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ABSTRACT

IMPLICIT MONOLITHIC PARALLEL SOLUTION ALGORITHM
FOR SEISMIC ANALYSIS OF DAM-RESERVOIR SYSTEMS

Ozmen, Semih
Ph.D., Department of Civil Engineering
Supervisor: Assoc. Prof. Dr. Ozgur Kurg

February 2016, 173 pages

This research mainly focuses on developing a coatipmially scalable and efficient
solution algorithm that can handle linear dynamigalgsis of dam-reservoir
interaction problem. Lagrangian fluid finite elenteare utilized and compressibility
and viscosity of the fluid are taken into considieraduring the reservoir modeling.
In order to provide computational scalability arfticeency, domain decomposition
methods implemented with parallel computing appneacsuch as Finite Element
Tearing and Interconnecting (FETI) family solutialgorithms are utilized for the
coupling of the subdomains and a fully implicit netithic solution algorithm is
developed. Following that, the ways of performameprovements for the algorithm
are demonstrated. Re-orthogonalization is utiliweshcrease the convergence rate of
the solution of system equations and Krylov subspaare utilized in order to

decrease the required iterations for the future fimegration steps.

Additionally, utilization of deflation methods orrdeonditioned Conjugate Gradient
(PCG) and Finite Element Tearing and Interconngc(iRETI) family solvers is
discussed. Due to the fact that efficiency and bieneof the deflation methods
depends on the deflation vectors utilized, differeleflation vector generation
methods are also investigated. Two of the deflatiector generation methods are
from literature, i.e. “Subdomain Deflation Methodind “Recursive Deflation



Method for Heterogeneous Problems”. In additiorthlem, a novel semi-heuristic
deflation vector generation strategy which religs the pre-selected zero energy
modes of finite element formulations is proposedqirements, improvements and
efficiencies of these methods are demonstratedhfoiserial solution of water tank

with flexible walls problem.

In order to investigate the efficiency and scalgbibf the presented solution
approach on the solutions of more realistic prolldmy computer clusters, this
approach is implemented by utilizing C++ programgnitanguage and PETSc
library. In this parallel implementation, FETI-DBIstion algorithm is utilized with
different deflation vector generation algorithmseTefficiency and the scalability of
the parallel solution framework are discussed ftfeent types of finite elements,
for different partitioning approaches and for diéfiet number of processors. Finally,
the solution performance is presented for a laogeah dam model, Pine Flat Dam in
California, USA.

Keywords: Monolithic, Lagrangian, FETI, Dam-Reservoir Interan, Deflation
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Oz

BARAJ-REZERVUAR SIiSTEMLER iNiN DEPREM ETK iSi ALTINDA
ORTUK YEKPARE VE PARALEL OLARAK COZUMLENMES i

Ozmen, Semih
Doktora,insaat Mithendisfii Bolumii
Tez Yoneticisi: Dog. Dr. Ozgur Kurg

Subat 2016, 173 sayfa

Bu argtirmada, barajlar icin yapi-afkan etkilgiminin dogrusal dinamik olarak
cbzuimleyebilecek yiksek fmimli ve olgeklenebilir performansli bir ¢6zim
yontemi gelstirilmistir. Rezervuarin modellenmesinde suyun stiklabilme ve
viskozite 6zellikleri gbz dnine alingtir. Yiksek bgaarim ve arttirilabilir performans
elde edebilmek icin paralel hesaplamaya uygun at-yabanli ¢6zim yontemleri
secilmgtir. Lagrange carpanlarina dayali alt-yapi tabdoani ¢cozim yontemi olan
SEYY (Sonlu Elemanlar Yirt ve Yaglir)(ing. FETI) yapi-akgkan etkilgimi
problemlerini ¢bzimlemek icin uygulangrve sonuc olarak tamamen orttik yekpare
bir ¢o6zim yontemi getiriimistir. C6zUm  yobnteminin sayisal olarak
olusturulmasindan sonra ggirilen yontemin nasil iyilgtirilebilecesi aragtirilmistir.
Sonuca ulgma hizini arttirabilmek amaciyla farkli iyteme yontemleri
uygulanmgtir. Buna ek olarak, dinamik ¢oézimleme sirasinddaptaden zaman
araliklarinda ¢ézimleme icin gereken ¢o6zim yineleagsini azaltmak amaciyla

daha onceki ¢cozumler sirasinda elde edilen Krylouzay vektorleri kullanilmtir.

Bunlarin dginda, deflasyon yontemlerinidyilestiriimis Eslenik Gradyan (ing.
Preconditioned Conjugate Gradient) ve SEYY cozurelgi@ntemlerine uygulamasi
incelenmgtir. Deflasyon yontemlerinin Barimi kullanilan deflasyon vektérlerine

bagli oldugu icin literatiirde yer alan farkli deflasyon vekidresaplama yontemleri

Vii



arggtirilmistir. Bunlara ek olarak, kullanilan sonlu elemamidtasyonlarindan elde
edilen 6nceden secilgmsifir enerjisekillerine dayali tamamen yeni bir yari-bgdal

deflasyon vektdri hesaplama yontemi dnektmiBu yontemlerin gereksinimleri ve
sonu¢ olarak kullanimlariyla elde edilen igieeler esnek duvarli su tanki

probleminin ¢ézimlenmesi Grgiglizerinde tartilmistir.

Baraj sistemlerindeki yapi-alkan etkilgiminin ¢6zimu icin sunulan hesaplama
yaklasimin daha gercekci ve buyuk orneklerin (bilgisay@meleri yardimiyla)
¢cbzimundeki bgarimini ve olgeklenebilirdini incelemek amaciyla, bu yakian
C++ programlama dili ve PETSc kutuphanesi kullaakauygulanmgtir. Bu paralel
uygulamada, FETI-DP c¢6zium yontemi farkll deflasyoektéri hesaplama
yontemleri ile birlikte kullanilmgtir. Gelistirilen paralel ¢6zim sisteminin farimi
ve arttirilabilirligi farkh sonlu eleman tipleri, farkli bélimleme yagmlari ve farkh
islemci sayilari icin argiriimistir. Son olarak, getirilen bu sistem ABD'de bulunan
Pine Flat Baraji'nin c¢c6zimlenmesinde kullanginue ¢6zim sisteminin nihai

performansi gosterilrgiir.
Anahtar Kelimeler: Yekpare c¢6zim, Lagrange gosterimi, SEYY-Sonlu

Elemanlar Yirt ve Yagtir yontemi, Baraj-Rezervuar

Etkilesimi, Deflasyon yontemi
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CHAPTER 1

INTRODUCTION

1.1.Problem Definition

Dam analysis is a wide, multi-disciplinary reseaagka due to the fact that it is a
multi-physics problem with interacting domains sumh dam structure, reservoir
water and foundation rock. Not only dam analysiglines the computation of the
behavior of domains with different material propestand physics in a spatially
large volume, but also accurate modeling of thdiegon of loads, seismic actions,
construction sequences, indirect actions such exsntdl and shrinkage effects, and
more are still being researched for a better remtasion of the behavior of a dam
structure. As being an important structure itsafsessment of the dam’s seismic
performance is still a current research area. Qrleeomain problems of the seismic
dam analysis is the modeling of the interactionomgnthe dam, reservoir, and
foundation domains. For a more accurate representaf the interaction among
different domains, not only the dynamic domain hédraitself but also the coupling

between neighboring domains should be accuratetyu@ated [1].

During the seismic analysis of dams, representaifatifferent domain behaviors is
generally simplified. The dynamic behavior of tleservoir water domain is usually
represented as an equivalent time dependent, perabessure/force field applied to
the surface of the dam. Although such an approxandtas several limitations, it
usually produces conservative results for modetimg reservoir water [2]. For a
more detailed analysis, the reservoir water cambdeled with finite elements. In
order to characterize full properties of the flfldw, in general Navier-Stokes

formulation is utilized. On the other hand, wheea thiid behaves within the limits of



acoustics, the fluid flow is assumed to be linead anviscid. This way, a
considerable simplification can be utilized for thed formulation. However, in this
case, dam-reservoir analysis under dynamic loairgignificantly affected by the

viscous effects [1, 3, 4].

The interaction between dam and reservoir, is m@ssumed to take place in one-
way, i.e. effect of structure’s deformation on thaed behavior is neglected since the
dam lateral deformations are negligible [2]. Otheey a coupled analysis can be
performed where dam-reservoir interaction is apipnaxed by modeling both the
dam and reservoir by finite elements and analyzbagh domains together
(monolithic solution [5-12]) or separately (paditied solution [13-17]). In
monolithic analysis approach, all equations of ipHiysics system are solved
simultaneously with a single method and a time.dtepartitioned solution methods,
in contrast, equations of different domains cansblved separately which allows
using an optimum analysis approach, system equattuiion method and different
time steps for each domain. Even though, partitiorselution methods are
considered as computationally less expensive thamionolithic solutions, accurate
formulation and numerical implementation of the mlowg between partitioned
domains are a significant challenge [16]. In additio that, since solutions of each
partitioned system are carried out one after ampfoeeach time step, there is a time
lag in between solutions and it is artificially saug an insertion of additional energy
to the overall system [9].

During the monolithic dynamic analysis of dam-resar problems, dam structure
and foundation rock is generally represented byldcement based (Lagrangian)
solid finite elements [18]. On the other hand, resie can be represented with fluid
elements with displacement field, pressure fielelogity field, or combined field
formulations [1]. When the reservoir is discretizeith fluid finite elements without
a displacement field definition, a coupling equatstould be defined in between the
displacement field of the solid finite elements @hd formulation variable of the

fluid finite elements. If the reservoir is discestd with Lagrangian fluid finite



elements, all finite elements in the dam-resersgatem will have only displacement
variables as their degrees of freedom (DOFs). Wayg there is no need for any
special dam-reservoir interface coupling elementsnethods. Coupling will be
automatically handled by the solution of systemagigums of the whole domain
simultaneously [9]. As a result, any approximaticarsl limitations of coupling
algorithms will be eliminated. Monolithic solutiasf such fully Lagrangian system
is, however, computationally expensive, becausthefutilization of displacement
formulation for fluid elements. For example, in €asf 3D problems, when
displacement formulation is utilized for the modwl of fluid material, three
displacement variables at each node of a brick ehns required to represent a

single pressure variable in pressure field formaoitat

Another important topic for the seismic dam-resarvanalysis is the energy
absorption by the far-end boundaries. Briefly, ghieenomenon originates from the
existence of acoustic waves leaving the systeny full partially in time or space
sense. One way of handling this problem is to mdkdelfoundation and reservoir
domain large enough such that the reflected wava® fthe boundaries have a
negligible effect on the results [1, 4, 19]. As egd, this approach requires
significant amount of computational resources. riatively, truncated models with

absorbing boundary condition definitions [20] canutilized.

The monolithic dynamic solution of dam-reservoistgyns requires considerable
computational resources because of the simultanesmhgtion of differential

equations of different materials in a single tinbeps When the problem is intended
to be solved with non-linear material behaviorg, oxaly the mesh size increases but
also additional computations are required for cotimguhe stresses at every node of
a single finite element. Because of this reasoilization of high performance

computing techniques is compulsory for solving spobblems at a reasonable time

frame, days rather than months.



The requirement of high computational power for them-reservoir interaction
problems needs highly scalable solution methodsis Therative solution methods
such as Finite Element Tearing and Interconnec{lrRgTI) family of solution
methods [21-24] can be a good alternative sincg Hre proven to be highly
scalable for problems having a single domain [2B].FETI family of solution
methods, as being a domain decomposition methadlafion, domain is partitioned
into non-overlapping subdomains and the interfaGé-®are replaced with interface
equilibrium forces (Lagrange Multipliers). Therefpeach subdomain can be solved
independently and a coarse problem is defined byirtterface equilibrium forces.
As a result, comparatively small sized coarse @mb|26] is generally solved for
interface equilibrium forces by utilizing an itexeg solution method and overall
system solution is recovered from the resultanerfate equilibrium forces.
However, in case of huge stiffness difference ia thterface of solid and fluid
domains, convergence of the iterative solutioreigrdded [27]. Moreover, as a result
of the domain decomposition, floating subdomairet tire insufficiently supported
or even unsupported subsystems whose stiffnessxnratolves several singularities
can be formed. When the floating subdomains contagrangian fluid finite
elements, they may have additional spurious zeeoggmmodes (a generalization for
rigid body modes in solid mechanics) [28] when canep to solid subdomains.
Besides, these may result in slow convergence mptzie divergence of iterative

solution [29]. Therefore, a special considerat®required for such problems.

Deflation which is one of the problem conditioningethods reduces the condition
number of the system by defining a projection matvhich projects the extreme
eigenvalues out of the system. Therefore, the agewee rate of the iterative
solution is improved or the solution is carried osiiccessfully with lesser
computational requirements [30]. Deflation methotave several algebraic
connections with multi-grid methods and projectimreconditioners [29, 31, 32].
Performance and efficiency of solutions with deflatmethod are highly depends on
the deflation vectors utilized [33—-36]. In case spfbdomains composed of solid

elements, computation of rigid body modes andainigj them as deflation vectors is



a straight forward task [33, 37, 38]. However, ase of subdomains with Lagrangian
fluid finite elements, such methods are not appleaand a fully rank revealing
Eigen solution is required [39]. Generation of westthat define the projection
matrix for the deflation method is a challengingktaCarefully selected, sufficient
number of deflation vectors would result in a fastenvergence rate but generation

of the deflation vectors should also be computatigrefficient [29].

The seismic analysis of dam structure requiresdyreamic analysis of the whole
domain. One of the dynamic analysis methods idithe integration method where
time derivatives of the equation of motion are cétized by finite difference method
[40]. The dynamic solution of a large domain witl-&TI like iterative solver has
also several challenges and opportunities. Sineedarse problem solution in FETI
family methods is generally solved by a Krylov sudxse generating iterative
solution, implicit time integration becomes attragt In other words, obtained
subspace vectors can be utilized to enhance tii@olfor the following time steps
by assuming the overall system behavior is not giman drastically [41].
Considering the scalability of FETI family methoalsd improved convergence rate
with Krylov subspace vectors, unconditionally seabmplicit time integration
methods can be considered for dynamic analysis Whl, larger time steps can be
utilized when compared to explicit time integratioased analysis methods which is
also another scalable solution approach [42]. Hamewirect utilization of
Newmark's implicit time integration scheme suffésm spectral drift. Therefore, a

variant of this method based on conservation moumerttan be utilized [43].

As a result, having different domains with differ@material properties and different
governing equations, and large solution domain areethe main challenges of the
seismic dam analysis. Due to large solution dorsae and having several degrees
of freedom at each node during monolithic solutaithe whole domain, high
performance computing techniques must be utilizagnd the dynamic analysis of
dam-reservoir interaction problem. As being a hygidalable solution method, FETI

family iterative solvers, are good candidate foduwng the analysis time.



Guaranteeing the convergence of the FETI solvers raducing the number of
iterations at each time step of the dynamic anslgse the main challenges for
problems having different types of domains. Thuesjelioping a robust, scalable and
practical solution method for such large scale domavould significantly help

improving the seismic design of dam structures.

1.2.Objectives and Scope

The main objective of this research is to devel@omputationally efficient solution
algorithm that can handle linear dynamic analysisdam-reservoir interaction
problem. In order to provide computational effi@gn domain decomposition
methods implemented with parallel computing methogies are utilized. Finite

Element Tearing and Interconnecting (FETI) algaonitrwhich is a Lagrange
Multipliers based domain decomposition algorithra ased for the coupling of the
subdomains and fully implicit monolithic solutionlgarithm is developed.

Compressibility and viscosity of the water are taketo consideration during the
reservoir modeling by two different Lagrangian flelement formulations. Material
heterogeneity, floating subdomains formed during BETI solution, zero-energy
modes of fluid elements, spectral drift of the dyim@asolution and divergence/slow
convergence in some cases are the main challeagédseffully Lagrangian, implicit

monolithic parallel solution in the seismic anatysif dam-reservoir interaction
problem. For this objective, the study will focusthree main research steps;

» Development of a Lagrange Multipliers based (FEatiant) fully implicit
monolithic parallel solution algorithm that can sessfully converge to the
solution with an acceptable accuracy in a reasentvle for multi-physics
problem of dam and reservoir by utilizing fully lraggian fluid element
formulations for reservoir. This step involves timplementation and
validation of finite element formulations and wdtion of these elements in
FETI family of solvers for the dynamic solution @ém-reservoir interaction
problems. Two different Lagrangian fluid formulat®are implemented and



validated for benchmark problems. State of theéemfiniques in the literature
for handling floating subdomains and instabilitiesulting from material
heterogeneity, fluid element formulation and implitme integration are
implemented and their performance, strengths arakmesses are examined
on several benchmark problems.

* Investigation of the possible improvements in tlygpathm for increasing the
accuracy, improving the convergence rate and opingithe computational
efficiency. For this purpose, the use of deflatmathod on the convergence
rate, performance and memory efficiency are ingastid. Besides, a novel
deflation vector generation method is also devalopefferent fluid element
formulations are tested for different material paes. Advantages and
disadvantages of improvement methods are examimedepresentative
sample problems by using two different FETI sohiegsFETI-1 and FETI-2.

* Extension of investigations to determine the efficly and the scalability of
solution algorithm with different deflation vectorSeveral benchmark
problems are solved by utilizing the parallel impéntation of the solution
approach based on FETI-DP solver. Advantages asdddantages of
discretization with different finite elements andffetent partitioning
configurations are examined. Different deflatiorctee generation methods
are compared with each other by changing the numibprocessors utilized
on a computer cluster. Besides, overall performatetails of the solution

approach are presented for the solution of an bletrgee dam problem.

Within the scope of this thesis, serial implemaatatof the solution approach is
implemented on MATLAB environment, whereas paralieiplementation is
implemented with utilizing C++ programming languaayed PETSc library. During
the parallel solutions, a computer cluster withpd@cessors is utilized. The scope of
the research is limited to development of a contmrally efficient solution
approach for linear dynamic analysis of dam-resemteraction problems.



1.3.Thesis Outline

This thesis contains six chapters. The first chagean introductory chapter that
encapsulates the problem definition and the objeand scope of the study. Second
chapter summarizes the literature survey and oseran dam-reservoir systems, its
solution approaches, and its discretization. Moeeoss a solution method; domain
decomposition methods specifically FETI family obligion methods are
summarized in this chapter. In the third chaptetails of the fully Lagrangian
implicit monolithic solution algorithm for the semsc analysis of dam-reservoir
systems are discussed. FETI-1 and FETI-2 algorith@sed serial implementation of
the overall solution framework is presented andveogence rate improving methods
are discussed, additionally. Fourth chapter focusethe conditioning methods for
instabilities formed during the solution and espkygi a novel deflation vector
generation algorithm is proposed. Two differenidlalement formulations are tested
for different material properties on representatsanple problems by the serial
implementation. FETI-DP based parallel implementatf the solution framework
by utilizing C++ programming language and PETScalip is presented in the fifth
chapter. This implementation is utilized for thelusion of more realistic and
comparatively large problems by a computer cluskgfect of utilizing different
finite elements, different partitioning configuats and different number of
processors are investigated by numerical expergnénterall performance details of
the solution approach are presented for the solufaan actual large dam problem.
Finally, conclusions are summarized in the lasptérawhich is the sixth chapter.

Theoretical details of Lagrangian fluid element niatations, finite element
validations and overall framework validation inrtesr of mechanics are demonstrated
in APPENDIX A and APPENDIX B, respectively.



CHAPTER 2

BACKGROUND

2.1.Overview on Dam-Reservoir Systems

This section describes analysis and evaluationeghares required for assessing the
seismic performance of dams-reservoir systems. @ribke acceptable methods of
analysis for computing deflections and stressesldped in the dam is finite
element analyses. The finite element analysis shibellconducted by developing an
accurate model of the dam system. In the followsgosections, modelling

techniques for each domain that compose the datarsysill be discussed.

2.1.1.Dam Model

The finite element analysis highly depends on thigef element mesh employed for
the dam and the mesh is required to closely mdtehdbmain geometry and is
suitable for application of the various loads. Dasement based solid finite elements
are generally utilized for the dam structure [IBhe type of finite element mesh
developed is mostly dependent on the geometry efddim and the ability of the
displacement field of the element to capture trepldcement and stress fields that
one is attempting to model. Therefore, it is natgible to strictly define the number
of elements of which that constitute a represergdinite element mesh for all cases
[18, 44]. However, generally, high order elements atilized to build relatively
coarse meshes. In case of 3D analysis, for exantpke, linear 8-node solid
hexahedron element requires finer meshing to olitensame displacements. The
foundation profile sometimes may dictate the sideelements. For instance,

considerably irregular foundation profiles gengralequire smaller elements to



model the dam geometry. When elements get smallenerally they become
increasingly sensitive to geometric discontinuitjéd]. For example, large stress
concentrations that are fictitious because of tmmétion of cracks in the foundation
material are obtained on the re-entrant cornershatdam-foundation interface.
Dynamic characteristics and the response of the tdaearthquake loading are also
affected by the size of elements. For examplerdeoto compute the contribution of
all significant modes of large thin arch dams, ténielement mesh should be
sufficiently fine [2, 4]. As a rule of thumb, a fie element mesh of a concrete dam
should embrace at least 5 rows of elements aloagddm height and sufficient
number of elements along the dam axis. The numbelements along the dam axis

is determined so that the aspect ratios of the exésris less than 2 [1].

2.1.2.Foundation Model

In order to account for the effects of foundati¢exibility on the deflections and
stresses of the dam, an appropriate volume of twmdation rock should be
considered during the modeling. In general, thikw® extends to a large enough
distance beyond which the effect of foundation @flettions and stresses of the
structure become negligible. Although, it is pobsito develop a foundation model
that closely matches the site topography, suchxémaveagant model is not required
in practice [1, 2]. In general, finite element mdsticomes finer near the dam-
foundation interface where the largest deformatemd stresses are formed, whereas
coarser mesh is employed away from the dam, winerenteraction with the dam is
reduced.

As a rule of thumb, the ratio of the foundationatafation modulus to the concrete

modulus of elasticity K¢ /E.) is utilized to determine the size of the foundati
model. For example in case of a competent foundatek with E/E. equal or

greater than 1, the foundation model should exter@ldam height in the upstream,

downstream, and downward directions. In case ofifle foundation rocks, the
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foundation model should be finer and it is requite@xtend twice the dam height in

all directions [1].

2.1.3.Reservoir Model

In addition to dam-foundation interaction, dampirapyd the characteristics of
earthquake ground motion, dam-reservoir interacsignificantly affects the seismic
response of concrete dams to earthquake excitafioa. of the first studies on this
topic was carried out by Westergaard in 1933 [By]assuming a rigid gravity dam
with a vertical upstream face in 2D, he demongtratieat the hydrodynamic
pressures applied on the upstream face of the dsraube of the seismic motion
equals to the inertia forces of some water bodypmehg with the dam whereas the
rest of reservoir water remains stationary. He satggl that these hydrodynamic
pressures can be expressed as a parabolic shayetladoupstream face with a base
width equal to 7/8 of the dam height.

More accurate added-mass representation of thevoésean be obtained by a finite
element solution of the pressure wave equationishiaily considering the complex
geometry of the dam and the reservoir. In thesdodetiogies, incompressible fluid
finite elements are utilized, surface waves arelewtgd and rigid reservoir
boundaries are assumed [4, 46]. Although finitenelet mesh of the incompressible
water can closely match the reservoir topographygeaneral and for most cases a
prismatic model constructed by projecting the danthie upstream direction would
be sufficient. As a rule of thumb, the reservoirdeloshould at least extend three
times the dam height in the upstream direction slmmlild have at least three layers
of elements in that direction. Then, the pressataes computed for the nodal points
on the upstream face of the dam are convertedaqtovalent nodal forces, from
which an added-mass matrix demonstrating the aleefifects of the reservoir is
obtained. The added-mass matrix obtained is a syrimnmaatrix coupling all the

nodal DOFs on the upstream face of the dam strei¢d]. Several important factors
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on the seismic response of dam systems such adfdots of water compressibility

and reservoir boundary absorption are ignoredoneafientioned methods. However,
it is shown that the reservoir boundary absorptemd the compressibility of water

can considerably influence the hydrodynamic pressand therefore the seismic
response of concrete dams [2].

Interaction of a concrete dam with the reservaireases the dam vibration periods
[1, 4, 46] since the dam structure cannot move authdeforming the water in
contact with it. Therefore, the total mass in motiocreases with the water added
and hence the natural periods of the dam increageeh in turn affects the effective
earthquake inertia forces. Damping is also incrédseause of the partial absorption
of pressure waves at the reservoir boundaries4&p,In conclusion, reservoir is a
significant factor that can change the earthquakpanse of the dam with respect to
that for the dam with empty reservoir, and it sklobe considered carefully in

seismic dam analysis [1, 2, 48].

2.1.4.Finite Element Time-History Analysis

The seismic response of concrete dams can be ¢xliog the time-history analysis.
In most cases, linear time history analysis coupléti engineering judgement is
sufficient to evaluate the seismic safety of a cetecdam [1, 2]. The linear time-
history response analysis can analyze time depémti@nacteristics of the dynamic
response. Besides, acceleration time-historiesbeantilized as the seismic input,
and complete response histories (i.e. nodal displaats and element stresses) of the
dam for the entire duration of the earthquake cawlitained by the solution of the
equations of motion. The finite elements that dikzad for the discretization of the
idealized dam-reservoir-foundation system is usedtHe assembly of the equations
of motion [44].

