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ABSTRACT

RANDOMNESS PROPERTIES OF SOME VECTOR SEQUENCES GENERATED
BY MULTIVARIATE POLYNOMIAL ITERATIONS

Gürkan Balıkçıoğlu, Pınar

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Melek Diker Yücel

February 2016, 105 pages

We examine the randomness properties of the sequences generated by the multivariate
polynomial iterations method proposed by Ostafe and Shparlinski, by using the six
different choices of polynomials given by the same authors. Our analysis is based on
two approaches: distributions of the periods and linear complexities of the produced
vector sequences. We define the efficiency parameters, PE for “period efficiency” and
LCE for “linear complexity efficiency”, so that the actual values of the period and lin-
ear complexity of a sequence can be easily compared with those of the ideal cases.
For each polynomial choice, in order to obtain the period distribution of the generated
vector sequences, we perform an exhaustive search for prime field sizes up to 13; and
observe that the probability of attaining a maximum-period sequence is extremely low.
Linear complexities of the sequences are also computed exhaustively for prime field
sizes up to 13 and the multivariate polynomial iterations with the proposed polyno-
mial choices are observed to generate sequences with having high linear complexities
quite seldomly. We then concentrate on the largest period sequences produced by each
choice, and investigate the linear complexity of those sequences for a given polyno-
mial choice, at a specific field size p and number of polynomials m. We observe that
an increase of p or m does not bring any improvement on the randomness of the gen-
erated sequences. Finally, we analyze the linear complexity of Ostafe’s sequences by
fixing the period but leaving the choice of m and other initial values random, as in real
life. Although computational constraints limit our exhaustive search results in the first

vii



part to relatively small values of p and m; the last part of our study lets us use higher
values of p and m, to justify the projection that Ostafe’s method with the proposed
polynomial choices is not a promising way of implementing pseudo-random number
generators.

Keywords : multivariate polynomial iterations, pseudo-random vector sequences, tri-
angular polynomial systems, period distribution, linear complexity
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ÖZ

ÇOK DEĞİŞKENLİ POLİNOM TEKRARLAMALARI İLE ÜRETİLEN BAZI
VEKTÖR DİZİLERİNİN RASSALLIK ÖZELLİKLERİ

Gürkan Balıkçıoğlu, Pınar

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Melek Diker Yücel

Ocak 2016, 105 sayfa

Ostafe ve Shparlinski tarafından önerilen çok değişkenli polinom iterasyonları ile üreti-
len dizilerin, aynı yazarlar tarafından önerilen altı polinom seçeneği için rassallık özel-
liklerini araştırdık. Analizimiz iki yaklaşımı temel almaktadır: üretilen vektör dizileri-
nin periyot ve doğrusal karmaşıklık dağılımı. Elde ettiğimiz değerleri, bu yaklaşımların
ideal durumları ile karşılaştırabilmek amacıyla, periyot yeterliliği için PE ve doğrusal
karmaşıklık yeterliği için LCE olmak üzere, yeterlik parametreleri tanımladık. Üreti-
len vektör dizilerinin, her bir polinom seçeneği için periyot dağılımını elde edebilmek
amacıyla, büyüklüğü 13’e kadar olan asal alanlar için tüm olası durumlar üzerinden
araştırma yaptık ve maksimum uzunluklu dizilere erişme olasılığının oldukça düşük
olduğunu gözlemledik. Ayrıca büyüklüğü 13’e kadar olan asal alanlar için tüm olası
durumlar üzerinden dizilerin doğrusal karmaşıklıklarını araştırdık ve çok değişkenli
polinom iterasyonları metoduyla birlikte önerilen polinom seçimlerinin, oldukça seyrek
durumlarda yüksek doğrusal karmaşıklığa sahip diziler üretebildiğini gözlemledik. Ar-
dından, her seçim tarafından üretilen en yüksek periyotlu dizilere yoğunlaştık ve bu
dizilerin verilen bir seçim için, belirli bir alan büyüklüğü (p) ve polinom sayısındaki
(m) doğrusal karmaşıklığını inceledik. p ve m’yi arttırmanın üretilen dizilerin ras-
sallığına dair herhangi bir iyileşme sağlamadığını gözlemledik. Son olarak, gerçek
hayattaki gibi periyotları sabit tutup, m ve diğer başlangıç değerlerini rassal olarak
alıp; Ostafe’nin dizilerinin doğrusal karmaşıklığını analiz ettik. İlk bölümdeki kap-
samlı araştırmamızı hesaplama zorlukları nedeniyle nispeten küçük p ve m değerleri
ile sınırlamamıza rağmen; son bölümdeki çalışmamız daha büyük p vem değerleri kul-
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lanmamıza izin vererek, önerilen polinom seçenekleri ile kullanıldığında Ostafe’nin
yönteminin rassal sayı üreteci olarak gerçeklenemeyeceği konusundaki çıkarımımızı
desteklemektedir.

Anahtar Kelimeler : çok değişkenli polinom iterasyonları, sözde rassal vektör dizileri,
periyot dağılımı, doğrusal karmaşıklık
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CHAPTER 1

INTRODUCTION

In cryptographic applications, random sequences are needed and used frequently. How-
ever, obtaining a truly random sequence is very hard and time consuming in real life.
Usually, deterministic processes are used to generate pseudo-random sequences as
powerful alternatives for truly random sequences. A mathematical algorithm, which
generates a pseudo-random sequence starting from a given initial state, is called a
Pseudo-Random Number Generator (PRNG).

Pseudo-random sequences are produced in a systematic way such that they are statis-
tically indistinguishable from a truly random sequence and their successively gener-
ated versions are independent of each other. Sometimes pseudo-random numbers can
appear more random than the random numbers obtained from true Random Number
Generators (RNGs). Each value in a suitably constructed pseudo-random sequence is
produced from the previous value along transformations, which advance extra random-
ness. Statistical auto-correlations between the input and the output can be eliminated
by a series of such transformations. Hence, a PRNG may be faster and generate se-
quences with better statistical properties than RNGs [29].

1.1 Pseudo Random Noise Generators

Fundamental information on pseudo-random number generation can be found in the
book of Knuth [7]. In general, a pseudo-random number generator is based on three
generators: a linear recurrence generator modulo 2, a k-th order linear recurrence gen-
erator and a non-linear congruential generator [6].
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1.1.1 Linear Recurrence Generator Modulo 2

Definition 1.1. Let a1, . . . , ak−1 ∈ {0, 1}, ak = 1, and each bj take a value in {0, 1}.
The recurrence relation,

bi ≡
k∑

j=1

ajbi−j (mod 2)

generates a sequence {bi} of 0s and 1s. This method is called a linear recurrence
generator modulo 2, which is the basis of shift register generators.

1.1.2 k-th Order Linear Recurrence Generator

The formula of k-th order linear recurrence generator is given by following definition.

Definition 1.2. Let a0, . . . , ak−1 and c be non-negative integers with a0 6= 0 and M be
a positive integer. Then, xi+k can be computed as

xi+k ≡
k∑

j=1

ak−jxi+k−j + c (mod M), 0 ≤ xi < M.

The first order linear recurrence generator is the linear congruential generator (LCG)
invented by Lehmer [11]. However, the output of LCGs are predictable [8]. In [2] and
[3], a solution on the predictableness of some LCGs has been proposed. An algorithm
that can guess any output of an LCG in its general form is given in [9]. The insecurity
of using such generators for cryptographical purposes is also emphasized in [27].

Definition 1.3. Let M be a large positive integer, a be an integer with 0 < a < M and
c be an integer with 0 ≤ c < M . Then, an initial value (seed) x0, 0 ≤ x0 < M , is
selected and a sequence x0, x1, . . . is generated by the recursion

xi+1 = axi + c (mod M), i ≥ 0.

In this context, M is referred to as the modulus, a as the multiplier and c as the in-
crement. A common distinction is made between the homogeneous case where c = 0,
also called the multiplicative congruential method, and the inhomogeneous case where
c 6= 0, also called the mixed congruential method.
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1.1.3 Non-Linear Congruential Generator

Definition 1.4. Let f be a nonlinear integer-valued function of xi. Then, a nonlinear
congruential generator takes the form

xi+1 ≡ f(xi) (mod M); 0 ≤ xi+1 < M.

An example of a nonlinear congruential generator is the inversive congruential gener-
ator suggested by Eichenauer, Grothe, and Lehn [5]. It uses the modular multiplicative
inverse (if it exists) to generate the next number in a sequence.

Definition 1.5. Let a and b be some the positive integers and the prime p be the mod-
ulus. The formula of an inversive congruential generator is:

xi+1 ≡ (ax−1
i + c) mod p, where x0 6= 0.

1.2 Ostafe and Shparlinski’s Method

Ostafe and Shparlinski have been inspired by the linear congruential method in their
proposals [18]-[25], for generating pseudo-random vector sequences. They study a
class of dynamical systems generated by iterations of multivariate polynomials. In
[22], this construction is used for designing a new class of hash functions. In [23],
linear independence of iterates is studied. The discrepancy of pseudo-random vectors
is estimated in [24] and [26]. Joint linear complexity profile of a class of non-linear
pseudo-random multi-sequences are studied in [25].

The method of Ostafe and Shparlinski is described as follows: Let p be a prime and
F1, . . . , Fm ∈ Fp[X1, . . . , Xm] be m polynomials in m variables over a finite field of p
elements. For each i = 1, . . . ,m, the k-th iteration of the polynomial Fi is defined by
the recurrence relation,

f
(k+1)
i = Fi(f

(k)
1 , . . . , f (k)

m ), ∀k where f
(0)
i = Xi. (1.1)

To simplify the notation, one can define a vector f (k) = (f
(k)
1 , . . . , f

(k)
m ) ∈ Fp, F =

(F1, . . . , Fm) ∈ Fp[X1, . . . , Xm] and the recurrence relation given by (1.1) becomes

f (k+1) = F(f (k)), ∀k with f (0) = X = (X1, . . . , Xm). (1.2)
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In particular, denoting k applications of the recurrence relation by F
(k)
i , for any k,

n ≥ 0 and i = 0, 1, . . . ,m

f
(k+n)
i = F

(k)
i (f (n)) = F

(k+n)
i (f (0))

and

f (k+n) = F(k)(f (n)) = F(k+n)(f (0)).

It is clear that the above sequence of vectors f (k) is eventually periodic with some
period Tv ≤ pm since it is generated over a finite field of p elements: that is,

f (k+Tv) = f (k), ∀k.

In the series of papers [18]-[25], multivariate polynomial systems F1, . . . , Fm of m
polynomials in m variables over a finite field Fp are described in terms of the first
iteration of (1.2), where the initial condition vector f (0) is chosen as X = (X1, . . . , Xm)
and after the first iteration, entries of the vector f (1) = F(X) = (F1(X), . . . , Fm(X))
are found as

F1(X) = X1G1(X2, . . . , Xm) +H1(X2, . . . , Xm),

F2(X) = X2G2(X3, . . . , Xm) +H2(X3, . . . , Xm),

...

Fm−1(X) = Xm−1Gm−1(Xm) +Hm−1(Xm),

Fm(X) = gmXm + hm, (1.3)

with

Gi , Hi ∈ Fp[Xi+1, . . . , Xm], i = 1, . . . ,m− 1

and

gm, hm ∈ Fp, gm 6= 0.
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Table 1.1: Polynomial choices

Choice 1 in [21]
Gi(Xi+1, . . . , Xm) = Xi+1

and
Hi(Xi+1, . . . , Xm) = hi

for i = 1, . . . ,m− 1.

Choice 2 in [18]:
Gi(Xi+1, . . . , Xm) = X2

i+1 − ai
for some quadratic non-residues ai

and
Hi(Xi+1, . . . , Xm) = hi

for i = 1, . . . ,m− 1.

Choice 3 in [19]:
Gi(Xi+1, . . . , Xm) = gi, gi, gm 6∈ {0, 1}

and
Our choices for Hi(Xi+1, . . . , Xm) are:

(a) Hi = Xi+1 (b) Hi = X2
i+1 (c) Hi = Xi+1 . . . Xm

for i = 1, . . . ,m− 1.

Choice 4 in [20]:
Gi(Xi+1, . . . , Xm) = 1,

and
Hi(Xi+1, . . . , Xm) = Xp−1

i+1 . . . X
p−1
m ,

for i = 1, . . . ,m− 1
gm = 1, hm 6= 0.
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The following iteration proceeds by substituting the obtained vector f (1) = F(X) in-
stead of X in (1.3); so, f (2) = F(f (1)). The structure of the polynomial description
given by (1.3) is called the “triangular form”, because it defines the first polynomial
F1 as a function of all the elements of X, whereas the last polynomial Fm depends on
a single element Xm of X.

In order to obtain very fast pseudo-random generators, some choices for the polyno-
mials are proposed by the same authors and they also propose polynomials in order
to produce maximum-period vector sequences. For the system above, a first degree
Gi polynomial with a constant Hi (Choice 1 in [21]), a second degree Gi polynomial
with a constant Hi (Choice 2 in [18]), a constant Gi polynomial (Choice 3 in [19])
and Gi = 1 with a polynomial deg(Hi) = (m − i)(p − 1) (Choice 4 in [20]). These
polynomial choices for i = 1, . . . ,m− 1 are summarized in Table 1.1.

1.3 Testing Randomness

Unpredictability or randomness of a sequence is measured by its entropy [30]. In [7] as
an answer to the question of “How are we to decide whether a sequence is sufficiently
random?”, the first collection of empirical randomness tests are given; i.e., Equidis-
tribution test (Frequency test), Serial test, Gap test, Poker test (Partion test), Coupon
collector’s test, Permutation test, Run test, Maximum-of-t test, Collision test and Serial
correlation test. CRYPT-X [4], DIEHARD Test Suite [12], NIST Test Suite [29] and
TESTU01 [10] are the other test suits for measuring the randomness of sequences.

In this work, we analyze the randomness of sequences with respect to two basic ap-
proaches: distributions of their periods and linear complexities. Letting s = (s1, . . . , sn)
be a finite sequence of period T over Fp, where 1 ≤ n ≤ 2T , we measure its random-
ness according to the following properties:

• Property 1: The period T of the sequence should be sufficiently large; i.e., close
to the maximum possible period ([16]).

• Property 2: Its linear complexity should be close to its period T and its linear
complexity profile graph should be close to the n/2-line in its first two periods
([28]).

