Can Metan

Yüksek Lisans, Modelleme ve Simülasyon Bölümü

Tez Yöneticisi : Doç. Dr. Hüseyin Hacıhabiboğlu

Mart 2016 , 59 sayfa

Günümüzde kullanılan oyun motorları ve sanal ortam yazılımlarında uzamsal ses
sentezi için çeşitli teknikler kullanılmaktadır. Bu tekniklerden biri, "baş ilişkili
transfer fonksiyonu" ve yapay yankılandırıcıların bir arada kullanımı ile sağlanır.
Herhangi bir sanal ortalm için, çok sayıda uzamsal ses kaynağını bu yöntemlerle
sentezlemek, altta bulunan donanım için bir performans gerektiren bir işlemdir.
Çalışmamızın amacı, programın genel performansı geliştiren bir metodoloji ge-
liştirerek, duyulamayan ve algısal olarak değeri az olan ses kaynaklarını keserek,
performans artışı sağlamaktır. Uzaklığa bağlı ses azaltması ve işitsel maskeleme
kullanılarak, algılanan ses kalitesinde minimum düşüş yaşanması hedeflenmiş-
tir. Bu tezde önerilen işlemsel süreç, var olan diğer yaklaşımlara göre karşılaş-
tırmalı olarak değerlendirilmiştir. İşlemsel sürecin öznel olarak değerlilmesi de
MUSHRA testleri ile sağlanmıştır.

Anahtar Kelimeler: ses kaynağı kesimi, algısal ses optimizasyonu

vii

to those who never stop learning

viii

ACKNOWLEDGMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Hüseyin Hacihabiboğlu for

suggesting and guiding what has turned out to be a really interesting research

topic. He has shared his knowledge generously and his encouragement is much

appreciated. Including my supervisor, I would like to thank members of my

thesis committee for their insightful recommendations.

Many thanks to my family for their continuous support and mentorship through-

out my study.

Finally, I would like to offer my special thanks to Ezgi Tolu. I could not have

finished this thesis without her encouragement and friendship.

ix

TABLE OF CONTENTS

ABSTRACT . vi

ÖZ . vii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ALGORITHMS . xvii

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Organization of the Thesis 1

2 BACKGROUND INFORMATION 3

2.1 Human Auditory System 3

2.1.1 Physiology of Human Auditory System 4

2.2 Sound Metrics . 5

x

2.2.1 Monaural Hearing 5

2.2.2 Binaural Hearing 7

2.3 Audio Rendering in Virtual Environments 8

2.3.1 Head Related Transfer Functions (HRTFs) . . 8

2.3.1.1 Computational Cost of Binaural Au-
dio in Virtual Environments 9

2.3.2 Distance Attenuation 9

2.4 Sound Source Culling 9

2.4.1 Position Based Culling Methodologies 9

2.4.2 Perception Based Culling Methodologies 11

3 PROPOSED APPROACH . 13

3.1 Overall Algorithm . 13

3.2 Offline Analysis . 14

3.2.1 Systematic Limitations 14

3.2.2 MPEG-1 Psychoacoustic Model, Layer I 15

3.2.2.1 FFT Analysis 16

3.2.2.2 Determination of SPL 16

3.2.2.3 Finding of Tonal and Non-Tonal Com-
ponents 16

3.2.2.4 Decimation of Tonal and Non-Tonal
Components 17

3.2.2.5 Calculation of Individual Masking Thresh-
olds 17

xi

3.2.2.6 Calculation of the global masking thresh-
old LTg 18

3.2.2.7 Determination of the MinimumMask-
ing Threshold 19

3.2.3 Generation of Masking Information 19

3.2.4 Infeasibility of Precalculated Decision Making . 19

3.3 Real-Time Analysis . 19

3.3.1 Concept of Auditory Events and Event Manager 20

3.3.2 Decaying Event Priority Queue 22

3.3.2.1 Hash Functions For Variable Length
String Comparison 24

3.3.3 Timed Circular Buffer 24

4 PERFORMANCE AND ANALYSIS 31

4.1 Theoretical Information 31

4.1.1 Algorithmic Complexity of Real-Time Analysis 31

4.1.2 Factors That Affect The Cost of Real-Time Anal-
ysis . 31

4.2 System Performance . 32

4.2.1 Individual Cost of Real Time Analysis 32

4.2.2 Performance Gain From a Single Audio 33

4.2.3 Worst Case Scenario 34

5 PSYCHOACOUSTICAL EVALUATION 35

5.1 Preliminaries . 35

xii

5.2 Chosen Test Methodology 35

5.3 Test Procedure . 35

5.3.1 Presentation of Stimuli 35

5.3.2 Grading . 36

5.4 Experiment Details . 36

5.4.1 Selection of Sound Source Locations 37

5.4.2 Generation of Test Cases 38

5.5 Statistical Analysis . 39

6 CONCLUSION . 45

6.1 Contributions and Discussion 45

6.2 Future Work . 46

Bibliography . 47

APPENDICES

A REAL TIME ANALYSIS PSEUDOCODE 51

B EXPERIMENT ORDERS . 57

C APPROVAL OF ETHICS COMMITTEE 59

xiii

LIST OF TABLES

TABLES

Table 3.1 Overlapping FFT Frames . 16

Table 4.1 Average Times Required to Complete Real Time Analysis . . 33

Table 4.2 Costs Of Execution For an Integrated Audio Rendering Pipeline 33

Table 5.1 Contents of Test Scenes . 37

Table 5.2 Test Setup, Positional Information 39

Table 5.3 Mean Values . 41

Table 5.4 Results of Independent-Samples t-test 43

Table B.1 Psychoacoustical Test Order 57

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Cross Section of Human Ear 3

Figure 2.2 Signals and Basilar Membrane 4

Figure 2.3 Absolute Threshold of Hearing 6

Figure 2.4 Sample Masking Thresholds 7

Figure 2.5 Interaural Time Difference 7

Figure 2.6 Example Audio Rendering Pipeline 8

Figure 2.7 Head Related Transfer Function 9

Figure 2.8 Position Based Culling Illustration 10

Figure 3.1 Overall Culling Pipeline . 13

Figure 3.2 Offline Analysis Overview . 14

Figure 3.3 Real Time Analysis, Auditory Event Activity Diagram 21

Figure 3.4 Event Manager, Auditory Event Handling 22

Figure 3.5 Event Manager, End-Of-Audio Event Handling 23

Figure 3.6 Decaying Event Priority Queue, Example Execution 25

Figure 3.7 Timed Circular Buffer, Example Execution 29

Figure 5.1 Mushram User Interface . 36

xv

Figure 5.2 Source Positions For Tested Scenes 38

Figure 5.3 Subjective Scores From Listening Tests 40

Figure C.1 Approval of Ethics Committee 59

xvi

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Event Manager, Auditory Event Handling 52

Algorithm 2 Event Priority Queue, Enqueuing 53

Algorithm 3 Timed Circular Buffer, Handling Masking Values, Part 1 54

Algorithm 3 Timed Circular Buffer, Handling Masking Values, Part 2 55

xvii

LIST OF ABBREVIATIONS

ANOVA Analysis Of Variance

BM Basilar Membrane

CGMT Circular Global Masking Threshold

DEPQ Decaying Event Priority Queue

EM Event Manager

GPL General Public License

(G)UI (Graphical) User Interface

HDD Hard Disk Drive

HRTF Head Related Transfer Functions

HRIR Head Related Impulse Response

ITD Interaural Time Difference

ILD Interaural Level Difference

IID Interaural Intensity Difference

LPCM Linear Pulse-Code Modulation

WAVE or WAV Waveform Audio File Format

PCM Pulse-Code Modulation

SIL Sound Intensity Level

SNR Signal-to-Noise Ratio

SSD Solid State Drive

SPL Sound Pressure Level

TCB Timed Circular Buffer

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Virtual environments create a perception of being physically present in a non-
physical world. Two main components for achieving this, are presentation of
auditory and visual stimuli. With today’s technology, creation of vivid environ-
ments require significant computational power. As such, optimization of any
existing processes will make better use of the limited resources.

Dealing with the complexity of rendering spatialized audio in large quantities
will impose a performance penalty for the underlying hardware. Synthesizing
spatial audio through the use of head related transfer functions is a common
methodology used in today’s systems. To deal with the performance implica-
tions, most game engines and virtual environment software that are in use today,
employ distance based culling methodologies. While these methodologies effec-
tively reduce the amount of sound sources, perceived richness of the resulting
scene will be compromised.

In order to cope with the performance requirements, while preserving the per-
ceived sound quality, audio source culling through the use of auditory masking
is proposed in this thesis. With this methodology, perceptually inaudible sound
sources will not be rendered and perceived richness will be maintained.

Most games and virtual environments include loud and broadband sound sources.
Explosions, gun shots, engine sounds and other loud sources mask one another.
In those cases, proposed algorithm will be able to exploit this psychoacoustical
feature. While performing psychoacoustical analysis for every sound requires
more system resources, they provide a good balance between subjective audio
quality and performance gain. In the remaining parts of this thesis, we will
investigate this approach.

1.2 Organization of the Thesis

Thesis is divided into 8 chapters. Following this introductory part is the chap-
ter 2, which presents background information about spatial audio synthesis.
Chapter 3 includes explanations of psychoacoustical analysis and the proposed
algorithm. Chapter 4 details performance implications of the proposed algo-
rithm. Chapter 5 provide information on psychoacoustical evaluation of the

1

audio produced with the methodology proposed. Finally, chapter 6 summarizes
the thesis and gives a discussion of our work. After these sections, pseudocode
of the algorithm and the details on the subjective experiments can be found in
the appendix section.

2

CHAPTER 2

BACKGROUND INFORMATION

This chapter explains certain concepts of sound, how human auditory system
works, how binaural audio is rendered and literature related to this research.

2.1 Human Auditory System

Human auditory system converts atmospheric pressure caused by sound waves
into neural excitations. This section briefly describes how human auditory sys-
tem works.

Figure 2.1: Cross Section of Human Ear [42]. Modified with permission from
Springer.

3

2.1.1 Physiology of Human Auditory System

Extremities: Contrary to common belief, hearing functionality of the human
auditory system is affected by the body components close to the ear. In an
acoustic free field, the sound pressure level reaching to an ear drum is influenced
by extremities such as shoulders, shape of the head, as well as the clothing people
wear [31][41]. These parts of the human body influence our hearing by causing
reverberations and shadowing.