12



2.2.Dam-Reservoir System Solutions

The behavior of dam-reservoir interaction can baeswtered as a multi-physics
problem where the fundamental equations for soid ffuid domains are considered
in a single problem. Thus, the both solid and fldainains cannot be approximated
as independent due to the tight coupling in betwtbem. Such problems are defined
as fluid-structure interaction (FSI) problems whéitee flow around a body has a
strong impact on the structure and/or on the mowenwd the body and the

modification of the structure or the position oéthody or a component of the body
due to the flow has an influence on the flow whimot negligible" [18]. Therefore,

both the fluid and the structure equations sho@dléfined by the relationships of
continuum mechanics in order to represent the phygihenomena of both bodies

deforming together.

2.2.1.Analysis Approaches for Fluid-Structure Interaction

Depending on the physical nature of the interactmmalysis approaches can be
classified in two groups [13, 15, 16, 49-52] as oiibic and partitioned analysis
methods. In fact, for only small sized linear peshk that can be solved by hand
calculations or by computer symbolically, it is pidie to eliminate the field
variables at the level of differential equations dupstituting one into the other. In
other words, a common discretization field varialile. displacements) for both
domains can be eliminated from the set of equatadrtained from solid mechanics
by inserting the rewritten set of equations obtdifrem fluid mechanics. Even if
these are small sized problems, as the numberuztieqs are considered, it could

be a difficult task to solve such complex equations
Former group of analysis methods is the monoliimalysis methods [5-12] which

require a simultaneous solution for all unknownghe coupled overall system i.e.

solid and fluid domains. In other words, both saind fluid domains are analyzed
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with a consistent discretization in space and tima single iteration. This way, all
interaction effects between the fundamental eqoatmf both domains are covered
without any approximation [9] since coupling coilis are enforced strictly as part

of the algebraic system.

Latter group of analysis methods is the partitioaedlysis methods [13-17]. For
these methods, solution domain is partitioned atingrto the type of governing
equations. For fluid-structure interaction casestfgroup is governed by the fluid
dynamics, whereas the other one is governed bystheture dynamics. In this
approach, the fluid and structure domains are salied multiple times at each time
step and exchanging the field variables at the comnnterface, until some
predefined tolerance is obtained, at which poimt digorithm can progress to the

next time step [10].

Iterative resolutions uncoupling large systemslmararried out in partition methods
and hence these methods are generally preferreandaoolithic approaches.
Uncoupling of the different physical domains forrtise basis for all of the
partitioned methods. This property makes it possiiol utilize different solution
algorithms for each uncoupled domain. In caserohst coupling, efficiency of these
methods may degrade due to excessive number afitties required. Besides, in
case of 3D problems, the dimension of the pure e@chl problem is considerably
larger than the fluid domain dimension and thatd$eto unbalanced subsystems.
Besides these methods may also lose the numetadality for large time steps, and
can decrease the accuracy of the time integratigorithm in some cases [53].
Another advantage of monolithic solution methodshist they are immune to the
added mass effect which is stated as the numenstlbilities occurred during the
solution of interaction problems where solid andidl materials have similar
densities and the solid structure is thin. In tase, partitioned methods may become
unstable or very expensive by requiring a large lmermof sub-iterations [54].
Therefore, due to the mentioned concerns aboveomolithic approach can be
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preferred for fluid-structure interaction probleragen if it requires considerable

amount of computational resources [9].

2.2.2.Discretization of Dam-Reservoir Systems

As one of the acoustic fluid-structure interactpoblems, dam-reservoir interaction
contains the analysis of the solid structure domandam, the fluid domain i.e.
reservoir and the coupling in between these twoalosn Displacement formulation
is generally utilized for the discretization of isostructure [18]. On the other hand,
several finite element formulations are proposecepresent the fluid domain for the
analysis of fluid-structure interaction problemslswas pure displacement, velocity
potential, and displacement potential and pressthmeosing a scalar variable such as
pressure for the fluid field considerably redudes size of problem compared to the
displacement formulation. In case of dynamic ang)ys is well known that the
pressure formulation results in a non-symmetricrix@]. The non-symmetry of the
matrix can be removed by utilizing the velocity gatial formulation or the pressure-
displacement potential formulation on the experfisencadded damping matrix [55].
However, these formulations are developed for mdifluid only. The displacement
formulation can model the viscosity of a fluid, atiee coupling condition can be
easily implemented at the interface between flund structure. Moreover, since the
field variables are same for fluid and structuramain, displacement based
formulations do not necessitate any special candiit the interface or new solution
methodologies for the coupling. However, the disptaent based formulations
suffers from the presence of the non-zero frequenoges without any physical
meaning (i.e. spurious modes [56]), and lockinghia frequency analysis of a solid
vibrating in a nearly incompressible fluid [57]. fhermore Cheng et.al [3] stated
that the displacement formulation locks in the gsial of a nearly incompressible

fluid interacting with a flexible boundary.
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Several improved formulations are proposed by duoing different approaches.
The penalty method is one of these approachesasmbdden shown that it gives good
solutions for the cases considered [58]. Accordin@lison and Bathe [57] showed
that this method “locks up” in the frequency anelysf a solid vibrating in a fluid
cavity. Besides, it is demonstrated that reducéegmation applied on the penalty
formulation improves the results but does not guiethe convergence to solution
for all cases. A pure displacement based formulatith rotational constraints and a
reduced integration technique is proposed by Wikod Khalvati [59], and a four-
node element with a reduced integration technique @ element mass matrix
projection is developed by Chen and Taylor [60]siBes, another promising method
to model the fluid domain is conducted by Bermuded Rodriguez [61]. In this
research, a three-node triangular edge elementogoped but the DOFs of these
elements are not those of the structure and hgrex@ad considerations are required
for the coupling. Because of the lack of generakiyd the spurious modes
encountered in the mentioned methods, Bathe [6&3siigated the causes of the
spurious non-zero frequencies and hence showedhéatare originated due to the
use of the pure displacement based formulatioru@ntg the penalty formulations)
and the mishandling of the fluid-structure intedaconditions. They proposed
displacement/pressure based with mixed formulatlements that satisfy the inf-sup
condition. This formulation is also applicable imase of the analysis of
incompressible or almost incompressible materidéscause of the additional field
variable of pressure to the fluid element, compomta requirements of this
formulation are higher than that of the displacent&sed formulation. However, in
case of almost incompressible fluid material, thespure DOFs can be statically
condensed out in the element level, and hence sa@ix size as in the
displacement based formulation is obtained asdtre}.

From these various formulations, pure displacembased formulation with
rotational constraints and a reduced integratichrigue [59] is heavily used by the
dam behavior researchers [63]. In addition to fimmulation, displacement/pressure

based mixed formulation [62] is presented in APPENE
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2.2.3.0verview on Domain Decomposition Methods

The increasing problem sizes in the finite elenamdlysis led researchers to spend
extensive efforts on the development of efficiemd digh performance solvers. Due
to its high potential for the utilization of avdile computational resources, domain
decomposition methods [64] receive great attenggpecially in computational
mechanics. Domain decomposition methods can bdlybrsammarized as the
solution methods that redefine a global domain lgrobas a set of subdomain
problems. Performance gain of the domain decompasihethods increases when
the problems on each subdomain become independent &€ach other [65].
Provided that subdomains are intersecting onlyait interfaces, solution method is
called non-overlapping domain decomposition meth@therwise, it is called

overlapping domain decomposition method.

Main stages of the non-overlapping domain decontiposimethods can be
summarized as the decomposition of the problem dgn@ndensation of the
problem on the interface between subdomains toagtee the continuity of primal
unknowns and the equilibrium of fluxes, and thee #olution of the interface
problem by a direct or iterative solver. In casesalution with iterative solver, when
utilized with an appropriate preconditioner, a domdecomposition method is
mostly scalable with respect to the mesh &ifer the effective element edge length)
of the given problem. In order to be scalable watbpect to the subdomain sigor
the effective subdomain edge length), it must &lsaitilized with a "coarse space”
preconditioner [66] whose mathematical formulati®rsimilar to that of the "coarse
grids" defined in multigrid methods [67—72]. Obvaby, scalability with respect to
the number of subdomains is a necessary conditmn achieving parallel
scalability—which is, delivering larger speed-ups the number of processors

utilized for the solution of a given problem incsea.

Most known non-overlapping domain decomposition hods are the primal

approach, Balancing Domain Decomposition (BDD) [7&hd the dual approach,
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Finite Element Tearing and Interconnection (FE2I][ In case of a classical elastic
problem, the former consists in computation of tbentinuity of interface

displacements that guarantees the force equilibmmong the subdomains, while
the latter involves the computation of the equdiled interface forces that ensures

the continuity of the displacements among the soizios.

2.2.3.1.Equilibrium Definitions for the Partitioned System

Let's consider a domairf)l partitioned into Ny number of non-overlapping
subdomain® and assume that a linear static analysis of thisitpned system

will be performed. Thus, the equilibrium equatiarighe partitioned system is given
by

K(s)u(s) = f(S) + g(S) S = 1, e 'INSI (1)

whereK® u® and f® are the subdomain ffiiess matrices, displacements and

applied forces, respectivelg® are the connecting forces on the interface between
subdomains (note that they are equal to zero omnteenal DOFS). For the sake of

simplicity, also assume that the subdomain mesteesanforming at the interfaces.

When the interface forces are assembled on thdanee the resultant should be zero

(static equilibrium equation):

N
z LOTg® =g 2)
s=1

whereL®) is a Boolean transformation (or assembly) matrhe Thterface forces are
such that the interface DOFs satisfy the compéylabndition, i.e.:

N

z BOu® = 0 )

s=1
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This relation states that for any pafu®,u’’)) of DOFs matching on the

interfaceu® — uY) = 0. Hence,B® are signed Boolean matrices designating the
compatibility constraints at the interface.

The equilibrium of domainis fully described by the set of local equilibrium
equations, Equation (1), and by the interface camgs, Equations (2) and (3). In

block diagonal notations, Equation (1), (2), andd@ be written as;

Ku=f+g,
L"g =0, (4)
Bu =0,
where
K@ u® f g
K = u= : = : = S
K(Ns) u(Ns) f(Ns) g(Ns)
L= [ " ... o],
B = [p® .. BW®9],

It is obvious that in Equation (4), for each subdom one set of interface
displacements and one set of interface forces afimedl. Therefore, mainly two
different system solution approaches for the dona@oomposition problems: with
primal variables (interface displacements) and wiitlal variables (interface forces)
can be developed. Other than these approaches, iher hybrid approach which

utilizes both primal and dual variables for theusioin.

2.2.3.1.1 Definition with Primal Variables

In order to solve the domain decomposition probldefined in Equation (4),
displacements that satisfy the interface compéiybiEquation (3) a priori can be

utilized. Therefore, a unique global set of DOFdfominterfaceu, is defined as;

u® = LOug oru = Luy, (5)
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where L®) is the transformation matrix presented also indfgn (2) that can be

utilized to extract subdomain (i.e. local) DOFsiirthe global set.

Q@

ne®

(1

1

10 o

0 o @

— — T T T1T — _ 2
u=Llu,= [[O7 @7 & Tu,;=[1 0 {ugz}—“h |
0 1 u@

0 1 ?3)

\u, "J

Figure 2.1. Interface transformation

Obtainingu® from a unique set implies the interface compatihilEquation (3)

and Equation (4) and can be expressed as

Bu=BLuy, =0 (6)

for any set of global displacements,. Similarly, all compatible displacements can

be expressed as in Equation (5). Thus

L = null(B) (7)

In other words/ is formed by the all solution vectaxsto the equatio®x = 0. An
example is presented in Figure 2.1 to demonstriaéset concepts. Introducing

Equation (5) in Equation (4) yields
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Klug=f+g,

8
ITg=0, (8)

Solving the equilibrium equations of all primal \adoles of the system defined in
Equation (8), simultaneously is not only impradtidaut also eliminates the

advantage of domain decomposition methods as th#euof interface equations
increases [74]. A basic approach in domain decomposmethod is to first

condense the internal contributions of each subdona their boundaries and
assemble the interface system with primal varialdesh as displacements.
Following the solution of the interface displacenseimternal displacements of each
subdomain can be recovered. Static equilibrium wgudor each subdomain can be

given as;

KOu® =&, s=1,...,N, 9)

By first numbering the internal DOFs and then th©H3 at the subdomain

interfaces, the assembled system of equationsawié the form presented in;

(s) (s)
Ki™ K

(s) (s)
Kyim Kpp

(s) (s)
u: f
AR R

u,

where subscriptsandb denote the internal and interface DOFs, respdgtittence,
internal stiffness and force contributions can badensed to interfaces by using

Schur Complements to obtain;

SO =k —KPKOTKY,  s=1,..,N, (11)
and
~2s) — gs) _ Kb(?)Ki(is)—l ES)’ s=1,...,N; (12)

Interface system contributions of each subdomamhbeE assembled by using block

matrix notation and utilizing transformation magrsc
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$=11SOL, and f, = LLFY (13)

in order to form the system equilibrium;

Multi-frontal solution algorithms utilize direct b@rs for the interface solution in
Equation (14) whereas Primal Substructuring Methaskss iterative solvers such as

preconditioned conjugate gradient (PCG) method.

2.2.3.1.2 Definition with Dual Variables

Another way of defining the domain decompositionljem above is choosing a set
of interface forces that satisfies the interfaceildayium LTg = 0 a priori while
redundant interface DOFs are storedtirBy utilizing Equation (6), these interface

forces can be expressed as

g® = —B®"A org = -B"2 (15)

Avalues are interface forces that act in oppositectons between any pair of
conforming DOFs on the interface and thus theyirmaeuilibrium as it is shown in
Figure 2.2. Equation (4) becomes

{Ku +BTA =f, (16)

Bu =0,
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Figure 2.2. Interface compatibility

The Lagrange multipliers related to the interfacenpatibility constraints are shown
as A values. Presented decomposed problem formatiomilized for dual variable
solution methods such as FETI. In these methoeisgtive algorithms are utilized to
compute interface forcessuch that the displacements resulting from thelsoain
equilibrium satisfy the compatibility condition dhe interface. Solution methods
with dual variables require the solution of locabdomain problems of the form

KOu® = f& _ gy s=1,...,N; (17)

whereK® is the stifness matrices of subdomains. Equation (17) mayateeged to

form one matrix equation using block diagonal notat

Ku = f—BTA
KD ey } Fo pT (18)
KN | (g, (Ns) f(Ns) BT
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The solution of Equation (17) may have twdfelient variations depending on the
existence of zero energy modes in the subdomaim&enwhe external constraints of
a subdomain prevent all possible zero energy metisnch a subdomain is called

non-floating and the solution of Equation (17) is

u® = K(S)_l(f(s) _ B(S)T/l) (19)

Otherwise, subdomain is a floating subdomain andafigu (17) is solvable if the

loadsf®) — B® 1 are self-equilibrated; this condition can be repreed as;
RO (f® — B(S)T,l) =0 (20)
where matrixR) stores the zero energy mode vectors of subdomaili the

condition stated in Equation (20) holds, then theegal solution of Equation (17) is
given by

u® = KO (& — B2y + RO ® (21)
whereK ®" is a generalized inverse Bf5) and aa®® is a vector of arbitrary entries
that represent the amplitudes of the zero energgesioRewriting Equations from

(19) to (21) in block diagonal form as follows;

RT(f—BTA) =0
u =K*'(f —BTA) + Ra

R a®
and a = :
R(Ns) a(Ns)

For subdomains that are sufficiently supported {foating), submatrice® ©” of

(22)

where

K@
K+ = , R =
K(Ns)+

K*are substituted by~ andR® anda are modified to satisfy Equation (19) and

Equation (21) consequently.
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In domain decomposition methods, the equationscagsd with the internal DOFs

of the subdomains are eliminated first generallyndée Equation (17) is rewritten as

SOu = F& _pTa (23)
where
S(s) = KS,) — Kb(f)Ki(is)_lKi(bs), s=1,...,N
and

) _ (8 () ()7L £(9)
b —Jb _KbiKii fi

Subscriptg andb symbolize the restriction of the variables to int¢ and interface
DOFs, respectively.S®) is a condensed ffiness matrix, also called Schur

complement [75].

Similarly to Equations (22), Equation (23) is sdileaunder the condition

T ~
R (F9 —BIa) =0 (24)
and it is expressed as
ugs) = S(s)+(f§,s) —Bl2) + R,()S)a (25)

WhereR,(f) designates the restriction of mati% to the interface DOFs

Solution methods with dual variables such as FE&ahd FETI-2 will be discussed in

Sections 2.2.4.1 and 2.2.4.2, respectively.
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2.2.3.1.3Hybrid Definition with Primal and Dual Variables

Third method that can be preferred for the solutaihdomain decomposition
problem in Equation (4) is to choose interface ldispments that are unique on part
of the interface, whereas equilibrated connectorgds are defined on the remainder
of the interface. This type of approaches nametlyasid dual/primal such as the
FETI-DP solution algorithm [23]. FETI-DP procedusdll be discussed in Section
2.2.4.3 in detail.

2.2.4.0verview on FETI Family Solution Methods

The FETI family of solution methods [21, 76] andated BDD methods [73] are
among the first non-overlapping domain decompasititethods that have achieved
numerical scalability with respect to both the mestl subdomain sizes, for both
second-order elasticity [77] and fourth-order plated shell problems [22, 78].
Especially, the parallel scalability of the FETI thn@d and its ability to outperform
several popular direct and iterative solution athons on both sequential and

parallel computers is comprehensively presentedq8p

2.2.4.1.0ne-Level FETI Method (FETI-1)

The FETI method [21, 73] is a Lagrange multiplieseéd domain decomposition
method. As its name implies it composed of tearihg solution domain into
subdomains and then interconnecting them by utdiziagrange multipliers. It
utilizes preconditioned conjugate projected gradiélACPG) iterative solution
method in order to compute the dual variables (aage multipliersA) defined in
Section 2.2.3.1.2. Onc@a is determined, the subdomain displacements can be

recovered by solving the equilibrium equations;

u® = K(S)*(f(S) — B(S)T,l) + RO g (26)
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where K®" designates the inverse & if Q© has sufficiently supported to
preventK ) from being singular, or a generalized invers& 6t if Q) is a floating
subdomain, in other words partially supported t¢altp unsupported domains. In the
latter case, the columns Bf® contains the rigid body (or more generally zero
energy) modes d®, i.eR® = null( K®) and a® is the set of amplitudes that

represents the contribution of the null spAER to the solutions(®.

These coefficients can be computed if and onlya€he subdomain problem is
mathematically solvable—that is, each floating sabdin is self-equilibrated—

which can be expressed by

R(S)T(f(S) — B(S)TA) =0 (27)

Substituting Equation (26) into the compatibilityjuation and exploiting the
solvability condition, Equation (27), transformsoplem (18) into the interface

problem

F, -G
—CI;IT 0 I] [2] B [—de] (28)
where

F= 3V BOKOTpO"

d= levilB(S)K(S)+f(S) ,

G, = [B®R®) .. BWARWA],
T
a= [0  LWpT
T
e= [fO'R® f(Nf)TR(Nf)]

and whereV; denotes the number of floating subdomains. Sknizea dual variable

to the primal unknowns® of the system, the interface problem, Equation,(R8

called a dual interface problem. The interface [@wbis comparatively smaller than
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the total number of DOFs and in the original FETéthod [21], the interface
problem is solved by a preconditioned conjugatejeoted gradient (PCPG)
algorithm. For this purpose, the indefinite intedaproblem in Equation (28) is
transformed into a semi-definite system of equatidy eliminating the self-

equilibrium conditionGT A = e using the splitting;

A=2"+P(Q)2 (29)

whereA? is a particular solution a7 A = e of the form

2% = QG,(G7QG) e (30)

andP(Q) is a projection operator and it is a function agfigen matrixQ by

P(Q) =1- QGI(GITQGI)_lGIT (31)

where for any matrix,
P2(Q) = P(Q) andG[ P(Q) = 0 (32)

equalities are satisfied [74]. Throughout the remdar of this study, the projector
presented in Equation (31) will be simply denotesdPa Performing the splitting

Equation (29) on the interface problem, Equatid®) (Zelds the following projected
interface problem;

(PTF,P)A = PT(d — F,A% (33)

The projected interface problem is semi-positivd aami-definite [21, 74] for any
given matrixQ. Hence, Preconditioned Conjugate Gradient (PCG)rahm can be

utilized to solve it. lterating directly witlg* = Py* and p* = Pp*, and exploiting
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the properties mentioned above lead to the wellnd-ETI-1 PCPG iterative
solution [21] presented in Table 2.1.

In this algorithm,F;! designates a chosen preconditioner (several oh thee
presented in Section 2.2.4.4). This solution atharihas been named as “one-level”
FETI algorithm in order to separate it from the tl®gel FETI algorithm [22, 79, 80]
that is presented in Section 2.2.4.2.

Table 2.1. Pseudocode for FETI-1 PCPG algorithm

Pseudocode: PCPG Solution Algorithm for FETI-1
Initialize:
2° = QG,(G7QGy) e
w? = PT(d - F1%)
for k = 0,1, ... until convergence

yk = PF1wk
k k k-1 X Fipt
P* =Y~ Xico 75 i P
T
kK _ pk wk
TI - kTFI k

)\.k+1 — lk 4 77kpk
wk+1 — wk _ nkPTFlpk
end for

Finally, computation of null spad¥® (or zero energy mode computation of
subdomairs) is a discrete computation apart from the algarithf FETI. In case of

solid subdomains without any internal mechanisnmnpmutation of zero energy
modes (i.e. "rigid body modes" for this case) graightforward task [33, 37]. Even,
for subdomains having internal mechanisms compo$adechanism free subparts,
algebraic/geometric methodologies can be utilize8, [81]. However, in case of
displacement based fluid elements, these methodslagannot be applicable [59,
62] and direct computation of null spaces is reggiiand it is a computationally
expensive procedure that utilizes either Singulalug¥ Decomposition or a full rank

revealing QR decomposition [82].
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2.2.4.2.Two-Level FETI Method (FETI-2)

Since one-level FETI solution algorithm is not nuicedly scalable for fourth-order
elasticity problems [22, 24], a numerically scatabktension of the FETI method is
presented by enforcing the continuity of the dispfaents at the subdomain cross
points throughout the PCPG iterations. Moreovecthsaiconstraint can be prescribed
by solving another auxiliary coarse problem thattams not only the subdomain
zero energy modes as in the original FETI methad also the so-called subdomain
corner modes [22, 24]. This enriched coarse proptkat converts the original FETI
method into a two-level algorithm, has produced emen more powerful FETI
method known as the two-level FETI method [22, 80]. The two-level FETI
method is presented in [80] as a one-level FETI ®@Rjorithm where an optional

admissible constraint of the form;

CTwk =0 (34)

is enforced at each iteratiohh Matrix C is rectangular and demonstrates some
subspace to be determined, anl= PT(d — F;A;,) (see FETI-1 PCPG Algorithm
in Table 2.1). Iterative solution of two-level duaterface problem initializes with

the enriched condition al, = 0 by the quantityCy ™ so thatd, obtained as;

Ao = QGI(GITQGI)_le + PCVinit (35)

Using the second condition in Equation (32), it barchecked that the above starting
value satisfies the necessary conditigid, = e. The value of ¢ is obtained with

the following minimization;

(CTPTF,PC)y™t = CTPT(d — F,QG,(GI QG)™) (36)

at each iteratiok, a correction parameter originated from the secmomstrainty®

can be computed as;
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(CTPTF,PC)y* = —CTPTF,Pp* (37)

Sincep* is generated by* = PF,w* and by using the first of Equation (32), the
right hand side of Equation (37) can be replacdd thie following;

—CTPTF,Pp* = —CTPTF,p* (38)

Utilizing the concepts presented above, PCPG dlguarobtained for two-level FETI
[80] is presented in Table 2.2.

Table 2.2. Pseudocode for FETI-2 PCPG algorithm

Pseudocode: PCPG Solution Algorithm for FETI-2
Initialize:

Solve; (CTPTF,PC)y™t = CTPT (d - F1Q6,(61QG,) e)

2° = QG,(GFQG;) e + PCyinit
w? =PT(d-F;2%)
for k = 0,1, ... until convergence
yk — PF'I—lwk
kT g si
k — vk _ yk=1Y" FiP' &i
P* =Y~ Xico 5
Solve; (CTPTF,PC)y* = —CTPTFp*
pk = p* + PCY*
i f,kka
T T
}Lk+1 — A,k + nk/ﬁk
wk+1 — wk _ nkPTFI’ﬁk
end for

To sum up, at each iteratién u(®"is evaluated by substituting in Equation (16) the
Lagrange multipliersA*generated by the PCPG algorithm. Hereafter, at each
iterationk, the subdomains are in equilibrium, but the junfptlee subdomain
displacemenw® iterates across the subdomain interfaces is no¢ssarily zero.
This jump vanishes in the usual numerical sensg anconvergence. However, at
each FETI-2 iteration, the constralfw* = 0 forces some prescribed components

of the subdomain displacements to be continuoussadhe interfaces. As a result,
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although the computational cost increased for e@chtion, in general, the overall

convergence of two-level FETI algorithm is acceledd22, 83].

2.2.4.3.Dual-Primal FETI Method (FETI-DP)

As a dual-primal method, in addition to the consegiscussed for the dual methods
FETI-1 and FETI-2, FETI-DP additionally utilizesimmal variables. In the dual-

primal FETI methods [23, 83-85], dual and primaliafales are distinguished

according to the way of defining the continuity tbe solution in those variables.

