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ABSTRACT

MORPHOLOGICAL SEGMENTATION USING DIRICHLET PROCESS BASED
BAYESIAN NON-PARAMETRIC MODELS

Kumyol, Serkan

M.S., Department of Cognitive Science

Supervisor : Prof. Dr. Cem Boz³ahin

Co-Supervisor : Assist. Prof. Dr. Burcu Can

February 2016, 54 pages

This study, will try to explore models explaining distributional properties of mor-
phology within the morphological segmentation task. There are di�erent learning ap-
proaches to the morphological segmentation task based on supervised, semi-supervised
and unsupervised learning. The existing systems and how well semi-supervised and
unsupervised non-parametric Bayesian models �t to the segmentation task will be in-
vestigated. Furthermore, the role of occurrence independent and co-occurrence based
models in morpheme segmentation will be investigated.

Keywords: Natural Language Processing, Morphological Segmentation, Computa-
tional Linguistics, Dirichlet Process, Bayesian Non-Parametric Methods
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ÖZ

D�R�CHLET SÜREC� TEMELL� PARAMETR�K OLMAYAN BAYES
MODELLER� �LE MORFOLOJ�K BÖLÜMLEME

Kumyol, Serkan

Yüksek Lisans, Bili³sel Bilimler Program�

Tez Yöneticisi : Prof. Dr. Cem Boz³ahin

Ortak Tez Yöneticisi : Assist. Prof. Dr. Burcu Can

�ubat 2016 , 54 sayfa

Bu tezde, morfolojik bölümleme içerisindeki da§�l�m özelliklerini aç�klayan modeller
incelenecektir. Morfolojik bölümlemeye, gözetimli, yar� gözetimli ve gözetimsiz ö§ren-
meyi temel alan çe³itli ö§renim yakla³�mlar� mevcuttur. Bu çal�³mada, mevcut sistem-
leri inceleyerek, parametrik olmayan yar� gözetimli ve gözetimsiz Bayes'ci yakla³�mlar�n
bölümleme i³lemine ne kadar uygun oldu§unu gözlemleyece§iz. Ek olarak, morfolojik
bölümlemede, morfemleri birbirinden ba§�ms�z ve ba§�ml� olarak ele alan modellerin
rolleri incelenecektir.

Anahtar Kelimeler: Do§al Dil i³leme, Morfolojik Bölümleme, Hesaplamal� Dilbilim,

Dirichlet Süreci, Parametrik Olmayan Bayes Modelleri
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The termmorphology derives from the Greek word "morph-," meaning shape or form,
and morphology means the study of form(s). A well-known de�nition of morphology is
the study of the internal structure of words. Researchers have been scienti�cally curious
about understanding words since the �rst morphologist, Panini, who formulated the
3,959 rules of Sanskrit morphology in the 4th century BCE in the text "Astadhyayi"
using a constituency grammar. The question of why morphology is so important could
be answered by stating that if we need to understand the ultimate building blocks of
the universe, we need to look at atoms, or in other words, its constituents. In the case
of agglutinating language, these blocks are morphemes, the smallest meaning-bearing
units of language. Morphological forms have a signi�cant e�ect on phonology, syntax,
and semantics in productive languages, as the operations in linguistic morphology have
powers of deriving new word forms and in�ecting words. To learn such languages, one
needs to acquire a substantive set of rules for morphosyntax (Hankamer, 1989).

In linguistics, morphology refers to the mental system involved in word formation, the
internal structure of words and how they are formed (Arono� and Fudeman, 2011, p.
2). Words consist of stems and a�xes; for example, the English word opened is formed
by the concatenation of the stem open and the su�x ed. The phonological realization
of individual morphemes is called as morph. Morphs in Turkish occur with alternations
in vowels; for example, Turkish pluralization has two di�erent morphs with the back
vowel a, çocuk-lar �children� and the front vowel e, ev-ler �houses�. Vowel alternations
in Turkish are de�ned by a set of rules, which will be mentioned in section 2.2.4. We
call morphemes with allomorphic forms allomorphs, these are morphemes carrying the
same semantic information of their class with vowel alternations. In this study, we
assume that the stems are free morphs that occur freely, while the su�xes must be
bounded and called boundary morphemes.

Our focus on Turkish language arises from its productivity and morphologically rich
nature. There are challenges regarding Turkish in terms of its morphological analysis.
Controversially, morphologically simpler languages like English could be modeled in
terms of word-based approaches due to their lack of productivity. Unlike agglutinating
languages, in English, word forms could be stored in a word-based lexicon. Turkish
has a large amount of word forms that cannot be stored in a word-based lexicon.
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Furthermore, theoretically there could be in�nite numbers of meaningful morpheme
sequences in Turkish. The number of possible word forms that one can construct is
in�nite due to recursion. Recursion in Turkish is caused by morphemes that derive
causative verbs and relative adjectives. One examples of the productivity of Turkish
is described below:

Example 1.1:

OSMANLILA�TIRAMAYAB�LECEKLER�M�ZDENM��S�N�ZCES�NE

Where boundaries of morphemes are:

OSMAN-LI-LA�-TIR-AMA-YAB�L-ECEK-LER-�M�Z-DEN-M��-S�N�Z-CES�NE

where the -'s indicate the morpheme boundaries. The adverb in this example can be
translated into English as "(behaving) as if you were of those whom we might consider
not converting into an Ottoman." (O�azer et al., 1994, p.2)

The diversity of morphological forms and syntactic rules in agglutinating languages
causes a sparse distribution of forms. Turkish is a solid example of rich morphological
diversity and productivity. In this study, the segmentation of Turkish morphology is
motivated by a semi-supervised model with orthographic rules for allomorphs adopted
as prior information. As a result, we aim to make use of Turkish allomorphy in
clustering of phonological forms.

From a cognitive perspective, the importance of morphology arises in the acquisi-
tion of morphemes. When learning agglutinating languages, acquisition is a task of
learning diverse morphological forms, classes, and their interactions. The learning of
morphology entails segmenting words into morphemes. While there is evidence that
word boundaries are learned during language acquisition (LA) of infants (Thiessen
and Sa�ran, 2003), there is insu�cient evidence about phonological and prosodic di-
mensions of the learning processes. In addition to the evidence about the signi�cance
of morphology in LA, the acquisition of morphemes includes a language-speci�c task
unlike the universal grammar (UG) suggests. Several studies have provided evidence
of the language-speci�c impact of nominal and verbal in�ections on LA (Slobin, 1985;
Bittner et al., 2003). These studies revealed that nominal in�ections and verbal in�ec-
tions di�ered in the developmental process of infants. This suggests that, LA is not
dominated by innate structures; there is room for language-speci�c information and
exposure more than UG suggests. If the distributional properties of di�erent languages
have an impact on linguistic levels, understanding their distributions may provide us
with a basic understanding of how morphologically rich languages are acquired.

Statistical language modeling methods are based on machine learning methodologies
categorized under three learning systems: First, in supervised learning, the system
trains on a set of labelled corpus to identify the target function. Training data consist of
the input and output values, whereby the system predicts unseen data with the function
it inferred from the tagged data. It is di�cult to tag all morphological phenomena
of agglutinating languages like Turkish and overcome with computational expense.
Furthermore, due to the high amount of possibility of a large amount of unseen data,
training procedure of the model mostly underestimate possible word forms. Unlike
supervised learning, the unsupervised and semi-supervised machine learning systems,

2



are more likely to be independent of extra information. However, in semi-supervised
learning, training is motivated by extra information which is not be found in the
training set, while unsupervised models do not require any other information but
untagged training data.

A computational model made of semantic information combined with the logical forms
could explain a language beyond semi-supervised and unsupervised computational
models for natural languages, the main concern about such models, arises from the
computational expense. Çak�c� et al. (2016), reported results from the wide-coverage
parser that consist of a semantically rich lexicon with lexicalized grammars involv-
ing. As a result of modeling lexicon paired with logical form or predicate-argument
structure (PAS), training the parser with rich head informations improved parsing ac-
curacy. Furthermore, the wide-coverage parsing with lexicalized grammars achieved
to parse a wide range of constructions in Turkish, which no other parser able cover
such wide-range of unique constructions. The wide-coverage parsing with such lexicon
model proved itself to be a feasible model in contrary to computational concerns.

Natural language processing (NLP) applications are capable of processing language in-
dependently, but language-speci�c information needs to be involved within the process
in order to obtain a better performing model. This study is to incorporate language-
speci�c knowledge and the distributional properties of Turkish morphology from a
form-driven perspective. Form-driven models may be de�cient in covering the morpho-
linguistic properties of language, but they give us clues about the distributional proper-
ties of morphology and boundary detection involvement in the acquisition of morphol-
ogy. Additionally, as much as language learning explained unsupervised, the assump-
tions rely on innateness involve less. This study focuses on non-parametric Bayesian
models for morphological segmentation and language learning. Our method di�ers
from other non-parametric Bayesian models of Turkish by embedding orthographic
rules into the clustering process where both bigram and unigram models involved.
Therefore, our research questions are as follows:

1. How much of learning could be explained in terms of form-driven non-parametric
Bayesian models, and is the word form enough to supervise the learning process?

2. Does supervising a non-parametric Bayesian model with orthographic rules as
prior information result in better segmentations?

1.2 Role of Statistical Approaches in LA

The capability of LA is unique among human beings, as we have the ability to manipu-
late our linguistic knowledge and establish complex structures within the boundaries of
our grammars, even in the absence of su�cient prior knowledge. Pinker (1995) demon-
strated how the combinatorial rule system of human language is unique compared to
other animals. Every human being is the master of her/his native language, regardless
of his/her intelligence, DNA, race, etc. Humans are able to compose word forms by
manipulating grammars of their languages unlike non-human animals. The acquisition
of language, therefore, is the most mysterious topic in the cognitive sciences.
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There are two mainstream approaches to LA. One is the nativist approach, in which
LA is considered as cognitive resource that is an innate UG (Chomsky, 1965). UG
suggests that all humans have a set of rules which are common to all natural lan-
guages. These rules are innate and can be updated (or reduced) in correspondence
to the language children are exposed to. One supportive hypothesis is the Poverty
of Stimulus (POS) argument (Chomsky, 1975). The POS argument suggests that it
is impossible to acquire a language by exposure in the absence of negative evidence.
The negative evidence here is correction of ungrammatical forms by adult speakers.
The lack of negative evidence, expected to cause over-generalization in the language
learning process. When an infant begins to learn a language, learning turns into the
problem of narrowing down the set of UG into input language. Evidence shows that
babies achieve a stable state even when there is a a lack of corrections in primary lin-
guistic data (PLD) (Gleitman and Newport, 1995). This suggests that humans have
a system that is more sophisticated than what they are being exposed to.

Another argument supported by the nativist approach is the problem of ambiguity,
which is related to the POS argument. For a baby, sentences (a) and (b) below are not
problematic; they can acquire these syntactic constructs even there is lack of negative
evidence in the environment (Crain and Pietroski, 2001).

a) John washed himself.

b) John said that he thinks Bill should wash himself.

Again Crain and Pietroski (2001, p.7) argued:

" So why do not children acquire a more permissive grammar, according to
which 'himself' may depend on 'John' in (b), But if children allow multiple
interpretations - e.g, the antecedent of 'himself' can be any prior term -
no positive evidence would prove them wrong."

This evidence leads to the conclusion that humans have prior knowledge of the prin-
ciple of the binding theory : a re�exive pronoun must be locally bound.

