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ABSTRACT 

 
 

ELECTRICAL IMPEDANCE TOMOGRAPHY USING LORENTZ FIELDS 

 

 

Zengin, Reyhan 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Nevzat Güneri Gençer 

 

September 2012, 148 pages 

 

 

In this thesis, a novel approach is proposed to image the electrical conductivity 

properties of biological tissues. This technique is based on electrical current 

induction using ultrasound together with and applied static magnetic field. Acoustic 

vibrations are generated via piezoelectric transducers located on the surface of a 

biological body. To simulate the new technique multiphysics solution is required 

which couples pressure and electromagnetic equations. The feasibility of the 

proposed approach is investigated using analytical and numerical techniques. A 

linear phased array piezoelectric transducer and a single element transducer are used 

to form pressure distribution in human body/tissue. In the existence of a static 

magnetic field, the resultant (velocity) current density is sensed by a receiver coil 

encircling the tissue and used for reconstructing the conductivity distribution. To 
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sense the resultant current density a novel coil configuration is proposed. Truncated 

Singular Value Decomposition (tSVD) Method is used as a reconstruction algorithm. 

Results show the potential of this approach as a new, practical and high resolution 

imaging modality for electrical conductivity imaging.  

Keywords: Electrical Conductivity Imaging, Contactless Imaging, Reconstruction 

Algorithm, Ultrasound, Linear Phased Array Transducer 
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ÖZ 
 

 

 

LORENTZ ALANLARI İLE ELEKTRİKSEL EMPEDANS TOMOGRAFİSİ 

 

 

 

Zengin, Reyhan 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Nevzat Güneri Gençer 

 

Eylül 2012, 148 Sayfa 

 
 

Bu çalışmada, biyolojik dokuların elektriksel iletkenlik özelliklerinin görüntülenmesi 

için yeni bir yaklaşım önerildi. Bu yaklaşım, ultrason ve statik manyetik alanla 

elektrik akım indükleme tabanlıdır. Akustik titreşimler, biyolojik doku üzerine 

yerleştirilen piezoelektrik dönüştürücüler tarafından oluşturulur. Yeni teknigin 

benzetimi için basınç ve elektromagnetik denklemlerin birlikte çözülmesi gerekir. 

Önerilen yaklaşımın fizibilitesi analitik ve sayısal tekniklerle incelendi. 

Doku/organda basınç dağılımı oluşturmak için doğrusal dizili ve tek elemanlı 

ultrasonik dönüştürücüler kullanıldı. Statik manyetik alanın varlığında oluşan hız 
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akım yoğunluğu, dokunun etrafını çevreleyen algılayıcı bobin ile algılanır ve 

iletkenlik dağılımını geriçatmak için kullanılır.  Oluşan akım yoğunluğunu algılamak 

için yeni bir bobin sistemi önerildi. Geriçatma algoritmalarından Kesilmiş tekil değer 

ayrıştırması metodu kullanıldı. Sonuçlar, önerilen yaklaşımın yeni, pratik ve elektrik 

iletkenlik görüntülemesi için yüksek çözünürlükte bir görüntüleme olduğunu 

göstermektedir. 

 

Anahtar Kelimeler: Elektrik iletkenlik görüntülemesi, Dokunmasız görüntüleme, 

Geriçatma Algoritması, Ultrason, Doğrusal faz dizili dönüştürücü 
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CHAPTER 1 

 

INTRODUCTION 
 

 

 

1.1 Electrical properties of body tissues 

 

The electrical properties of body tissues identify the pathways of current flow 

through the body and have attracted the interest of many investigators [1].  The 

behavior of these properties is examined on a microscopic and macroscopic scale. 

Depending on the tissue size that is examined, the electrical conductivity can be 

considered as, for example, inhomogeneous in microscopic scale whereas 

homogeneous in macroscopic scale. The conductivity in macroscopic scale is called 

the effective conductivity [2, 3]. 

To determine the electrical properties of biological tissues the interaction of polar 

molecules and ions is studied. If a material is composed of neutral molecular dipoles, 

it is called as a dielectric material. The positively charged ions (cations) and 

negatively charged ions (anions) produce conductive paths of current flow between 

extracellular and intracellular spaces. In this manner, a biological tissue is considered 

as a conductive dielectric.  

The electrical behavior of a biological tissue is defined using the two parameters: 

dielectric constant (permittivity) ε (F/m) and electric conductivity σ (S/m). The 
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dielectric constant and conductivity values of different body tissues are listed in 

Appendix B. The electrical properties of biological tissues are non-linear functions of 

frequency. Furthermore, if the frequency of electromagnetic field changes, the 

interaction between the field and the tissue also changes [4]. There are several 

mechanisms that affect this frequency dependence. The following are the different 

mechanisms for a typical soft tissue [1]: 

• For low frequencies (lower than several hundred kHz) the conductivity of 

tissue is dominated in the extracellular space by the conduction in the 

electrolytes. The volume fraction of extracellular space and the 

conductivity of the extracellular medium affect the bulk conductivity of 

the tissue.  

• At low frequencies, due to the polarization of counter ions near charged 

surfaces in the tissue and the polarization of large membrane-bound 

structures in the tissue, the tissue exhibits a dispersion called alpha 

dispersion (in low kHz range). The relative permittivity of tissue reaches 

very high values at frequencies below the alpha dispersion. The alpha 

dispersion can be observed in the permittivity but it is not noticeable in 

the conductivity of the tissue. 

• For radio frequencies (0.1-10 MHz) the beta dispersion is exhibited since 

the cell membranes charge through the intracellular and extracellular 

media.  Above the beta dispersion,   current passes through both media. 

The beta dispersion can be observed in both dielectric constants and 

conductivity values.  

• At microwave frequencies (above 1GHz), because of the rotational 

relaxation of the water content of tissues, the gamma dispersion is 

exhibited. 

 

 

  



 

3 
 

1.2 Electrical Impedance Tomography (EIT) 

 

Imaging electrical conductivity of biological tissues is one of the major research 

areas in the field of medical imaging. To image the conductivity of body tissues 

researchers have proposed different approaches. The earliest and generally accepted 

title for this relatively new imaging modality is Electrical Impedance Tomography 

(EIT) which uses surface electrodes to inject current and measures voltages from the 

body surface. Magnetic Resonance Electrical Impedance Imaging Tomography 

(MREIT), Magnetic Induction Tomography (MIT), Magneto Acoustic Tomography 

(MAT), Magneto-Acousto-Electrical Tomography (MAET) and Magneto Acoustic 

Tomography with Magnetic Induction (MAT-MI) are approaches proposed for the 

same purpose, but use other means for applying currents and  measurements.  

The purpose of this thesis is to introduce a novel technique based on ultrasonically 

induced velocity field for a body exposed to a static magnetic field. The proposed 

technique has the advantage of steering electrical current ultrasonically inside the 

body while measuring the resultant interaction (time-varying magnetic field) using 

an encircling coil, magnetically.  The rest of this section presents the previous work 

on impedance imaging.  

In EIT, there are two major approaches: Applied Current Electrical Impedance 

Tomography (ACEIT) [5-7] and Induced Current Electrical Impedance Tomography 

(ICEIT) [8, 9].  In ACEIT electrodes are placed on the surface of a body.  Electrical 

current is injected between a pair of electrodes and the resultant voltage is recorded 

between two surface electrodes [5]. Current drive and voltage measurement 

electrodes are changed to obtain an independent set of data for image reconstruction. 

In ICEIT currents are induced using time-varying magnetic fields using different coil 

configurations around the body. The surface electrodes are used to measure the 

voltage data. The features of the induced currents as an alternative to injected 

(applied) currents are listed  as follows  [10] :  
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• The currents in the medium are not limited by the current density at 

the electrodes, thus larger current densities can be induced yielding 

higher SNR in the measurements. 

• An electrode on the periphery of the region is optimized to sense 

voltages, and not used for current drive.  

• The number of measurements can be increased by increasing the 

number of different coil configurations. 

In the earlier studies, impedance imaging was performed at a particular frequency.  

Recently, multi-frequency EIT studies were introduced to exploit the frequency 

dependent changes in the electrical properties for diagnostic purposes (MFEIT) [3, 

11-15]. In Magnetic Resonance Current Density Imaging (MRCDI), the internal 

magnetic flux density is measured to visualize the current density distribution due to 

currents injected from the body surface [16-18]. To get internal magnetic flux density 

images MRCDI requires an MRI scanner. Once the magnetic flux density is 

measured, an image of the corresponding internal current density distribution is 

reconstructed using the Ampere’s Law. 

MREIT is another technique that utilizes the magnetic flux density produced by an 

injected current [19-22]. The purpose of MREIT is to reconstruct the conductivity 

distribution from magnetic field measurements using MRI. This approach can be 

assumed as a combination of EIT and MRCDI. 

In MIT [23-26], currents are induced in the conductive body by time-varying 

magnetic fields using transmitter coils.  The secondary magnetic fields due to 

existence of the conductive body are measured using receiver coils. The number of 

independent measurements is increased by changing the location of the transmitter 

coil. 

In addition to these early attempts performed electromagnetically, recently, novel 

techniques are proposed that integrates electromagnetism with acoustics. MAT [27-

29] is based on the idea that application of magnetic field to a liquid or tissue-like 

media in which electric currents are carried generates a force on the current pathway. 
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This force is known as the Lorentz force. When the applied magnetic field is 

alternating, the generated force on the internal currents is also alternating.  This time-

varying force in the medium generates acoustic wave fronts which propagate away 

from the current site.  These vibrations are detected at the object surface using 

ultrasonic transducers. 

In MAT-MI [30-33] technique, two magnetic fields are applied to the body: a static 

field and a time-varying magnetic field. Due to time-varying magnetic fields, eddy 

currents are generated. Eddy currents and applied static field results in vibrations 

(due to Lorentz force) and ultrasound waves are emitted. Ultrasonic transducers on 

the body surface are used as receivers. High resolution images of the conductivity 

distribution are reconstructed using this approach. The only difference between 

MAT-MI and MAT is that MAT uses electrical stimulation under static magnetic 

field. Since these approaches use ultrasound as the detected signal the resultant 

conductivity images have high resolution. 

 

1.3 Ultrasound Imaging 

 

After the discovery of piezoelectric effect (1880) ultrasound found applications in 

different fields, namely, development of sonar systems (1912-1915), detection of 

flaws (1928), detection of submarines (1940), non-destructive metal testing (1941), 

etc. In 1938, researchers started to study the interaction between ultrasound and 

living systems. In 1948, an extensive study has started on ultrasound medical 

imaging in the USA and Japan.  

Figure 1-1 shows the three different ranges of acoustic waves, namely, infrasound, 

sound and ultrasound.  The frequency range above the audio band (20 Hz-20 kHz) is 

named as ultrasound. Ultrasound has found numerous applications in different areas 

such as diagnostic sonography, animal research ultrasonography, medical imaging, 

etc. In medical applications of ultrasound, generally, frequencies above 1 MHz are 
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used. Lower frequencies between 1-3 MHz are used for imaging the deep-lying 

structures, such as liver. Higher frequencies as 5-10 MHz are used for imaging 

regions that are close to the body surface [34]. Acoustic waves support their 

propagation in a physical medium. When the acoustic waves propagate with a 

velocity c0 (m/s), the particles of the medium oscillate about their equilibrium 

position with a velocity u (m/s). 

The reflectivity of tissue to sound waves and velocity of moving objects are 

measured with ultrasound imaging. Since it is radiation-free, it is a noninvasive 

method. Furthermore, ultrasound is external applied and non-traumatic. The 

ultrasound images can be captured in real time, thus, not only the structure of the 

body but also the movement of internal organs can be shown.  Ultrasound is used as 

a diagnostic tool and as a therapeutic modality in medicine [35]. 

 

 

 

 

 

 

 

 Figure 1-1 Spectrum of acoustic waves [35]. 
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Clinical applications of ultrasound are listed below [36]: 

• Angiology (angiography, arterial wall properties, detection of gas 

bubble formation within tissue due to decompression), 

• Cardiology  (heart wave studies, diagnosis of congenital heart disease, 

measurements of left ventricular volume and function, two-

dimensional imaging of the heart, ultrasonic contrast studies, 

pericardial effusion, pleural effusion and pulmonary embolism), 

• Endocrinology (adrenal glands, thyroid glands), 

• Gastroenterology (teeth and mouth, liver, spleen, stomach and 

intestine, gallbladder and bile duct, pancreas, ascites), 

• Neurology (midline localization, A-scope studies of the brain, 

intracranial pulsations, two-dimensional visualization of the brain). 

• Obstetrics and Gynecology (early diagnosis of pregnancy, diagnosis 

of multiple pregnancy, visualization of placenta, assessment of fetal 

development, fetal anatomy, fetal heart rate, fetal breathing, fetal 

urine-production rate, diagnosis of fetal death, hydatidiform mole, 

detection of intrauterine contraceptive devices, abdominal tumors 

associated with pregnancy, gynecological tumors) 

• Oncology (ultrasonic scanning in radiotherapy and chemotherapy, 

investigations of the breast) 

• Ophthalmology (A-scan studies, B-scan studies) 

• Orthopedics and Rheumatology (soft tissue thickness and edema, 

assessment of fracture healing, assessment of osteoporosis) 

• Otothinolaryngology 

• Urology (kidney, bladder, prostate, testis)  
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1.4 The proposed approach:  Electrical Impedance Tomography using Lorentz 

Fields 

 

In this thesis, a novel impedance imaging technique is proposed that integrates 

electromagnetic fields and ultrasound to introduce current inside the body. The 

geometry of the proposed method is shown in Figure 1.2. This method is based on 

Lorentz fields generated by applying ultrasound together with an applied static 

magnetic field. Acoustic vibrations are generated via piezoelectric transducers 

located on the surface the body. The resultant field due to velocity current density 

distribution in the body is sensed by an encircling coil. 

 The advantages of the proposed method, as compared to the other tomography 

methods, are as follows: 

1) No surface electrodes are used to inject current in the conducting body; larger 

current densities can be introduced since the currents in the body are not limited by 

the current density just beneath the electrodes. 

2) No coils are used to induce current in the conducting body; when coils are used it 

is difficult to manipulate the current density distribution.   

3) To induce currents in a conducting body only an ultrasonic transducer and static 

magnetic field are required. 

4) To measure the resultant current density an encircling coil is used yielding 

contactless measurements (same advantage as in MIT, MAT, MAT-MI) 

5) There are different types of ultrasonic transducer used in medical applications, 

thus the type of ultrasonic transducer can be chosen according to the size of subject 

to be imaged. 

6) Electronically steering and focusing properties of transducer (linear phased array) 

give wide range of area to be scanned in a short time. Current induction duration is 

less as compared the others (since scanning with an US transducer is faster.). 
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Figure 1-2 Problem Geometry for the Electrical Impedance Imaging using Lorentz Fields. A 

uniform static magnetic flux density 𝐵𝐵�⃗ 0  is applied along the z-axis.  An ultrasonic pulse 

propagating along y-axis generates velocity currents ( 𝐽𝐽𝑣𝑣𝑣𝑣𝑣𝑣 ) due to Lorentz fields. The 

resultant time-varying magnetic fields are measured using a receiver coil encircling the 

conductive body. 

1.5 Objectives of the thesis 

 

EIT using Lorentz fields must be studied in mathematical terms. The problem 

definition must be clarified, basic assumptions and numerical solution strategies must 

be investigated in detail. This is necessary in order to understand the performance 

and basic limitations of the proposed method relative to the other approaches in this 

field. Therefore, specific goals are as follows: 

𝐁𝐁��⃗ 𝟎𝟎 
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𝐉𝐉𝐯𝐯𝐯𝐯𝐯𝐯 = 𝛔𝛔(𝐯𝐯�⃗ × 𝐁𝐁��⃗ ) 
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• To formulate the forward problem. That is, for a body of known conductivity 

distribution, calculation of measurements due to Lorentz fields (generated by 

an applied ultrasound and a static magnetic field).  

• To explore numerical solution methods for the forward problem and 

investigate the characteristics of the imaging system with simulations. The 

numerical method must handle the corresponding multiphysics problem that 

couples acoustic and electromagnetic equations.   

• To analyze the sensitivity of measurements to the conductivity perturbations. 

• To formulate the inverse problem, i.e., calculation of the conductivity 

distribution from the measurements, and investigate its characteristics. 

• To reconstruct images of simulated data using different inverse problem 

algorithms and investigate their performances. 

  

1.6. Thesis Outline 

 

Formulation of the forward problem is given in Chapter 2. Numerical solutions of the 

Lorentz fields are described in Chapter 3. To solve the problem numerically, finite 

element method based software called Comsol Multiphysics is used. The modules of 

Comsol are also described in this chapter. After the forward problem description, 

solution of forward and inverse problem is described in Chapter 4. Sensitivity matrix 

analysis is performed for a specific body/transducer/receiver coil configuration.  

The results of the forward and inverse problems are also given in Chapter 4. Pressure 

and velocity current density distributions in conductive bodies are shown. Truncated 

Singular Value Decomposition (tSVD)  method is used to reconstruct the image. The 

reconstructed images are given for specific conductivity perturbations. Conclusion 

and discussion are given in Chapter 5.  Focusing and steering properties of 

ultrasound are described in Appendix A. A brief review of the transducers, especially 

linear phased array transducers are described. The electrical and acoustic properties 
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of human tissues are given in Appendix B. General information about the single to 

noise ratio (SNR) of a data acquisition system is given is Appendix C.  
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CHAPTER 2 

 

FORWARD PROBLEM 
 

 

 

2.1 Introduction 

 

The forward problem of the proposed imaging modality is a multiphysics problem, 

i.e., the electromagnetic and acoustics fields must be solved simultaneously (Figure 

2.1). In this section, first the basic field equations governing the behavior of time-

varying electromagnetic and acoustic fields are given.  Secondly, the general 

formulation of the partial differential equations for the scalar and magnetic vector 

potentials are presented in the electromagnetic part of this work. In the acoustic part, 

the formulation of the partial differential equation for the acoustic pressure is 

presented. Thereafter, relation of the measurements to the existing (coupling) 

electromagnetic and acoustic waves is described.  
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Figure 2-1 Forward problem geometry. The conductive body with material properties 

(𝜎𝜎, 𝜖𝜖, 𝜇𝜇0) and bounded by surface S is under uniform static field 𝐵𝐵�⃗ 0 . To introduce currents 

inside the body an acoustic field is applied using an ultrasound transducer. The transducer 

surface is denoted by ST. The acoustic material properties are the mass density ρ and 

compressibility β. Propagating ultrasound results in a time-varying pressure distribution p 

and particle velocity 𝑣⃗𝑣.  The interaction of particle velocity 𝑣⃗𝑣  with the magnetic flux density 

generates electric field in volume V.  

 

2.2 Basic Electromagnetic Field Equations 

 

The following set of Maxwell’s equations governs the behavior of time-varying 

electromagnetic fields in a linear, non-magnetic, isotropic conductive body [37]:  

                                      

∇ × 𝐸𝐸�⃗ = −
𝜕𝜕𝐵𝐵�⃗
𝜕𝜕𝜕𝜕

                                                                      (2.1) 

         ∇ × 𝐵𝐵�⃗ = 𝜇𝜇0 𝐽𝐽 + 𝜇𝜇0  
𝜕𝜕𝐷𝐷��⃗
𝜕𝜕𝜕𝜕

                                                      (2.2) 
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       ∇ ∙ 𝐷𝐷��⃗ = 𝜌𝜌                                                         (2.3) 

      ∇ ∙ 𝐵𝐵�⃗ = 0                                                        (2.4) 

 For the solution of these fields we need the continuity condition                                     

 

∇ ∙ 𝐽𝐽 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                                (2.5) 

                                     

and the constitutive relations:  

 

𝐷𝐷��⃗ = 𝜖𝜖𝐸𝐸�⃗                                                                        (2.6) 

𝐽𝐽 = 𝜎𝜎𝐸𝐸�⃗ + 𝜎𝜎�𝑣⃗𝑣 × 𝐵𝐵�⃗ �                                                         (2.7) 

                                          

where 𝑣⃗𝑣  is the velocity of the conductor and 𝑣⃗𝑣 × 𝐵𝐵�⃗  is the Lorentz field. The second 

term on the right hand side of this equation is known as the velocity current density.   