Dual displacement variables are those, for whiah ¢bntinuity is enforced by a

continuity constraint and Lagrange multipliedss and thus, continuity is not

established until convergence of the iterative metlis reached similar to the

classical FETI-1 method [23, 27, 84];

On the other hand, continuity of the primal displaent variables is explicitly
enforced at each iteration step by the subasseafilthe local sfifness matriceg ()

of neighbor subdomains at the primal displacemeartables. This subassembly
produces a symmetric, positive definiteffagss matrixK which is not block

diagonal but is coupled at the primal displacememiables. This coupling forms a
global problem which is necessary to attain a nicalty scalable algorithm [24,

83].

& Il\ Q¢ e  u;: Internal DOFs
\ / ¢  uu: Dual DOFs
a 1A :\%/z IR \> ®  up: Primal DOFs
i —i— ——i———i | P> Dirichlet BCs
[
0G {2 ] Q¢
\/

Figure 2.3. Variable types of dual-primal systerfirdgon
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Let’s use the subscripis A, andIl presented in Figure 2.3, to denote the internal,
dual, and primal displacement variables, respdgtivand obtain for the local

stiffness matrices, load vectors, and solution vectonedal values;

(s) (s) (s) (s) ()
K" Ky Kp u, I
KO =|k® KD k&S| u®=[uP| O =P (39
(s) (s) (s) (s) (s)
Knr Kpa o Knp Up I

By introducing the following notation;

ug =W wal" fp=1[f1 fal"ul

(40)
T T
= [uSS) uﬁf)] and fg) = [ ES) fgs)
and accordingly;
(%) (%)
K K
— i Vs (s) (s) _ |1 Al
KBB - dlag5=1(KBSB )1 KBB - (s) (s) rKI'IB
Ky™ Kas (41)

_ )
= [k .. Kpy

where Kz is a block diagonal matrix. By subassembly in phienal displacement

variables, coefficient matrix can be obtained as;

()
- K K
k=0 o “)
KI'IB KI'IH
where a tilde indicates the subassembled matriveisvere
Koz = [RY .. K5yl (43)
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Introducing local assembly operatoiéi) which map from the local primal

displacement variableaf,s) to the global, assemblé“d,s), following definition is

obtained;

KIEISB) L(S) K1(75}3)'~(S) Z L(S)u(S) K(S)

i T
= D LKLY
s=1

fors = 1,...,N;. Due to the subassembly of the primal displacenvaniables,

(44)

Lagrange multipliers have to be used only for thaldlisplacement variablesg, to
enforce continuity. A discrete jump operat® is introduced such that the
solutionu,, associated with more than one subdomain, coiacidenBug = 0; the
internal variablesu; remain unchanged and thus the corresponding enimids
remain zero. Since the grids are assumed to benconts across the interfate

matrix B is a Boolean matrix with entries of 0, 1, and #4][

Reformulating the finite element discretization gution (42) yields;

RO (s) 45
Kng  Knn (45)

Kyp k'I(YSB) BT u(S)] l (S)]
()
B 0
Elimination of the primal variable$i; and the internal and dual displacement
variablesug leads to a reduced linear system of the form;

FA =d (46)
where the coefficient matrik and the right hand side vecidrare formally obtained
by block Gauss elimination. Here, the matkixs never built explicitly [83, 86] but,
in each iteration, appropriate linear systems alged under the constraints of

selected primal variables by utilizing a Krylov sphce solver with preconditioning
[87, 88].

34



The selection of primal variables, also named aBmers in literature, should satisfy
two essential conditions. Former one is that ndrte@subdomain ftiness matrices

should be singular. Latter one is that the resyltoefficient matrix for the coarse
problem should not be singular. In addition to ghessential conditions, keeping the
number of primal variables low reduces the ovecalét of the computation and

improves its scalability [89].

In the literature, a straightforward algorithm tlyatarantees the non-singularity of

each subdomaiﬁlgf,? is making sure that every subdomain has eitherBaollinear
corner nodes in 3D or 2 non-coincidental corneresod 2D [33, 37]. However this
is true only for problems with homogeneous mategraperties in solid mechanics,
since in case of Lagrangian fluid finite elemeisré are internal mechanisms in the
elements [59, 62]. Because of the spurious modgaiia displacement based fluid
formulation or by nearly incompressible conditioor footh fluid formulations,
problems may become ill-conditioned. Thereforefhase cases, convergence rate

and efficiency of iterative solution methods desef00, 91].

2.2.4.4 Preconditioners

One of the most important subjects in order to iobgdficient iterative methods is
utilizing well-posed preconditioners for the prable Although numerous
preconditioners are proposed in literature [35, ©&-95], subdomain-based
preconditioners such as Dirichlet, lumped and siymped preconditioners are the

mostly utilized preconditioners due to efficienaydgoarallel scalability [74].

It is now a well-known fact that the Dirichlet poeaitioner guarantees scalability
with respect to the mesh sizefor most of the FETI family methods. Lumped
preconditioner is a more economical version ofDiméchlet preconditioner that, for
homogeneous second-order elasticity problems, mgpl scalable computational

performance [74, 86, 92].
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2.2.4.4.1Dirichlet Preconditioner:

A numerically scalable preconditioner can be wnithes;
_ID_l = prS(s)Bp_bl (47)

where 5© = k& — KOOk and the subscriptsandb denote the internal
and interface boundary unknowns, respectively. @tpeB,, is similar toB,, defined
in Section 2.2.3.1.2 but includes a scaling thatbgined from interface multiplicity
or relative interface stiffness [86]. The Dirichlpteconditioner approximates the
inverse of the sum (sum over the substructureshé&wum of the inverses. Although
it is mechanically consistent and numerically sokgait is expensive to form the
condensed stiffness of each subdomain [74].

2.2.4.4.2 1 .umped Preconditioner

Lumped preconditioner lies on the same mechanidalpretation as the Dirichlet
preconditioner, except that in this case all thignsiss of a subdomain is lumped at
its interface DOFs. Therefore it can be formulasdollows;

F™ = By, Ky, By, (48)

Lumped preconditioner is more economical than thielet preconditioner and has
proved to be more efficient generally for secondeorelasticity problems [77].
However, the Dirichlet preconditioner is more a#fitt for fourth-order plate and
shell problems [22, 24].

36



2.2.4.4.3 Super-Lumped Preconditioner

A smoothed version of lumped preconditioner by tht#fness of neighbor

subdomains is called the super-lumped preconditiang represented as follows;

oL = By, diag (K355 *

which means for each interface DOF, the assembliiéithess is computed by
gathering the diagonal stiffness coefficients fralimeighboring DOFs [92].

2.2.4.5.Extension to Dynamic Analysis

Using a standard Galerkin procedure where the atisphent field is approximated
by suitable shape functions and the equations péuiyc equilibrium are linearized

aroundu™*! and following Differential/Algebraic equations;

M®i® + cOu® + KOu® = &) _p©T1 (50)
=1,..., N
subject to;

Ng Ng Ng
Z B®u® =0 or Z B®u® =0 or Z B®ii®) =0
s=1 s=1 s=1

are obtained.M® andK® are, respectively, the subdomain mass and stifnes
matrices, F® is the subdomain vector of prescribed forces @@ are the

subdomain constraint matrices. Dynamic equilibriequations are generally solved

by Newmark trapezoidal time integratiofi £ i, 4 =% ). Farhat and Crivelli [43]

showed that when the displacement constraifits B®u® = 0 are enforced, the
stability of the Newmark trapezoidal integratotast for any time step valudt due

to the dynamics of the dual variables (Lagrange tiplidrs). Therefore, they
proposed to restore unconditional stability by sgiag the dynamics of these

multipliers.
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By denoting v®) and v as the subdomain and global momentum variables,

respectively, thus;

»® = YOHE® s=1,...,N, (51)
and

v = Mt (52)

Consider Equations (50) with the displacement gaitgtequationg.*, BOu® =
0. Using the Newmark trapezoidal integrati(;lh:é% andy = %), and by ignoring

damping terms for simplicity, the dynamics of eaabdomain can be independently
integrated as it is presented in Table 2.3.

Table 2.3. Pseudocode for Extension of FETI Methiod3ynamics

Pseudocode: Extension of FETI methods to Dynamics
for n = 0,At, ... until the end of dynamic analysis duration
Solve;

1
(iz MO + K(s)) u®""? =
At
subject to; Zivil B®u®) =0

1
n+ty

1
n+ty

+ :?M(S)u(s)" +év(s)n —B®'A  s=1,..,N,

:v(s)n+% - F(S) n+%

— K(S)u(s)
1 1 1
PO = " _ Aty T o pOMT = "2 _ %,‘,(s)"*7
1
wE™ = 9 (7 _ "
end for

Computing the momentum from the assembled equatibn®otion rather than from
the subdomain equations of dynamic equilibrium, &mun (50), removes the
dynamics of 4 from the system. The above time integration atbari is

unconditionally stable [43]. It is important to erothat unconditional stability is
restored, neither by using the midpoint rule, @ tmhomentum formulation, but by
bypassing the dynamics of the Lagrange multipheite replacing the accelerations

with momentums. The formulation with momentum vhles allows the evaluation

of bothu®™" and M®#®"  from the equations of dynamic equilibrium without

having to assemble and facfdy and also it eliminates the need for computing the
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acceleration terms from the differentiation of gheplacement and velocity fields,

which is known to cause an oscillatory behaviothef acceleratioit [96].

Returning back to system of Differential/Algebraguations in Equation (50), it can

be rewritten as;

ROu® = f) (53)

under the same constraints &P, u® and f® designates the effective fétiess
matrix, displacements and effective forces fordiggamic analysis case. In case of a
standard Newmark scheme, the solution of dynamidlibum equations takes the

form;

<ﬁAt2 MO 4+ ﬁc(s) N K(s)) ErAty(s) — tHBLE(S) (54)

wheret andAt are the current time and the time increment, Espdy, whileg = %

andy=%for generally used Newmark trapezoidal integratiorherefore, by

comparison;

e M® + ﬁ CE +K® (55)

R —

where C®) and M®) are the damping and mass matrices of each subdoifiae
effective stffness matrixk®) is usually equal to a linear combination of thess)a
damping and dffiness matrices, while its exact expression dependb@ adopted

time integration scheme.

The addition of mass and damping terms to tHénsss matrix makes the resulting
effective matrixk®), considerably less ill-conditioned than the statiffness matrix
K® due to the fact that mass and damping terms iergéremove the zero energy
modes of subdomain ffiness matrices [43]. Therefore, iterative methodzedl for
the solution of Equation (53) usually requires muelss iterations than the

corresponding problei ®u®) = £ of static analysis.
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This assumption is in fact correct, with one impattexception: with regard to the
solution of local subdomain problems discussedentiSn 2.2.3.1.2, Equation (20)
and (21) as well as Equations (24) and (25) dawadte sense in the case of implicit
dynamics because, contrary to a subdomafifnetis matrixk ), matrix K is in
general positive definite and thus has an emptyspalte and no zero energy modes
R®). Therefore, for implicit dynamics Equations (2hda25) must be replaced by

following equations;

u® = ROTHF® — BTR) (56)
and
ul® = SO (F — pT2) (57)

It should be considered th& () is substituted by the correspondiif’, the

generalized inversdé® " by the inverse® ® " and the forceg® by the éfective
forcesf®) of each step of the time integration scheme. [euntiore, the zero energy
modesR® of the corresponding static problg®u® = £&) should still be used

whereverR(®) appears [74].

2.2.4.5.1 Dynamic Analysiswith FETI-1

Let Equation (21) be replaced by Equation (56), ttu¢he absence of subdomain
zero energy modes in the dynamic problem. If thraesateps for the derivation of
Equation (33) of FETI-1 (Section 2.2.4.1) are repated with Equation (56) instead

of Equation (21), then the following equation isided in block matrix notation as:

Fi=d (58)
whereA are the dynamic Lagrange multipliers, while
F,=BK'BT and d = BK™'f* (59)
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A comparison of Equation (33) to Equation (58) desimtes that in the latter the
projections and the initial Lagrange multiplier tecd, have vanished. Shortly, the
coarse problem of FETI-1 has been removed. Thiglue to the absence of
subdomain zero energy modes in the dynamic cas§3h Farhat and Crivelli
utilized the PCG to solve Equation (58) with theqanditioners defined in Section
2.2.4.4 by replacing the static stiffness termdlite dynamics terms as in Equation
(58).

2.2.4.5.2 Dynamic Analysis with FETI-2

The resulting dynamic problem defined in Equati68)(can be solved with FETI-2
solution methods by employing the matéx= BR®) as the constraint matrix

[97]. By following the reasoning in Section 2.2.4these admissible constraints
obtained from static case are utilized to form ajgmtion on Equation (58) as

follows;

PN A~

(B, — B,C(CTRC) ' CTR)A = (I — Bc(CTRC) ' ¢cTyd  (60)

And it can be solved by utilizing PCG iterationgtwihe preconditioners defined in
Section 2.2.4.4 by replacing the static stiffnessns with the dynamics terms as in
Equation (58). Moreover, it was proven that if tirae stepAt — oo, this method
converges towards the FETI-1 method [98]. Besi#esgakis and Papadrakakis are
proposed to sef = QG, where matrixQ is set equal to one of the preconditioners
defined in Section 2.2.4.4, depending on the typ@roblem under investigation
[86].
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CHAPTER 3

SERIAL IMPLEMENTATION OF SOLUTION FRAMEWORK

3.1.Introduction

In this chapter, the serial implementation of soluframework for seismic analysis
of dam-reservoir systems is discussed. Mainly, tsmiurelies on the FETI family
solution methods utilized to solve the implicit natithic problem represented by

Lagrangian finite elements.

Serial implementation of solution framework on MAAR (a commercial software
package; MATLAB Release 2014a, The MathWorks, INatick, Massachusetts,
United States) environment is presented and them ¢bncerns about the
implementation and convergence rate are discussetktail. In addition to that,
performance improvements by utilizing several mdthtnat are already available in
literature are investigated on this implementatidalidations of implemented finite

elements and overall solution framework are presem APPENDIX B.

3.2.Implementation

Solution framework mainly relies on the fully Lagmgaan representation of whole
dam system that involves dam structure, foundadiuth the reservoir. Dam and the
foundation are generally modelled by linear Lagrangsolid finite elements [18].
During the Lagrangian representation of the resertwo fluid finite elements with
different formulations presented in APPENDIX A arglized. Pure displacement
fluid formulations which are based on bulk modudinsl utilize inviscid assumptions

are frequently utilized on dam-reservoir problei@sce this formulation results in
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spurious energy modes, reduced integration andltgeftmmulations are used to
stabilize them for a wide range of frequencies [38] order to prevent spurious
modes totally, fluid elements with mixed formulatiby displacements and pressures
are developed by Bathe [62]. In such formulatigmmessure DOFs are condensed out
during element stiffness formation hence it is guesto utilize these elements in
fully Lagrangian solvers. Since the field variabtdghe solid and fluid domains are
the same, there is no need for any coupling elesnentmethods in between

subdomains with different media.

Monolithic time domain analysis requires large meymmapacity and computational
resources, hence, high performance computing tqubsi are generally preferred
[10]. In this serial implementation on MATLAB enwmment, domain
decomposition based high performance solution nigtR&TI family methods [25]
are implemented. Since these solution methodsterative, in general, specially
chosen preconditioners are utilized to satisfy fedlgeselected termination criteria.
Coarse problem defined in the FETI-1 method (Sac#®.4.1) vanishes in case of
time history analysis of a structure (Section 223. Although it is not crucial for
the solution, it is the main cause of the convecgemate and global error propagation
of these solution methods [86]. Therefore anotheiliary coarse problem is defined
in FETI-2 by utilizing the admissible constrainta mterface (Section 2.2.4.5.2).
However, this solution method produces a divergiegd called spectral drift when
it is utilized with standard Newmark integration thmed, hence, a special
consideration (Section 2.2.4.5) is implementedxtersd the FETI solution methods

to dynamics.

3.2.1.Finite Element Implementations

Both formulations presented in APPENDIX A are impénted for two and three
dimensional finite elements with bilinear and quaidr approximations. At this

point, it is beneficial to define a naming conventifor finite elements that are
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mentioned. XYNIPMZz mapping is defined to namefialite elements used in this
study where

» X; the media (“s” is for solid and “f” for fluid ntka),

* Y; solution space (“Q” for Quadrilateral, “H” foréxahedron),

* N; number of displacement nodes,

* |; optional designation for incompatible modes,

* P; shows up for all as a designation for pressure,

* M; number of pressure nodes,

* Zz; type of element formulation (*u” for pure disgkement, “u/p” for

displacement/pressure formulation).

As an example, “sQ4P0Ou” designates 4-node purelagdisment formulation
guadrilateral finite element for solid media. Siemly “fQ9P3u/p” designates 9-node
displacement/pressure formulation finite elememtffoid domain with 3 pressure
nodes (Figure 3.1-a) and “fH27P4u/p” designatesn@fe displacement/pressure
formulation finite element for fluid domain withptessure nodes (Figure 3.1-b).

Figure 3.1. fQ9P3u/p and fH27P4u/p elements

Using this naming convention, the list of impleneghfinite elements is presented in
Table 3.1. Note that, incompatible modes can ordydefined for linear pure

displacement approximation formulation of solid maedn addition to that mixed

formulation can be applied for plane stain, gen@fl and axisymmetric stress
conditions [44, 62].
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Table 3.1. List of implemented Finite Elements

Solid Finite Elements Fluid Finite Elements
sQ4P0u sH8POu fQ4P1u fH8P1u
sQ4IP0u SH8IPOu fQ9P1u fH27P1u
sQ9PO0u sH27P0u fQ4P1u/p fH8P1u/p
sQ4P1u/p sH8P1u/p fQ9P3u/p fH27P4ulp
sQ9P3u/p sH27P4ulp

3.2.2.Implementation for Static Analysis

For the serial implementation of the monolithicugmn algorithm for static analysis
of dam-reservoir systems presented in Figure 31i#-ib functions and data types of
MATLAB are employed. Algorithm initiates with readj the model input. Input file
contains the active DOFs for the problem, positeord restraint information of
nodes, material definitions, discretization elersesith their required properties and
connectivity, and finally the external forces. Rks, multiple input files may be
given to designate that problem is partitioned istdbdomains. By using the
information supplied for the nodes, nodes of eatdidemain is sorted as the internal
DOFs are grouped before the interface DOFs. Logaagon numbering is prepared
by utilizing the sorted local nodes array. Follogvithat the transformation and
compatibility matrices are generated as define®eation 2.2.3.1. Local stiffness
matrices and external load vectors are assembledbanndary conditions are

applied exactly the same way in the standard figléenents procedure [18, 62].

As it is discussed in Section 2.2.4.1, subdomairy ime floating or sufficiently
supported. In case of floating substructures, sitiee local stiffness matrix is
singular, inverse of it cannot be computed. Theefgpseudo-inverse of local
stiffness matrix is computed by "pinv" function andll space is obtained from
"null" function which utilizes Singular Value Decquwsition. Hence, the dual system
defined in Section 2.2.3.1.2 can be reduced tafaxte by utilizing the procedure
presented in Section 2.2.4.1. The resulting dueakface system is solved by PCPG

algorithm demonstrated in Table 2.1 by utilizingeaf the preconditioners discussed
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in Section 2.2.4.4 and the projection matrix define Equation (31). In order to
terminate the solution iterations criteria presdnteSection 3.2.4 is utilized. Finally,
the displacements of overall system can be recdvese utilizing the resulting
interface equilibrium forced from these iterations by using Equation (19) and/o
Equation (21). Then, element forces and stressasbea obtained by utilizing

standard finite elements procedures [18, 62].

The implementation of this algorithm contains saVefetails that require special
consideration. One of them is that when the dédinitof B) given in Section
2.2.3.1 is applied, redundant constraints are fdriatethe corner nodes of a mesh
partition (nodes belong to more than two subdon)aing this prevent8®) to have

a full column rank [98]. Sincg; andF, are in general semi definite, in this case, the
solution 4 of the dual interface problem is not unique. Hogrexthe corresponding
subdomain displacements® are unique. Obviously, this phenomenon can be
avoided with programming tricks, but in this implemtation, it is preferred to keep

the full redundancy in compatibility constraint métions [99].

Another concern is about the selection of mafrixhat is utilized for the definition

of projection spac® given in Equation (31). If the overall solutionrdain is fully
restrained—that is, ik is not singular—&,; has full column rank andf G, is non-
singular [100]. In that case, it is preferable éstrict the choice of the matr by

the condition that:! QG, be also non-singular. Besides, if mai@ixs chosen among
symmetric matrices,Gf QG, becomes symmetric and thus it becomes more
economical to handle. The simplest choige= [ is the most computationally

efficient one and this choice is adopted for alheuical examples in this study.

For the utilization of FETI-2 the flowchart presedtin Figure 3.2 also descriptive
with a few changes. FETI-2 relies on an additiopebjection with admissible
constraints defined by matr (Section 2.2.4.2) and then PCPG algorithm presente
in Table 2.2 is utilized instead of the algorithentbnstrated in Table 2.1.
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Figure 3.2. Flowchart of solution framework fortgtanalysis
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3.2.3.Implementation for Dynamic Analysis

The serial implementation of the implicit monolitsolution algorithm for dynamic

analysis of dam-reservoir systems is presentedguar& 3.3. This implementation is
almost same with the static case up to the timegmtion iterations. Additional

parameters such as local mass and damping maarmeglobal mass matrix are
computed as in standard finite elements proceddB%2]. For the rest of the steps
up to time integration, instead of parameters patgd from static definitions,

dynamic definitions are computed and utilized aBndd in Section 2.2.4.5.1 and
Section 2.2.4.5.2. For example, coefficient matix dual interface system and
preconditioner is computed by utilizing local etige stiffness matrices. In addition
to definition of these computations, Section 22M.states that projection space

which exists in static analysis is vanished in dyitacase.

In order to compute the dynamic response historyhef domain, implicit time
integration algorithm that is presented in Sectid2.4.5 is utilized in this
implementation. These time history iterations ara@mnty relies on the solution of
dual interface system for dynamics defined at ¢swh step. For this purpose, at the
beginning of each time iteration, displacements muoinentums defined in Section
2.2.4.5 is computed. In addition to that, the riasgldisplacements and momentums
are utilized together with the forces at that tistep to compute the dual interface
system right hand side. Obtained dual interfacéesydor dynamics is solved by
utilizing the PCPG algorithm demonstrated in TaBl& by utilizing one of the
preconditioners (Section 2.2.4.4) that computedubig local effective stiffness
matrix. But, for the implementation with FETI-1 stbn algorithm, this time
projection space parametRris taken as unity since there is no projectiorcefar
the dynamic analysis with this algorithm (Sectio2.2.5.1). However, in case of
implementation with FETI-2 algorithm, PCPG algonmitlpresented in Table 2.2 is

utilized and additional projection space is supply matrixC.
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For dynamics problems, it was proposed in [97]HoaseC = G, , with R©) defined
as the rigid body modes obtained for subdong¥i# when any prescribed Dirichlet

boundary condition is ignored. Such a choice fotrixa is equivalent to forcing at

each iteration k the constant componentsué“Pk to be continuous across the
subdomain interfaces. It was also shown in [97} tha resulting two-level FETI
method is numerically scalable for transient dyranpiroblems. After the solution of
dual interface system, displacements are recovieyedtilizing Equation (19) and
parameters required to compute the displacementsramentums of the next time
are computed. Finally, computed response for ihg step is stored and then next

time iteration initiates.

3.2.4.Coarse Problem Termination Criteria

In order to assess the performance of the new atgifor the Lagrange multipliers
(see Table 2.1 and Table 2.2), convergence is oreqitthrough the evaluation of

the global primal residual:

lIKgug — fol

<e=10"°, (61)
||fg||

whereK,, u, andf, are global assembled fftiess matrix, displacement field and

forces as described in Section 2.2.3.

3.3.Methods for Improving Convergence Rate

In this section, several convergence rate improwreghodologies are applied to the
serial implementation of the solution framework ahd change of behavior with
these methods is investigated for this specific lemgntation on the sample

problems within the scope of this study.
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3.3.1.Re-orthogonalization of Direction Search Vectors

In following sections, mathematical background eforthogonalization is presented
and performance improvements attained by re-orthalggation of direction search

vectors is discussed.

3.3.1.1.Mathematical Background

From their definition, Conjugate Gradient solvers based on the orthogonality of

the consecutive search vectors, which can be writse

kT k
k_ .k Y Pw k-1
P =Y T T pyi P (62)
and
KTk
=22
P F,pk (63)

However, a rapid loss of orthogonality betweendinection vectors can be observed
due to the numerical errors such as round-off dgarighmic errors such as spectral
patterns in the dynamics [43]. In such cases, asing the numerical precision does
not restore the orthogonality of the direction sharectors since the propagation of

the errors is a function of the ratio between counsee eigenvalues [90].

The convergence rate of the PCG algorithm for tiet®n of the interface problem
is badly influenced by the loss of orthogonalitytibé search directions. In order to
overcome this problem, a re-orthogonalization pdoce [86] within the PCG

algorithm is introduced as;

KT i
y EDP
ph=y— > ——p (64)
— p" Fip
and
KTk
pw
n' = DTk (65)
I
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However, determination of the new direction vedauses additional computational
resources at each iteratiansuch as the storage of the direction vegtbrand the

productF;p*. Besides, the computation &f dot products of the form [ F,p¥]

where F,p*] is readily available and < j < k, and of amn; x j matrix-vector

product wheren; is the number of interface unknowns.

Obviously, such a re-orthogonalization proceduraas feasible if it is introduced
during the solution with the PCG algorithm of alzgdbfinite element problem, as it
would require unreasonable amount of memory andpotation power. It is
however quite affordable within the context of ardon decomposition algorithm as
it applies iterative solution only to the interfageblem. Particularly, the additional
computational costs mentioned above are small coedp@ the cost of the pair of
forward and backward substitutions that are requateeach iteratioh of the PCG
algorithm in order to evaluate the prodBgt*. In other words, such a strategy is
cost-effective for subdomain problems because #pplied only to the interface

Lagrange multiplier unknowns [86].