The Outer Ear: Its main function is to direct sound waves through the outer
ear canal, onto the ear drum [5][42]. Sound waves enter through the pinna,
which modifies the sound waves depending on the direction of the sound. Than
the waves travel through the ear canal to reach the ear drum. Outer ear also
protects the middle ear from being damaged by external elements.

Middle Ear: Middle ear starts with a thin membrane called the ear drum. Un-
like outer ear, middle ear starting from this ear drum contains fluids. There are
three bones attached to this membrane; the malleus, incus and stapes. Pressure
changes in the ear drum are transferred by these bones to the oval window, which
is the entrance to the inner ear. Sound pressure reaching to the oval window
(through stapes) is amplified by a factor of about 20 due to the size difference
between ear drum and oval window [24].

Figure 2.2: A signal that has three tonal components traveling on basilar mem-
brane. Various frequencies create peaks at corresponding locations along the
BM, causing different neural excitations. [42] Reprinted with permission from
Springer.

Inner Ear (cochlea): Because of its coiled up shape, cochlea looks like a snail.
It is embedded deep into the temporal bone and it contains two types of fluids
and three scalae [42][19]. The stapes is in direct contact with the fluid in scala
vestibuli. Pressure differences coming from the stapes are transferred to the
basilar membrane (BM) and they cause it to vibrate. Segments of the basilar
membrane act like a bandpass filter, causing partial neural excitations along its
narrowing structure (see figure 2.1). Located on the basilar membrane is the
organ of Corti. It is responsible of converting mechanical oscillations into signals

4

that can be processed by the nervous system.

2.2 Sound Metrics

Before we get into details of how hearing works, there are concepts of sound that
needs to be known. This section explains some measurements of sound.

Sound Pressure Level and Sound Intensity: Before we get into details of
how hearing works, we should know what sound pressure level (SPL) and sound
intensity are. SPL is a logarithmic unit, used to express the pressure of a sound
relative to a reference value [42]. Sound intensity on the other hand, is defined
as the sound power per unit area. Sound intensity, denoted by I and measured
in Wm2. These terms are related and are defined by the following formula;

L = 20 log(p/p0) dB = 10 log(I/I0)dB

Where p0 is the reference value of sound pressure, which is standardized to
p0 = 20µPa. The reference value I0 is defined as 10−12W/m2 [42].

Critical Bandwidth and the Bark Scale: Critical bandwidths represent the
frequency resolution of the auditory system [36]. Signals that are in the same
critical bandwidth have the potential to mask one another (auditory masking is
explained in 2.2.1).

Bark scale is a frequency scale on which a given frequency denote the width of
the critical band [36].

z =
26.81

1 + (1960/f)
− 0.53Bark

Details on how to calculate the bandwidth and its application is explained in
the auditory masking section 2.2.1 and offline analysis section 3.2.2.5.

2.2.1 Monaural Hearing

Range Of Human Hearing Human range of hearing is commonly stated to
be in between 20 Hz and 20 kHz [28][29]. Although some research support that
it could range between 12 Hz [22] and 28 kHz for the young [2]. It should be
noted that the sound pressure which we can hear these frequencies are not the
same;

Absolute Threshold of Hearing (ATH)

Also known as threshold in quiet, ATH denote the required SPL at which pure
tones are barely audible [42]. Figure 2.3 shows the threshold in quiet. For
example a pure tone at 0.1 kHz with 10 dB SPL will not be audible humans.
Natural sounds we hear are composed of multiple spectral components. Hence,
some frequencies of quieter sounds may not be heard, depending on their loud-
ness. Fig. 2.3 shows spectral regions of speech and and music signals, as well as
thresholds of pain and damage risk.

5

Figure 2.3: Absolute Threshold of Hearing, dotted lines on the bottom denote
hearing loss due to exposure to loud sound [42]. Reprinted with permission from
Springer.

Auditory Masking

Auditory masking is a common phenomenon that happens in everyday life. For
example when two are people having a conversation, if somebody turns on a
really loud music, those two people will not be able to hear each other anymore.
They can either raise their voices to increase sound pressure or turn the music
down, so that the other person will be able to hear them. In this case, music
acts as a masker signal for the two speech signals. This phenomenon is called
auditory masking.

Auditory masking happens on three stages, backward masking (before the masker
is presented), simultaneous masking (in presence of the masker) and forward
masking (after the masker is removed) [42]. For this paper, we will focus on
simultaneous masking.

Concept of simultaneous masking is similar to that of threshold in quiet. Pres-
ence of a sufficiently loud pure tone or a signal with a certain bandwidth will
change this threshold of hearing [42]. The change of masked threshold depends
on type of the masker and the SPL of the masker. Examples of such cases are
demonstrated in the figure 2.4.

Graphs demonstrated in figures are one such example of threshold calculation.
Other mathematical models for calculating masked thresholds exist [20]. As a
matter of fact, masking models are actively used in audio compression that we

6

Figure 2.4: a) Masking thresholds of a pure tone masker with varying SPLs. b)
Masking thresholds for low pass-noise (solid curves) and high pass noise (dotted
curves) [42]. Reprinted with permission from Springer.

use today. By representing the original audio with as low bit rate as possible
while rendering quantization noise inaudible, audio compression can be achieved
[32]. A well known compressed audio format mp3, is widely used today.

The psychoacoustical model employed by MPEG layer 1 is utilized in this thesis
[16]. Further information regarding the masking threshold calculation can be
found in 3.2.2 of this thesis.

2.2.2 Binaural Hearing

Figure 2.5: Interaural Time Dif-
ference

When it comes to binaural hearing, we are
interested in sound source localization. Du-
plex theory of sound localization proposes that
there are two factors that enable this[27].
Time differences (ITDs) and intensity differ-
ences (ILDs) of sounds reaching to each ear.

Interaural Time Difference: Assume a sit-
uation like in the figure 2.5. Width of average
human skull can be taken as 18 cm wide [12].
So a sound wave coming from an angle θ will
arrive at each ear on different times. Time
difference can be calculated with

ITD =
r(θ + sin(θ))

c

Where c is the speed of sound. Though there are limits as to where ITD is effec-
tive. For a symmetrical human head, any sound sources on the median sagittal
plane will not cause this difference, hence different queues will be required [30].
Secondly there is an upper frequency limit for the sound signal to resolve the
time difference. Frequency limit which this phenomena occurs is dependent on
head width.

Interaural Level Difference:

7

Also known as the interaural intensity difference (IID), ILD is best utilized for
higher frequency range of hearing [30]. SPL of the sound signals reaching to
each ear will be different due to the shadowing of the head. As with the figure
2.5, the bigger the angle θ is, the bigger ITD will get. Listeners will perceive
this difference as differences in loudness[30].

Contextual Difference:

The context of the sound itself might make a perceptual disparity for the angles
perceived. For example people would expect bird sounds coming from above, or
walking/step sounds to be coming from below. Emotional state of the subject
can also affect this perception as people traveling in the woods will tend to look
behind them, in the case of cone of confusion.

2.3 Audio Rendering in Virtual Environments

Figure 2.6: Example
Audio Rendering
Pipeline [21].

Although there are procedurally generated audio in
virtual environments, using prerecorded, canned au-
dio such as Foley effects and voice overs are predom-
inantly used. Live inputs that come from a network
are rarely utilized in virtual environments. Typically
game engines will read prerecorded audio data into
volatile memory and process them before finally out-
putting them to sound buffer. An example of a audio
rendering pipeline can be seen in figure 2.6 [21]. In
what follows, some of the processing stages which re-
sult in most of the computational complexity will be
discussed.

2.3.1 Head Related Transfer Functions (HRTFs)

There are multitude of ways to synthesize binaural
spatial audio. Earlier methodologies included ap-
proaches such as amplitude panning to simulate 3-D

audio[6]. While they provided a tangible solution, realistic results were not
achieved. Later on, head related tranfer functions that included ITD and ILD
cues, are considered to provide a more accurate and realistic solution[13][1].
While there are realistic approaches that still include panning with delays [15]
[26], usage of HRTFs are still prevalent.

HRTFs map how a sound arrives from a specific point, in a specific medium, to
the outer end of the ear canal [3]. Different spectral properties of the system is
captured with the impulse response, forming the Head Related Impulse Response
(HRIR) [3]. Fourier transform of HRIR forms the HRTF. HRTFs include effects
such as shadowing of the head, sound attenuation from pinnae and sometimes
reverberations coming from the shoulder. Since these factors are unique to each
individual, a set of HRTF only maps the transfer function specific to the subject
measured [3]. However they still provide a good approximation as to how the
listener would hear the same sound, with the given parameters.

8

2.3.1.1 Computational Cost of Binaural Audio in Virtual Environ-
ments

Figure 2.7: Head Related Trans-
fer Function

Synthesizing spatial binaural audio with
HRTFs can be accomplished in two ways. Ei-
ther a convolution of the original sound source
with the HRIR, or multiplication of the fre-
quency response HRTF. For an output size
N , convolution in time domain has a com-
plexity of O(N2) . In order to reduce compu-
tational complexity, taking fast fourier trans-
form (FFT) of each sequence, multiplying
them point-wise and computing the inverse
FFT is performed. This operation still takes
O(N log(N)) (REF).

Above method calculates the resulting audio
of a single binaural audio in a 3-D environ-
ment. There is also the added cost of distance
attenuation along with the cost of calculating
reverberation of the synthesized audio.

2.3.2 Distance Attenuation

Given a reference intensity and distance, an omnidirectional sound source’s in-
tensity will fall almost exactly 6 dB for each subsequent doubling of distance
from a source [3]. Distance attenuation requires same number of multiplications
of sampling frequency of the original audio. In our case, that would amount to
44100 multiplication per seconds for each audio.

2.4 Sound Source Culling

For applying source culling to the prerecorded sound sources in a scene, various
auditory culling methodologies are used today. They can be classified into two
categories, position based approaches and perception based approaches.

2.4.1 Position Based Culling Methodologies

Position based culling methodologies only take the position of the listener and
preset properties of the auditory source into account. Algorithm itself is not
concerned with the context of the audio itself. As all the properties of the audio,
including the culling methodology, is handled by the designer of the scene.

Commercial game engines in use today exclusively use this methodology [35][11][8].
The reason being that position based culling provide the best performance when
it comes to the cost of culling the audio itself. However numerous sound sources
being in acceptable positions would nullify this performance gain. It will be
discussed later in this section.