Since the divergence of 𝐵𝐵�⃗  is zero (Equation (2.4)), it is possible to introduce a 

magnetic vector potential 𝐴𝐴 as   

                                                      

𝐵𝐵�⃗ = ∇ × 𝐴𝐴                                                                         (2.8)                          

Consequently, 𝐸𝐸�⃗  can be expressed in terms of the magnetic vector potential 𝐴𝐴 and 

gradient of a scalar potential 𝜑𝜑 as 

                                                     

𝐸𝐸�⃗ = −∇𝜑𝜑 − 𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

                                                                   (2.9) 
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2.3  𝑨𝑨��⃗ − 𝝋𝝋   Formulation 

 

In three-dimensional (3D) problems, the electric and magnetic fields are usually 

calculated using an 𝐴𝐴 − 𝜑𝜑 formulation which results in two coupled equations in 

terms of 𝐴𝐴 and 𝜑𝜑. To obtain the first equation, Equation (2.2) is rewritten in terms of 

the magnetic vector potential 𝐴𝐴 as follows:           

                                    

∇ × 𝜇𝜇0
−1�∇ × 𝐴𝐴� =  𝐽𝐽 +  

𝜕𝜕𝐷𝐷��⃗
𝜕𝜕𝜕𝜕 

                                                    (2.10) 

                  

The terms 𝐽𝐽  and 𝐷𝐷��⃗   on right hand side can be expressed using equations (2.6) and 

(2.7) yielding: 

                                  

∇ × 𝜇𝜇0
−1�∇ × 𝐴𝐴� =  𝜎𝜎�𝐸𝐸�⃗ + 𝑣⃗𝑣 × 𝐵𝐵�⃗ � +  

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜖𝜖𝐸𝐸�⃗                                     (2.11) 

                     

Reorganizing the right hand side we obtain, 

                       

∇ × 𝜇𝜇0
−1�∇ × 𝐴𝐴� = (𝜎𝜎 + 𝜖𝜖

𝜕𝜕
𝜕𝜕𝜕𝜕

)𝐸𝐸�⃗ + 𝜎𝜎(𝑣𝑣����⃗ × 𝐵𝐵�⃗ )                        (2.12) 

                                

By replacing 𝐵𝐵�⃗  and 𝐸𝐸�⃗  using the expressions in (2.8) and (2.9) we obtain, 

    

∇ × 𝜇𝜇0
−1�∇ × 𝐴𝐴� + �𝜎𝜎 + 𝜖𝜖

𝜕𝜕
𝜕𝜕𝜕𝜕
� (∇𝜑𝜑 +

𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

) − 𝜎𝜎(𝑣⃗𝑣 × ∇ × 𝐴𝐴) = 0             (2.13) 
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A second equation relating  A��⃗  and  φ can be obtained using the continuity equation 

(Equation (2.5)),  

∇ ∙ 𝐽𝐽 = ∇ ∙ 𝜎𝜎�𝐸𝐸�⃗ + 𝑣⃗𝑣 × 𝐵𝐵�⃗ � = − 𝜕𝜕
𝜕𝜕𝜕𝜕
∇ ∙ (𝜖𝜖𝐸𝐸�⃗ )                                                (2.14) 

 

∇ ∙ 𝜎𝜎�𝐸𝐸�⃗ + 𝑣⃗𝑣 × 𝐵𝐵�⃗ � +
𝜕𝜕
𝜕𝜕𝜕𝜕
∇ ∙ �𝜖𝜖𝐸𝐸�⃗ � = 0                                                 (2.15) 

 

∇ ∙ [�𝜎𝜎 +
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜖𝜖�𝐸𝐸�⃗ + 𝜎𝜎(𝑣⃗𝑣 × 𝐵𝐵�⃗ ) = 0                                                  (2.16) 

 

Once again, using the expressions in equations (2.8) and (2.9), we obtain 

 

∇ ∙ ��𝜎𝜎 +
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜖𝜖� �∇𝜑𝜑 +

𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕
� − 𝜎𝜎�𝑣⃗𝑣 × ∇ × 𝐴𝐴�� = 0                    (2.17) 

             

Equations (2.13) and (2.17) represent the general form of the system of equations 

that is used to calculate  A��⃗  and  φ for arbitrary excitations. For sinusoidal excitations 

( 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗  is assumed), these two equations can be written using phasor notation 

(boldface) as follows: 

          

∇ × 𝜇𝜇0
−1�∇ × 𝑨𝑨��⃗ � + (𝜎𝜎 + 𝑗𝑗𝑗𝑗𝑗𝑗)�𝛁𝛁𝝋𝝋+ 𝑗𝑗𝑗𝑗𝑨𝑨��⃗ � − 𝜎𝜎�𝒗𝒗��⃗ × ∇ × 𝑨𝑨��⃗ � = 0       (2.19)  

                                                

∇ ∙ �(𝜎𝜎 + 𝑗𝑗𝑗𝑗𝑗𝑗)�𝛁𝛁𝝋𝝋 + 𝑗𝑗𝑗𝑗𝑨𝑨��⃗ � − 𝜎𝜎�𝑣⃗𝑣 × ∇ × 𝑨𝑨��⃗ �� = 0       (2.20) 

                

In the proposed system, the conductive body is source-free, i.e., the low-frequency 

biological sources and corresponding potentials are of no concern. The potentials  𝐴𝐴 
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and  𝜑𝜑  can be solved once the boundary conditions are set due to external sources. In 

the proposed approach, neither  a time-varying magnetic field is applied using 

external coils nor a current or potential is applied using, for example, surface 

electrodes.  The origin of the electric and magnetic potentials is the Lorentz fields 

and currents generated by the combination of a uniform static magnetic field 𝐵𝐵�⃗ 0 (say, 

in z direction) and a propagating acoustic field. The latter is generated by an 

ultrasound transducer attached on the surface of the body as shown in Figure 2.1.  

Equations (2.19) and (2.20) together with appropriate boundary conditions can be 

used to calculate the electric field components for general conditions, i.e., general 

material properties and excitation frequencies.  The formulation, however, can be 

considerably simplified under three major assumptions: 1) displacement currents are 

negligible, 2) propagation effects can be ignored, and 3) inductive effects are 

negligible. Following section investigates the verification of these assumptions. 

 

2.4 Model Simplification: 𝝋𝝋  Formulation 

 

Imaging electrical properties of breast tissue can be considered as an important 

application area for the new imaging modality. To model breast, breast fat and blood 

are two tissues of primary concern. The conductivity and permittivity values of 

various biological tissues at different frequencies can be found in [38-40] . Using the 

tabulated values, the conduction to displacement current ratio 𝜎𝜎/𝜔𝜔𝜔𝜔 is calculated for 

these two tissues at an operation frequency of 1 MHz.  This ratio is found 19.8 and 

4.9 for breast fat and blood, respectively.  Note that, for most of the tissues other than 

blood, this ratio is found higher than 5.  

To ignore the propagation effects the wavelength must be much larger than the 

maximum field point in the biological body. At 1 MHz, the wavelengths are 3 m and 

19.2 m in blood and breast fat, respectively.  Consequently, for an imaging distance 

of 0.1 m, propagation affects can be ignored.  
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To verify the third assumption, the magnitude of the two electric field components 

(given in Equation (2.9)) can be compared assuming a specific source in a 

homogeneous medium. The approach has been applied for different purposes in the 

[41] literature, and is adopted here to provide a quantitative basis for simplification.  

This ratio is found as follows: 

�
𝜔𝜔𝑨𝑨��⃗
𝛁𝛁𝝋𝝋

� = �𝜔𝜔2𝜇𝜇0𝜖𝜖 �1 +
𝜎𝜎
𝑗𝑗𝑗𝑗𝑗𝑗

�𝑅𝑅2�                                               (2.21) 

As expected, the ratio depends on the material properties ( 𝜎𝜎, 𝜖𝜖, 𝜇𝜇 ), excitation 

frequency (𝜔𝜔) and the maximum distance (R) between the source and field points in 

the imaging area. In this study, this ratio is calculated for blood and breast fat tissues. 

At an operation frequency of 1 MHz, using the material properties of blood (𝜎𝜎 =

0.82  S/m, 𝜖𝜖 = 3000𝜖𝜖0 F/m) and free space (𝜇𝜇0 = 4𝜋𝜋 × 10−7  H/m, 𝜖𝜖0 = 8.854 ×

10−12 F/m) one obtains a  value of 0.43 when R = 0.1 m and 0.1 when R= 0.05m. 

The ratio reduces to 0.002 when the tissue is assumed breast fat (𝜎𝜎 = 0.026 S/m, 

𝜖𝜖 = 23.6𝜖𝜖0 F/m) and R = 0.1 m. In a possible breast model, the larger part of the 

body should be assumed as breast fat, whereas a tumor in the breast can be a couple 

of millimeters. One may conclude that for such a model inductive effects can be 

ignored. However, for different parts of the body (with different sizes and electrical 

properties) and higher operation frequencies, this assumption should be further 

investigated.    

Note that, under the above three assumptions, one obtains the quasi-static electric 

field expression:  

𝐸𝐸�⃗ = −∇𝜑𝜑                                                                            (2.22) 

                    

The partial differential equation governing the behavior of the scalar potential 

distribution due to ultrasonically induced Lorentz fields is then written as: 

∇ ∙ �𝜎𝜎∇𝜑𝜑 − 𝜎𝜎�𝑣⃗𝑣 × B��⃗ �� = 0                                                       (2.23) 
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or  

∇ ∙ (𝜎𝜎∇𝜑𝜑) = ∇ ∙ 𝐽𝐽𝐿𝐿             𝑖𝑖𝑖𝑖 𝑉𝑉                                                    (2.24) 

where 𝐽𝐽𝐿𝐿 = 𝜎𝜎�𝑣⃗𝑣(𝑡𝑡) × 𝐵𝐵�⃗ � denotes the velocity current density. 

The associated boundary condition for the scalar potential is derived to make the 

normal component of the total current zero on the body surface: 

𝜎𝜎
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐽𝐽𝐿𝐿 ∙ 𝑛𝑛�⃗                                                                           

or 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �𝑣⃗𝑣(𝑡𝑡) × 𝐵𝐵�⃗ � ∙ 𝑛𝑛�⃗                                                                       (2.25) 

The potential of the ground point used for the potential difference measurements 

should be set to zero to obtain a unique solution to the Neumann problem.  Note that 

for velocity fields with general time dependence, the Neumann boundary condition is 

a function of time and is determined by the behavior of the velocity vector 𝑣⃗𝑣(𝑡𝑡) on 

the surfaces.   

Assume a particle velocity is generated to propagate in an infinitely thin line. If 

ultrasonic excitation is time-harmonic, then a steady-state boundary condition is 

achieved at both ends of this line that crosses the boundary. Since particle velocity is 

in a specific direction, then the boundary conditions should be positive at one end 

and negative at the other end. On the hand, if a brief pulse is applied to the transducer, 

then the boundary condition at the transducer end will be nonzero during the acoustic 

pulse generation and will be zero during the propagation of this pulse throughout the 

body. The boundary condition at the other end of this propagation line will be zero 

during the generation of the acoustic pulse at the transducer end. It will stay zero 

during the propagation in the body and will be nonzero as the particle velocity 

crosses the boundary. 
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Hall Effect Imaging (or Ultrasonically Induced Lorentz Field Imaging) is based on 

voltage measurements acquired from the body surface due to ultrasonically induced 

Lorentz fields (Figure 2-2).  Note that the theory behind this imaging modality has 

not been presented in the literature. The derivations and simplifications presented in 

this section clarify the theory behind forward problem of Hall Effect Imaging and 

provide necessary tools to interpret the experimental results. 

 

2.5 Model Simplification:  Bz  Formulation 

 

To reveal the characteristics of the proposed imaging system, a two-dimensional 

(2D) numerical model is considered, assuming a body of finite thickness lying on the 

xy plane. Consequently, the electric field  𝐸𝐸�⃗   and particle velocity 𝑣⃗𝑣 is represented by 

the transverse components only (i.e., x- and y- components), whereas the magnetic 

flux density has only z-component. In addition, the displacement currents (𝜕𝜕𝐷𝐷��⃗ 𝜕𝜕𝜕𝜕 ⁄ ) 

are assumed negligible.  Under such conditions, computationally more efficient 

formulation can obtained starting from Equation (2.1): 

  

∇ × 𝐸𝐸�⃗ +
𝜕𝜕𝐵𝐵�⃗
𝜕𝜕𝜕𝜕

= 0                                                                                       (2.26) 

The electric field  𝐸𝐸�⃗  has two components as given by Equation (2.7): 

                                

𝐸𝐸�⃗ =
𝐽𝐽
𝜎𝜎
− 𝑣⃗𝑣 × 𝐵𝐵�⃗                                                                                      (2.27) 

                                                                

This expression can be rewritten using equation (2.2),  
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𝐸𝐸�⃗ =
∇ × 𝐵𝐵�⃗
𝜇𝜇0𝜎𝜎

− 𝑣⃗𝑣 × 𝐵𝐵�⃗                                                                               (2.28) 

                                                               

Consequently, equation (2.26) takes the following form: 

                                

1
𝜇𝜇0
∇ × �

1
𝜎𝜎
∇ × 𝐵𝐵�⃗ − 𝑣⃗𝑣 × 𝐵𝐵�⃗ � +

𝜕𝜕𝐵𝐵�⃗
𝜕𝜕𝜕𝜕

= 0                                           (2.29)  

                                 

For a 2D simulation study, as will be shown in the next chapter, one may assume 

𝐵𝐵�⃗ = 𝐵𝐵𝑧𝑧𝑎⃗𝑎𝑧𝑧   and proceed the numerical calculations by computing the single flux 

density component.  

The boundary condition for (2.29) is the usual condition that sets the continuity of 

the electric field    on the body surface:  

                                 

  𝑛𝑛�⃗ × �𝐸𝐸�⃗1 − 𝐸𝐸�⃗ 2� = 0                                                                     (2.30) 

                                                      

where  𝑛𝑛�⃗   is the outward normal on the body surface.  𝐸𝐸�⃗1 and 𝐸𝐸�⃗ 2   denote the electric 

fields on both sides of the surface.  

 

2.6 Basic Acoustic Field Equations 

 

To provide simplicity, a lossless, source-free medium is assumed and, initially, a 

one-dimensional (1-D) derivation is presented. In the static case, the body pressure is 

constant and denoted by  𝑝𝑝0 . The mass density of the body is assumed position 
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dependent and represented by 𝜌𝜌0(𝑥𝑥).  In the presence of a propagating pressure wave, 

the total pressure   𝑝𝑝𝑇𝑇   is position and time-varying and is given as  

                           

𝑝𝑝𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑝𝑝0 + 𝑝𝑝(𝑥𝑥, 𝑡𝑡)                                                                       (2.31) 

                                                            

 

In such a case, the total mass density can be expressed as  

                          

𝜌𝜌𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝜌𝜌0 + 𝜌𝜌(𝑥𝑥, 𝑡𝑡)                                                                      (2.32) 

                                                             

A propagating ultrasound also results in displacements in the small elements of the 

body and an associated ‘particle velocity’, 𝑣𝑣(𝑥𝑥, 𝑡𝑡).  The particle displacement and its 

derivatives are small when |𝑝𝑝 𝑝𝑝0⁄ | ≪ 1  and |𝜌𝜌 𝜌𝜌0⁄ | ≪ 1 . This results in a 

linearization procedure, and the ‘equation of motion’ is expressed as [42] : 

                       

−𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝜌𝜌0  𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕                                                                         (2.33)  

                                                                

This shows that a particle accelerates in the opposite direction of the pressure 

gradient. The ‘continuity equation’ for mass conservation is written as  

                   

−  
𝜕𝜕𝜌𝜌𝑇𝑇
𝜕𝜕𝜕𝜕

=
𝜕𝜕(𝜌𝜌𝑇𝑇  𝑣𝑣)
𝜕𝜕𝜕𝜕

                                                                           (2.34) 

                                                                 

which reduces to the following after linearization (under the above given conditions): 
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      −  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜌𝜌0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                                           (2.35) 

                                                                        

To obtain a differential equation relating 𝑝𝑝  and 𝜌𝜌 , the particle velocity term in 

Equations (2.33) and (2.35) must be eliminated. This can be achieved by employing 

a ‘constitutive equation’ between them. If the change in mass density 𝜌𝜌  is some 

function of changes in pressure 𝑝𝑝 only, then a ‘linearized constitutive equation’ can 

be written as 

                        

𝜌𝜌 = [𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ]𝑝𝑝=0  𝑝𝑝 = 𝜌𝜌0𝛽𝛽0 𝑝𝑝                                                   (2.36) 

                                                        

where 𝛽𝛽0 is the compressibility (reciprocal of  the bulk modulus or elastic constant) 

defined as 

𝛽𝛽0 = −
1
𝑉𝑉
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

Following is the derivation of the wave equation for pressure by combining 

Equations (2.33), (2.35) and (2.36). Taking the spatial derivative of Equation (2.33) 

we obtain, 

                     

−
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑥𝑥2 =

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜌𝜌0 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� � = 𝜌𝜌0

𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌0

𝜕𝜕𝜕𝜕
                         (2.37) 

                     

The first term on the right hand side can be rewritten using Equation (2.35), 

                        

−
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑥𝑥2 = −

𝜕𝜕2𝜌𝜌
𝜕𝜕𝑡𝑡2 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜌𝜌0

𝜕𝜕𝜕𝜕
                                                              (2.38) 
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The second term on the right hand side can be modified using (2.33), yielding   

                    

−
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑥𝑥2 = −

𝜕𝜕2𝜌𝜌
𝜕𝜕𝑡𝑡2 + �−

1
𝜌𝜌0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕𝜌𝜌0

𝜕𝜕𝜕𝜕
                                                (2.39) 

                                            

Using the linearized constitutive Equation (2.36), and reorganizing the equation, we 

obtain 

                      

(𝜌𝜌0𝛽𝛽0)
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2 =

𝜕𝜕2𝑝𝑝
 𝜕𝜕𝑥𝑥2 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 �
1
𝜌𝜌0

 
𝜕𝜕𝜌𝜌0

𝜕𝜕𝜕𝜕
�                                           (2.40) 

                                        

 or 

1
𝑐𝑐𝑠𝑠2
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2 =

𝜕𝜕2𝑝𝑝
   𝜕𝜕𝑥𝑥2 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 �
1
𝜌𝜌0

 
𝜕𝜕𝜌𝜌0

𝜕𝜕𝜕𝜕
�                                                    (2.41) 

                                                   

where 𝑐𝑐𝑠𝑠2 = (𝜌𝜌0𝛽𝛽0)−1 represents the speed of pressure waves. Multiplying both sides 

by 1 𝜌𝜌0⁄ , and rearranging the right hand side, one obtains 

                 

1
𝜌𝜌0𝑐𝑐𝑠𝑠2

𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2 =

𝜕𝜕
𝜕𝜕𝜕𝜕

 �
1
𝜌𝜌0

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�                                                           (2.42) 

                                                                        

The three-dimensional form of Equation (2.42) is as follows: 

                     
1

𝜌𝜌0𝑐𝑐𝑠𝑠2
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2 = ∇ ∙  � 1

𝜌𝜌0
 ∇𝑝𝑝�                                                                  (2.43)                                                                       

which is known as the wave equation for acoustic fields. 



 

25 
 

The equation of motion (Equation (2.33)) used in the preceding derivation is true as 

long as there are no other force terms. We may drop the terms related to gravitational 

force, whereas presence of current density  𝐽𝐽 and magnetic flux density  𝐵𝐵�⃗   in the 

body results in Lorentz force (per unit volume)  𝑞⃗𝑞 = 𝐽𝐽 × 𝐵𝐵�⃗  in addition to the 

mechanical forces in the body.  Consequently, in the presence of a magnetic flux 

density and charged particles in the body, equation of motion can be modified as 

follows: 

                      𝑞𝑞𝑥𝑥 − 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝜌𝜌0  𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕                                                            (2.44) 

where 𝑞𝑞𝑥𝑥  denotes the x-component of this interaction. Note that, movement of 

charged particles results in a current density  𝐽𝐽 = 𝜎𝜎𝐸𝐸�⃗ + 𝜎𝜎(𝑣⃗𝑣 × 𝐵𝐵�⃗ ), in turn, current 

density influences the motion. In such a case, the wave equation should be modified 

taking into account the effects of Lorentz forces, yielding 

                  

1
𝜌𝜌0𝑐𝑐𝑠𝑠2

𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2 = ∇ ∙  �

1
𝜌𝜌0

 (∇𝑝𝑝 − 𝑞⃗𝑞)�                                                      (2.45) 

                                                      

 Since the medium is source-free, the pressure distribution is determined due to 

boundary conditions as dictated by an ultrasonic transducer in contact with the 

medium. In this study, the boundary conditions are assumed as follows: 

1
𝜌𝜌0

 (∇𝑝𝑝 − 𝑞⃗𝑞) ∙ 𝑛𝑛�⃗ = 𝑎𝑎𝑛𝑛    𝑜𝑜𝑜𝑜  𝑆𝑆𝑇𝑇                                               (2.46) 

                                                                          

where 𝑆𝑆𝑇𝑇  denotes the body surface which is in contact with the transducer, The term 

𝑎𝑎𝑛𝑛  in Equation (2.46) represents the local acceleration produced by the transducer 

(derivation of this term is discussed in the next section). The remaining part of the 

surface is denoted by  𝑆𝑆 . The second boundary condition is obtained using the 

continuity relation for acceleration: 
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𝜕𝜕𝑣⃗𝑣1

𝜕𝜕𝜕𝜕
∙ 𝑛𝑛�⃗ =

𝜕𝜕𝑣⃗𝑣2

𝜕𝜕𝜕𝜕
∙ 𝑛𝑛�⃗  

where 𝑣⃗𝑣1  and 𝑣⃗𝑣2  denote the particle velocities  in region 1 and region 2 of an  

interface, respectively. This expression can also be written as 

1
𝜌𝜌01

 (∇𝑝𝑝 − 𝑞⃗𝑞)1 ∙ 𝑛𝑛�⃗ =
1
𝜌𝜌02

 (∇𝑝𝑝 − 𝑞⃗𝑞)2 ∙ 𝑛𝑛�⃗                           𝑜𝑜𝑜𝑜  𝑆𝑆              (2.47) 

 

  2.7 Piezoelectric Medium: 

 

Piezoelectric materials, which normally have neutral molecules, respond to an 

applied electric field by changing their mechanical dimensions. 