3.3.1.2.Improvement Achieved by Re-orthogonalization ofddiron Vectors

In order to investigate the improvement achievedesgrthogonalization of direction
vectors, three different problems discussed in i@@c8.3.3 are solved with and
without of the re-orthogonalization. In addition tiee configurations presented in
that section, iteration counts for solutions of f®blem with different element

discretization is also presented in the followirgufes.

Figure 3.4 demonstrates the improvement achieved ubilization of re-
orthogonalization for cantilever problem. Numberitefations required for sQ4POu
meshing is higher than the meshing with sQ9P0u eiésn as expected because of
the greater number of sQ4P0u elements used in t'bd@quire the same accuracy as

sQ9PO0u elements. Apparently, re-orthogonalizatemuces the number of iterations
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required for the sQ4P0u meshing from around 7Qtavbich is approximately 28%

reduction. However, for meshing with sQ9P0u elemeatluction is around 20%.

—Q4 ——Q4 with Reortho. Q9 —Q9 with Reortho.
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Figure 3.4. Improvement by re-orthogonalizatiorcantilever problem

In Figure 3.5, iteration counts for Tall Water Golla modelled with fQ9P1u are
presented. By utilization of re-orthogonalizatioteration counts required for the

solution is reduced from 70 to 28 which equals@&oGeduction.
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Figure 3.5. Improvement by re-orthogonalizatiortahwater column problem
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Finally, Figure 3.6 demonstrates improvements rathiby re-orthogonalization for
the solution of the Water Tank problem. Since thenber of elements is fixed for
the two meshes, it is reasonable to obtain thatbeunof iterations required for
meshing with fQ9P1u elements is greater than thebeu of iterations required for
meshing with fQ4P1lu elements. For meshing with fQORelements, iteration

required for the solution reduced from around 44 40 which equals to

approximately 10%. However, reduction in meshinthviQ4P1u elements is not so

apparent.
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Figure 3.6. Improvement by re-orthogonalizationa@ter tank problem

The performance improvement of the re-orthogonadima procedure presented
above is given in Table 3.2 as the total numbertefations required for the
solutions. Average improvement obtained by re-ggtmalization for fluid media
problem is around 41% and for solid media problins, around 26%. However, for
the fluid-solid interaction problem, improvementopds to 4%. Since re-
orthogonalization procedure aims at enhancing thats of PCG iterations carried
for dual interface problem at each time step, pregediscussion limited to iteration

counts are descriptive.
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Table 3.2. Improvement by re-orthogonalization vidtal iteration counts

Model w/0 w Improvement
Water Tank Q4 25636 25100 2%
Water Tank Q9 42791 39878 7%
Cantilever Q9 72792 49902 31%
Cantilever Q4 31742 24998 21%
Tall Water Column Q4 6826 2800 59%
Tall Water Column Q9 6777 5199 23%

In practice, the number of direction vectors tlsastored for re-orthogonalization is
determined by the memory space that is availabier &l of the other storage
requirements of the FETI method has been satisi\ééten only a few directions can
be stored, a partial re-orthogonalization is immated. In this case, the optimal
strategy consists in storing the first few diresidnstead of the most recent ones,
because the subspace generated by the first dimecis closer to the subspace
associated with the highest eigenvalues [86]. Imreary, the FETI algorithm is
always used with an explicit full re-orthogonalipat procedure in order to
accelerate convergence. In [42], it was showngbeh a strategy is cost-effective for
subdomain problems because re-orthogonalizaticspied only to the interface

Lagrange multiplier unknowns.

3.3.2.Improvement of Convergence by Krylov Subspaces

3.3.2.1.Mathematical Background

In FETI family domain decomposition methods, dudéiface system is solved by a
Krylov iterative solver which is generally a varat of the conjugate gradient
method. In such solvers, iterations are based arclsig for a direction vector and
step length by using a residual vector originatexnfthe previous iteration [90].
During the solution direction vector searches athesatep, new direction is re-

orthogonalized to the previous directions to imgrathe convergence as it is
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described in Section 3.3.1. Thus, at each step af s®arch directions are produced
by conjugate gradient method. In this sectionjasilon of these Krylov subspaces
in between solution of linearized dynamic equati@iseach time step will be
discussed [41].

Supposing a system &f; equations has been solvetkq = b,) in r; iterations, and

that theN, x r; matrixS; associated with the Krylov subspaies readily available;

Sl = [51(1) Sl(rl)] (66)

wheres,® andr; < N, denote the search direction vector at iterafiprand the
number of iterations for convergence of that solutrespectively. In case of another
system of equations, the same coefficient matrix different right hand side

(Ax, = b,), there can be 39 vector to define the initial estimate valuexdfas;

X3 = 51y (67)

It is shown thay? is given as the solution of following system;

Si"AS1y3 = b, (68)

where

EZ = SlTbZ (69)

It has been shown th&t” AS; is diagonal [41]. Therefore, the componebtg]j of

y9 can be simply computed as follows;

[B,].
0] _— J P —
=g =t (70)

In case of the solution for the second time stefh wonjugate gradient method,

since,x) is orthogonal tc,, at each iteratioh, the search directions,® must be
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explicitly orthogonalized t6;. This results in replacing the computation of nfiedi

search directionéz(k) as follows:
q=r1
50 =50+ ) ags? (71)
q=1
where
5,@" 45, 5,0 45, @

5, @45, @ 5, @ A5, @

(lq:

Except for the above modifications, the original P@lgorithm is unchanged.
However, convergence is expected to be much fé&stehe second and subsequent
solution steps than for the first one, becatisand the subsequent supplementary
spaces have smaller dimensions than possible @oldimension, and a significant
number of the solution components are includedénstartup solutions of the form
of x3 [41].

3.3.2.2.Improvement Achieved by Utilization of Krylov Sulzsges

Water tank model defined in Section 3.3.3.1.3 iwesb by utilizing both FETI-1
algorithm and FETI-2 algorithm. Although both algloms produced the same
results, total number of iterations and improverseabtained by utilization of
Krylov subspaces are different. FETI-2 algorithmswaways capable of solving
each time step in a single PCG iteration. Obviquslis is because of the additional
solution level inserted to the coarse problem. &irtlsis successive convergence of
FETI-2 algorithm hinders the investigation of impeonent achieved by the Krylov
subspaces, for the rest of the discussions; FESORition algorithm is utilized.

In, Figure 3.7 iteration counts required for FET&gorithm to converge a solution

for each time step is shown for different model bomations. Krylov subspace
improvement described above is not utilized, thusnber of iterations required
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increases until the system gains a stable osafjatesponse that is similar to the

response presented in Figure B.7.
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Figure 3.7. Iteration counts without Krylov subspaiémprovement

As it is demonstrated in Figure 3.7, number ofati®ns required for the solution of
models with Q4 elements with the same formulatisndrastically lower than those
of Q9 elements. It is acceptable because of theatiawlal DOFs inserted to the
system by using quadratic approximation. Anothdergsting comment is that
displacement/pressure based formulation decrebsagquired number of iterations
for the solution of the same model with the purgptiicement formulations. This
behavior can be explained by the decrease witlhutiheation of u/p formulation in

the zero energy modes of floating subdomains. Hertbe PCPG algorithm does not
misdirected during the solution direction searchm®s non-realistic modes of

subdomain.

In, Figure 3.8 again, the iteration counts requitgd~ETI-1 algorithm to converge a
solution for each time step is shown for differemédel combinations. However, in
this case Krylov subspace improvements are appbie¢de iterations as described in

the previous section. Obviously, during the begigniof the time integration
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(t < 0.05 andt;y¢q; = 2.0), there are meaningless up and downs in the ibarat
counts. This is due to skirmishing effects of theréasing trend observed in Figure
3.7 and the decreasing trend of the subspace iraprent. After 0.005 seconds,
decreasing trend of subspace improvements govedhérally after 0.35 seconds a
single iteration is enough to converge for the otu
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Figure 3.8. Iteration counts with Krylov subspateprovement

Due to the stored search directions computed bgdahdions of previous time steps,
iterations required for the solution of the nexnhdi steps converges faster than
before. Obviously, this behavior is drastic becaokehe similarities in between
consecutive loadings at each time step. In caselation of different multiple right
hand sides, this behavior possibly not that effecsince the solution domain will be
totally different [41]. However, still, it is quitbeneficial when the iteration counts
required presented in Figure 3.8 is taken into iclamation even for such a small
problem.
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3.3.3.Performance Tests with Different Preconditioners

Although, the scalability of FETI on different hogeneous problems are presented
in the literature several times, for heterogenepusblems situation is not yet
completely clarified. For arbitrarily heterogeneoyzoblems, the optimal
conditioning limits does not hold for most othergvscalable domain decomposition
methods [74, 86], and the performance of the Dieichlumped, and similar
preconditioners can be expected to deteriorateffiCieat jumps are utilized in
various techniques for preconditioning subdomaivbf@ms [65]. However, most if
not all of these techniques are applicable onlydémain decomposed problems
where each subdomain is characterized by a singiicient, in other words, for the

problems that are globally heterogeneous but lp¢edmogeneous.

In order to investigate the optimization possil@Bt of an implicit monolithic
solution algorithm for dynamic analysis of dam-res@ systems, different
preconditioning configurations are chosen. Thressiide interface situations are
solved with three commonly utilized preconditiongm®sented in Section 2.2.4.4

such as Dirichlet, lumped and super-lumped.

3.3.3.1.1 30lid Mechanics Problem

In order to investigate the performances of chgseoonditioners on the structure to
structure configuration, a cantilever beam subgedte a tip moment problem is
modeled as in Figure B.3. By restricting the spandépth ratio of beam, shear
deformations are assumed to be negligible. Thezetouler-Bernoulli Beam Theory
can be used as a guide for determining reasonatidepn dimensions. According to
mentioned theory, deflection at any point of tharsfs given ad(x) = Mx?/2EI.

Finally, material and geometric properties are ehosccording to equate tip

deflection to unity. In order to prevent from thaif8-Venant's effect, displacement
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comparisons are carried out at the mid-span. Thb/taral result at this point is 0.25

and the numerical solutions should converge toréssit.

The cantilever beam is modeled with 2x6 mesh ofSX#p elements. The loading is
applied to the system for just 0.1 seconds and thlelased. Rayleigh damping is not
applied @ = 0.0 andg = 0.0). Model is partitioned into four subdomains assit

shown in Figure 3.9.

AN [ R
N N N— , ,

Figure 3.9. Partitioning of cantilever beam problem

Iteration counts required for the solution of thr®blem by FETI-1 algorithm with
different preconditioners are presented in Figul® &nd Figure 3.11. In these tests,
Krylov subspaces are not utilized since this improent hides the performance of

preconditioners.
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Figure 3.10. Cantilever beam solved by FETI-1 wiiffierent preconditioners
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As it is demonstrated in Figure 3.10, Dirichlet gmeditioner demonstrates its
superiority on solid structural mechanics problefhsonverges to the solution with
almost half of the iterations required by other coralitioners. Super-lumped
preconditioner has no significant contribution s¥fprmance when it is compared to

lumped preconditioner.
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Figure 3.11. Cantilever beam solved by FETI-2 wiiffierent preconditioners

In Figure 3.11, results for the solution by FET&gorithm are presented. When the
results are compared with each other, similar qoed outcomes are obtained.
Besides, as it is expected, iteration counts reguior FETI-2 is more less than the
ones obtained from FETI-1 solution because of thditimnal solution level exist in
FETI-2 algorithm as it is demonstrated in Sectich422.

3.3.3.1.2 Hydrostatic Problem

The water column problem is modeled by utilizingxed displacement/pressure
formulations for fluid media under dynamic loadiag in Figure B.5. Fluid media is
meshed with 10 fluid finite elements of type fQ9RInd restrained in X direction to
represent the rigid tank boundary. Tank has 1/dihwheight ratio.
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Uniform area load which is lumped to the nodes gisiibutary area is applied to the
system with the time function shown in Figure BRése time is taken as 0.01 where
natural period of the system is around 0.00LLSEL, ratio is in between 0.5 and 1
hence the dynamic response of mid-span displaceim@micorrespondence with the
given figure by Chopra [40] as given in Figure Btération counts required for the
solution of this problem by FETI algorithms withffdrent preconditioners are given
in Figure 3.12 and Figure 3.13. In these tests|drgubspaces presented in Section

3.3.2 are not utilized.
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Figure 3.12. Hydrostatic problem solved by FETI{thvdifferent preconditioners

As it is presented in Figure 3.12, Dirichlet predibioner results in the minimum
iteration counts. The performance improvement bigicbiet preconditioner against

lumped preconditioner is increased when it is caiegbavith cantilever problem.
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Figure 3.13. Hydrostatic problem solved by FETI{¢hwdifferent preconditioners

As it is demonstrated in Figure 3.13, FETI-2 resuft slightly less number of
iterations. Since it is known that performance ioye@ment of FETI-2 results from
second level of constrained solution ®yarameter, it reveals thé&tparameter used

for this problem is not efficient as in the cantée problem.

3.3.3.1.3Fluid-Sructure Interaction Problem

Water tank with flexible walls is accepted as oieh@ characteristic problem of
acoustic fluid-structure interaction and used asbenchmark problem for
heterogeneous domains. Several fluid elementsar@ioed in a one element thick
of solid elements where it is base is hinged froneiad and released in one direction.
Dynamic loading is applied to the free end of thakt (Figure 4.18) by linearly
increasing it to full capacity in 0.5 seconds ($&mito Figure B.6(a), but with 0.5

seconds of rise time).

Problem is modeled with “sQ9P0u - fQ9P3u/p” eleraemtich designates that solid

media is modelled with Q9 elements with displacenfiermulation and fluid media
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is modelled with Q9 elements with displacement/ues based elements. Domain is
partitioned into two subdomains according to medace, fluid media has no
restraints, it is floating. Complete set of rigiddy modes of this floating subdomain
are computed by using "null" function of MATLAB invhich Single Value
Decomposition algorithm is utilized. Thus, the @@aproblem formed is in between

solid-fluid interface which is heterogeneous.
Iteration counts required for the solution of threblem by FETI solution algorithms
with different preconditioners are given in Fig@:&4 and Figure 3.15. In these tests,

Krylov subspaces presented in Section 3.3.2 aretiizied.
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Figure 3.14. Water tank problem solved by FETI-thwiifferent preconditioners

As Figure 3.14 demonstrates, Dirichlet precondéonexhibits a superior
performance on this problem also. It requires 4@%s Inumber of iterations than
lumped preconditioner. Besides, super-lumped pmitoner exhibits a similar
behavior as Dirichlet preconditioner. As it is sthtin Section 2.2.4.4.3, super-

lumped preconditioner is very cheap when comparddirichlet preconditioner.
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Figure 3.15. Water tank problem solved by FETI-thwiifferent preconditioners

If the FETI-2 results are investigated from Fig@r&5, FETI-2 requires slightly less
number of iterations for the solution and the fiieracount trends are similar to the

ones in Figure 3.14.

To sum up, utilized preconditioner significantlyfezfts the iteration counts required
to obtain the solutions. Although, it is statedttbarichlet preconditioner is quite

expensive computationally when it is compared witmped and super-lumped
preconditioners, it performs the best in all caséswever, for the heterogeneous
problems partitioned into homogeneous subdomammgerdumped preconditioner

can be preferred.
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CHAPTER 4

CONDITIONING THE INSTABILITIES

4.1.Introduction

As one of the acoustic fluid-structure interactpoblems, dam-reservoir interaction
contains the analysis of the solid structure domaindam, the fluid domain i.e.
reservoir and the coupling in between these twoalosn Displacement formulation
is generally utilized for the discretization of islostructure [18]. On the other hand,
several fluid formulations are utilized for modegjithe fluid domain depending on
the assumptions made on fluid properties and floviolem conditions. For a
considerable amount of structural engineering noist the behavior of the fluid
domain can be considered within the limits of atieesand the fluid domain
discretization can be greatly reduced to a simfdem. Therefore, a simplified
Lagrangian representation of the fluid domain isgige and highly preferable in
case of dam-reservoir interaction problems [1, &3fhough it is computationally
expensive, representing the both sides of theaoten with the same unknown field
eliminates the necessity to develop special cogphirethodologies for the fluid-

structure interaction.

Monolithic solution of a fully Lagrangian represatn of acoustic fluid-structure
interactions is composed of the simultaneous sotudif fluid and solid equilibrium

equations without inserting any additional energytie system or any time lag in
between time steps [9]. Since fluid field requisesaller time steps for the solution,
additional computational requirements are appeasea result [101]. In order to limit
the high computational requirements of the moniglittagrangian solution of dam-

reservoir problems, fluid properties are simpliflegdignoring compressibility and/or
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viscosity. On the other hand, iterative solutionttmes and parallel computing
techniques provide considerable computational powkerefore, iterative solution
methods highly suitable for parallelization [10iel FETI (Finite Element Tearing
and Interconnecting) family of solution methods][2&n be of interest to solve dam-

reservoir interaction problems.

Iterative, fully Lagrangian monolithic solution afam-reservoir interaction has
several disadvantages. One of the main disadvasniagbe considerable change in
behavior of materials along the fluid-structureenfice which may cause ill-

conditioning of the problem [103]. Since the inteé system defined by FETI is
generally solved by PCG (Preconditioned Conjugated@nt) algorithm, in addition

to preconditioning, it is possible to condition teelution by deflation methods in
case of ill-conditioning [31, 33, 36, 104].

Deflation is the projection of the original probleno a better conditioned
representative state, such that the convergenee afatthe iterative solution is
improved or the solution is carried out succesgfulith less computational
requirements [30]. Deflation methods have sevdgabaaic connections with multi-
grid methods and projection preconditioners [29,3]. Efficiency of the deflation
methods highly depends on the deflation vectorkizeti to define the projection
space [33-36]. In case of subdomains composedliof glements, computation of
rigid body modes and utilizing them as deflatiorctees is a straight forward task
[33, 37, 38]. However, in case of subdomains witgiangian fluid finite elements,
such methods are not applicable and a fully ramkakng Eigen solution is required
[39]. Therefore, for such problems, more efficieantd robust deflation vector
generation methods are needed to obtain an impmvem terms of computation
and memory requirements [29]. Thus, the main faduthis chapter is to examine
the effect of different deflation vector generatimethods on the efficiency of the
dam-reservoir interaction problems in terms of ¢vo number, iteration count,
operation count, and memory requirements. Moreogenovel deflation vector

generation method is proposed. In this methodptheselected a priori known zero
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energy modes of the fluid finite elements usedha tiscretization of the fluid

domain are utilized in order to obtain a deflatspace for the solution and finally
enhance the convergence of the iterative solutidheodam-reservoir system. Along
with the proposed method, several other deflatientar generation methods are
utilized to solve the water tank with flexible walproblem which is a classical
benchmark problem for acoustic fluid-structure iatdion. Then, an actual dam-
reservoir interaction problem is solved by utilgiRETI-2 algorithm [22, 24] and the

performance of each deflation vector generatiorhoteis discussed in detail.

4.2.Theory

This study focuses on monolithic time domain analgé dam-reservoir interaction
problems where both dam body and reservoir are leddeith finite elements
having displacements as their DOFs. The solid dord&cretization is performed
with classical displacement based finite elemerit8] [whereas two different
formulations, pure displacement [59] and displaca&fpeessure formulations [62]
are utilized for the fluid domain discretization.oRblithic time domain analysis
requires large memory capacity and computationadources, hence, high
performance computing techniques are generallyemed [10]. In this study,
domain decomposition based iterative, high perfageasolution method, FETI
family methods [25] are implemented. Due to theureatof the problem, solid and
fluid subdomains not only have large stiffnessatéhces but also have different
governing equations that describe their behaviecaBse of this reason, the system
may be highly ill-conditioned which requires adalital precautions to achieve

acceptable convergence rates.

4.2.1.Discretization

The solid domain, i.e. the dam body and foundatomk, is modeled with solid finite
elements with displacement based formulation [18] tvo different formulations
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for fluid elements are implemented and tested. firgefluid element formulation is
pure displacement based formulation [59], whereflilnd strains are computed by
the linear strain-displacement relationship anddbwstraint of zero fluid rotation at
the integration points are introduced. The onlaistrenergy taken into account is
related to the compressibility of the fluid. It ®ported that although pure
displacement based fluid elements are stable ferda-range of frequencies, they
have spurious zero energy modes [62]. The othét #lement is based on mixed
formulation [62], approach. The formulation is bdge Hu-Washizu principle with
displacement/pressure DOFs such that spurious eeeogy modes are prevented
(inf-sup condition). The formulation has both desgments and pressure quantities

as DOFs but pressure DOFs are condensed out prsystem assembly.

Pure displacement based fluid formulation ensuressolvability and stability if the
bulk modulus and shear modulus of fluid are of $hene order. In case of almost
incompressible material analysis, displacementfomes based mixed formulation
that satisfies the inf-sup condition is well esistéd [49, 50]. However, in case of
inviscid acoustic fluid model analysis, due to tbes of ellipticity, zero energy
modes corresponding to the zero deviatoric stragrgy are formed [62].

4.2.2.System Solution

In FETI family of solution methods [21, 22, 24],lston domain{ is partitioned
into Ny number of non-overlapping subdomaiif®. For each subdomain, local
stiffness matrix<*), local load vectof® and local unknowna® can be grouped

in block diagonal format as follows;

u® f(l)
, U= N = : (72)
u(Ns) f(Ns)

K®
K =

K(Ns)
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Continuity of displacements along the interface banseparated as constraints and
Lagrange multiplierst which represent the interface forces can be defaee dual

variables to obtain the following minimization pteim;

Ku +BTA =f
’ 7
{ Bu =0, (73)
whereB = [gM ... pWs] and B®) is a signed matrix that represents the

interface continuity. This minimization problem che solved by condensing the
displacements and solving the generated dual Jarg@istem by an iterative solution
method like preconditioned conjugate gradient (P@@)hod. Herek is generally a

positive semi-definite matrix [21].

In the original FETI algorithm, generalized inveliseutilized for local subdomain
solutions and consistency of the linear systermfsreed by a projection matri®,
which builds up a coarse space. In general sens@nly givenQ matrix, P can be

expressed as follows;

PQ)=1—- QGI(GITQGI)_lGIT (74)
wherel represents the identity matrix of appropriate sige= BR andR spans the

null space oK. This procedure is called one-level FETI or FETR1, 25].

In two-level FETI algorithms [22, 24], also namexlFETI-2, an additional level of
coarse space is formed by defining admissible caimt$ on the interface of the
form;

CTwk =0 (75)
which is enforced at eadtt” PCG iteration for the solution of coarse problém.
Equation (75), matrixC contains vectors of some subspace to be determaretl
wk = PT(d — F,A;) represents the projected unbalanced right hane sfdthe

coarse problem for the" iteration.
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In all of the aforementioned variants of FETI, arse space is formed to assure the
scalability with respect to the number of subdorediy global error propagation

over the whole domain and accelerate convergence.

As the coarse problem is generally solved withatige solvers, one of the most
significant indicators for the accuracy of the atisre solutions and the convergence
rate is the condition number of the problem. In oidhic solution of fully
Lagrangian fluid-structure interaction problemseficient matrices are symmetric;
therefore condition number can be approximated has ratio of the maximum

eigenvalue to the minimum eigenvalue of the system:

}\max

(76)

Ko (K) = |

}\min

In case of domain decomposition methods, the cmmditumber increases according
to the increase in th& /h ratio whereH denotes the size of subdomains and

denotes the size of the elements [10]. Moreovkcoiditioned matrices reduce the
convergence rate of an iterative solution methdds Ts the case, especially, in fully
Lagrangian acoustic fluid-structure interaction lpeons because there are
considerable differences in the behavior of maeasong the solid-fluid interfaces.

In this case, scaling methods [74, 86] and spgcedonditioners [92] are utilized to

have a better conditioned problems and increasedieergence rate of the solution.

Another source of ill-conditioning for this speciforoblem is that if the fluid domain
is modeled as almost incompressible, condition remm asymptotically increasing
as the Poisson’s ratio of the fluid element is niedleas being closer to 0.5.
Therefore, if the compressibility of the fluid domas of interest and the fluid
domain is modeled as almost incompressible or amyighe problem may become
significantly ill-conditioned [105, 106].
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In both FETI-1 and FETI-2 formulations, the locaffeess matrix of subdomains,
K®), can be singular, i.e. floating subdomain [22,. Zjerefore, the null space of
the local stiffness matrices which represent tgedrbody modes of subdomains is
required for the elimination of singularities. lase of solid floating subdomains
immune to internal mechanisms, 3 rigid body mod@#dgnslations + 1 rotation) in
2D, 6 rigid body modes (3 translations + 3 rotadjoin 3D may exist at most.
Otherwise, direct computation of null spaces isunegl and it is a computationally
expensive procedure. Hence, several other methasijstic or approximate, are
proposed [38]. The main assumption of these metlsotte subdomains or the finite
elements composing the subdomains do not contamirdarnal mechanisms, or
“Zero Energy Modes”. Therefore, only a few of thexan be utilized for finite
elements that are not compatible with this conditike the pure displacement based

fluid elements [59].

In this study, deflation method is utilized to cdmh the solution against the
aforementioned instabilities in addition to precitinding and this way not only the
convergence of the solution is guaranteed but tdleanumber of iterations is also

reduced.

4.2 .3.Deflation Method

Deflation method, first proposed by Nicolaides [L&7 1987, is a conditioning

method that can be utilized together with precoodihg method even though it is
not compulsory. The main idea behind the deflatieethod is to define a projection
matrix which projects the extreme eigenvalues duhe system and this way the
condition number of the problem is reduced. Theesfilerative method used for the
system solution can converge with less number efaitons than before or

successfully converge to a solution with less caaipanal cost.