Regarding the learning of linguistic constraints, the nativist point of view suggests that
constraints are also an innate capability of human beings. For example, the "wanna"
and "want to" contractions (c) and (d) below are grammatical, but not (e). Children
do not overgeneralize language due to their innate capacities.

c) I wanna go to school.

d) I want you to go school.

e) *I wanna you to school.

According to the continuity hypothesis (Pinker, 1991; Crain and Thornton, 1998),
even when children make mistakes, they will never go beyond the boundaries of UG.
The mistake of a child is a meaningful grammatical construction of another language
because UG covers all possible human languages.

Pinker (1995, p.157) suggested, "That is, before children have learned syntax, they
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know the meaning of many words, and they might be able to make good guesses as to
what their parents are saying based on their knowledge of how the referents of these
words typically act (for example, people tend to eat apples, but not vice versa )."
If children can extract extralinguistic information before they start talking, negative
evidence could still be out there, which could contradict the POS argument.

The computational approach to the concept of UG that argued by Cowie (1999) is in
a more empiricist state, which presumes that exposure is more essential than innate
knowledge in language acquisition. Cowie (1999) also suggested that there is an innate
device in LA, but she also suggested that there is a computational process involved in
it. Computational modeling of language is a useful approach to understand how much
of LA can be explained in terms of exposure and innate knowledge.

1.2.1 Statistical Approaches to LA

Signi�cant evidence of experience-dependent LA arises from Sa�ran et al. (1996), a
research with eight month-old babies. The main aim of the research is to reveal how
babies acquire language even in cases of a lack of exposure and to study the role of
statistical cues on a child's learning capacity. To simulate exposure, a familiarization
process applied that contains information about the target arti�cial language syntax
without any other cues (pitch-accent, boundaries, prosodic components, phonetics,
etc.). The experiment started with exposing babies to arti�cial language. In the
second minute of exposure, babies were able to distinguish novel and familiar order-
ings of three-syllable strings. Furthermore, children can detect word and part-word
boundaries by a longer period of exposure. Results suggest that, at least in early LA,
experience plays an important role in acquiring transitional probabilities between parts
of words.

Pelucchi et al. (2009) in their research, implemented the research method in Sa�ran
et al. (1996) to natural languages. Two counterbalanced languages; Italian and Span-
ish are choosen as the experiment languages, instead of the arti�cial languages. Fur-
thermore, eight-month-old native English monolingual infants were exposed to Italian
and Spanish. Unlike Sa�ran et al. (1996), the eye gazing duration was used as the
measurement method. Test items were distinguished by their backward transitional
probabilities (BTP) and front transitional probabilities (FTP). The front and back-
ward probabilities de�ne the direction of adjacent syllables. Two identi�ers, the low
transitional probability (LTP) and high transitional probability (HTP), were used to
measure child's sensitivity to their perception of LTPs and HTPs of words. The results
(ibid.) revealed that children's sensitivity to BTP is signi�cantly independent of the
language group to which they belong. Additionally, children are capable of comput-
ing both FTP and BTP, but BTP has more coverage on data due to the structural
properties of the babies' natural language.

Another approach by Wong et al. (2012) employed extra-linguistic information within
perspective of grounded LA with respect to the evidential foundation of Carpenter
et al. (1998) which, suggests that children who engage in joint attention with care-
givers tend to have a faster learning process. The extra-linguistic input incorporated
utterances, gaze, touch, etc. features, with the task of reducing the process to a proba-
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bilistic context-free grammar (PCFG) learning, where syntax is sensitive to transitional
probabilities. As result of this approach, the model allowed them to reveal the rela-
tionship between acquisition tasks in the study. Results revealed that it is important
to use ideal learning models when investigating LA, and incorporating social cues with
linguistic information could provide us important information about the signi�cance
of the extra-linguistic features in learning1.

Lany et al. (2007) �rstly, criticize the role of statistical cues in LA; their approach
pointed to early language studies that were mainly nativist, due to a lack of knowl-
edge about the distributional properties of languages. The study, focused on the
arti�cial languages used in LA research and concluded that even though such models
are arguable about their representational capacity of natural languages, but they pro-
vide a useful framework to understand LA. Arti�cial languages can be manipulated
to observe and understand the e�ect of di�erent transitional probabilities in learning
without isolation from correlation with infants' prior knowledge. Lany et al. (2007)
concluded that there is some computational processing in LA, but the features of
the method and the method itself are still a mystery. The transitional probabilistic
approach, chunking, and n-gram models do not fully explain or provide a comprehen-
sive understanding of learning by themselves; therefore, further wide-coverage models
should be developed to understand LA from a computational perspective.

1.3 Motivation of The Study

The aim of computational models of language is to model the language learning pro-
cess based on certain assumptions. This study presumes that computational models
may not correspond to the mind's internal structures, but they could represent and
manipulate given data with respect to researcher's belief about the process to be mod-
eled. Furthermore, computational modeling provides us knowledge to hypothesize how
LA happens and a framework where empirical knowledge uni�es with beliefs. Certain
theories, hypotheses, and assumptions have been developed for to modeling of the
data. In this section, �rstly, internalist and frequentist reasoning methodologies of the
modeling will be presented. Secondly, language of thought hypothesis (LOTH) (Fodor,
1975) presented as a foundational argument for cognitive models of mind. We neither
oppose nor suggest an alternative hypothesis to LOTH. The only semantic dimension
involved in this study is the semantic assumptions about Turkish phonology, such as
allomorphy. We aim to discover how far morphology can be learned from the syntactic
forms on the phonological dimension. With incorporating allomorphic information to
our model, we aim to get a better clustering of phonological forms.

1.3.1 Frequentist vs. Bayesian Approach to Reasoning

There are two approaches to the statistical reasoning of data that in�uence modeling.
The �rst approach is the frequentist analysis of data, which presumes that data are
su�cient to understand themselves. The second approach is the internalist (Bayesian)

1 child's eye (encoded as child.eye which represent gaze directions of child) is the most extra-
linguistic information in learning.
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view, suggesting that beliefs and prior knowledge should be involved in the analysis
of data. The frequentist approach proposes that no subjective beliefs are involved in
knowledge, but data are the knowledge itself, and observations could be measured from
experimental results, with the perspective of "let data speak for themselves." However,
in modeling we need to extract more knowledge than data and �xed parameters. The
main di�erence between Bayesian and frequentist approaches is how probability is used
to understand the data. Frequentists use probability with the purpose of data sam-
pling. The Bayesian approach uses probability more widely to model both sampling
and prior knowledge. The internalist (Bayesian) approach proposes that the probabil-
ity is in a person's degree of belief about an event, not an objective measurement, as
suggested by the frequentist approach. Lilford and Braunholtz (1996, p.604) argued
that:

" when the situation is less clear cut (... ) conventional statistics may
drive decision makers into a corner and produce sudden, large changes in
prescribing. The problem does not lie with any of the individual decision
makers, but with the very philosophical basis of scienti�c inference."

This suggests that the classic statistical approaches may not necessarily be involved in
the analysis of uncertain cases. Instead, Bayesian inference should be used for inferring
knowledge due to its degrees of freedom for uncertainty. Geisler and Kersten (2002)
suggested that the human visual capacity is best modeled in terms of Bayesian models
in contrast to frequentist models. The computational studies of Marr (1982) and the
evolutionary studies of Pinker (1997) are examples that are well explained and uni�ed
by the Bayesian framework. Bayesian inference is a �ne graded reasoning framework
for the philosophy of science with room for subjective information. Bayesian likelihood
models can construct, eliminate, or hypothesize beliefs about data. Experiences, innate
abilities, and beliefs are observable in human predictions, and the Bayesian reasoning
has degrees of freedom to represent them within a likelihood model. Modeling the
capability of the Bayesian approach also provides room for uncertainty. Humans'
decision-making falls under uncertainty when trying to predict actions with insu�cient
data. Under uncertain conditions, human beings rely on their prior knowledge and try
to decide which actions to perform based on experience. Learning a concept updates
prior knowledge about certain conditions to reduce uncertainty. This probability is
called subjective probability, which could successfully model uncertainty with Bayesian
methods (Dagum and Horvitz, 1993).

1.3.2 LOTH

While form-driven approaches to language learning are limited by syntax, LOTH claims
that the cognitive processes are combinatorial systems in which tokens are represented
with both syntactic and semantic information as functions of syntactic tokens. Thus,
any computational system aiming to model LA as a cognitive process needs to be
governed by both syntax and semantic functions of syntactic tokens. LOTH (Fodor,
1975) assumes that thought and thinking occur in a mental language. If there was
not a �rst language that enables language learning, the learning would fall into in�-
nite regress. The LOTH is a system of representations in which representations are
physically realized in the brains of the thinkers. The LOTH presumes that thought
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is a token of a representation that has a syntactic (constituent) structure combined
with its related semantics. Thus, thinking is a cognitive process in which combina-
torial operations de�ned over representations are causally sensitive to the syntactic
representations (tokens), in other words, thoughts have combinatory behaviour.

The LOTH is a hypothesis about the nature of thought and thinking that consist a
family of ideas; causal-syntactic theory of mental processes (CSMP) and the repre-
sentational theory of mind (RTM), about the way we represent our world. CSMP
attempt to explain mental processes as causal processes de�ned over the syntax of
mental representations and RTM claims, these mental representations have both syn-
tactic structure and a compositional semantics. Therefore, thinking takes place in
language of thought (LOT).

There are 3 main arguments for the LOTH: First, the LOT acquires the form of
language, instead of imitating the grammar of a speci�c language. According to the
hypothesis, the brain is capable of doing high-level abstractions so it can encode di�er-
ent formal communication methods and symbolic systems. Second, symbolic language
is not equivalent to UG, but a common way of thinking and linguistic structure in all
human thought. Fodor (1975) suggested that learning a language requires an internal
mental language common to all human beings. Third, thinking is an abstract high-
level process. While thinkers may have an idea about their thinking, there is no such
access to the LOT. Only representations that are being tokened and the manipulation
processes are visible to thinkers. The LOT is an innate device beneath manipulation
and tokenizing that enables the manipulation of representations. Thus, the compu-
tational models of language learning are can not be one-to-one correspondent with
mentalese but they try do deduce it from the logical form and the phonological form.

Unlike arti�cial languages, natural languages are accommodate uncertainty that, makes
it harder to model with computational systems. But the LOTH provides degrees of
freedom for computationalism, since both approaches are presume that, the concepts
prevents learning from in�nite regress are primitive. The point of computational mod-
els is to deduce the hidden layer between form with meaning, namely, grammar. Recent
developments on arti�cial intelligence (AI) and formal logic, gives LOTH explanatory
power within a naturalistic framework. Alan Turing's idea of a Turing Machine and
Turing computability provides room for combination of computationalism with the
LOTH. Turing's well-known experiment; the Turing test suggests that if a conversa-
tional agent (computational machine) is indistinguishable from a human being, then
that machine would be an intelligent agent. According to LOTH, a combinatorial
system with primitives would be a part of machinery of conversational agent.

1.4 Aim of The Study

The main aim of this study is to explore the cognitive plausibility of form-driven
semi-supervised non-parametric Bayesian models with allomorphic priors in the mor-
phological segmentation task. By adding orthographic rules as prior information, we
aim to compare the results of the semi-supervised model with those of the unsupervised
model to understand whether language-speci�c knowledge (allomorphic priors) has a
signi�cant e�ect on the segmentation task. Additionally, the a�ect of incorporating
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morpheme co-occurrences into a form-driven computational model will be explored.