 Converse is also true; when a piezoelectric material is strained an electric field 

occurs due to small electric dipoles generated inside the material. This is due to their 

asymmetric atomic lattice. The field equations of piezoelectric materials couples the 

equations of elasticity and electricity by piezoelectric constitutive relations as 

explained below. 

The force per unit area applied to a body is called stress and, in one-dimensional 

(1D) case, it is denoted by 𝑇𝑇. The fractional extension of the body is called strain and 

is denoted by  𝑆𝑆. For small stresses applied to a 1D system, the relation between 

stress and strain is given by the Hooke’s law: 

𝑇𝑇 = 𝑐𝑐𝑐𝑐 

where  𝑐𝑐 = 1/𝛽𝛽0 is the elastic constant of the material (as given using a different 

notation in Equation (2.31)). In a piezoelectric material, however, the piezoelectric 

constitutive relation is as given below:  

𝑇𝑇 = 𝑐𝑐𝐸𝐸𝑆𝑆 − 𝑒𝑒𝑒𝑒                                                  (2.48) 
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The additional stress term on the right hand side is due to the presence of the electric 

field  𝐸𝐸.  The parameter 𝑒𝑒 is called the piezoelectric stress constant, and 𝑐𝑐𝐸𝐸  is the 

elastic constant in the presence of constant or zero E field. 

In the presence of an electric field 𝐸𝐸, the electrical displacement 𝐷𝐷 depends on the 

strain as well as the electric field:  

                                            𝐷𝐷 = 𝑒𝑒𝑒𝑒 + 𝜖𝜖𝑆𝑆𝐸𝐸                                                           (2.49) 

where  𝜖𝜖𝑠𝑠 is the permittivity with zero or constant strain.  

If the material is not piezoelectric, the ‘equation of motion’, say in z-direction, 

is given by:  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 

= 𝜌𝜌0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                                     (2.50) 

or 

𝑐𝑐𝐸𝐸
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2 = 𝜌𝜌0

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2                                                              (2.51) 

which is another form of Equation (2.43) in terms of displacement 𝑢𝑢  when the 

medium has uniform material properties.  

The electrical behavior of the medium is governed by the following equation for the 

z component of the electrical displacement vector 𝐷𝐷𝑧𝑧 , 

 
𝜕𝜕𝐷𝐷𝑧𝑧
𝜕𝜕𝜕𝜕 

= 0                                                               (2.52) 

implying that  𝐷𝐷𝑧𝑧   is constant and there are  no free charges in the medium. The 

electric field can be written in terms of the derivative of a scalar potential as follows:  

   𝐸𝐸 = −
𝜕𝜕𝜕𝜕 
𝜕𝜕𝜕𝜕

                       

Consequently, Equation (2.48) can be rewritten as: 
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−𝜖𝜖𝑠𝑠
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥2 = 0                                                          (2.53) 

If the material is not piezoelectric, Equations (2.47) and (2.49) are isolated. In a 

piezoelectric material, however, the elasticity and electricity equations are coupled 

due to piezoelectric constitutive relations (2.44) and (2.45). In such a case, one 

obtains the following equations of piezoelectricity in 1D:  

𝑐𝑐𝐸𝐸
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2 + 𝑒𝑒

𝜕𝜕2𝜑𝜑
𝜕𝜕𝑧𝑧2 = 𝜌𝜌0

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2                                              (2.54) 

   𝑒𝑒
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑧𝑧2 − 𝜖𝜖𝑠𝑠

𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥2 = 0                                                      (2.55) 

In a 3D problem, three equations are derived in the elasticity part for the three 

displacement components. Together with the electric field equation, four equations 

are obtained for four unknowns. Depending on the material properties, different 

forms of these equations can be found [43].  

In this study, the displacements and potential distribution are solved using COMSOL 

multiphysics [44]. The normal component of the acceleration 𝑎𝑎𝑛𝑛  on the crystal 

surface 𝑆𝑆𝑇𝑇  is given as the boundary condition (Equation (2.46)) for the acoustic 

problem in the body.   
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Figure 2-2 Problem geometry of Hall Effect Imaging. The body is assumed resistive with 

material properties (𝜎𝜎, 𝜇𝜇0) and bounded by surface S is under uniform static field 𝐵𝐵�⃗ 0 . To 

introduce currents inside the body an acoustic field is applied using an ultrasound transducer. 

The resultant potential difference is measured using electrodes attached on the body surface. 

 

2.8 Relation of measurements to the conductivity distribution  

2.8.1 Voltage Measurements (Hall Effect Imaging) 

 

Using the 𝜑𝜑 formulation presented in Section 2.4, the behavior of the scalar potential 

can be investigated for two cases: homogeneous and inhomogeneous conductivity 

distributions.  

2.8.1.1 Homogeneous conductivity distribution:  

 

For a homogeneous conductivity distribution (𝜎𝜎 = 𝜎𝜎0 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), Equations (2.24) 

and (2.25) can be written as, 
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∇2𝜑𝜑0 = ∇ ∙ 𝐽𝐽𝐿𝐿                     𝑖𝑖𝑖𝑖 𝑉𝑉                                                       (2.56) 

𝜕𝜕𝜑𝜑0

𝜕𝜕𝜕𝜕
=  �𝑣⃗𝑣 × 𝐵𝐵�⃗ � ∙ 𝑛𝑛�⃗         𝑜𝑜𝑜𝑜 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑇𝑇                                           (2.57) 

The potential of a point on the surface, corresponding to the reference point of 

voltage measurements, should also be set to zero.  

The divergence of the velocity current  𝐽𝐽𝐿𝐿 = 𝜎𝜎0𝐸𝐸�⃗ 𝐿𝐿 = 𝜎𝜎0�𝑣⃗𝑣 × 𝐵𝐵�⃗ � can be approximated 

as: 

𝜎𝜎0∇ ∙ 𝐸𝐸�⃗ 𝐿𝐿 ≈ 𝜎𝜎0∇ ∙ �𝑣⃗𝑣 × 𝐵𝐵�⃗ 0�                                                             (2.58) 

since the static field is much greater than the ultrasonically induced magnetic flux 

density. Using the vector identity  ∇ ∙ �𝐴𝐴 × 𝐵𝐵�⃗ � = 𝜎𝜎0(𝐵𝐵�⃗ ∙ ∇ × 𝐴𝐴 − 𝐴𝐴 ∙ ∇ × 𝐵𝐵�⃗ ), one 

obtains  

𝜎𝜎0∇ ∙ �𝑣⃗𝑣 × 𝐵𝐵�⃗ 0� = 𝜎𝜎0(𝐵𝐵�⃗ 0 ∙ ∇ × 𝑣⃗𝑣 − 𝑣⃗𝑣 ∙ ∇ × 𝐵𝐵�⃗ 0)                    (2.59) 

In an acoustically uniform medium (i.e., mass density is uniform), assuming particle 

motion is primarily determined by ultrasonic sources, it can be shown that curl of the 

particle velocity is equal to zero   (∇ × 𝑣⃗𝑣 = 0). Since the source current of the static 

field generator is outside the body, curl of the static field  �∇ × 𝐵𝐵�⃗ 0 � is also equal to 

zero in V. Consequently, when the conductivity is homogeneous, the divergence of 

the velocity current density is zero (∇ ∙ 𝐽𝐽𝐿𝐿= 0). Since there are no internal sources, the 

potential 𝜑𝜑0  is determined due to nonzero boundary conditions as given by Equation 

(2.57). One should note that 𝜑𝜑0(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  and related voltage measurement are time 

dependent due to time-varying velocity fields, however, they are independent of the 

conductivity  𝜎𝜎0 of the medium.  

As discussed in section 2.4, for a propagating brief acoustic pulse, the boundary 

conditions at both ends of the propagation line will be non-zero at different time 

instants.  During the propagation, however, the boundary conditions will be zero 

yielding 𝜑𝜑0 = 0 in the body. 
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2.8.1.2 Inhomogeneous conductivity distribution: 

 

When the conductivity is not homogeneous, then Equation (2.24) should be satisfied: 

∇ ∙ (𝜎𝜎∇𝜑𝜑) = ∇ ∙ 𝐽𝐽𝐿𝐿 =  ∇𝜎𝜎 ∙ 𝐸𝐸�⃗ 𝐿𝐿 + 𝜎𝜎∇ ∙ 𝐸𝐸�⃗ 𝐿𝐿                                   (2.60) 

 

where the right hand side is written in terms of the velocity field 𝐸𝐸�⃗ 𝐿𝐿.  Recognizing 

that the divergence of the velocity field is zero we obtain,   

∇ ∙ (𝜎𝜎∇𝜑𝜑) =  ∇𝜎𝜎 ∙ 𝐸𝐸�⃗ 𝐿𝐿 = ∇𝜎𝜎 ∙   𝑣⃗𝑣 × 𝐵𝐵�⃗                                                        (2.61)  

The source term of this equation, expressed by the scalar product of the conductivity 

gradient and the velocity field, represents the charge accumulation at the 

conductivity interfaces. Obviously, if the gradient is in the same direction of the 

velocity field then the magnitude of potential reaches to its maximum value.   Since 

the velocity field  𝐸𝐸�⃗ 𝐿𝐿  is inversely proportional to the mass density 𝜌𝜌0  (equation 

(2.33)), the voltage measurements are related to the conductivity gradient weighted 

by mass density, as reported in different studies [37] .  

The boundary condition for equation (2.61) can be written as:  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  �𝑣⃗𝑣 × 𝐵𝐵�⃗ � ∙ 𝑛𝑛�⃗         𝑜𝑜𝑜𝑜 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑇𝑇                                                       (2.62) 

In a three-dimensional body, the potential at any instant is determined by the 

distribution of conductivity gradient and velocity field in the body. For a propagating 

velocity field, the potential is also time varying and changes as a function of sound 

propagation velocity. 

Note that the boundary conditions for homogeneous (Equation 2.57) and 

inhomogeneous cases (Equation 2.62) are almost same (assuming velocity field 

assuming velocity field is same for both cases). They determine the contribution 
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from the body surface and can be eliminated if the first order variation in the scalar 

potential function is calculated due to a perturbation in conductivity distribution. 

 

2.8.1.3 The first order variation in the potential distribution (∆𝝋𝝋) due to a 

conductivity perturbation (∆𝝈𝝈): 

 

Let 𝜑𝜑0  and 𝜑𝜑  be the scalar potential functions corresponding to conductivity 

distributions 𝜎𝜎0 and 𝜎𝜎 (we assume 𝜎𝜎0  is the initial conductivity distribution which is 

not necessarily homogeneous). Then they obey the following differential equations: 

∇ ∙ (𝜎𝜎0∇𝜑𝜑0) =  ∇𝜎𝜎0 ∙   𝑣⃗𝑣 × 𝐵𝐵�⃗                                                         (2.63) 

              ∇ ∙ (𝜎𝜎∇𝜑𝜑) =  ∇𝜎𝜎 ∙   𝑣⃗𝑣 × 𝐵𝐵�⃗                                                     (2.64) 

 Equation (2.64) can be rewritten by replacing 𝜑𝜑 with 𝜑𝜑0 + ∆𝜑𝜑 and 𝜎𝜎 with 𝜎𝜎0 + ∆𝜎𝜎: 

∇ ∙ (𝜎𝜎0∇𝜑𝜑0) + ∇ ∙ �𝜎𝜎0∇(∆𝜑𝜑)� + ∇ ∙ (∆σ∇𝜑𝜑0) + ∇ ∙ �∆σ∇(∆𝜑𝜑)� 

= ∇𝜎𝜎0 ∙   𝑣⃗𝑣 × 𝐵𝐵�⃗ +  ∇(∆𝜎𝜎) ∙   𝑣⃗𝑣 × 𝐵𝐵�⃗  

The first terms on both sides are equal as given by Equation (2.63) and they drop 

from the equation. The last term on the left hand side can be dropped since it is a 

second order variation. Consequently, we obtain 

∇ ∙ �𝜎𝜎0∇(∆𝜑𝜑)� = −∇ ∙ (∆σ∇𝜑𝜑0) + ∇(∆𝜎𝜎) ∙   𝑣⃗𝑣 × 𝐵𝐵�⃗                                (2.65) 

with the following boundary condition: 

𝜕𝜕(∆𝜑𝜑)
𝜕𝜕𝜕𝜕

= 0      𝑜𝑜𝑜𝑜 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑇𝑇  

When 𝜎𝜎0 is initially assumed homogeneous, then a simplified form is obtained 

𝜎𝜎0∇2(∆𝜑𝜑) = ∇(∆𝜎𝜎) ∙   �−∇𝜑𝜑0 + 𝑣⃗𝑣 × 𝐵𝐵�⃗ �                                           (2.66) 
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It is observed that the variation in the scalar potential is determined by the scalar 

product of the gradient in conductivity distribution (normalized to conductivity 𝜎𝜎0) 

and the total electric field obtained for the initial conductivity. 

 

 
 

Figure 2-3 Problem geometry of the proposed approach. The changes in the magnetic field 

are measured using a coil encircling the body or placed nearby the body.  

2.8.2 Magnetic Field Measurements (Proposed Approach) 

 

Problem geometry for the proposed approach is shown in Figure 2.3. The magnetic 

field due to ultrasonically induced Lorentz fields is to be measured using an external 

coil.  Based on the simplified formulation presented in Section 2.4, the behavior of 

the magnetic field is investigated. Similar to the analysis performed for Hall Effect 

Imaging, the governing equations for the magnetic flux density are derived for 

homogeneous and inhomogeneous conductivity distributions. 



 

34 
 

2.8.2.1 Magnetic Field Measurements for homogeneous and inhomogeneous 

conductivity distributions 

 

The behavior of the initially applied magnetic field 𝐵𝐵�⃗ 0 is investigated using Equation 

(2.2). Since 𝐵𝐵�⃗ 0  is static and its source is outside the conductive body and 

measurement site, 

∇ × 𝐵𝐵�⃗ 0 = 0                                                                    (2.67) 

 

Taking the curl of both sides, 

∇ × ∇ × 𝐵𝐵�⃗ 0 = 0                                                            (2.68) 

In the case of ultrasonically induced Lorentz fields in a conductive body, velocity 

(𝐽𝐽𝐿𝐿 = 𝜎𝜎𝐸𝐸�⃗ 𝐿𝐿 = 𝜎𝜎�𝑣⃗𝑣 × 𝐵𝐵�⃗ �) and conduction (−𝜎𝜎∇𝜑𝜑) currents change the total magnetic 

flux density to 𝐵𝐵�⃗ (𝑡𝑡) =𝐵𝐵�⃗ 0 + 𝑏𝑏�⃗ (𝑡𝑡). Using Equation (2.2) for  𝐵𝐵�⃗ (𝑡𝑡) and neglecting the 

displacement currents, we obtain 

∇ × 𝐵𝐵�⃗ = −𝜇𝜇0𝜎𝜎∇𝜑𝜑 + 𝜇𝜇0𝜎𝜎�𝑣⃗𝑣 × 𝐵𝐵�⃗ �                                     (2.69) 

Applying the curl operator to both sides, 

∇ × ∇ × 𝐵𝐵�⃗ = 𝜇𝜇0∇ × �−𝜎𝜎∇𝜑𝜑 + 𝜎𝜎�𝑣⃗𝑣 × 𝐵𝐵�⃗ ��                     (2.70) 

 Replacing  𝐵𝐵�⃗ (𝑡𝑡)  with 𝐵𝐵�⃗ 0 + 𝑏𝑏�⃗ (𝑡𝑡)  and using Equation (2.67), it is possible to write a 

differential equation for  𝑏𝑏�⃗ (𝑡𝑡)  as follows: 

 

∇ × ∇ × 𝑏𝑏�⃗ = 𝜇𝜇0∇ × �−𝜎𝜎∇𝜑𝜑 + 𝜎𝜎�𝑣⃗𝑣 × (𝐵𝐵�⃗ 0 + 𝑏𝑏�⃗ )��                       (2.71)  

The velocity current on the right hand side can be approximated as 

   σ �𝑣⃗𝑣 × 𝐵𝐵�⃗ � ≈ σ�𝑣⃗𝑣 × 𝐵𝐵�⃗ 0�                                                              
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as  |𝑏𝑏(𝑡𝑡)|  is much smaller compared to  |𝐵𝐵0| . Thus, the first order Born 

approximation for  𝑏𝑏�⃗ (𝑡𝑡) can be obtained using the following equation: 

∇ × ∇ × 𝑏𝑏�⃗ = 𝜇𝜇0∇ × �−𝜎𝜎∇𝜑𝜑 + 𝜎𝜎�𝑣⃗𝑣 × 𝐵𝐵�⃗ 0)��                            (2.72) 

When the body has an initial conductivity distribution  𝜎𝜎0 , the equation for the 

corresponding field 𝑏𝑏�⃗ 0 is 

∇ × ∇ × 𝑏𝑏�⃗ 0 = 𝜇𝜇0∇ × �−𝜎𝜎0∇𝜑𝜑0 + 𝜎𝜎0�𝑣⃗𝑣 × 𝐵𝐵�⃗ 0)��                     (2.73) 

An expression for the first order variation in the magnetic flux density ∆𝑏𝑏�⃗ (𝑡𝑡) can be 

obtained when 𝑏𝑏�⃗ , 𝜑𝜑  and 𝜎𝜎  terms in Equation (2.72) are replaced by 𝑏𝑏�⃗ 0 + ∆𝑏𝑏�⃗ , 

𝜑𝜑0 + ∆𝜑𝜑 and 𝜎𝜎0 + ∆𝜎𝜎, respectively. In such a case, 

 

∇ × ∇ × �𝑏𝑏�⃗ 0 + ∆𝑏𝑏�⃗ � = 𝜇𝜇0∇ × �
−(𝜎𝜎0 + ∆𝜎𝜎)(∇𝜑𝜑0 + ∆𝜑𝜑 )

+(𝜎𝜎0 + ∆𝜎𝜎)�𝑣⃗𝑣 × 𝐵𝐵�⃗ 0)�
�           (2.74)  

or 

              ∇ × ∇ × 𝑏𝑏�⃗ 0 + ∇ × ∇ × ∆𝑏𝑏�⃗ = −∇ × (𝜎𝜎0∇𝜑𝜑0)− ∇ × �𝜎𝜎0∇(∆𝜑𝜑)� − ∇ ×

(∆σ∇𝜑𝜑0)− ∇ × �∆σ∇(∆𝜑𝜑)� +  ∇ × 𝜎𝜎0�𝑣⃗𝑣 × 𝐵𝐵�⃗ 0� +  ∇ × ∆𝜎𝜎 �𝑣⃗𝑣 × 𝐵𝐵�⃗ 0�                 (2.75) 

 

Reorganizing the terms on the right hand side, we obtain 

∇ × ∇ × 𝑏𝑏�⃗ 0 + ∇ × ∇ × ∆𝑏𝑏 ���⃗     

= 𝜎𝜎0∇ × �−∇𝜑𝜑0 + 𝑣⃗𝑣 × 𝐵𝐵�⃗ 0� − ∇ × �𝜎𝜎0∇(∆𝜑𝜑)� − ∇ × (∆σ∇𝜑𝜑0)   