The main steps of the deflation method are predantEigure 4.1.
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Figure 4.1. Flowchart for deflated system solution

As a starting point, unknowns of linear systemapiaions;

Ku=f (77)
are split into two parts;
u=>U-PNu+PTu (78)
where
P=1-KQ,Q=ZE1ZT and E = Z"KZ (79)

In Equation (79),] represents the identity matrix of appropriate ,sigeis nxn
correction matrix/Z is the deflation subspace, i.e., the space torbegied out of
the systemFE is k x k symmetric positive definite matrix ammtlis n x n projection
matrix if k is the number of deflation vectors ands the number of unknowns. By
assumingt « n andZ is full rank, also considering th&tP” is symmetric, deflated

system can be written as;
PK#© = Pf (80)
where u designates the unknowns of the deflated systemlatedf system in

Equation (80) can be solved by using PCG and thal fdisplacements can be

obtained from the result of deflated system sotubg using following correction;

u =Qf+PTa (81)
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Note that deflated system in Equation (80) is dimmguHowever, the projected
solution Pt is unique; it has no components in the null sPe¢@K) = span{Z}.
Moreover, the null space #fK do not go into the iterations and the solutiomas
influenced by the corresponding zero eigenvaluéy. [Gherefore, as long as the
system is consistent it can be solved by CG vanathods.

An effective error bound fon x n deflated systenPK with n —m rank is defined
[105, 108] as;
An(K)

/1m+1 (C) (82)

Keff(PK) =

by supposing a splitting = C + R, whereC andR are symmetric semi-definite with

null space of?, N'(C) = span{Z} and by ordering eigenvalues as;

4i(€) = 4;(PK) < 4;(C) + Amax(PR) (83)

When deflation is utilized together with preconaliting, Equation (82) extends for

the preconditioneM = LLT as;

A, (LIKLT)

Keff(L_lpKL_T) = Am+1(L—1CL—T)

(84)

4.2.4.Implementation of Deflation

Deflated version of preconditioned CG algorithm 9lLGs given in Table 4.1.
Replacement of original coefficient spaéewith deflated coefficient spac@K at
the beginning of iterations designates the “Projstép in Figure 4.1 and hence
residuals, search directions and step lengths bedafined for the deflated solution
space. As in the “Correct” step in Figure 4.1, raftee convergence of iterations,

deflated system solutiam, ., , is utilized to obtain the solutian
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Table 4.1. Pseudocode for Deflated PCG algorithm

Pseudocode: DPCG for solving Ku = f
Choose ugy, compute ry = (f — Kuy) and §, = Pr,
Solve My, = f, and py =y,
for k = 0,1, ... until convergence

Wk = Pka
_ (Fr yi)
T (Wi PR)
Upyq = Uy + agPi
Fpp1 = B — Wy
Solve Myj 41 = Trq
Bk — (Fr+1 Yie+1)
(Frr Vi)
Pr+1 = Yi+1 + PPk
end for
u=ZE'ZTf + Py,

In practice, factorization of matri¥ and matrix multiplication ofKZ can be
computed beforehand and used repetitively durimgaiions. Besides, explicit
computation ofP is not required, by rearranging the terms in Egua(79), it is

obvious thaPv = v — KQv andPTv = v — QKwv for anyw.

In case of almost all variants of FETI algorithroacse problem is generally solved
by utilizing PCG. In original FETI algorithm, FETI- projection space is already
implemented in the algorithm in order to handlefiog subdomains [21]. Computed
zero energy modes (a generalization to rigid bodges in solid mechanics) which
correspond to zero eigenvalues of subdomains aredsin rectangular matrir.
These subspace vectors are taken into accountgdilmé;; parameter computation
in Equation (74). On the other hand, in case of IFETalgorithm is mainly built
upon the fact of utilizing a set of subspace vectiwroughC matrix in order to
project the problem. Thus, deflation method carnle&& implemented to FETI-1
and FETI-2 by enriching the projection subspacethi®y predetermined additional
deflation vectors. Moreover, the projection matfiXQ) in Equation (74) is actually
the transpose of th@ in Equation (79). In other words, the projectioratrix
generated with deflation vectors can be used aggiion matrix of FETI coarse

problem solver.
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4.3. Deflation Vector Generation

Generation of vectors that define the projectioacepfor the deflation method is a
difficult task. The main challenge is to choosdisignt number of deflation vectors

that would result in a better convergence rate égoraputationally cheaper way. One
way of obtaining the deflation vectors is a fulank-revealing algorithm by utilizing

QR or Singular Value Decomposition (SVD) methodse3e methods are, however,
computationally expensive which makes them impecattio use in the solution of
large scale models. Hence, alternative deflationtoregeneration methods are

crucial to increase the improvement obtained bydefation method.

Estimating the effect of the generated deflatiocioes to the solution time a priori is
not a straight forward task. Firstly, the deflatieector generation procedure and
deflation method itself will require extra compuat Likewise, stored deflation
parameters will require additional memory space.ohder to minimize these
disadvantages, it is necessary to set severalquisies for the generated deflation

vectors.

The main requirement for the deflation vectorshiatt they should be as sparse as
possible. This way, the projected matrices woul@dlse sparse and thus requires less
memory space and computation. Moreover, deflatientors should be able to
approximate the eigenspace corresponding to threregteigenvalues especially the
smallest ones as much as possible. Otherwise ffibeerecy of the deflation method
cannot be guaranteed. Last but not least, generatithe deflation vectors should be
cheap in the sense of computational resources asrdony. Besides, generation
algorithm should be suitable for parallel programgnin order to utilize the available
hardware efficiently.

In general, preconditioning treats the largest migkies of the system, effectively.

Therefore, targeting the smallest eigenvalues duttie deflation vector generation
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enables the deflation matrix to behave as a comgiemy part of the

preconditioning by projecting the smallest eigenealout of the system [109].

4.3.1.Subdomain Deflation Method

Subdomain deflation method which is one of theteahy deflation vector generation

algorithms utilizes the partitioning information siibdomains to construct deflation
vectors. In this method, each subdomain has at @@s corresponding deflation

vector. In the simplest case which is the zero roaggroximation, the corresponding
row of the deflation vector has value “1” if theragsponding DOFs are on the owner
subdomain and has value “0” otherwise. In genazass, the deflation subspates

defined as;
k

ak, i€l
7 = LOJZR where Z{‘j = { 0 P ¢ Hj] (85)
by assuming that solution domafhis partitioned with index sdt= {i|u; € Q}
into Ny number of non-overlapping subdomaitysj = 1,..., N;, with respective
index setd; = {i € Iu; € Q;} wherek designates the order of approximation apd
IS not necessarily an actual partitioning pointimierface DOFs, it could be an

imaginary grid point [37].

For instance, suppose that, for a 1D donfgiconsists of solution poinis, ..., xg,
that is divided into two subdomains such th@f = {x;,x;,x3} andQ,, =
{x4, x5, x¢}. Subdomain deflation vectors are aggregation efpiecewise constant,
linear and second order etc. deflation vectors eesemted in Equation (86).
Obviously, for each deflation vector, number of sm@mos is fixed according to
partitioning, all vectors are moderately sparséhagonal to each other and disjoint
[109].
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11 o] |2 of [4 o] (86)

4.3.2.Recursive Deflation Method for Heterogeneous Probtas

In [37], a recursive deflation vector generationtmoe is presented in order to
decouple the eigenspace of different materials &kfinite elements which have the
same material properties are chosen to define aixm@tand deflation space is

defined by the null space of tidlematrix.

The group of elements that forms up a bddyf the materialj is defined a!,
whereQ = U}”zl{ufﬁl 04. Utilizing the splitting presented in Equation Yg@r the
first material body, it is decoupled from all otheaterials. The rigid body modes of

all elements corresponding to the first body of maltd are contained iV (C,)

where the matrixC, consists of the assembly of all finite elements$ bigdongs to it.

Consequently, that yielda( (Cy) = Z, andP, = I — A,Z,(Z;, Ay7,)"1Z," .

Continuing the splitting recursively [105], for éabody of each material, at splitting
m,
N(Cn-1) =Znm (87)

and

~ ~ T~ ~ \1 .
Pros =1 = RnsZon (Zin RnesZm)  Zu =P (88)
with P = I — AZ(Z" AZ)~'Z"andspan(Z) = U7., span{Z;}.
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In short, deflation removes the corresponding ex¢reigenvalues from the system
by removing the rigid body modes of the subdomamrsesponding to the different
materials. In this method, it is assumed that datgte element has at most 3 rigid
body modes in 2D, 6 rigid body modes in 3D. Thamfthese rigid body modes of

each element are utilized for computing the nuicgpof subdomains [37].

4.3.3.A Novel Strategy: Semi-heuristic Deflation Method

Recursive deflation vector generation strategyesebn the assumption that each
finite element has at most 3 rigid body modes in @kigid body modes in 3D. It is
apparent and applicable for subdomains which haveaternal mechanism like solid
domains. For the specific problem examined in ttisdy; there are two main
problems with this assumption. Firstly, Lagrangiflnid finite elements not
satisfying the inf-sub condition may have additiorero energy modes [59, 62] like
the ones presented in Figure 4.2. Secondly, evenixéd formulation fluid elements
that satisfy inf-sub condition are utilized, in alst incompressible state, problem
becomes ill-conditioned. Therefore, methodologyegivn Section 4.3.2 can only be

applied with a local eigenspace solution for subdios [105].

However, even if it is approximate, an Eigen prabkolution for each subdomain is
an expensive computation. On the other hand, additizero energy modes (other
than the rigid body modes) of a fluid element canpbedicted from its element
formulation [59]. Hence, a semi-heuristic deflatig@cttor generation algorithm based

on a set of known zero energy modes is proposed.

In order to follow the reasoning behind the reatgsdeflation vector generation

strategy, solution domairf) is partitioned into Nsnumber of non-overlapping

subdomainsﬂ} such that each subdomain composed of a single hemeogs

material Wheretjﬁl{u{'ﬁlﬂ’-}. LetV; be a priori known set of zero energy mode of
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the materialj for a specific type of finite element formulatiasV; = [vg vy ... v,].

Therefore;
Ns
7= UZ" where Z¥ = Z;) = [zg 21 ... 2] (89)
k=0
where

z= ) v ©0)

eqg €0}
wheree, represents the‘" element. In other words, eaghin Zj, is obtained by the
assembly of pre-selected vecigrover all elements of subdome(m]‘-l. Hence, a set of
arbitrary deflation vectors is obtained and by izinlg these deflation vectors,
projection space can be definedPas I — AZ(ZTAZ)"*ZT. In summary, the main
idea behind this deflation vector generation apgnda based on the assumption that
the standard assembly of each element's a pridactssl zero energy modes

according to the element connectivity informatidreach subdomain would build up

a projection space for that subdomain.

1 1 0
0 0 -1
0 -1 -1
_1> 0 0
-1 1 0
0 0 1
0 -1 1
1 0 0

Figure 4.2. Some basic a priori known zero energyes

Some sample vectors df; (a priori known zero energy modes) for the pure
displacement based fluid element from its formolatj59] are presented in Figure
4.2. Since, u/p based mixed fluid formulation Segssthe inf-sub condition and rest
of the small valued eigenvalues cannot be knowhawit a full rank-revealing Eigen
solution, zero energy modes of pure displacemes¢dduid formulation could be

utilized also for u/p based mixed fluid formulation
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4.3.4.Further Heuristics; Deflation Vector Assembly

Although both of the recursive and semi-heurisgfiation methods are given as the
aggregation of the deflation vectors for each sulalo, apparently one more
alternative for the methods discussed in SectiBr24and 4.3.3 can be obtained by a
further heuristic. Alternatively, computed eigenwes of corresponding eigenvalues
that are close to each other with a tolerance @adsembled into a single vector
even if they are belong to different subdomainspBsed additional heuristic of

assembly can be expressed as follows;
Z=| |Z* whereZk =7, = [Z¢ Z1 ... Zp] (91)

where

Ng Ng Tj mng

2, = Z Z Z Z H(z, z,) 92)

j=0k=j+11=0 m=0

wheren; andn, are the number of generated vectorsifbandkt" subdomains and

H function defined as follows;

(LTz)L; + LizmLy)  if C satisfied

(93)
0 otherwise

H(zy, 2,) = {

whereL is the transformation matrix from local problem tdobal problem.
However, in case of FETI family of solution methpds designates the
transformation matrix from local problem to coameblem which is considerably
smaller in size than the global domain. In Equati@8), conditionC is [1;,1,,] < ¢
for “Recursive Deflation Method for Heterogeneouslifems” andl designates the
corresponding eigenvalue. On the contrary, in aalséSemi-heuristic Deflation
Method”, it is sufficient to check the equality mfe-selected deflation vectors.
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4.4.Numerical Experiments

In order to investigate the performance of the atefh method on the specific
problem considered in this study, several problaredirst validated and solved with
different deflation vector generation methods nwmd in Section 4.3. Although
validations and solutions were carried out for Wiele time domain, performance
data presented in this section belongs to thetfirst step of the analysis in order to
eliminate the effects of Krylov subspace utilizatimethodology [41] during the time

history analysis.

4.4.1.Water Tank Problem

The schematic representation of the water tank fAattible walls problem accepted
as one of the benchmark problems of acoustic #tideture interaction analysis is
presented in Figure 4.18. The model has fluid efgmeontained in flexible walls.
The base of the tank is restrained fully at one and restrained only in vertical
direction at other base nodes. A gradually risioigd P (t) was applied from one of

the flexible walls.

P(t)

Figure 4.18. Water tank with flexible walls

Several models are created and tested where thiedlements are modeled with
quadrilateral finite elements with either displaesin based (u) formulation or

displacement/pressure (u/p) based mixed formulai@ch model is partitioned into
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subdomain®®), s = 1,...,N; as in Figure 4.4 eitheN; = 4 or N, = 42,with

similar sizes and homogeneous material properties.

B

|| ]
(@) (b)

Figure 4.4. Water tank problem partitioned into4and (b) 42 subdomains

Aforementioned deflation vector generation algen#h) PCG variants and FETI
family solvers are implemented in MATLAB by usingasse storage definitions.
Deflated PCG is implemented as it is given in Tableby adding condition number
estimation functionality as in [90].

Through the discussion of results, SD, RD and S¢iuwmed as abbreviations for
“Subdomain Deflation Method” given in Section 4,3'Recursive Deflation Method
for Heterogeneous Problems” given in Section 4a&h@ “Semi-heuristic Deflation
Method” given in Section 4.3.3, respectively. SDSID-1 and SD-2 designate the
order of approximation for subdomain deflation noethin order to utilize RD for
this specific problem, it is required to replaces theometric rigid body modes
computation with QR decomposition. For SH, pre-selé vectors); are chosen
from the element formulation of the pure displacetriEased fluid element. For RD
and SH, two alternative methods that rely on aggiegq (AGG) and assembly

(ASM) are also investigated as given in Section4.3

Deflation methods insert an additional layer of pomation which is the projection
to a better conditioned solution space. Therefat®, efficiency relies on the
improvements achieved by the projection and thetiaddl computational/memory

requirements. Hence, there are several parameaieb® tutilized as performance
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indicators. Operation counts that are one of thannpmerformance indicators
composed of the operation counts (additions + lidations) required for the
projection/correction steps in Figure 4.1 and tbeputations during the iterations
for deflated system solution [109]. Apparently, i®n counts include any
computation during the solution and in general dihe depend on the iteration
counts. Another important performance indicator tiee additional memory
requirement for deflation methods which is composédhe storage required for
deflation vectors, factorization &f and resultant matriXZ defined in Equation
(79). Obviously, the number and the sparsity ofadiein vectors are the main actors

for the additional memory required.

Although extensive numerical experiments are hgldorder to exhibit the basic

behavior and performance of aforementioned methbdse different cases of water
tank problem are selected. First case demonstifagedetails of the solution with u-

displacement based fluid formulation. In this cdke,relationship between deflation
vector count and iteration counts are discussedopedation counts and additional
memory consumption for each deflation method aesgmted. In the second case,
fluid formulation is chosen to be almost incompiieles therefore u/p-mixed

formulation is used. As an ill-conditioning indioat condition numbers and change
in condition numbers for each deflation methodrsspnted and its relationship with
iteration counts is discussed. As a third casejtisol method is changed to FETI-2
algorithm instead of PCG iterations and the chandbe performance indicators are

investigated for different number of subdomains.

4.4.1.1.Model with Pure Displacement Based Fluid Elements

In this case, water tank problem discretized wittigplacement based fluid elements
in Figure 4.18 is solved with FETI-2 by utilizinge standard FETI-2 algorithm and
different deflation vector generation methods. tHirawback of deflation methods is

the necessity to store deflation vectors and soduitianal relatively small-sized
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matrices through the iterations. Depending on #feation vector generation method
utilized generated number of vectors is differestitais represented in Figure 4.5.
Standard FETI-2 procedure equipped with a QR deositipn based deflation
vector generation produces the minimum number afore (exactly, 6) for the

coarse problem.

Deflation Vector Count @ Iteration Count

35
&

30 . . &
25 . 4
20 il
15
10
5 L 3
0

QR SD-0 SD-1 SD-2  RD-AGG RD-ASM SH-AGG SH-ASM

Figure 4.5. Deflation vector counts and iterationmts

Number of deflation vectors generated with SD metisadirectly proportional to the
subdomain count which is 4 for this case and thet fhat problem is in 2D.
Therefore, 8, 16 and 24 deflation vectors are gdedrby constant, linear and
second order variants of SD method. RD method géeerl2 deflation vectors
which are composed of 3 rigid body modes for edcthe® subdomains. Since, SH
method relies on fixed number of pre-selected teflavectors for each finite
element, 3 vectors are generated for each of 8@®i@ subdomains and 7 vectors for
the single fluid subdomain. Therefore, 16 deflatiectors are generated totally
when SH method is utilized. In ASM variants of thesethods, generated vectors

are assembled to 3 and 7 vectors for solid and 8ubdomains, respectively.
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Main purpose of the deflation is to remove the nmedgtemal eigenvalues form the
system. By utilizing a fully rank-revealing algdmih like QR decomposition which
exactly targets the extremal eigenvalues, ther® iseed to compute many deflation
vectors. In contrast, for deflation methods mergbin this study, the distribution
and the number of eigenvalues are unpredictable ekpecially floating fluid
domains. Therefore, it is necessary to generateaat enough number of deflation
vectors to span a space in which the extremal madesufficiently approximated.
Iteration counts obtained for each of the deflatieector generation method
presented in Figure 4.5 in correspondence with rdesoning mentioned above.
When the deflation vector generation method becomese approximate, the
number of vectors required to obtain a similar @enfance is increasing. Besides, it
is obvious that when the number of deflation vexigrincreasing, iteration counts
are decreasing independently from the generatiaesjy. It is also expected due to
the fact that additional linearly independent vextenlarge the projection space
spanned.

QR [I— 773
sD-0 [ 344
sD-1 [ 816
sD-2 e 416
RD-AGG [ o84
RD-ASM [ 429
SH-AGG [ 928
sH-AsM [ 357

0 200 400 600 800 1000 1200 1400 1600

Figure 4.6. Additional memory requirements (in #hoh-zeros)

Memory requirements of the deflation methods amlser important aspect for the
efficiency. Not only the number of deflation vecadout also the sparsity of the
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vectors generated is significant. Obviously, vesigenerated by methods originated
from a fully rank revealing algorithm like QR decpasition have drastically lesser
number of non-zero values. Although their numbevextors is smaller, in overall,

as it is presented in Figure 4.6, standard FETh@ BD-AGG requires moderate

memory storages. SD methods generate moderatelyespectors but their memory

requirements are increasing rapidly with an inaeeiasthe order of approximation.

Memory requirements of standard SH method is smbleéSD method but as it is in

SH-ASM and RD-ASM, memory requirements can be kohiby utilizing ASM

heuristics.

1E+8 . .
0 Deflation Vector Generation
10174699

1E+7 + pom 0 Deflated Solution
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[
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QR SD-0  SD-1  SD-2 RD-AGG RD-ASM SH-AGG SH-ASM

Figure 4.7. Operation counts for deflation vectengration, deflated solution

Operation count is another important factor on ¢éfffeciency of deflated solution

with different deflation vector generation approashin Figure 4.7, operation counts
for deflation vector generation and deflated solutis given separately. Overall
operation counts are given on top of each bar eoupbparently, when QR

decomposition takes place, operation counts fdatleh vector generation stage are
dominant. On the other hand, in case of arbitraflation vector generation methods
such as SD and SH methods, deflation vector geaeregquires considerably less

number of operation counts.
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4.4.1.2.Almost Incompressible Case by CG Variants

In order to investigate the improvements achievgadnentioned deflation methods
for almost incompressible case, water tank probf@esented in Figure 4.18 is
solved by Conjugate Gradient (CG) with and withantincomplete Cholesky (IC)
preconditioner for a fluid material with Poissonégio of 0.499 and 0.49999.

1E+6
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A
: ‘peGsi]
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z w4 [DCGRD
g 1E+3 yd
g M
e 1E+2 /“/ A CG Variants
£ .
S " .
) n ariants
1E+1
1E+0
0 20 40 60 80 100 120

Iteration Count

Figure 4.8. Solution by CG variants W& = IC (v = 0.499)

First set of results presented in Figure 4.8 isioled from the first time step solution
of water tank problem for a fluid material with Beon’s ratio of 0.499. First of all,
the correlation in between condition number andaiten counts is apparent and
hence iteration counts decrease with the reduaticondition number. In addition to
that, as expected, preconditioning reduces the itondnumber drastically.

However, for both preconditioned and non-precood#éd cases, with the utilization
of any deflation method mentioned convergence ®fGs/PCG method is improved
due to the reduction in the estimated condition Ip&m Obviously, in

correspondence with the better representation odfremal eigenspace, the
improvement achieved increases. For instance, SiBhwik an arbitrary deflation

vector generation method behaves worst in contea&D. On the other hand, SH

which is also an arbitrary deflation vector generat method improves the
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convergence rate more than the popular SD methddtas improvement is even

considerably closer to the improvement achieve&Dby

Same problem is solved with same solution paramétatr only Poisson’s ratio) is
shifted to 0.49999, in short, to the almost incoespible state. Iteration counts and
condition number estimates are presented in Figude As expected condition
number estimates are drastically increased duk-¢oriditioning of the problem at
the edge of incompressibility. Accordingly, it isflected to solution as a drastic
increase in iteration counts.

1E+8
1E+6
P peo
E 1E+S / ¥
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C \pes | DPCGSH] /]
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S 1E+3 ’
=
S B2 & 4 CG Variants
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1E+0
0 50 100 150 200 250

Iteration Count

Figure 4.9. Solution by CG variants w/o PC =1CH0.49999)

When Figure 4.9 is compared with Figure 4.8, far #himost incompressible case,
reduction in estimated condition numbers for noeepnditioned solutions is
degraded. On the contrary, it is improved for theecpnditioned solutions.
Obviously, deflation is not as effective as predgbading but it is a complementary
method for ill-conditioned systems. Therefore, bptaconditioning and deflation is
required to remove the eigenspace correspondinghéo smallest and largest

eigenvalues formed as a result of the almost incesgibility.
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4.4.1.3.Almost Incompressible Case by FETI Variants

Fully Lagrangian representation of acoustic fluidsisture interaction problems
requires considerable amount of computational poveerefore, instead of DPCG,
FETI variant solvers are of interest for this typlespecific problems. In order to
investigate the computational efficiency, memoryquieements and overall
performance improvement in practice, deflation radth mentioned in previous
section is implemented on FETI-2 solution algoritfdmce FETI family of solvers
are highly scalable, in general, the number of sutmins chosen to be equal or
higher than the number of processors. Thereforangh in operation counts and

memory requirements of deflation methods utilizezlsagnificant.

Water tank problem in almost incompressible state- 0.49999) is solved by
FETI-2 solution method which utilizes Dirichlet [[o:ditioner [86] as
preconditioner of coarse problem and QR factomratfor computing the zero
energy modesk of floating subdomains. Deflation is implementatbithe solution

by using matrixC defined in Equation (75).
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Figure 4.10. Operation counts for different numtfesubdomains
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In Figure 4.10, operation counts for deflation noethvith different deflation vector
generation approaches are given for 4 and 42 subidemand the change in
operation counts are demonstrated as RI (the dditincrease in operation counts)
from 4 subdomains to 42 subdomains. An importaseolation is that solution with
SD-2 did not converge to a solution for 42 subdemmaithough it was converged for
4 subdomains. Since, SD method does not expligélyerate orthonormal deflation
vectors, arbitrarily generated deflation space edushe solution to diverge.
Unpredicted behavior of arbitrary deflation generatmethods is apparent in this
case. As the number of subdomains is increased #ota 42, the size of the
subdomains is about 10 times smaller than the ondssubdomain case. Since in
FETI-2, QR factorization for computing the zero &y modes,R of floating
subdomains are computed in subdomain level, oparabunts are reduced about 60
times. Arbitrary deflation vector generation methdike SD and SH, however,
require about 6 to 10 times more operations siheenumber of vectors increases
proportional to the subdomain count which directffects the operation counts of
deflated system solution. In case of methods RD-A€@ RD-ASM, although the
operation counts for deflation vector generatiom guite similar, due to the drastic

increase in number of vectors, overall operatiaamt® are increased about 8 times.
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Figure 4.11. Additional memory requirements fofetént number of subdomains
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Additional memory requirements of the water tankdedgpartitioned into 4 and 42
subdomains and RI (the ratio of increase in memarg)presented in Figure 4.11.
Sparsity of the generated vectors and the increasi'e number of vectors are the
main determinant on this figure. For example, altfio the number of generated
vectors for SD-0 and RD-AGG increased about 10 ginmeemory requirements of
RD-AGG increased about 45 times that is almosiri2gi higher than the increase in

SD-0. Limited memory usage property of ASM heucssis apparent again.