9

Figure 2.8: Illustration of Position Based Culling. Red dots denote positions
of the listener while geometric shapes denote culling volumes assigned to sound
sources.

How position based culling methodology works: Designer of each scene,
assigns each audio source a geometric culling shape like a cone, a cube or a
sphere. They can also determine distance attenuation according this shape or
assign natural sound attenuation stated just like above. When the scene is
launched and when an auditory event comes, engine checks whether the listener
is inside this volumetric shape or not. If the listener is not inside this shape,
audio is culled and will not be rendered. A spherical culling volume, for example,
is simply an euclidean distance culling methodology.

Advantage of this methodology comes from the performance cost of making a
culling decision. It is fast and effectively reduce active audio sources.

There are several possible disadvantages for this methodology.

1. Culling of distant and loud sound sources: As the spectral properties of
sound sources are not incorporated, loud and distant sound sources nor-
mally would’ve been heard, will be culled. It is up to the developer to
adjust culling distance and attenuation according to the contents of each
sound. So it forces you to manually test and adjust attenuation for each
sound.

2. Crowded scenes: If the listener is placed in a crowded sound field, reduc-
tion of active sound sources is not met by this methodology. A separate
algorithm would be required to render crowded scenes with high fidelity
and efficiency.

3. Erroneous Auditory Environments: Since both culling volumes and sound
attenuation of audio sources are up to game developers’ to decide, it can
lead to erroneous auditory fields. Some sound sources can be unnecessarily
silent (which decreases audio fidelity) or unrealistically loud. Maladjust-
ment of culling distances will mean either unnecessary rendering of sounds
or not playing the sound when needed.

10

2.4.2 Perception Based Culling Methodologies

Perceptual approaches utilize various aspects of human sensory processing.

There are those who utilize visual perception to cull sound sources. More com-
monly referred as crossmodal effects, these algorithms cull sound sources that
are outside the view frustrum of the listener [14][18].

Also there exists one methodology that will cull sound sources according to their
estimated audibility. There haven’t been much research on this subject but a
paper that is somewhat similar to our methodology is present [37]. For each
auditory frame, a binaural loudness estimation for each source in the scene is
made. Sources are than sorted according to their projected loudness. After the
first source that is deemed inaudible is reached, rest of the sources for that frame
are not rendered. After the remaining operations are completed for the selected
audio, results are mixed to be played to the listener [37].

Methodology proposed in this paper is an auditory perception based culling
methodology. Details of the proposed algorithm can be found in the remaining
of this thesis.

11

12

CHAPTER 3

PROPOSED APPROACH

Dealing with the complexity of rendering spatialized audio in large quantities in
real time becomes taxing for any virtual environment. In order to cope with the
performance requirements, while maintaining the perceived sound quality, audio
source culling through the use of auditory masking is proposed in this thesis.

The algorithm proposed in this chapter, consists of two parts: offline analysis
and real time analysis. A diagram of the proposed algorithm is shown in figure
3.1

3.1 Overall Algorithm

Figure 3.1: Overall pipeline for the culling algorithm

Offline analysis is where the psychoacoustical information is extracted from each
sound source in the scene. This process happens prior to the execution of the
real program and the masking thresholds of each audio is calculated and stored
separately.

Data extracted from the offline analysis are then used in the decision making
process of the real time analysis stage. This is also the stage where the calcu-
lation of the global masking threshold and auditory source culling takes place.

13

After the decision to render the audio is made by the algorithm, circular global
masking threshold (CGMT) is updated and an external audio engine can then
handle the rest of the rendering process.

Details of each process mentioned here, are elaborated in detail in the remaining
sections of this chapter.

3.2 Offline Analysis

The psychoacoustical data extraction of the audio sources contained within a
scene, starts with the offline analysis. As the name suggests, we perform this
analysis before execution of the actual program takes place. On this step, mask-
ing thresholds are calculated from the given sound source signal, which is to be
used in the real time analysis stage to decide whether a given audio shall be
rendered or not. A visual representation is given in figure 3.2.

Figure 3.2: Brief overview of the offline analysis

Before the directory where the audio files are stored is prepared for the output
files, validity of the input those files are controlled according to system limita-
tions. Details of the system limitations are stated below, in 3.2.1 of this thesis.

After the validity of the input data files are confirmed, we proceed to the gen-
eration of the masking thresholds for each sound file according to the MPEG-1
Psychoacoustic Model I. This is where the tonal and non-tonal components of
the input signal is estimated. After relevant maskers have been selected among
those components, local masking thresholds are calculated and stored in mem-
ory. Details of how the calculation of auditory masking thresholds performed is
stated in 3.2.2 of this thesis. The explanation of how and at what stage of the
analysis the data is stored is also explained in the section 3.2.3.

3.2.1 Systematic Limitations

There are four constraints on the input signals that are to be analyzed.

Firstly, the audio file must sampled and quantized for LPCM. For the purposes
for our algorithm WAVE file format (.wav) was used. Perhaps other file for-
mats whose bitstream encoding is LPCM could also have been used within the
MPEG’s psychoacoustic model, thus in our algorithm. However WAVE file for-

14

mat have sufficed for our purposes and including other audio file formats are out
of the scope of this research.

Secondly, the sampling frequency for every signal must be 44100 Hz. This was
done due to the limited number of sampling frequencies provided by MPEG’s
psychoacoustic model, albeit highest frequency for of human ear can hear is
roughly 20,000 Hz [42]. So according to the Nyquist–Shannon sampling theorem
[25], sampling frequency should be at least:

Fs > 20, 000 ∗ 2 = 40, 000Hz

The third requirement, is the condition that the bit depth of the input signal
must be 16. Higher bits per sample would yield to higher signal-to-quantization
noise ratio (SQNR) values, hence a more accurate representation of the mask-
ing threshold could have been achieved. As the output of the offline analysis
includes 64 bits per sub-band masking values. But for our purposes, ease of
implementation and faster analysis we chose bit depth to be 16.

Fourth requirement, is the condition of the input audio signal to be monophonic.
While it is totally possible to process two channeled stereo recordings for a
modified version of the proposed algorithm, it is also unnecessary. Left and
right channels of the audio can be processed separately, producing twice the
amount of offline data. These two files can then be assessed psychoacoustically
with the other two global masking buffers of the real time algorithm, which
would also require twice as much operations in real time analysis. So we deem
this approach unnecessary for our purposes and prohibit multi-channel audio as
its input.

Fifth and the final requirement, is that the analyzed audio file cannot be longer
than 5 seconds. This is a requirement comes from the real time analysis stage,
which can be changed according to the hardware. Details and reasons behind
this will be explained in the global masking threshold section, 3.3.3.

3.2.2 MPEG-1 Psychoacoustic Model, Layer I

MPEG’s audio compression algorithm is intended to be used as the first inter-
national standard for the digital compression of high-fidelity audio[16][33]. A
constituent of the algorithm, is the psychoacoustic model which is used to cal-
culate signal-to-mask-ratio (SMR) for all subbands. SMR is then compared with
the signal-to-quantisation-noise-ratio (SQNR) to determine the audibility of the
coding noise for the compression to take place[16].

For our purposes, the psychoacoustic model is used to determine whether an
incoming audio is audible inside the existing scene or not. For convenience,
we have used an existing implementation of the psychoacoustic model for our
purposes [23].

Following sections describe how to retrieve simultaneous masking information
from a fixed sample rated digital audio signal, using MPEG-1’s Psychoacoustic
Model, Layer 1.

15

3.2.2.1 FFT Analysis

For the MPEG Layer I, audio samples are is divided into 512 sample frames and
each frame goes under psychoacoustic evaluation separately.

Layer 1 model accounts for both the delay of the audio data through the filter
bank and an offset from the Hann window to coincide with the samples of the
analysis frame. There are 32 bands coming from the polyphase filter bank and
blocks of 12 samples were formed in each subband (32 ∗ 12 = 384). A new bit
allocation is calculated for each 384 sample. The delay coming through the filter
bank is 256 samples, as well as the (512 − 384)/2 = 64 offset delay is required
to center, making a total of 320 point initial offset. Before performing a Fourier
transform of length 512 on the data, a standard Hann weighting is applied.

Table3.1: 512 sample FFT Frames. 64 samples from the previous frame and 64
samples from the next frame are overlapped

... ... 384 samples
n-64 n n+383 n+447

Frequency resolution (for our system) is

fs/512 = 44100/512 = 86.1328125Hz

Hann window, h(i):

h(i) = 0.5 ∗ [1− cos(2π(i)/511)] where 0 <= i <= 511

Also the power density spectrum X(k) is calculated as follows:

X(k) = 20 ∗ log|1/Nh(l)s(l)e−jkl 2π
N |dB k = 0...N/2

3.2.2.2 Determination of SPL

The sound pressure level (SPL) in subband n is computed with the following
formula:

Lsb(n) = MAX[X(k), 20 ∗ log(scfmax(n) ∗ 32768)− 10]dB

Where k is the frequency index and X(k) in subband n. "scfmax(n)" is in Layer I
the scalefactor. The sound pressure level Lsb(n) is computed for every subband
n.

3.2.2.3 Finding of Tonal and Non-Tonal Components

MPEG Layer 1 separates the tonal and noise-like components of the audio signal.
The reason relies under the different spreading characteristics of simultaneous
masking by these two types of maskers.

16

This model identifies tonal components X(k), based on the local maxima which
is determined by:

X(k) > X(k − 1) and X(k) >= X(k + 1)

After that, for each critical band, the remaining noise-like components are
summed into a single non-tonal component. A local peak is added into a list of
tonal components if:

X(k)−X(k + j) >= 7dB,

where j is chosen differently for different frequency bands such that:

j = −2,+2 for 2 < k < 63
j = −3,−2,+2,+3 for 63 <= k < 127

j = −6, ...,−2,+2, ...,+6 for 127 <= k <= 250

Remaining spectral lines are calculated to form non-tonal components. For
the data that has 44.1kHz sampling rate, there are 24 critical bands which is
determined from a fixed table stated in the standard [16]. For each critical band,
SPL of the new non-tonal component is calculated by summing the power of the
spectral lines corresponding to that critical band.

3.2.2.4 Decimation of Tonal and Non-Tonal Components

Unrelated maskers are determined and eliminated in this step. There are two
conditions to determine whether a masker is eliminated or not.

Firstly, any tonal or non-tonal component which generates masking thresholds
that are below the absolute threshold of hearing are eliminated. As these com-
ponents will not be audible due to the threshold [16].