− ∇ × �∆σ∇(∆𝜑𝜑)� + ∇ × ∆𝜎𝜎 �𝑣⃗𝑣 × 𝐵𝐵�⃗ 0�                                  (2.76) 

The first terms on both sides are equal as given by Equation (2.73). Neglecting the 

second order variations (the fourth term on the right hand side) one obtains a general 
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relation between the first order variation in the flux density and perturbation in 

conductivity: 

∇ × ∇ × ∆𝑏𝑏�⃗ = −∇ × �𝜎𝜎0∇(∆𝜑𝜑)� − ∇ × (∆σ∇𝜑𝜑0)  + ∇ × ∆𝜎𝜎 �𝑣⃗𝑣 × 𝐵𝐵�⃗ 0�     (2.77) 

or using the vector identity ∇ × �𝑃𝑃𝐴𝐴� = ∇𝑃𝑃 × 𝐴𝐴 + 𝑃𝑃∇ × 𝐴𝐴,  

∇ × ∇ × ∆𝑏𝑏�⃗ = −∇𝜎𝜎0 × �∇(∆𝜑𝜑)� − 𝜎𝜎0∇ × �∇(∆𝜑𝜑)� − ∇ × (∆σ∇𝜑𝜑0)   

                                    +∇ × ∆𝜎𝜎 �𝑣⃗𝑣 × 𝐵𝐵�⃗ 0�                                                                  (2.78) 

Since curl of gradient of a function is zero the second term on the right hand side 

drops. When the initial conductivity is homogeneous (𝜎𝜎0 = constant), the first term 

on the right is zero. Consequently, one obtains the following expression that relates 

the first order variation in magnetic flux density to the conductivity perturbation: 

      ∇ × ∇ × ∆𝑏𝑏�⃗ (𝑡𝑡) =  ∇ × �∆𝜎𝜎 �−∇𝜑𝜑0 + 𝑣⃗𝑣(𝑡𝑡) × 𝐵𝐵�⃗ 0��                                            (2.79) 

 

2.8.3 Lead-Field analysis: 

 

The measured data in the proposed approach are the voltages picked up from the 

receiver coil (Figure 2-3). The relation between the receiver coil voltage and 

magnetic flux density is given by the Faraday’s law of induction:  

                𝑣𝑣𝑎𝑎𝑎𝑎 (𝑡𝑡) = −�
𝜕𝜕𝐵𝐵�⃗
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

∙ 𝑑𝑑𝑆𝑆                                                               (2.80) 

where 𝑑𝑑𝑆𝑆 is the differential surface element in the surface enclosed by the receiver 

coil. Since 𝐵𝐵�⃗ (𝑡𝑡) is related to the conductivity distribution in the body, the received 

voltage is a function of the conductivity distribution. The above equation, however, 

does not show this relation explicitly. To obtain such a relation, in this thesis study, 

an approach that is frequently used in formulating the forward problem of 
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magnetoencephalography (MEG) is used. This approach is based on the reciprocity 

theorem [45]. In short, this theorem states that the location of the detector and source 

can be changed without affecting the detected signal amplitude. Using this theorem, 

the detected signal is expressed in terms of volume integral of the source (dipole) 

distribution. The sensitivity of the measurement to a specific dipole is determined by 

the scalar product of a lead-field vector (the electric field generated by a reciprocal 

unit current in the detector coil) with the selected dipole. Thus, once the lead field 

vector is solved for specific detector geometry, the detector voltage for an arbitrary 

dipole source can be easily calculated by integrating over the source domain.       

Similar approach can be applied if the lead field vector for the proposed imaging 

modality can be identified. In the following sections, the lead field vector will be 

found for electromagnetic fields with 1) harmonic time dependence, and 2) general 

time dependence.  

 

2.8.3.1 Harmonic time dependence: 

 

A straightforward extension of this imaging modality is to excite the ultrasonic 

transducer with its resonance frequency continuously. The pick-up voltage at the 

receiver coil is then the steady state response (a single measurement) obtained for a 

specific transducer/receiver coil configuration. To increase the number of 

measurements, the transducer and receiver coil configurations should be changed. 

Though the measurement strategy is somehow difficult for continuous excitation, the 

analysis for the lead field vector analysis is relatively simple.  

In the direct problem, 𝑬𝑬��⃗ 𝟏𝟏 and 𝑯𝑯���⃗ 𝟏𝟏 represent the electric field and magnetic field in the 

body when currents are ultrasonically induced in the body. Assuming 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗  time 

dependence and adopting the boldface phasor notation, the following equations are 

valid, 

∇ × 𝑬𝑬��⃗ 𝟏𝟏 = −𝑗𝑗𝑗𝑗𝜇𝜇0𝑯𝑯���⃗ 𝟏𝟏                                            (2.81)  
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∇ × 𝑯𝑯���⃗ 𝟏𝟏 = 𝜎𝜎𝑬𝑬��⃗ 𝟏𝟏 + 𝑱⃗𝑱𝟏𝟏                                             (2.82) 

where  𝑱⃗𝑱𝟏𝟏 = 𝜎𝜎(𝒗𝒗 × 𝑩𝑩��⃗ 𝟎𝟎)  denotes the velocity current due to ultrasonic excitation 

under a static magnetic field.   

In the reciprocal problem there are no current sources in the body.  The electric field  

𝑬𝑬��⃗ 𝟐𝟐  and the magnetic field intensity   𝑯𝑯���⃗ 𝟐𝟐  are generated inside the body due to a 

reciprocal current density     𝑱⃗𝑱𝟐𝟐    (or 𝑱⃗𝑱𝑹𝑹)    inside the receiver coil of the direct 

problem. In the reciprocal problem the following equation must be satisfied: 

∇ × 𝑬𝑬��⃗ 𝟐𝟐 = −𝑗𝑗𝑗𝑗𝜇𝜇0𝑯𝑯���⃗ 𝟐𝟐                                            (2.83)  

∇ × 𝑯𝑯���⃗ 𝟐𝟐 = 𝜎𝜎𝑬𝑬��⃗ 𝟐𝟐 + 𝑱⃗𝑱𝟐𝟐                                           (2.84) 

Using Equations (2.81) and (2.84) one obtains the following equation: 

𝑯𝑯���⃗ 𝟐𝟐 ∙ ∇ × 𝑬𝑬��⃗ 𝟏𝟏−𝑬𝑬��⃗ 𝟏𝟏 ∙ ∇ × 𝑯𝑯���⃗ 𝟐𝟐 = −𝑗𝑗𝑗𝑗𝜇𝜇0𝑯𝑯���⃗ 𝟏𝟏 ∙  𝑯𝑯���⃗ 𝟐𝟐  − 𝜎𝜎𝑬𝑬��⃗ 𝟐𝟐 ∙ 𝑬𝑬��⃗ 𝟏𝟏 − 𝑱⃗𝑱𝟐𝟐 ∙  𝑬𝑬��⃗ 𝟏𝟏        (2.85)  

Similarly, using Equations (2.82) and (2.83) we obtain 

𝑯𝑯���⃗ 𝟏𝟏 ∙ ∇ × 𝑬𝑬��⃗ 𝟐𝟐−𝑬𝑬��⃗ 𝟐𝟐 ∙ ∇ × 𝑯𝑯���⃗ 𝟏𝟏 = −𝑗𝑗𝑗𝑗𝜇𝜇0𝑯𝑯���⃗ 𝟏𝟏 ∙  𝑯𝑯���⃗ 𝟐𝟐  − 𝜎𝜎𝑬𝑬��⃗ 𝟐𝟐 ∙ 𝑬𝑬��⃗ 𝟏𝟏 − 𝑱⃗𝑱𝟏𝟏 ∙  𝑬𝑬��⃗ 𝟐𝟐   (2.86) 

Using the vector identity ∇ × �𝐴𝐴 × 𝐵𝐵�⃗ � = 𝐵𝐵�⃗ ∙ �∇ × 𝐴𝐴� − 𝐴𝐴 ∙ �∇ × 𝐵𝐵�⃗ �, the left hand 

sides of (2.85) and (2.86) are simplified and equations are put in the following form: 

∇ ∙ �𝑬𝑬��⃗ 𝟏𝟏 × 𝑯𝑯���⃗ 𝟐𝟐� = −𝑗𝑗𝑗𝑗𝜇𝜇0𝑯𝑯���⃗ 𝟏𝟏 ∙  𝑯𝑯���⃗ 𝟐𝟐  − 𝜎𝜎𝑬𝑬��⃗ 𝟐𝟐 ∙ 𝑬𝑬��⃗ 𝟏𝟏 − 𝑱⃗𝑱𝟐𝟐 ∙  𝑬𝑬��⃗ 𝟏𝟏                   (2.87) 

∇ ∙ �𝑬𝑬��⃗ 𝟐𝟐 × 𝑯𝑯���⃗ 𝟏𝟏� = −𝑗𝑗𝑗𝑗𝜇𝜇0𝑯𝑯���⃗ 𝟏𝟏 ∙  𝑯𝑯���⃗ 𝟐𝟐  − 𝜎𝜎𝑬𝑬��⃗ 𝟐𝟐 ∙ 𝑬𝑬��⃗ 𝟏𝟏 − 𝑱⃗𝑱𝟏𝟏 ∙  𝑬𝑬��⃗ 𝟐𝟐                     (2.88) 

By subtracting Equation (2.88) from Equation (2.87), 

 ∇ ∙ �𝑬𝑬��⃗ 𝟏𝟏 × 𝑯𝑯���⃗ 𝟐𝟐� − ∇ ∙ �𝑬𝑬��⃗ 𝟐𝟐 × 𝑯𝑯���⃗ 𝟏𝟏� = 𝑱⃗𝑱𝟏𝟏 ∙  𝑬𝑬��⃗ 𝟐𝟐  − 𝑱⃗𝑱𝟐𝟐 ∙  𝑬𝑬��⃗ 𝟏𝟏                            (2.89) 

Taking the volume integral in all universe (in volume V∞ bounded by S∞) we obtain 

∫ ∇ ∙ �𝑬𝑬��⃗ 𝟏𝟏 × 𝑯𝑯���⃗ 𝟐𝟐 − 𝑬𝑬��⃗ 𝟐𝟐 × 𝑯𝑯���⃗ 𝟏𝟏�𝑑𝑑𝑑𝑑 = ∫ �𝑱⃗𝑱𝟏𝟏 ∙  𝑬𝑬��⃗ 𝟐𝟐  − 𝑱⃗𝑱𝟐𝟐 ∙  𝑬𝑬��⃗ 𝟏𝟏�𝑑𝑑𝑑𝑑                (2.90)𝑉𝑉∞𝑉𝑉∞
  



 

39 
 

By applying the divergence theorem to the left hand side it becomes a surface 

integral,  

� ∇ ∙ �𝑬𝑬��⃗ 𝟏𝟏 × 𝑯𝑯���⃗ 𝟐𝟐 − 𝑬𝑬��⃗ 𝟐𝟐 × 𝑯𝑯���⃗ 𝟏𝟏�𝑑𝑑𝑑𝑑 = � 𝑬𝑬��⃗ 𝟏𝟏 × 𝑯𝑯���⃗ 𝟐𝟐 − 𝑬𝑬��⃗ 𝟐𝟐 × 𝑯𝑯���⃗ 𝟏𝟏𝑑𝑑𝑑𝑑
𝑆𝑆∞𝑉𝑉∞

        (2.91) 

Since the electric and magnetic field intensities vanish at infinity, we obtain the well-

known reciprocity relation: 

� �𝑱⃗𝑱𝟏𝟏 ∙  𝑬𝑬��⃗ 𝟐𝟐  − 𝑱⃗𝑱𝟐𝟐 ∙  𝑬𝑬��⃗ 𝟏𝟏�𝑑𝑑𝑑𝑑                                       (2.92)
𝑉𝑉∞

 

Since the current density  𝑱⃗𝑱𝟏𝟏 in the direct problem is nonzero in the conducting body 

volume (𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ) and the current density  𝑱⃗𝑱𝟐𝟐 in the reciprocal problem is nonzero in the 

receiver coil volume (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ), Equation (2.92) reduces to the following: 

� 𝑱⃗𝑱𝟏𝟏 ∙  𝑬𝑬��⃗ 𝟐𝟐 𝑑𝑑𝑑𝑑   =  � 𝑱⃗𝑱𝟐𝟐 ∙  𝑬𝑬��⃗ 𝟏𝟏
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 𝑑𝑑𝑑𝑑                                  (2.93a) 

Recognizing that  𝑱⃗𝑱𝟐𝟐𝑑𝑑𝑑𝑑 = 𝑰𝑰𝑹𝑹𝑑𝑑𝑙𝑙, the right hand side becomes 

� 𝑱⃗𝑱𝟏𝟏 ∙  𝑬𝑬��⃗ 𝟐𝟐 𝑑𝑑𝑑𝑑   =  𝑰𝑰𝑹𝑹 � 𝑬𝑬��⃗ 𝟏𝟏
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

∙ 𝑑𝑑𝑙𝑙                                 (2.93b) 

The integral on the right hand side is the pick-up voltage 𝑽𝑽𝒂𝒂𝒂𝒂 due to ultrasonically 

induced harmonic currents in the body.  Consequently,   𝑽𝑽𝒂𝒂𝒂𝒂 is expressed as follows: 

                               𝑽𝑽𝒂𝒂𝒂𝒂 = ∫ 𝑱⃗𝑱𝟏𝟏 ∙ (𝑬𝑬��⃗ 𝑹𝑹 /𝑰𝑰𝑹𝑹)𝑑𝑑𝑑𝑑𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
                                             (2.94) 

where  𝑬𝑬��⃗ 𝟐𝟐  is replaced by 𝑬𝑬��⃗ 𝑹𝑹 . The term in the parenthesis is the electric field in the 

reciprocal problem when unit current is applied to the receiver coil and it is called as 

the lead field vector  (𝑳𝑳��⃗ 𝑴𝑴) for the forward problem of the proposed imaging modality.  

The subscript M in the lead field vector shows that it is the lead field vector for the 
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magnetic field measurements. Note that the lead-field vector itself is a function of 

body conductivity.  

To show the relation between the pick-up voltage and conductivity in the medium, 

the term  𝑱⃗𝑱𝟏𝟏 is replaced by 𝜎𝜎(𝒗𝒗 × 𝑩𝑩��⃗ 𝟎𝟎) and the final form is obtained: 

                               𝑽𝑽𝒂𝒂𝒂𝒂 = � 𝜎𝜎�𝒗𝒗 × 𝑩𝑩��⃗ 𝟎𝟎� ∙ 𝑳𝑳��⃗ 𝑴𝑴(𝜎𝜎)𝑑𝑑𝑑𝑑                                (2.95)
𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 

Note that the pick-up voltage is linearly proportional to the conductivity distribution 

and the weight of each conductive element is determined by the dot product of the 

Lorentz field and reciprocal field on that element. 

 

2.8.3.2 General time dependence: 

 

When general time dependence is assumed for the particle velocity  𝑣⃗𝑣(𝑡𝑡) , the 

reciprocity relation given in Equation (2.92) does not hold. Instead, the following 

relation is valid [46]: 

� 𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑
𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝐽𝐽1(𝑟𝑟, 𝜏𝜏 − 𝑡𝑡) ∙ 𝐸𝐸�⃗ 2

∞

−∞

(𝑟𝑟, 𝑡𝑡)

= � 𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐽𝐽2(𝑟𝑟, 𝑡𝑡) ∙ 𝐸𝐸�⃗ 1

∞

−∞

(𝑟𝑟, 𝜏𝜏 − 𝑡𝑡)                                  (2.96) 

In this expression, 𝐸𝐸�⃗ 1 is the electric field in the direct problem due to velocity current 

𝐽𝐽1 = 𝜎𝜎�𝑣⃗𝑣(𝑡𝑡) × 𝐵𝐵�⃗ �  and 𝐸𝐸�⃗ 2  is the electric field in the reciprocal problem due to 

reciprocal current 𝐽𝐽2 = 𝐽𝐽𝑅𝑅   in the receiver coil. Here 𝑟𝑟  represents the three-

dimensional position vector as given in the original article.  
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For the receiver coil, we may write 

∫ 𝑑𝑉 𝐽𝑅(𝑡) = ∫ 𝑑𝑙 𝐼𝑅(𝑡)
𝐶𝑜𝑖𝑙𝑉𝑐𝑜𝑖𝑙

 

Then the right hand side of equation (2.96) becomes, 

∫ 𝑑𝑡

∞

−∞

 𝐼𝑅(𝑡) ∫ 𝐸1(𝜏 − 𝑡) ∙ 𝑑𝑙
𝐶𝑜𝑖𝑙

= ∫ 𝑑𝑡

∞

−∞

 𝐼𝑅(𝑡)𝑉𝑎𝑏(𝜏 − 𝑡) = 𝐼𝑅 ∗ 𝑉𝑎𝑏       (2.97) 

For the left hand side of Equation (2.96), we recognize that the electric field 𝐸⃗⃗𝑅(𝑟, 𝑡) in 

the reciprocal problem can be written as the product of a position dependent function 

and energizing reciprocal current 𝐼𝑅(𝑡): 

𝐸⃗⃗𝑅(𝑟, 𝑡) = 𝐸⃗⃗𝑅
0(𝑟)

𝜕

𝜕𝑡
(𝐼𝑅(𝑡))                                                                      (2.98) 

where 𝐸⃗⃗𝑅
0(𝑟) is the reciprocal electric field normalized with reciprocal current in the 

receiver coil.  Since the body is assumed resistive, Equation (2.98) should be valid. 

Consequently, we obtain 

∫ 𝑑𝑡 ∫ 𝑑𝑉
𝑉𝑏𝑜𝑑𝑦

𝐽1(𝑟, 𝜏 − 𝑡) ∙ 𝐸⃗⃗𝑅

∞

−∞

(𝑟, 𝑡) = ∫ 𝑑𝑡 
𝜕

𝜕𝑡
𝐼𝑅(𝑡) ∫ 𝑑𝑉

𝑉𝑏𝑜𝑑𝑦

𝐽1(𝑟, 𝜏 − 𝑡) ∙ 𝐸⃗⃗𝑅
0(𝑟)

∞

−∞

(2.99)    

Let   𝐼′𝑅(𝑡) denotes  
𝜕

𝜕𝑡
𝐼𝑅(𝑡). Then the pick-up voltage 𝑣𝑎𝑏 is obtained as follows: 

𝐼𝑅 ∗ 𝑣𝑎𝑏 = ∫ [ ∫ 𝑑𝑡

∞

−∞

 𝐼′
𝑅(𝑡)𝐿𝑀(𝑟, 𝜏 − 𝑡)]

𝑉𝑏𝑜𝑑𝑦

𝑑𝑉                             (2.100) 

where 𝐿𝑀(𝑟, 𝜏 − 𝑡) = 𝐽1(𝑟, 𝜏 − 𝑡) ∙ 𝐸⃗⃗𝑅
0(𝑟).  Assume that  𝐼𝑅(𝑡) = 𝑡𝑢(𝑡), where 𝑢(𝑡) is the 

unit step function. Taking the time derivative with respect to 

𝜏 of both sides of  (2.100), the left hand side becomes: 

𝜕

𝜕𝜏
(𝐼𝑅(𝜏) ∗ 𝑣𝑎𝑏(𝜏)) =  𝑣𝑎𝑏(𝜏) ∗  

𝜕

𝜕𝑡
𝐼𝑅(𝜏)                                    (2.101) 

𝑣𝑎𝑏(𝜏) ∗ 𝑢(𝜏) = ∫ 𝑢(𝑡)
∞

−∞
𝑣𝑎𝑏(𝜏 − 𝑡)𝑑𝑡 = ∫ 𝑣𝑎𝑏(𝜏 − 𝑡)𝑑𝑡

∞

−∞
                  (2.102) 
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The right hand side of (2.100) becomes: 

𝜕

𝜕𝜏
∫ [ ∫ 𝑑𝑡

∞

−∞

 𝐼′
𝑅(𝑡)𝐿𝑀(𝑟, 𝜏 − 𝑡)]

𝑉𝑏𝑜𝑑𝑦

𝑑𝑉 = ∫ [ ∫ 𝑑𝑡

∞

−∞

𝜕

𝜕𝜏
𝐿𝑀(𝑟, 𝜏 − 𝑡)]

𝑉𝑏𝑜𝑑𝑦

 𝑑𝑉          (2.103)    

Rewriting equation (2.100): 

𝑣𝑎𝑏(𝜏 − 𝑡)= ∫ [∫ 𝑑𝑡
∞

−∞

𝜕

𝜕𝜏
𝐿𝑀(𝑟, 𝜏 − 𝑡)]

𝑉𝑏𝑜𝑑𝑦
 𝑑𝑉 

The pick-up voltage is then obtained as: 

𝑣𝑎𝑏(𝜏 − 𝑡)= ∫
𝜕

𝜕𝜏
𝐿𝑀(𝑟, 𝜏 − 𝑡)

𝑉𝑏𝑜𝑑𝑦
 𝑑𝑉                               (2.104) 

A final form of this equation can be obtained by 1) changing the variables for the time 

variation, 2) dropping the position vector𝑟, 3) expressing  𝐽1  in terms of particle 

velocity, and 4) setting 𝐸⃗⃗𝑅
0 = 𝐸⃗⃗𝑅

0(𝜎).  