4.4.2.Actual Dam Model

As a final numerical experiment, Pine Flat Dam niodegure 4.12), as being

utilized as a benchmark problem in literature [11Q1], is analyzed using the
deflation methods mentioned.

Pine Flat Dam [111] is a concrete gravity dam oa #ings River of central
California. It is 122 m high and the freeboard @$ervoir is at level of 116 m. The
upstream face of the dam is nearly vertical hawanglope 0.05H:1V, while the
inclined downstream side has slope of 0.78H:1V. @am is modeled in a similar
manner as in [110] with the same material properiiénite element mesh of the dam

that is composed of 1 m to 15 m sized elementwengn Figure 4.12.
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Figure 4.12. Pine Flat Dam and its finite elemepsm
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Base width of the concrete block is 95.8 m andwiith is one-tenth of the base.
Modulus of elasticity, Poisson’s ratio and densayconcrete block is taken as 22.5
GPa, 0.2 and 25 kN/m3, respectively. Foundatiork iegcmodelled as 30 m depth
layer of rock and a 101.8 m diameter half circlekrdoe. Modulus of elasticity,
Poisson’s ratio and density of foundation rockhesen as 68.94 GPa, 0.33 and 26
kN/m3. Bulk modulus, Poisson’s ratio and densitytlod water are taken as 2.541
GPa, 0.49999 and 999.97 kg/ms3, respectively.
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Figure 4.13. Solution with displacement based felements

In order to demonstrate the practical improvemantaa actual case, reservoir is
modelled with either pure displacement based faelements or mixed formulation

based fluid elements. In the first case, only casgibility of the water is taken into

account, however, in second case, viscosity ofwhter is considered, too. Results
obtained by the utilization of the proposed defiatvector generation strategies for
these two cases are given in Figure 4.13, Figuré 4nd Figure 4.15, respectively.
As it is shown, obtained results are in correspandewith the ones obtained for
water tank problem. However, in this case, soliovith the projection space

obtained from SD-0, SD-1 and SD-2 are diverged.
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Operation counts and iteration counts obtainedetwh solution is given in Figure
4.13 and Figure 4.14. Although iteration counts iaszeased about 5 to 10 times,
operation counts are reduced about 500 times for \RBants. Reduction in
operation counts for semi-heuristic deflation vegeneration methods is more than
2,000 times for the solution with pure displacemiested fluid elements and about
1,000 times for the solution with mixed formulatithaid elements. This is expected
because pre-selected vectors are obtained from gisgdacement based fluid

element formulation.
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Figure 4.14. Solution with mixed formulation flusements

Obviously, semi-heuristic deflation vector genematmethod is even 2 to 4 times
efficient than the recursive deflation vector getien method for heterogeneous

problems for the case of dam-reservoir interagbicoblems.

According to the memory storage requirements ptesgein Figure 4.15, fully rank-
revealing Eigen solution based methods like QRRIDdequire more memory space
than the proposed arbitrary vector generation nwgtl®H. Except from the SH
methods, in all other methods, memory requiremémtghe solution with mixed

formulation fluid elements are quite lower than th@e with displacement based
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fluid formulation fluid elements because of the a$eeduced number of deflation
vectors. In case of SH, memory requirement is anging in between different
element formulation due to the fact that same vedice selected for the both cases.
Apparently, SH is the most memory efficient methrendong the aforementioned

methods.

Ou - Pure Displacement Based Formulation Ou/p - Mixed Formulation
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Figure 4.15. Additional memory required (in # ofhrzeros) for the solution

As an arbitrary deflation vector generation strgtdgst drawback of the proposed
semi-heuristic deflation vector generation methedhiat for each subdomain of a
material,n deflation vectors are computed without knowingirtledficiency during
the iterative solution. However, the generatiordeflation vectors is comparatively
straightforward and parallelizable since it is lshea discrete computations on each
pre-selected vector. It is also cheap to storealfyinthe improvements obtained with
the generated deflation space are comparable toopsdy mentioned methods. In
addition to that, assembly heuristic is suggeste@ase of increasing subdomain

counts and memory limited hardware.
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4.5.Conclusion

In this chapter, monolithic fully Lagrangian sotuti of the dam-reservoir systems is
presented. The analysis is performed with FETI Rantérative solvers in order to
overcome the computational resource requiremermtstc8s of ill-conditioning are
presented and deflation method is utilized to imprthe convergence rate of the
solution. Different deflation generation methods aresented and finally a novel
approach for deflation vector generation is prodosewo different benchmark
problems are analyzed with different conditions @edformance of the mentioned
deflation methods are discussed in terms of it@natounts, additional memory

requirements and operation counts.

Considering the test cases examined in this chagitermain conclusions of this
chapter are as follows:

* The monolithic fully Lagrangian solution of dam-eegir systems can be
solved with iterative methods such as PCG (prec¢mms#id conjugate
gradient) method and FETI family methods. Addingtaer projection level
with deflation method enhance the solution in teohsiumber of iterations
and operation count.

« Among the examined deflation methods, subdomainlati@h vector
generation method (SD) is the fastest in terms paration count but the
solution did not always converge especially in aitual dam-reservoir
interaction problem.

* Solutions with recursive deflation vector genenatiomethod for
heterogeneous problems (RD) converged to a solfmioall cases but it was
the most costly method especially for the fluidduinains.

e A priori known zero energy modes of a finite elem&rmulation can be
utilized to generate a projection space. Deflatmethod utilized with
projection space obtained from the proposed semmidtee approach
converged to a solution for all cases. Semi-heariskeflation vector
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generation method is a cheaper alternative amomgtier deflation vector
generation methods discussed.

* Additional memory requirements of the generatiorthods can be limited by
utilizing an assembly heuristic with a trade ofnfréhe number of iterations
and overall performance.

* Proposed semi-heuristic deflation vector generatioethod and further
assembly heuristic method are not problem dependedt successfully

applicable to dam-reservoir interaction problems.
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CHAPTER 5

PARALLEL IMPLEMENTATION OF SOLUTION FRAMEWORK

5.1.Introduction

This chapter focuses on the parallel implementatérthe implicit monolithic
solution algorithm for dynamic analysis of dam-res& systems. Parallel
implementation is developed with C++ programmingglaage and parallel solution
of system equations is mainly handled by PETScatjpr[112]. Developed
algorithms are added to the general purpose felgenent framework, Panthalassa
[113]. During the test runs, FETI-DP solution aigfan [114] available in PETSc
library is utilized with different deflation vectageneration methods. The effect of
using different finite elements, different partiting approaches, and different types
of fluid-structure interaction problems on the @#ncy and scalability of the

developed solution framework are discussed in detai

5.2.Implementation

The solution framework is composed of two main gpafirst part, named as
Zargana, is responsible from the pre-processing post-processing steps of
computations before and after the linear algebsotution for the system of
equations. While the partitioning, equation numiigrand the generation of system
equations are considered as the pre-processingutatigqms, computation of element
forces and stresses are the post-processing comopgtaOrkinos solver is the
second part of the solution framework that perfothesalgebraic solution of system
of equations with FETI-DP solution algorithm. Zamga and Orkinos are

programmed as dynamic link libraries (i.e. dll) Wwi€++ programming language.
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Moreover, Eigen linear algebra library [115] andTBE [112] are utilized for data

storage and high performance numerical computatigspectively. Both Zargana
and Orkinos are developed to be a part of the géperpose finite element analysis
environment, Panthalassa [113]. Panthalassa emveoh provides common

algorithms and functionalities for a typical finildement program and it allows
addition of different solution algorithms, finitdeenents, and material models as
plugins in the form of dynamic link libraries. Thimite elements utilized in this

study, i.e. displacement based and mixed formulatiof Q4, Q9, H8 elements
(APPENDIX A), are added to the element library ahkhalassa.

The main steps of the solution by Zargana are pteden Figure 5.1. Solution starts
with the execution of processes with same inpet filhe input file may or may not
contain partitioning information of subdomains. pl&rtitioning information is not
provided, the solution domain is partitioned byliziig METIS partitioning library
[116]. The number of partitions is taken as eqoahe number of processes. Then,
each process read the data related to its own sudiddrrom input file to its local
memory. Equation numbering of each subdomain isethout such that internal
DOFs are numbered before the interface DOFs. Antyixma@ordering methods [117,
118] for equation numbering are not utilized sirmétable equation numbering
method for the chosen solution method is automtiteandled by PETSc [112].
Following that, mapping in between the local (sebdomain level) numbering and
global (i.e. overall solution domain level) numingriis formed. Then, subdomain
level stiffness and mass matrices are assembledaidy subdomain. Loads applied
to each subdomain are also assembled in a simigr V¥ it is applicable, any
boundary conditions on the subdomain are appliedh& subdomain system of
equations as in the standard finite elements proee[d 8, 44]. Before initiating the
solution on Orkinos solver, deflation vectors slidolé generated by utilizing either
the partitioning information or element level datasubdomain level data depending
on the type of the deflation vector generation méthirhese vectors are generated
once at the beginning of the solution. All the cotapions at the pre-processing step

are performed simultaneously on each process.
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Subdomain level data; stiffness and mass matricddaad vectors are passed to the
corresponding instance of Orkinos solver with ageanying the mapping
information and deflation vectors of the correspngdsubdomain. At this step,
aforementioned data are passed to each processoeféience; therefore any
memory duplication is prevented. Flowchart for seéution of equations by Orkinos
is demonstrated in Figure 5.2. Solution initiateshwhe initialization of PETSc
environment on each processor. PETSc library costdiata structures for both
storage and parallel linear algebra routines. Bmssiit handles the data transfers
required for the parallel execution and gathergissiezs about the execution of
solution [112]. Initially, the globally distributedystem is defined by using the
subdomain level data and corresponding mappings.gitbally distributed system
is not actually assembled but only the dependemcybétween the data of
contributing subdomains is described. In case alata required from another
subdomain (for example, stiffness contribution slulbdomain to an interface DOF),
this definition reveals the owning process of thaga and its location on the memory
of its owning process. After the global system wi@bn, the required memory for
right hand side and solution vectors are allocdétefdrehand to decrease repetitive
memory allocations. In case of a solution with diédin method, deflation vectors
provided by Zargana are orthonormalized by usingnGSchmidt iterations [119].
These iterations are carried out in parallel sieeery subdomain has its own
deflation vectors. Thus, this step does not reqaimg communication among the
processes. Orthonormalized set of vectors are idecks near null space in PETSc
library.

Solution of the global distributed system is haddley the FETI-DP solution

algorithm [112, 120, 121] available in PETSc lilyrarhis algorithm composed of
two main steps. Former is the local solution whimyolves the computation of the
stiffness contributions for each subdomain to titerface and the preconditioner for
the interface problem. Latter is the interface peobsolution. PETSc has its unique
flexibility to choose any solver available in itibriary for local system solution or

interface system solution. However, in this studgal system solution is performed
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by utilizing direct sparse Cholesky factorizatiovagable in PETSc library [112].
These computations are explicitly parallel whichame that no communication
among the processes is required. By utilizing tesults of the local solutions,
coefficient matrix for the interface problem aneé ttorresponding preconditioner are
obtained. Right hand side vector of the interfacbjem should be computed at each
time step depending on the time stepping algoritinnthis implementation, implicit
time integration is utilized by replacing accelemas with momentums in order to
prevent the spectral drift and the obtained int&fgroblem is solved by
Preconditioned Conjugate Gradient (PCG) iteratianailable in PETSc library
[112]. During these iterations Dirichlet preconditer is utilized and the
convergence to the solution is monitored similadyin the serial implementation
(Section 3.2.4). After the successive convergeriddeinterface problem solution,
each process stores the displacements computdtidbtime step and proceeds to
the next time step. In order to enhance the comvery of following solutions, the
first twenty Krylov subspace vectors of the prewasplution are utilized by the

Fischer’s algorithm of initial guess generatorrgpeated linear solves [122].
Finally, at the end of time steps, the solutiomasnpleted by finalizing the PETSc

environment and the results obtained by Orkinospagsed back to Zargana for

computing the element forces and stresses andrprghe necessary output files.
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5.3.Numerical Experiments

The parallel solution framework is tested by analgzseveral fluid-structure
interaction problems on a homogeneous computetecluBhe cluster is composed of
6 identical computers each having Intel Xeon E5fBicessors and 24 GB local
memory. The Intel Xeon E5630 family processor lag tores that are theoretically
working at 2.53 GHz and the cores share the loahary. Nodes of cluster are
connected to each other with InfiniBand network telwi having 40 GBit/s
communication speed. The start-up latency for comoation is measured as 3.37e-
06 seconds. Besides, all nodes are running Windgevger 2008 R2 HPC Edition
with SP1.

The test problems involves structural models with @d 3D elements, different
partitioning configurations, and different finitéement formulations to investigate
the convergence characteristics and performancehef analysis in terms of
scalability and memory consumptions of differentuson methods. Throughout
these numerical experiments, problems are solved ABTI-DP algorithm

with/without different deflation vectors. First stibn method is the standard FETI-
DP solution algorithm [114] available in PETSc &by. In case of "standard FETI-

DP" solution algorithm, no deflation vectors ardizegd. However, this algorithm

guarantees the non-singularity of each subdon‘féﬁ% by making sure that every
subdomain has either 3 non-collinear corner nodeS8D or 2 non-coincidental
corner nodes in 2D [33, 37]. In other words, inadd, this implementation selects
rigid body modes (not zero energy modes) as cangraSecond solution method
named as "QR" relies on the explicit computatiomotf spaces of each subdomain
by a fully rank-revealing QR factorization algonth(SPQR of SuitSparse library
[123]). Rest of the solution methods are obtaingdutiizing the deflation vector
generation methods like SD-0, RD-AGG, RD-ASM, SH®@nd SH-ASM that are
already described in Section 4.4.
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For all of the numerical experiments conductedhis section, pure displacement
based fluid formulation is utilized because it negsl more conditioning than the
mixed formulation (Section 2.2.2). Finally, for giitity, the names of different
finite element formulation sets are defined asolol:

e "Q4 elements"; sQ4IP0u for solid domains and fQ4fetdluid domains,

¢ "Q9 elements"; sQ9PO0u for solid domains and fQ9@fifluid domains,

« "H8 elements"; sH8IPOu for solid domains and fH8R#ruluid domains.

5.3.1.Effect of Different Partitioning Configurations

Performance of parallel algorithms is highly gowesirby the workload balance in
between processors and the amount of data transferred for computing the
solution [124]. In case of multi-physics problenugls as fluid-structure interactions,
partitioning can be done in such a way that eacHitipa is composed of
"homogeneous" elements and material propertieghiéncase, standard partitioning
algorithms cannot be directly utilized since eaomdin having different properties
must be partitioned within itself. This approactghtiviolate the workload balancing
among subdomains and increase the communication ©osthe other hand, the
stiffness coefficients at the partition interfacesuld be more uniform which might
reduce the number of iteration for convergence 851, On the contrary, in case of
heterogeneous partitioning, standard partitionilggrathms can be directly utilized.
As a result, partitions that have similar workloate obtained and the interface
problem size is optimized for minimum communicaticggquirement during the

parallel interface solution.

All of the deflation vector generation methods als applicable to the solutions of
problem domains partitioned into heterogeneous auaihs. Implementation for

deflation vector generation methods other than &Hawmts are apparent since they
are all either based on partitioning information@® decompositions. In case of SH

variants; the rigid body modes of solid finite ekamts are aggregated in the same
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way as the pre-selected zero energy modes of finig elements (Section 4.3.3).
Similarly, during the assembly heuristic, rigid lyoehodes of solid finite elements
are assembled with the corresponding rigid body esodf fluid finite elements
(Section 4.3.4).

In order to investigate the effect of differentitaoning approaches on the efficiency
of different solution methods, water tank problemcretized with H8 elements
(andH/h = 16) are analyzed statically by utilizing 8 processdiisst, the domain
is partitioned into fluid and solid subdomains a®&th domain is then partitioned
manually so that each subdomain has the same numbezlements. Such
partitioning is called homogeneous partitioning #émel subdomains are presented in
Figure 5.3 (a). The other partitioning approachiasuse a standard partitioning
algorithm for the whole domain. In this case, thébdomain may have finite
elements having different formulations and matepiaperties. METIS partitioning

library is utilized for this approach and subdonsaane presented in Figure 5.3 (b).

( R

(a) Homogeneous Partitioning (b) Heterogeneous Partitioning

WL ™

Figure 5.3. Homogeneous and heterogeneous pairtigiaf water tank model

Since the model has two layers of H8 elementsasttbtally 21,504 finite elements
which totally generate 99,081 DOFs. The minimum amakimum local problem
sizes for both approaches are presented in Tafhlelf5the local problem size is
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considered as the only parameter affecting the adkfor simplicity, unbalancing
among the subdomains can be defined as the ratimagfmin local problem sizes.
Therefore, in case of heterogeneous partitioninghich METIS partitioning library
is utilized, workload unbalance ratio is 1.02. Ow tcontrary, the homogeneous
partitioning is done manually and the workload uabee ratio is 1.51. In other
words, local problem solutions for each subdoman reot completed at the same
time and hence some processors wait for othersitate the interface problem
solution. As it can be seen from the local solutiones in Table 5.1, workload
unbalancing results in a considerable increaseage ©of homogeneous partitioning.
Even if the homogeneous partitioning is done bypecml algorithm by utilizing
METIS partitioning library, due to the geometridmhitations, i.e. the solid domain
is composed of three narrow rectangular prisms @dsethe fluid domain has a wide
rectangular prism shape, it is very likely to haignificant unbalance in the local
solution times since the shape of the solid subdwmnaould be rectangular and the

shape of the fluid subdomains would be more closgtiares.

Table 5.1. Partitioning details for different apapcbes

Partitionin Min. Local Max. Local Workload Local Solution Interface DOF
9 DOF Count DOF Count Unbalance Ratio Time (s) Count
Heterogeneous 12726 13032 1.02 288 3894
Homogeneous 9801 14841 1.51 349 4359

Similar to local problem sizes, interface problemesis also intended to be
minimized by METIS partitioning library. For exaneplinterface problem size for
heterogeneous patrtitioning is 3,894 whereas interfaoblem size for homogeneous
partitioning is 4,359. Since the projection spamenied by deflation vectors defines
admissible constraints on the interface (i.e. primterface DOFs), the number of
dual variables is changing with the utilized deflatvector generation method. Dual
variables are the interface equilibrium forces the® computed by the parallel
solution iterations. Number of dual variables or thterfaces of both partitioning
approaches for different deflation vector generatieethods is presented in Figure

5.4. Since only the rigid body modes of subdomanesconstrained, highest number
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of dual variables exists in standard FETI-DP iierad. Since the RD-AGG method
based on eigenvectors computed by QR decomposibovest number of dual
variables exists in this method. Besides, whenaggembly heuristic is utilized, the
number of dual variables obtained is increasingesiit assembles the resultant
vectors on each other and degrades their qualitemfesenting the smaller Eigen
modes of the subdomain. For all deflation methadsestigated in this section,
representation of smaller Eigen modes are handleck rsuccessfully when the
elements and material properties are homogenedus isubdomain. For example, in
case of utilizing SH-AGG method, the number of dualiables is decreased from
3,870 to 3,557 for heterogeneous partitioning apgmowhereas same parameter is
decreased from 4,335 to 4,013 for homogeneous taseefore, it can be concluded
that deflation vector generation methods handleadyenous subdomains slightly

better than the heterogeneous subdomains.

m Heterogeneous Partitioning Z Homogeneous Partitioning

4500 - 4335 4237

3870 4013

3443

2500

FETI-DP RD-AGG RD-ASM SH-AGG SH-ASS

Figure 5.4. Number of dual variables for differpattitioning approaches

In Figure 5.5, interface solution timings and itema counts required for
homogeneous and heterogeneous partitioning appsachk presented. For all cases,
iteration counts required for the interface solutis decreased when homogeneous

partitioning is utilized. Similarly, interface sa@ion timings are also decreasing;
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however, the obtained decrease in the interfacdisnoltimings is not proportional to

the decrease in iteration counts due to the faatt ititerface solution timings also
depend on the utilized deflation vector counts #Hrednumber of dual variables on
the interfaces that computed during the iteratichisother factor that affects the
interface solution timings is the data transferimyithe solution. The total amount of
memory consumption and data transfer for both f@mng approaches are
presented in Figure 5.6. For all cases, the amolidata transfer and the memory
consumption is increased when the homogeneoudiqairig is utilized since the

interface problem size is larger for this case.

B Heterogeneous Interface Solution Times ZIHomogeneous Interface Solution Times

@ Heterogeneous Iterations AHomogeneous Iterations
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Figure 5.5. Interface solution times and iteratonnts for both partitioning

approaches

In order to investigate the effect of different ttéoning approaches on solution
performance in detail, Figure 5.4, Figure 5.5 aimgufe 5.6 need to be considered
together. As it can be seen from Figure 5.5, it@natounts for the standard FETI-
DP is decreased when the homogeneous partitiosingilized due to the uniform

coefficient jumps along the interface. Although thenber of dual variables is larger
for this case, due to the considerable decreagersation counts interface solution

timing is also decreased.
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Figure 5.6. The total amount of data transfer aedory consumption for both

partitioning approaches

When the RD-AGG deflation vectors are utilized, sige of the dual interface
problems increases, but the deflation vector cowamés decreased, the interface
solution timing decreased slightly. However, whiee ASM heuristic is utilized, the
number of deflation vectors is decreased consitierabhd the decrease in the
interface solution timings become apparent sinecassembly of deflation vectors
results in a more successful representation wherrdbultant vectors are obtained
from subdomains that have similar material propsrtPercentage of the amount of
data transfer to memory consumption for RD variatewer than others because of
the minimum dual interface problem formed by thesethods. However, these
methods require more memory because the numbeefts#tion vectors generated
with these methods is greater than the ones geaenath other methods.

SH variant methods generate vectors from only ig&l roody modes for solid
subdomains and pre-selected number of vectors #erm energy modes for fluid
subdomains. In case of heterogeneous subdomaim$orsegenerated by solid
elements are assembled together with the corresppnectors from fluid finite
elements for each subdomain. Therefore, the deflatvector counts for
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homogeneous patrtitioning are slightly lower thaa tleterogeneous case for SH-
AGG. When ASM heuristic is utilized, the numberdefflation vector count is equal
to the number of pre-selected vectors for fluidtérelements. Therefore, the amount
of data transfer and memory consumption is notcédte from the deflation vector
counts but depends on the interface problem sidetla number of dual variables.
However, the decrease in solution timings is apgarfeecause of the decrease in

deflation vector counts and the number of iteratimnhomogeneous case.

In the light of the performance results obtained tfos specific problem with the
mentioned partitioning configurations, it can bendoded that homogeneous
partitioning improves the interface solution timsngHowever, since the interface
solution timings are considerably lower than lagalution timings for the developed
solution method, workload balancing of the subdemas much more important for
the overall solution performance. Homogeneous f@ming requires a special
algorithm that first separates elements into groapsording to their material
properties and connectivity. Then each subdomaiunldhbe partitioned into smaller
subdomains by considering the workload balancingllafubdomains. Hence, this is
a challenging task need to be investigated in détherefore, if such an algorithm
that has a lower computational cost than the imgmoent obtained as a result of the
utilization of homogeneous partitioning is develdpkromogeneous partitioning can

be beneficial.

5.3.2.Effect of Finite Element Formulations

Determination of the finite elements for model déization is important since the
accuracy of the results obtained at the end, theargence rate of the solution, and
solution timings may vary depending on the finitengents preferred for the model
discretization. Water tank problem presented intiSeet.4.1 is modelled with three
different finite element formulations, i.e. Q4, Q&nd H8, implemented in this

framework. The static analysis performed with astant uniform load on the
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exterior of wall on the right by using 8 processath standard FETI-DP method.

The aspect ratio of the subdomaifs/k) is fixed to 16 for all cases. The properties
of the models and the parameters related to coemesy characteristics of the

solution, and solution times of different stepgte overall analysis are presented in
Table 5.2.

Table 5.2. 2D vs 3D finite element formulations

Element Type | o4 | @9 | Hs |
Total DOF Count 22018 87042 66054
Interface DOF Count 758 1552 2313
Condition Number 1.92E+04 2.08E+04 9.62E+06
Number of Iterations 80 90 347
Local Solution (s) 1.13 39.33 89.86
Interface Solution (s) 0.31 1.25 5.68
Total Solution (s) 1.45 40.58 95.54
Overall Analysis (s) 3.09 106.16 178.16

First, since the aspect ratio of the probleiyK) is fixed to 16 for all cases, the
number of elements in each model is the same. Hemvav practice, the number of
elements that is required for the model discrabmatepends on the mechanical
accuracy of the element. In other words, more efgsnare required when linear
finite elements are utilized to achieve a similacwacy in the solution when
compared the quadratic finite elements. In thigcamce the number of elements is
the same for all models, total number of DOFs ddpamly on the number of DOFs
for each finite element. For example, using Q9 eletm instead of using Q4
elements multiplies the number of equations by @xprately 4, whereas using H8
elements multiplies the number of equations by #x&csince totally a single layer
of H8 elements are utilized for the discretizationhe third dimension. On the other
hand, using Q9 elements instead of using Q4 elesmenitiplies the number of
interface DOFs by approximately 2. Therefore, it b concluded that higher order
elements results in a comparatively small interfiactotal DOF count ratio. In case
of discretization with H8 elements, interface ttatdOF count ratio also depends
on the number of elements utilized to model thedtdimension. In this case, single

layer of H8 elements are used to model the thickoéshe water tank, thus, number
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of interface DOFs with H8 elements are exactly iBe8 of the ones with Q4
elements. Addition of the third dimension to theadétization also directly affects
the complexity of the solution due to the additiomaupling with the third

dimension. Although condition number estimationajgproximate, it reveals the
increasing complexity as 3D discretization is méll instead of 2D discretization.
Condition number estimation of Q9 element solutiaresslightly greater than that of
Q4 element solutions, in contrast H8 element swhgtihas condition numbers
approximately 500 times greater than the 2D probldm other words, this increase
in the condition number of system solution resuitsnore than 4 times of iteration

counts and about 50 times of solution times.