Secondly, all less powerful tonal components within the distance of less than
0.5 Bark. Components with the highest power are kept in the list of tonal
components and smaller ones are eliminated. Remaining components will be
used for masking threshold calculation.

3.2.2.5 Calculation of Individual Masking Thresholds

For the masking threshold calculation, only a subset of samples are utilized.
Here is how subsampling is used for an audio that has 44.1 kHz sampling rate:

• First 6 subbands: no subsampling

• Second 6 subbands: every second spectral line is used.

• Remaining subbands, every fourth spectral line is used (up to f = 20 kHz).

17

So the number of samples, i, in the subsampled frequency domain is 106 for
44.1kHz sampling rate for the Layer 1. MPEG Layer 1 uses 12 samples per
subband so there are:

384/12 = 32 subbands

The individual masking thresholds of the selected components are calculated
with the following expression:

LTtm[z(j), z(i)] = Xtm[z(j)] + avtm[z(j)] + vf [z(j), z(i)]dB

LTnm[z(j), z(i)] = Xnm[z(j)] + avnm[z(j)] + vf [z(j), z(i)]dB

Where "tm" stands for tonal masker and "nm" stands for non-tonal masker.
LTnm and LTtm denote the individual masking thresholds at critical band rates
in Bark, given in dB. The term Xtm[z(j)] is the SPL of the masking component
with the frequency index j at the corresponding critical band rate z(j).

Terms av and vf denote the masking index and is the masking function of the
masking component Xnm[z(j)], respectively. avtm (index for tonal maskers) and
avnm (index for non-tonal maskers) are given by;

avtm = −1.525− 0.275 ∗ z(j)− 4.5dB,

avnm = −1.525− 0.175 ∗ z(j)− 0.5dB.

The masking function vf for both tonal and non-tonal maskers are given by;

vf = 17 ∗ (dz + 1)− (0.4 ∗X[z(j)] + 6) dB for −3 <= dz < −1 Bark
vf = (0.4 ∗X[z(j)] + 6) ∗ dz dB for −1 <= dz < 0 Bark
vf = −17 ∗ dz dB for 0 <= dz < 1 Bark
vf = −(dz − 1) ∗ (17− 0.15 ∗X[z(j)])− 17 dB for 1 <= dz < 8 Bark

where dz is the distance in Bark: dz = z(i)− z(j).

3.2.2.6 Calculation of the global masking threshold LTg

The global masking threshold for each frequency sample index i is denoted by
LTg(i). They are derived from the upper and lower slopes of the individual
masking thresholds of each of both tonal and non-tonal maskers. Additionally
from the precalculated threshold in quiet LTq(i) is also incorporated.

Formula for calculating the global masking threshold is just to sum the powers
of individual masking thresholds and threshold in quiet.

LTg(i) = 10log(10LTq(i)/10 + LTtm[z(j), z(i)] + LTnm[z(j), z(i)])

18

3.2.2.7 Determination of the Minimum Masking Threshold

For each subband n, the minimum masking threshold is calculated according to
each frequency in the subband.

LTmin(n) = MIN [LTg(i)]dB

3.2.3 Generation of Masking Information

After every frame have been processed, masking thresholds of the 32 subbands
(double format) are stored in the respective binary file. For a three second audio
that has a sampling rate of 44.1 kHz, output will have b(44100 ∗ 3)/384c = 344
frames because of windowing. So the file size will be 64 bits * 32 subbands *
344 frames = 704512 bits which is equal to 86 kilobytes.

Offline analysis is concluded by storing the masking thresholds for each frame.
Global masking threshold of the entire scene will be calculated in the real time
analysis 3.3.

3.2.4 Infeasibility of Precalculated Decision Making

One could argue whether calculating the global masking threshold in real time
and not simply pre-calculating and storing them is a feasible option or not. In
a given scene, there can be as little as zero or one concurrent sound sources at
a time. However masking can only occur after at least two concurrent sound
sources are played at the same time, which is what we are interested in. There
is no theoretical upper limit of the number of sound sources that can be played
at a given time. Even though the number of sound files are fixed, since the same
sound file can be played infinitely many times, making infinitely many possible
combinations for a scene.

Let there be a scene with 30 sound files which are 4 seconds each. There are
b(44100/384)∗4c = 459 frames per sound file. If there are only two, unique sound
files played at a time, there would be

(
30
2

)
∗ (459 + 459 − 1) = 398 895 possible

combinations just for two concurrent sound sources. If there are only three
unique sound files played at a time, there would be

(
30
3

)
∗(459)∗(459+459−1) =

1 708 866 180 combinations. We excluded multiples of the same sound sources
to be played at a time which would even yield to a bigger sum.

So the possible combinations are increasing exponentially and the memory re-
quired to store all number of concurrent sound sources becomes infeasible with
the contemporary hardware.

3.3 Real-Time Analysis

After the offline analysis was performed on the audio contained within the scene,
and the required data was stored in memory, real time analysis becomes available
to be performed during the program execution. The main purpose of the real
time analysis, is to calculate the global masking threshold on the fly and identify

19

whether an incoming sound source is audible or not. Determining this will enable
us to cull inaudible sound sources, hence reduce the computational overhead of
rendering spatial audio.

Visual representation of the real time analysis, for handling an auditory event
is shown in the figure 3.3.

Calculation of the global masking threshold, through the use of offline analy-
sis data, involves several stages of execution. Firstly, when an auditory event is
triggered, event manager (EM) does the preliminary operations required to han-
dle this event (see 3.3.1 for details). EM then places or re-prioritizes this event
in the decaying event priority queue in order to reduce hard drive access delay
(3.3.2 for details). After the data was successfully stored in heap, timed circular
buffer (TCB) adds the masking values to the global masking threshold. Then
audibility percentage of the audio is calculated and if the threshold is bigger
than the calculated percentage, audio is culled (3.3.3 for details).

A pseudocode of the proposed algorithm can be found in appendix A.

3.3.1 Concept of Auditory Events and Event Manager

For the proposed algorithm, game engine’s audio component is encapsulated.
For every spatial audio render request, we generate auditory events, later to be
handled by the auditory event manager (EM). Each audio event includes:

• Distance from the listener; with 64 bits.

• Audio name; which denotes both the actual audio file path and the binary
file which contains the masking information.

Event manager that was stated above has two responsibilities; handling auditory
event requests and handling end-of-audio events coming from the engine. Event
manager runs on its own thread with a single mutex that locks each time an
event is received. Receiving end-of-audio events require the same mutex lock
acquisition as receiving an auditory event. Hence they are synchronized, even if
multiple threads call them simultaneously. One key difference between them, is
that receiving end-of-audio event is a blocking operation whereas auditory event
handling is not. Details of each operation are explained below.

Auditory Event Handling: Whenever an auditory event arrives, event man-
ager tries to acquire the thread lock (via the only mutex it has). If it fails to
acquire the lock, it simply returns without doing any operations and the audio
will be rendered. If it acquires the lock, meaning if this is the only running
real time analysis, it controls whether the masking information for the given
audio exists or not. If there are no masking information present, audio will be
automatically rendered, without doing any further operations.

When everything goes well, lock is acquired and the required data is present,
event manager proceeds with the remaining operations. After all the operations
and calculations are done and the decision is made, event manager releases the

20

F
ig
ur
e
3.
3:

A
n
ac
ti
vi
ty

di
ag

ra
m

fo
r
ha

nd
lin

g
au

di
to
ry

ev
en
ts

in
th
e
re
al

ti
m
e
an

al
ys
is
.

21

Figure 3.4: Event manager workflow for handling auditory events

thread lock and returns the result to the calling thread. After that if the audio
is marked as ’inaudible’, it will be culled, thus no further operations will be
necessary. If the audio is marked as ’audible’, engine proceeds with spatial
binaural audio rendering. A visual representation of the workflow is displayed
in figure 3.4.

End-Of-Audio Event Handling: These events contain no information. They
are just signals that indicate that a single audio file has finished playing, and
the information of which audio file is finished is not conveyed. These events
are required in the execution of the circular masking threshold which will be
explained in section 3.3.3.

When an audio-is-finished event comes, lock must be acquired. Caller thread
will be blocked until this lock is attained. After the program counter is in the
critical section, event manager decrements the active audio count. If there are
no active sound in the scene, timed circular buffer is notified and the lock is
released. A visual representation of the workflow is displayed in figure 3.5.

3.3.2 Decaying Event Priority Queue

As it was mentioned in the section 3.2, auditory masking information for each
sound is stored in persistent data storage such as HDDs or SSDs. Compared
to the data that was allocated dynamically from heap or stack, information
retrieval is significantly slower from these resources. To counteract this effect,
the retrieved auditory masking information is temporarily stored in a "decaying
priority queue".

Decaying event priority queue (DEPQ) is a dynamically allocated priority queue

22

Figure 3.5: Event manager workflow for handling end-of-audio events

that stores a fixed amount of past auditory event information. Priorities for each
event are set according to their arrival order. As the name suggests, priorities
for each event are decremented every time a new event comes. When the queue
is full and a unique event comes to be handled, the event with the lowest priority
is replaced with the newer event. An example execution is given in figure 3.6,
which is explained in the remaining paragraphs of this section.

When the program first starts, the DEPQ is initially empty. Than the auditory
event that requests "A.wav" to be played back, comes. After failing the search
through the DEPQ for "A.bin", data that contains the masking information is
retrieved from the disk and the first lowest priority item in the list is replaced.

Same operation is repeated until handling of "C" is completed, while reducing
the priorities of each event by one, each time an event comes. By the time
the auditory event that requests "D.wav" to be displayed comes, the DEPQ is
already full. Hence the event that has the lowest priority (the "oldest" event) is
replaced with the content that "D.bin" contains.

When the auditory event "B" comes in the second time, the DEPQ already
contains the required information about "B.bin" at index 2. At this point, there
is no reason to retrieve data from the hard drive, hence we simply update the
priority of "B.bin" to one and decrement the remaining data by one. Same
process occurs with the second event of "D". On the last event "E", the event
with the minimum priority "C", because of the decay, is replaced.

23

3.3.2.1 Hash Functions For Variable Length String Comparison

Both the string comparison and comparison of hash keys, are operations of time
complexity O(n). Though the hash keys will most likely be shorter than their
string counterparts, hence would result in faster average searches through the
DEPQ. Though this approach is still not applicable in our case because string
that is to be hashed is of variable length. Problem comes from the perfect hash
functions.