1.4 Aim and Skeleton of the Thesis

In this thesis, we analyze the randomness of the pseudo-random sequences produced
by the multivariate polynomial iterations of Ostafe and Shparlinski [18]-[25]. For this
purpose we investigate the distributions of the periods and linear complexities of the
generated sequences by 6 different versions (so called Choices 1, 2, 3a, 3b, 3c and 4
given in Table 1.1) of the multivariate polynomial iterations method.
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In Chapter 2, we perform an exhaustive search in order to obtain the period distribution
of the vector sequences generated by the first five polynomial choices (Choice 1, 2, 3a,
3b and 3c) for prime field sizes p up to 13 and the vector sizes m up to 5. In Chapter 3,
we exhaustively calculate the linear complexities of the sequences handled in the first
chapter. In Chapter 4, the linear complexities of the sequences obtained at the highest
periods of the corresponding choices are analyzed. In Chapter 5, we examine the linear
complexity of the sequences produced by Choice 1, 2 and 3a by fixing the length of the
sequence and using random vector size m together with random initial values. Then,
we conclude the results of our study in the last chapter.
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CHAPTER 2

EXHAUSTIVE PERIOD ANALYSIS

2.1 Introduction

In this chapter, we have exhaustively analyzed the vector periods of the sequences gen-
erated by the multivariate polynomial system (1.3) proposed by Ostafe and Shparlinski
[18]-[25] with five polynomial choices: Choice 1, 2, 3a, 3b and 3c given in Table 1.1.
Choice 4, generates the maximum-period sequences; i.e, the vector period Tv of the
generated sequence is equal to pm under all possible initial conditions; therefore, there
is no need to include Choice 4 in the period analysis. In Section 2.2, we describe
the parameter sets for these five polynomial choices. In Section 2.3, we consider ten
cases in terms of the field size p and the number of polynomials m, and obtain the
corresponding period distributions for finite field sizes p up to 13 and the number of
polynomialsm up to 5. In Section 2.4, we mention some observations about the factors
of periods.

2.2 Set of Parameters

Our aim is to investigate the period distribution of the sequences generated by (1.3) for
Choices 1, 2, 3a, 3b and 3c demonstrated in Table 1.1. Before performing an exhaustive
search over all possible sequences, one needs to know the size of the parameter sets.
Table 2.1 shows the size of the parameter sets and Table 2.2 depicts the number of
possible vector sequences corresponding to each of the five choices, where Qp and Q̄p

denote the number of quadratic residues and non-residues respectively, in mod p.
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Table 2.1: Size of parameter sets

Choice 1 2 3a 3b 3c

Xi pm pm pm pm pm

Gi - - (p− 2)m−1 (p− 2)m−1 (p− 2)m−1

Hi pm−1 pm−1 - - -

ai - Q̄m−1
p - - -

gm p− 1 p− 1 p− 2 p− 2 p− 2

hm p p p p p

Table 2.2: Number of possible vector sequences

Choice Number of Possible Vector Sequences

1 p2m(p− 1)

2 p2mQ̄m−1
p (p− 1)

3a pm+1(p− 2)m

3b pm+1(p− 2)m

3c pm+1(p− 2)m

We examine 10 cases, corresponding to relatively small values of the field size p, and
the vector size m (p = 3 with 2 ≤ m ≤ 5; p = 5, 7 with m = 2, 3; and p = 11, 13
with m = 2), since for higher values of p and m, the behavior of the algorithms are
predictable whereas the size of the exhaustive search space increases exponentially
as shown in 2.2 (see Appendix A for search durations over a computer with Intel(R)
Xeon(R) CPU 3.70 GHz). We choose the field size p > 2, since Choice 2, 3a, 3b
and 3c do not work over F2 and Choice 1 can only generate very short sequences with
Tv ≤ 2 (see Appendix B for the proof). Total numbers of possible vector sequences for
these 10 cases are shown in Table 2.3 as computed using Table 2.2, where the number
of quadratic non-residues Q̄3, Q̄5, Q̄7, Q̄11 and Q̄13 are respectively equal to 1, 2, 3, 5
and 6.
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Table 2.3: Number of possible vector sequences for the ten cases

Case p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

1 3 2 162 162 27 27 27

2 3 3 1458 1458 81 81 81

3 3 4 13122 13122 243 243 243

4 3 5 119466 118098 729 729 729

5 5 2 2500 5000 1125 1125 1125

6 5 3 62500 250000 16875 16875 16875

7 7 2 14406 43218 8575 8575 8575

8 7 3 705894 6353046 300125 300125 300125

9 11 2 146410 732050 107811 107811 107811

10 13 2 342732 2056392 265837 265837 265837

2.3 Period Distributions

We generate all vector sequences for 10 cases by Ostafe and Shparlinski’s method [18]-
[25], using the first five polynomial choices shown in Table 1.1. The last one, Choice
4 does not require any exhaustive search for periods, because it always generates the
maximum period sequences with Tv = pm. We then compute the vector period Tv of
each vector sequence, and find how close it is to the maximum period by computing its
“Period Efficiency, PE = Tv/p

m”. Corresponding period efficiency distributions are
sketched in Figures 2.1-2.3 for the six polynomial choices over all possible values of
X = (X1, ..., Xm), G = (G1, ..., Gm−1), H = (H1, ..., Hm−1), ai, gm and hm, having
the set sizes given in Table 2.1. In all figures, we indicate the period distribution
corresponding to Choice 1, 2, 3a, 3b, 3c and 4 (as a reference).

It can be observed from Figures 2.1-2.3 that the period efficiencies of Choice 1 se-
quences do not exceed 0.5 for all 10 cases. As seen in Figure 2.1, for p = 3, the
distributions of PE’s generally move towards the origin as m increases from 2 to 4, but
for m = 5, some high-PE Choice 3 sequences appear around PE = 0.85. Figure 2.2
gives an idea about the change of PE distributions versus the field size p for m = 2
(as also compared to m = 2 case of the previous figure), where one clearly spots the
general trend of decreasing Tv’s that move towards the origin as p increases, again with
the exception of some high-PE Choice 3 sequences that show up around PE = 0.95
for p = 11. Finally, Figure 2.3 indicates that when the number of polynomials, m,
increases from 2 to 3, for p = 5 and 7, one cannot observe a net movement in the PE
distributions towards the origin as sharp as that of the p = 3 case seen in Figure 2.1.
However, one can also not say that an increase in m improves the PE distribution.
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(a) m = 2

(b) m = 3

(c) m = 4

(d) m = 5

Figure 2.1: Distribution of the period efficiency, PE (the period Tv of the vector sequence divided by
the maximum period pm), for Choice 1, 2, 3a, 3b, 3c and 4 and the field size p = 3, where the number
of polynomials are: (a) m = 2, (b) m = 3, (c) m = 4, (d) m = 5
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(a) p = 5

(b) p = 7

(c) p = 11

(d) p = 13

Figure 2.2: Distribution of the period efficiency, PE (the period Tv of the vector sequence divided by
the maximum period pm), for Choice 1, 2, 3a, 3b, 3c and 4 and the field sizes: (a) p = 5, (b) p = 7, (c)
p = 11, (d) p = 13 and the number of polynomials m = 2
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(a) p = 5,m = 2

(b) p = 5,m = 3

(c) p = 7,m = 2

(d) p = 7,m = 3

Figure 2.3: Distribution of the period efficiency, PE (the period Tv of the vector sequence divided by
the maximum period pm), for Choice 1, 2, 3a, 3b, 3c and 4; where the field size p and the number of
polynomials m are given as (a) p = 5,m = 2, (b) p = 5,m = 3, (c) p = 7,m = 2, (d) p = 7,m = 3
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Table 2.4: Weighted average of PE values for ten cases

p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

3 2 23.70 41.48 52.22 52.22 41.11

3 3 10.49 29.63 18.52 17.78 17.04

3 4 1.68 16.69 16.30 13.09 11.85

3 5 0.13 10.57 8.89 7.41 4.94

5 2 18.80 41.28 30.76 30.76 38.76

5 3 4.12 23.22 12.09 13.03 14.32

7 2 12.45 26.68 17.58 17.58 23.90

7 3 2.21 15.74 4.31 5.49 7.27

11 2 11.59 40.89 13.33 13.33 18.61

13 2 11.17 24.17 10.83 10.83 14.48

Table 2.5: Percentage of Choice 2 sequences with maximum-period pm

p 3 3 3 3 5 5 7 7 11 13

m 2 3 4 5 2 3 2 3 2 2

Percentage 22 15 10 7 0 0 3 1 2 0

Table 2.4 shows the weighted average of PE values for each case by multiplying the
PE values with corresponding percentages and summing over all PE values. As can
be seen from Table 2.4, increasing the field size p and the vector size m decreases
the weighted average of PE values almost for all choices with the single exception of
Choice 2 for p = 11.

Figure 2.1-2.3 also show that Choice 1, 3a, 3b and 3c do not produce any maximum-
period (Tv = pm) vector sequence for the considered parameters (p = 3 with 2 ≤
m ≤ 5; p = 5, 7 with m = 2, 3; and p = 11, 13 with m = 2). In addition to Choice
4, generation of sequences with maximum periods seems to be possible with Choice
2 as well; however, the corresponding percentages are very small. We tabulate the
percentage of maximum-period sequences for Choice 2 in Table 2.5 that is observed
to be less than %3 if 3 < p ≤ 13. As mentioned above, the last choice in Table
1.1, Choice 4, always produces sequences at maximum period, with PE = 1. It is of
further interest to find whether the highest-period sequences of each choice are random
enough; which is the subject of Chapter 4.

Table 2.6 shows that the period efficiency Tv/pm of the generated vector sequences are
less than or equal to 0.5 for all sequences generated by Choice 1, for more than 62%
of Choice 2 sequences, for more than 82% of Choice 3a and 3b sequences (except for
p = 3,m = 2 with 33%) and for more than 56% of Choice 3c sequences.
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Table 2.6: Percentage of sequences with period efficiency ≤ 0.5

Case p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

1 3 2 100 78 33 33 56

2 3 3 100 85 100 100 100

3 3 4 100 90 100 100 100

4 3 5 100 93 100 100 100

5 5 2 100 62 82 82 68

6 5 3 100 85 100 100 100

7 7 2 100 90 93 93 87

8 7 3 100 97 100 100 100

9 11 2 100 75 96 96 91

10 13 2 100 91 97 97 94

2.4 Factors of Periods

Although the generation of high-period sequences by the first five polynomial choices
of Table 1.1 seem to be less probable than low-period sequences, one may also be
interested in examining the whole set of possible periods that can be generated. We
tabulate all possible periods generated in the 10 considered cases in Appendix C. Table
2.7 parameterizes the highest periods found by exhaustive search for the examined 10
cases, using the further details given in Tables C.3-C.6 of Appendix C.

Similar to Theorem 8 in [20], we have observed the following fact about the period
of the vector sequence: Each period Tv = t1...tm is the product of m integers t1...tm,
which can be equal to p or to a factor of p − 1 for all five choices. More specifically,
for m = 2, each period Tv = t1t2 is the product of two integers t1 and t2, which can
be equal to p or to a factor of p − 1. Similarly, each period for m = 3 is the product
of three integers, for m = 4, it is the product of four integers, and for m = 5, it is the
product of five integers that can be equal to p, or to a factor of p − 1. In Appendix C,
one can also examine that Choice 2 generates the largest set of period values, which
almost always contains Choice 1, 3a, 3b and 3c sets and some extra values. On the
other hand, Choice 3a, 3b and 3c have the smallest set of periods in all choices.
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Table 2.7: The highest vector periods of the corresponding polynomial choices

m p Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

2 3 ≤ p ≤ 13

p(p− 1)/2

[(p− 1)2 ]

only for p = 3

p(p− 1)

or

p2

p(p− 1) p(p− 1) p(p− 1)

3 3 ≤ p ≤ 7

p(p− 1)2

or

p(p− 1)2/2

or

p(p− 1)2/3

p2(p− 1)

or

p3

p(p− 1) p(p− 1) p(p− 1)

4 3 p(p− 1)2 p4 p2(p− 1) p2(p− 1) p2(p− 1)

5 3 p2(p− 1)2 p5 p2(p− 1) p2(p− 1) p2(p− 1)

2.5 Conclusion

Our exhaustive search on the distribution of the vector period Tv generated by (1.3),
for 10 cases (p = 3 with 2 ≤ m ≤ 5; p = 5, 7 with m = 2, 3; and p = 11, 13 with
m = 2), shows that there is no maximum-period sequence (maximum possible period
of the scalar sequence is Tmax = mpm) for Choice 1 [21] and Choice 3a, 3b, 3c [19]
given in Table 1.1. Choice 2 [18] is more promising since it has smaller percentage
of small-period sequences than other choices; and maximum-period sequences with
period mpm do exist, although their existence probability is less than 3% if p > 3, as
can be observed in Table 2.5. All sequences generated by Choice 1, have very low
period efficiencies, PE = T/mpm, less than or equal to 0.5 (See Table 2.6). Similarly,
the percentage of low period sequences with period efficiency less than 0.5 is more
than 62% for Choice 2, more than 82% for Choice 3a and 3b (except for p = 3,m = 2
with 33%) and more than 56% for Choice 3c sequences.
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CHAPTER 3

EXHAUSTIVE LINEAR COMPLEXITY ANALYSIS

3.1 Introduction

After examining the period distributions of the sequences produced by Choice 1, 2, 3a,
3b and 3c exhaustively; we perform another exhaustive search in this chapter, again
over all possible initial conditions within the sets whose sizes are as given in Table 2.3,
in order to find the linear complexity distributions of the sequences produced by (1.3)
for ten specific cases of the field size p and the vector size m. Section 3.2 is devoted to
some essential definitions about the linear complexity. In Section 3.3, we describe our
analysis method to measure the linear complexity and introduce a parameter that we
call “the linear complexity efficiency, LCE”, taking real values in the interval [0, 1]. In
Section 3.4, we sketch the linear complexity distributions. In Section 3.5, we find the
minimum, average and maximum LCE’s of the sequences versus their vector periods,
Tv.

Then, we consider some subsets of practical significance chosen from the overall space.
First, for the sequences whose periods are at least half of the maximum possible period,
we present the minimum, average and maximum linear complexity values in Section
3.6. Finally, we concentrate on sequences with high linear complexities (LCE ≥ 0.95)
and Section 3.7 presents the computed percentages of such sequences together with
their vector periods.

Discussion of Choice 4 that only produces sequences with maximum periods is left
to Chapter 4, which is devoted to the LCE investigation of largest-period sequences
produced by all choices given in Table 1.1.

3.2 Linear Complexity

This section is intended to give some fundamental definitions [17] on the concept of
linear complexity.
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Definition 3.1. The sequence s1, s2, ... over Fq satisfies a linear recurrence relation
over Fq of order k if there exist a0, a1, ..., ak−1 ∈ Fq such that

si+k =
k−1∑
h=0

ahsi+h for i = 1, 2, ...

where k is a positive integer.

The linear recurrence relation and the initial values s1, ..., sk uniquely determine the
sequence s1, s2, ... given in Definition 3.1. Definition 3.2 and 3.3 clarify the linear
complexity and the linear complexity profile, respectively.

Definition 3.2. Let S be either a finite or an infinite duration sequence over Fq con-
taining at least n terms, and n be a positive integer. Then the n-th linear complexity
Ln(S) of S is the smallest k, for which a linear recurrence relation over Fq of order k
can generate the first n terms of S. If S is ultimately periodic, then its linear complexity
L(S) is defined by

L(S) = sup
n≥1

Ln(S).