   𝑣𝑎𝑏(𝑡) = ∫
𝜕

𝜕𝜏
(

𝑉𝑏𝑜𝑑𝑦

𝜎(𝑣⃗(𝑡) × 𝐵⃗⃗) ∙ 𝐸⃗⃗𝑅
0(σ)                       (2.105) 

2.9 Receiver coil design considerations  

When the ultrasonic transducer position is fixed, the sensitivity in the measurements 

can be increased by optimizing the reciprocal field distribution. However, even for a 

fixed transducer position ultrasonic beam steering approaches are applicable using an 

ultrasound array. Thus, in order to use a different receiver coil for each beam 

direction, one should be able to acquire the best available data for any propagation 

direction. This can be achieved by using two coils for data acquisition, namely, x- and 

y-coils which are sensitive to acoustic propagation in x- and y-directions, respectively. 

Figure 2.4 and Figure 2.5 shows two realizable coil configurations encircling the body 

for the development of x- and y-coils.   
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Figure 2-4 x-coil configuration encircling a conductive body of conductivity 𝜎𝜎. x-coil is 

sensitive to an acoustic pulse propagating in the x-direction. The energizing current IR for the 

reciprocal problem is also shown. 
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Figure 2-5 y-coil configuration encircling a conductive body of conductivity 𝜎𝜎. y-coil is 

sensitive to an acoustic pulse propagating in the y-direction. The energizing current IR for the 

reciprocal problem is also shown. 
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CHAPTER 3  
 

NUMERICAL MODELING OF THE FORWARD 

PROBLEM 
 

 

 

3.1 Introduction 

 

The proposed imaging modality is based on the Lorentz fields generated by applying 

ultrasound in the existence of the static magnetic field. The general formulation of 

the partial differential equations for the scalar and magnetic vector potentials, for the 

acoustic pressure and for piezoelectricity are explained in Chapter 2. In this chapter, 

the numerical modeling of the forward problem is described.  

To solve the forward problem numerically the COMSOL Multiphysics 3.3 is 

[44]used. COMSOL is an engineering simulation software environment that gives 

opportunities of defining geometry of the problem, meshing, specifying the physics, 

then solving and visualizing the results using post processing [44] tools. To solve the 

multiphysics problems different modules of COMSOL are employed. In our problem 

three coupled problems, namely, acoustic, piezoelectric and electromagnetic 

problems are solved. The related module of each problem is performed by specifying 

the properties of physics with the coupling parameters, as described below.  
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3.2 Pressure Acoustic Module 

 

Pressure Acoustics module, a sub-category of Acoustic Module, is used to describe 

the acoustic properties of each subdomain and boundary conditions. Figure 3-1 

shows the geometry of model. In this model, there are four subdomains, namely, 

normal tissue (Ω1), tumor (Ω2), ultrasonic transducer (Ω3), and surrounding air (Ω4).  

The boundaries of each domain are denoted by ∂Ω1, ∂Ω2, ∂Ω3, and ∂Ω4, respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Geometry of the acoustic (pressure) problem. Subdomains Ω 1, Ω2, Ω3, Ω4   and 

associated boundaries ∂Ω1, ∂Ω2, ∂Ω3 ∂Ω4 represent the normal tissue, tumor, piezoelectric 

transducer and air, respectively.       

 

The general formulation of the sound waves in a lossless medium for acoustic 

pressure, p, is given in Equation (2.41).  In COMSOL, it is represented as follows: 

Ω2 

Ω2 

Ω4 

∂Ω4 Ω1 

Ω3 

∂Ω1 

∂Ω2 

∂Ω3 

Ω2 
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1
𝜌𝜌0𝑐𝑐𝑠𝑠2

𝜕𝜕2𝑝𝑝
𝜕𝜕𝑡𝑡2 + ∇ ∙  �− 1

𝜌𝜌0
 (∇𝑝𝑝 − 𝑞⃗𝑞)� = 𝑄𝑄                                                    (3.1)  

here  𝜌𝜌  (kg/m2) is the density of the medium, cs (m/s) is the speed of sound. 𝑞⃗𝑞 

(N/m3) and Q(1/s2) represent the (optional) dipole and monopole sources, 

respectively. In our case there is no monopole source, so the right hand side of the 

Equation (3.1) is zero. However, there are mechanical forces, such as gravitation and 

vibration due to Lorentz fields that can be represented as dipole sources. In this study, 

the body is assumed to stay stationary in space due to external forces, and the effects 

of gravitational force are ignored.  

The Lorentz force (per unit volume)  𝑞𝑞��⃗ = 𝐽𝐽 × 𝐵𝐵�⃗  , due to the presence of current 

density 𝐽𝐽 and magnetic flux density 𝐵𝐵�⃗ , is nonzero and must appear in the formula. 

This source term also shows the coupling between acoustic pressure and 

electromagnetic problems. 

Boundary Conditions: There are four different boundaries as shown in Figure 3-1. 

The properties of each boundary are given below: 

On ∂Ω1 and ∂Ω2: These boundaries express the continuity of the normal acceleration. 

The resulting equation is: 

𝑛𝑛�⃗ ∙ �1
𝜌𝜌

(∇𝑝𝑝 − 𝑞⃗𝑞)�
1

 − 𝑛𝑛�⃗ ∙ �1
𝜌𝜌

(∇𝑝𝑝 − 𝑞⃗𝑞)�
2

= 0                               (3.2) 

 or 

 𝑛𝑛�⃗ ∙ �1
𝜌𝜌

(∇𝑝𝑝 − 𝑞⃗𝑞)�
1

= 𝑛𝑛�⃗ ∙ �1
𝜌𝜌

(∇𝑝𝑝 − 𝑞⃗𝑞)�
2

                                  (3.3) 

On ∂Ω 3: This boundary is the common boundary between the normal tissue and 

ultrasonic transducer. The ultrasonic pressure is produced from this boundary. It is 

the boundary where the coupling between the acoustic (pressure) module and 

piezoelectric module occurs. Since the ultrasonic transducer is excited with a specific 

voltage at this boundary, the displacement occurs in x-, y- and z-directions. The 
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normal component of the acceleration in the direction of propagation is assigned as 

follows: 

 𝑛𝑛�⃗ ∙ �1
𝜌𝜌

(∇𝑝𝑝 − 𝑞⃗𝑞)� = 𝑎𝑎𝑛𝑛                                        (3.4) 

where 𝑎𝑎𝑛𝑛  represents the inward acceleration. It is obtained as the second time 

derivative of the displacement at the lower boundary of the crystal in the 

piezoelectric problem. 

On ∂Ω4: With this boundary condition, the reflections on the boundary are ignored: 

𝑛𝑛�⃗ ∙ �1
𝜌𝜌

(∇𝑝𝑝 − 𝑞⃗𝑞)� + 1
𝑐𝑐𝑐𝑐

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �1−(𝑛𝑛�⃗ 𝑘𝑘 ∙𝑛𝑛�⃗ )�
𝑐𝑐𝑐𝑐

∙ 𝜕𝜕𝑝𝑝0
𝜕𝜕𝜕𝜕

                                   (3.5) 

Here 𝑝𝑝0 is the pressure source, 𝑞⃗𝑞 represents a dipole source and 𝑛𝑛�⃗ 𝑘𝑘  denotes the wave 

direction. Since the body is assumed lossless, the second term on the left hand side of 

Equation (3.5) is zero. Furthermore, since there are no external pressure sources 

Equation (3.5) can be rewritten as:  

𝑛𝑛�⃗ ∙ �1
𝜌𝜌

(∇𝑝𝑝 − 𝑞⃗𝑞)� = 0                                                      (3.6) 

 

3.3 Piezoelectric Module 

 

The piezoelectric effect is defined as the transfer of electrical to mechanical energy 

and vice versa.  It is described in the COMSOL manuals as:  “Direct piezoelectric 

effect consists of an electric polarization in a fixed direction, as the piezoelectric 

crystal is deformed. This polarization is proportional to the deformation and causes 

an electric potential difference over the crystal. Inverse piezoelectric effect consists 

of the opposite of direct effect. This means that an applied potential difference 

induces a deformation of the crystal.” [44] 
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In this study, the inverse piezoelectric effect is employed. By applying a potential 

difference to the piezoelectric crystal, a deformation that causes pressure on the body 

is generated. 

There are two mathematical forms to express the piezoelectric effects: Stress-charge 

and Strain-charge. These forms give the relation between the stress, strain, electric 

field and electrical displacement fields. Stress is known as the load per unit area 

acting within a material whereas the strain is the change in shape of an object in 

response to stress. The stress-charge and strain charge relations are as follows: 

Stress- Charge: 

 S

T
Ec e

e ε
= −
= +

T S E
D S E  (3.7) 

Strain- Charge: 

 

T
E

T

s d
d ε

= +
= +

S T E
D T E  (3.8) 

 

where S, T, E, and D are  vectors comprising x-, y-, and z-components of the strain, 

stress, electric field and  the displacement field, respectively. 𝑐𝑐𝐸𝐸 , ε and d are 

elasticity, piezoelectric stress and piezoelectric strain matrices.   

To define the piezoelectric properties of the ultrasonic transducer and set the 

boundary conditions, the following model (Figure 3-2) is used. In this model, it is 

assumed that only Ω3 has the piezoelectric properties.  
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Figure 3-2 Geometry for the piezoelectric module. Subdomains Ω 1, and Ω3 represent the 

normal tissue and the piezoelectric transducer, respectively.  ∂Ω1 is the boundary of the 

normal tissue.  ∂Ω3 represents the surface of the crystal used for voltage application. On  ∂Ω4 

and ∂Ω5 the normal component of the electrical displacement is assumed zero. ∂Ω6 serves as 

ground for the electrical problem.      

  

Electrical Boundary Conditions: 

On ∂Ω3: (Electric Potential) This boundary condition specifies the voltage applied. 

Since the piezoelectric problem solves for the potential distribution, the value of the 

potential at this boundary should be defined. 

On ∂Ω6: (Ground) This boundary condition specifies the ground surface.  

∂Ω4 ∂Ω5 

∂Ω6 

Ω3 

Ω3 Ω3 

 

 

 

Ω1 

∂Ω1 

∂Ω3 
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On ∂Ω 4 and ∂Ω5: (Zero Charge/Symmetry) These boundaries specify that the 

normal component of the electric displacement is zero as 𝑛𝑛�⃗ ∙ 𝐷𝐷��⃗ = 0. 

The boundary ∂Ω1 is not a common boundary between the piezoelectric transducer 

and conductive body/tissue. Since the body has no piezoelectric property, this 

boundary is passive. 

Mechanical Boundary Conditions: 

On ∂Ω 3, ∂Ω4 and ∂Ω5: (Free) It is a standard mechanical boundary condition. 

Initially it is applied to all boundaries of the domains governed by the piezoelectric 

interface. It defines the boundary as free to move in any direction without any loads 

acting on in. 

On ∂Ω 6: (Roller) It opposes the standard mechanical condition (free). It specifies 

that there is no displacement perpendicular to the boundary, but tangential 

displacements are allowed. 

 

3.4 Electromagnetic Module 

 

In this module, the electromagnetic analysis is performed by solving the Maxwell's 

equations. The detailed information about the Maxwell's equations is given in 

Chapter 2.  In the forward problem of this thesis study, initially, there is only static 

magnetic field and there is no electric field in the body. Coupled with the acoustic 

signal, an electric field, called Lorentz electric field, and current density is formed in 

the conductive body/tissue. The geometry of electromagnetic problem is shown in 

Figure 3-3. 

In this module, quasi-static analysis is preformed under the assumption that 𝜕𝜕𝐷𝐷
��⃗

𝜕𝜕𝜕𝜕
= 0, 

namely, the displacement currents are assumed negligible. The partial differential 

equations governing the behavior of the scalar and magnetic vector potentials are 
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given in detail in Chapter 2.  The final equation to be solved in the electromagnetic 

module is given in Equation (2.24). The representation of this equation in COMSOL 

(AC-DC Module, Quasistatic, In Plane Induction and Magnetic Fields) is:  

𝜕𝜕𝜇𝜇0𝜇𝜇𝑟𝑟𝐻𝐻��⃗
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐵𝐵�⃗ 𝑟𝑟
𝜕𝜕𝜕𝜕

+ ∇ × �𝜎𝜎−1�∇ × 𝐻𝐻��⃗ − 𝐽𝐽𝑒𝑒� − 𝑣⃗𝑣 × �𝜇𝜇0𝜇𝜇𝑟𝑟𝐻𝐻��⃗ + 𝐵𝐵�⃗ 𝑟𝑟�� = 0         (3.9) 

 

 

 

 

 

 

 

 

 

Figure 3-3 Geometry of the electromagnetic problem. Subdomains Ω 1  and Ω 2  are the 

conductive body and tumor, respectively. Ω 1 represents the air surrounding the body. ∂Ω 1 , 

∂Ω2,  ∂Ω4  are boundaries of the conductive tissue, tumor and air, respectively. 

Here 𝐽𝐽𝑒𝑒  is the external current density and Br is the remanent flux density. The 

remanent flux density is defined as the magnetic flux density remaining in a 

substance in the absence of self-demagnetization field. In this problem, there is 

neither external current density nor remanent flux density.  However, there is a static 

magnetic flux density (1T) in z-direction. Consequently, the simplified form of 

Equation (3.9) can be written as follows: 

𝜕𝜕𝜇𝜇0𝜇𝜇𝑟𝑟𝐻𝐻��⃗

𝜕𝜕𝜕𝜕
+ ∇ × �𝜎𝜎−1�∇ × 𝐻𝐻��⃗ � − 𝑣⃗𝑣 × �𝜇𝜇0𝜇𝜇𝑟𝑟𝐻𝐻��⃗ �� = 0                             (3.10) 

Ω1 

∂Ω1 ∂Ω2 

Ω2 

Ω4 

∂Ω4 
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To solve Equation (3.10), the following boundary conditions are defined: 

 On ∂Ω 1: On this boundary, the continuity condition is valid, which is the natural 

boundary condition implying continuity of the tangential component of the electric 

field: 

𝑛𝑛�⃗ × (𝐸𝐸�⃗1 − 𝐸𝐸�⃗ 2) = 0                                                      (3.11) 

On ∂Ω2: The same boundary condition (Equation 3.11) is defined   on ∂Ω1. 

On ∂Ω 4: On this boundary, the magnetic insulation condition is valid, that sets the 

tangential component of the electric field zero: 

𝑛𝑛�⃗ × 𝐸𝐸�⃗ = 0                                                                (3.12) 

3.5 Coil Configuration 

 

The bridge between the forward and inverse problem is the measurement of the 

induced fields. For this purpose, one can use different types of measurements, such 

as electrodes, coils and ultrasound transducers (receiver). In this thesis study, we 

propose to use magnetic field measurements and introduced a novel coil 

configuration. 

In the proposed coil configuration, there are two similar coils encircling the body as 

shown in Figure 3-4. Since the resultant current density is in two directions, i.e, x- 

and y- directions, two coils are employed. The coils are designed to be sensitive in 

these directions. 

To show that the received voltage is a function of conductivity distribution, an 

approach based on reciprocity theorem is performed. In this theorem it is stated that 

the location of the detector and source can be changed without affecting the detected 

signal amplitude. 
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                                                                               x-coil 

 

 

 

 

 

 

 

 

                                                                               y-coil 

Figure3-4 Novel coil configuration to sense the current density  

(𝐽𝐽𝑣𝑣𝑣𝑣𝑣𝑣 ) induced in the conductive body with conductivity σ. The arrows show the path for 

current. The coils are encircled the conductive body.  The coils are named according to the 

sensing direction of currents, as x-coil and y-coil. 

σ 

σ0 

𝐽𝐽𝑣𝑣𝑣𝑣𝑣𝑣  

σ 

σ0 

𝐽𝐽𝑣𝑣𝑣𝑣𝑣𝑣  
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The detected signal is expressed in terms of the volume integral of the source 

(dipole) distribution. To determine the sensitivity of the measurement to a specific 

dipole the scalar product of a lead vector field with the selected dipole is satisfied. 

The lead vector field is the electric field generated by a reciprocal unit current in the 

detector coil. To solve the lead field vector for a specific detector, each detector 

called as x-coil and y-coil are excited by (reciprocal) unit current. Detailed 

information about lead field vector is given in Chapter 2.  

The simulation of lead field vector is performed by exciting x- and y- coils with unit 

current (1 A).  The detecting coils are encircling the conductive body with 5cm x 5 

cm size. The coils simulated in Comsol are represented with lines to show the path of 

the current. 

 

Figure 3-5  Electric field distribution shown with arrows in conductive body by encircling 

with y-coil configuration and in air. 
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It is seen from the results of simulations, electric fields induced by y-coil are in y-

direction and electric fields induced by x-coil are in x-direction (Figure 3-5 and 

Figure 3-6). Both of them have maximum electric field distribution around the center 

of coils. Since the coils encircle the conductive bodies, maximum electric field is 

induced in the conductive bodies, especially around the center of conductive bodies. 

If these coils are used as receiver coils, the current in x-direction and y-direction are 

sensed by x-coil and y-coil, respectively. 

 

Figure 3-6 Electric field distribution in conductive body encircling with x-coil configuration 

3.6 Model Geometry 

To make the numerical solutions of proposed coupled problem, 2D model geometry 

is drawn (Figure 3-7). The geometry consist of ultrasonic transducer, receiver coils 

(x-coil and y-coil), conductive body, tumor and surrounding air. 
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3.6.1 Ultrasonic Transducer 

 

 As an ultrasonic transducer a single element transducer and 16-element linear 

phased array transducer is modeled (Figure 3-8). In medical ultrasound ferroelectric 

materials are used to exhibit the piezoelectric effects. A well-known ferroelectric 

material PZT is used as a standard transducer material. Detail information about PZT 

is given in Appendix A. In our simulations we modeled the ultrasonic transducer 

using PZT-5H material. The properties of PZT-5H are taken from the material library 

of COMSOL software as given below [44]: 

127 80.2 84.7 0 0 0
80.2 127 84.7 0 0 0
84.7 84.7 117 0 0 0

0 0 0 23 0 0
0 0 0 0 23 0
0 0 0 0 0 23.5

Ec GPa

 
 
 
 

=  
 
 
 
   

2

0 0 0 0 17.03448 0
0 0 0 17.03448 0 0

6.22812 6.22812 23.2403 0 0 0

Ce
m

 
 =  
 − − −   

8

1.3 0 0
0 1.5 0 10
0 0 1.5

F
m

ε −

 
 = × 
    

 

3.6.2 Conductive Body and Tumor Modeling 

 

The conductive body and tumor are modeled as 5 cm x 5cm and 5 mm x 5 mm in 

size, respectively. For conductive body and tumor electrical and acoustic properties 

of breast fat and blood are represented. Electrical conductivities of breast fat and 

tumor are 0.0257 S/m and 0.8221 S/m, respectively at 1 MHz For the other tissues 
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the dielectric permittivity and conductivity values are given in Appendix B at 50 kHz, 

100 kHz, 500 kHz and 1 MHz frequencies. 

For solving acoustic problem the acoustic properties of bodies/tissues should be 

defined. The acoustic properties of breast fat and tumor are defined as: density of 

breast fat is 980 kg/m3, the speed of sound in it is 1520 m/s; density of tumor is 1040 

kg/m3, the speed of sound in it is 1550 m/s. The acoustic properties of some tissues 

are given in Appendix B. 

 

3.6.3 Meshing 

 

In finite element modeling mesh size is very important for results. It must be 

sufficiently small, comparable to the wavelength. It is known that the mesh size is 

must be 5-10 times smaller than the wavelength of the operating frequency to have 

exact results. In these simulations, triangular elements are used to mesh the whole 

geometry. The conductive body and tumor consist of the triangular elements with 2 

times smaller than the wavelength in mesh size (Figure 3-8).  

The number of mesh elements for each domain is given in Table 3-1. 