A perfect hash function maps all possible combination of elements into a set
of integers, with no collisions [9]. Since the length of the path of audio file is
variable, number of unique combinations are not fixed, hence a perfect hash
function does not exist.

For non-perfect hash functions, it is guaranteed that two identical strings would
give equal hash values. The reverse however, is not guaranteed for a non-perfect
hash function. A given hash value will have the potential to be produced from
several possible string values. Hence, even if we have calculate a hash key, the
data could be coming from different strings (file paths). This would result in
erroneous retrieval of the requested data so the hash functions cannot be used
in conjunction with DEPQ.

However if the length of the audio file path is fixed, the number of possible unique
combinations becomes fixed and a perfect hash function becomes available. We
did not impose such a requirement hence we are not utilizing hash functions.

3.3.3 Timed Circular Buffer

Timed circular buffer (TCB) contains the global masking threshold and incorpo-
rates new masking values into it. All of the masking values come from binary files
that was stored in the initial offline analysis stage. TCB also decides whether
a given sound is audible or not by calculating audibility level as a percentage
of the number of audible frames to the number of inaudible frames of the com-
ing audio. TCB then returns the assessment to the event manager. Before we
get into how global masking threshold is calculated, let us have a look at the
proposed circular buffer implementation.

A circular buffer is a fixed size data structure where the end of the buffer is
’connected’ to the beginning of the buffer. Meaning, when the end of the buffer
is reached, data will be written over the initial indices of the array. Our timed
circular buffer is a variation of this with 5 variables besides the size of the buffer
and the buffer itself;

1. Start Index, inclusive; Points to the first valid data of the buffer. Updated
according to time, stored as unsigned integer.

2. End Index, exclusive; It points to the first empty index of the buffer.
Stored as unsigned integer.

3. Valid Index, exclusive; This points to the end of previous sound data and

24

Figure 3.6: An example execution for the decaying event priority queue

25

index from which the array needs to be cleared from. One could also say
it is this first index after the last valid data. Stored as unsigned integer.

4. Is Alive; Denotes whether the contents of the entire array is valid or not.
It is a boolean variable.

5. Audibility Percentage; For a given audio and an existing scene, determines
how much of the given auditory event is audible in the foreseeable future.

Details of how each index works in conjunction with the algorithm will be ex-
plained in the example execution found below. In the mean time, calculation of
the frame time can be found below:

Frame Time = (FFT Size * 1000 ms) / Sampling Rate
= (384 * 1000 ms) / 44100
= 8.7074829931972789115646258503401 ms;

We take 512 point FFT but the actual sample sizes are shifted 384 samples every
frame. Since MPEG layer 1 uses 12 samples per subband, there are 32 subbands
(see 3.2.2.5 above for details). Hence the actual time that each frame denotes is
about 8.7 milliseconds. Size of the buffer, in the case that the buffer will store
5 seconds of masking information, is calculated as follows:

bufferSize = Size of buffer for 5 seconds + 1 extra empty frame
= floor(5000 / Frame Time) * 32 + (32)
= floor(574.21875) * 32 + 32
= 18400

Of course the size of buffer can be shorter or longer depending on user require-
ments.

As mentioned before, the start index is only modified by the actual time dif-
ference. It is updated each time an auditory event comes and is utilized for
determining audibility of the incoming auditory event. Calculation of start in-
dex, when it was requested, is implemented as follows:

startIndex += (static_cast <unsigned int>
(floor(timer.getElapsedTime() / frameDuration)) << 5);

startIndex = startIndex % circBfrSize;

Before masking values are added to the current global masking values, they are
attenuated according to distance. Formula for the change of sound pressure
level (not sound pressure) or sound intensity level according to distance is given
below [4].

∆Lp = |20log(
r1
r2

)| dB = |10log(
r1
r2

)2| dB

26

When determining the audibility of the audio for a given event, a threshold value
called "audibility percentage" is utilized. This is defined as:

Audibility percentage =
number of audible frames
total number of frames

∗ 100

To determine whether a frame is audible or not, masking values are first com-
pared with the current global masking values. If the given masking value is
bigger for any of the 32 subbands, that frame of the audio will be deemed audi-
ble.

Below in the figure 3.7 you can find an example execution of the global masking
threshold with its explanation listed below.

In this example, a frame of 32 doubles are depicted as a single block of data.
So the buffer in the example can store 5 ∗ 32 = 160 doubles which corresponds
to 1280 bytes in our system. Initially the buffer is empty (stage 0) and let us
assume that the masking values inside the buffers are already attenuated. So for
example the audio indexed as 1 in the below example (the one that has three
blocks of 10) has 10s in all of its each 32 subbands for all three of its frames. In
the example below, the audibility percentage was set to %51. Each step of the
example given below are explained with their corresponding index;

1. Our first auditory event which is indexed as 1, has a duration of 3 frames.
Current time stamp is at index 0 (start index) and since the buffer is empty,
valid index and end index are also 0. The attenuated masking values are
first compared to the corresponding buffer values from 0 through 2 (shaded
area in operation details). Since 10 ≥ 0 for all three frames, audibility
percentage is (3/3)∗100 = 100 which is bigger than 51 percent. The buffer
from indexes 0 through 2 needs to be cleaned and the masking values will
be added to the circular buffer. The end index becomes 0+3 = 3 (mod 6)
after the addition.

2. Only 1 frame time has passed since the initial auditory event and the
audio indexed 1 is requested to be played again. Since 1 frame has passed
since the previous event, start index is incremented by 1 which becomes
1 (triangle). For the frames 1 and 2, 10 ≥ 10 still holds true and for the
frame 3 10 ≥ 0 holds true as well. So the audibility percentage for this
event is (3/3) ∗ 100 = 100 as well. The audio will be played so the end
index and valid index needs to be updated as well. Previous end index (2)
becomes the valid index. Since the new audio will last 1 frame longer; end
index becomes 4. Since the contents of the 3rd frame could be corrupt, so
it will be cleaned (all elements between the new valid index until the end
index). Than the masking values of audio 1 is added to the buffer.

3. Two more time frame have passed and an event containing audio number
2 comes. This audio has 4 frames of data, and the remaining buffer only
has 3 elements. So the fourth element will be written on the index 0. Start
index becomes 1(initial value)+ 2 = 3. Valid index becomes end index (4)

27

and the end index becomes 4 + 3 = 1 (mod 6). All elements between 4
forward until 1, is cleansed. Frame number 3 is inaudible (10 6≥ 20) but
all other 3 frames are audible (10 ≥ 0 for for 4,5 and 0). Hence audibility
percentage is (3/4) ∗ 100 = 75 > 51. Since the audio is decided to be
played, masking values are added to the buffer.

4. The same procedure applies to here as well. For indexes 5 and 0, 5 6≥ 10
they are not audible but for indexes 1 and 2, 5 ≥ 0 so they are audible.
However this event’s audibility percentage is (2/4) ∗ 100 = 50 6> 51 so this
sound is not rendered.

5. On this event, all active audio that had been playing has already stopped.
When the last "end of audio" event is received, buffer is reset and the new
masking values are added over the empty buffer. Just like how it happened
in the first event.

6. Since the audibility percentage is only %20, audio is not rendered in this
case and the index 4 is assigned to zero. Unlike the picture depicted in the
figure, end index reverts back to its original value once culling decision is
approved.

7. This event comes at the last frame of the event number 2. Since 75 ≥ 51
the audio is rendered. Indexes between 4 through 0 is assigned to zero.

8. Last event comes at the same time as the previous event. However since
the previous event was deemed audible, this event is essentially masked by
the previous event. If the ordering of the events were the reverse, both of
the events would have to be played.

28

F
ig
ur
e
3.
7:

A
n
ex
am

pl
e
ex
ec
ut
io
n
fo
r
th
e
ti
m
er

ba
se
d
ci
rc
ul
ar

bu
ffe

r
w
it
h
an

au
di
bi
lit
y
th
re
sh
ol
d
of

%
51

29

30

CHAPTER 4

PERFORMANCE AND ANALYSIS

The only purpose of this algorithm is to provide a performance advantage over
an existing synthesis pipeline. Advantages and disadvantages of the proposed
solution as well as the factors effecting the algorithm will be discussed in this
chapter.

4.1 Theoretical Information

4.1.1 Algorithmic Complexity of Real-Time Analysis

Pseudocode of major parts of the algorithm can be found in the appendix A.
Real time analysis is essentially composed of three components; event manager,
decaying event priority queue and timed circular buffer. All operations of event
manager has a complexity of O(1), so we will investigate two other components
here. In this section, size of the priority queue assumed to be m and size of the
masking values are assumed to be n.

Decaying event priority queue (DEPQ) has two main functionalities; handling
auditory events and handling end-of-audio events. End of audio events are of
complexity O(1). Handling auditory events on the other hand, not only requires
interaction with the queue itself but also the audio masking values in the file
system. Firstly, if size of the queue is m, searching through the queue takes
O(m). Secondly, fetching the masking values from the file system and placing
them into the queue takes O(n) time.

For timed circular buffer, size of the input values are traversed twice. Once
for attenuating the masking values according to distance and second for adding
the masking values to the global masking threshold. So the complexity of this
operation is O(n).

4.1.2 Factors That Affect The Cost of Real-Time Analysis

This section discusses the sole cost of real time analysis without rendering the
actual scene.

For our system, sound can be as small as 1 frame of data as well as the full 5
seconds which amounts to b44100 ∗ 5/384c = 574 frames for a sound that has

31

44100 sampling rate. There are only three factors that determine the cost of
real time analysis;

1. Length of the sound signal. Length of the sound affects many factors in
regards to performance:

(a) In the case that the file isn’t already stored in DEPQ, read time
(excluding the seek time) is proportionate to the length of the offline
analysis file.

(b) Each frame coming from the analysis file are compared to the global
masking threshold in the TCB to determine whether a given audio is
audible or not. Hence number of frames affects the duration of the
analysis.

2. Type of persistent data storage. While retrieving the masking values from
the hard drive, whether it is from an HDD or SSD matters in terms of
performance.

3. Whether the audio is stored within DEPQ or not. If it isn’t stored in
program stack, time costs of seek time, data transfer rate and rotational
latency (for HDDs) are added to the time cost of finalizing the analysis
[34].

The resulting file from the offline analysis (file that contains the masking infor-
mation) is approximately one thirds of the original audio file. Maximum file size
permitted from our system is about 86 kilobytes (for a 5 second audio).