1.5 Scope

The scope of this study is Turkish words together with orthographic rules for morpho-
logical forms. Clustering morphemes as allomorphs may give us a better understanding
of the learning process.
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CHAPTER 2

BACKGROUND

2.1 Introduction

This chapter presents the linguistic and machine learning background used in this
study to give a better understanding of methodologies to the reader. The chapter
is organized into two sections: section 2.2 presents the linguistic background that
involves the general concepts in morphology, syntax, and phonology with examples,
and section 2.3 focuses on the machine learning background that our model is based
on.

2.2 Linguistic Background

This section focuses on the linguistic knowledge essential to the segmentation task. The
knowledge we will present is about morphology and its interaction with phonology and
syntax.

2.2.1 Morphology

As stated in section1.1, the term morphology is the study of the smallest meaning-
bearing elements of a language, morphemes. Morphology is also an interface between
phonology and syntax, where morphological forms as constituents carry both syntactic
and phonetic information.

In productive languages like Finnish, Turkish, Tagalog, and Hungarian, morphemes
can derive new word forms and modify the meaning of a word form. Thus, a�xation
in such languages causes words to have a complex internal structure. Productive
languages contain a set of rules for morphological composition that are able to generate
a considerable amount of word forms by the concatenation of morphemes (Hankamer,
1989).

Example 2.2.1 The word certain can have di�erent word forms when combined with
grammatical morphemes, as in the case of the words uncertain, certainty, uncertainty

Morphologically productive languages are called agglutinating languages. There are
also languages without any morphology in which words consist of syllables, like Chi-
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nese, Vietnamese, and Mandarin, which are called isolating languages.

2.2.2 Approaches to Morphology

This section presents some of the classical theories essential to morphology: the
split morphology hypothesis, the amorphous morphology hypothesis, the item-and-
arrangement and item-and-process morphology1.

2.2.2.1 Split-Morphology Hypothesis

According to the split morphology hypothesis developed by Anderson (1982, 1992), Matthews
(1972, 1991), and Perlmutter (1988), derivational morphology is too irregular to be
combined with in�ectional morphology; thus, they belong to separate components of
grammar. Derivation is handled by lexical rules, while (regular) in�ection is handled
by syntactic rules. In this study, the segmentation task does not aim to distinguish
between any in�ectional and derivational morphemes, thus, they are treated as the
same element.

2.2.2.2 Amorphous Morphology Hypothesis

In the amorphous morphology hypothesis, Anderson (1992) proposed that word struc-
ture is the output of an interaction between grammatical areas, and therefore it can not
be localized to a single morphological component. According to this hypothesis, word
structures cannot be explained merely by the concatenation of morphemes, but they
can be explained by rule-governed relations among words with respect to the phono-
logical internal structure assigned to words and eliminating morphologically motivated
boundary elements. Amorphous morphology de�nes signi�cant distinctions between
in�ection, derivation, and compounding, in terms of their place in a grammar.

Anderson exempli�ed his idea with the well-known Wakashan language Kwakw'ala.
every sentence is verb-initial, and some in�ectional morphemes of noun phrases are
not attached to constituents of the phrase, but instead to the verb, as shown in exam-
ple 2.2.2 (from Anderson (1992)).

Example 2.2.2

nanaq[@]sil-ida i?g[@]lâwat-i [@]liwinuxwa-s-is mestuwi la-xa

Guides-SBJ/ART expert-DEM hunter-INST-his harpoon PRE-OBJ/ART

migwat-i

seal-DEM

1 For more recently presented two dimensional approach see Stump (2001).
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"An expert hunter guides the seal with his harpoon."

Anderson (1992, p.19) further analysed the sentence as follows: "It is clear that if the
morphology of Kwakw'ala is responsible for characterizing the internal form of phono-
logical words, it will have to overlap heavily with the syntax in order to describe such
facts. An alternative, however, is to suggest that the phonological word is not actually
the domain of morphological principles of word structure." His theory of phonology
and morphology naively involves into our work through analyzing surface forms ac-
cording to the orthographic rules of Turkish, which we will describe in the upcoming
sections.

2.2.2.3 Item-and-Arrangement and Item-and-Process Morphology

The morphological debate of mapping phonological forms to morphosyntactic forms
was �rst identi�ed by Hockett (1954). The item-and-arrangement hypothesis: both
roots and a�xes are treated as morphemes, item-and-process: roots are morphemes,
but a�xes are rules. These theories are the models for the mapping between phono-
logical form and morphosyntactic information.

Item-and-process theories propose that a word is the result of an operation (mor-
phosyntactic rules) applied to a root with some morphosyntactic features, which mod-
i�es the phonological form of syntactic unit. Example 2.2.3 shows a word formation
rule for the application of the Turkish plural su�x -lar to a noun stem kitap 'book' re-
sults in a phonological sequence of the single word kitaplar instead of the composition
kitap-lar.

Example 2.2.3 Word Formation Rule for Plural

[ +N ]

[ +PLU ]

/X/ → / X/

Kitap → Kitaplar

As presented in example 2.2.3, item-and-process morphology takes a morpheme as in-
put and applies it to a stem, resulting in a new sequence of phonemes that cannot be
broken into morphosyntactic parts.

In item-and-arrangement theories, words are considered as a set of morphemes con-
sisting of a root a�xed by a morpheme. In this model, sets are sequences made of
phonological correspondences of roots and morphemes, as shown in example 2.2.4:

Example 2.2.4 kitaplar → kitap +lAr

root [+PLU]
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Table 2.1: Partial paradigm of Finnish noun talo 'house'. From Roark and Sproat
(2007, p.64).

category Sing. Plu
Nominative talo talo-t
Genitive talo-n talo-j-en
Partitive talo-a talo-j-a
Inessive talo-ssa talo-j-ssa
Elative talo-sta talo-j-sta
Adessive talo-lla talo-j-lla
Ablative talo-lta talo-j-lta
Allative talo-lle talo-j-lte

Both theories are used frequently in morphology; the item-and-process approach was
defended recently by Arono� (1993), and item-and-arrangement theory accounted for
the theory of distributed morphology (Halle and Marantz, 1993). Furthermore, Roark
and Sproat (2007) also mentioned how both theories of morphology are suitable for
di�erent languages. For example, highly in�ected languages, such as Classical Greek
and Sanskrit, in which morphological rules are better explained in terms of word
structure because of the rich information-carrying a�xes. In this case, a�xation is
not simply a concatenation, but a�xing a particular variant of the stem, this process
also depends on the particular paradigm of a stem. Roark and Sproat (2007) also
suggested that agglutinating languages, such as Finnish and Turkish, which have a
systematical morphosyntax in a linear order, can be modeled in terms of morphemes
rather than rules.

Finnish word talo reproduced at 2.1 exempli�es the regularities and irregularities (un-
derlined forms) of Finnish nominal morphology. The irregular exceptions among plural
a�xes can be treated by encoding alternations as either conditional case selection in
plural morphemes (-i/-j vs. -t) or de�ning two allomorphs, one with variant -t (in case
of a NOMINATIVE a�x) other with -i/-j variants.

Therefore, a systematic agglutinating language like Finnish can be explained in terms
of item-and-arrangement. While Turkish is a morphologically complex language, mor-
photactics is clear enough to be explained in terms of �nite state machines (O�azer
et al., 1994).

2.2.3 Morphemes as Syntactic Elements

As an example of multiple representations of allomorphs; the allomorph -lAr in Turk-
ish represents the forms -lar and -ler of plural su�xes. Unifying morphemes into
allomorphs is a process of applying Turkish vowel alternation rules to the phonemes,
with respect to the roundness and backness of the preceding vowel.

The high productivity of morphology presented in example 1.1, consists of free and
bounded morphemes. Free morphemes most likely to occur freely, while bounded
morphemes must be a�xed to another morpheme. For instance, in the case of dis-
abling formed by morphemes - dis, -able and -ing, -able is the root and free morpheme

14



of the word and other morphemes -dis is a pre�x and -ing su�x. Roots are free mor-
phemes that can not be further analyzed while a stem can not be broken into further
parts. We can observe this di�erence clearly in compound words .

Example 2.2.5. The word form skateboard is a stem consists of two roots skate and
board.

Furthermore, bound morphemes belong to di�erent classes like su�x, pre�x, in�x
and circum�x depending on their position of the concatenation to a stem.

Example 2.2.6. The word decomposable consists of -de as pre�x compose as stem
and -able as su�x.

Tuwali Ifugao, the language of the Philippines, uses circum�xes. For example, ka-
baddan-gan 'helpfulness', formed by ka�an , a nominalizer circum�x and the verb
-baddang 'help'.

Morphemes belong to small and closed classes, e.g., articles, locatives, and genitives,
and occur more frequently than the words of open classes. Morphemes have a complex
semantic relation with words from lexical categories, and are syntactically more pre-
dictable, by a deterministic �nite state machine Turkish morphosyntax (O�azer et al.,
1994).

2.2.4 Turkish Morphology

A�xation process of Turkish, mostly occurs as the concatenation of su�xes to a stem,
root, or another su�x, while pre�xes are rarely seen. There is a range of su�xes in
phonological terms, and allomorphs di�er on the basis of their vowel harmony.
Surface forms of morphemes are often processed by morphophonemic operations for
the grammatical construction of words. The grammatical composition of morphemes
requires some morpho-phonological processes to ensure agreement between the a�xed
morpheme and the preceding vowel on the basis of vowel harmony. Under certain
conditions, deletion, alternation, and drop rules on roots and morphemes are initiated;
these rules are called morphophonemic operations that are part of morphophonemic
processes.

2.2.4.1 Orthography of Turkish

The Turkish alphabet consists of 29 characters: 8 vowels: a, e, �, i, o, ö, u and ü; and
21 consonants: b, c, ç, d, f, g, h, j, k, l, m, n, p, r, s, ³, t, v, y, and z. Vowels can be
grouped to accumulate vowel harmony:
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Table 2.2: Phoneme alternations of Turkish. (from O�azer et al. (1994))

1. D : voiced (d) or voiceless (t)
2. A : back (a) or front (e)
3. H : high vowel (�, i, u, ü)
4. R : vowel except o, ö
5. C : voiced (c) or voiceless (ç)
6. G : voiced (g) or voiceless (k)

1. Back vowels: {a, �, o, u}

2. Front vowels: {e, i, ö, ü}

3. Front unrounded vowels: {e, i}

4. Front rounded vowels: {ö, ü}

5. Back unrounded vowels: {a, �}

6. Back rounded vowels: {o, u}

7. High vowels: {�, i, u, ü}

8. Low unrounded vowels: {a, e}

O�azer et al. (1994) used meta-phonemes to describe the two-level morphology of
Turkish, which we used in our allomorph �ltering algorithm to map phonemes to
allomorphs.

The phoneme alternations are shown in Table 2.2 are used for alternations in vowels,
for example, �lAr is the allomorph for plural stands for both plural su�xes -ler and
-lar. Meta-phonemes provides a useful notation for the two-level realization of allo-
morphs consisting of surface form and lexical form.

Example 2.2.7. Lexical form: bulut-lAr

N(cloud)-PLU

Surface form: bulut0lar bulutlar

Where -lAr represents the plural su�xes for two cases of metaphoneme A: the back
vowel a or the front vowel e. One of them is chosen according to Turkish vowel harmony
rules.

2.2.4.2 Morphophonemic Process

In Turkish, allomorphs are essential in the concatenation process, and variable vowels
of an allomorph are called metaphonemes. Metaphonemes consist of six characters
representing related vowels, as shown in Table 2.2. Rules of alternation depend on
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vowels and their orthographic rules. Rules for vowel harmony are described as examples
in which capital letters are metaphonemes of allomorphemes. '0' is the notation for
deleted phonemes and morpheme boundaries.