Another important conclusion from these comparissrthat the ratio of number of
interface DOFs to total number of DOFs at the smfutwith Q9 elements is
approximately half of that ratio for the solutiontlvQ4 elements. As it can be seen
from Table 5.2, percentage of time required for ithterface solution in the total
solution time is reduced from 21% to 3% when Q9nelets are utilized. As it is
demonstrated in Figure 5.2, local solution is aplieily parallel computation in
which there is no data transfer is required ambegprocessors and the workload for
each local solution is balanced by the partitionialgorithm. For example,
unbalancing among the subdomains—ratio of the maximumber of elements to
the minimum number of elements—for the problem nlledewith Q9 elements is
1.014 whereas it is equal to 1.018 for both proklemodelled with Q4 and H8
elements. In contrast, interface problem solutiequires data transfer among the
processors which is a degrading effect on the bi#aof the solution because of
the latencies for the data communication. Therefdrean be concluded that the
utilization of higher order elements increases leecentage of explicitly parallel

computations in the overall solution.

In conclusion, when deciding about the discretaaglement for the problem within
the scope of this section's considerations, folhgwiemarks should be considered:
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» 3D discretization has considerably larger conditrmmber than the 2D
discretization and that effects the number of tters required to converge to
the solution, proportionally.

« Discretization with higher order elements results significantly larger
problem sizes and this will directly affect theig@n timing.

« Discretization with higher order elements resuttsai comparatively small
ratio of interface problems size to total problemeshence, the percentage of

explicitly parallel computations in the overall sobn is increased.

5.3.3.Effect of Utilizing Different Processor Counts

In this section, static analysis of water tank wWiéxible walls problem (presented in
Section 4.4.1) with a fixed aspect ratif /o = 16) is analyzed with different
number of processors ranging from 2 to 48. METI®if@ning library v5.1.0 is
utilized with default parameters for the partitiogiof each model. In these series of
tests, efficiency and the scalability of solutiomsth different finite element

formulations and different deflation methods (Smt#.3) are investigated.

Total solution times considering both local anceifdce solution for the problem

discretized with Q9 elements are presented in T&bBe For almost all cases,
iterations converge to the solution successfulbwéver, for the standard FETI-DP
method and solution by SD-0 method with 48 processterations did not converge
to the solution until 2,000 iterations. This shatlat the interface problem was not
conditioned sufficiently in these cases. Althouge@ versions of RD and SH

converge to the solution successfully when 48 meoes utilized, the time required
for the solution is higher than the solutions bgslewumber of processors. This is
because as the number of subdomains increase,utnben of deflation vectors

increase drastically which cause a significantéase in computations required for
deflation method. For example, total number of atedh vectors generated by RD-
AGG algorithm increases from 28 to 844 as the numbgrocessors increases from
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4 to 48. However, ASM variants of RD and SH deaed#ise solution times
continuously as the processor counts increasellfoases because these algorithms
are immune to the degradation caused by the inagasimber of deflation vector
numbers. For example, by performing ASM heuristgoathm on 844 deflation
vectors generated by RD-AGG algorithm, the progettspace is reduced to 18
deflation vectors. In the light of these results;an be concluded that the number of
deflation vectors utilized and their capabilitydondition the problem significantly

affect not only the efficiency of the solution lakso the convergence of the solution.

Table 5.3. Solution times (s) of models discretizgith Q9 elements

Processor Coun 4 8 16 24 36 48
FETI-DP 138.1 40.¢ 14.c 6.t 3.E Not Conv
QR 133.1 43.F 17.C 8.1 5.1 5.1
SD-C 131.C 36.¢ 12.C 5.5 2.€ Not Conv
RD-AGG 141.¢ 40.z 15.€ 11.2 14.t 22.¢
RD-ASM 138.¢ 40.¢ 13.c 6.t 5E 5.4
SH-AGG 131.¢ 40.5 12.€ 7.8 6.3 7.5
SH-ASM 132.¢ 39.t 12.4 6.3 4.4 4.C

Furthermore, when the increase in processor coamdlsthe decrease in solution
times are considered, it can be seen that solatigorithm achieved a super-linear
speed-up. For instance, solution time decreased #®1.8 seconds to 12.6 seconds
when the number of processors utilized in SH-AG@tgm increased from 4 to 16.
Within these timing, 131.0 seconds and 10.8 secanglsequired for local solution
with 4 and 16 processors, respectively. Interfaggblpms having 846 and 2,392
equations are solved in 0.8 seconds and 1.8 secdmdgt and 16 processors
solutions, respectively. Thus, the main cause isfllehavior is the improvement in
local problem solution in which a direct solutioly@ithm is utilized. Therefore,
such an improvement is expected when the decreasmndwidth of the local
solution as the number of processors increase®nsiagered. Moreover, PETSc
utilizes asynchronous message passing routindsasalata transfer does not need to
block the computations. In other words, the commations and the computations

are overlapped.
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In case of solutions for the problem discretizethwi8 elements, condition number
increases 500 times and the resulting effect afitewl time increase can be seen
from Table 5.4. For example, when the problem scrditized with H8 elements
instead of Q9 elements, number of iterations reguior the SH-AGG solution with
16 processors increases from 179 to 802 and thei@oltime increases from 12.6
seconds to 33.2 seconds. In these series of sedigjons with standard FETI-DP
and SD-0 diverges in most of the cases due todb® df orthogonality originated
from increased condition number of the problem withelements. The solutions by
36 processors and excluding solutions by RD-AGG,the rest of the deflation
methods, solution time enhances as the processmtsincrease. Solutions by 36
processors suffer from the degradation resultiognfthe unbalanced workload of
subdomains for this case. For example, althougmtimeber of elements is balanced
for the subdomains, the ratio of maximum to minimoperation counts for this
solution is recorded as 3.8 whereas this ratidvéaging from 1.2 to 1.8 for the rest
of the cases. The local solution is degraded fos tase and this verifies the
insufficient representation of subdomain workloadydoy the number of elements
contained. Similar to the case with Q9 elementRRIRAGG case, total number of
deflation vectors in solution with 24 processorsréase from 576 to 864 when 36
processors are utilized. Therefore, projection oibjfem system to the deflated
system increases accordingly. Except from the moluty 36 processors, solutions
with QR method and SH variants improves as the murobprocessors increase and
SH-ASM delivers the solution with the highest spadekn the solution is carried out

by 48 processors.

Table 5.4. Solution times (s) of models discretingith H8 elements

Processor Coun 4 8 16 24 36 48
FETI-DP Not Conv 95.t 42.z Not Conv Not Conv Not Conv
QR 285.1 109.¢ 43.¢ 24.c 26.1 12.1
SD-C Not Conv 86.: 37.2 Not Conv Not Conv Not Conv
RD-AGG 304.¢ 96.1 41.2 27.2 38.c 52.1
RD-ASM 291.¢ 85.¢ 35.¢ 15.¢ 27.c 18.1
SH-AGG 279.1 84.: 33.2 19.C 21.€ 10.c
SH-ASM 301.¢ 92.¢ 38.c 18.F 21.C 7.4
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In order to investigate the efficiency of utilizirdgflation methods over standard
FETI-DP and the scalability of the parallel solatialgorithm, timings of solutions
with different deflation vector generation methag® scaled with respect to the
timings of successive solutions with standard FBPIimethod or with QR deflation
method. These timings are obtained by utilizingcpssor counts ranging from 2 to
48. Since standard FETI-DP algorithm converge®fdy two cases for the problems
discretized with H8 elements (Table 5.4), thesanys are scaled with respect to
timings of solutions with QR deflation method (demtrated in Figure 5.7) whereas
solution timings of the problems discretized witB €ements are scaled with respect
to the timings of standard FETI-DP solution metdeimonstrated in Figure 5.8).
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Figure 5.7. Scaled solution timings for Q9 elemeintsretization

As it is presented in Table 5.3, for this specifipe of problem considered in this
section, solution method with SD-0 deflation entfenthe solution time of standard
FETI-DP for all cases if it converges. However, fhe solution by 48 processors,
solution method with SD-0 deflation and the stadd&ETI-DP method are both did
not converge to a solution. Although the solutioretimod with QR deflation
converged to a solution for all cases, it exhibitaver performance than the standard
FETI-DP methods due to its requirement of the fazédion of large subdomain
level stiffness matrices. Scaled timings for thiisons with RD and SH variants are
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presented in Figure 5.7. Similarly, solution wittDRRGG also exhibits slower
performance than the standard FETI-DP methods fostnof the cases. This
degrading performance becomes more apparent whemumber of processors
increases since the total number of deflation weattilized increase drastically with
the number of processor counts. In case of solsitisith RD-ASM deflation, this
degrading performance of RD-AGG is enhanced with thilization of ASM
heuristics to decrease the total number of deflatectors utilized.

In case of solutions with SH variant deflation st solution times are faster than
the standard FETI-DP solutions up to 24 processacamost all cases. However, the
solutions when more than 24 processors are utjlipedormance improvement by
SH deflation vector generation methods vanish. Tikisdue to the increasing
deflation vector counts as the number of processcorease for SH-AGG method or
the insufficient conditioning with the generatedflagon vectors for SH-ASM
method. Similar to RD variants, ASM heuristics amtes the timings of solutions
with SH-AGG deflation vectors.

mm RD-AGG ®mwmRD-ASM mmSH-AGG mmSH-ASM —QR
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Figure 5.8. Scaled solution timings for H8 elemetfissretization

Same test cases are conducted by utilizing H8 elenfer discretization. As it is
mentioned before, the standard FETI-DP and thetisaluwith SD-0 deflation
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vectors did not converged to a solution for mosth& cases discretized with H8
elements (Table 5.4). Therefore, in Figure 5.8ytsmh times are scaled with respect
to the timings of solutions with QR deflation vestoAlthough, solutions with RD

variant vectors enhances the required times for dblaitions by less than 24
processors, these improvements vanish as the notaber of deflation vectors

increase with the processors counts increase. |[fmsaall cases, solutions with SH
variant deflation vectors improve the solution tameith respect to the timings of

solutions with QR deflation vectors.

When the solution performances for the problem$ wi8 elements are compared
with the performances for the Q9 elements, impre@hobtained by the utilization
of deflation vectors are more obvious. Since theddmn number of the problem
increases when H8 elements are utilized, condigprof the problem is more
important in this case. Especially with the utitina of SH variant deflation vectors,

solution is significantly improved as it can bersé®m Figure 5.8.
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Figure 5.9. Total memory allocated for the solusiovith Q9 elements

Another important parameter about the performarice marallel solution algorithm
is the memory required for the execution. Total mgnallocated on all processors
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for the solution of test model discretized with @38d H8 elements by changing

processor counts are presented in Figure 5.9 aqatd=5.10, respectively.

For both cases, although the iterations convergldasolution, RD-ASM and RD-
AGG requires considerable amount of memory allocatidue to increasing number
of deflation vectors. For instance, total numbedefiation vectors utilized by RD-
AGG for 16 processors case is approximately 4 tirhggher than that for 4
processors because, as the number of subdomanesse¢ the number of deflation
vectors generated increase. Although solutions @thAGG deflation vectors
required less amount of memory allocations whenpamed to RD variant methods,
its memory requirements are higher than the stan&&TI-DP method and this
requirement is gradually increasing as the numlbgorocessors increase. Within
these methods, SH-ASM requires the minimum sizeseyhory for almost all cases
and that verifies the success of ASM heuristic ndeo to limit the memory

requirements by limiting the generated deflatiootgecounts.
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Figure 5.10. Memory allocated for solutions with el8ments
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Another performance measurement for a paralleltieoiwalgorithm is the amount of
data transfer during the solution. PETSc utilizeynahronous message passing
routines so that data transfer does not need tokhiloe computations. In other
words, the communications and the computationsoaezlapped; therefore, time
spent for the communication cannot be fully trackedFigure 5.11, the amount of
data transfer during the system solution is preseritinear interpolations that show
the amount of data transfer with respect to prawessunts are calculated for each
solution method. Obviously, the amount of datagfanthrough the iterative solution
is mainly governed by the number of iterations amunber of deflation vectors
utilized for the solution. Similar data transfegrids are expected for Standard FETI-
DP, RD-ASM and SH-ASM since the utilization deftati vectors requires more
memory but in return decreases the iteration coutdsvever, solutions with RD-
AGG and SH-AGG vectors requires the most amountlaif transfer since the
number of deflation vectors for these methods aresiderably larger than the other
ones. For example, the total number of deflatioctars generated by the RD-AGG
method is 96 whereas the SH-ASM method generatedefl@tion vectors for the

solution of the problem discretized with H8 elensanith four processors.

xFETI-DP = RD-AGG RD-ASM A SH-AGG e SH-ASM
500

MBytes

Data Transfer

0 10 20 30 40 50

Number of Processors

Figure 5.11. The amount of data transfer for tHetems with Q9 elements
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According to the results presented in this sectibe, following remarks can be

listed:

Standard FETI-DP method and solutions with SD-0adieh vectors did not
converge to a solution for most of the cases, aalbpem 3D discretization.

In case of solutions with clusters having less tBgmrocessors, the solution
method with QR deflation vectors requires the mummamount of data
transfer and memory consumption. Otherwise, thatisois with SH-ASM
deflation vectors require the minimum amount ofad@ansfer and memory
consumption.

In all test cases, QR deflation vectors did notagige the solution time when
compared with the standard FETI-DP method duestaetuirement of the
factorization of large subdomain level matrices.

Enhancement in solution times obtained by RD vanaetors degrades with
the increasing number of processors because thkrtotnber of deflation
vectors also increase accordingly. Because ofrdaison, for cases where the
processor count is larger than 16, the solutior tivas not reduced.

When Q9 elements are utilized, deflation vectonsegated by SH method
improve the solution times up to 24 processors. Wthe number processors
utilized exceeds 24, SH variants did not improve #olution time with
respect to standard FETI-DP. However, when H8 ehlsnare used, deflation
vectors generated by SH method improve the soluiroes for almost all
cases and performs faster than the standard FETh&Rod.

5.3.4.Utilization of Krylov Subspaces

In order to investigate the effect of Krylov subspautilization during dynamic

analysis, water tank model is discretized with ¢hdgfferent elements, i.e. Q4, Q9

and H8 elements, analyzed for 2 seconds with 0s@@bnd time steps. A step force

with finite rise time function#. = 0.1 s) is applied as shown in Figure 5.12. The

problem is analyzed by the solution method with A6M deflation vectors and
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iteration counts throughout the dynamic analysistii@ three models are presented

in Figure 5.12.
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Figure 5.12. Iteration counts for the first 0.5@®ds of the dynamic analysis with

step force

When Krylov subspace vectors are utilized, the nema iterations required at each
time step decreased as the number of time stepesased. This is actually an
expected result since the applied loading is simpl unidirectional step force. The
number of iterations reduced up to 1 iteration gech time-step for the steady state
response. Such stabilization is observed earlier tfe solutions of models
discretized with Q4 and Q9 elements. However, thekavior is postponed for
dynamic analysis of models with H8 elements duthéoincreased condition number
for these cases. As the time step exceeds 0.2bhd®c0.307 seconds and 0.514
seconds for the models discretized with Q4, Q9 KBdelements, respectively, a

single iteration is enough for each time step t@iokthe response at that step.
For investigating the performance change in thetswl for seismic loading, same
problem is analyzed with the same solution methadl same dynamic parameters

but this time EI-Centro NS ground acceleration @at#ilized instead of a step force.
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Accelerations are applied as horizontal forces aohenode proportional to the
lumped mass value at that node. In order to compaeperformance with the
problem with step force and also zoom to the seisdaita, dynamic analysis is
carried out for only first 2 seconds of the earthiqe Ground acceleration data and
the iteration counts required for the solution tigloout the time history is presented
in Figure 5.13. Iteration counts for the solutiafsll models are oscillating and this
is expected since the applied force at each timp ist generally different than the
previous time step. However, iteration counts dighly decreasing when the
ground acceleration is gradually increasing or el@sing. For example, when the
iteration counts after 1.8 seconds are considesbdiously a decreasing trend in
iteration counts for all solutions is apparent. fmto the solution with step force
case, iteration counts are decreased much forolbhéan of model with Q4 elements

and decreased least for the solution of model W8kelements.
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Figure 5.13. Iteration counts for the first 2 set®of seismic analysis

During these tests, first 20 Krylov subspace vextoe stored and they are utilized to
compute a better initial guess for the iteratioisthee following time step. The
performance improvement obtained with the utilizatof Krylov subspace vectors

highly depends on the count of subspace vectorgtanavay they are selected. To
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illustrate, for this number of Krylov subspace st the way they are selected and
the problem investigated in this section, the zdtiiion of Krylov subspace vectors
causes 95.8%, 96.0%, and 94.6% reduction in teedtion counts for the solutions
of models with Q4, Q9 and H8 elements, respectjwehen the step force is applied.
However, when the earthquake excitation is apgbetthe problems, the reduction in
total iteration counts are 21%, 10%, and 2%. Asslt, Krylov subspaces can be
stored for the improvements of solution iteratidos the following time steps; but
the improvement obtained is degraded considerabitgnwthe applied force is

changing rapidly as it is in earthquake loading.

5.3.5.Solution Performance of a Large Actual Dam Model

In order to investigate the ultimate performancéhef parallel solution algorithm on
a computer cluster, proposed SH-ASM deflation wvegeneration method is tested
with the dynamic analysis of an actual dam modek@nted in Figure 4.12, with a
much finer mesh. Problem domain is partitioned mg METIS partitioning library
with default parameters into heterogeneous subdwrand the dynamic analysis is
carried out for 5 seconds with 0.01 second timpssteith the utilization of Krylov
subspaces. Table 5.5 contains the details of eathematical model and the time
required to obtain the results.

Table 5.5. Performance of SH-ASM on actual cases

Element Type Q4 Q9 H8

H/h 128 12 _256 128 12§
Processor Count 24 A€ 24 24 24
Total # of DOFs 1,380,354 1,380,334 11,023,356 5,513)218 4,141,062
# of Interface DOFs 13,39( 20,54 27,412 26,782 40,198
Element Count 688,128 688,1 2,752,512 688,128 688|128
Solution Times (s) 12 min 7 min 3 hy. 19 hy. 17 hr.
Total Times (s) 1hr] 30 min 16 hf. 28 Iyr. 35 fr.

Three types of finite elements, Q4, Q9 and H8 efémare utilized as different

cases. Corresponding mathematical models for H8eziés is obtained by defining a
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single layer of H8 elements on both sides of then2@lels utilized. Solution times
given in Table 5.5 involves only the time requifed the time stepping algorithm,
however, total times additionally contains any otlgre-processing or post-

processing required for the analysis.

When Q4 elements are utilized withy h ratio equal to 128, the model has about 1.4
million DOFs and the time integration for dynaminadysis of this model was
completed in roughly 12 minutes and overall solutwith all pre-processing and
post-processing computations required about one tithh 24 processors. These
timings are roughly halved when the processor casindoubled. WherH /h is
doubled, element count and total number of DOFghes 2.7 million and 11
million, respectively. Approximately 3 hours is uagd for the repetitive solution of
the system and 16 hours for overall analysis Hizuitg 24 processors. When Q9 and
H8 elements are utilized for discretization, thenber of total DOFs increased to 4
times and the number of interface DOFs increase® &amd 3 times, respectively.
This jump and increased complexity results in sttancrease in the time required
for the time stepping iterations; 19 and 17 houesraquired for the time stepping

algorithm and 28 hours and 35 hours required feroWerall analysis, respectively.

In conclusion, implemented solution framework wiphoposed deflation vector
generation methods sufficiently converged to atsmiufor the dynamic analysis of a
large actual dam-reservoir system in an acceptadiohee frame. Mechanical

validations of these solutions are presented ini@e8.2.3.

129



130



CHAPTER 6

CONCLUSIONS

6.1. Summary

In this thesis, a parallel iterative solution methahich can be utilized for the
dynamic analysis of fully Lagrangian solution ofetldam-reservoir systems is
proposed. The iterative solution is mainly based~& | solvers to have a scalable
solution framework. The problem itself is highly-abnditioned due to having
domains with different materials and governing ¢igus. Having an ill-conditioned
system disturbs the convergence rate of an iteraiwer. Thus, deflation method is
utilized with different deflation vector generatioalgorithms to improve the
convergence rate. In addition to that, a novel desoristic deflation vector
generation method is proposed. The method is basenerating deflation vectors
utilizing the pre-selected zero energy modes offlthid finite elements that are used
to model the reservoir. Furthermore, proposed kganinethod is extended to reduce
the memory requirements significantly without dibing the convergence rate.
Performance of utilizing existing and proposed ae&fh methods in terms of
iteration counts, memory requirements, and operatiounts are discussed and
compared by analyzing water tank with flexible waidbblem. The effect of having
different finite element formulations and matepabperties are also examined. As a

final investigation, an actual dam-reservoir madelnalyzed.

Developed solution method is extended to utilizenpoter cluster for all analysis
steps by utilizing C++ programming language and &&library. The implemented
program is added to the general finite element éaork Panthalassa. The

efficiency and the scalability of the parallel dadn framework are discussed for
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different types of finite elements, for differenarptioning approaches, and for
different number of processors. Finally, the solutperformance is tested for a large

scale actual dam model having an order of milliements.

6.2.Concluding Remarks

Conclusions that are extracted from the studiepwed throughout the thesis are
summarized as in the following:

e A priori known zero energy modes of a finite elem&rmulation can be
utilized to generate a deflation space. Utilizatodrdeflation method with the
resulting projection space reduces the conditiomber of the problems
considered in this study and this enhances thatiber counts and time
required for the solutions of such problems. Besidedditional memory
requirements of the generation methods can be dimity utilizing an
assembly heuristic.

e Although solution methods without deflation and usimn methods with
subdomain deflation vectors perform better thareistHor some test cases,
iterations did not converge to a solution for akes, especially when 3D
finite elements are utilized. On the other handutstn methods with
recursively generated deflation vectors and QRatiefi vectors converge to
a solution for all cases, but, generally perfornrseothan the other solution
methods. Among the examined deflation vector geioeramethods,
proposed deflation vector generation algorithmstipgeerform the best and
always converge to a solution for the problems hamed in this study.

e Developed solution method with deflation vectorsxaggated by proposed
methods successfully converged to a solution ferdinamic analysis of a
large actual dam-reservoir system in an acceptale frame; within days

not months.
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6.3.Recommendations for Future Study

The developed solution method is tested for statid dynamic analysis of dam-
reservoir systems discretized with Lagrangian qgladral and hexahedron finite
elements. Authentication of the developed soluti@thod is needed to be made for
different types of Lagrangian finite elements. Ewewveral other analyses like non-

linear analysis and dam failure analysis can bestigated.

Since the developed solution framework involvesesal interchangeable sub-
algorithms, it provides a beneficial infrastructdog investigating alternatives. For
example, different solvers can be investigatedtlier solution of local problems or
interface problems. Besides, plentiful convergenogrovement methods for

iterative solutions exist in literature. More dédi studies might be conducted to
obtain workload balanced homogeneous partitionind aptimized selection of

Krylov subspace vectors.

Last but not the least, developed solution methsoohvestigated for dam-reservoir

interaction problems, however it might be appliedather types of acoustic fluid-

structure interaction problems.
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APPENDIX A

FINITE ELEMENT FORMULATIONS

A.1 Pure Displacement Based Formulation

Since Wilson and Khalvati formulation [59] is wigtalitilized in the literature, this
formulation is presented here. In this formulatitre elements are based on a pure
displacement formulation in terms of the displacetmeOFs at the nodes of the
element. The surface sloshing motion and the effexft compressible wave
propagation are included in the formulation. Altghuauthors reported that the
introduction of rotational constraints and the aéeeduced integration techniques in
the formulation of the element stiffness eliminaié zero energy modes, Bathe
showed that for wide range frequencies it is carbet not whole range [62]. In this

formulation small displacements are assumed foflting flow.

A.1.1Theory

The proposed element is based on a formulation hiclwthe fluid strains are
obtained from the linear strain-displacement equisti This formulation removes the
zero energy modes selectively. The method introslube constraint of zero fluid
rotation at the integration points and only theaistrenergy associated with the
compressibility of the fluid is considered. The rament of the fluid particles
approximated by the finite element displacementtions forms the basis for the
kinetic energy. The formulation involves the chamgehe potential energy due to
the low frequency sloshing of the fluid system. iBes, by introducing a rotational
stiffness, the displacement field is constrainedbearrotational. In terms of the 3D

elasticity, the relationship between pressure atdme for a linear fluid is given by
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p = Cy;e

(94)

where the pressune denotes the magnitude of the mean stress. Thearifs, is

the bulk modulus of the fluid. The volume changean be stated in terms of the

displacements by the following strain-displacenrefdtionship equation:

du, dU,  dU,

e= dxxx+dyy+ 77 - (95)
For imposing the rotational constraints, followirgations are defined:
e = (C;—l;yz s y) 2 (96)
= (ddiz a ddljcx Z) /2 57)
e, = (ddlf y - %x) /2 (98)
The force and stiffness terms related to theseiootare defined by
Px = Czz€x (99)
py = Cisey (100)
Pz = Cyqe, (101)

where C;; is a constraint parameter and suggested to be takbetween 10-1000

[63]. The total strain energy of the fluid systesiwiritten as;

I, = %f el CedV (102)
whereeT =[¢ €x €y €;] and the diagonal terms of thex 4, C matrix are the
formerly defined bulk modulus and constraint parterse In case of a large
constraint parameter, the rotation and the straiargy related to the rotation

approach to zero.