One major concern of the system is the type of persistent data storage used to
retrieve offline analysis data. HDDs incur spin-up delays, seek time delays and
slow data transfer rates compared to SSDs [10][39][40]. In a system that highly
depends on time, such compromises render the system useless due to hardware
delays. So if the end user were to use HDDs, increasing DEPQ size and storing
the whole masking information into the queue is the only option.

4.2 System Performance

Here you can find various performance metrics for the proposed system. Time
values listed here are hardware dependent. Below is a list of average times for
each of the task, performed 10 times.

4.2.1 Individual Cost of Real Time Analysis

This section describes the isolated cost of the culling algorithm, without the cost
associated with the rendering operations. Table 4.1 shows the average times to
reach a decision, based on the conditions listed. Different hardware architectures
would have different results.

32

Table4.1: Average Times Required to Complete Real Time Analysis

Input Size Storage in DEPQ Memory Type Delta Time
1 Frame Stored RAM 0 ms

574 Frames Stored RAM 0.51 ms
1 Frame Absent HDD 15.626 ms

574 Frames Absent HDD 15.918 ms
1 Frame Absent SSD 0 ms

574 Frames Absent SSD 0.53 ms

4.2.2 Performance Gain From a Single Audio

For a sound that was stored in DEPQ, average time it takes to render a 5 second
audio is 0.51 milliseconds. During this time, a single CPU core is utilized at %100
percent while the overall utilization was %25. We can regard the total cost of a
program execution as follows;

CostOfExecution = AverageCPU Utilization ∗ Time InMilliseconds

We can think of cost of execution as total number of instruction cycles. Since
audio rendering incurs a performance penalty in the beginning of each frame,
we can see whether this methodology is profitable or not. Since we’re not con-
sidering the memory delay for retrieving the actual audio data (wav file) from
memory, we are not taking consideration for the masking values either. For an
audio that is already inside the DEPQ, and for an audio file that was already
stored in RAM, the performance metrics are listed in the table as follows;

Table4.2: Costs Of Execution For an Integrated Audio Rendering Pipeline

Input Size Culling Assessment Cost Of Execution
1 Frame No Culling Algorithm 9ms ∗%0.44 = 3.96

1 Frame With Culling Algorithm 9ms ∗%0.46 = 4.14

574 Frames No Culling Algorithm 5000ms ∗%0.45 = 2250

574 Frames With Culling Algorithm 5000ms ∗%0.49 = 2450

As we can see from this table, culling algorithm incurs about %8 more perfor-
mance over the existing audio synthesis pipeline. However in the case that the
audio will be culled, we will save %92 percent of the clock cycles. One disadvan-
tage of the culling algorithm, is that it will block a CPU core completely until
its analysis is done.

Average CPU loads listed above, were calculated from "GetSystemTimes" func-
tion of "windows.h" header file.

33

4.2.3 Worst Case Scenario

Worst case scenario for our algorithm would be the arrival of unique, concurrent
and large number of auditory events. This case would also be the worst case for
any audio rendering pipeline with or without any culling metodology applied.
But in the case of our algorithm, this would cause repeated replacement of items
in the DEPQ and repeated access to memory. Even if the algorithm might save
performance in the long run, this would cause a performance spike in the initial
arrival.

A simple precaution of limiting maximum number of auditory events would
alleviate this situation. With that many sound sources, listener would be highly
unlikely to hear any difference anyway.

34

CHAPTER 5

PSYCHOACOUSTICAL EVALUATION

5.1 Preliminaries

Audio produced with sound source culling, regardless of the methodology, is
dependent on the user determined variables. Resulting auditory richness pro-
duced by the aforementioned methodologies, provide a crude approximation to
the original scene. In order to find out which parameters provide sufficient
perceived richness, a psychoacoustical evaluation was performed.

5.2 Chosen Test Methodology

At this time of writing, a subjective testing standard for assessing auditory rich-
ness do not exist. However a method for subjective assessment of intermediate
quality level of audio systems, does. The ITU-R recommendation BS.1534 pro-
poses a method called “MUlti Stimulus test with Hidden Reference and Anchor
(MUSHRA)” [17] which is appropriate for assessing intermediate audio quality.
It is our premise that MUSHRA is also applicable for evaluating intermediate
auditory richness.

The resulting systems that undergo the tests are expected to introduce signifi-
cant auditory impairments. Our assumption here is that culling large number
of sound sources introduce this effect. Production of mediocre sound richness,
through selection of different algorithmic variables, make this testing methodol-
ogy appropriate for our purposes.

5.3 Test Procedure

Details of the chosen methodology is explained below.

5.3.1 Presentation of Stimuli

In the MUSHRA test method, a high quality reference signal, a low quality
anchor signal and other signals that fall in between them in terms of quality
are evaluated [17]. At any given test, there is a single reference and a single
anchor that the user is expected to find. Both experiments themselves and the
stimulus contained within the experiments are randomly presented. So not only

35

each listener listens experiments in a different order but each listener faces a
randomized presentation order of the stimuli.

During each experiment, all of the signals are presented on the same GUI. Each
prerecorded sound can be played as many times as the listener desires. This
allows listeners to compare sounds and alter their scores for any given stimulus.

Figure 5.1: Mushram User Interface for the First Experiment

For the experiments, a Matlab interface called MUSHRAM was utilized [38].
Figure 5.1 shows a screenshot of an example used for assessment in this thesis.
As mentioned above, the subjects that took the test were given different order
of experiments. Ordering of the experiments is given in appendix B.

5.3.2 Grading

The whole test procedure is comprised of giving ratings to test signals which are
displayed in a random sequence. Listeners were instructed to score the presented
samples in comparison with the explicitly provided reference signal. The scores
that are given, can range between 0 and 100. At any given test, there is a single
reference and a single anchor. Listeners were asked to find and rate them 100
and 0, respectively. For any of the remaining stimuli, listeners were asked to
rate them according to their richness. They were also encouraged to listen to
the available reference signal, prior to giving scores on the stimuli.

5.4 Experiment Details

Scope of the applied experiments, positioning of the sound sources and other
required information about the auditory scene are stated under this section.

36

The MUSHRA test applied for this paper is comprised of four different exper-
iments. Each experiment involves a combination of different contextual sound
sources. Each sound source is categorized under four contextual categories;
impulsive sounds, music, static sound effects and speech signals. From these
sound sources, we arranged four different psychoacoustical experiments, involv-
ing sounds under different categories. In each of these scenes, there was a total
of 13 sound sources in the case of reference signals. The applied culling method-
ology served to reduce the number of sound sources at each rendered scene.
Composition of each scene is given in the table below.

Table5.1: Contents of Test Scenes

Experiment Contents (ss = sound sources)
Impulsive Scene 13 impulsive ss.

Impulsive + Speech
+ Music

6 impulsive ss., 6 speech ss.,
1 Music sound

Impulsive + Sound Effects
+ Music

6 sound effect ss., 6 impulsive ss.,
1 Music sound

Sound Effects + Speech 7 speech ss., 6 sound effect

Each test case (stimulus) produced from these scenes needed to be short enough,
so that the listener would be able to recall the whole sample. This was important
for the experiment because the whole duration of the audio were to be assessed.
Our test scenes were adjusted so that the maximum length of a stimulus does
not exceed 2 seconds. 1

For each of the experiments above, stimuli with different parameters were pro-
duced to be tested in MUSHRA. Both perceptual culling (our method) and
distance based culling (spherical culling) methodologies were tested during the
same experiment.

5.4.1 Selection of Sound Source Locations

Since both systems needs to be tested on the same conditions, a scene that
is appropriate to both culling methodologies was required. Sound sources also
needed to be distributed along the horizontal plane in order to achieve maximum
perceptibility.

In order to achieve this, sound sources were distributed along the horizontal
plane of the listener. Assuming one source will be directly in front of the listener,
the axis needed to be divided into 180/(13−1) = 15 degrees. Listener was placed
at the coordinate location (700, 700), facing towards the negative X axis.

In order to achieve a controllable spherical culling methodology, each of the
sound sources were placed in a fixed radius away from the listener. They were

1 According to Guillermo Campoy, auditory short-term memory decay happens at around 3
seconds. [7]

37

grouped into pairs and were placed at an equal distance and symmetrical angles
from the listener. Though their auditory events were not actuated on the same
time frame. Coordinates of sound sources were calculated according to the for-
mula:

X = r cos(θ) + 700

Y = r sin(θ) + 700

You can find the related information on the Table 5.2 and a top down view that
demonstrates distances sound sources of the scene in Figure 5.2.

Figure 5.2: Source Positions For Tested Scenes

This way culling distance values can be adjusted with ease. For example a
culling distance of 200 will not render a sound source positioned 300 units away
from the listener.

5.4.2 Generation of Test Cases

There are nine sound files in each experiment. The reference signal includes
all 13 sounds. The anchor signal involves only a single sound source to achieve
the lowest richness in a scene. Remaining signals are results of scenes with
culling methodologies applied. For the perceptual culling methodology, various
audibility percentages were tested. For spherical culling methodology, various
culling distances were tested. In total, there were 4 scenes with 9 sound files.
Making a total of 36 test cases.

38

Table5.2: Test Setup, Positional Information

Point X Y Degrees
Distance

From Listener
Listener 700 700 - -

1 700 600 270 100
2 622,354 410,222 255 300
3 400 180,385 240 600
4 346,447 346,447 225 500
5 526,795 600 210 200
6 313,630 596,472 195 400
7 0 700 180 700
8 313,630 596,472 165 400
9 526,795 600 150 200
10 346,447 346,447 135 500
11 400 180,385 120 600
12 622,354 410,222 105 300
13 700 600 90 100

Among the 7 test cases, 4 of them were produced with perceptual culling and 3
of them were produced with spherical culling. For perceptual culling, %0, %10,
%20 and %30 audibility percentages were used. For spherical culling, 650, 550
and 450 cm culling distances were used.

5.5 Statistical Analysis

There were 11 participants that performed the test. Figure 5.3 shows the results
of subjective scores from the test. Green and khaki colors display subjective
results of audibility and volumetric culling respectively. As it can be seen from
the figure 5.3, scenes that have 8, 10, 12 and 13 sources have results for both of
the culling methodologies. However, for scenes that have 9 and 11 sound sources,
results for volumetric culling are not available. This is due to the configuration
of the scene (see 5.4.1 for details).

In order to see whether our methodology has any significance over volumetric
culling methodology for a given scene, we form the following null hypothesis:

H0: For a stimulus with same amount of sound sources, audibility based culling
methodology will have no significant effect on the subjective test scores.