In this study, rules are included in the segmentation model by a �ltering algorithm
for vowels. Processes on consonants aim to cluster Turkish morphological forms into
allomorphic representations. The rules for vowel alternations are as follows:

Example 2.2.8. Low-unrounded vowels: If the last vowel of the preceding morpheme
is a back vowel, metaphoneme A alternates to a.

Lexical form: arkada³-lAr N(friend)-PLU

Surface form: arkada³0lar arkada³lar

Lexical form: ayna-lAr N(mirror)-PLU

Surface form: ayna0lar aynalar

Example 2.2.9 Low-unrounded vowels: If the last vowel of the preceding morpheme
is a front vowel, metaphoneme A alternates to e.

Lexical form: çiçek-lAr N(�ower)-PLU

Surface form: çiçek0ler çiçekler

Lexical form: bebek-lAr N(baby)-PLU

Surface form: bebek0ler bebekler

Example 2.2.10 High vowels: If the last vowel of the preceding morpheme is a back-
rounded, metaphoneme H alternates to u2.

Lexical form: ko³ul-Hm N(term)-1SG-POSS

Surface form: ko³ul0um ko³ulum

Lexical form: macun-Hm N(paste)- 1SG-POSS

Surface form: macun0um macunum

Lexical form: ko³-Hyor-yHm N(run)-POSS

Surface form: ko³0uyor00um ko³uyorum

Example 2.2.11 High vowels: If the last vowel of the preceding morpheme is a front-
rounded vowel, metaphoneme H alternates to ü

Lexical form: üzüm-Hm N(grape)-1SG-POSS

Surface form: üzümm0üm üzümüm

Lexical form: göz-Hm N(eye)-1SG-POSS

2 cases § and ç excluded from our research due to our data does not contain any form with that
characters.
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Surface form: göz0üm gözüm

Example 2.2.12 High vowels: If the last vowel of the preceding morpheme is a
back-unrounded vowel, metaphoneme H alternates to �

Lexical form: gitar-Hm N(guitar)-1SG-POSS

Surface form: gitar0�m gitar�m

Lexical form: zaman-Hm N(time)- 1SG-POSS

Surface form: zaman0�m zaman�m

Example 2.2.13 High vowels: If the last vowel of the preceding morpheme is a front-
unrounded vowel, metaphoneme A alternates to i

Lexical form: zafer-Hm N(victory)-1SG-POSS

Surface form: zafer0im zaferim

Example 2.2.14 Consonant mutation: In Turkish, according to consonant mu-
tation rule also known as voicing, if a morpheme ending with one of the voiceless
consonants, p, ç, t, k, is concatenated with a su�x starting with a vowel consonants,
voiceless consonant alternates to b, c, d, g respectively.

biçak biçag -im kitap kitab -i

knife knife -1.SG.POSS book book -ACC

'my knife' 'the book'

Example 2.2.15 Consonant assimilation: If a morpheme starting with consonant
D (see Table 2.2 for alternation rules) concatenates with a morpheme ending with one
of the voiceless consonants p, ç, t, k, g, h, s, ³, f alternates to a t or d.

yaprak yaprak- ta aç aç -t �

leaf leaf -LOC open open -PAST

'at leaf' 'opened'

2.3 Machine Learning Background

2.3.1 Bayesian Modeling

The Bayesian modeling3 expresses actual knowledge about the model parameters. A
Bayesian probabilistic model4 is a parametrized joint distribution over variables. In

3 Bayesian modeling originates from Bayes theorem. Bayes theorem was proposed by Thomas
Bayes (c. 1702 �17 April 1761), an English mathematician.

4 Typically interpreted as a generative model of the data.
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Bayesian modeling, the actual model aims to infer posterior distribution p(θ|D), the
probability of new parameters given data:

p (θ | D) =
p (D | θ) p(θ)

p(D)
(2.1)

where probability distribution p (θ) over the parameters is named prior distribution.
For incoming data, the probability of information they contain is expressed with respect
to model parameters named the likelihood of data p (D | θ) which is proportional to the
distribution of the observed data given the model parameters and the p(D) is marginal
probability. The marginal probability of data is the probability calculated through all
possible values of data used for normalization.

Bayes' theorem uses the likelihood and the prior to de�ne the inverse probability
distribution over parameters. The inverse probability distribution of parameters of
the data called posterior probability. Posterior probability is the revised probability
of parameter values occurring after taking into consideration the incoming data. To
calculate the probability of new data, the theorem uses prior and likelihood. There
are two cases according to the type of parameters: continuous or discrete:

p (D) =
∑
i

p (D | θi)p(θi) (2.2)

Continuous parameters:

p (D) =

∫
p (D | θ) p(θ)dθ (2.3)

Bayesian modeling de�nes the probability of an instance with respect to parameter
values, latent variables5 or hypotheses. A Bayesian model is either parametric or non-
parametric. The Bayesian parametric models are the Bayesian models with pre-de�ned
parameters, we can call their parameters are constants de�ned by model designer. The
Bayesian non-parametric models has countably in�nite parameters that grows with the
data.

2.3.2 Parameters and Conjugation

Integration over parameters bypasses the possibility of the biased estimation of param-
eters by integrating all possible values of the parameters. For example, if we have a
set of segmentations S of a corpus C and latent variables are the segmentation points:

p (S | C) =

∫
p (S | C, θ) p (θ | C) dθ (2.4)

here θ is a set of parameters that are integrated out without being estimated. By
integrating the parameters out, all possible values are carried out for the inference of
latent variables without any estimation. The integration over parameters leads a more
comprehensive inference of latent variables.

5 We integrate out the latent varibles without estimating them.
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When we adopt Bayesian modeling, the prior probability over parameters can be de-
�ned. A de�ned prior is also called a conjugate prior when the posterior distribution
has the same form as the prior distribution.

For example, Gaussian distribution is self-conjugating by the Gaussian likelihood func-
tion, so if we choose Gaussian prior distribution, the posterior will be in Gaussian form.
In the case of multinomial distribution, it has a conjugate prior in the form of Dirich-
let distribution. The conjugation of a multinomial distribution with a Dirichlet prior
results in a posterior distribution with a Dirichlet distribution form. De�ning a multi-
nomial distribution on {1, . . . . . . . . . , N} possible outcomes and setting θ helps us to
de�ne hyperparameters. Here hyperparameters are parameters of prior distribu-
tion when we assume that θ is following some prior distribution. For the Dirichlet
distribution prior, we can say that β is a hyperparameter for θ.

xi ∼ Multinomial(θ)

θ ∼ Dirichlet(β)
(2.5)

The �rst line of equation states that xi is drawn from a multinomial distribution
with parameters θ and in the second line states that, parameters θ are drawn from a
Dirichlet distribution with hyperparameters β.

2.3.3 Dirichlet Distribution

Dirichlet distribution is the multivariate generalization of the beta distribution. We
can conceptualize Dirichlet distribution with a probability mass function (PMF). The
randomness of a bag of dice with di�erent PMFs could be modeled with Dirichlet
distribution. With respect to equation 2.5, Dirichlet distribution follows the form:

p (θ | β) =
1

B (β)

K∏
k=1

θβk−1k (2.6)

where B (β) is a normalising constant in a beta function form:

B (β) =

∏K
k = 1 Γ(βk)

Γ(
∑K

k = 1 βk)
(2.7)

where Γ is the gamma function de�ned as Γ(t) = (t-1)! For positive integers.

2.3.4 Multinomial Distribution

If we suppose that each datum in one of k possible outcomes with a set of probabilities
{x1. . .xk}, multinomial models the distribution of the histogram vector that indicates
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how many times each outcome is observed over N total number of data points.

p (x | θ) =
N !∏K
k=1 nk!

K∏
k=1

θxkk (2.8)

Where:

N =

K∑
k=1

nk (2.9)

Parameters θk are the probabilities of each data point k , and nk is the number of
occurrences of data point xk.

2.3.5 Bayesian Posterior Distribution

In a conjugate Bayesian analysis, we have a multinomial likelihood with the Dirichlet
prior. After observing nk data, we have the posterior distribution for the parameters
as Can (2011, p.53) derived:

p (θ | x, β) ∝ p (x | θ) p (θ | β)

=
N !∏K
k=1 nk!

K∏
k=1

θxkk

∏K
k = 1 Γ(βi)

Γ(
∑K

k = 1 βk)

K∏
k=1

θβk−1k

=
N !∏K
k=1 nk!

∏K
k = 1 Γ(βi)

Γ(
∑K

k = 1 βi)

K∏
k=1

θnk+βk−1
k

=
N !∏K
k=1 nk!

∏K
k = 1 Γ(βi)

Γ(
∑K

k = 1 βi)

K∏
k=1

θnk+βk−1
k

∝ Dirichlet(nk + βk − 1)

(2.10)

Equation 2.10 yields a Bayesian posterior in Dirichlet distribution form when we con-
jugate β distribution, multinomial and Dirichlet distribution.

2.3.6 Inferring Multinomial Dirichlet

Can (2011, p.54) in her dissertation integrated out posterior mean using conjugacy as
in equationCan 2.11:
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p (xN+1 = j | x, β) =

∫
(xN+1 = j | x, θ) (θ | β) dθ

=

∫
θj

Γ(N +
∑K

k=1 βk∏K
k=1 Γ(nk + βk)

K∏
k=1

θnk+βk−1
k dθ

=
Γ(N +

∑K
k=1 βk∏K

k=1 Γ(nk + βk)

∫
θjθj

nj+βj−1
K∏
k 6=1

θnk+βk−1
k dθ

=
Γ(N +

∑K
k=1 βk∏K

k=1 Γ(nk + βk)

∫
θj
nj+βj−1

K∏
k 6=1

θnk+βk−1
k dθ

=
Γ(N +

∑K
k=1 βk∏K

k=1 Γ(nk + βk)

Γ(nj + βj + 1)
∏K
k 6=1 Γ(nk + βk)

Γ(N +
∑K

k=1 βk + 1)

=
nj + βj

N +
∑K

k=1 βk
(2.11)

The posterior distribution of parameters in equation 2.11 are function as the prior
distribution over the parameters. This yielded a rich-get-richer behaviour, where if
previous observations of a given category are higher, then the next observation xN+1

has a higher probability of being in the same category.

If we consider both the probability of having a new category and of updating an
existing category within an in�nite number of elements:

p (xN+1 = j | x, β) =


nj

N +
∑K

k=1 βk
j ∈ K

βj

N +
∑K

k=1 βk
otherwise

(2.12)

There are two probabilities: for incoming data either there is a new data point or it
will belong to an existing category. The probability for a data point that is assigned
to an existing category is proportional to the number of data points in that category.
Otherwise, the probability would be proportional to the hyperparameter de�ned for
that category. This approach gives the advantage of natural smoothing for unseen
data by leaving a probability space for them.

2.3.7 Bayesian Non-Parametric Modeling

Non-parametric models are models with an in�nite number of parameters, contrary
to what the name suggests. Dirichlet multinomial distribution consists of a �xed
number of parameters and observations, and it is not always likely to have that kind
of data in nature. For example, in language processing, there are in�nite possibilities
of morpheme segmentations in an agglutinating language like Turkish, as mentioned
in Section 1.1. Therefore, a Dirichlet process (DP) is a natural consequence of
modeling data with in�nite parameters.
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Figure 2.1: Plate Diagram of DP

A DP is a distribution over distributions. Unlike Gaussian distributions, a DP has non-
�nite, dimensional, discrete random distributions. Therefore, the process is classi�ed
as a non-parametric model. Dirichlet distribution allows �exibilities within data to be
captured by its non-parametric stochastic structure.