Definition 3.3. Let Ln(S) denote the n-th linear complexity of an infinite sequence S
over Fq. Then, the sequence L1(S), L2(S), ... is called the linear complexity profile of
S.

By using the algorithm invented by Berlekamp and Massey ([1], [14]) one can recover
the linear recurrence relation and the initial values from the first 2k terms of the se-
quence. The all zero sequence (0, 0, ...) over Fq satisfies a linear recurrence relation
over Fq of order 0, by convention.

3.3 Measuring Randomness in Terms of the Linear Complexity

Our aim is to investigate the randomness of the scalar sequences generated by (1.3) for
the five choices of the polynomials (Choice 1, 2, 3a, 3b and 3c) given in Table 1.1, in
terms of the linear complexity. We compute the linear complexity of a sequence, by
using the Berlekamp-Massey algorithm ([1], [14]). In order to measure whether the
linear complexities of the scalar sequences are close to their period T or not (period T
of the scalar sequence is equal to the product of the number of polynomials m and the
period Tv of the vector sequence), we define a criterion called linear complexity effi-
ciency (LCE), L/T as the “ratio of the computed linear complexity L of the sequence
to its length T ”. In order to satisfy the second randomness property stated in Section
1.3, a sequence should have an LCE value close to 1.
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Table 3.1: Weighted average of LCE values for ten cases

p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

3 2 72.35 73.09 40.00 40.00 55.56

3 3 77.80 79.78 58.02 67.90 77.04

3 4 79.59 79.71 28.56 59.51 72.10

3 5 83.65 79.30 32.37 60.27 78.05

5 2 72.94 52.58 48.39 48.39 49.24

5 3 77.52 63.57 39.34 42.23 46.10

7 2 70.50 57.14 41.45 41.45 45.49

7 3 76.72 46.06 35.85 35.77 32.17

11 2 63.17 32.33 30.67 30.67 34.92

13 2 59.23 44.33 32.70 32.70 33.48

3.4 Linear Complexity Distributions

We have exhaustively computed the linear complexity efficiencies of sequences gen-
erated by (1.3) with the first five polynomial choices given in Table 1.1 for 10 cases
of the field size p, and the vector size m (i.e., p = 3 with 2 ≤ m ≤ 5; p = 5, 7 with
m = 2, 3; and p = 11, 13 with m = 2) over all possible values X = (X1, ..., Xm),
G = (G1, ..., Gm−1), H = (H1, ..., Hm−1), ai, gm and hm given in Table 2.1. As men-
tioned in Appendix C, the sequences with vector period Tv = 1 are discarded, since
they reflect the randomness of the initial vector X = (X1, ..., Xm) rather than that of
the multivariate polynomial iterations method given by (1.3). Corresponding linear
complexity efficiency distributions are sketched in Figures 3.1-3.3 for the six poly-
nomial choices over all possible values of X = (X1, ..., Xm), G = (G1, ..., Gm−1),
H = (H1, ..., Hm−1), ai, gm and hm, having the set sizes given in Table 2.1 for all
choices.

Table 3.1 shows the weighted average of LCE values for each case obtained by mul-
tiplying the LCE values with corresponding percentages and summing over all LCE
values.

As can be seen from Table 3.1, increasing the vector size m increases the weighted
average LCE of the sequences generated by Choice 1. It seems that Choice 2 is worse
than Choice 1. Another observation is that weighted average LCE is decreasing, while
m is increasing for Choice 3a. Choice 3a is the worst of all choices in terms of the
linear complexity. On the other hand, distributions of Choice 3b and 3c are quite
similar.

21



(a) m = 2

(b) m = 3

(c) m = 4

(d) m = 5

Figure 3.1: Distribution of the linear complexity efficiency, LCE (ratio of the computed linear com-
plexity L of the sequence to its length T ), for Choice 1, 2, 3a, 3b and 3c (respectively dark blue, red,
green, purple, light blue and orange) and the field size p = 3, where the number of polynomials are: (a)
m = 2, (b) m = 3, (c) m = 4, (d) m = 5
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(a) p = 5

(b) p = 7

(c) p = 11

(d) p = 13

Figure 3.2: Distribution of the linear complexity efficiency, LCE (ratio of the computed linear com-
plexity L of the sequence to its length T ), for Choice 1, 2, 3a, 3b and 3c and the field sizes: (a) p = 5,
(b) p = 7, (c) p = 11, (d) p = 13 and the number of polynomials m = 2
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(a) p = 5,m = 2

(b) p = 5,m = 3

(c) p = 7,m = 2

(d) p = 7,m = 3

Figure 3.3: Distribution of the linear complexity efficiency, LCE (ratio of the computed linear com-
plexity L of the sequence to its length T ), for Choice 1, 2, 3a, 3b and 3c; where the field size p and the
number of polynomials m are given as (a) p = 5,m = 2, (b) p = 5,m = 3, (c) p = 7,m = 2, (d)
p = 7,m = 3
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3.5 Minimum, Average and Maximum LCE versus Tv of the Sequences Gener-
ated by the Five Polynomial Choices

In order to examine the randomness of multivariate polynomial iterations method given
by (1.3), we present the LCE values of the first five polynomial choices given in Table
1.1 versus the period Tv of the generated vector sequences for Tv > 1. Our exhaustive
analysis is performed for 50 different cases (resulting from the product of 5 polynomial
choices for each one of the 10 (p,m) pairs), and we present the most representative
cases that include the largest variety of produced vector sequence periods; namely the
(p,m) pairs of (5, 3), (7, 3), (11, 2), and (13, 2) in Figures 3.4-3.7 respectively. In each
figure, we plot the minimum, average and maximum LCE values versus the vector
sequence period Tv, corresponding to the polynomial Choices 1, 2 and 3a. We don’t
include Choice 3b and 3c, since they yield very similar curves to those of Choice 3a.

General characteristics of all these four figures are quite similar: (i) an increase in Tv
results in serious loss of randomness for the three polynomial choices 1, 2 and 3a, (ii)
Choice 2 produces the largest set of periods, followed by Choice 1 and Choice 3 (in
accordance with the results of Chapter 2, as detailed by Tables C.3-C.6, (iii) an in-
crease in the field size p also seems to yield some loss of randomness on the average.
These observations are not encouraging for the practical use of Ostafe and Shparlin-
ski’s multivariate polynomial iterations method as a pseudo-random noise generator.
Tables related to the details in Figures 3.4-3.7 are presented in D.1-D.12.

3.6 Linear Complexity Efficiency of Sequences with Period Efficiency, PE ≥ 0.5

The subset of sequences, with periods at least as large as one half of the maximum
possible period, is of special interest. So, we inspect the linear complexity efficiencies
of sequences having period efficiencies greater than or equal to 0.5. Table 3.2 shows
the average LCE values of the sequences with PE ≥ 0.5 (also see Tables D.13 and
D.14 for the minimum and maximum values of the LCE).

One can observe from Table 3.2 that average LCE values achieved by the sequences
with PE ≥ 0.5 are decreasing while the field size p and the vector size m is increasing
for all polynomial choices. As compared to the average LCE’s obtained in the complete
sets given in the previous section, one can say that high linear complexity efficiencies
can not be seen for the sequences having period efficiencies ≥ 0.5.
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(a) Choice 1

(b) Choice 2

(c) Choice 3a

Figure 3.4: LCE values versus vector period Tv of sequences for p = 5,m = 3 generated by (a) Choice
1, (b) Choice 2, (c) Choice 3a polynomials
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(a) Choice 1

(b) Choice 2

(c) Choice 3a

Figure 3.5: LCE values versus vector period Tv of sequences for p = 7,m = 3 generated by (a) Choice
1, (b) Choice 2, (c) Choice 3a polynomials
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(a) Choice 1

(b) Choice 2

(c) Choice 3a

Figure 3.6: LCE values versus vector period Tv of sequences for p = 11,m = 2 generated by (a)
Choice 1, (b) Choice 2, (c) Choice 3a polynomials
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(a) Choice 1

(b) Choice 2

(c) Choice 3a

Figure 3.7: LCE values versus vector period Tv of sequences for p = 13,m = 2 generated by (a)
Choice 1, (b) Choice 2, (c) Choice 3a polynomials
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Table 3.2: Average linear complexity efficiency of the sequences with period efficiency ≥ 0.5, found
over all possible values of X, G, H, ai, gm and hm

Case p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

1 3 2 - 0.67 0.39 0.39 0.42

2 3 3 - 0.67 - - -

3 3 4 - 0.67 - - -

4 3 5 - 0.67 - - -

5 5 2 - 0.43 0.14 0.13 0.18

6 5 3 - 0.40 - - -

7 7 2 - 0.30 0.09 0.07 0.09

8 7 3 - 0.27 - - -

9 11 2 0.18 0.22 0.05 0.04 0.04

10 13 2 0.15 0.16 0 0.02 0.02

3.7 Sequences with High Linear Complexity Efficiency, LCE ≥ 0.95

3.7.1 Percentages

Since one of the desired properties of randomness for a sequence is to have a high linear
complexity as mentioned in Section 1.3, we calculate the percentage of sequences with
high LCE, found over all possible values of parameters (X, G, H, ai, gm, and hm
presented in Table 2.1) and illustrate them in Table 3.3.

One can observe from Table 3.3 that Choice 1 seems to generate sequences with
LCE’s ≥ 0.95 more efficiently than Choices 2, 3a and 3b. However, Choice 3c has
higher percentages of high-LCE sequences for p = 3 and m = 3, 4. Within the speci-
fied set of p and m values, the percentage of the high-LCE Choice 1 sequences varies
in the interval between 30% and 48%; and this percentage decreases with increasing p.
Besides, at most 44% of the sequences generated by Choice 2 have LCE ≥ 0.95, cor-
responding to the case of p = 3, m = 5. This choice seems more inefficient for higher
values of p, at which smaller percentages of high-LCE sequences are produced. Addi-
tionally, Choice 3a hardly generates sequences with LCE ≥ 0.95, and corresponding
percentages do not exceed 6%. Like Choice 3a, Choice 3b also rarely generates se-
quences with LCE ≥ 0.95. The case of p = 3, m = 4 has 16% high-LCE sequences,
which is the highest percentage for this choice. On the other hand, Choice 3c produces
more sequences with high LCE (≥ 0.95) than Choices 3a and 3b. Hence, using Hi

polynomials with higher degrees than one (as in Choice 3a) or two (as in Choice 3b)
seems to increase the linear complexity efficiency. Especially for p = 3, Choice 3c
seems more efficient than Choice 1 for p = 3 and m = 3, 4 as well.
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Table 3.3: Percentage of sequences with linear complexity efficiency LCE ≥ 0.95, found over all
possible values of X, G, H, ai, gm and hm

Case p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

1 3 2 47 27 0 0 22

2 3 3 42 34 5 5 57

3 3 4 30 28 0 16 48

4 3 5 48 44 1 5 41

5 5 2 46 10 6 6 11

6 5 3 44 25 6 7 7

7 7 2 40 16 6 6 4

8 7 3 41 13 1 4 4

9 11 2 34 6 1 1 1

10 13 2 30 10 2 2 3

3.7.2 Corresponding Vector Periods

The other interesting question is “Which vector periods are achieved by the sequences
having high LCE values?”. The answer of the question is presented in Table 3.4. It
shows the vector periods of sequences with linear complexity efficiencies greater than
or equal to 0.95, found over all possible values of X, G, H, ai, gm, and hm.

It can be observed from Table 3.4, that all five polynomial choices produce less se-
quences with LCE ≥ 0.95 at high vector periods than at low vector periods.

3.8 Conclusion

The exhaustive search of LCE values over all possible initial conditions for p = 3
with m = 3, 4, 5, p = 5, 7 with m = 2, 3, and p = 11, 13 with m = 2 shows that
none of Ostafe’s multivariate polynomial iterations generate sequences having good
randomness properties. For all polynomial choices (1, 2, 3, 3b and 3c), Table 3.2
shows that LCE values achieved by the sequences with PE ≥ 0.5 are decreasing,
while the field size p and the vector size m are increasing. We observe from Table 3.3
that Choice 1 seems to generate sequences with LCE’s ≥ 0.95 more efficiently than
Choices 2, 3a and 3b. Choice 3a and 3b hardly generate sequences with LCE ≥ 0.95,
and corresponding percentages do not exceed 6% and 16%, respectively. We also
observe from Table 3.4 that all five polynomial choices produce less sequences with
LCE ≥ 0.95 at high vector periods than at low vector periods and an increase in Tv
results in serious loss of randomness.
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Table 3.4: Vector periods of sequences with linear complexity efficiency LCE ≥ 0.95, found over all
possible values of X, G, H, ai, gm and hm

Case p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

1 3 2 1, 2,
3, 4

1, 2,
3, 4 - - 2

2 3 3
1, 2,
3, 4,

6

1, 2,
3, 4,
8, 9

1, 2 1, 2 1, 2,
6

3 3 4

1, 2,
3, 4,
6, 8,
12

1, 2,
3, 4,
8, 9,
27

- 1, 2,
6

1, 2,
6

4 3 5

1, 2,
3, 4,
6, 8,
9, 12

1, 2,
3, 4,
8, 9,

16, 27,
81

1, 2 6 2, 6

5 5 2
1, 2,
4, 5,

8

1, 2,
4, 5 1, 2 1, 2 1, 2,

4

6 5 3
1, 2,
4, 5,
8, 10

1, 2,
4, 5,

8, 10,
16, 20,
32, 40

1, 2,
4

1, 2,
4

1, 2,
4

7 7 2

1, 2,
3, 4,
6, 7,
12

1, 2,
3, 4,
6, 7,
12

1, 2,
3

1, 2,
3

1, 2,
3

8 7 3

1, 2,
3, 4,
6, 7,
8, 9,

12, 14,
18, 21,

36

1, 2,
3, 4,
6, 7,
8, 9,

12, 14,
18, 21,
24, 36,
42, 49,

72

1, 2,
3

1, 2,
3, 6

1, 2,
3, 6

9 11 2

1, 2,
4, 5,

10, 11,
20

1, 2,
4, 5,

10, 11
1, 2 1, 2 1, 2

10 13 2

1, 2,
3, 4,
6, 8,

12, 13,
24

1, 2,
3, 4,
6, 8,

12, 13,
24

1, 2,
3

1, 2,
3

1, 2,
3, 4
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CHAPTER 4

LINEAR COMPLEXITY ANALYSIS OF THE LARGEST
PERIOD SEQUENCES

4.1 Introduction

In this chapter we fix our attention to the largest period sequences that can be produced
for a given polynomial choice, at a specific p and m. All computed LCE’s, and their
average, maximum, minimum values are found within these sets of the largest period
sequences. Section 4.2 investigates the variation of the LCE values versus the field size
p. In Section 4.3, we examine the variation of LCE values in a field with p = 3, versus
the vector size m. The remaining sections are devoted to Choice 4, which always
produces maximum-length sequences of vector period pm. After reviewing the details
of Choice 4 in Section 4.4, we compute the linear complexity of Choice 4 sequences
using the Berlekamp-Massey algorithm and also present an example that demonstrates
the poor randomness of the sequences produced by Choice 4.