Table 3-1Number of mesh elements (triangular elements) of each subdomain. 

 

Subdomain Number of mesh elements 

Breast fat  (5cm x5cm) 18731 

Tumor (5mm x 5mm) 180 

Air(1m x1m) 11741 

Each crystal of ultrasonic transducer                      

(1 mm x 1mm) 

16 

 



 

59 
 

 

 

 

Figure 3-7 Geometry of problem solved with FEM.  The surrounding air is 1m x1m in size. 

In the above figure the conductive body, transducers and receiver coils are not clear. In the 

below figure it is clear that the transducers are positioned at the upper boundary the 

conductive body and the receiver coils are encircle the conductive body. 

y-coil 

x-coil 

conductive body 
air 

Ultrasonic transducer 
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Figure 3-8  Mesh view of the geometry. 
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CHAPTER 4  
 

 RESULTS 
 

 

4.1 Introduction 

 

For an arbitrary body geometry and conductivity distribution, Lorentz fields cannot 

be obtained using analytical methods.  To obtain a solution, numerical methods must 

be employed. In this study, numerical solutions are obtained using the Finite Element 

Method (FEM). In this chapter, results obtained for various simulation studies are 

presented. The next two sections investigate the pressure and velocity current density 

distributions for different ultrasonic transducers and different excitation types.  The 

sensitivity matrix analysis for a homogeneous body configuration and reconstructed 

images are presented in the latter sections. 

 

4.2 Transducer Excitation 

 

In this study, a sinusoidal voltage V is applied to the surface of a piezoelectric crystal 

for one period of the excitation frequency f , i.e.,   

𝑉𝑉(𝑡𝑡) = Asin(2𝜋𝜋𝜋𝜋𝜋𝜋)               (𝑡𝑡 < 1/𝑓𝑓)                                            (4.1) 

where the amplitude term A =1V. The corresponding voltage waveform is given in .  
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The depth of the conductive body is assumed 5 cm. Since the speed of sound in the 

body is 1520 m/s, to obtain information about the body data should be taken in 

duration calculated as: 

𝑥𝑥 = 𝑣𝑣𝑣𝑣 → 𝑡𝑡 =
𝑥𝑥
𝑣𝑣

=
5𝑐𝑐𝑐𝑐

1520𝑚𝑚/𝑠𝑠
≅ 32.8 𝜇𝜇𝜇𝜇 

In this study, the run-time for each simulation is chosen as 32.8 µs with 0.1µs 

intervals. 

 

Figure 4-1  Applied voltage (V) to each piezoelectric crystal. The amplitude of the electrical 

signal is selected as 1 V as given in y-axis. The x-axis shows time in seconds.  

 

4.3 Transducer Types (Single Element, Linear Phased Array) 

 

Two different types of ultrasonic transducers are used in the simulations: single 

element transducer and linear phased array transducer with 16-elements (crystals). 
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The geometry of piezoelectric crystal changes with the resonance frequency of the 

transducer. The relation between the thickness and resonance frequency of the 

piezoelectric element is given with the following equation: 

𝑓𝑓𝑅𝑅 = 𝑐𝑐
2𝑡𝑡

                                                             (4.2) 

where 𝑓𝑓𝑅𝑅  is the resonance frequency, c is the speed of sound in the crystal, and t is 

the thickness of the crystal. Note that the resonance frequency increases as the crystal 

thickness decreases. In this study, the resonance frequency of piezoelectric element is 

considered as 1MHz. The sound speed of PZT-5H is 4000 m/s, therefore the 

thickness of piezoelectric is chosen as 1 mm.  

4.3.1 Single Element  

 

The two-dimensional model of a single element transducer has 1 mm thickness and 1 

cm length (Figure 4-2). When the transducer is excited with a pulse waveform (as 

shown in Figure 4-1) a pressure wave propagates inside the body. The pressure 

distributions at different time instants inside a homogenous and inhomogeneous body 

are shown in  Figure 4-3 through Figure 4-5  and, Figure 4-12 through Figure 4-14 

respectively.  The corresponding velocity current density distributions are given in 

Figure 4-9 through Figure 4-11 and Figure 4-18 through Figure 4-20, respectively.  

Note that the maxi mum velocity current density induced in the body is 

approximately 0.2 mA/m2, which is below the safety limit at 1MHz. The pressure 

waves in a homogeneous body at different points along the main propagation axis are 

shown in Figure 4-4. 
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Figure 4-2  Electrically and acoustically inhomogeneous body. A single element transducer 

and two receiver coils are also shown. The inhomogeneous body models blood in a 

homogeneous breast tissue.   

 

Note that, as the pressure wave moves away from the transducer, the amplitude of 

the pressure decreases (Figure 4-6 through Figure 4-8). The peak pressure values at 

1cm, 2.5 cm and 4.5 cm below the transducer are approximately 8100 Pa, 7900 Pa 

and 4900 Pa, respectively. 

 

 

Breast fat: 

σ= 0.8221 S/m 

ρ=980 kg/m3 

 cs=1520 m/s 

 

 

 

Ultrasonic transducer Blood: 

σ= 0.0257 S/m 

ρ=1040 kg/m3 

 cs=1550 m/s 

 

 

 

Air: 

σ= 0 S/m 

ρ=1.25 kg/m3 

 cs=343 m/s 
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Figure 4-3 Pressure distributions due to single element transducer for  t = 0.1 µ in a 

homogeneous body 

 

 

Figure 4-4 Pressure distributions due to single element transducer for t = 10 µs in a 

homogeneous body  
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Figure 4-5 Pressure distributions due to single element transducer for t = 25 µs in a 

homogeneous body  

 

 

Figure 4-6 Pressure waves in the homogeneous body at 1cm below the transducer along the 

main axis of the transducer 
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Figure 4-7 Pressure waves in the homogeneous body at 2.5 cm below the transducer along 

the main axis of the transducer 

 

 

Figure 4-8 Pressure waves in the homogeneous body at 4.5 cm below the transducer along 

the main axis of the transducer  
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Figure 4-9 Velocity current density distributions for t = 1 µs in the homogeneous body     

 

 

 

Figure 4-10 Velocity current density distributions for t = 10 µs in the homogeneous body 
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Figure 4-11  Velocity current density distributions for t = 25 µs in the homogeneous   

 

 

 

Figure 4-12 Pressure distributions generated with single element transducer for t = 0.1 µs in 

inhomogeneous body (with blood) 
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Figure 4-13 Pressure distributions generated with single element transducer for t = 10 µs in 

inhomogeneous body (with blood) 

 

 

Figure 4-14 Pressure distributions generated with single element transducer for t = 25 µs in 

inhomogeneous body (with blood) 
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Figure 4-15 Pressure waves in the inhomogeneous body at 1cm below the transducer along 

the main axis of the transducer  

 

 

Figure 4-16 Pressure waves in the inhomogeneous body at 2.5 cm below the transducer 

along the main axis of the transducer  
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Figure 4-17 Pressure waves in the inhomogeneous body at 4.5 cm below the transducer 

along the main axis of the transducer 

 

Figure 4-15 through Figure 4-17  show the pressure distributions in inhomogeneous 

body at 1 cm, 2.5 cm and 4.5 cm below the single element transducer. As the 

pressure wave moves away from the transducer, the amplitude of the pressure wave 

decreases. The peak pressure values at 1 cm, 2.5 cm and 4.5 cm below the transducer 

are calculated as 8200 Pa, 7700 Pa and 5000 Pa, respectively.  

In the inhomogeneous body (4 mm x 5 mm blood, 8 mm below the transducer), the 

electrical conductivity of blood is higher compared to the breast fat (σblood = 0.8221 

S/m, σbreast fat = 0.0257 S/m at 1MHz). Consequently, the induced current density in 

the blood must be higher than the rest of the body (Figure 4-18 through Figure 4-20). 

Note that the velocity current density induced in this domain must be under the 

safety limit (Maximum induced current is about   5 mA/m2). In the homogeneous 

domain maximum current is approximately 0.2 mA/m2 .  
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Figure 4-18 Velocity current density distributions for t= 0.1 µs in the inhomogeneous body   

 

 

 

Figure 4-19 Velocity current density distributions for t= 3.6 µs in the inhomogeneous body   
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Figure 4-20 Velocity current density distributions for t= 6.9 µs in the inhomogeneous body   

 

4.3.2 Linear Phased Array 

 

For the linear phased array transducer, the number of piezoelectric crystals is 16 

(Figure 4-21). Each element of the transducer is modeled with 1 mm thickness, and 

is excited with the same electrical potential (as given in Equation (4.1)). For the 

homogeneous body, the pressure distributions and pressure waves at selected 

positions are shown in Figure 4-22 through Figure 4-24 and Figure 4-25 through 

Figure 4-27, respectively. Figure 4-28 through Figure 4-30 show the velocity current 

density distributions corresponding to the pressure distributions (as given in Figure 

4-22 through Figure 4-24). The same plots are also prepared for the inhomogeneous 

body. Figure 4-31 through Figure 4-33 and Figure 4-37 through Figure 4-39 show 

the pressure and velocity current distributions when there is an inhomogeneity as 

displayed in Figure 4-21. Figure 4-34 through Figure 4-36 present the pressure waves 

at the selected locations on the main propagation axis.  
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For both cases (homogeneous and inhomogeneous) as the pressure wave moves away 

from the transducer, the amplitude of the pressure decreases. The peak pressure 

values at 1 cm, 2.5 cm and 4.5 cm are calculated as 3000 Pa, 2700 Pa and 2400 Pa 

for the homogeneous body, respectively. For the inhomogeneous body, the peak 

pressure values at the same positions are calculated as 3100 Pa, 2600 Pa and 2400 Pa, 

respectively. 

The velocity current density distributions show that the induced current in the blood 

is under the safety limit (Maximum induced current density is about 2 mA/m2). In the 

homogeneous body, however, maximum current density is even less, i.e., it is 

approximately 0.1 mA/m2 .  

 

 

Figure 4-21 Electrically and acoustically inhomogeneous body. A 16-element linear phased 

array transducer and two receiver coils are also shown. The inhomogeneous body models 

blood in a homogeneous breast tissue.   

Breast fat: 

σ= 0.8221 S/m 

ρ=980 kg/m3 

 cs=1520 m/s 

 

 

 

16-element linear phased array 
Blood: 

σ=0.0257 S/m 

ρ=1040 kg/m3 

 cs=1550 m/s 

 

 

 

Air: 

σ= 0 S/m 

ρ=1.25 kg/m3 

 cs=343 m/s 
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Figure 4-22 Pressure distributions due to 16-element linear phased array transducer for t = 

0.1 µs in a homogeneous body  

 

 

Figure 4-23 Pressure distributions due to 16-element linear phased array transducer for t = 10 

µs in a homogeneous body  
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Figure 4-24 Pressure distributions due to 16-element linear phased array transducer for t = 25 

µs in a homogeneous body  

 

 

Figure 4-25 Pressure waves in the homogeneous body at 1 cm below the transducer along the 

main axis of the transducer (16-element linear phased array)    
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Figure 4-26 Pressure waves in the homogeneous body at 2.5 cm below the transducer along 

the main axis of the transducer (16-element linear phased array)    

 

 

Figure 4-27 Pressure waves in the homogeneous body at 4.5 cm below the transducer along 

the main axis of the transducer (16-element linear phased array)    
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Figure 4-28 Velocity current density distributions for t = 0.1 µs in the homogeneous body 

(16-element linear phased array transducer)   

 

 

Figure 4-29 Velocity current density distributions for t =10 µs in the homogeneous body (16-

element linear phased array transducer)   
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Figure 4-30 Velocity current density distributions for t =25 µs in the homogeneous body (16-

element linear phased array transducer)   

 

 

Figure 4-31Pressure distributions due to 16-element linear phased array transducer for t = 0.1 

µs in the inhomogeneous body   
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Figure 4-32 Pressure distributions due to 16-element linear phased array transducer for t = 10 

µs in the inhomogeneous body  

 

 

Figure 4-33 Pressure distributions due to 16-element linear phased array transducer for t = 25 

µs in the inhomogeneous body  
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Figure 4-34 Pressure waves in the inhomogeneous body at 1cm below the transducer along 

the main axis of the transducer (16-element linear phased array)   

 

 

Figure 4-35 Pressure waves in the inhomogeneous body at 2.5 cm below the transducer 

along the main axis of the transducer (16-element linear phased array)   
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Figure 4-36  Pressure waves in the inhomogeneous body at 4.5 cm below the transducer 

along the main axis of the transducer (16-element linear phased array)   

 

 

Figure 4-37 Velocity current density distributions for t = 0.1 µs in the inhomogeneous body 
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Figure 4-38 Velocity current density distributions for t = 3.6 µs in the inhomogeneous body 

 

 

Figure 4-39 Velocity current density distributions for t = 6.9 µs in the inhomogeneous body 
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4.4 Measurement of Induced Voltage along Receiver Coils 

 

In order to measure the velocity current density induced in the conductive body and 

tumor tissue, we use two receiver coils, namely, x-coil and y-coil. Detailed 

information about the receiver coils is given in Chapter 3 Coil Configuration part. 

These coils are encircling the conductive body. The induced voltages in the receiver 

coils can be calculated using the following line integral: 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 = −∫𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑑𝑑𝑙𝑙                                                         (4.3) 

where 𝐸𝐸�⃗ 𝑖𝑖𝑖𝑖𝑖𝑖   represents the electric field along the receiver coil geometry and 𝑑𝑑𝑙𝑙  

denotes the differential element on the coil path. Note that, a different approach is 

presented in Chapter 2 that expresses the measurements in terms of the lead-fields. 

To verify the lead field formulation, the receiver voltages are calculated using the 

two approaches: 1) using the lead field equation (Equation (2.101)) and 2) using the 

line integral equation (Equation 4.3).  For this comparison 16-element linear phased 

array transducer is placed on the upper edge of the body. The steering angle is 

chosen as zero degree.  

Figure 4-40 shows the normalized voltage waveforms for the homogeneous body. 

Figure 4-41 shows the normalized receiver voltages for the inhomogeneous body. 

For both cases, the voltage waveforms obtained by the lead-field approach closely 

follow the waveforms obtained by the line integral expression. Consequently, one 

may conclude that the lead field approach correctly models the forward problem of 

the proposed approach. The lead field formulation will be the basis of the inverse 

problem studies presented in the latter sections.   
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a) 

 

b) 

 

Figure 4-40 Induced voltage along x-coil for homogeneous conductive body with 16-element 

linear phased array transducer   a) using Equation (4.3)    b) using the lead field equation 

(Equation (2.101))  
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a) 

 

b) 

 

Figure 4-41 Induced voltage along x-coil for inhomogeneous conductive body ( blood is 

placed 8 mm below the transducer, with 5 mm x 5mm geometry) with 16-element linear 

phased array a) using Equation (4.3)    b) using the lead fields (Equation (2.101))                                              
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4.5 Inverse Problem Solution 

 

The aim of this imaging modality is to reconstruct the electrical impedance 

distribution  j   (or its change    relative to a known distribution). With 

the proposed approach this can be achieved in two ways: 

1) Time-Harmonic excitation: In this way, the ultrasonic transducer is excited 

sinusoidally at its resonance frequency and a steady-state current distribution is 

developed inside the body. The magnetic fields of the induced current can be 

measured by detector coils placed nearby the body or by encircling coils. The 

number of measurements can be increased by changing the transducer position.  

Ww The relation between the pick-up voltages and conductivity 

distribution in the body is already derived and given by equation (2.105): 

𝑽(σ) = ∫
𝜕

𝜕𝑡
𝜎(𝒗⃗⃗ × 𝑩⃗⃗ 𝟎) ∙ 𝑳⃗⃗ 𝑴(𝜎)𝑑𝑉                              

𝑉𝑏𝑜𝑑𝑦
                 (4.4) 

where  𝑳⃗⃗ 𝑴 (the lead field vector) is the electric field in the reciprocal problem 

when unit current is applied to the receiver coil.   

The relation between the measurement and conductivity is a non-linear mapping. 

However the first-order variation in the measurement related to conductivity 

perturbation can be determined. The measurement for a known conductivity 

distribution 𝜎0 can be written as  

𝐕(σ0) = ∫
𝜕

𝜕𝑡
𝜎0(𝒗⃗⃗ × 𝑩⃗⃗ 𝟎) ∙ 𝑳⃗⃗ 𝑴(𝜎0)𝑑𝑉                              

𝑉𝑏𝑜𝑑𝑦
 (4.5) 

Equation (4.5) can be rewritten when 𝜎 is replaced by 𝜎0 + ∆𝜎,  
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𝑽(σ0 + ∆𝜎) = ∫
𝜕

𝜕𝑡
(𝜎0 + ∆𝜎)(𝒗⃗⃗ × 𝑩⃗⃗ 𝟎) ∙ 𝑳⃗⃗ 𝑴(𝜎0 + ∆𝜎)𝑑𝑉              (4.6)

𝑉𝑏𝑜𝑑𝑦

 

When we approximate 𝑳⃗⃗ 𝑴(𝜎) with the lead field of the initial conductivity 

distribution, i.e., 𝑳⃗⃗ 𝑴(𝜎) ≅ 𝑳⃗⃗ 𝑴(𝜎0), then the following relation is valid, 

𝑽(σ0 + ∆𝜎) − 𝐕(σ0) = ∫ ∆𝜎
𝜕

𝜕𝑡
(𝒗⃗⃗ × 𝑩⃗⃗ 𝟎) ∙ 𝑳⃗⃗ 𝑴(𝜎0)𝑑𝑉              (4.7)

𝑉𝑏𝑜𝑑𝑦

 

A discretized version of Equation (4.7) can be written as 

∆𝑉 = ∑ (𝐸⃗ 𝑣𝑒𝑙 ∙ 𝐿⃗ 𝑀)𝑁
𝑗=1 ∆𝜎                                                       (4.8)    

where N represents the number of elements in the discrete conductivity model.  By 

changing the coil/transducer configuration it is possible to obtain M independent 

measurements yielding the following matrix equation relating the change in 

measurements to a perturbation in conductivity: 

∆𝐕 = 𝑺𝑻𝑯 ∆𝛔                                                                  (4.9) 

Here    𝑺𝑻𝑯    represents the sensitivity matrix for the time-harmonic excitation. In 

this study, the performance of imaging using time-harmonic excitation is not studied 

in detail, though the theory behind is clarified.  

2) Pulse type excitation: When the transducer is excited with an electrical pulse, 

then a pressure wave is generated inside the body. In such a case, the particle 

velocity is a function of time, i.e., 𝑣 = 𝑣 (𝑡) yielding a velocity current density 

distribution propagating inside the body. The relation between the pick-up voltage 

and conductivity distribution will be very similar to the time-harmonic case as shown 

by equation (2.101). However, the measurement in such a case is time varying: 
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𝑉(σ, t) = ∫ 𝜎(𝒗⃗⃗ (t) × 𝑩⃗⃗ 𝟎) ∙ 𝐿⃗ 𝑀(𝜎)𝑑𝑉                                             (4.10)
𝑉𝑏𝑜𝑑𝑦

 

The first order variation in the measurements can now be written in the data 

acquisition period (TD ) as, 

𝑉(σ0 + ∆𝜎, 𝑡) − V(σ0, t) = ∫ ∆𝜎(𝑣 (t) × 𝐵⃗ 0) ∙ 𝐿⃗ 𝑀(𝜎0)𝑑𝑉           (4.11) 
𝑉𝑏𝑜𝑑𝑦

 

The discretized version can be written as: 

∆𝑉(𝑡) = ∑ (𝐸⃗ 𝑣𝑒𝑙(𝑡) ∙ 𝐿⃗ 𝑀)
𝑁

𝑗=1
∆𝜎                      𝑡 < 𝑇𝐷                   (4.12) 

This relation can be written for M different time instants (∆𝑡 = 𝑇𝐷/𝑀) as follows: 

∆𝑉(𝑖∆𝑡) = ∑ (𝐸⃗ 𝑣𝑒𝑙(𝑖∆𝑡) ∙ 𝐿⃗ 𝑀)
𝑁

𝑗=1
∆𝜎              𝑖 = 1…𝑀                         (4.13) 

Consequently, a matrix equation can be obtained for a specific transducer position 

and coil configuration: 

∆𝐕 = 𝑺𝑷 ∆𝛔                                                          (4.14)  

where  𝑺𝑷  represents the 𝑀 × 𝑁 sensitivity matrix for a pulse type excitation. 