Every distributionG should be distributed according to Dirichlet distribution with ran-
dom sampling. Let H be a distribution over Φ and α be a positive real number. Then
for any �nite measurable partitionA1. . . . . . .An of Φ the vector (G (A1) , . . . . . . , G (An))
is random since G is random (Teh, 2010). G is DP distributed with a base distribution
H and concentration parameter α therefore, the formula could be written as follows:

G ∼ DP (α,H) if (G (A1) , . . . . . . , G (Ar)) ∼ Dir(H (A1) , . . . . . . , αH(Ar))
(2.13)

Each A is generated from a DP (α,H):

Ai ∼ G

G ∼ DP (α,H)
(2.14)

To obtain the probability distribution over G, which estimates future observations or
latent variables we need to integrate out as discussed in the section above. Integration
is applied for a future observation xN+1 = j with Polya Urn Schemes (Blackwell and
MacQueen, 1973)

p (xN+1 = j | x, β) =
1

N + α

N∑
i=1

I (xi = j) +
α

N + α
H(j)

=
nj + αH(j)

N + α
(2.15)

I is an identity function that returns 0 when xi 6= j; otherwise it returns 1.This leads
us to a well-known de�nition of a DP, known as Chinese restaurant process (CRP).

2.3.8 Chinese restaurant process (CRP)

The CRP is based on the de�nition of a restaurant with an in�nite number of tables
and an in�nite number of seats, where each customer sits either at a new table or
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Figure 2.2: An illustration of CRP

an existing one. Each table has a unique menu to serve. The customer chooses an
occupied table with a probability that is proportional to the number of customers who
are already sitting at the table. If the chosen menu does not exist at any of the tables,
the customer sits at a new table with a probability proportional to a de�ned constant
α. While this process continues, tables with preferable menus will acquire a higher
number of customers. Thus, the rich-get-richer principle shapes the structure of the
tables.

As presented in Figure 2.2, if a customer xn+1 sits at an existing table, the probability
will be de�ned by the number of customers already sitting at that table; otherwise, the
probability will be calculated with respect to α and base distribution H (xn+1).Other
major de�nitions of DP are the stick-breaking process (Sethuraman, 1994; Ishwaran
and James, 2001) and the Pitman-Yor process (Pitman, 1995; Pitman and Yor, 1997).

2.3.9 Hierarchical Dirichlet Process

The HDP consists of multiple DPs that are organized hierarchically with the DPs
for all clusters sharing a base distribution, which itself is drawn from a DP. HDP
is a dependency model for multiple DPs, which is more �exible than a single DP in
uncovering group dependencies.

G0 ∼ DP (γ,H)

Gj ∼ DP (α0, G0)

φji ∼ Gj
xji ∼ F (φji)

(2.16)

Equation 2.16 completes de�nition of HDP (illustrated in �gure 2.3) where G0 draws
from a DP and F (φji) stands for factors of single representations of given categories(j).
G draws from DP(α , G0) this leads to a hierarchical structure where probability of a
new customer depends both on G and G0.

The HDP treats each incoming datum as a restaurant instead of customers, and for
each restaurant, there are seats for customers at its tables. The formula derived
from Polya Urn Schemes, still valid in the HDP case, but by de�nition probability
of unseen restaurants with unseen customers, is calculated according to G0, as shown
in �gure 2.3. In the case of incoming data, it does not exist as a DP but as the
distribution of Gn, probability is proportional to concentration parameter α. If a
restaurant or customer does not exist, probability is calculated according to G0.
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Figure 2.3: An illustration of HDP

2.4 Inference

In machine learning, the inference of parameters plays a signi�cant role in estimation.
While there are several approaches, like the maximum a posteriori (MAP) or maxi-
mum likelihood (ML), to perform the point estimation of parameters, we may need to
estimate the posterior probabilities to understand the nature of parameters. Bayesian
inference derives the posterior probability as a consequence of the prior probability
and likelihood function. The true nature of Bayesian inference needs an estimation
of the distributions over the possible values of the parameters. To estimate the pa-
rameters, we could use sampling by drawing random samples from their posterior
distributions. Here we used the most common sampling method, Markov chain Monte
Carlo (MCMC). The following section gives an intuition about this method.

2.4.1 Markov Chain Monte Carlo (MCMC)

A Markov chain is a mathematical model for stochastic systems whose states are
governed by a transition probability where an actual state only depends on a previous
state. MCMC is a simulation technique used to determine the probability distributions
in a complex model. In MCMC, samples form a Markov chain where samples are
drawn randomly. Let S = {S1, S2, . . . . . . . . . , S1} be a set of states with respect to
their sequences:

p (Pn+1 = x | X1 = x1, . . . . . . , Xn = xn) = p (Pn+1 = x | Xn = xn)

(2.17)
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2.4.1.1 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm was developed by- Metropolis et al. (1953) and
generalized by Hastings (1970). The Metropolis-Hastings algorithm, after drawing
random samples, determines whether to retain the sample according to an acceptance
rule.

Figure 2.4: Diagram of Metropolis-Hastings Algorithm

The algorithm works on random draws from a distribution. With each iteration,
the algorithm determines an accept/reject state with respect to the probability of
parameters. With each iteration, the algorithm gets closer to inducing the target
distribution from random samples.
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CHAPTER 3

LITERATURE REVIEW ON UNSUPERVISED
LEARNING OF MORPHOLOGY

3.1 Introduction

This section presents computational approaches to morphology and previous studies
on non-parametric learning models. The present study covers morphological segmen-
tation models based on the minimum description length (MDL), maximum likelihood
estimation (MLE), maximum a posteriori(MAP), and parametric and non-parametric
Bayesian approaches with a computational frame.

3.2 Statistical Models of Learning of Morphology

Statistical models are mathematical models consisting of equations that are actual be-
liefs about data. In the morphological segmentation task, the model learns morphology
by mathematical equations and outputs the morphological analysis of a word.

There are di�erent approaches to the segmentation task; in this section, some of the
mainstream approaches are covered.

3.2.1 Letter Successor Variety (LSV) Models

Successor variety (SV) was �rst proposed by Harris Harris (1955) as a segmenting
method that transcribes spoken language utterances into morphemes. SV here is the
number of letters that can follow each letter in a word. The main idea is counting letter
successors for each letter to detect morpheme boundaries. If a letter has a signi�cantly
high count of letter successors within an utterance, a new morpheme boundary is sug-
gested.

Example 3.2.1 LSV would process an utterance modeling letter by letter, until the
model is unable to identify any boundaries due to the low letter successor count.
Then, the actual count rises because of the number of possible morphemes (ie. -ing,
-ed) already incremented letter successor points for letter I.
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Figure 3.1: Word split points in a LSV model
(taken from Can and Manandhar (2014))

Figure 3.1 visualizes splitting points as a tree structure where nodes are splitting points
and branches address the letter sequences of splits. Harris manually de�ned cuto� val-
ues, which a�ect the segmentation points (bigger values cause the under segmentation
of morphemes while lower values cause over segmentation). Following Harris (1955),
LSV is used as a measure for the segmentation of words into morphemes (Hafer and
Weiss, 1974; Déjean, 1998; Bordag, 2005; Goldsmith, 2006; Bordag, 2008; Demberg,
2007).

Hafer and Weiss (1974) extended LSV by using predecessor and letter successor vari-
eties to �nd segments and choosing the stem. Their approach suggests an improvement
on LSV by replacing counts with entropies. Their study proposed four improvements
on cuto�, peak and plateau, complete word and entropy. The entropy could be calcu-
lated as follows:

E (ki) =
∑
j ∈

∑
Cki
Ckij

log2
Cki
Ckij

(3.1)

Where i is the letter pre�x of the word k and E() is a function that returns letter
successor entropy (LSE) of an a�x. ki. Cki is the total number of words in the
corpus matching with the letter i of the word k and Ckij is the number of words in the
corpus matching with the letter i with successor j. This approach has an advantage
over earlier version because the LSE improves the morpheme boundary detection of
morphemes with LSV counts.

Déjean (1998) suggested another improvement on LSV method, such as three phases
with a most frequent morpheme dictionary. The �rst step is to create a most frequent
morpheme dictionary in which frequencies are obtained by LSV. The second phase
involves using a morpheme dictionary to generate additional morphemes for words in
the corpus, and the third phase is the �nal analysis on the corpus with a new morpheme
dictionary.

Bordag (2005) combined context information and LSV to reduce the noise and irreg-
ularities of LSV outputs. The context information he used includes syntactic sim-
ilarity with respect to syntactic classes of words. The �rst step is computing the

28



co-occurrences of adjacent words of a given word W by its log-likelihood. The ob-
tained set of signi�cant adjacent words is called "neighborhood vectors." In his second
step, he calculated the similarity of the vectors by common words within di�erent
vectors and clustering.

Example. 3.2.2 Considering a corpus of words in which the, word painting co-
occurs with a vector of words (paint, coloring, walking, playing), the highest number
of adjacent di�erent word forms for the words painting and playing is 70.

In his further research, Bordag (2006) used an algorithm consisting of two steps. The
�rst step entails using the LSV; the second step is to insert analyzed words into a trie1

classi�er by morphemes and their frequencies. To analyze a word, trie is searched until
the correct branches providing the right segmentations are revealed..

3.2.2 MDL Based Models

MDL is an information theoretic model for the learning of morphology. The MDL
principle was �rst introduced by Rissanen (1978), as in Occam's razor the best de-
scription of data or the best hypothesis is the one that leads to the best compression
of the data. Grünwald (2005) made a clear statement:

"[The MDL Principle] is based on the following insight: any regularity in a given set
of data can be used to compress the data, i.e. to describe it using fewer symbols than
needed to describe the data literally."

The MDL theory is grounded on one-to-one correspondence between length functions
and probability distributions. For a probability distribution p , the length of proba-
bility measure p (x) is equal to −log2p(x) where it minimizes the expected description
length. From a Bayesian perspective, MDL can be used as the prior for model M :

argmin
M

[−log2p (M | C)] =
− log2[p (C |M) p(M)]

−log2[p(x)]

∝ log2[p (C |M) p(M)]

(3.2)

Table 3.1: Input Words

walk referral
walks refer
walked refers
walking dump
referred dumps
referring preferential

Table 3.2: Stem Table

stem code
walk 1
referr 2
refer 3
dump 4

preferenti 5

Table 3.3: Su�x Table

su�x code
NULL 1

s 2
ed 3
ing 4
al 5

Brent et al. (1995) de�ned two models to solve the morpheme discovery problem:
the �rst model is called simple recombination; it encodes a list of words with binary
sequences of stems and su�xes in which the stems are kept in tables, as illustrated in

1 Look for Fredkin (1960) and Morrison (1968) for trie.
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stems
guitar
table
car
book
bottle
curse
the
glass

su�xes
null
ed
ing
e
s
es

Table 3.4: Encoded words

Stem Su�x Stem Su�x
00 00 01 110
00 01 100 00
00 100 100 01
00 101 101 00
01 100 101 01
01 101 1100 110

Tables 3.1, 3.2, 3.3, and 3.4. The most frequent stems and su�xes are encoded with
shorter encodings. The optimal length of each code word is achieved by Shannon-Fano
(SF) coding (Brent et al., 1995). Final segmentation is chosen when the morphological
analysis results in a minimum code.

Goldsmith (2001, 2006) proposed Linguistica, a state-of-the-art system for unsuper-
vised morphology learning. Linguistica uses signatures to encode the data, where
signature is a representation of the inner structure of a list of words that containing
a�xes. Figure 3.2 presents the structure of a signature, where signatures are pointers
for stems and su�xes. In addition, there are two more lists for stems and su�xes that
contain letters.