4.2 LCE’s Obtained at the Largest Tv of the Corresponding Choices versus the
Field Size p

In order to observe the variation of the linear complexity efficiency of the largest period
sequences versus the field size p, we consider p values up to 13 setting the vector size
m equal to 2. For each of the polynomial choices 1, 2, 3a, 3b and 3c stated in Table
1.1, we exhaustively produce all possible sequences with the largest vector period Tv,
and then use the Berlekamp-Massey algorithm to compute the linear complexities of
all sequences in this set.

Figure 4.1 shows the variation of minimum, average and maximum linear complexity
efficiencies attained within the set of the largest period sequences of the corresponding
polynomial choices (1, 2, 3a, 3b and 3c) versus the field size 3 ≤ p ≤ 13 with the
number of polynomials, m = 2.
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As can be seen from Figure 4.1, as the field size p increases from 3 to 13, all five poly-
nomial choices generate sequences with lower and still lower LCE values. Although
for the vector size m = 2, Choice 1 sequences seem slightly better than Choice 2 se-
quences, which are much better than Choice 3 sequences; yet none of the LCE values
in these figures exceed 0.95, except that of Choice 1 for p = 3. Related tables are
presented in Appendix E.

4.3 LCE’s Obtained at the Largest Tv of the Corresponding Choices versus the
Vector Size m for p = 3

It is also of interest to find the variation of LCE values while the vector size m is
increasing. In order to investigate this subject, we fix the field size p to a small value 3,
to diminish the computational cost so that the vector sizem can be increased as much as
possible. For each m, we exhaustively produce all possible sequences with the largest
vector period Tv, and then use the Berlekamp-Massey algorithm to compute the linear
complexities of all sequences in this set. We have been able to increase the vector size
m up to 7, 5, 13, 9 and 9 for Choices 1, 2, 3a, 3b and 3c, respectively. The differences
in the attained upper limits of m are related to the complexity of corresponding choice
of polynomial iterations, Choice 3a being the simplest of all, it can be used with the
highest m for evaluation of the LCE’s within the set of largest period sequences found
exhaustively. Corresponding values of minimum, average and maximum LCE’s are
drawn in Figure 4.2 for the five polynomial choices and the computation times are
given in Appendix A.

Figure 4.2 (a) indicates that the LCE values of the largest period sequences generated
by Choice 1 in F3 are at most 0.67 for odd m, but they can reach the highest point
(LCE ≥ 0.95) when m is even. However, it is still not possible to recommend the
largest period sequences of Choice 1 as sufficiently random sequences, because of the
minimum LCE’s of the set that may be as small as 0.6. Another observation is from
Figure 4.2 (b), showing that LCE values of the largest period sequences generated by
Choice 2 in F3 are 0.67 that seems independent of m. On the other hand, Figure 4.2
(c) points out that LCE values of the largest period sequences generated by Choice
3a in F3 can be higher when m is a power of p = 3. However, they are decreasing
dramatically as m grows; and relatively high values at m = 3 or 9 are not sufficient
to declare this set of sequences as a reliable source of pseudo-random noise generator
either; especially considering their LCE minima that remains around 0.2 independently
ofm. Figures 4.2 (d) and (e) designate that the LCE performances of the largest period
sequences of Choices 3b and 3c in F3 are quite similar, they seem better than that
of Choice 3a; however, because of their minimum LCE curves around 0.4, they are
also not recommendable as pseudo-random sequences. Related tables are presented in
Appendix E.

Overall comparison of the LCE performances in F3, among the largest period se-
quences of the five polynomial choices given in Table 1.1 is in favor of Choice 1;
however one can still not say that one of the largest period Choice 1 sequences chosen
at random has sufficiently high LCE, since it may be as low as 0.6.
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(a) Minimum

(b) Average

(c) Maximum

Figure 4.1: Variation of the: (a) minimum, (b) average and (c) maximum LCE’s obtained at the largest
Tv of the corresponding choice versus p, at m = 2
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(a) Choice 1 (b) Choice 2

(c) Choice 3a (d) Choice 3b

(e) Choice 3c

Figure 4.2: Minimum, average and maximum LCE obtained at the largest Tv of: (a) Choice 1, (b)
Choice 2, (c) Choice 3a, (d) Choice 3b and (e) Choice 3c, versus m for p = 3
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4.4 Linear Complexity of Maximum-Period Sequences

In this section, we investigate the randomness of maximum-period sequences gener-
ated by Choice 4, which is the last polynomial choice [20] shown in Table 1.1. Our
measure of randomness is the linear complexity computed by the Berlekamp-Massey
algorithm.

4.4.1 Generating Maximal Period Sequences with Choice 4

In the general description given by (1.3) of multivariate polynomial iterations,

F1(X) = X1G1(X2, . . . , Xm) +H1(X2, . . . , Xm),

F2(X) = X2G2(X3, . . . , Xm) +H2(X3, . . . , Xm),

...

Fm−1(X) = Xm−1Gm−1(Xm) +Hm−1(Xm),

Fm(X) = gmXm + hm,

Choice 4 generates the maximum-period sequences that have the maximum period
efficiency, PE = T/pm = 1, by substituting

Gi(Xi+1, . . . , Xm) = 1, gm = 1

and

Hi(Xi+1, . . . , Xm) = Xp−1
i+1 . . . Xp−1

m , hm 6= 0

for

i = 1, . . . ,m− 1.

Hence, the iterations of Choice 4 sequences are given by

F1(X) = X1 +Xp−1
2 . . . Xp−1

m ,

F2(X) = X2 +Xp−1
3 . . . Xp−1

m ,

... (4.1)

Fm−1(X) = Xm−1 +Xp−1
m ,

Fm(X) = Xm + hm.
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4.4.2 Linear Complexity Efficiency Values of Choice 4 Sequences

LCE (L/T ) values of the maximum-period sequences generated by Choice 4 are com-
puted and tabulated in Table 4.1 for field sizes 3 ≤ p ≤ 31 and vector sizes 2 ≤ m ≤ 7
found over all possible initial values X = (X1, . . . , Xm), and hm (number of all pos-
sible initial values is equal to pm(p− 1)).

One can observe from Table 4.1 that the LCE values of the sequences generated by
Choice 4 are very poor and equal to the fixed value given in Proposition 4.1.

Proposition 4.1. Linear complexity L of a sequence generated by Choice 4 for given
m and p, is equal to m(pm−1 + 1) within the set 2 < p ≤ 31 considered in this work.

On the other hand, the efficiency decreases while p and m are increasing, since L/T =
m(pm−1 + 1)/mpm = (p−1 + p−m). For p = 2, LCE = L/T is worse than (p−1 +
p−m), and it is approximately equal to p−1 as the linear complexities given in Table 4.2
indicate.

Moreover, the minimal polynomials of these sequences found by using the Berlekamp-
Massey algorithm are observed to obey the general form given in Proposition 4.2.

Proposition 4.2. Minimal polynomials of Choice 4 sequences for given m, p and L,
are in the form c(x) = 1 + (p − 1)xm + (p − 1)xL−m + xL in terms of m, p and L
within the set 2 < p ≤ 31 considered in this work.

4.4.3 Example Sequences Generated by Choice 4 with Poor Randomness

Although Choice 4 is proposed as a method to obtain maximum length sequences with
vector period pm, one can produce simple examples for a field size p = 2 with poor
randomness properties using Choice 4. In the general description given by Equation
(1.3) of multivariate polynomial iterations,

F1(X) = X1G1(X2, . . . , Xm) +H1(X2, . . . , Xm),

...

Fm−1(X) = Xm−1Gm−1(Xm) +Hm−1(Xm),

Fm(X) = gmXm + hm,

with

Gi , Hi ∈ Fp[Xi+1, . . . , Xm], i = 1, . . . ,m− 1

and

gm, hm ∈ Fp, gm 6= 0. (3)
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Table 4.1: Linear complexity efficiency values of the maximum-period sequences

p m Count Tv T L LCE

3 5 486 243 1215 410 0.34

3 6 1458 729 4374 1464 0.33

3 7 4374 2187 15309 5110 0.33

5 3 500 125 375 78 0.21

5 4 2500 625 2500 504 0.20

5 5 12500 3125 15625 3130 0.20

7 3 2058 343 1029 150 0.15

7 4 14406 2401 9604 1376 0.14

11 2 1210 121 242 24 0.10

11 3 13310 1331 3993 366 0.09

13 2 2028 169 338 28 0.08

13 3 26364 2197 6591 510 0.08

17 2 4624 289 578 36 0.06

17 3 78608 4913 14739 870 0.06

19 2 6498 361 722 40 0.06

19 3 123462 6859 20577 1086 0.05

23 2 11638 529 1058 48 0.05

23 3 267674 12167 36501 1590 0.04

29 2 23548 841 1682 60 0.04

29 3 682892 24389 73167 2526 0.03

31 2 28830 961 1922 64 0.03

31 3 893730 29791 89373 2886 0.03
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Table 4.2: Linear complexity efficiency values of the maximum-period sequences for p = 2

m Count Tv T L LCE

2 4 4 8 4 0.500

3 8 8 24 12 0.500

4 16 16 64 32 0.500

5 32 32 160 82 0.513

6 64 64 384 190 0.495

7 128 128 896 448 0.500

8 256 256 2048 1024 0.500

9 512 512 4608 2304 0.500

10 1024 1024 10240 5120 0.500

11 2048 2048 22528 11265 0.500

12 4096 4096 49152 243 0.500

Table 4.3: An example of the sequences generated by Choice 4

p m F(0), . . . ,F(Tv)

2 2 (0 0), (0 1), (1 0), (1 1)

2 3 (0 0 0), (0 0 1), (0 1 0), (0 1 1), (1 0 0), (1 0 1), (1 1 0), (1 1 1)

Choice 4 is obtained by substitutingGi(Xi+1, . . . , Xm) = 1, gm = 1 andHi(Xi+1, . . . , Xm) =
Xp−1

i+1 . . . X
p−1
m , hm 6= 0.

In a finite field with 2 elements, Hi(Xi+1, . . . , Xm) = Xp−1
i+1 . . . X

p−1
m = Xi+1 . . . Xm,

hence for p = 2 and hm = 1, polynomial iterations with Choice 4 are reduced to:

F1(X) = X1 +X2 . . . Xm, . . . , Fm−1(X) = Xm−1 +Xm, Fm(X) = Xm + 1;

more specifically for m = 2 to F1(X) = X1 + X2, F2(X) = X2 + 1, and for m = 3
to F1(X) = X1 +X2X3, . . . , F2(X) = X2 +X3, F3(X) = X3 + 1.

Now taking the initial state X as the all-zero vector, the sequences given in Table 4.3
are generated. Vector sequences in Table 4.3 clearly exhibit a non-random behavior,
since they are ordered lexicographically.
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4.5 Conclusion

Ostafe’s multivariate iterations (1.3) ([18]-[25]) can be used with different polynomial
choices (see Table 1.1). For all polynomial choices considered in this work (and in
the literature that we have encountered), we have evaluated the performance of the
largest period sequences exhaustively, in terms of the efficiency of linear complexity,
as computed by the Berlekamp-Massey algorithm. The result is not encouraging, be-
cause the best of all choices seems to be Choice 1 that is still not good enough for
recommendation as a PRNG.

Choice 4 seems to be the least random choice. Because, for the sequences generated
by Choice 4 [20] that are known to have the maximum period efficiency PE = 1, we
obtain extremely low linear complexity values. Their linear complexity efficiency is
equal to (p−1 +p−m) for p > 2; hence it decreases with increasing p and m. For p = 2,
the LCE of a sequence generated by Choice 4 is worse than (p−1 + p−m), and it is
approximately equal to p−1.
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CHAPTER 5

LINEAR COMPLEXITY ANALYSIS OF SEQUENCES
GENERATED WITH RANDOM INITIAL VALUES

5.1 Introduction

In the previous chapters, periods and linear complexities of Ostafe’s multivariate poly-
nomial iterations (1.3) have been examined exhaustively over all possible initial values.
In this chapter, we investigate the linear complexities of these sequences when the ini-
tial values are chosen randomly as in cryptographic applications. We only consider
Choice 1, 2 and 3a. Choice 3b and 3c are not included because of their resemblance
to Choice 3a. Choice 4 [20] is not included for two reasons: i) the period of Choice 4
sequences is fixed as T = mpm, which is not a flexible value, ii) Choice 4 is known to
have the poorest LCE among other choices as the results of Section 4.4 indicate.

In Section 5.2, we consider Choice 1, 2, 3a and MATLAB’s randi(.) function 1, and
for each choice we compute the average LCE values of 100 sequences having similar
periods. In Section 5.3 and 5.4, we investigate the effect of the field size p and the
number of polynomialsm respectively on the LCE values, again over the sets with 100
similar-period sequences. In Section 5.5, we omit the constraint of similar periods and
consider 100 sequences with variable periods. Then we analyze the effect of the field
size p and the number of polynomials m on the linear complexity.

5.2 Randomness Comparison with MATLAB’s randi(.) Sequence

In order to investigate the randomness properties of sequences generated by (1.3), we
consider fixed length sequences within the range T ±αT produced by Choice 1 ([21]),
2 ([18]) and 3a ([19]) (with our choice of Hi = Xi + 1 shown in Table 1.1), as well as
the reference method, MATLAB’s randi(.) function.

1 MATLAB (Matrix Laboratory) is a multi-paradigm numerical computing environment, widely used in math-
ematics and engineering; and enables the user to execute mathematical operations easily and efficiently. It has used
George Marsaglia’s Ziggurat algorithm [13] developed by George Marsaglia of Florida State University in order to
produce pseudo-random numbers [15].
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(a) p = 3

(b) p = 13

Figure 5.1: Randomness comparison of Ostafe’s and MATLAB’s randi(.) sequences for (a) p = 3, (b)
p = 13, in terms of the LCE as defined in this work by “linear complexity L divided by the period T of
the sequence” (For each T , the average LCE is computed over 100 sequences.)

For each polynomial choice and the field characteristic 3 ≤ p ≤ 13, we pick up a
period T from the set T ∈ {500, 600, 700, 800, 900, 1000} (and from the set T ∈
{500, 800, 1000} for 17 ≤ p ≤ 31 as given in Appendix D) and generate 100 se-
quences having periods within the range T ± 0.05T , by assigning random values to
the remaining parameters (i.e., the number of polynomials m, X = (X1, . . . , Xm),
G = (G1, . . . , Gm−1), H = (H1, . . . , Hm−1), ai, gm and hm) of the related polyno-
mial choice. We compute the linear complexity L of each sequence, and find how
close it is to the period by computing its Linear Complexity Efficiency (LCE), L/T .
After producing 100 such sequences for a given p and T , compute the average linear
complexity efficiency (L/T ) over 100 sequences in each period group.