The ability of deforming without a change in volunsean important behavior of
fluids. This movement is in the form of sloshingwea in which the deformation
takes place in vertical direction. Provided thhg awverage vertical displacement of

the fluid column idJ;/2 ; hence, the increase in the potential energyetitstem is
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1 1
Hs = Ef USWUSdA + Ef WDUSdA (103)

where the former integral yields the surface stiéfm coefficients and the latter
integral symbolizes the weight of the fluid thatusually evaluated as an element

volume integral rather than as a surface integral.

The kinetic energy of the fluid system is given by

1
T = Ef mvTvdV (104)

wherevT =[x Vy 4],

A.1.2 Finite Element Discretization

The displacements within a characteristic elemsneapressed in terms of the nodal

displacements by equations of the form

Ul-j(x, v, Z) = hiu]' (105)

or in matrix form

U; = H;U (106)
whereh is anlxn array of interpolation functions for a node elet@mdH is a3xn
array for 3D. The application of Equations (95)6)9(97) and (98) produce the
following equation for the element volume changed aotations in terms of the

nodal displacements:

e = BlU (107)
The strain energy of the system, Equation (102), eawv be expressed in terms of

element properties and nodal displacement by

1
Me =- UTKU (108)
The surface potential energy, Equation (103), isressed in terms of the vertical

node displacements at the surface as
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1

My =5 UTsu, (109)
and the kinetic energy, Equation (104), can betamriin the form
1
T = EVTMV (110)

whereU andV are the vectors of nodal displacements and vesciBy applying

Lagrange's equation, following equilibrium can lxained:

Ma + KU + SU; = R (111)
where

* M is an symmetric matrix formed by the assemblyafal mass coefficients
that is defined asf; = m [ HfH;dV; wherem is unit mass of the field,

e K is an symmetric matrix formed by the assembly @flai compressibility
and rotational constraint terms which is define&as [ BfC;B;dV;,

e S is an symmetric matrix formed by the assembly @dail surface potential
terms that is defined & = w [ h'h;dA; where w is the unit weight of the
fluid,

* R denotes the time-dependent nodal forces vector.

It is reported that pure displacement based fliagnents have spurious non-zero
frequency modes [58]. Therefore, it is suggestedsi® reduced integration for the
integration of the stiffness of the elements. Mdegtailed information about the
spurious non-zero frequency modes and the irrotality or penalty methods of the
pure displacement based elements can be foundesa thferences [58, 62].

A.2 Mixed Formulation — u/p (Displacement/Pressure Bash

A.2.1Theory

In order to prevent from spurious non-zero freqyemodes, Bathe [62] proposed
replacing the pure displacement based formulatioa mixed displacement/pressure

148



formulation that fulfill the inf-sup condition. Usy Hu-Washizu principle they

defined a new variational indicator;

2

n =f {p——u-fB—/lp<B+V-u>}dV+f pusds (112)
v (28 g s

where the variables apg u, and the Lagrange multiplidy,. In this equation, the

first term corresponds to the strain energy exgekds terms of the pressure and the
second term corresponds to the potential of thereatly applied body forces that
includes gravity effects. Then, the constitutivitienship is imposed by the third
term. Finally, the potential due to any applied idary pressure afiis presented by

the last term. The effects of surface gravity waiesncluded with a surface

gravitational potential terr, %pguﬁ dS whereS, denotes the free surface.

Imposing the stationarity df, the Lagrange multipliet,, is defined by the pressure

p and the governing equations wjth = —pit,

Vp+pii =0 (113)

V-u+—-=0 (114)
With the boundary conditions

u-n=1u,ons,
p=ponsS
It is clear that Equations (113) and (114) arerttementum and mass conservation

(115)

equations. The pressuyses usually considered as zero on the free surfadkei

effects of surface gravity waves are ignored.

A.2.2 Finite Element Discretization

Applying the Galerkin discretization procedure ldaling discretization is obtained

for a typical finite element;
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U=HU (116)
P =

Hyp (117)

V-u=(V-H)U =BU

o

(118)
where H and H,, are the interpolation matrices, aftiand P are the vectors of

solution variables. The matrix equations of thefofmulation are given as;

s L -
= + T s(~ (119)
[0 0 P Kup Kpp P {0}
where
M= j pHTH dV (120)
%4
Kyp=-— f BTH, dV (121)
14
1
Kyp = — f —H,"H, dV (122)
v B
R=-— j pHS B dS (123)
S

If the bulk modulus is finite, the pressure unknsvaan be condensed out statically

to form the following definition;
MuuU + SuuU = R (124)

whereS,,,, is obtained from the static condensatioKgf.

In Equation (119) the first and the second subpfthe stiffness matrix originated
from the deviatoric strain energy and the voluneestrain energy, respectively. It is
apparent thatk,,, is positive definite for the shear moduliéis> 0 and the rank of
Suu 1S equal to the number of pressure DOFs. The viatig three categories of
problems can be considered:

» the solid bulk modulug and solid shear moduldsare of the same order

* kK >» Gandx,G>0

e k>0andG=0
In the first case, the solvability and stabilityncde assured by the standard

displacement formulation. In the second case,(aknost) incompressible material
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analysis, the displacement/pressure based forraolatiith mixed elements that
fulfill the inf-sup condition is well established9, 50]. The third category contains
the inviscid acoustic fluid analysis. In this casero frequency modes corresponding
to the zero deviatoric strain energy (for this casg = 0) is introduced by the loss
of ellipticity. In order to identify whether or noton-zero frequency spurious modes
are formed, a mathematical prediction of the exashber of zero frequencies is
required. Forn displacement unknowns, the exact number of zeeguincies
isn —m, provided that the physical constant pressure madsing with the

boundary conditiom - n = u,, onS,, has been eliminated.

A.2.3 2D Pressure Interpolation

In this section, a typical two-dimensional mixedite element with three pressure
DOFs in a local natural coordinate systejymj is examined. It is shown in Figure
A.1. Circles on the element boundary represent tloeles associated with
displacements, whereas triangles inside the elemegmésent the nodes associated
with the linear pressure approximation. Notice the displacement nodes and
pressure nodes are completely independent. In gbiion, only interpolation

functions associated with the three pressure naederived.

The three pressure nodes associated with a Q9R@mer are located as shown in
Figure A.1. The following assumptions are made:
e The triangle that is formed from the three presswdes is equilateral.
 The centroid is located at the origin of the ndtuwaordinate system;
at(¢,n) - (0,0).
* Pressure node 1 is located alongrkexis.

* The distance from pressure node 1 to the centseid i
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by using geometry, point coordinates are can bepcbea as;

Pressure Node 1; (§4,m,) — (0,d)

V3d d

Pressure Node 2: (§,,1,) — <_T' —§>

V3d
Pressure Node 3: (§5,13) — (T' —d/2)

n

/)1

1(0, d)
\ Td
30° 8

O° O >

1.0 °© 1.0 ji/z °

2(-VBan—dr)  3(\Bdr-dn)

QO
N
Len

.

O 0 O,

Figure A.1. Orientation of pressure nodes in 2D

by using the areal coordinates and assunding 0.5, interpolation functions for 2D

pressure distribution can be obtained as;

4
N(P)__ + —
1 3]1
2 2 1
N(p)___ - = —
2 2 1
N(P):_ - — —

A.2.4 3D Pressure Interpolation

In this section, a typical three-dimensional mixXeute element with four pressure

DOFs in a local natural coordinate systéén,{) is considered. It is shown in
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Figure A.2. Similarly, circles on the element boandrepresent the nodes associated
with displacements, and triangles inside the elémepresent the nodes associated
with the pressures. The following assumptions amden

* The tetrahedron that is formed from the four presswdes is equilateral.

e The centroid is located at the origin of the lonatural coordinate system

¢,n,¢) - (0,0,0)

e Pressure node 1 is located alongdlais.

e Line 13 lies in they — ¢ plane.

» The distance from node 1 to the centroid.is

* The angle between O1 and 13®is

Notice that the displacement nodes and pressuresnaid completely independent.
In this section, only interpolation functions adated with the four pressure nodes
are derived. The length of each equilateral linghef tetrahedral can be computed

using geometry a&d /(2 cos 0).

From tetrahedral, it can be shown thiat6 = ? hence;

V3
0= sin_l? =~ 35.264

The coordinates of each pressure nodes can be ¢tednfstom the geometry of the

tetrahedron as follows:

Pressure Node 1; (§1,1m1,¢;) — (0,0,d)

P Node 2; ( ) ( 3d 3dt 0 d)
. % — —_— — — —
ressure Node 2; (§3,M2, (2 1050’ an4, >

0 d
Pressure Node 3; (§3,M3,(3) — (O,Bd tani, —§>
3d 0 d)
4cosB’ 4’ 2

Pressure Node 4; (§4,M4,0y) — (—
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Figure A.2. Orientation of pressure nodes in 3D

by using the volume coordinates and assuming 0.5, interpolation functions for

3D pressure distribution can be obtained as;

N1(p)__%z+%

(p)_ZCOSO 2 2 2
N =5 % %aman0 " "9a° "9
4 2 2

N3(p) - 9dtan0n B %Z + 9
@) _ 2cos0 2 2 2
N = =5 " Saman0 " "9a°*5
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APPENDIX B

VALIDATIONS

B.1 Validations of Finite Element Implementations

In order to validate the finite element implemeiataé several benchmark problems
solved by serial implementation of the solutiomfeavork (which is developed on
MATLAB as discussed in CHAPTER 3) by utilizing arefit solver for system
solutions and explicit time integration algorithrar ftime history analysis. Four
problems are determined as benchmarks. In firg, cdatic and dynamic analysis of
a cantilever beam problem is carried out for th@a#ion of structural domain finite
elements. In the second case hydrostatic presetirgater tank is computed for the
validation of hydrostatic pressure results obtairt@dally, a tall water column under

dynamic loading is investigated.

B.1.1Cantilever Beam Problem

This problem consists of a cantilever beam subjetdea tip moment. By restricting
the span to depth ratio of beam, shear deformatoasassumed to be negligible.
Therefore, Euler-Bernoulli Beam Theory can be uasda guide for determining
reasonable problem dimensions. According to meadotheory, deflection at any
point of the span is given 8$x) = Mx?/2EI. Finally, material and geometric
properties are chosen according to equate tip cefteto unity. In order to prevent
from the Saint-Venant’s effect, displacement congoais are carried out at the mid-

span. Therefore results obtain at this point shbaldround 0.25.
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In order to test the performance of finite elemeAtt0 mesh is utilized for linear
displacement approximation elements and 2x6 meshqé@adratic displacement
approximation. Tests are carried out for threeedght Poisson ratios 0.25, 0.45 and
0.4999 and the results are compared with the réspeADINA finite element

module.

NN N
o
-

N N\
7 SN\

Figure B.1. Cantilever beam under static loading

Initial results are given for plane strain conditidAs it can be seen displacements
obtained are closely equal to the results obtain@esh ADINA and they decrease
with the increasing Poisson ratio because of thagktrain constraint in transverse.
Second outcome is that quadratic finite elemengs sarccessively produce better
results than the linear ones. However, finite eletsmavith incompatible modes are
similarly equal results with the quadratic elememtghout any computational
drawback. The last and the most important obs@wat that with the increasing
Poisson ratio the displacement results obtaineddarerging from the pseudo-
theoretical displacement result 0.25. However, hifc@mulation finite elements can

represent the behavior even in nearly incompressitaite.

Table B.1. Validation of 2D solid finite element#hvplane strain assumption

v=0.25 v=0.45 v = 0.4999
Value ADINA % Error Value ADINA % Error Value ADINA % Error
sQ4P0u 4x40 0.21203 0.21203 0.00024 0.16194 0.16194 0.00025 0.002002D4 0.00094
sQ4IP0u 4x40 0.23356 0.23356 0.00021 0.19539 0.19539 0.00026 0.1818%8189 0.00016
sQ4P1lu/p 4x40 0.21998 0.21998 0.00000 0.19096 0.19097 0.00021 0.17989990 0.00006
sQ9POu 2x6 0.23230 0.23230 0.00000 0.18233 0.18233 0.00016 0.14442442 0.00014
sQ9P3u/p 2x6 0.23308 0.23308 0.00000 0.19298 0.19298 0.00016 0.1782482®4 0.00017
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Second group of results are obtained for planesstiendition. Similar to the

previous discussion, the displacements obtainedckrsely equal to the results
obtained from ADINA. In contrast they do not appahg decrease with the

increasing Poisson ratio because of the releasestramt in transverse. Again, the
guadratic finite elements are successively prodgtter results than the linear ones.
However, finite elements with incompatible modeslds almost equal results with
the quadratic elements. These test results verifiesassumption of plane stress

condition for any Poisson ratio.

Table B.2. Validation of 2D solid finite element#hwvplane stress assumption

v =0.25 v =0.45 v = 0.4999
Value ADINA % Error Value ADINA % Error Value ADINA % Error
sQ4PO0u 4x40 0.22597 0.22597 0.00013 0.22539 0.22539 0.00004 0.22422489 0.00009
sQ41P0u 4x40 0.24950 0.24950 0.00004 0.24845 0.24845 0.00016 0.248P481D0 0.00012
sQ9POu 2x6 0.24894 0.24894 0.00004 0.24574 0.24574 0.00016 0.2442A4%7 0.00016

Final result group is for 3D general stress statadtion. As it can be seen
displacements obtained are closely equal to thaltsesbtained from ADINA and
they decrease with the increasing Poisson ratiausecof the plane strain constraint
in transverse. Second outcome is that quadratite fiellements are successively
produce better results than the linear ones. Horyetfiaite elements with
incompatible modes produced almost equal resulis the quadratic elements. The
last and the most important observation is thah whe increasing Poisson ratio the
displacement results obtained are diverging froenpbeudo-theoretical displacement
result 0.25. However, mixed formulation finite elemis can represent the behavior
even in nearly incompressible state; especially7sH42i/p produces the best results

for any condition.

Table B.3. Validation of 3D solid finite elements

v=0.25 v=0.45 v =0.4999
Value ADINA % Error Value ADINA % Error Value ADINA % Error
sH8POu 4x40 0.22464 0.22461 0.01545 0.21168 0.21162 0.02892 0.0756Z562 0.00106
sH8IPOu 4x40 0.24876 0.24876 0.00012 0.24459 0.24459 0.00008 0.22922980 0.00013
sH8P1lu/p 4x40 0.23058 0.23054 0.01505 0.23024 0.23018 0.02585 0.229G2985 0.02836
sH27P0u 2x6 0.24662 0.24663 0.00041 0.22400 0.22400 0.00000 0.189989@9 0.00000
sH27P4u/p 2x6 0.24877 0.24877 0.00048 0.24499 0.24497 0.00935 0.24323303 0.01843
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As a final comment, 2D and 3D implementations offepdisplacement and mixed
displacement/pressure formulation for solid mecotsnare both verified in

displacement sense.

B.1.2Hydrostatic Pressure of Water Tank

In this problem, both pure displacement and mixedpldcement/pressure
formulations for fluid media is investigated. Waieithe tank is meshed with 5 fluid
elements and no external load is except from thiewseght of the fluid. Fluid
elements are restrained in X direction and deptheasured from free surface.

Figure B.2. Water tank with its self-weight

Pressure results obtained from the solution condpatith the exact solution given
from the hydrostatic pressure of reservoir whichPi&) = pgz where pis the
density of fluid,g is the gravitational acceleration ands the depth. Missing results

of mid points of Q4 elements are obtained by ird&gon.

In the first test group, performance of the 2D adats is investigated. Although all

results are extremely close to exact values, aantbe seen in Table B.4, the best
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results are obtained with fQ4P1u element whichizatdl linear displacement
approximation and constant pressure. The reastrabfs the hydrostatic behavior is

a linear behavior.

Table B.4. Hydrostatic pressures obtained from 2idleh

Depth Exact fQ4P1lu Rel.Error fQ4P1lu/p Rel.Error fQ9P1u Rel.Error fQ9P3u/p Rel.Error
0 0.00000 0.00000 0.0E+00 0.00000 0.0E+00 0.00000 0.000000.00000 0.000000
500 0.00490 0.00490 -4.1E-13 0.00489 -2.7E-03 0.00480 E-Q2  0.00489 -2.7E-03
1000 0.00981 0.00981 -2.5E-13 0.00978 -2.7E-03 0.0095QE-02 0.00978 -2.7E-03
1500 0.01471 0.01471 -2.0E-13 0.01467 -2.7E-03 0.0147(BE-84 0.01467 -2.7E-03
2000 0.01962 0.01962 -1.5E-13 0.01956 -2.7E-03 0.0196ME-74 0.01956 -2.7E-03
2500 0.02452 0.02452 -1.2E-13 0.02446 -2.7E-03 0.024523E-@5 0.02446 -2.7E-03
3000 0.02943 0.02943 -8.5E-14 0.02935 -2.7E-03 0.029428E-G5 0.02935 -2.7E-03
3500 0.03433 0.03433 -5.8E-14 0.03424 -2.7E-03 0.03433%E-26 0.03424 -2.7E-03
4000 0.03923 0.03923 -5.1E-14 0.03913 -2.7E-03 0.039230E-@6 0.03913 -2.7E-03
4500 0.04414 0.04414 -45E-14 0.04402 -2.7E-03 0.044143E-G7 0.04402 -2.7E-03
5000 0.04904 0.04904 -4.1E-14 0.04891 -2.7E-03 0.04904E-38 0.04891 -2.7E-03

Second test group composed of the modals with &mehts. Similarly all results
are in a highly correspondence with the exact testlowever, linear displacement

element with constant pressure fH8P1u providebdse results.

Table B.5. Hydrostatic pressures obtained from 3idl@h

Depth Exact fH8P1lu Rel.Error fH8P1lu/p Rel.Error fH27P1u Rel.Error fH27P4u/p Rel.Error
0 0.00000 0.00000 O0.0E+00 0.00000 0.0E+00 0.00000 0.000000.00000 0.000000
500 0.00490 0.00490 -1.4E-12 0.00489 -2.7E-03 0.00490 E-@66  0.00489 -2.7E-03
1000 0.00981 0.00981 -3.1E-12 0.00978 -2.7E-03 0.00981 E-121  0.00978 -2.7E-03
1500 0.01471 0.01471 -3.7E-12 0.01467 -2.7E-03 0.014716E-026 0.01467 -2.7E-03
2000 0.01962 0.01962 -2.5E-12 0.01956 -2.7E-03 0.01962 E-¥x%  0.01956 -2.7E-03
2500 0.02452 0.02452 -1.8E-12 0.02446 -2.7E-03 0.02452 E-Q66  0.02446 -2.7E-03
3000 0.02943 0.02943 -1.6E-12 0.02935 -2.7E-03 0.02943 E-TD  0.02935 -2.7E-03
3500 0.03433 0.03433 -1.5E-12 0.03424 -2.7E-03 0.03433 E-B71L  0.03424 -2.7E-03
4000 0.03923 0.03923 -1.5E-12 0.03913 -2.7E-03 0.03923 E-621  0.03913 -2.7E-03
4500 0.04414 0.04414 -1.5E-12 0.04402 -2.7E-03 0.044143E-B7 0.04402 -2.7E-03
5000 0.04904 0.04904 -1.5E-12 0.04891 -2.7E-03 0.04904 E-55  0.04891 -2.7E-03

As a final comment, with these tests, the pressoraputation from fluid finite
elements and their performances are verified fardstatic case.
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B.1.3Explicit Dynamic Analysis of Cantilever Beam Problen

In this problem, same model with the first exampletilized with just replacing the
load with a dynamic load.

P(t)

NN N
o

Figure B.3. Cantilever beam problem under dynawacling

The same magnitude of load is applied to the systenust 0.1 seconds and then
loading is released. Rayleigh damping is appliethwt = 0and g = 0.3 and

following graph is obtained.

(a) (b)
Figure B.4. Tip deflection comparison with ADINA

Obtained results from this problem solution is orrespondence with the results
obtained from ADINA.
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B.1.4Explicit Dynamic Analysis of Tall Water Column

In this problem, both pure displacement and mixedpldcement/pressure
formulations for fluid media under dynamic loadirgy investigated. Water tank
meshed with 10 fluid elements and restraint in péction to represent the rigid tank
boundary. Tank has 1/10 width height ratio.

L]

z

Figure B.5. Tall water column under dynamic loading

Uniform area load which is lumped to the nodes gisiibutary area is applied to the

system with the following time function;
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Figure B.6. Step force with finite rise time furwtit, = 0.01 s)

Rise time is taken as 0.01 where natural periath@fystem is around 0.0016/T,,
ratio is in between 0.5 and 1, hence, the dynaaspanse of mid-span displacement
is in correspondence with the given figure by Claddo].
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0 0002 0004 0006 0008 001 0012 0.014 0016 0018 002

() (b)

Figure B.7. Free surface response {fox= 0.01 s) comparison with ADINA
Rise time is lowered 5 times and the following figus obtained, as it can be seen

mean of the displacements after rise time is exaeie with the static solution of
the system.

162



0.01 FHH LA e | | . DRGNS 1| A
0.006H------ ........ ....... ........ ........ ........ ......... .........
0004 - - T — ........ - —

0.002f - ........ AAAAAAAA AAAAAAAA ........ AAAAAAAA AAAAAAAA AAAAAAAAA AAAAAAAAA

0 i 1 1 i 1 i 1 1 i
0 001 002 003 004 005 006 007 008 009 041

Figure B.8. Free surface responsetfor 0.002 s

Obtained results from this problem solution is mrrespondence with the results
obtained from ADINA in the order of 0.01%.
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B.2 Validations of Parallel Implementation of SolutionFramework

In order to validate the parallel solution framekvadescribed in Section 5.2
mechanically, three benchmark problems are detedniDuring these tests, solution
method with SH-ASM deflation presented in SectiaB & utilized by using 4

processors.

B.2.1 Cantilever Beam

The static analysis of a cantilever beam probleitized in this validation is exactly
same as the problem defined in Section B.1.1 exteptquadrilaterals are assumed
to be plain strain since the solutions with platress state results are almost same.
sQ4IP0Ou elements are utilized for the discretiratla Figure B.9, displacements on
X and Y directions and stress magnitude computeddrgana solver is given. The
same values obtained from ADINA are presented guifé B.10 and when these two
sets are compared, obviously results are same.

Displacement YY
7.407e-02

£0.0018519

0

00018519

-3.704e-03

Figure B.9. Displacements on X and Y directions sineéss magnitude by Zargana
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NODE 1

Figure B.10. Displacements on X and Y directiond siness magnitude by ADINA
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B.2.2Water Tank Problem

In this case, the water tank problem with flexiblells presented in Section 4.4.1 is
solved, but for this case analysis is carried gustatic with a constant uniform load
on the exterior of right wall. Q4 elements areizgitl for the discretization. Same
problem is modelled in ADINA and “Displacement BdsEluid Element with
Rotation Penalty” element is utilized. Displacenseah X-Y directions and stress
contour plots obtained from Zargana is given inukegB.11, Figure B.12 and Figure
B.13, whereas the ones obtained from ADINA aregmesd in Figure B.14, Figure
B.15, and Figure B.16. As it can be seen resuésBmost same.

Displacement XX
2.081e-04

(0.000208 -0.000041 O.O(-_JIE)OEJOO] 561

0.00010406

5.2032e-5

Figure B.11. Displacements on X direction by Zaman
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Displacement YY
0.000e+00

(0.000065 -0.000069 0.000000)

-5.1633e-5

I

-6.884e-05

Figure B.12. Displacements on Y direction by Zaman

Stress Magnitude
1.125e+05

T

84940

2.339e+03

Figure B.13. Stress magnitude by Zargana
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Figure B.15. Displacements on Y direction by ADINA
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Figure B.16. Stress magnitude by ADINA

B.2.3Pine Flat Dam Problem

As a final validation, Pine Flat dam problem présdnin Section 4.4.2 is solved.
However, in this case the half-circular extensioder the foundation is removed for
comparative reasons with other researches. Q4 atemare utilized for the

discretization. By using the same dimensions antkma properties, static analysis
of the dam is carried out under it is own self-virtigDisplacements on X-Y

directions and stress contour plots obtained frargana and ADINA are given in
following figures. As it can be seen from the figsy the results obtained from
Zargana are in correspondence with the results #A@NA. Besides, the same
problem is investigated in literature [110, 125¢ahis reported that horizontal crest
displacement and maximum stress magnitude fordisée is approximately 11 cm
and 1300 KPa.
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Displacement XX

(-0.091511 -0.031557 0.000000 0.000000 0.000000 0.000000) y

-0.022878

-0.045755

Figure B.17. Displacements on X direction by Zaagan

Displacement YY
—0.000e+00

-0.037087
(-QIB54662 -0.148347 0.000000 0.000000 0.000000 0.000000)

-0.074174

--0.11126

LT

--1.483e-01

Figure B.18. Displacements on Y direction by Zaman

Stress Magnitude
- 1.029e+06

7.7165e+5

2.5722e+5

3.201e-02

Figure B.19. Stress magnitude by Zargana
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Figure B.22. Stress magnitude by ADINA
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