In order to make a fair comparison of the two culling methodologies, we need to
assess results that have the same number of sound sources. Hence we form the
following null hypotheses:

H0: For a stimulus with 8 sound sources, audibility based culling methodology

39

Figure 5.3: Subjective Scores From Listening Tests

will have no significant effect on the subjective test scores.
H0: For a stimulus with 10 sound sources, audibility based culling methodology
will have no significant effect on the subjective test scores.
H0: For a stimulus with 12 sound sources, audibility based culling methodology
will have no significant effect on the subjective test scores.
H0: For a stimulus with 13 sound sources, audibility based culling methodology
will have no significant effect on the subjective test scores.

In order to test these hypotheses, we perform independent-samples t-test. Table
5.4 shows the results of t-tests for stimuli with 8, 10, 12, 13 sources in rows
labeled as sc8, sc10, sc12, sc13 respectively.

For stimuli produced with 8 sound sources, we first look at results of Levene’s
test. We see that it is 0.031 which is smaller than 0.05. This shows that the
variability within each of culling methodology are significantly different com-
pared to each other. Thus, we can obtain the p value from the bottom row. It

40

is 0.003 which is smaller than 0.05. Hence we can conclude that there is a sta-
tistically significant difference between the means of audibility and volumetric
culling methodologies for 8 sound sources. We can reject the null hypothesis.

For stimuli produced with 10 sound sources, we first look at results of Levene’s
test. We see that it is 0.045 which is smaller than 0.05. This shows that the
variability within each of culling methodology are significantly different com-
pared to each other. Thus, we can obtain the p value from the bottom row. It is
0.005 which is smaller than 0.05. Hence we can conclude that there is a statisti-
cally significant difference between the means of audibility and volumetric based
culling methodologies for 10 sound sources. We can reject the null hypothesis.

For stimuli produced with 12 sound sources, we first look at results of Levene’s
test. We see that it is 0.056 which is bigger than 0.05. This shows that the
variability within each of culling methodology are not scientifically different
compared to each other, which is desired. We will obtain the p value from
the top row. It is 0.052 which is bigger than 0.05. So there is no statistically
significant difference between two culling methodologies for 12 sound sources.
We fail to reject the null hypothesis.

For stimuli produced with 13 sound sources, we first look at results of Levene’s
test. We see that it is 0.825 which is bigger than 0.05. This shows that the
variability within each of culling methodology are not scientifically different
compared to each other, which is desired. We will obtain the p value from
the top row. It is 0.707 which is bigger than 0.05. So there is no statistically
significant difference between two culling methodologies for 13 sound sources.
We fail to reject the null hypothesis.

In light of these results, we can form two alternative hypotheses:

HA:For a stimulus with 8 sound sources, audibility based culling methodology
has a significant effect on the subjective test scores.
HA:For a stimulus with 10 sound sources, audibility based culling methodology
has a significant effect on the subjective test scores.

Table5.3: Mean Values

CullingType
Audibility Distance

Mean N Std. Deviation Mean N Std. Deviation
sc8 73.6364 33 20.36974 57.6591 44 25.42197
sc10 78.3939 33 20.80406 73.2500 44 23.07231
sc12 90.0000 22 11.19098 82.0227 44 17.11994
sc13 93.4545 11 12.78565 91.8182 44 12.86111

From the results of t tests, we have seen that culling methodology for 8 and 10
sound sources does have a significant effect on the result. Whereas for 12 and
13 sources, it didn’t have any significant effect on the results. Looking at the
means of stimuli with 8 and 10 sources (see table 5.3), it can be seen that

41

audibility based culling has a significant advantage. For the remaining cases, it
also yielded with a higher mean without statistical significance.

42

Table5.4: Results of Independent-Samples t-test

Independent
Samples Test

Levene’s Test for
Equality of Variances

t-test for Equality of Means

F Sig. t df
Sig.

(2-tailed)

sc8

Equal
variances
assumed

4.850 .031 2.965 75 .004

Equal
variances
not
assumed

3.060 74.636 .003

sc10

Equal
variances
assumed

4.072 .045 2.767 152 .006

Equal
variances
not
assumed

2.850 151.046 .005

sc12

Equal
variances
assumed

3.789 .056 1.980 64 .052

Equal
variances
not
assumed

2.270 59.268 .027

sc13

Equal
variances
assumed

.049 .825 .378 53 .707

Equal
variances
not
assumed

.379 15.469 .710

43

44

CHAPTER 6

CONCLUSION

6.1 Contributions and Discussion

Within the scope of this thesis, a sound source culling methodology was devel-
oped. An advantage over its predecessors, is its consideration of psychoacoustics
when culling the sound at hand. While this approach is more expensive than the
traditional distance based culling, it has been demonstrated to provide better
auditory richness. For the same number of sound sources, our subjective tests
dictate superior subjective results.

While algorithm itself will provide better utilization of CPU in the long run, it
has its drawbacks. First of all, every auditory event will create a short perfor-
mance spike. Longer audio files will stall a processor longer than a short audio
file. While these are insignificant in small numbers, large number of auditory
events triggered in the same audio frame, will cause an issue. Secondly, if the
size of the DEPQ is or cannot be sufficiently large to encompass all audio files,
persistent data storage will be of importance. Despite recent progress of solid
state disks, hard disk drives are still prevalent today due to their price and al-
ready existing hardware. HDD metrics like spin-up delays, seek time delays and
slow data transfer rates render this algorithm disadvantageous. This is because
a 15 millisecond delay amounts to about 2 audio frames of a delay for 44.1kHz
sampling rate. While this can be acceptable for distant sound sources (due to
the speed of sound), it is not acceptable for close proximity sound sources.

Where this algorithm shines, compared to the distance based approach, is on
the high end systems with either large amounts of RAM or hardware equipped
with SSDs. In the case when an audio is culled, it will save about %92 of the
machine cycles that would have occurred if audio was not culled. Adjusting
the permeable audibility percentage will even cause more sounds to be culled,
at the cost of perceived richness. However at %0 percent audibility threshold,
perceived richness will likely to be no different than a scene without culling.
Another area where this algorithm performs well is arrival of sparse, yet large
number of auditory events. In that case, perceived richness of the audio will be
superior than a distance based approach.

An additional contribution made with this thesis, is the result of subjective tests.
Even though the tests were performed with our methodology, they have made
a case for perceptual sound source culling. As demonstrated in Chapter 5, per-

45

ceptual sound source culling produces more realistic soundscapes. Whether this
information is useful for other perceptual approaches, such as culling method-
ologies that incorporate view frustrum, is up to the reader to decide.

In a nutshell, we provided a unique, performance enhancing spatial sound source
culling algorithm. It has proven to be advantageous for providing high fidelity
audio for high end hardware. For sparse and numerous auditory events, it pro-
vides performance advantage without compromise. However the algorithm is
proven to be disadvantageous for systems with low end hardware and dense au-
ditory events. In those cases, either an additional change to the algorithm or a
distance based approach can be employed.

6.2 Future Work

As we have discussed above, there are weaknesses that need to be addressed. An
alteration of the algorithm that will handle dense auditory events would be vital
as an industrial product. Since distance based culling has an undeniable per-
formance advantage, an algorithm that would incorporate both methodologies
would perform the best, while providing the best possible auditory richness.

Our algorithm involved mutex locks for critical sections. While this enabled
multithreading, incorporation of lock free programming, namely incorporation
of atomic variables, would increase its performance further.

In the real time analysis, we are merely comparing global masking thresholds
for the scene to the masking thresholds of the incoming audio. Yet an audio
can have a lower masking threshold than the scene and still be audible. This is
because signal’s power can still exceed global masking threshold without having
its own threshold higher. So at the cost of performing additional calculations or
storage, a more precise perceptual model can be developed.

Within the scope of our algorithm, we have not incorporated moving sound
sources. An algorithm that would incorporate such cases can be devised.

46

Bibliography

[1] V Ralph Algazi, Richard O Duda, Dennis M Thompson, and Carlos Aven-
dano. The cipic hrtf database. In Applications of Signal Processing to Audio
and Acoustics, 2001 IEEE Workshop on the, pages 99–102. IEEE, 2001.

[2] Kaoru Ashihara, Kenji Kurakata, Tazu Mizunami, and Kazuma Mat-
sushita. Hearing threshold for pure tones above 20 khz. Acoustical science
and technology, 27(1):12–19, 2006.

[3] Durand R Begault and Leonard J Trejo. 3-d sound for virtual reality and
multimedia. 2000.

[4] UdK Berlin. Decrease in level of sound pressure and sound intensity with
distance.

[5] Jens Blauert. Spatial hearing: the psychophysics of human sound localiza-
tion. MIT press, 1997.

[6] Alan Dower Blumlein. Improvements in and relating to sound-transmission.
Sound-recording and Sound-reproducing Systems, UK Patent, 394:325,
1931.

[7] Guillermo Campoy. Evidence for decay in verbal short-term memory: A
commentary on berman, jonides, and lewis (2009). 2012.

[8] Crytek.

[9] Zbigniew J Czech, George Havas, and Bohdan S Majewski. An optimal
algorithm for generating minimal perfect hash functions. Information Pro-
cessing Letters, 43(5):257–264, 1992.

[10] Cagdas Dirik and Bruce Jacob. The performance of pc solid-state disks
(ssds) as a function of bandwidth, concurrency, device architecture, and
system organization. In ACM SIGARCH Computer Architecture News,
volume 37, pages 279–289. ACM, 2009.

[11] Epic.

[12] FJ Fry and JE Barger. Acoustical properties of the human skull. The
Journal of the Acoustical Society of America, 63(5):1576–1590, 1978.

[13] William G Gardner and Keith D Martin. Hrtf measurements of a kemar.
The Journal of the Acoustical Society of America, 97(6):3907–3908, 1995.

[14] David Grelaud, Nicolas Bonneel, Michael Wimmer, Manuel Asselot, and
George Drettakis. Efficient and practical audio-visual rendering for games
using crossmodal perception. In Proceedings of the 2009 symposium on
Interactive 3D graphics and games, pages 177–182. ACM, 2009.

47

[15] David Griesinger. Stereo and surround panning in practice. In Audio En-
gineering Society Convention 112. Audio Engineering Society, 2002.

[16] ISO / IEC. Coding Of Moving Pictures And Associated Audio For Digital
Storage Media At Up To About 1.5 Mbit/S Part 3 Audio, June 1993.