In Appendix F we repeat this experiment for a wider range of field sizes as well; i.e.,
17 ≤ p ≤ 31 and periods T ∈ 500, 800, 1000. Figure 5.1(a) and (b) depict the average
LCE values for p = 3 and 13, found over 100 sequences at each T . The results for
other field sizes 5 ≤ p ≤ 11 are also given in Appendix F. We also draw the linear
complexity profiles (see Definition 3.3) of the generated sequences in Appendix J.

One can observe from Figure 5.1 that the average LCE values of the reference se-
quences generated by MATLAB look perfectly random, with average LCE almost
equal to 1. On the other hand, Ostafe’s sequences, Choice 1 and 2, have lower LCE
values for all T ’s in the given set. Randomness properties of Choice 3a is the worst
among the first three choices of Table 1.1, since its average LCE does not exceed 0.4.
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(a) p = 3

(b) p = 13

Figure 5.2: Percentage of sequences with LCE ≥ 0.95 for (a) p = 3, (b) p = 13, using three choices

Although the average LCE values of all choices given in Table 1.1 are small, some of
these random sequences may seldomly yield high LCE’s as well. In Figure 5.2, we plot
the percentage of sequences with LCE ≥ 0.95 for p = 3 and 13, over the generated
100 sequences.

Figure 5.2 shows that for field sizes p = 3 and 13, Choice 1 and 2 generate highly ran-
dom sequences with low percentages (not reaching 40%). On the other hand, Choice
3a is not able to generate them at all for both p = 3 and 13. The results for other field
sizes 5 ≤ p ≤ 11 given in Figure F.2 give similar information.

5.3 Effect of the Field Size p for Similar Period Sequences

In order to understand whether the low LCE values of Choice 1, 2 and 3a sequences
can be improved by increasing the field characteristic p, experiments are performed for
each polynomial choice by averaging over a set of 100 sequences that have the periods
T ± 0.05T , where T = 500, 800 or 1000. Average LCE values of the 100 sequences
generated by the three polynomial choices are sketched in Figure 5.3 for 3 ≤ p ≤ 31.

It is observed from Figure 5.3 that increasing the field size p does not improve the LCE
values of the random-initial-value sequences generated by Choice 1, 2 and 3a for the
given T and p sets.
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(a) T = 500

(b) T = 800

(c) T = 1000

Figure 5.3: LCE values for a sequence of length (a) T = 500, (b) T = 800, (c) T = 1000, in variable
field sizes, 3 ≤ p ≤ 31 using the three choices given in Table 1.1
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Table 5.1: LCE values of the sequences generated by Choice 1 for p = 3, T = 1000, m = 9

(X1, . . . , X9) (h1, . . . , h9) g9 LCE

(2,2,2,0,0,1,1,1,1) (0,0,2,0,1,1,1,1,1) 1 0.19

(0,2,0,2,1,1,1,1,2) (2,1,1,0,1,1,0,0,0) 1 0.58

(0,2,1,2,0,2,1,1,0) (1,0,0,1,1,0,0,2,1) 1 0.61

(0,1,1,1,1,2,2,1,0) (1,1,1,0,2,1,0,2,1) 2 0.62

(2,0,1,1,1,1,2,2,2) (1,1,1,1,0,2,1,0,0) 2 0.63

(2,2,1,2,1,1,1,0,1) (1,0,2,1,0,0,2,1,0) 1 0.64

(0,1,0,2,1,2,2,2,0) (2,2,1,2,1,0,0,2,0) 1 0.65

(2,1,1,0,1,2,1,2,2) (2,1,2,1,2,1,0,0,1) 2 0.66

(0,1,1,1,2,1,1,2,1) (0,1,1,1,0,0,2,1,0) 1 0.67

(2,0,2,1,2,1,1,1,1) (1,1,0,0,2,1,1,1,0) 1 0.68

(2,1,1,1,0,1,2,1,2) (0,1,1,2,1,2,1,0,0) 2 0.83

(1,1,1,2,2,1,2,1,1) (1,2,2,1,2,1,0,1,1) 2 0.88

(0,1,2,1,2,1,2,1,1) (2,2,2,1,0,0,2,1,2) 2 0.90

(0,1,0,2,2,1,2,1,1) (0,1,2,0,0,2,1,1,1) 1 0.98

(0,1,1,0,2,2,2,2,1) (1,0,2,1,1,1,1,1,0) 1 0.99

(0,1,2,1,0,2,0,2,2) (1,2,0,2,1,1,1,1,1) 1 1.00

5.4 Effect of the Number of Polynomials m for Similar Period Sequences

The topic of this section is to see the effect of the number of polynomials m on the
LCE values of the random-initial-value sequences produced by the three choices given
in Table 1.1. In order to investigate the effect of m for the first three choices in Table
1.1, we generate ternary (p = 3) sequences of period T = 1000 ± 50 and tabulate
the LCE values of the ones having the same m. For instance, LCE values of Choice
1 sequences generated with m = 9 polynomials are given in Table 5.1. The fact that
the LCE values for the same m occupy a wide range between 0.19 and 1, indicates
the existence of very little correlation between these two parameters, namely m and
(LCE = L/T ).

Similarly, Table 5.2 presented for Choice 2 proves that if one desires a sequence of
length T = 1000±50,m = 12 polynomials may generate a ternary sequence having an
LCE between 0.66 and 1. As for Choice 3a, Table 5.3 shows that m = 19 polynomials
iterated according to Equation (1.3) produce ternary sequences of length T = 1000±50
with LCE values ranging between 0.30 and 0.37.
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Table 5.2: LCE values of the sequences generated by Choice 2 for p = 3, T = 1000, m = 12

(X1, . . . , X12) (h1, . . . , h12) (a1, . . . , a12) g12 LCE

(2,2,1,2,0,1,0,0,2,1,1,1) (2,2,1,1,0,1,1,0,1,1,1,1) (2,2,2,2,2,2,2,2,2,2,2) 1 0.66

(1,0,2,2,0,1,0,0,1,1,0,0) (0,0,1,0,0,0,0,2,2,2,2,0) (2,2,2,2,2,2,2,2,2,2,2) 2 0.67

(1,0,0,1,2,0,1,2,1,2,1,0) (1,0,0,1,2,0,2,0,2,1,2,1) (2,2,2,2,2,2,2,2,2,2,2) 1 1.00

Table 5.3: LCE values of the sequences generated by Choice 3a for p = 3, T = 1000, m = 19

(X1, . . . , X19) (g1, . . . , g19) h19 LCE

(0,2,1,0,1,2,2,2,2,0,2,1,2,0,2,2,1,2,1) (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) 2 0.30

(1,2,0,2,1,0,0,2,2,1,0,2,1,1,2,0,1,0,0) (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) 0 0.31

(2,1,2,0,1,2,1,2,1,2,0,0,0,1,0,0,0,2,1) (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) 2 0.33

(0,2,1,0,0,0,1,0,2,0,0,1,2,2,2,0,0,1,2) (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) 0 0.35

(1,0,0,1,1,1,0,1,2,1,2,0,0,2,0,2,2,1,0) (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2) 1 0.37

Table 5.4 shows that 42% of the generated Choice 3a sequences with T = 1000±50 use
19 polynomials, and the remaining 58% is produced with 18 polynomials; all resulting
in poor LCE values varying in a narrow range of [0.26, 0.37]. The slight increase in the
average LCE values corresponding to the slight increase in the number of polynomials
from 18 to 19 is not a sufficient indicator to claim some correlation between m and
LCE parameters.

It should be noted that the data in Table 5.4 is the instance of the general experiment
and the remaining data given in Table H.1 to H.9 has similar characteristics; i.e., LCE
values of the sequences generated by Choice 3a vary in a narrow range.

5.5 Effect of p and m for Variable Period Sequences

In the previous two sections, we have computed average LCE’s over 100 sequences
with similar periods. In order to see the effect of the field size p and the vector size m
within the sets of sequences having variable periods, we perform one more analysis:
we generate 100 sequences with random initialization for three choices, p andmwhere
3 ≤ p ≤ 43 and 2 ≤ m ≤ 4, without fixing the periods and we compute the average

Table 5.4: LCE values of the sequences generated by Choice 3a for p = 3, T = 1000

m Minimum Maximum Average Count

18 0.26 0.33 0.32 58

19 0.30 0.37 0.36 42
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LCE in each set. For avoiding the shortest-period sequences which are practically
meaningless, we only consider vector periods Tv ≥ p−1. In each set of 100 sequences,
percentages of those with LCE ≥ 0.95 and corresponding period efficiencies are given
in Appendix G, where one can see that a sequence with high LCE and PE is not possible
to find.

In Figure 5.4, we depict the average LCE’s of the mentioned three choices versus the
field size p for three different vector sizes m. We observe no clear dependence on m,
but the average LCE values decrease with increasing p in general. One may notice that
for m > 2 the average LCE’s of Choice 1 sequences seem a little more promising; i.e.,
for m = 3 average LCE remains around 0.7 and for m = 4 it does not fall below 0.75
with increasing p. However, in generating random sequences it is necessary to obtain
a high-LCE sequence in each trial, so we also draw the minimum LCE values within
the same 100-element sets in Figure 5.5. Minimum LCE’s clearly indicate that Choice
1 is also not preferable as a PRNG, since it may produce sequences having LCE’s as
small as those of the other choices.

5.6 Conclusion

We have compared the randomness of the sequences generated with random initial-
ization by Choice 1, 2 and 3a of Ostafe’s polynomial iterations (1.3), as well as the
reference method MATLAB’s randi(.) function, in terms of their linear complexities.
Within each set of 100 sequences produced by random initialization, we have observed
that none of the Ostafe’s polynomial choices are able to produce sequences as random
as those generated by MATLAB’s randi(.) function. With very low probabilities,
Choice 1 and 2 can generate sequences having high linear complexities but the cor-
responding period efficiencies are quite low. On the other hand, Choice 3a does not
generate any sequence with high linear complexity (L/T ≥ 0.95) at all.

The number of polynomials; i.e., the vector sizem has no noticeable effect on the linear
complexities of Ostafe’s sequences. The other observation is that increasing the field
size, p, decreases the minimum linear complexity efficiencies for all three choices.
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(a) m = 2

(b) m = 3

(c) m = 4

Figure 5.4: Variation of the average LCE’s of the sequences generated by random initialization of the
corresponding choice versus p at: (a) m = 2, (b) m = 3, (c) m = 4
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(a) m = 2

(b) m = 3

(c) m = 4

Figure 5.5: Variation of the minimum LCE’s of the sequences generated by random initialization of the
corresponding choice versus p at: (a) m = 2, (b) m = 3, (c) m = 4
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CHAPTER 6

CONCLUSION

In this study, we analyze the randomness properties of the scalar sequences of length
T , obtained from the vector sequences of Ostafe and Shparlinski ([18]-[25]) generated
in Fp by the m-variate m-polynomial recursive method (1.3). Our analysis depends on
two basic approaches: the period and linear complexity distributions of the produced
sequences. In order to measure the potential of Ostafe’s polynomial iterations as a
candidate for a PRNG, we define two parameters; namely, the “period efficiency (PE)”
and the “linear complexity efficiency (LCE)”. These parameters are computed by nor-
malizing the period and the linear complexity with respect to their maximum possible
values, T and mpm respectively; hence, they both take values in the interval [0,1].

Firstly, we have performed an exhaustive search in order to find the distribution of the
periods generated by the five suggested choices: Choice 1 [21], Choice 2 [18] and
Choice 3a, 3b, 3c [19]. Our exhaustive search for the distribution of the vector period
Tv, in the fields of size p = 3 with 2 ≤ m ≤ 5, p = 5, 7 with m = 2, 3, and p = 11, 13
with m = 2, shows that there is no maximum-period sequence for Choice 1, 3a, 3b
and 3c. Only Choice 2 can generate maximum-period sequences with vector period
pm, however their existence probability is less than 3% if p > 3.

Secondly, we have executed an exhaustive search for investigating the linear complex-
ities of the sequences, as computed by the Berlekamp-Massey algorithm. We observe
that Choice 1 generates sequences with LCE’s ≥ 0.95 more efficiently than Choices
2, 3a and 3b. Still, the percentage of Choice 1 sequences with LCE ≥ 0.95 is less than
48% and corresponding PE’s are less than 0.44. We also notice that all five polynomial
choices produce less sequences with LCE ≥ 0.95 at high vector periods than at low
vector periods.

Thirdly, we have evaluated the LCE performance of the largest period sequences ex-
haustively. Similar to the previous results, Choice 1 seems to be the best in terms of the
LCE; however, the corresponding PE’s are not satisfactory. On the other hand, Choice
4 [20], which is known to have the maximum period efficiency PE = 1, has extremely
low linear complexity values. The corresponding linear complexity efficiency is equal
to (p−1 + p−m) for p > 2; hence it decreases with increasing p and m. For p = 2,
the LCE of a sequence generated by Choice 4 is worse than (p−1 + p−m), and it is
approximately equal to p−1.
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Finally, getting rid of the exhaustive search and using random initialization instead;
we have been able to increase the values of p and m, and compared the randomness of
Ostafe’s sequences with the reference method, MATLAB’s randi(.) function. We have
observed that none of the Ostafe’s polynomial choices are able to produce sequences
as random as those generated by MATLAB’s randi(.) function. The number of poly-
nomials; i.e., the vector size m has no noticeable effect on the linear complexities of
Ostafe’s sequences. The other observation is that increasing the field size, p, decreases
the minimum linear complexity efficiency in general. We have also seen that with very
low probabilities, Choice 1 and 2 can generate sequences having high linear complex-
ities. However, these results are not encouraging enough to propose any of Ostafe and
Shparlinski’s choices as a PRNG.

As a result of this study, one can say that the sequences generated by the multivariate
polynomial iterations method with six mentioned choices do not satisfy the desired
randomness properties, with respect to the period and the linear complexity.
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APPENDIX A

COMPUTATION TIMES OF THE EXHAUSTIVE SEARCHES
FOR FIVE CHOICES

In this appendix, we aim to present the dependence of the required computation times
on the parameters p and m. Table A.1 shows the computation times of the exhaus-
tively calculated period efficiency (PE) and linear complexity efficiency (LCE) of the
sequences generated by five choices for some of the considered cases. All computa-
tions are performed via Intel(R) Xeon(R) CPU 3.70 GHz.