Here M is the morphology minimizing the objective function for the best morphology
in the corpus. The length ofM gives information about the shortness of the morpheme
where this information is simplifying the decision of possible morpheme and the second
term calculates how well the model �ts the corpus.

DescriptionLength (Corpus = C, Model = M) = length (M) + log2
1

p (C |M)
(3.3)

The log probability of a given word w, is analysed as belonging to given signature σ
with stem t and su�x f, is as follows:

p (w = t+ f) = p (σ) p (t | σ) p (f | σ) (3.4)

Another state-of-the-art system within the MDL principle is Morfessor, proposed
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
SimpleStem : car
SimpleStem : table
SimpleStem : guitar

{
NULL
s


SimpleStem : book
SimpleStem : bottle
SimpleStem : curse


NULL
ed
s
ing

{SimpleStem : glass

{
NULL
es

{SimpleStem : the {Null

Figure 3.2: A sample morphology with signature pointers and tables, taken from
Goldsmith (2006)

tables are covering words: car, cars, table, tables, guitar, guitars, book, books, booking, booked,

curse, cursed, cursing, curses, glass, glasses, the.

by Creutz and Lagus (2002). Morfessor2 aims to construct a model consisting of a
morpheme vocabulary named codebook and a sequence of text as the input. The MDL
cost function is employed to identify the succinct representation of words and data:

C = Cost (Data) + Cost (Codebook)

=
∑
k ∈ D

−log p (mk) +
∑
j ∈ M

i × l(mj) (3.5)

where D is a set of morpheme sequences that constructs words, andM is the morpheme
codebook which consists of morpheme types. First term of the equation, the length
of data is calculated by ML estimate3 of morphemes denoted by P (mk) negative log-
likelihood of ML to calculate the cost of the source text. The second term is the cost
of the codebook, calculated by the summation of all morpheme lengths l(mj) where i
is the number of characters that encode a character.

The search algorithm employed here proceeds recursively; a word assumed to be a
morph at the beginning of the process and appended to the codebook. Every possible
split of the word is evaluated into two parts, and the codebook is used to generate an
updated corpus.

3.2.3 Maximum Likelihood Based Models

The MLE method aims to determine the most likely function explaining the observed
data. In morphological segmentation, ML assigns probabilities to morphemes with

2 Morfessor is a family of models for morphological segmentation and algorithms; here we present
the �rst published member of the family.

3 the token count of morphs divided by the total count of morph tokens
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respect to the cost function. MLE uses no prior information; therefore, no bias is
involved in the model, and the model maximizes the likelihood function:

MMLE = argmax
i

p (D |Mi) (3.6)

Creutz and Lagus (2002) proposed a second method within their Morfessor baseline
family that employs MLE instead of the MDL principle. The model employs the
expectation maximization (EM) algorithm to calculate the optimal cost. The cost
function is the likelihood of the data:

Cost (C) =
∑
i

−log p (mi) (3.7)

where the summation is over all morph tokens in the corpus C. As MDL version
mentioned in section 3.2.2, p(mi) used to calculate probability of morpheme.

Creutz and Lagus (2004) developed another ML-based version of Morfessor, Cate-
gories ML. The di�erence between the baseline ML and Categories ML is the �rst-
order Markov chain. In Categories ML, the Markov chain assigns probabilities to each
possible split of word form unlike the baseline ML. Furthermore, morphemes as cate-
gorized as su�xes, pre�xes, or stems. The model consists of the bigrams of morphemes
constructing a word w = m1, m2, . . . ,mn and the Markov chain follows as:

p (m1,m2, . . . ,mn | w) =

[
n∏
i=1

p (Ci | Ci−1) p (mi | Ci)

]
p (Ck+1 | Ck) (3.8)

Where p (Ci | Ci−1) is the bigram probability of a transition between morph categories.
The probability of observing the morph mi with the selected category is p (mi | Ci).
The categories p (Ck+1 | Ck) represent word boundaries. Category membership prob-
abilities p (Ci | mi) are estimated by a perplexity measure.Perplexity measures the
predictability of the preceding or following morph with relation to a speci�c target
morph. EM is employed to estimate the probabilities in each iteration after re-tagging
the words using the Viterbi algorithm. The bigram model has an advantage over
unigram models with its sensitivity to dependencies of co-occurring morphs.

ParaMor (Monson et al., 2008) extended their work by assigning the likelihood for each
morpheme before applying segmentation (Monson et al., 2009). The system works by
counting the frequencies of word-�nal strings on shared word-initial strings in a list
of annotated words. Probabilistic ParaMor processes on outputs of ParaMor with a
tagger trained on results in order to assign the likelihood for each morpheme boundary.
Their �nite-state tagger (Hollingshead et al., 2005) determines the tagging of an input,
such as a morpheme for each character of given word.

3.2.4 Maximum A Posteriori Based Models

MAP has a prior containing a bias about the data p(Mi) unlike ML estimation. Creutz
and Lagus (2005) proposed a new member of the Morfessor family, which aims to cover
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compositionality. The system uses a hierarchical lexicon in which a morph can consist
of either a string of letters or two submorphs, which recursively consists of submorphs.
As in Creutz and Lagus (2004), words are represented by Hidden Markov Models
(HMMs), by categories (pre�x, su�x, stem, and non-morpheme). The prior in this
model has two parameters. One of them is meaning and the other one is form. The
form is how a morpheme occurs in the corpus with respect to its substructure, and the
meaning consists of features such as length, frequency, and right/left perplexity of the
morpheme. Therefore, a lexicon M is made of two parts of morpheme mi:

P (lexicon) = M ! ·
M∏
i=1

P (meaning (mi)) · P (form(mi))

MMAP = argmax
i

p (D |Mi) p(Mi)

(3.9)

where M ! represents the possible orderings of the morphs in the lexicon.

3.2.5 Bayesian Parametric Models

The Bayesian models discussed in Section 2.2 play a signi�cant role in morphological
segmentation. Creutz (2003) proposed a generative probabilistic model based on Brent
(1999) with a more precise probability distribution of morpheme lengths. The genera-
tion process starts with determining the number of morphs nm in the morph lexicon,
where probabilities p(nm) has a uniform distribution. The gamma distribution is used
to choose the length in characters:

p (lmi) =
1

Γ(α)βα
lα−1mi

e−lmi/β (3.10)

Where lmi is the length of morph i in characters, α and β are the constants, and Γ(α)
is the gamma distribution. After morphs are drawn from the distribution, the decision
of the target morpheme sequence is made with the total probabilities of morphemes
calculated by the ML of each character cj :

p (cj) =
ncj∑
k nck

(3.11)

Where ncj is the frequency of character cj in the corpus and
∑

k nck is the total number
of characters in corpus. Then the lexicon is created without considering ordering of
morphemes:

p (lexicon) = p (nm)

nm∏
i=1

p (lmi)

lmi∏
j=1

p (cj)

 ·nm! (3.12)

Where nm! states all possible orderings of nm elements. After lexicon created, next step
is to generate a corpus by morph lexicon obtained. Morpheme frequencies obtained
by Mandelbrot's Zip�an formula de�nition4. The probability of a particular order is
the inverse of the multinominal; therefore, the probability of the corpus is:

4 See Baayen (2001) for detailed information about zip�an law and word frequency distributions
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p (corpus) =

(
N !∏nm

i=1 fmi !

)−1
(3.13)

where the numerator N is a result of the summation of the morpheme frequencies in
the model, and the denominator is the product of the factorial of the frequency of each
morpheme in the model. The search for the optimal model is handled with the same
recursive algorithm in the Morfessor baseline (Creutz and Lagus, 2002). The results
indicate that the usage of prior information has a signi�cant e�ect on the accuracy of
the algorithm.

3.2.6 Bayesian Non-parametric Models

A Bayesian non-parametric model is a Bayesian model, de�ned on an in�nite-dimensional
parameter space. The parameter space is typically chosen as the set of all possible so-
lutions for a given learning problem (Teh, 2010).

Goldwater et al. (2005) developed a two-stage model by extending the CRP. The
system generates these cluster labels �rst by drawing a class, then drawing a stem and
a su�x conditioned on the class where draws are from a multinomial distribution:

(lk = w) =
∑

c, t, f

I (w = t+ f) p (ck = c) p (tk = t | ck = c) p (fk = f | ck = c)

(3.14)

Where ck denotes the class label, tk denotes the stem, and fk denotes the su�x asso-
ciated with a word constructed by the concatenation of t and f .

Can and Manandhar (2012) proposed a model to capture the morphological paradigms
that are structured within a hierarchy. Their likelihood function is de�ned to process
recursively under subtrees of words:

p (Dk | Tk) = (Dk) (Dl | Tl) (Dr | Tr) (3.15)

where Tl and Tr are left and right subtrees, and the likelihood is decomposed recursively
until the leaf nodes are reached. Two DPs de�ned to generate stems and su�xes. Each
node generated from a DP is independent from other nodes.
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CHAPTER 4

METHODOLOGY AND RESULTS

4.1 Introduction

The model we are using consists of two versions, unigram and bigram HDP models.
The Metropolis Hastings algorithm is employed for inference. Probabilities drawn
from Dirichlet distributions are calculated with Markov chains. Segmentations are
generated randomly, and for each segmentation in which a new segment is generated,
the algorithm determines whether a new segmentation is accepted or rejected.

Our corpus C is a set of words as C = {w1, w2, w3, . . . , wn}, where each word consists
of random split segmentations wn = {s1 +m1, . . . ,+mn}. Here s1 is the �rst segment
of wn assumed to be a stem and mn as su�x. As a result, we have a set of data points
D with wn = sn +mn for each word.

D = {w1 = s1 +m1, . . . , wn = sn +mn}

We have de�ned two di�erent models as unigram and hierarchical bigram to observe
how our approach performs with di�erent parameters and perspectives on the data.
Figure 4.1 presents an intuitive general overview of the model which, this chapter aims
to explain the process in detail.

4.2 Allomorph Filtering

Our �ltering algorithm applies the rules given in Table 2.2 in which di�erent forms of
the same morphemes are clustered into allomorphs with respect to vowel alternations.
Morphophonemic rules are applied to each generated segmentation by �ltering the
algorithm. The �ltering in the unigram model given as follows:

wi = s+m1f + ...+mnf (4.1)

Where s is the �rst generated segment i.e. stem of wi and mi refers to a su�x in wi.
We assume that each generated segment for a word is independent from the others
and segments have a stem succeeded by a su�x; thus, �ltering is only applied to
segments assumed as su�x, if there is more than one segment. The f indicates that
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Evlerde

Ev-ler-de Evle-r-de

Ev deler

p (new)
p (old)

Random_splittin
g

Random_splitting

Evle der

Oldsegment Newsegment

DP DP DP DP DP DP

p(Evle+r+de )
Markov Chain Newsegment

p(Ev+ler+de)
Markov Chain Oldsegment

Accept / Reject

Figure 4.1: An overview of the model
The initial word Evlerde randomly splits into the segment sequence Ev-ler-de then
probability of each segment drawn from a DP which forms a Markov Chain. The
same procedure applies to initial word respectively to generate newsegment. The
newsegment of the word accepted or rejected according to acceptance criteria.

the morpheme is �ltered by algorithm 1. The algorithm takes a string as input and
replaces de�ned characters with their allomorph correspondents with the exception of
su�x 'ken' which does not show any allomorphy.