In this study, a novel receiver coil configuration is proposed which consists of an x-

coil and y-coil (Details are given in Chapter 2 and 3). As their name implies each coil 

is more sensitive to the currents in the corresponding direction. To specify which coil 

is used for the measurements an appropriate subscript (i.e., x or y) is added to the 

relevant terms in equation (4.14) and pick-up voltages are written in the following 

forms: 

∆𝐕𝐱 = 𝑺𝑷𝒙 ∆𝛔                                                       (4.15) 

∆𝐕𝐲 = 𝑺𝑷𝒚 ∆𝛔                                                       (4.16) 
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or a larger system of equations can be obtained as 

�
∆𝐕𝐕𝐱𝐱
∆𝐕𝐕𝐲𝐲

� = �
𝑺𝑺𝑷𝑷𝑷𝑷
𝑺𝑺𝑷𝑷𝑷𝑷

�  ∆𝛔𝛔                                                    (4.17)      

Equation (4.17) can also be written in the following form:    

∆𝐕𝐕𝐱𝐱𝐱𝐱 = 𝑺𝑺𝑷𝑷𝑷𝑷𝑷𝑷 ∆𝛔𝛔                                                       (4.18) 

 

where  𝑺𝑺𝒑𝒑𝒑𝒑𝒑𝒑  is an 2MxN sensitivity matrix  and ∆𝐕𝐕𝐱𝐱𝐱𝐱  is a 2Mx1 measurement vector. 

Note that Equation (4.17) is written for a specific transducer position. It is always 

possible to increase the number of measurements by changing the transducer location.  

In this thesis study, to obtain the sensitivity matrix two electromagnetic problems are 

solved. Firstly, electric fields are computed due to the reciprocal currents in the 

receiver coils. Thereafter, electric fields (Lorentz Electric Fields) are computed due 

to the excitation of the ultrasonic transducer in the main static magnetic field.  The 

dot product of the electric fields for each pixel gives the corresponding entries in the 

sensitivity matrix.  

To understand the characteristics of the imaging system, the sensitivity matrix must 

be analyzed. For this purpose, the transducer-body-receiver coil configuration should 

be specified. In this study, the body is chosen as 5 cm x 5 cm square object and it is 

divided into 0.5 mm x 0.5 mm elements, yielding 10000 pixels (N =10000). As it is 

mentioned in Section 4.2 (Transducer Excitation), the run-time for each simulation is 

32.8µs with 0.1µs time intervals. Thus, for each simulation the number of 

measurements (M) is 328. The linear phased array transducer is assumed to be  

located at two positions, namely, the upper and the right edges of the body. For each 

transducer position, the sensitivity matrix is calculated for seven steering angles (-

22.5°, -15°, -7.5°, 0°, 7.5°, 15°, 22.5°). Thus, the sensitivity matrix S is of dimension 

9184x10000. Note that the number of measurements (NM) is obtained using the 

following formula: 
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𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁𝑁𝑁 

where 

NST: number of steering angles for each transducer position, 

NTP: number of transducer positions, 

NRC: number of receiver coils, 

NSE: number of samples for each excitation.   

To get insight about the characteristics of the sensitivity matrix, a specific row is 

displayed for a 16-element linear phased array transducer.   Figure 4-42 shows the 

problem geometry used for the sensitivity calculations. In this study, the steering 

angle 0° is chosen, i.e., the pressure wave is propagating in the main axis (y-axis) of 

the transducer. Since the resultant velocity field is in x-direction, the sensitivity 

profile obtained for the x-coil is analyzed. The Lorentz field is calculated at t=10 𝜇𝜇s 

and shown in Figure 4-43. Figure 4-44 shows the electric field distribution inside the 

body due to a unit reciprocal current in the x-coil. The corresponding row of the 

sensitivity matrix is shown in Figure 4-45.  
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Figure 4-42 A linear 16 element phased- array transducer  positioned at the upper boundary 

of the body. The geometry of the receiver coil (x-coil) is also shown. 

 

Figure 4-43 Lorentz electric field (V/m) distribution at t = 10 µs due to 16-element linear 

phased array transducer.  

x

y

Lorentz Electric Field Distribution

 

 

-0.02 -0.01 0 0.01 0.02
-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10-3

16-element linear phased array transducer 

breast fat 

x-coil 

air 



94 
 

 

 

Figure 4-44 Electric field (V/m) distribution induced by the reciprocal current in the x-coil.  

 

Figure 4-45 Image of the sensitivity (Vm/S) pattern for the selected transducer-coil 

configuration (as shown in Figure 4-42) at t = 10 s. 
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Figure 4-46 One-dimensional plot of the sensitivity (V⋅m/S) distribution for the specific 

transducer-coil configuration (Figure 4-42) at time instant t = 10 µs.  

To understand the performance of the imaging system, the sensitivity matrix is 

analyzed using the Singular Value Decomposition (SVD). SVD of a matrix A is 

given as: 

𝑨𝑨 = 𝑼𝑼𝑼𝑼𝑽𝑽𝑻𝑻                          (4.9) 

where U and V matrices are orthonormal matrices. The columns of U and V are the 

left-singular vectors and right-singular vectors of A, respectively. S is a diagonal 

matrix whose diagonal entries (the singular values of A) are arranged in the order of 

decreasing magnitude. The resolution matrix [47] calculated as, 

R=VVT                                                         (4.10) 
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is usually used to test the resolution properties of a linear imaging system. If n is the 

number of pixels in the imaging domain, then R is an nxn matrix. Note that each 

column or row of the resolution matrix shows the reconstructed image due to a single 

pixel perturbation. If the number of right singular vectors is equal to the number of 

unknowns, then R becomes an identity matrix (showing identical reconstruction for 

each perturbation). However, if there is noise in the measurements, some singular 

vectors corresponding to small singular values must be truncated. This yields a 

reduction in the number of image basis vectors used in image reconstruction and R 

differs from the identity matrix   (Appendix C).  

The resolution matrix of the proposed system is calculated assuming an SNR of 

80dB. This results in limited number of basis vectors (5648) to be used in the 

calculation of the resolution matrix.  Figure 4-47 shows a specific part of the 

10000x10000 resolution matrix under this condition.  The diagonal characteristic of 

the resolution matrix is evident; however, the magnitudes differ depending on the 

pixel position.  

The resolution matrix can be further analyzed by generating the so-called resolution 

map of the imaging system. This map is formed using only the diagonal elements of 

the resolution matrix which usually represent the peak response of the system to 

single pixel perturbations. Figure 4-48 shows the resolution map of the generated 

10000x10000 resolution matrix. It is clearly seen that the proposed imaging 

configuration has higher sensitivity to pixels under the transducers and has lower 

sensitivity to pixels away from both transducer locations. The maximum steering 

angle (22.5°) is also effective in this response.         

Figure 4-49 shows the singular values of the sensitivity matrix normalized with the 

maximum singular value.  The condition number is calculated as 3.29 x107. 
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Figure 4-47 A specific portion of the resolution matrix (10000x10000) corresponding to the 

proposed transducer-receiver coil configuration.  The receiver coils record data for a period 

of 32.8µs with 0.1µs sampling intervals. The transducer is located at two positions, namely, 

the upper and the left edges of the body. For each transducer position, the sensitivity matrix 

is calculated for seven steering angles    (-22.5°, -15°, -7.5°, 0°, 7.5°, 15°, 22.5°). 
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Figure 4-48 Resolution map of the 10000x10000 resolution matrix (SNR 80 dB)

 

             Figure 4-49 Normalized singular values of the sensitivity matrix 
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4.6 Image Reconstruction 

 

In this thesis study, the Truncated SVD method is used to reconstruct the images of 

the conductivity distribution.  If the resolution matrix R is an identity matrix, any 

perturbation in the imaging domain can be identically reconstructed. However, due to 

the noise level in the measurements the number of image basis vectors used in image 

reconstruction may change (Appendix C).  If the number of image basis vectors (𝑟𝑟) is 

less than 𝑛𝑛 , then V will be 𝑛𝑛 × 𝑟𝑟  matrix.  Consequently, the characteristics of 

resolution matrix R will change according to the number of truncated basis vectors.  

The performance of the proposed imaging system can be assessed by simulation 

studies.  For this purpose, two  body models are prepared: 

a) Model 1: A single inhomogeneity (square domain of conductivity 0.8221 

S/m) located at the center of the body (at a distance of 2.5 cm from the 

transducers) (Figure 4-50 and Figure 4-51). 

b) Model 2: Five identical inhomegeneities  (square domain of conductivity 

0.8221 S/m) located symmetrically in the imaging domain. One is at the 

center of the body; others are at 1 cm distance from the body surfaces (Figure 

4-52 and Figure 4-53). 

Initially, a single transducer (16 –element linear phased array) is used for excitation  

as shown in Figure 4-26. The sensitivity matrix is calculated for seven steering 

angles (-22.5°, -15°, -7.5°, 0°, 7.5°, 15°, 22.5°). Thus, the sensitivity matrix SPx is of 

dimension 4592x10000.To assess the reconstruction performance in the case of noisy 

data Gaussian noise is added to the measurements.  Images of the first model (Model 

1) are reconstructed according to the SNRs of 20dB, 40 dB, 80 dB and with 

maximum SNR.  Figures 4-54 through Figure 4-57 present the reconstructed images. 

The number of basis vectors used for different SNRs is given in Table 4-1. The 
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resolution in the images increases as the SNR in the measurements increases. It is 

observed that SNR is more demanding to improve resolution in y-direction whereas 

the resolution in x direction is high even at the lowest SNR in the measurements. 

One dimensional plots (Figures 4-58 through Figure 4-61) of the reconstructed 

conductivities (along x=0 line) shows that behavior more clearly.  

To equalize the resolution in both directions, data is acquired for a second transducer 

position (Figure 4-51). Thus the number of measurements is doubled. The resultant 

sensitivity matrix SPxy is of dimension 9184x10000. Figure 4-62 through Figure 4-65 

are the reconstructed images of Model 1. The number of basis vectors used for 

different SNRs is given in Table 4-2. One dimensional plots (Figures 4-66 through 

Figure 4-69) of the reconstructed conductivities (along x=0 line) shows the 

improvement in resolution. 

Table 4-1Number of basis vectors for different SNRs. Single transducer excitation. 

 

SNR (dB) Number of basis vectors 
20 783 
40 1509 
80 3051 
137 (max) 4500 

 

Table 4-2 Number of basis vectors for different SNRs. Two transducer excitations. 

 

SNR (dB) Number of basis vectors 
20 1453 
40 2821 
80 5641 
182 (max) 9100 
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Figure 4-70 through Figure 4-73 are the reconstructed images of Model 2. As 

expected, the resolution in the reconstructed images improves as the SNR in the 

measurement increases.  A notable feature of the system is that even an SNR of 20dB 

yields images that show the positions and sizes of the objects correctly.  

 

                    

 

  

Figure 4-50 A single inhomogeneity (square domain of conductivity 0.8221 S/m ) is 

located at the center of the body (Model 1).  The transducer is placed is on the top 

side of the conductive body. 
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Figure 4-51 A single inhomogeneity (square domain of conductivity 0.8221 S/m) is located 

at the center of the body (Model 1).  The transducer is placed is on the left side of the 

conductive body. 

 

  

Figure 4-52 Five identical inhomegeneities (square domain of conductivity 0.8221 S/m ) 

located symmetrically in the imaging domain (Model 2).  The transducer is placed is on the 

top side of the conductive body. 
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Figure 4-53 Five identical inhomegeneities (square domain of conductivity 0.8221 S/m) are 

located symmetrically in the imaging domain (Model 2).  The transducer is placed is on the 

left side of the conductive body. 

 

 

Figure 4-54 The reconstructed image of Model 1 when the SNR is 20 dB. Data is acquired 

using a single transducer located on the top edge of the body. 
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Figure 4-55 The reconstructed image of Model 1 when the SNR is 40 dB. Data is acquired 

using a single transducer located on the top edge of the body 

 

 

Figure 4-56 The reconstructed image of Model 1 when the SNR is 80 dB. Data is acquired 

using a single transducer located on the top edge of the body. 
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Figure 4-57 The reconstructed image of Model 1 when the SNR is maximum. Data is 

acquired using a single transducer located on the top edge of the body. 

 

 

Figure 4-58 One-dimensional plot of the reconstructed conductivities (Figure 4-54) along       

x=0 line. SNR = 20dB. 
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Figure 4-59 One-dimensional plot of the reconstructed conductivities (Figure 4-55) along       

x=0 line. SNR = 40dB 

 

 

Figure 4-60 One-dimensional plot of the reconstructed conductivities (Figure 4-56) along       

x=0 line. SNR = 80dB 
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Figure 4-61 One-dimensional plot of the reconstructed conductivities (Figure 4-57) along       

x=0 line. SNR = 182dB 

 

 

Figure 4-62 The reconstructed image of Model 1 when the SNR is 20 dB. Data is acquired 

using two transducer positions. 
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Figure 4-63 The reconstructed image of Model 1 when the SNR is 40 dB. Data is acquired 

using two transducer positions. 

 

 

Figure 4-64 The reconstructed image of Model 1 when the SNR is 80 dB. Data is acquired 

using two transducer positions. 
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Figure 4-65 The reconstructed image of Model 1 when the SNR is 182 dB. Data is acquired 

using two transducer positions. 

 

 

Figure 4-66 One-dimensional plot of the reconstructed conductivities (Figure 4-62) along       

x=0 line. SNR = 20dB. 
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Figure 4-67 One-dimensional plot of the reconstructed conductivities (Figure 4-63) along       

x=0 line. SNR = 40dB. 

 

 

Figure 4-68 One-dimensional plot of the reconstructed conductivities (Figure 4-64) along       

x=0 line. SNR = 80dB.  
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Figure 4-69 One-dimensional plot of the reconstructed conductivities (Figure 4-65) along       

x=0 line. SNR = 182dB. 

 

 

Figure 4-70 The reconstructed image of Model 2 when the SNR is 20 dB. Data is acquired 

using two transducer positions.       
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Figure 4-71 The reconstructed image of Model 2 when the SNR is 40 dB. Data is acquired 

using two transducer positions.   

 

 

Figure 4-72 The reconstructed image of Model 2 when the SNR is 80 dB. Data is acquired 

using two transducer positions. 
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Figure 4-73 The reconstructed image of Model 2 when the SNR is 80 dB. Data is 

acquired using two transducer positions.   
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CHAPTER 5 
 

CONCLUSION AND DISCUSSION 
 

 

In this study a new imaging modality is proposed to image electrical conductivity of 

body tissues. This modality is based on the magnetic field measurements generated 

by ultrasonically induced Lorentz fields. The magnetic fields are measured using two 

coils encircling the body. The two coil configurations (x- and y-coils) are designed to 

be sensitive to currents in x- and y- directions, respectively.  The properties of the 

proposed approach are revealed by exploiting the multiphysics characteristics 

(acoustic, piezoelectric, and electromagnetic) involved in its different phases.  Basic 

field equations governing the behavior of the time-varying acoustic and 

electromagnetic fields are reviewed. The relation between the measurements and 

conductivity distribution is derived. The resulting formulation is linearized around an 

initial conductivity distribution. The characteristics of the imaging system are studied 

by analyzing the sensitivity matrix using the SVD. The performance of the imaging 

system is investigated using simulation studies. 

This proposed imaging modality is based on the results reported for Hall Effect 

Imaging [48].  Since the theory and basic assumptions behind the forward problem of 

Hall Effect Imaging was not discussed elsewhere, the initial phase of this thesis study 

is to reveal the corresponding theory. Thereafter, the forward problem of the 

proposed approach is described. Magnetic fields of the induced velocity current 

propagation and their relation to body conductivity distributions are explained. The 

lead field analyses are described for the new measurement system for two different 
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excitations, namely, the time harmonic excitation, and pulse type excitations. The 

imaging performance for the pulse-type excitations are discussed in detail. The 

results show the potent of this new imaging modality. 

Comments and discussions on different phases of this study are listed below. 

Numerical Modeling: The characteristics of the forward problem are analyzed using 

finite element based commercial software (Comsol Multiphysics). In the numerical 

modeling, the pressure acoustic, piezoelectric and electromagnetic modules are 

coupled whenever it is necessary in the solution of the forward problem. In the 

piezoelectric module, a single element transducer and 16-element linear phased array 

transducer are modeled with PZT-5H material. Inverse piezoelectric effect is 

performed by exciting each transducer with time-varying electrical potentials. In this 

study, the transducers are excited with a sinusoidal potential of one cycle. The 

piezoelectric crystals can be excited with longer sinusoidal potentials or tone burst 

potentials that may yield different characteristics in the imaging system. 

In the pressure acoustic module, the acoustic properties of the homogeneous and 

inhomogeneous regions are modeled with the two major tissues in the breast (i.e., 

breast fat and breast fat with blood). The pressure generated in the body should be 

originated from a pressure source. In this study, the outputs of the piezoelectric 

module are assumed as the primary pressure source. The interaction of the velocity 

currents with the static magnetic field is also taken into account as an acoustic dipole 

source to the pressure module. In this study, the acoustic fields of crystals with a 

resonance frequency of 1 MHz are considered. The acoustic behavior and 

corresponding effects in the image reconstruction performance must be investigated 

for different excitation frequencies.    

In this study, only two-dimensional numerical models are used. The performance of 

the system must be further investigated using three-dimensional models.  

Receiver coil design: A novel coil configuration is proposed to detect the 

ultrasonically induced Lorentz fields. This coil configuration is consisting of two 
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coils (x- and y-coils). A better coil (or even a dipole antenna) can be designed to 

improve the system properties.  

Note that, once the excitation is known, by simply analyzing the induced voltages in 

the receiver coils, one can have an insight about the inhomogeneity inside the bodies.  

Specific coils can be designed to follow the conductivity changes on a specific line. 

Time gated amplification can be employed to remove the attenuation affects with 

depth.  

Sensitivity Matrix Analysis: The geometry and location of the transducer and 

receiver coils are important parameters in sensing the inhomogeneity in the body.  In 

this study, a 16-element linear phased array transducer is assumed on the upper edge 

of the conductive body. To improve the sensitivity, the transducer is also placed on 

the left edge. The receiver coils are placed encircling the body and transducer. The 

characteristics of the system are revealed by analyzing the sensitivity matrix and 

resolution maps. It is observed that the proposed system has higher sensitivity under 

the transducer and around the center of body; however, it has lower sensitivity 

around the corners. The developed analysis tools must be employed to design a better 

transducer/coil configuration that yields homogeneous sensitivity to the conductivity 

perturbations.  

Image Reconstruction:  In this thesis study, the mathematical basis of a new 

imaging modality is presented. To reconstruct the conductivity images only a single 

algorithm, namely, the Truncated SVD is used. The performance of other 

reconstruction algorithms must be further investigated.  

To develop a more practical and faster imaging system, techniques must be 

developed to reconstruct images without using matrix inversions. 

Safety considerations:  Precautions should be taken by keeping the excitation 

potential of ultrasound transducers below a threshold in order not to cause 

destructive heating. Ultrasonic transducers used for diagnostic purposes do not cause 

destructive heating in the human body [49]. The ultrasonic transducers used in our 
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simulations are excited with amplitude of 1V  at 1 MHz frequency and definitely do 

not cause any harm to the body tissues. 

The induced current density in the body should also be under the safety limits.  In our 

simulations the induced velocity current densities are approximately 0.2 mA/m2 and 

5 mA/m2 for homogeneous and inhomogeneous body, respectively. These  current 

densities are below the safety limits at 1 MHz [50]. 

Future Work: The following topics can be further investigated: 

• Time-harmonic imaging and corresponding coil configurations.  

• The effects of the number of steering angles on the image resolution.  

• The focusing property of the linear phased array transducers. 

• The use of the proposed approach employing other ultrasonic transducers (see 

Appendix A). 

• The use of multi-frequency excitations. 

• Three-dimensional simulations for different transducer types and for different 

perturbations. 

• Data acquisition system design for time-harmonic and pulse excitations. 

• Experimental studies conducted using phantoms and animals and research on 

clinical applications. 

• In this study, the beam steering properties of linear phased array transducers 

are employed to steer electrical currents inside a conductive body.  The 

methodology can be further extended to obtain magnetic field measurements 

inside the body using Magnetic Resonance Imaging systems. This will 

definitely improve the resolution in the resultant conductivity images. 
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APPENDIX A 
 

 ULTRASONIC TRANSDUCERS 
 

 

A.1 Transducers 

 

The acoustic waves can be generated in many ways. These waves are induced by 

converting magnetic, thermal and electrical energy into mechanical energy. In 

medical applications of ultrasound the piezoelectric effect plays a key role in several 

techniques. Piezoelectric effect was first introduced in 1880 [51] which implies that 

applying a stress to the quartz crystal causes an electrical potential across opposite 

face of the material. In addition, the inverse event was observed, which shows 

applying an electric field across the crystal could result in mechanical deformation. 