As can be seen from A.1, Choice 2 is the most time consuming one in all polynomial
choices.
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Table A.1: Computation times (in seconds) of the exhaustive PE and LCE searches for five choices

p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

3 2 0.26 0.29 0.11 0.13 0.17

3 3 2.00 3.48 0.13 0.17 0.21

3 4 29.02 114.70 0.63 1.02 0.94

3 5 379.79 3984.53 2.83 5.23 5.60

3 6 4406.71 - 12.04 38.08 26.56

3 7 49014.60 - 49.78 245.55 140.12

3 8 - - 178.65 2348.80 913.13

3 9 - - 703.67 15380.50 6005.73

3 10 - - 3812.05 - -

3 11 - - 14246.13 - -

3 12 - - 56638.10 - -

3 13 - - 166639.09 - -

5 2 4.18 11.85 1.67 1.46 1.90

5 3 193.05 2624.78 37.97 44.44 61.90

7 2 31.88 138.52 12.59 12.45 16.92

7 3 3499.86 105535.16 829.78 1075.83 1580.58

11 2 510.69 4550.57 188.73 211.84 316.67

13 2 1313.98 12515.75 489.52 564.15 866.52
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APPENDIX B

CHOICE 1 SEQUENCES OVER F2

Since Choice 2, 3a, 3b and 3c do not work over F2 and Choice 1 can only generate
very short sequences with Tv ≤ 2, we choose the field size p > 2 for all analyses in
this study. Proposition B.1 is concerned with the sequences generated by polynomials
of Choice 1 over F2.

In the general description given by (1.3) of multivariate polynomial iterations,

F1(X) = X1G1(X2, . . . , Xm) +H1(X2, . . . , Xm),

...

Fm−1(X) = Xm−1Gm−1(Xm) +Hm−1(Xm),

Fm(X) = gmXm + hm,

Choice 1 generates the sequences by substituting

Gi(Xi+1, . . . , Xm) = Xi+1,

and

Hi(Xi+1, . . . , Xm) = hi

for i = 1, ...,m− 1.

Proposition B.1. The vector period Tv of the sequences generated by Choice 1 is less
than or equal to 2 for p = 2.

Proof. The vector period T
(m)
v of the system (1.3) with m polynomials is equal to

LCM(TF1 , ..., TFm) where TFi
is the vector period of each sequence generated by Fi

for i = 1, ...,m. Let m = 2, then g2 is equal to 1.
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F
(0)
1 = X1 and F (0)

2 = X2,

F
(1)
1 = X1X2 + h1 and F (1)

2 = X2 + h2,

F
(2)
1 = (X1X2 + h1)(X2 + h2) + h1 = X1X

2
2 + h1X2 + h2X1X2 + h1h2 + h1 =

X1X2 + h1X2 + h2X1X2 + h1h2 + h1 and F (2)
2 = X2 + h2 + h2 = X2,

F
(3)
1 = (X1X2 +h1X2 +h2X1X2 +h1h2 +h1)X2 +h1 = X1X

2
2 +h1X

2
2 +h2X1X

2
2 +

h1h2X2 + h1X2 + h1 = X1X2 + h1X2 + h2X1X2 + h1h2X2 + h1X2 + h1 and F (3)
2 =

X2 + h2,

F
(4)
1 = (X1X2 + h1X2 + h2X1X2 + h1h2X2 + h1X2 + h1)(X2 + h2) + h1 = X1X

2
2 +

h2X1X
2
2 + h1h2X

2
2 + h1X2 + h2X1X2 + h22X1X2 + h1h

2
2X2 + h1h2 + h1 = X1X2 +

h2X1X2 + h1X2 + h1h2 + h1 and F (4)
2 = X2 + h2 + h2 = X2

i.e. F (2)
1 = F

(4)
1 and F (2)

2 = F
(4)
2 . Hence, Tv ≤ 2.

T 2
v = LCM(TF1 , TF2) ≤ 2 is proved. It implies that TF1 ≤ 2 and TF2 ≤ 2.

Assume Tv ≤ 2 for any m, we will show that Tv ≤ 2 for m+ 1.

T
(m)
v = LCM(TF1 , TFm)

For m = 2 we proved that TF2 ≤ 2. So we only need to show that TF1 ≤ 2.

The period vector TF2 of F2 is less than or equal to 2. It implies that F (k)
2 = F

(k+2)
2 for

k = 0, 1, ....

In order to compute easily, let F (k)
2 = a when k is even and F (k)

2 = b when k is odd.

F
(0)
1 = X0,

F
(2)
1 = F

(0)
1 F

(0)
2 + h1,

F
(3)
1 = F

(1)
1 F

(1)
2 + h1,

F
(4)
1 = F

(2)
1 F

(2)
2 + h1.

F
(1)
1 = X1a+ h1,

F
(2)
1 = (X1a+ h1)b+ h1 = abX1 + bh1 + h1,

F
(3)
1 = (abX1+h1b+h1)a+h1 = a2bX1+abh1+ah1+h1 = abX1+abh1+ah1+h1,

F
(4)
1 = (abX1 + abh1 + ah1 + h1)b + h1 = ab2X1 + ab2h1 + abh1 + bh1 + h1 =
abX1 + bh1 + h1.

Thus, F (2)
1 = F

(4)
1 and TF1 ≤ 2.
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APPENDIX C

EXHAUSTIVE PERIOD ANALYSIS

Since the sequences with vector period Tv = 1 are equal to the initial vector X =
(X1, ..., Xm), their randomnesses do not depend on the method given by (1.3). As a
result, they are discarded in Chapter 3, while analyzing the linear complexities. Table
C.1 shows the percentage of sequences generated by five polynomial choices, whose
vector period Tv = 1 for the examined 10 cases, corresponding to p = 3 with 2 ≤ m ≤
5, p = 5, 7 with m = 2, 3 and p = 11, 13 with m = 2. As can be seen from Table C.1,
the sequences with Tv = 1 have the same percentages for Choice 2, 3a, 3b and 3c for
each case. The percentages of Choice 1 sequences with vector periods equal to 1 are
not the same as the other choices, but there exists not such big differences.

Additionally, the most common periods encountered in the overall space for each case
and the corresponding percentages are listed in Table C.2.

Finally, the vector periods found by exhaustive search for the examined 10 cases are
listed in Tables C.3-C.6. These four tables show that Choice 2 produces the largest set
of vector periods, which almost always contains Choice 1, 3a, 3b and 3c sets and some
extra values. On the other hand, Choice 3a, 3b and 3c have the smallest set of periods
in all polynomial choices.
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Table C.1: Percentage of sequences with vector period Tv = 1

Case p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

1 3 2 19 11 11 11 11

2 3 3 10 4 4 4 4

3 3 4 6 1 1 1 1

4 3 5 4 0.4 0.4 0.4 0.4

5 5 2 7 4 4 4 4

6 5 3 3 1 1 1 1

7 7 2 4 2 2 2 2

8 7 3 1 0.3 0.3 0.3 0.3

9 11 2 2 1 1 1 1

10 13 2 1 1 1 1 1

Table C.2: The most common vector periods of the corresponding polynomial choices

Case p m Choice 1 % Choice 2 % Choice 3a % Choice 3b % Choice 3c %

1 3 2 p 41 p− 1 33 p(p− 1) 67 p(p− 1) 67 p(p− 1) 44

2 3 3 p 38 p− 1 23 p(p− 1) 89 p(p− 1) 81 p(p− 1) 74

3 3 4 p 36 (p− 1)2 23 p2(p− 1) 67 p2(p− 1) 44 p(p− 1) 59

4 3 5 p 33 (p− 1)2 21 p2(p− 1) 89 p2(p− 1) 74 p2(p− 1) 49

5 5 2 p− 1 42 p(p− 1) 26 p− 1 60 p− 1 60 p− 1 46

6 5 3 p− 1 34 p(p− 1) 22 p(p− 1) 57 p(p− 1) 62 p(p− 1) 69

7 7 2 p− 1 33 p− 1 19 p− 1 62 p− 1 62 p− 1 56

8 7 3 p− 1 29 (p− 1)2/2 13 p− 1 50 p(p− 1) 47 p(p− 1) 63

9 11 2 p− 1 40 (p− 1)2/2 27 p− 1 68 p− 1 68 p− 1 64

10 13 2 p− 1 33 (p− 1)2/3 14 p− 1 64 p− 1 64 p− 1 61
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Table C.3: Vector periods obtained with two polynomials (m = 2)

p Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

3
1, 2,

3, 4

1, 2,

3, 4,

9

1, 2,

6

1, 2,

6

1, 2,

6

5

1, 2,

4, 5,

8, 10

1, 2,

4, 5,

8, 10,

16,20

1, 2,

4, 10,

20

1, 2,

4, 10,

20

1, 2,

4, 10,

20

7

1, 2,

3, 4,

6, 7,

9, 12,

14, 18,

21

1, 2,

3, 4,

6, 7,

9, 12,

14, 18,

21, 36,

49

1, 2,

3, 6,

14, 21,

42

1, 2,

3, 6,

14, 21,

42

1, 2,

3, 6,

14, 21,

42

11

1, 2,

4, 5,

10, 11,

20, 22,

25, 50,

55

1, 2,

4, 5,

10, 11,

20, 22,

25, 50,

55, 100,

110, 121

1, 2,

5, 10,

22, 55,

110

1, 2,

5, 10,

22, 55,

110

1, 2,

5, 10,

22, 55,

110

13

1, 2,

3, 4,

6,8,

9, 12,

13, 16,

18, 24,

26, 36,

39, 48,

72, 78

1, 2,

3, 4,

6,8,

9, 12,

13, 16,

18, 24,

26, 36,

39, 48,

52, 72,

78, 144,

156

1, 2,

3, 4,

6,12,

26, 39,

52, 78,

156

1, 2,

3, 4,

6,12,

26, 39,

52, 78,

156

1, 2,

3, 4,

6,12,

26, 39,

52, 78,

156
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Table C.4: Vector periods obtained with three polynomials (m = 3)

p Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

3

1, 2,

3, 4,

6, 9,

12

1, 2,

3, 4,

6, 8,

9, 27

1, 2,

6

1, 2,

6

1, 2,

6

5

1, 2,

4, 5,

8, 10,

16, 20,

25, 32,

40

1, 2,

4, 5,

8, 10,

16, 20,

25, 32,

40, 64,

80, 100

1, 2,

4, 10,

20

1, 2,

4, 10,

20

1, 2,

4, 10,

20

7

1, 2,

3, 4,

6, 7,

8, 9,

12, 14,

18, 21,

24, 27,

28, 36,

42, 49,

54, 63,

72, 84

1, 2,

3, 4,

6, 7,

8, 9,

12, 14,

18, 21,

24, 27,

28, 36,

42, 49,

54, 63,

72, 84,

98, 108,

126, 147,

216, 252,

343

1, 2,

3, 6,

14, 21,

42

1, 2,

3, 6,

14, 21,

42

1, 2,

3, 6,

14, 21,

42
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Table C.5: Vector periods obtained with four polynomials (m = 4)

p Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

3

1, 2,
3, 4,
6, 8,
9, 12

1, 2,
3, 4,
6, 8,

9, 12,
18, 27,

81

1, 2,
6, 18

1, 2,
6, 18

1, 2,
6, 18

Table C.6: Vector periods obtained with five polynomials (m = 5)

p Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

3

1, 2,
3, 4,
6, 9,
12

1, 2,
3, 4,
6, 8,
9, 27

1, 2,
6, 18

1, 2,
6, 18

1, 2,
6, 18
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APPENDIX D

EXHAUSTIVE LINEAR COMPLEXITY ANALYSIS

In this appendix, we firstly present Tables D.1-D.12 in order to clarify the details of the
LCE values given in Figures 3.4-3.7. Since the sequences with vector period Tv = 1
are equal to the initial vector X = (X1, ..., Xm), their randomnesses do not depend
on the method given by the (1.3). As a result, they are discarded in Chapter 3, while
analyzing the linear complexities.

First of the three main conclusions drawn from Tables D.1-D.12 is that an increase
in Tv results in serious loss of randomness for the three polynomial choices 1, 2 and
3a. The second one is that Choice 2 produces the largest set of periods, followed by
Choice 1 and Choice 3 (in accordance with the results of Chapter 2, as detailed by
Tables C.3-C.6). The third one is that an increase in the field size p also seems to yield
some loss of randomness on the average.

Furthermore, Tables D.13 and D.14 respectively show the minimum and maximum
values of the LCE of the sequences with PE ≥ 0.5, found over all possible values of
X, G, H, ai, gm and hm.

One can observe from Tables D.13 and D.14 that minimum and maximum LCE values
achieved by the sequences with PE ≥ 0.5 are decreasing while the field size p and the
vector size m is increasing for all polynomial choices.
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Table D.1: LCE values versus vector period Tv of sequences generated by Choice 1 values for p =
5,m = 3

Tv % Minimum Average Maximum

2 8.9 0.50 0.93 1

4 33.7 0.25 0.79 1

5 21.4 0.40 0.83 1

8 22.2 0.42 0.84 1

10 3.2 0.40 0.73 1

16 2.8 0.44 0.48 0.50

20 1.9 0.40 0.48 0.50

25 0.8 0.40 0.40 0.40

32 1.0 0.47 0.49 0.50

40 1.5 0.26 0.36 0.40

Table D.2: LCE values versus vector period Tv of sequences generated by Choice 2 values for p =
5,m = 3

Tv % Minimum Average Maximum

2 2.6 0.17 0.93 1

4 10.6 0.17 0.72 1

5 2.1 0.40 0.71 1

8 12.4 0.33 0.71 1

10 2.7 0.30 0.61 1

16 15.1 0.35 0.67 1

20 22.3 0.15 0.68 1

25 0.5 0.40 0.40 0.40

32 7.7 0.35 0.52 1

40 5.4 0.37 0.74 1

64 3.1 0.35 0.47 0.50

80 8.4 0.23 0.38 0.50

100 6.4 0.38 0.39 0.40
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Table D.3: LCE values versus vector period Tv of sequences generated by Choice 3a values for p =
5,m = 3

Tv % Minimum Average Maximum

2 2.3 0.33 0.85 1

4 32.9 0.08 0.71 1

10 7.1 0.17 0.32 0.40

20 56.9 0.10 0.18 0.20

Table D.4: LCE values versus vector period Tv of sequences generated by Choice 1 values for p =
7,m = 3

Tv % Minimum Average Maximum

2 3.5 0.33 0.88 1

3 10.4 0.33 0.85 1

4 1.8 0.58 0.93 1

6 29.3 0.17 0.80 1

7 12.1 0.29 0.82 1

8 0.1 0.79 0.95 1

9 6.4 0.56 0.84 1

12 12.0 0.22 0.84 1

14 2.6 0.29 0.78 1

18 8.5 0.26 0.70 1

21 5.5 0.22 0.57 1

24 0.3 0.28 0.32 0.33

27 0.2 0.56 0.65 0.67

28 0.1 0.23 0.27 0.29

36 2.8 0.26 0.56 1

42 1.8 0.29 0.32 0.33

49 0.3 0.29 0.29 0.29

54 0.2 0.28 0.32 0.33

63 0.3 0.29 0.29 0.29

72 0.4 0.32 0.33 0.33

84 0.4 0.29 0.29 0.29
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Table D.5: LCE values versus vector period Tv of sequences generated by Choice 2 values for p =
7,m = 3