[17] ITU-R. Method for the Subjective Assessment of Intermediate Quality Level
of Audio Systems, bs.1534-3 edition, 10 2015.

[18] Christian Lauterbach, Anish Chandak, and Dinesh Manocha. Interactive
sound rendering in complex and dynamic scenes using frustum tracing.
Visualization and Computer Graphics, IEEE Transactions on, 13(6):1672–
1679, 2007.

[19] Ruth Litovsky. Development of the auditory system. Handbook of clinical
neurology, 129:55, 2015.

[20] Brian CJ Moore. Psychophysical tuning curves measured in simultaneous
and forward masking. The Journal of the Acoustical Society of America,
63(2):524–532, 1978.

[21] Martin Naef, Oliver Staadt, and Markus Gross. Spatialized audio rendering
for immersive virtual environments. In Proceedings of the ACM symposium
on Virtual reality software and technology, pages 65–72. ACM, 2002.

[22] Harry Ferdinand Olson. Music, physics and engineering, volume 1769.
Courier Corporation, 1967.

[23] Fabien A. P. Petitcolas. MPEG Psychoacoustic Model I for MATLAB.
www.cl.cam.ac.uk/ fapp2/software/mpeg/, 2003.

[24] Christopher J Plack. The sense of hearing. Psychology Press, 2013.

[25] John G Proakis and Dimitris G Manolakis. Introduction to digital signal
processing. Prentice Hall Professional Technical Reference, 1988.

[26] Ville Pulkki. Virtual sound source positioning using vector base amplitude
panning. Journal of the Audio Engineering Society, 45(6):456–466, 1997.

[27] John William Strutt Baron Rayleigh. The theory of sound, volume 2.
Macmillan, 1896.

[28] Stuart Rosen and Peter Howell. Signals and systems for speech and hearing,
volume 29. Brill, 2011.

[29] Thomas D Rossing. Handbook of acoustic, 2007.

[30] Douglas Self. Audio engineering explained. Taylor & Francis, 2009.

[31] Roland Sottek and Klaus Genuit. Physical modeling of individual head-
related transfer functions. J. Acoust. Soc. Am, 105(2):1162, 1999.

[32] Pramila Srinivasan and Leah H Jamieson. High-quality audio compression
using an adaptive wavelet packet decomposition and psychoacoustic mod-
eling. Signal Processing, IEEE Transactions on, 46(4):1085–1093, 1998.

48

[33] Gerhard Stoll and Karlheinz Brandenburg. The iso/mpeg-audio codec: A
generic standard for coding of high quality digital audio. In Audio Engi-
neering Society Convention 92, Mar 1992.

[34] Hamid D Taghirad and Ehsan Jamei. Robust performance verification of
adaptive robust controller for hard disk drives. Industrial Electronics, IEEE
Transactions on, 55(1):448–456, 2008.

[35] Unity Technologies.

[36] Hartmut Traunmüller. Analytical expressions for the tonotopic sensory
scale. The Journal of the Acoustical Society of America, 88(1):97–100, 1990.

[37] Nicolas Tsingos, Emmanuel Gallo, and George Drettakis. Perceptual au-
dio rendering of complex virtual environments. In ACM Transactions on
Graphics (TOG), volume 23, pages 249–258. ACM, 2004.

[38] E Vincent. Mushram: A matlab interface for mushra listening tests. Online]
http://www. elec. qmul. ac. uk/people/emmanuelv/mushram, 2005.

[39] OCZ Official Website.

[40] Seagate Official Website.

[41] Xiao-li Zhong and Bo-sun Xie. Overall influence of clothing and pinnae on
shoulder reflection and hrtf. SHENGXUE JISHU, 25(2):113, 2006.

[42] Eberhard Zwicker and Hugo Fastl. Psychoacoustics: Facts and models,
volume 22. Springer Science & Business Media, 2007.

49

50

APPENDIX A

REAL TIME ANALYSIS PSEUDOCODE

This is section describes some of the algorithms used in this methodology. Real
time analysis starts with the event handling from the event manager. Rest
of the process is handled by the Decaying Event Priority Queue and Timed
Circular Buffer, as portrayed in the figure 3.3. After a sound event is over, end-
of-audio event will be handled by the event manager as well. Only the necessary
algorithms are described below.

51

input : Sound file, distance, cullingIsOn
output: Rendering decision

if cullingIsOn then
initialize;
try acquiring mutex;
if mutex is locked then

call inquire for masking values inside DEPQ;
if masking values are inside DEPQ then

retrieve values from the queue and reprioritize;
hold values in volatile memory;

else
read and parse data from persistent memory;
hold values in volatile memory;
place values in DEPQ and reprioritize;

end
call Pass masking values to TCB;
if Audio is deemed audible then

increment active audio count;
release mutex;
//Audio will be played
return true;

else
//Inaudible audio according to threshold
release mutex;
return false;

end
else

//Another thread is executing analysis, just play the sound file
return true;

end
else

//Culling is off
return true;

end
Algorithm 1: Event Manager, Auditory Event Handling

52

input : Array of values, audio file path
output: none

//Assume first item in queue has the lowest priority
minPriority ← priority of the first item in queue;
minIndex ← 0;
for i← 0 to array size do

if priority of i’th element > minPriority then
minPriority ← priority of i’th element ;
minIndex ← i;

end
end
//Now we can write over the event with the lowest priority
queue[minIndex] ← input values, data and file path
//Priority queue will be reprioritized
priority of queue[minIndex] ← 1.
tempIndex← 0.
while tempIndex < minIndex do

decrement queue[minIndex]’s priority ;
increment tempIndex ;

end
increment tempIndex ;
while tempIndex < arraySize do

decrement queue[minIndex]’s priority ;
increment tempIndex ;

end
Algorithm 2: Event Priority Queue, Enqueuing

53

input : inputMaskingValues (array of data), distance
output: rendering decision

tempAttenuatedInput ← input masking values ;
currentFrameInaudible ← true ;
audibleFrameCount ← 0 ;
renderDecision ← false ;
call update starting frame;

//Calculate the finishing index of the input.
//(this number can be numerically more then array size)
tempResult← inputSize+ startIndex;
// With the addition of new data, end of all events can be longer
if tempResult > endIndex then

oldEndIndex← endIndex;
endIndex← tempResult (mod circularBufferSize);

end

//If we are going to adding masking values,
//Invalid data needs to be removed
call clear depreciated data;
for unsigned index ← 0 to data size do

tempAttenuatedInput[index]←
inputMaskingV alues[index]− |20 ∗ log10

1
Distance

|
if 0 == index (mod circularBufferSize) then

currentFrameInaudible ← true ;
minIndex ← i;

end

// If the new masking value is bigger than the contents of TCB
if gmtData[startIndex+ index] (mod circularBufferSize)
≤ tempAttenuatedInput[index] and currentFrameInaudible then

currentFrameInaudible ← false ;
increment audibleFrameCount ;

end
end

Algorithm 3: Timed Circular Buffer, Handling Masking Values, Part 1

54

// Finding the percentage of audible frames
// Dividing input size by 32 (shifting right), to see the frame count
tempPercentage← (sizeofinputMaskingV alues) >> 5;
tempPercentage← audibleFrameCount/tempPercentage;
if tempPercentage ≥ acceptableAudibilityPercentage then

renderDecision← true;
end
// Audio decided to be rendered. Add to the masking threshold.
if renderDecision == true then

for index← 0 to input size do
gmtData[startIndex+ index]
(mod circularBufferSize)+ = tempAttenuatedInput[index]

end
else

// Audio wasn’t deemed audible. Reverting to initial values.
endIndex← oldEndIndex;

end
Algorithm 3: Timed Circular Buffer, Handling Masking Values, Part 2

55

56

APPENDIX B

EXPERIMENT ORDERS

Here you can find the order of sequence for the performed experiments.

Experimenter Exp. 1 Exp. 2 Exp. 3 Exp. 4
1 1 2 3 4
2 4 3 1 2
3 1 4 3 2
4 4 1 3 2
5 3 4 1 2
6 2 1 3 4
7 2 3 1 4
8 4 3 2 1
9 2 3 4 1
10 3 2 1 4

TableB.1: Psychoacoustical Test Order

Experiment numbers listed above denote the following scenes. For further infor-
mation, refer to section 5.3.1 of this paper.

1. Impulsive

2. Impulsive + Music + Sound Effects

3. Impulsive + Speech + Music

4. Sound Effects + Speech

57

58

APPENDIX C

APPROVAL OF ETHICS COMMITTEE

Figure C.1: Approval of Ethics Committee

59

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	introduction
	Motivation
	Organization of the Thesis

	Background Information
	Human Auditory System
	Physiology of Human Auditory System

	Sound Metrics
	Monaural Hearing
	Binaural Hearing

	Audio Rendering in Virtual Environments
	Head Related Transfer Functions (HRTFs)
	Computational Cost of Binaural Audio in Virtual Environments

	Distance Attenuation

	Sound Source Culling
	Position Based Culling Methodologies
	Perception Based Culling Methodologies

	proposed approach
	Overall Algorithm
	Offline Analysis
	Systematic Limitations
	MPEG-1 Psychoacoustic Model, Layer I
	FFT Analysis
	Determination of SPL
	Finding of Tonal and Non-Tonal Components
	Decimation of Tonal and Non-Tonal Components
	Calculation of Individual Masking Thresholds
	Calculation of the global masking threshold LTg
	Determination of the Minimum Masking Threshold

	Generation of Masking Information
	Infeasibility of Precalculated Decision Making

	Real-Time Analysis
	Concept of Auditory Events and Event Manager
	Decaying Event Priority Queue
	Hash Functions For Variable Length String Comparison

	Timed Circular Buffer

	performance and analysis
	Theoretical Information
	Algorithmic Complexity of Real-Time Analysis
	Factors That Affect The Cost of Real-Time Analysis

	System Performance
	Individual Cost of Real Time Analysis
	Performance Gain From a Single Audio
	Worst Case Scenario

	psychoacoustical evaluation
	Preliminaries
	Chosen Test Methodology
	Test Procedure
	Presentation of Stimuli
	Grading

	Experiment Details
	Selection of Sound Source Locations
	Generation of Test Cases

	Statistical Analysis

	conclusion
	Contributions and Discussion
	Future Work

	Bibliography
	APPENDICES
	Real Time Analysis Pseudocode
	Experiment Orders
	Approval of Ethics Committee