4.3 Unigram Model

We have de�ned a DP to generate segments with the assumption that morphemes are
independent from each other, and the �rst segmentation of a word is recognized as a
stem based on the assumption that stems are always concatenated with su�xes, but
not pre�xes. The probability of a morphological segmentation of a word is de�ned as
follows:

p (w = s+m) = p (s) p (m) (4.2)

In the unigram model, we assume that stems are also independent from su�xes; there-
fore, probability of a word is independent of co-occurrences of stems and su�xes. The
probabilities of each segment drawn from a DP are determined as follows:

Gs ∼ DP (αs, Hs)

s ∼ Gs
(4.3)
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Algorithm 1 Filtering Algorithm

1: input: D = {w1 = s1 +m1, . . . , wn = sn +mn}
2: procedure Filter

3: chars ← {′d′ :′ D′,′ t′ :′ D′,′ a′ :′ A′,′ e′ :′ A′,′ ß′ :′ H ′,′ i′ :′ H ′,′ u′ :′ H ′,′C ′ :′

C ′,′ g′ :′ G′,′ k′ :′ G′}
4: segment← string
5: top:
6: if ′ken′ in segment then

7: exchar ← getindex(string)

8: loop:
9: if chars in segment[i] then

10: replace(segment[i], chars[i])

11:

12: if exchar True then
13: replace(segment[exchar],′ ken′)

14: return segment

15: for all m in w do :
16: return: Filter(m)

Where DP (αs, Hs) denotes a DP, distribution over segments, and Gs is the random
probability distribution that is distributed according to DP. Here αs is a concentra-
tion parameter that adjusts sparsity of distribution. Large values of αs leads a higher
number of segments, while low values reduce number of segments generated per word.
αs < 1 results in sparse segments and a skewed distribution; on the other hand αs > 1
leads to a uniform distribution that assigns closer probabilities to segments. If αs = 1
all segments are equally probable and uniform among all data points provided. There-
fore, the concentration parameter is a constant de�ning the uniformity of a distribu-
tion. Teh (2010) referred to a concentration parameter as a strength parameter when
a DP is used as a prior of the Bayesian non-parametric model. We use αs < 1 with
respect to sparse distribution of Turkish morphology to prevent bias over morphemes.

Hs is the base distribution that determines mean of the DP (Teh, 2010). The base
distribution can be continuous or discrete. We use geometric distribution of the mor-
pheme lengths for the base distribution:

Hs = γ|s| (4.4)

where exponent |s| indicates the length of a morph and γ is a gamma parameter
( Γ< 1).

After probability distribution Gs is drawn from DP, words can be generated by drawing
segments from Gs. As mentioned in Section 2.2 we integrate out probability distribu-
tion G, instead estimating them . After integration, the joint probability distribution
becomes:

p (s1, s1, . . . , sN ) =

∫
p(Gs)

N∏
i=1

p (si | Gs) dGs (4.5)

where K denotes the total number of segment tokens. The joint distribution of seg-
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G sαs
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w i
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Figure 4.2: The plate diagram of the unigram model
wi is the word generated from a DP. si represents segments that form the word and

the rectangular boxes show how many times the process is repeated.

ments leads to the CRP. The CRP provides the probability of each segment. Therefore,
the joint probability distribution of segments S = {s1, s2, . . . , sN} becomes:

p (s1, s2, . . . , sN ) = p (s1) p (s2) . . . p (sN )

=
Γ(αs)

Γ(N + αs)
αKs

K∏
i=1

Hs(si)
K∏
i=1

(nsi − 1)! (4.6)

where K denotes the number of unique segments. The second and third factors of
the equation correspond to the case in which new segments are generated for the �rst
time; the last factor corresponds to the case segments generated nsi times. The �rst
factor consists of all denominators from both cases. The conditional probability of a
segment, calculated according to the CRP described previously, generated segments:

p
(
si
∣∣ S−si , αs, Hs

)
=


nS

−si

si

NS−si + αs
if si ∈ S−si

αs ∗Hs(si)

NS−si + αs
else

(4.7)

where nS
−si

si denotes total number of the same type segments with si, but the new
instance of the segment excluded where S−si is the segments that segment token si
excluded. NS−si

si is the total number of segments in S where segment si excluded.
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4.4 HDP Bigram Model

The bigram model is identical to the unigram model; unlike the independence as-
sumption in the unigram model, bigram model consider co-occurrences of adjacent
morphemes. Furthermore, stems are distinguished from su�xes to provide a better
segmentation of stems. Within this approach, equation 4.3 turns into:

p (w = s+m) = p (s) p (m|s) (4.8)

Hs

Siαs

αb Si+1∣Si

Figure 4.3: The plate diagram of the bigram HDP model
wi is the word generated from a DP. si represents segments that form the word and

the rectangular boxes show how many times the process is repeated.

which assumes a stem generated could occur freely, but concatenated su�xes occur
according to adjacent su�xes. Word with multiple segments calculated with respect
to dependencies:

p (w = s1 + s2 + · · ·+ sn) = p(s1)
∏
i

p(si+1|si) (4.9)

Here, the �rst segment of the word is generated from a Dirichlet process and bigrams
are generated from another Dirichlet process. We use a hierarchical Dirichlet process
with two levels, where �rst we generate the �rst segment through a Dirichlet process
and in the second level we generate the following segment depending on the previous
segment through another Dirichlet process. HDP consists of multiple DPs within a
hierarchy and is able to model between-group dependencies (see Figure 4.3). The
bigram hierarchical Dirichlet process model is de�ned as follows:
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si+1| si ∼ DP (αb, Hb)

Hb ∼ DP (αs, Hs)

si ∼ Hb

(4.10)

where, mi+1|mi denotes the conditional probability distribution over adjacent seg-
ments. Hb is the base distribution of the bigram model that is another Dirichlet
process with a base distribution Hs (i.e. the morpheme length is used for the base
distribution again) that generates each unigram segment in the model.

Once the probability distribution p(mi+1|mi) is drawn from a Dirichlet process, the
adjacent morphemes can be generated by a Markov chain. Here we do not want to
estimate Hb and we integrate it out as follows:

p
(
(s1, s2), (s2, s3) . . . , (sM−1, sM )

)
=

∫
p(Hb)

M∏
i=1

p ((si−1, si) | Hb) dHb

(4.11)

where M denotes the total number of bigram tokens. Therefore joint probability dis-
tribution as follows:

p(s1, s2, . . . , sM ) (4.12)

= p (s1) p (s2 | s1) p (s3 | s2) ,
. . . , p (sn | sM−1) p

(′0′ ∣∣ sM)
where �0� is the end of the word sign inserted into the bigram and s1 is the �rst segment
of the word w that assumed as a stem. Where probability of a bigram p (si, si−1) drawn
from two distinct DPs with a hierarchy.

If we call each bigram as b = (si | si−1):

p (w = {s1, s2, . . . , sM}) = p (s1) p(b1)p(b2), . . . p(bM ) (4.13)

where M denotes the number of unique bigrams and p(s1) is drawn from Hs. The
conditional probability of a bigram calculated according to the CRP, given previously
generated segments M = {s1, s2, . . . , sn} as follows:

p
(

(sR | sL)bi

∣∣∣ B−bi , S−sL , S−sR , αb, Hb, αs, Hs

)

=


nB

−bi

bi

NS−sL
sL

+ αb
if bi ∈ B−bi

αb ∗ p(sR)

NS−sL
sL

+ αb
otherwise

(4.14)
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where nB
−bi

bi
denotes the number of bigrams of type bi when the new instance of the

bigram bi is excluded. Here B denotes the bigram set that involves all bigram tokens
in the model. NS−sL

sL
is the total number of bigram tokens in the model. sL and sR

denote the left and right nodes of the bigram. Therefore, if the bigram bi exists in the
model, the probability of generating the same bigram again is proportional with the
number of bigram tokens of the same type. If the bigram does not exist in the model,
it is generated with the probability proportional to the number of right morpheme in
the bigram:

p
(
sR
∣∣ S−sR , αs, Hs

)
=


nS

−sR

sR

NS−sR + αs
if sR ∈ S−sR

αs ∗Hs(sR)

NS−sR + αs
else

(4.15)

where nS
−sR

sR
is the number of segments of type sR in S when the new segment sR is

excluded. NS−sR is the total number of segment tokens in S that excludes sR. If the
segment sR exists in the model, it is generated again with a probability proportional
to its frequency in the model. If it does not exist in the model, it is generated propor-
tionally with the base distribution, therefore shorter morpheme lengths are favored.

The hierarchical model is useful for modeling dependencies between co-occurring seg-
ments. The co-occurrence of unseen segments are also within the scope of the hier-
archical model. The prediction capability of the model comes from the hierarchical
modeling of co-occurrences, which leads to a natural smoothing. For example, the
segment bigram may not be seen in the corpus, however it is smoothed with one of
the segments in the bigram which leads to a kind of natural interpolation.

4.5 Inference

We use Metropolis-Hastings algorithm to learn word segmentations in the given dataset.
As presented in algorithm 2, Words are randomly split initially: We pick a word from
the dataset in each iteration and randomly split that word. We calculate the new joint
probability Pnew of the model and compare it with the old joint probability of the
model Pold. We either accept or reject the new sample according to the proportion of
two probabilities:

Pnew
Pold

(4.16)

If Pnew
Pold

> 1, the new sample is accepted. Otherwise, the new sample is still accepted

with probability Pnew
Pold

.
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Algorithm 2 The Inference Algorithm

1: input: data D = {w1 = s1 +m1, . . . , wn = sn +mn}, initial segment sequence S
2: initialize: i⇐ 1, w ⇐ wi = si +mi

3: for all w in D do:
4: Get new random segments of S as Snew
5: Delete the segments Sold
6: pold(D|Sold)← p(D|Sold)
7: pnew(D|Snew)← p(D|Snew)
8: if pnew > pold then
9: Accept new segments of wi
10: Sold ← Snew
11: else

12: random ∼ Normal(0, 1)
13: if random < (pnew/pold) then
14: Accept new segments of wi
15: Sold ← Snew
16: else

17: Reject the new segments
18: Insert old segments Sold
19: output: Optimal segments of input words

4.6 Results and Evaluation

For both models, two sets of experiments were implemented, one with a �ltering al-
gorithm and the other without a �ltering algorithm. The �rst set of experiments,
designed to test unsupervised unigram and HDP bigram models. The second set of
experiments, designed to observe the e�ect of �ltering algorithm as semi-supervision
on unigram and HDP bigram models. In both experiments, words were assumed to
be made of stems and su�xes where pre�xes excluded. The test set chosen, was the
Morpho Challenge 2010 Turkish dataset1 wordlist, which consists of 617,298 words
combined with word frequencies. Frequencies were not included with respect to the
non-parametric nature of the model. Numeric results; precision, recall and f-measure
provided in the tables are obtained using MC2 evaluation metric which is suggested
by morphochallenge 2010. In order to calculate the precision, two words that share a
common segment are selected randomly from the results and checked whether they re-
ally share a common segment according to the gold segmentations. One point is given
for each correct segment. Recall is estimated similarly by selecting two words that
share a common segment in the gold segmentations. The F-measure is the harmonic
mean of Precision and Recall:

F −measure =
1

1
Precision + 1

Recall

(4.17)

Additionally, EMMA metric suggested by Spiegler and Monson (2010) could be used as
evaluation metric. For each experiment set, the sparsity of distributions were de�ned
by constants α and γ. We manipulated parameters in order to �t our model into data.