Tv % Minimum Average Maximum

2 1.2 0.17 0.88 1

3 2.2 0.33 0.81 1

4 1.1 0.50 0.92 1

6 7.2 0.17 0.73 1

7 1.3 0.19 0.75 1

8 0.3 0.83 0.96 1

9 3.2 0.44 0.74 1

12 7.2 0.22 0.76 1

14 1.2 0.19 0.63 1

18 13.3 0.22 0.63 1

21 5.2 0.14 0.66 1

24 1.4 0.28 0.67 1

27 1.8 0.48 0.64 0.67

28 0.3 0.18 0.27 0.29

36 11.1 0.19 0.57 1

42 3.6 0.07 0.40 1

49 1.1 0.27 0.49 1

54 5.4 0.24 0.47 0.67

63 5.4 0.25 0.53 0.67

72 4.6 0.21 0.40 1

84 1.1 0.21 0.26 0.29

98 0.4 0.15 0.27 0.29

108 6.6 0.31 0.31 0.31

126 6.2 0.37 0.37 0.37

147 4.5 0.27 0.40 0.67

216 1.1 0.22 0.32 0.33

252 1.2 0.16 0.21 0.29

343 0.8 0.28 0.28 0.29
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Table D.6: LCE values versus vector period Tv of sequences generated by Choice 3a values for p =
7,m = 3

Tv % Minimum Average Maximum

2 0.9 0.20 0.80 1

3 3.7 0.30 0.77 1

6 50.1 0.20 0.54 0.70

14 2.0 0.10 0.19 0.20

21 7.4 0.10 0.16 0.20

42 35.7 0 0.10 0.10

Table D.7: LCE values versus vector period Tv of sequences generated by Choice 1 values for p =
11,m = 2

Tv % Minimum Average Maximum

2 3.1 0.50 0.96 1

4 0.8 0.75 0.98 1

5 21.3 0.20 0.80 1

10 40.3 0.10 0.63 1

11 9.8 0.18 0.87 1

20 6.0 0.15 0.58 1

22 0.6 0.18 0.18 0.18

25 7.5 0.28 0.38 0.40

50 7.5 0.14 0.18 0.20

55 1.5 0.18 0.18 0.18
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Table D.8: LCE values versus vector period Tv of sequences generated by Choice 2 values for p =
11,m = 2

Tv % Minimum Average Maximum

2 1.8 0.50 0.96 1

4 0.9 0.88 0.98 1

5 6.6 0.20 0.63 1

10 10.5 0.10 0.48 1

11 1.6 0.18 0.57 1

20 3.6 0.18 0.20 0.20

22 0.7 0.14 0.18 0.18

25 12.0 0.28 0.37 0.40

50 27.0 0.12 0.22 0.40

55 9.3 0.15 0.32 0.40

100 18.0 0.12 0.18 0.20

110 5.4 0.15 0.18 0.18

121 1.7 0.18 0.18 0.18

Table D.9: LCE values versus vector period Tv of sequences generated by Choice 3a values for p =
11,m = 2

Tv % Minimum Average Maximum

2 1.7 0.50 0.94 1

5 19.2 0.10 0.49 0.60

10 68.2 0.10 0.28 0.30

22 1.1 0.10 0.10 0.10

55 4.5 0 0.09 0.10

110 4.5 0 0 0
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Table D.10: LCE values versus vector period Tv of sequences generated by Choice 1 values for p =
13,m = 2

Tv % Minimum Average Maximum

2 2.2 0.50 0.93 1

3 5.6 0.33 0.87 1

4 7.1 0.25 0.86 1

6 10.0 0.17 0.78 1

8 1.5 0.38 0.60 1

9 2.5 0.56 0.64 0.67

12 32.8 0.08 0.61 1

13 8.2 0.15 0.88 1

16 2.9 0.38 0.48 0.50

18 2.5 0.28 0.32 0.33

24 5.1 0.13 0.53 1

26 0.5 0.15 0.15 0.15

36 4.9 0.14 0.16 0.17

39 0.3 0.15 0.15 0.15

48 5.8 0.13 0.16 0.17

72 6.6 0.11 0.15 0.17

78 0.5 0.15 0.15 0.15

73



Table D.11: LCE values versus vector period Tv of sequences generated by Choice 2 values for p =
13,m = 2

Tv % Minimum Average Maximum

2 1.2 0.25 0.94 1

3 2.4 0.33 0.79 1

4 3.1 0.25 0.73 1

6 4.9 0.17 0.70 1

8 2.4 0.38 0.67 1

9 2.5 0.44 0.64 0.67

12 12.4 0.08 0.55 1

13 1.1 0.15 0.56 1

16 2.7 0.38 0.48 0.50

18 5.2 0.22 0.45 0.67

24 11.3 0.13 0.55 1

26 0.5 0.12 0.15 0.15

36 11.5 0.11 0.36 0.67

39 1.2 0.12 0.14 0.15

48 14.1 0.13 0.35 0.50

52 3.3 0.10 0.38 0.50

72 9.8 0.10 0.23 0.33

78 0.9 0.13 0.14 0.14

144 4.4 0.10 0.16 0.17

156 4.7 0.09 0.16 0.17
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Table D.12: LCE values versus vector period Tv of sequences generated by Choice 3a values for
p = 13,m = 2

Tv % Minimum Average Maximum

2 1.2 0.30 0.93 1

3 3.9 0.20 0.76 1

4 6.7 0.30 0.67 0.80

6 15.1 0.10 0.43 0.50

12 64.1 0.10 0.27 0.30

26 0.8 0.10 0.10 0.10

39 1.5 0.10 0.10 0.10

52 1.5 0 0.09 0.10

78 1.5 0 0 0

156 3.1 0 0 0

Table D.13: Minimum linear complexity efficiency of the sequences with period efficiency PE ≥ 0.5,
found over all possible values of X, G, H, ai, gm and hm

Case p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

1 3 2 - 0.67 0.33 0.33 0.42

2 3 3 - 0.67 - - -

3 3 4 - 0.67 - - -

4 3 5 - 0.67 - - -

5 5 2 - 0.30 0.10 0.10 0.15

6 5 3 - 0.23 - - -

7 7 2 - 0.22 0 0.05 0.07

8 7 3 - 0.16 - - -

9 11 2 0.18 0.18 0 0.02 0.03

10 13 2 0.15 0.09 0 0.01 0.02
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Table D.14: Maximum linear complexity efficiency of the sequences with period efficiency PE ≥ 0.5,
found over all possible values of X, G, H, ai, gm and hm

Case p m Choice 1 Choice 2 Choice 3a Choice 3b Choice 3c

1 3 2 - 0.67 0.42 0.42 0.42

2 3 3 - 0.67 - - -

3 3 4 - 0.67 - - -

4 3 5 - 0.67 - - -

5 5 2 - 0.50 0.20 0.15 0.20

6 5 3 - 0.50 - - -

7 7 2 - 0.33 0.10 0.07 0.10

8 7 3 - 0.29 - - -

9 11 2 0.18 0.18 0.10 0.05 0.04

10 13 2 0.15 0.17 0 0.06 0.03
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APPENDIX E

LINEAR COMPLEXITY ANALYSIS OF THE LARGEST
PERIOD SEQUENCES

In this appendix, we present some tables on minimum, average and maximum linear
complexity efficiencies attained within the set of the largest period sequences of the
corresponding polynomial choices (1, 2, 3a, 3b and 3c)

i) versus the field size 3 ≤ p ≤ 11 and 13 with the number of polynomials, m = 2 in
Tables E.1-E.5;

ii) versus the vector size m up to 7, 5, 13, 9 and 9 for Choices 1, 2, 3a, 3b and 3c where
p = 3 in Tables E.6-E.10.

As can be seen from Tables E.1-E.5, increasing the field size p from 3 to 13 causes all
five polynomial choices to generate sequences with lower and still lower LCE values.
Despite the fact that Choice 1 sequences seem slightly better than Choice 2 sequences,
which are much better than Choice 3 sequences, none of the LCE values in these tables
exceed 0.95, except the maximum LCE of Choice 1 for p = 3.

Table E.6 shows that the LCE values of the largest period sequences generated by
Choice 1 in F3 are at most 0.67 for odd m, but they can achieve the highest point
(LCE ≥ 0.95) when m is even.

The other observation from Table E.7 is that for the field size p = 3, LCE values of the
largest period sequences produced by Choice 2 are 0.67 independently of m.

Table E.8 indicates that LCE values of the sequences having largest period generated
by Choice 3a in F3 can be higher when m is a power of p = 3.

On the other hand, Tables E.9 and E.10 demonstrate that the LCE values of the largest
period sequences of Choices 3b and 3c for the field size p = 3 are quite similar, and
they seem better than that of Choice 3a.
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Table E.1: LCE values obtained at the largest Tv of Choice 1 at m = 2

p at Max. Tv Corresponding PE % Min. LCE Ave. LCE Max. LCE

3 4 0.44 7.4 0.75 0.92 1

5 10 0.40 1.6 0.40 0.40 0.40

7 21 0.43 1.7 0.29 0.29 0.29

11 55 0.45 1.5 0.18 0.18 0.18

13 78 0.46 0.5 0.15 0.15 0.15

Table E.2: LCE values obtained at the largest Tv of Choice 2 at m = 2

p at Max. Tv Corresponding PE % Min. LCE Ave. LCE Max. LCE

3 9 1 22.2 0.67 0.67 0.67

5 20 0.80 25.6 0.30 0.42 0.50

7 49 1 2.7 0.29 0.29 0.29

11 121 1 1.7 0.18 0.18 0.18

13 156 0.92 4.7 0.09 0.16 0.17

Table E.3: LCE values obtained at the largest Tv of Choice 3a at m = 2

p at Max. Tv Corresponding PE % Min. LCE Ave. LCE Max. LCE

3 6 0.67 66.7 0.33 0.39 0.42

5 20 0.80 17.8 0.10 0.14 0.20

7 42 0.86 6.9 0 0.09 0.10

11 110 0.91 4.5 0 0 0

13 156 0.92 3.1 0 0 0

Table E.4: LCE values obtained at the largest Tv of Choice 3b at m = 2

p at Max. Tv Corresponding PE % Min. LCE Ave. LCE Max. LCE

3 6 0.67 66.7 0.33 0.39 0.42

5 20 0.80 17.8 0.10 0.13 0.15

7 42 0.86 6.9 0.05 0.07 0.07

11 110 0.91 4.5 0.02 0.03 0.03

13 156 0.92 3.1 0.01 0.02 0.04
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Table E.5: LCE values obtained at the largest Tv of Choice 3c at m = 2

p at Max. Tv Corresponding PE % Min. LCE Ave. LCE Max. LCE

3 6 0.67 44.4 0.42 0.42 0.42

5 20 0.80 32 0.15 0.18 0.20

7 42 0.86 12.7 0.07 0.09 0.10

11 110 0.91 8.6 0.03 0.04 0.04

13 156 0.92 5.9 0.02 0.02 0.03

Table E.6: LCE values obtained at the largest Tv of Choice 1 versus m for p = 3

m at Max. Tv Corresponding PE % Min. LCE Ave. LCE Max. LCE

2 4 0.44 7.4 0.75 0.92 1

3 12 0.44 1.7 0.67 0.67 0.67

4 12 0.15 2.9 0.67 0.79 1

5 36 0.15 0.3 0.61 0.63 0.67

6 36 0.05 0.4 0.61 0.71 0.97

7 108 0.05 0.0 0.65 0.66 0.67

Table E.7: LCE values obtained at the largest Tv of Choice 2 versus m for p = 3

m at Max. Tv Corresponding PE % Min. LCE Ave. LCE Max. LCE

2 9 1 22.2 0.67 0.67 0.67

3 27 1 14.8 0.67 0.67 0.67

4 81 1 9.9 0.67 0.67 0.67

5 243 1 6.6 0.67 0.67 0.67
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Table E.8: LCE values obtained at the largest Tv of Choice 3a versus m for p = 3

m at Max. Tv Corresponding PE % Min. LCE Ave. LCE Max. LCE

2 6 0.67 66.7 0.33 0.39 0.42

3 6 0.22 88.9 0.33 0.57 0.67

4 18 0.22 66.7 0.22 0.23 0.24

5 18 0.07 88.9 0.22 0.30 0.33

6 18 0.02 96.3 0.22 0.32 0.34

7 18 0.01 98.8 0.22 0.40 0.44

8 18 3.E-03 99.6 0.22 0.42 0.45

9 18 9.E-04 99.9 0.22 0.51 0.56

10 54 9.E-04 66.7 0.19 0.19 0.19

11 54 3.E-04 88.9 0.19 0.21 0.22

12 54 1.E-04 96.3 0.19 0.22 0.22

13 54 3.E-05 98.8 0.19 0.24 0.26

Table E.9: LCE values obtained at the largest Tv of Choice 3b versus m for p = 3

m at Max. Tv Corresponding PE % Min. LCE Ave. LCE Max. LCE

2 6 0.67 66.7 0.33 0.39 0.42

3 6 0.22 81.5 0.50 0.73 0.83

4 18 0.22 44.4 0.39 0.39 0.39

5 18 0.07 74.1 0.37 0.59 0.72

6 54 0.07 44.4 0.35 0.35 0.35

7 54 0.02 64.2 0.35 0.58 0.69

8 162 0.02 44.4 0.34 0.34 0.34

9 162 0.01 64.2 0.34 0.57 0.67
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Table E.10: LCE values obtained at the largest Tv of Choice 3c versus m for p = 3

m at Max. Tv Corresponding PE % Min. LCE Ave. LCE Max. LCE

2 6 0.67 44.4 0.42 0.42 0.42

3 6 0.22 74.1 0.44 0.79 1

4 18 0.22 29.6 0.38 0.38 0.38

5 18 0.07 49.4 0.36 0.62 0.78

6 54 0.07 14.8 0.35 0.35 0.35

7 54 0.02 24.7 0.35 0.56 0.70

8 162 0.02 9.9 0.33 0.33 0.34

9 162 0.01 19.8 0.33 0.50 0.68
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APPENDIX F

LINEAR COMPLEXITIES OF SEQUENCES GENERATED
WITH RANDOM INITIAL VALUES

In this appendix, we present some curves and graphs on the linear complexity effi-
ciency, LCE, as defined in this work by “linear complexity L divided by the period T
of the sequence”. Figure F.1 is sketched for 5 ≤ p ≤ 11, in addition to Figure 5.1
that shows the LCE values for p = 3 and 13. Similarly, Figure F.2 is sketched for
5 ≤ p ≤ 11, in addition to Figure 5.2 that shows the percentage of sequences with
LCE > 0.95 for p = 3 and 13.

Figure F.1 indicates that the average LCE values of the reference sequences generated
by MATLAB look perfectly random, with average LCE almost equal to 1. On the other
hand, Ostafe’s sequences, Choice 1, 2 and 3a, have lower LCE values for all T ’s in
the given set for 5 ≤ p ≤ 11, since their average LCE values do not reach 0.8.