By the leading of this innovation, many significant advances have been observed in 

ultrasound imaging. As one of these advances we can mention to the development of 

linear-array transducers. At first, transducer was moving manually to the region of 

interest, which had taken many seconds. In this approach, only static objects could be 

scanned. As a result of fast scanning, moving objects can also be scanned for real-

time imaging. For this purpose, researchers developed different types of ultrasound 

transducers which steer the acoustic beam, rapidly. Some of them can steer the beam 

mechanically, and some other can steer and focus electronically. Linear phased array 

transducers are the ones that can steer and focus the beam electronically [52]. 
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A.1.1 Transducer Materials- PZT 

 

The ferroelectric materials are the well-known materials in medical ultrasound to 

exhibit the piezoelectric effect. Having low intrinsic losses and high 

electromechanical conversion efficiency makes a ferroelectric material called 

ceramic lead zirconate-titanate (PZT), a proper choice as a standard transducer 

material for medical ultrasound [52] . In Table A-1 the properties of linear array 

elements made of PZT are shown. 

Table A-1 Material Properties of Linear-Array Elements Made of PZT-5H [52] 

 

Parameter Symbol Value Units 

Density ρ 7500 kg/m3 

Speed of sound c 3970 m/s 

Acoustic impedance Z 29.75 MRayls 

Relative dielectric constant ε /ε0 1475 None 

Electromechanical coupling coefficient k 0.698 None 

Mechanical loss tangent tan δm 0.015 None 

Electrical loss tangent tan δe 0.02 None 

 

Advantages of PZT [52]: 

• PZT has a high dielectric constant. 

• Ceramic is mechanically strong. 

• Ceramic can be performed to different shapes and sizes. 

• PZT is suitable for 100° C or higher. 

• PZT is stable for long periods of time. 
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Disadvantages of PZT [52]: 

• PZT has high acoustic impedance (Z=30 MRayls) as compared with 

human body (Z=1.5 MRayls). 

• PZT has lateral modes in array elements. 

However, the first disadvantage can be eliminated by using acoustic matching layer 

to compensate the acoustic impedance mismatch. The second disadvantage can be 

diminished by using appropriate element sizes. There are also some different 

piezoelectric materials which can be used for various applications [52].  

 

A.2 Scanning with Array Transducers 

 

The principles of acoustic lenses are used exactly the same way in array transducers. 

For acoustic lenses and array transducers, during the transducer aperture different 

delays are applied. Since delays can be directed electronically, the beam can be 

focused in different regions [52]. Linear phased arrays were first introduced for radar, 

sonar and radio astronomy [53, 54] . The applications of them in medical ultrasound 

was introduced by Somer in 1968 [55, 56]. 

In electronically scanning where the transducers do not move, only the focal point 

can be changed, dynamically. To have high-quality ultrasound images, many 

identical array elements are required; generally 128 and more number of array 

elements is used. Typically, an array element is less than a millimeter on one side. 

There is a connection between each side of element for transmitter and receiver 

electronics [52]. 
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A.2.1 Focusing and Steering with Phased Arrays 

 

A phased array transducer can focus and steer an acoustic beam in different 

directions. By repeating this process several times in 2D or 3D medium, an 

ultrasound image can be obtained [52].  

An example for focusing the transmitted beam with six-element array is shown in 

Figure A-1. Each element acts as a point source and radiates a spherically shaped 

wave front into the medium. In this example, the first element is excited first, since it 

is located in the farthest place from the focus. The other elements are excited with 

different time delays so that all excitation signals arrive to the transmit focus at the 

same time. Due to the Huygens’s principle, the final acoustic signal is the sum of all 

arrived signal to the focus point [52]. 

 

 

 

Figure A-1 Focusing and steering an acoustic beam with a six-element linear array in the 

transmit mode [52] 
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The phased array works in reverse for receiving an ultrasound echo. In Figure A-2 

echo comes from focus 1. At a different time delays this echo is incident on each 

element. The resultant (received) signals are electronically delayed. These delayed 

signals add in phase for an echo originating at the focal point. 

The focal point can be dynamically adjusted in the receive mode. After an acoustic 

pulse is transmitted, the initial echoes return from the targets that placed near the 

transducer. Thus, the ultrasound scanner can focus on these targets which can be seen 

in Figure A-2 as focus 1. When echoes return from more distant targets, the scanner 

can focus at a greater depth as focus 2  (Figure A-2). To make the targets to be in 

focus in receive mode, focal zones are set with adequate depth. This process is called 

as dynamic receive focusing [56]. 

 

 

 

Figure A-2  Focusing and steering an acoustic beam with a six-element linear array in the 

receive mode [52] 
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A.2.2 Array-Element Configurations 

 

By repeating scanning process as steering or focusing many times, an ultrasound 

image of tissue is formed in 2D or 3D region. In 2D image, azimuth dimension 

represents the scanning plane; the elevation dimension is perpendicular to the 

scanning plane. With different array-element configurations, the shape of the region 

scanned is determined. The following descriptions are for different array-element 

configurations [52]: 

Linear Sequential Arrays: 

These arrays have 512 elements in commercial scanners. The acoustic beam is 

focused, since the scanning lines are directed perpendicular to the face of the 

transducer. However, the acoustic beam cannot steer. Since the beam is directed 

straight ahead, the array elements have high sensitivity. However, the field of view is 

limited to the rectangular region where is placed directly in front of the transducer 

[52]. In Figure A-3 this configuration is shown. 

 

 

 

Figure A-3 Array-element configuration for linear sequential array [52] 
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Curvilinear Arrays:  

The shape of these arrays is different than linear arrays, but their operation is in the 

same manner. However, curvilinear arrays can scan a wider field of view because of 

their convex shapes [52], as in Figure A-4. 

 

 

 
 

Figure A-4 Array-element configuration for curvilinear array [52] 

 

Linear Phased Arrays: 

All elements of linear phased array are used to transmit and receive each line of data. 

Generally, they have 128 elements. In medical imaging linear phased arrays are used 

in common. These arrays are built from many small rectangular elements lined up 

with a very thin gap between each element. Figure A-5. shows these arrays as 

steering the beam through a sector-shaped region [52]. 
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Figure A-5 Array-element configuration for linear phased array [52]. 

1.5D Arrays:  

In construction they are similar to 2D arrays, but in operation they are similar to 1D 

arrays. They have elements in azimuth and elevation dimensions. To have high 

quality image dynamic focusing and phase correction can be done in both directions. 

In elevation dimension, they have limited numbers of elements, so that it is 

impossible to steer in this direction. Figure A-6. shows an example 1.5 array made 

for B-scan [52]. 

 

 

Figure A-6 Array-element configuration for 1.5 array made for B-scan [52]. 
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2D Arrays: 

They can have many elements in both azimuth and elevation dimensions. Thus, it is 

possible to steer and focus in both dimensions. An example is shown in Figure A-7. 

 

 

Figure A-7 Array-element configuration for 2D array [52]. 

A.2.3 Steering with Phased Array Transducers 

 

In medical ultrasonic imaging generally array transducers are used. The general field 

from one element of an array source that consists of arbitrary shaped elements is as 

follows [49]: 

 

( )( , , , , ) ( , )

0( , , ) ( , )
( , , , , )

j wt kd x y z

s
surface surface

eP x y z P ds A ds
d x y z

µ η ϕ µ η

µ η
µ η

− +

= = ⋅ ⋅∫∫ ∫∫                         (A.1) 

where ( , , )d x y z is the distance between point ( , )µ η on the transmitting surface at the 

point Q.  0 ( , )A µ η is the amplitude at point ( , )µ η and ( , )ϕ µ η  is the phase. If the array 

has N elements, the field equation can be rewritten as follows: 
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0( , , ) ( , )
( , , , , )

ij wt k d x y zN N

s i i i
i isurface i surface

eP x y z P ds A ds
d x y z

µ η ϕ µ η

µ η
µ η

− ⋅ +

−

= = ⋅ ⋅∑ ∑∫∫ ∫∫

         (A.2) 

here i is the index of each element. 

This acoustic field is calculated by using the following schematic. 

 

 

Figure A-8 Schematic of linear phased array [49]. 

In this figure; 

                   ( 1)
2i
Lx i x= − ⋅∆ −                       (A.3) 

The distance given as d is calculated as follows: 

 

2 2 2

2 2

( , ) 2 cos(90 )

2 sin( )
i i

i i

d R R x R x
R x R x

θ θ

θ

= + − ⋅ ⋅ ° −

= + − ⋅ ⋅
                          (A.4) 
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By assuming the elements are sufficiently small to take into consideration as point 

source, the integration can be avoided and the field equation can be written as 

follows: 

( )( , )

0( , )
( , )

ij wt k d RN

i
i

eP R A a
d R

θ ϕ

θ
θ

− ⋅ +

= ⋅ ⋅∑                                         (A.5) 

where a is the transmitting surface of each element. For far field approximation for a 

linear phased array, it is assumed that R >> xi, then the approximation for distance 

can be written as 

 ( , ) sin( )id R R xθ θ≈ − ⋅                                                  (A.6) 

By substituting above to the field equation into the field equation: 

( ) ( )
( )

( , )
sin( )

0 0( , )
( , )

i
i i

j wt kd R j wt kRN N
j k x

i i
i i

e eP R A a a A e
d R R

θ ϕ
θ ϕθ

θ

− + −
⋅ ⋅ += ⋅ ⋅ = ⋅ ⋅∑ ∑

             (A.7) 

If the amplitude and phase are same, then field equation is as: 

          

( )

0

sin sin( )
2( , )

sin sin( )
2

j wt kR
N xk

eP R N A a
xR N k

θ
θ

θ

−
 ⋅∆  
    = ⋅ ⋅ ⋅  ∆  ⋅     

                                     (A.8) 

 

By using the linear phased arrays, the beam can be moved and steered. The next 

figure shows the motion of beams. 
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Figure A-9  Lateral beam motion of linear phased array [49]. 

The angular steering of linear phased array is shown in the following figure: 

 

 

Figure A-10 The schematic view of linear phased array for steering of an acoustic field [49]. 

L is the length of the linear array with N elements. If all elements of the signal has 

the same phase in the same time, the pressure distribution is occurred as a linear 

wave front in the transducer’s plane that is parallel to the array [49]. 
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If the beams are steering with phase beta as in the Figure A-10, the term of iϕ  can be 

changed as follows [49]: 

 

sin( )

( 1) sin( )
2

i ik x
Li i x k

ϕ β

ϕ β

= ⋅ ⋅

 ⇒ = − ⋅∆ − ⋅ ⋅  

                                  (A.9) 

By substituting the above equation (A.9) in the pressure field equation (A.8), the 

final form of the pressure equation can be written as [49]: 

 

( )
( )sin( ) sin( )

0( , ) i i

j wt kR N
j k x k x
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i
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A.2.4 Focusing with Phased Array Transducers 

 

In the previous part, steering the ultrasonic beam was described. Ultrasonic beam can 

be also formed, especially focused, with phased array transducer electronically. To 

focus the beam there is no need for any focusing hardware. 

Consider the array transducer in Figure A-10. Ultrasonic beam can focus at a focal 

distance F along the z-axis. The corresponding phase for the element transmitting 

from the origin axes is  𝜑𝜑0 = 𝑘𝑘 ∙ 𝐹𝐹. To focus at a focal point all elements should have 

the same phase at the focal point. Calculation of the phase element of each element i 

is as follows: multiply its distance to the focal point by the wave number and add its 

initial phase  𝜑𝜑𝑖𝑖  . This expression should equal to 𝜑𝜑0 as in Equation (A.11). 

 

2 2
i ik x F k Fϕ⋅ + + = ⋅                                                    (A.11) 

After rearranging Eq. A.11, we obtain: 

 

( )2 2
ii k F x Fϕ = ⋅ − +

                                                (A.12) 

The final form of resultant pressure formulation becomes as given below: 
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APPENDIX B 
 

 ELECTRICAL AND ACOUSTIC PROPERTIES OF 

SOME HUMAN TISSUES 
 

 

B.1. Electrical Properties of Some Human Tissues 

 

Dielectric permittivity and conductivity values of some tissues are given for 50 kHz, 

100 kHz, 500 kHz and 1 MHz in Table.B.1 and in Table.B.2, respectively.  

Table B-1 Conductivity values of some human tissues at 50 kHz, 100 kHz, 500 kHz, and 1 

MHz [38-40]. 

 50 kHz  

(S/m) 

100 kHz 

(S/m)   

500 kHz  

(S/m) 

1 MHz 

(S/m) 

Aorta 0.3169 0.3186 0.3239 0.3267 

Bladder 0.2169 0.2189 0.2279 0.2360 

Blood 0.7008 0.7029 0.7482 0.8221 

Bone(Cancellous) 0.0834 0.0838 0.0867 0.0903 

Bone (Cortical) 0.0206 0.0207 0.0222 0.0243 

Bone Marrow (Infiltrated) 0.1027 0.1028 0.1035 0.1041 
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TableB-1 Continued 

Bone Marrow (Not Infiltrated) 0.0036 0.0038 0.0044 0.0047 

Brain (Grey Matter) 0.1275 0.1336 0.1519 0.1632 

Brain (White Matter) 0.0776 0.0818 0.0947 0.1021 

Breast Fat 0.0249 0.0250 0.0254 0.0257 

Cartilage 0.1771 0.1785 0.2008 0.2328 

Cerebellum 0.1475 0.1536 0.1725 0.1854 

Cerebro Spinal Fluid 2.0000 2.0000 2.0000 2.0000 

Cervix 0.5443 0.5476 0.5569 0.5624 

Colon 0.2444 0.2477 0.2778 0.3141 

Cornea 0.4814 0.4993 0.5773 0.6559 

Dura 0.5017 0.5018 0.5026 0.5033 

Eye Tissue (Sclera) 0.5147 0.5184 0.5615 0.6188 

Fat (Average Infiltrated) 0.0433 0.0434 0.0438 0.0440 

Fat (Not Infiltrate) 0.0242 0.0244 0.0248 0.0250 

Gall Bladder 0.9001 0.9001 0.9002 0.9002 

Gall Bladder Bile 1.4000 1.4000 1.4000 1.4000 

Heart 0.1954 0.2151 0.2807 0.3275 

Kidney 0.1594 0.1713 0.2283 0.2782 

Lens Cortex 0.3385 0.3401 0.3528 0.3745 
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Table B-1 Continued 

Lens Nucleus 0.2006 0.2007 0.2013 0.2018 

Liver 0.0720 0.0845 0.1481 0.1866 

Lung (Deflated) 0.2620 0.2716 0.3070 0.3343 

Lung (Inflated) 0.1027 0.1073 0.1230 0.1360 

Muscle 0.3518 0.3618 0.4459 0.5026 

Nerve 0.0693 0.0807 0.1109 0.1302 

Ovary 0.3362 0.3393 0.3502 0.3579 

Skin (Dry) 0.0001 0.00025 0.0042 0.0130 

Skin (Wet) 0.0290 0.0654 0.1776 0.2210 

Small Intestine 0.5803 0.5942 0.7147 0.8648 

Spleen 0.1179 0.1221 0.1471 0.1823 

Stomach 0.5337 0.5360 0.5540 0.5837 

Tendon 0.3878 0.3885 0.3908 0.3920 

Testis 0.4344 0.4386 0.4911 0.5620 

Thyroid 0.5339 0.5369 0.5658 0.6026 

Tongue 0.2842 0.2879 0.3310 0.3882 

Trachea 0.3299 0.3380 0.3591 0.3732 

Uterus 0.5258 0.5314 0.5495 0.5642 

Vitreous Humor 1.5000 1.5000 1.5003 1.5007 
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Table B-2 Dielectric permittivity values of some human tissues at 50 kHz, 100 kHz, 500 kHz, 

and 1 MHz [38-40]. 

 50 kHz   

(x1e3) 

100 kHz 

(x1e3) 

500 kHz  

(x1e3) 

1 MHz 

(x1e3) 

Aorta 1.633 0.9299 0.3123 0.2181 

Bladder 1.9123 1.2310 0.5345 0.3427 

Blood 5.1976 5.1200 4.1885 3.0263 

Bone(Cancellous) 0.6131 0.4717 0.30816 0.2489 

Bone (Cortical) 0.2641 0.2276 0.1745 0.1445 

Bone Marrow 

(Infiltrated) 

0.2444 0.1731 0.1095 0.0990 

Bone Marrow (Not 

Infiltrated) 

0.1805 0.1107 0.0489 0.0397 

Brain (Grey Matter) 5.4613 3.2217 1.1869 860.4221 

Brain (White 

Matter) 

3.5481 2.1076 0.7122 0.4797 

Breast Fat 1.1775 0.0706 0.0307 0.0236 

Cartilage 2.7620 2.5722 1.9385 1.3908 

Cerebellum 5.7555 3.5152 1.4749 1.1408 

Cerebro Spinal Fluid 0.1089 0.1089 0.1089 0.1089 

Cervix 3.1507 1.750 0.6140 0.4479 

Colon 4.6106 3.7220 2.3702 1.6787 
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TableB-2 Continued     

Cornea 16.970 10.5670 4.6365 2.8780 

Dura 0.3938 0.3263 0.2644 0.2534 

Eye Tissue (Sclera) 5.4946 4.7452 3.2519 2.1783 

Fat (Average 

Infiltrated) 

0.1632 0.1014 0.0567 0.0508 

Fat (Not Infiltrated) 0.1724 0.0928 0.0345 0.0272 

Gall Bladder 0.1724 0.1072 0.1011 0.1002 

Gall Bladder Bile 0.1199 0.1199 0.1199 0.1199 

Heart 16.9823 9.8458 3.2645 1.9673 

Kidney 11.4294 7.6515 3.4432 2.2514 

Lens Cortex 2.6265 2.0675 1.5021 1.2267 

Lens Nucleus 0.2641 0.2003 0.1476 0.1387 

Liver 10.6896 7.4988 2.7698 1.5357 

Lung (Deflated) 8.5314 5.1452 1.8842 1.1705 

Lung (Inflated) 4.2725 2.5812 1.0249 0.7331 

Muscle 10.0937 8.0891 3.6472 1.8364 

Nerve 9.5874 5.1330 1.4875 0.9261 

Ovary 3.010 1.9417 0.8732 678.2865 

Skin (Dry) 1.1267 1.1192 1.0619 0.9907 
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TableB-2 Continued 

Skin (Wet) 21.8759 15.3567 3.6100 1.8328 

Small Intestine 17.4050 13.8474 8.5941 5.6755 

Spleen 5.4927 4.2222 2.7889 2.2900 

Stomach 3.5511 2.8609 2.0647 1.6783 

Tendon 0.81497 0.4724 0.2006 0.1600 

Testis 6.4863 5.7169 4.0019 2.6833 

Thyroid 4.0231 3.3011 2.1395 1.4333 

Tongue 5.4960 4.7456 3.2520 2.1783 

Trachea 6.9124 3.7347 1.1576 0.7750 

Uterus 5.6698 3.4112 1.4893 1.1675 

Vitreous Humor 0.0985 0.0979 0.09134 0.0840 
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B.2.Acosutic Properties of Some Human Tissues 

 

Table B-3. Acoustic Properties of different tissues [57] 

 

 

 

 

Material Speed of Sound(m/s) Density(kg/m3) 
Soft tissues 1520-1580 980-1010 

Lipid-based tissues 1400-1490 920-940 

Collagen-based tissues 1600-1700 1020-1100 

Aqueous humor 1002-1006 1500 

Vitreous humor 1090 1530 

Blood 1580 1040-1090 

Brain-grey 1532-1550 1039 

Brain-white 1532-1550 1043 

Skull-compact inner and 

outer tables 

2600-3100 1900 

Skull-spongy diploe 2200-2500 1000 

Long bone-outer layer 2600-3100 1900 

Long bone-inner layer 1700-2000 1100 

Teeth 3500-4000 2200 
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APPENDIX C 
 

 SIGNAL-TO-NOISE RATIO OF A DATA 

ACQUISITION SYSTEM 
 

 

The signal-to-noise ratio (SNR) of a data acquisition system with signal s and noise n 

can be defined as: 

                        
2

2

( )
10log

( )
E s

SNR
E n

=                                                   (C.1) 

where E(.) represents expected value and .  represents the Euclidean norm 

operations. The singular value at the truncation level (r) is the smallest singular value 

that satisfies the following inequality: 

                              120 log
k

SNRσ
σ

≤   for k=1, …r                                             (C.2) 

If r<n, then V becomes an nxr matrix, that is, the matrix V is truncated. The 

remaining basis vectors characterize the resolution matrix R.  
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