1 http://research.ics.aalto.�/events/morphochallenge2010/data/wordlist.tur
2 http://research.ics.aalto.�/events/morphochallenge2010/evaluation.shtml
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4.6.1 Experiments With Unsupervised Models

The results from the unigram unsupervised model are presented in Table 4.1. The
model archived the f-measure value of 30.64 with α = 0.5 and Γ = 0.5 values. There is
a signi�cant gap between precision and recall. The low recall reveals that the amount
of unpredicted morphemes are high which, may due to undersegmentation.

Table 4.1: Results from unsupervised unigram model

Parameters α and Γ Precision(%) Recall(%) F-measure(%)
0.01 77.09% 19.12% 30.64%

0.05 77.20% 19.87% 30.08%
0.1 94.71% 17.28% 29.23%
0.5 92.47% 18.02% 30.17%

Bigram model made a major improvement on results, the smoothing capability of the
model made improvement on recall. The highest obtained F-measure by bi-gram HDP
model is 38.83% as presented in Table 4.2. The main reason of improvement over
results is that the bigram model is sensitive to co-occurrences while HDP provides
room for unseen segments.

Table 4.2: Results from unsupervised bigram HDP model

Parameters α and Γ Precision(%) Recall(%) F-measure(%)
0.1 42.31% 34.03% 37.72%
0.3 50.36% 31.60% 38.83%

0.5 45.09% 33.32% 38.32%
0.8 27.37% 48.17% 34.90%

Adding co-occurrences morphemes to the model, made a signi�cant improvement over
both F-measure and the gap between precision and recall. This advantage of HDP bi-
gram model over unigram model may lead to two conclusions: Firstly, from a linguistic
perspective, syntactic information about the morphemes has an important impact on
segmentation that can not be ignored by independent morphemes assumption. Provid-
ing room for co-occurences of the morphemes into the unsupervised model, provides
a language speci�c information that improves number of valid segments. Secondly,
the smoothing made by hierarchical model, signi�cantly improved the results from
DP. For languages with agglutinative structure, it is important to include smoothing
into the model. Thus, the hierarchical DPs are better models for segmenting sparsely
distributed data.

4.6.2 Experiments With Semi-supervised Models

The �ltering algorithm, considerably improved overall performance of the model. Ex-
cept the result of the 0.01 parameter in table 4.3, the improvements are quite reason-
able; the recall value of % 24.74 may be explained as an outlier.

Semi-supervision also made a signi�cant improvement over F-measure values, and the
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Table 4.3: Results from semi-supervised unigram model

Parameters α and Γ Precision(%) Recall(%) F-measure(%)
0.01 93.65% 14.25% 24.74%
0.05 72.83% 20.71% 32.25%
0.1 69.98% 26.40% 38.33%

0.3 87.10% 21.52% 34.52%

gap between precision and recall closed. The highest F-measure improved from %
38.83 to % 43.22 with a % 11.31 gap between precision and recall.

Table 4.4: Results from semi-supervised bigram HDP model

Parameters α and Γ Precision(%) Recall(%) F-measure(%)
0.1 43.68% 41.41% 42.51%
0.3 46.92% 40.05% 43.21%
0.5 49.21% 38.52% 43.22%

0.8 49.46% 34.00% 40.30%

Clustering of morphemes into the allomorphs made a major improvement on overall re-
sults. With the �ltering algorithm, number of possible su�x forms reduced to possible
allomorphs. The number of tables are also reduced with respect to the rich-get-richer
behaviour of DP. Therefore, decision making capability of the algorithm increased
over each segment sequences which, reduced the sparsity. As both Figure 4.4 and
Figure 4.4reveals, supervision consistently increases f-measure.

Figure 4.4: Comparison of Results From Unigram Models

Kohonen et al. (2008) presented an extension to Morfessor baseline (Creutz and Lagus,
2002) for unsupervised induction of allomorphy namely, allomorfessor. Their system
was a morphological segmentation model that identi�es potential base forms for stems,
but not su�xes. The allomorphy of stems are aimed to discover by a MAP model for
consonant mutations. Test set was Morpho Challenge 2008 data set3, the results were
pointing a high undersegmentation with %11.53 F-measure for Turkish. Their model

3 http://research.ics.aalto.�/events/morphochallenge2008/
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Figure 4.5: Comparison of Results From Bigram Models

Figure 4.6: Comparison of Results With The Highest F-measure

su�ered from lacking context information as our unigram model su�ers. The semi-
supervised HDP bigram model resolves that problem by considering adjacency and
extracting global information about segmentation. Additionally, allomorph �ltering
provides a tuning over parameters which, reduce uncertainty.

Virpioja et al. 2009, presented another extension to Morfessor baseline (ibid) named
Allomorfessor baseline which, aim to obtain better results than Allomorfessor (Ko-
honen et al., 2008) by creating a morpheme-level model that is able to manipulate
surface forms of the morphemes, with mutations. Their model resulted an F-measure
of %31.82 over Turkish dataset4 with a huge gap between precision and recall. While
their model results %62.31 F-measure over English dataset5, the results for Turkish
are quite low compared to our results from unigram and HDP bigram unsupervised
models. This may lead to a conclusion that the allomorphy may not be able to mod-
eled by consonant mutations, it needs global information about morphological forms
to model such phenomena. The Dirichlet process is a suitable model compared to
mutation-based form manipulation systems.

4 http://research.ics.aalto.�/events/morphochallenge2009/
5 http://research.ics.aalto.�/events/morphochallenge2009/
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4.7 Comparison With Other Systems

We compare our results with other unsupervised systems participated in Morpho Chal-
lenge 2010, as our dataset and evaluation algorithm are taken from Morpho Challenge
2010. The comparison of our semi-supervised model made with the unsupervised al-
gorithms with supervised parameter tuning of Morpho Challenge 2010. Because of the
semi-supervised models of Morpho Challenge 2010 are using gold standard segmenta-
tions for supervision.

Table 4.5: Comparison of our semi-supervised model with other algorithms with su-
pervised parameter tuning participated in Morpho Challenge 2010 for Turkish

System Precision(%) Recall(%) F-measure(%)
Promodes Spiegler et al. (2010) 46.59% 51.67% 49.00%

Promodes-E Spiegler et al. (2010) 40.75% 52.39% 45.84%
Morfessor U+W Kohonen et al. (2010) 40.71% 46.76% 43.52%

Bigram HDP with Filtering 49.21% 38.52% 43.22%
Promodes-H Spiegler et al. (2010) 47.88% 39.37% 43.21%

Table 4.6: Comparison of our unsupervised model with other unsupervised systems in
Morpho Challenge 2010 for Turkish

System Precision(%) Recall(%) F-measure(%)
Morfessor CatMAP Creutz and Lagus (2005) 79.38% 31.88% 45.49%

Aggressive Compounding Lignos (2010) 55.51% 34.36% 42.45%
Bigram HDP 50.36% 31.60% 38.83%

Iterative Compounding Lignos (2010) 68.69% 21.44% 32.68%
MorphAcq Nicolas et al. (2010) 79.02% 19.78% 19.78%

Morfessor Baseline Creutz and Lagus (2002) 89.68% 17.78% 29.67%
Base Inference Lignos (2010) 72.81% 16.11% 26.38%

Tables 4.5 and 4.6 presents the o�cial results of the Morpho Challenge 2010 (Ku-
rimo et al., 2010). The most accurate unsupervised segmentation system Morfessor
CatMAP, is based on a MAP model with involve of the form and the meaning of
morphs where the meaning consists of a set of features; frequency of the morph, per-
plexity6 and the length in letters of the morph. The involve of meaning do not impose
any semantic information, but it is an attempt to infer as much as knowledge from the
context. Bigram HDP model also revealed that the context sensitivity is important in
segmentation models.

The Promodes algorithm family is based on a probabilistic generative model. The pa-
rameters, letter transition probability and probability distribution over non-/boundaries
are estimated by computing MLE from the goldsegment training set which, used for
to �nding best segmentation of the word. The Promodes, applies the information of
training set to a larger test set without any linguistic assumption i.e. stem and a�x.
The accuracy of Promodes revealed that the transitional probabilities between letters
are also important in morphological segmentation task.

6 As �distilled� properties of the context the morph occurs in, its intra-word right and left perplexity
are considered.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Morphology is a signi�cant subdiscipline of linguistics, an interface between phonology,
syntax and semantics. In agglutinating languages, morphology plays a key role on
understanding language acquisition and word internal structures. To be more speci�c,
for an infant to learn Turkish, LA is a task of acquisition of morphemes in which,
word internal structures are acquired with respect to morphosyntactic forms and their
semantic properties.

Our form driven approach claims nothing about semantics, symbols and representa-
tional system of mind. In natural languages, phonological form contains the informa-
tion about the syntactic properties of source language. The unsupervised models of
morphological segmentation are to extract information from the phonological forms.
The form-driven models su�er from the lack of semantic information, thus, it is quite
expected from them to dismiss linguistic phenomena such as dependency structures.
Even if shortcoming of the form-driven approaches is unavoidable, it is important to
understand how much of the information could be successfully extracted from the syn-
tactic forms. Thus, this study based on a phonological form-driven non-parametric
model for morphology learning. The research questions presented in section 1.1 are
concluded accordingly:

1. While usefulness of non-parametric Bayesian models in computational models
is undoubtedly important, when it comes to modeling of learning, they are not
explanatory but robust frameworks for detecting patterns in the data. In case
of a form-driven model, the form itself is not enough to have a segmentation
model that widely covers morphology. Accommodating the co-occurrences of
morphosyntactic forms i.e. bigrams into a form-driven model, improves the cov-
erage and the robustness.

2. The supervision of non-parametric Bayesian models is promising as our min-
imal supervision achieved better results. Incorporating orthographic rules as
prior information into the form-driven model, resulted in better segmentations.
Therefore, the allomorphy is a useful prior for morphological segmentation task.

Our study made two major contributions to the morphological segmentation research;
�rstly, we revealed that it is important to include intra-word dependencies to the
non-parametric Bayesian model. Secondly, using allomorphy for tuning the parame-
ters of a non-parametric Bayesian model, results with a more successful clustering of
morphemes.
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As our study reveals that, the phonological forms explain just little amount of learn-
ing unless they are combined with logical forms. Unlike formal languages, natural
languages are much more complex to process with phonological forms. Unsupervised
and semi-supervised models of language learning are not explanatory yet. According to
LOTH, they would never become a cognitive model neither, but are useful at reducing
innate assumptions.

5.0.1 Future Work

In order to carry this research further, some modi�cations to could be implemented.
As well-known Zip�an distribution provides empirical information about the morphol-
ogy Chan (2008), adding the Mandelbrot's Zip�an formula de�nition to our non-
parametric Bayesian model as a base distribution, could provide information about
relationship between morpheme occurrences and probabilities Creutz (2003). The word
frequencies of our dataset are not included yet into our segmentation models, they can
be included as a strength parameter for each segment of the word. As Creutz Creutz
and Lagus (2005) shows that the maximizing information inferred from the context,
improves the segmentation performance we can place further assumptions into out
model such as derivative and in�ective forms. A distance dependent CRP Blei and
Frazier (2011) that groups the similar data with a distance function, could be de�ned
in order to get better clusters of such categories.

As Çak�c� et al. (2016) shows that the combinatory categorial grammars1 (CCG) and
radical lexicalization are explanatory approaches to language learning. The universal
rules of CCG i.e. application, type-raising could be useful in deducing the grammar
from the phonological and the logical form. Such system also have degrees of freedom
for unseen forms with categorial projection. Thus, the actual HDP model could be
modi�ed to induce CCG from morphology as Bisk and Hockenmeier 2013 shows that
such models can compete with other grammar induction systems.

1 Steedman (2000), Steedman (2012), Boz³ahin (2012)
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