Figure F.2 shows that for field sizes 5 ≤ p ≤ 11, Choice 1 and 2 generate highly
random sequences with very low percentages (not exceeding 50%).
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(a) p = 5

(b) p = 7

(c) p = 11

Figure F.1: Randomness comparison of the three choices with the random sequences produced by
MATLAB’s randi(.) where (a) p = 5, (b) p = 7, (c) p = 11, in terms of the LCE as defined in this
work by “linear complexity L divided by the period T of the sequence” (For each T , average LCE is
computed over 100 sequences.)
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(a) p = 5

(b) p = 7

(c) p = 11

Figure F.2: Percentage of sequences with LCE ≥ 0.95 for (a) p = 5, (b) p = 7, (c) p = 11 using three
choices
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APPENDIX G

PERCENTAGES OF HIGH-LCE SEQUENCES GENERATED
WITH RANDOM INITIAL VALUES AND CORRESPONDING

PE’S

In Section 5.5, we generate 100 sequences with random initialization for 3 ≤ p ≤ 43
and 2 ≤ m ≤ 4. We then compute the average LCE’s of the corresponding sequences,
whose vector periods Tv ≥ p−1. For each set of 100 sequences, this appendix presents
the percentages of those with LCE ≥ 0.95 and corresponding period efficiencies in
Tables G.1, G.2 and G.3 for m = 2, 3 and 4 respectively.

Average LCE values of the sequences generated by all five choices decreases with an
increase of field size p. For the field sizes 3 ≤ p ≤ 43 with vector sizes m = 2, 3
and the field sizes 3 ≤ p ≤ 19 with vector sizes m = 4, Choice 1 and 2 can generate
sequences with high LCE (≥ 0.95) but the corresponding PE is less than or equal to
0.44 for m = 2 and less than or equal to 0.33 for m = 3, 4. On the other hand, Choice
3a and 3b can not produce high-LCE sequences for m = 2; however, Choice 3c can
generate such sequences for only small field sizes (p = 3 and 5) but the corresponding
PE is less than or equal to 0.22. In addition, for vector size m = 3, Choice 3a, 3b and
3c can produce high-LCE sequences for field size p not exceeding 3, 7 and 7 and period
efficiency PE not exceeding 0.07, 0.07 and 0.22, respectively. Similarly, for m = 4,
Choice 3a, 3b and 3c generate high-LCE sequences mainly for small field sizes but
with very low period efficiencies.
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Table G.1: Percentages of high-LCE sequences (LCE ≥ 0.95) with Tv ≥ p − 1 and corresponding
maximum PE’s generated by random initialization at m = 2

p Choice 1 Maximum PE Choice 2 Maximum PE Choice 3a Maximum PE

3 69 0.44 5 0.04 0 -

5 52 0.32 35 0.44 0 -

7 31 0.24 4 0.16 0 -

11 29 0.17 10 0.24 0 -

13 22 0.14 3 0.09 0 -

17 23 0.11 10 0.14 0 -

19 16 0.05 3 0.11 0 -

23 16 0.08 0 - 0 -

29 14 0.07 13 0.08 0 -

31 12 0.03 2 0.03 0 -

37 7 0.05 1 0.03 0 -

41 9 0.05 5 0.05 0 -

43 12 0.02 1 0.02 0 -

Table G.2: Percentages of high-LCE sequences (LCE ≥ 0.95) with Tv ≥ p − 1 and corresponding
maximum PE’s generated random initialization at m = 3

p Choice 1 Maximum PE Choice 2 Maximum PE Choice 3a Maximum PE

3 51 0.22 32 0.33 5 0.07

5 47 0.08 32 0.32 3 0.03

7 34 0.06 10 0.07 0 -

11 53 0.04 11 8.E-02 0 -

13 50 0.04 11 7.E-02 0 -

17 51 0.03 14 1.E-01 0 -

19 61 0.02 8 3.E-02 0 -

23 53 0.02 11 4.E-02 0 -

29 57 0.02 9 3.E-02 0 -

31 64 0.02 7 3.E-02 0 -

37 63 0.01 4 3.E-02 0 -

41 68 0.01 4 2.E-02 0 -

43 67 0.01 2 2.E-02 0 -
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Table G.3: Percentages of high-LCE sequences (LCE ≥ 0.95) with Tv ≥ p − 1 and corresponding
maximum PE’s generated by random initialization at m = 4

p Choice 1 Maximum PE Choice 2 Maximum PE Choice 3a Maximum PE

3 30 0.10 28 0.33 0 -

5 42 0.06 22 0.16 1 0.01

7 50 0.03 30 0.18 0 -

11 78 0.01 16 0.14 0 -

13 74 0.01 18 0.06 0 -

17 75 0.01 4 0.05 0 -

19 71 0.00 11 0.05 0 -
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APPENDIX H

LCE VALUES OF THE SEQUENCES GENERATED BY
CHOICE 3a WITH RANDOM INITIAL VALUES FOR T = 1000

Table 5.2 in Section 5.4 shows the LCE values of the sequences with period T = 1000
generated by Choice 3a for p = 3. In this appendix, we extend these results to 5 ≤
p ≤ 31.

Table H.1-H.9 show that the LCE values of the sequences generated by Choice 3a vary
in a narrow range. These tables show the slight increase in the average LCE values
corresponding to the slight increase in the number of polynomials is not a sufficient
indicator to claim some correlation between m and LCE parameters.

Table H.1: LCE values of the randomly initiated sequences generated by Choice 3a for p = 5, T = 1000

m Minimum Average Maximum Count

10 0.08 0.10 0.11 100
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Table H.2: LCE values of the randomly initiated sequences generated by Choice 3a for p = 7, T = 1000

m Minimum Average Maximum Count

23 0.48 0.54 0.57 30

24 0.50 0.56 0.60 39

25 0.55 0.59 0.62 31

Table H.3: LCE values of the randomly initiated sequences generated by Choice 3a for p = 11,
T = 1000

m Minimum Average Maximum Count

9 0.06 0.08 0.09 100

Table H.4: LCE values of the randomly initiated sequences generated by Choice 3a for p = 13,
T = 1000

m Minimum Average Maximum Count

13 0.12 0.16 0.18 100

Table H.5: LCE values of the randomly initiated sequences generated by Choice 3a for p = 17,
T = 1000

m Minimum Average Maximum Count

7 0.04 0.05 0.06 100

Table H.6: LCE values of the randomly initiated sequences generated by Choice 3a for p = 19,
T = 1000

m Minimum Average Maximum Count

3 0.01 0.01 10.01 88

6 0.03 0.04 0.04 12

Table H.7: LCE values of the randomly initiated sequences generated by Choice 3a for p = 23,
T = 1000

m Minimum Average Maximum Count

2 0.00 0.01 0.01 47

4 0.01 0.02 0.02 53
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Table H.8: LCE values of the randomly initiated sequences generated by Choice 3a for p = 29,
T = 1000

m Minimum Average Maximum Count

5 0.02 0.03 0.03 100

Table H.9: LCE values of the randomly initiated sequences generated by Choice 3a for p = 31,
T = 1000

m Minimum Average Maximum Count

2 0.00 0.01 0.01 56

3 0.01 0.01 0.01 43

5 0.03 0.03 0.03 1
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APPENDIX I

MATLAB IMPLEMENTATIONS OF ALGORITHMS IN THIS
WORK

I.1 MATLAB Implementation of Choice 1

1 function [Tv,U,UPeriodic,URemain]=Choice1(p,m,gm,hm,H,X)
2 Tv=1;
3 U=X;
4 while(Tv = p m)
5 F=ones(1,m);
6 for r=1:m 1
7 F(r)=mod(X(r ) X(r+1)+H(r),p);
8 end
9 F(m)=mod(gm X(m)+hm,p);

10 for i=1:m:(Tv 1 ) m+1
11 if(U(i:i+m 1)==F)
12 Tv=(Tv m+1 i)/m;
13 UPeriodic=U(i:i+(Tv m) 1);
14 URemain=U(1:i 1);
15 return;
16 end
17 end
18 U=[U F];
19 X=F;
20 Tv=Tv+1;
21 end
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I.2 MATLAB Implementation of Choice 2

1 function [Tv,U,UPeriodic,URemain]=Choice2(m,p,gm,hm,H,A,X)
2 Tv=1;
3 U=X;
4 while(Tv = p m)
5 F=ones(1,m);
6 for r=1:m 1
7 F(r)=mod(X(r) (X(r+1) 2 A(r))+H(r),p);
8 end
9 F(m)=mod(gm X(m)+hm,p);

10 for i=1:m:(Tv 1 ) m+1
11 if(U(i:i+m 1)==F)
12 Tv=(Tv m+1 i)/m;
13 UPeriodic=U(i:i+(Tv m) 1);
14 URemain=U(1:i 1);
15 return;
16 end
17 end
18 U=[U F];
19 X=F;
20 Tv=Tv+1;
21 end

I.3 MATLAB Implementation of Choice 3a

1 function [Tv,U,UPeriodic,URemain]=Choice3(m,p,gm,hm,G,X)
2 Tv=1;
3 U=X;
4 while(Tv = p m)
5 F=ones(1,m);
6 for r=1:m 1
7 F(r)=mod(X(r ) G(r)+X(r+1),p);
8 end
9 F(m)=mod(gm X(m)+hm,p);

10 for i=1:m:(Tv 1 ) m+1
11 if(U(i:i+m 1)==F)
12 Tv=(Tv m+1 i)/m;
13 UPeriodic=U(i:i+(Tv m) 1);
14 URemain=U(1:i 1);
15 return;
16 end
17 end
18 U=[U F];
19 X=F;
20 Tv=Tv+1;
21 end
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I.4 MATLAB Implementation of Choice 3b

1 function [Tv,U,UPeriodic,URemain]=Choice3b(m,p,gm,hm,G,X)
2 Tv=1;
3 U=X;
4 while(Tv = p m)
5 F=ones(1,m);
6 for r=1:m 1
7 F(r)=mod(X(r ) G(r)+prod(X(r+1:m)),p);
8 end
9 F(m)=mod(gm X(m)+hm,p);

10 for i=1:m:(Tv 1 ) m+1
11 if(U(i:i+m 1)==F)
12 Tv=(Tv m+1 i)/m;
13 UPeriodic=U(i:i+(Tv m) 1);
14 URemain=U(1:i 1);
15 return;
16 end
17 end
18 U=[U F];
19 X=F;
20 Tv=Tv+1;
21 end

I.5 MATLAB Implementation of Choice 3c

1 function [Tv,U,UPeriodic,URemain]=Choice3c(m,p,gm,hm,G,X)
2 Tv=1;
3 U=X;
4 while(Tv = p m)
5 F=ones(1,m);
6 for r=1:m 1
7 F(r)=mod(X(r ) G(r)+(X(r+1))2,p);
8 end
9 F(m)=mod(gm X(m)+hm,p);

10 for i=1:m:(Tv 1 ) m+1
11 if(U(i:i+m 1)==F)
12 Tv=(Tv m+1 i)/m;
13 UPeriodic=U(i:i+(Tv m) 1);
14 URemain=U(1:i 1);
15 return;
16 end
17 end
18 U=[U F];
19 X=F;
20 Tv=Tv+1;
21 end
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I.6 MATLAB Implementation of Choice 4

1 function Tv=Choice4(m,p,hm,X)
2 Tv=1;
3 U=X;
4 while(Tv = p m)
5 F=zeros(1,m);
6 for r=1:m 1
7 product=1;
8 for c=r+1:m
9 product=product p1thPowerMod(X(c));

10 end
11 F(r)=mod(X(r)+product,p);
12 end
13 F(m)=mod(X(m)+hm,p);
14 for i=1:m:(Tv 1 ) m+1
15 if(U(i:i+m 1)==F)
16 Tv=(Tv m+1 i)/m;
17 return;
18 end
19 end
20 U=[U F];
21 X=F;
22 Tv=Tv+1;
23 end
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I.7 MATLAB Implementation of the Berlekamp-Massey Algorithm

1 function [L,LP,c]=BM(s,p)
2 n=length(s);
3 L=0;
4 LP=zeros(1,n);
5 c=zeros(1,n);
6 c(1)=1;
7 c1=zeros(1,n);
8 c1(1)=1;
9 t=zeros(1,n);

10 e=1;
11 d=0;
12 d1=1;
13 for i=0:n 1
14 d=0;
15 for j=0:L
16 d=mod(d+c(j+1) s(i j+1),p);
17 end
18 if(d==0)
19 e=e+1;
20 elseif(2 L i)
21 temp=zeros(1,n);
22 temp(e+1)=gfdiv(d,d1,p);
23 c=gfsub(c,gfconv(temp,c1,p),p);
24 e=e+1;
25 else
26 L=i+1 L;
27 t=c;
28 temp=zeros(1,n);
29 temp(e+1)=gfdiv(d,d1,p);
30 c=gfsub(c,gfconv(temp,c1,p),p);
31 c1=t;
32 d1=d;
33 e=1;
34 end
35 LP(i+1)=L;
36 end
37 c=c(1:L+1);
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APPENDIX J

LINEAR COMPLEXITY PROFILES

As it is mentioned before in Section 1.3, the linear complexity profile of a random
sequence should increase approximately as the n/2 line. It means that the linear com-
plexity profile of a random sequence should be close to n/2 line for n = 1, 2, . . . , 2T ,
and achieve the period T after 2T terms. In order to investigate whether the sequences
generated by all five polynomial choices, their linear complexities are calculated after
each term of the sequences.

In this appendix we draw the linear complexity profiles of some example sequences, by
assigning fix period T (within the range T±0.05T ) and field size pwith random values
to the remaining parameters (i.e., the number of polynomials m, X = (X1, ..., Xm),
G = (G1, ..., Gm−1), H = (H1, ..., Hm−1), ai, gm and hm) of the related polynomial
choice.

Figure J.1 shows the linear complexity profile of high LCE sequences of length T =
{100 ± 0.05, 500 ± 0.05} generated by Choice 1 for field sizes p = 5 and p = 7. It
is observed that the sequences with high LCE produced by using the polynomials in
Choice 1 have the linear complexity profiles, which are close to n/2 line.

On the other hand, Figure J.2 show that the linear complexity profiles of some se-
quences with LCE < 0.95 generated by Choice 1 for field size p = 5 and 7 as an
example. It can be observed that the linear complexity profile of low LCE sequences
are not close to n/2 line for n = 1, 2, . . . , 2T , and achieve the period T after 2T terms.
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(a) p = 5, T = 100

(b) p = 5, T = 500

(c) p = 7, T = 100

(d) p = 7, T = 500

Figure J.1: Linear complexity profile of three sequences generated by Choice 1 with high (LCE ≥ 0.95)
where the field size p and the scalar period T are given as (a) p = 5, T = 100, (b) p = 5, T = 100, (c)
p = 7, T = 500, (d) p = 7, T = 500
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(a) p = 5,LCE = 0.40

(b) p = 7,LCE = 0.67

Figure J.2: Linear complexity profile of three sequences with LCE < 0.7 generated by Choice 1 of the
scalar period T = 100 where the field size p is given as (a) p = 5, (b) p = 7
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